Sample records for structure factor amplitudes

  1. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    PubMed Central

    Zuluaga-Ramírez, Pablo; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications. PMID:28793655

  2. The singular behavior of massive QCD amplitudes

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Moch, Sven-Olaf

    2007-05-01

    We discuss the structure of infrared singularities in on-shell QCD amplitudes with massive partons and present a general factorization formula in the limit of small parton masses. The factorization formula gives rise to an all-order exponentiation of both, the soft poles in dimensional regularization and the large collinear logarithms of the parton masses. Moreover, it provides a universal relation between any on-shell amplitude with massive external partons and its corresponding massless amplitude. For the form factor of a heavy quark we present explicit results including the fixed-order expansion up to three loops in the small mass limit. For general scattering processes we show how our constructive method applies to the computation of all singularities as well as the constant (mass-independent) terms of a generic massive n-parton QCD amplitude up to the next-to-next-to-leading order corrections.

  3. Joint Inversion of Phase and Amplitude Data of Surface Waves for North American Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hamada, K.; Yoshizawa, K.

    2015-12-01

    For the reconstruction of the laterally heterogeneous upper-mantle structure using surface waves, we generally use phase delay information of seismograms, which represents the average phase velocity perturbation along a ray path, while the amplitude information has been rarely used in the velocity mapping. Amplitude anomalies of surface waves contain a variety of information such as anelastic attenuation, elastic focusing/defocusing, geometrical spreading, and receiver effects. The effects of elastic focusing/defocusing are dependent on the second derivative of phase velocity across the ray path, and thus, are sensitive to shorter-wavelength structure than the conventional phase data. Therefore, suitably-corrected amplitude data of surface waves can be useful for improving the lateral resolution of phase velocity models. In this study, we collect a large-number of inter-station phase velocity and amplitude ratio data for fundamental-mode surface waves with a non-linear waveform fitting between two stations of USArray. The measured inter-station phase velocity and amplitude ratios are then inverted simultaneously for phase velocity maps and local amplification factor at receiver locations in North America. The synthetic experiments suggest that, while the phase velocity maps derived from phase data only reflect large-scale tectonic features, those from phase and amplitude data tend to exhibit better recovery of the strength of velocity perturbations, which emphasizes local-scale tectonic features with larger lateral velocity gradients; e.g., slow anomalies in Snake River Plain and Rio Grande Rift, where significant local amplification due to elastic focusing are observed. Also, the spatial distribution of receiver amplification factor shows a clear correlation with the velocity structure. Our results indicate that inter-station amplitude-ratio data can be of help in reconstructing shorter-wavelength structures of the upper mantle.

  4. Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure

    NASA Astrophysics Data System (ADS)

    Mafra, Carlos R.; Schlotterer, Oliver; Stieberger, Stephan

    2013-08-01

    Using the pure spinor formalism in part I (Mafra et al., preprint [1]) we compute the complete tree-level amplitude of N massless open strings and find a striking simple and compact form in terms of minimal building blocks: the full N-point amplitude is expressed by a sum over (N-3)! Yang-Mills partial subamplitudes each multiplying a multiple Gaussian hypergeometric function. While the former capture the space-time kinematics of the amplitude the latter encode the string effects. This result disguises a lot of structure linking aspects of gauge amplitudes as color and kinematics with properties of generalized Euler integrals. In this part II the structure of the multiple hypergeometric functions is analyzed in detail: their relations to monodromy equations, their minimal basis structure, and methods to determine their poles and transcendentality properties are proposed. Finally, a Gröbner basis analysis provides independent sets of rational functions in the Euler integrals. In contrast to [1] here we use momenta redefined by a factor of i. As a consequence the signs of the kinematic invariants are flipped, e.g. |→|.

  5. Why phase errors affect the electron function more than amplitude errors.

    PubMed

    Lattman, Eaton; DeRosier, David

    2008-03-01

    If Fexp(ialpha) are the set of structure factors for a structure f, the amplitudes can be converted to those of an uncorrelated structure g (amplitude swapping) by multiplying each F by the positive number G/F. Correspondingly, the image f is convoluted with k, the Fourier transform of G/F; k has a large peak at the origin, so that f * k approximately f. For swapped phases, the image f is convoluted with l, the Fourier transform of exp(iDeltaalpha), where Deltaalpha, the phase difference between F and G, is a random variable; l does not have a large peak at the origin, so that f * l does not resemble f. The paper provides quantitative descriptions of these arguments.

  6. A Natural Language for AdS/CFT Correlators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, A.Liam; /Boston U.; Kaplan, Jared

    2012-02-14

    We provide dramatic evidence that 'Mellin space' is the natural home for correlation functions in CFTs with weakly coupled bulk duals. In Mellin space, CFT correlators have poles corresponding to an OPE decomposition into 'left' and 'right' sub-correlators, in direct analogy with the factorization channels of scattering amplitudes. In the regime where these correlators can be computed by tree level Witten diagrams in AdS, we derive an explicit formula for the residues of Mellin amplitudes at the corresponding factorization poles, and we use the conformal Casimir to show that these amplitudes obey algebraic finite difference equations. By analyzing the recursivemore » structure of our factorization formula we obtain simple diagrammatic rules for the construction of Mellin amplitudes corresponding to tree-level Witten diagrams in any bulk scalar theory. We prove the diagrammatic rules using our finite difference equations. Finally, we show that our factorization formula and our diagrammatic rules morph into the flat space S-Matrix of the bulk theory, reproducing the usual Feynman rules, when we take the flat space limit of AdS/CFT. Throughout we emphasize a deep analogy with the properties of flat space scattering amplitudes in momentum space, which suggests that the Mellin amplitude may provide a holographic definition of the flat space S-Matrix.« less

  7. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knybel, Lukas; VŠB-Technical University of Ostrava, Ostrava; Cvek, Jakub, E-mail: Jakub.cvek@fno.cz

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, andmore » sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe tumors; higher interfraction amplitude variability indicated tumors in contact with mediastinal structures, although adhesion to parietal pleura did not necessarily reduce tumor motion amplitudes. The most variable lung tumors were metastatic lesions in women.« less

  8. On-shell structures of MHV amplitudes beyond the planar limit

    DOE PAGES

    Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy; ...

    2015-06-25

    We initiate an exploration of on-shell functions in N=4 SYM beyond the planar limit by providing compact, combinatorial expressions for all leading singularities of MHV amplitudes and showing that they can always be expressed as a positive sum of differently ordered Parke-Taylor tree amplitudes. This is understood in terms of an extended notion of positivity in G(2, n), the Grassmannian of 2-planes in n dimensions: a single on-shell diagram can be associated with many different “positive” regions, of which the familiar G +(2, n) associated with planar diagrams is just one example. The decomposition into Parke-Taylor factors is simply amore » “triangulation” of these extended positive regions. The U(1) decoupling and Kleiss-Kuijf (KK) relations satisfied by the Parke-Taylor amplitudes also follow naturally from this geometric picture. Finally, these results suggest that non-planar MHV amplitudes in N=4 SYM at all loop orders can be expressed as a sum of polylogarithms weighted by color factors and (unordered) Parke-Taylor amplitudes.« less

  9. Exclusive processes and the fundamental structure of hadrons

    DOE PAGES

    Brodsky, Stanley J.

    2015-01-20

    I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD couplingmore » in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.« less

  10. Exclusive processes and the fundamental structure of hadrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.

    I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD couplingmore » in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.« less

  11. Tidal Amplitude Delta Factors and Phase Shifts for an Oceanic Earth

    NASA Astrophysics Data System (ADS)

    Spiridonov, E. A.

    2017-12-01

    M.S. Molodenskiy's problem, which describes the state of an elastic self-gravitating compressible sphere, is generalized to the case of a biaxial hydrostatically equilibrium rotating elliptical inelastic shell. The system of sixth-order equations is supplemented with corrections due to the relative and Coriolis accelerations. The ordinary and load Love numbers of degree 2 are calculated with allowance for their latitude dependence and dissipation for different models of the Earth's structure (the AK135, IASP91, and PREM models). The problem is solved by Love's method. The theoretical amplitude delta factors and phase shifts of second-order tidal waves for an oceanic Earth are compared with their most recent empirical counterparts obtained by the GGP network superconducting gravimeters. In particular, it is shown that a good matching (up to the fourth decimal place) of the theoretical and observed amplitude factors of semidiurnal tides does not require the application of the nonhydrostatic theory.

  12. Latent factor structure of a behavioral economic marijuana demand curve.

    PubMed

    Aston, Elizabeth R; Farris, Samantha G; MacKillop, James; Metrik, Jane

    2017-08-01

    Drug demand, or relative value, can be assessed via analysis of behavioral economic purchase task performance. Five demand indices are typically obtained from drug purchase tasks. The goal of this research was to determine whether metrics of marijuana reinforcement from a marijuana purchase task (MPT) exhibit a latent factor structure that efficiently characterizes marijuana demand. Participants were regular marijuana users (n = 99; 37.4% female, 71.5% marijuana use days [5 days/week], 15.2% cannabis dependent) who completed study assessments, including the MPT, during a baseline session. Principal component analysis was used to examine the latent structure underlying MPT indices. Concurrent validity was assessed via examination of relationships between latent factors and marijuana use, past quit attempts, and marijuana expectancies. A two-factor solution was confirmed as the best fitting structure, accounting for 88.5% of the overall variance. Factor 1 (65.8% variance) reflected "Persistence," indicating sensitivity to escalating marijuana price, which comprised four MPT indices (elasticity, O max , P max , and breakpoint). Factor 2 (22.7% variance) reflected "Amplitude," indicating the amount consumed at unrestricted price (intensity). Persistence factor scores were associated with fewer past marijuana quit attempts and lower expectancies of negative use outcomes. Amplitude factor scores were associated with more frequent use, dependence symptoms, craving severity, and positive marijuana outcome expectancies. Consistent with research on alcohol and cigarette purchase tasks, the MPT can be characterized with a latent two-factor structure. Thus, demand for marijuana appears to encompass distinct dimensions of price sensitivity and volumetric consumption, with differential relations to other aspects of marijuana motivation.

  13. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model.

    PubMed

    Vaguine, A A; Richelle, J; Wodak, S J

    1999-01-01

    In this paper we present SFCHECK, a stand-alone software package that features a unified set of procedures for evaluating the structure-factor data obtained from X-ray diffraction experiments and for assessing the agreement of the atomic coordinates with these data. The evaluation is performed completely automatically, and produces a concise PostScript pictorial output similar to that of PROCHECK [Laskowski, MacArthur, Moss & Thornton (1993). J. Appl. Cryst. 26, 283-291], greatly facilitating visual inspection of the results. The required inputs are the structure-factor amplitudes and the atomic coordinates. Having those, the program summarizes relevant information on the deposited structure factors and evaluates their quality using criteria such as data completeness, structure-factor uncertainty and the optical resolution computed from the Patterson origin peak. The dependence of various parameters on the nominal resolution (d spacing) is also given. To evaluate the global agreement of the atomic model with the experimental data, the program recomputes the R factor, the correlation coefficient between observed and calculated structure-factor amplitudes and Rfree (when appropriate). In addition, it gives several estimates of the average error in the atomic coordinates. The local agreement between the model and the electron-density map is evaluated on a per-residue basis, considering separately the macromolecule backbone and side-chain atoms, as well as solvent atoms and heterogroups. Among the criteria are the normalized average atomic displacement, the local density correlation coefficient and the polymer chain connectivity. The possibility of computing these criteria using the omit-map procedure is also provided. The described software should be a valuable tool in monitoring the refinement procedure and in assessing structures deposited in databases.

  14. Fatigue Analyses Under Constant- and Variable-Amplitude Loading Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily "crack growth" from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using "small-crack theory" under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta-Keff) under constant-amplitude loading. Modifications to the delta-Keff-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small-and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  15. Some finite terms from ladder diagrams in three and four loop maximal supergravity

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2015-10-01

    We consider the finite part of the leading local interactions in the low energy expansion of the four graviton amplitude from the ladder skeleton diagrams in maximal supergravity on T 2, at three and four loops. At three loops, we express the {D}8{{R}}4 and {D}10{{R}}4 amplitudes as integrals over the moduli space of an underlying auxiliary geometry. These amplitudes are evaluated exactly for special values of the the moduli of the auxiliary geometry, where the integrand simplifies. We also perform a similar analysis for the {D}8{{R}}4 amplitude at four loops that arise from the ladder skeleton diagrams for a special value of a parameter in the moduli space of the auxiliary geometry. While the dependence of the amplitudes on the volume of the T 2 is very simple, the dependence on the complex structure of the T 2 is quite intricate. In some of the cases, the amplitude consists of terms each of which factorizes into a product of two {SL}(2,{{Z}}) invariant modular forms. While one of the factors is a non-holomorphic Eisenstein series, the other factor splits into a sum of modular forms each of which satisfies a Poisson equation on moduli space with source terms that are bilinear in the Eisenstein series. This leads to several possible perturbative contributions unto genus 5 in type II string theory on S1. Unlike the one and two loop supergravity analysis, these amplitudes also receive non-perturbative contributions from bound states of three D-(anti)instantons in the IIB theory.

  16. Nonlinear Korteweg-de Vries equation for soliton propagation in relativistic electron-positron-ion plasma with thermal ions

    NASA Astrophysics Data System (ADS)

    Saeed, R.; Shah, Asif; Noaman-Ul-Haq, Muhammad

    2010-10-01

    The nonlinear propagation of ion-acoustic solitons in relativistic electron-positron-ion plasma comprising of Boltzmannian electrons, positrons, and relativistic thermal ions has been examined. The Korteweg-de Vries equation has been derived by reductive perturbation technique. The effect of various plasma parameters on amplitude and structure of solitary wave is investigated. The pert graphical view of the results has been presented for illustration. It is observed that increase in the relativistic streaming factor causes the soliton amplitude to thrive and its width shrinks. The soliton amplitude and width decline as the ion to electron temperature ratio is increased. The increase in positron concentration results in reduction of soliton amplitude. The soliton amplitude enhances as the electron to positron temperature ratio is increased. Our results may have relevance in the understanding of astrophysical plasmas.

  17. Persistence and amplitude of cigarette demand in relation to quit intentions and attempts

    PubMed Central

    O’Connor, Richard J.; Heckman, Bryan W.; Adkison, Sarah E.; Rees, Vaughan W.; Hatsukami, Dorothy K.; Bickel, Warren K.; Cummings, K. Michael

    2016-01-01

    INTRODUCTION The cigarette purchase task (CPT) is a method that can be used to assess relative value of cigarettes. Based on cigarettes purchased across a price range, five derived metrics (Omax, Pmax, breakpoint, intensity, elasticity) can assess cigarette demand. A study with adolescent smokers found that these could be reduced to two latent factors: Persistence (price insensitivity) and Amplitude (volumetric consumption). We sought to replicate this structure with adult smokers, and examine how these variables relate to cessation efforts. METHOD Web-based survey conducted in 2014 among adult (18+) current daily cigarette smokers (N=1194). Participants completed the CPT, Fagerstrom Test for Nicotine Dependence (FTND), reported past-year quit attempts, and future quit intentions. We included published scales assessing perceived prevalence of smoking, social reactivity, smoker identity, and risk perception. RESULTS Our analysis supported two latent variables, Persistence and Amplitude, which correlated positively with FTND. Persistence correlated with several psychosocial factors, and was higher among those intending to quit very soon, but did not vary by number of past-year quit attempts. Amplitude differed across quit attempts and intention (p’s <.001), and in multivariable models was significantly associated with lower 30-day quit intention [OR=0.76, p=.001]. CONCLUSIONS Persistence and Amplitude factors characterized CPT data in adults, discriminated known groups (e.g., smokers by intentions to quit), and were positively associated with nicotine dependence. Factor scores also appear to relate to certain psychosocial factors, such as smoker identity and perceptions of risk. Future research should examine the predictive validity of these constructs. PMID:27048156

  18. Persistence and amplitude of cigarette demand in relation to quit intentions and attempts.

    PubMed

    O'Connor, Richard J; Heckman, Bryan W; Adkison, Sarah E; Rees, Vaughan W; Hatsukami, Dorothy K; Bickel, Warren K; Cummings, K Michael

    2016-06-01

    The cigarette purchase task (CPT) is a method that can be used to assess the relative value of cigarettes. Based on cigarettes purchased across a price range, five derived metrics (Omax, Pmax, breakpoint, intensity, and elasticity) can assess cigarette demand. A study with adolescent smokers found that these could be reduced to two latent factors: persistence (price insensitivity) and amplitude (volumetric consumption). We sought to replicate this structure with adult smokers and examine how these variables relate to cessation efforts. Web-based survey conducted in 2014 among adult (18 years and above) current daily cigarette smokers (N = 1194). Participants completed the CPT, Fagerstrom Test for Nicotine Dependence (FTND), reported past-year quit attempts, and future quit intentions. We included published scales assessing perceived prevalence of smoking, social reactivity, smoker identity, and risk perception. Our analysis supported two latent variables, persistence and amplitude, which correlated positively with FTND. Persistence was correlated with several psychosocial factors and was higher among those intending to quit very soon, but did not vary by number of past-year quit attempts. Amplitude differed across quit attempts and intention (p < 0.001) and, in multivariable models, was significantly associated with lower 30-day quit intention (OR = 0.76, p = 0.001). Persistence and amplitude factors characterized CPT data in adults, discriminated known groups (e.g., smokers by intentions to quit), and were positively associated with nicotine dependence. Factor scores also appear to relate to certain psychosocial factors, such as smoker identity and perceptions of risk. Future research should examine the predictive validity of these constructs.

  19. Study on acceleration processes of the radiation belt electrons through interaction with sub-packet chorus waves in parallel propagation

    NASA Astrophysics Data System (ADS)

    Hiraga, R.; Omura, Y.

    2017-12-01

    By recent observations, chorus waves include fine structures such as amplitude fluctuations (i.e. sub-packet structure), and it has not been verified in detail yet how energetic electrons are efficiently accelerated under the wave features. In this study, we firstly focus on the acceleration process of a single electron: how it experiences the efficient energy increase by interaction with sub-packet chorus waves in parallel propagation along the Earth's magnetic field. In order to reproduce the chorus waves as seen by the latest observations by Van Allen Probes (Foster et al. 2017), the wave model amplitude in our simulation is structured such that when the wave amplitude nonlinearly grows to reach the optimum amplitude, it starts decreasing until crossing the threshold. Once it crosses the threshold, the wave dissipates and a new wave rises to repeat the nonlinear growth and damping in the same manner. The multiple occurrence of this growth-damping cycle forms a saw tooth-like amplitude variation called sub-packet. This amplitude variation also affects the wave frequency behavior which is derived by the chorus wave equations as a function of the wave amplitude (Omura et al. 2009). It is also reasonable to assume that when a wave packet diminishes and the next wave rises, it has a random phase independent of the previous wave. This randomness (discontinuity) in phase variation is included in the simulation. Through interaction with such waves, dynamics of energetic electrons were tracked. As a result, some electrons underwent an efficient acceleration process defined as successive entrapping, in which an electron successfully continues to surf the trapping potential generated by consecutive wave packets. When successive entrapping occurs, an electron trapped and de-trapped (escape the trapping potential) by a single wave packet falls into another trapping potential generated by the next wave sub-packet and continuously accelerated. The occurrence of successive entrapping is influenced by some factors such as the magnitude of wave amplitude or inhomogeneity of the Earth's dipole magnetic field. In addition, an energy range of electrons is also a major factor. In this way, it has been examined in detail how and under which conditions electrons are efficiently accelerated in the formation process of the radiation belts.

  20. Topics in two-body hadronic decays of D mesons

    NASA Astrophysics Data System (ADS)

    El Aaoud, El Hassan

    We have carried out an analysis of helicity and partial- wave amplitudes for the decay of D mesons to two vector mesons V 1V2, D --> V1V2. In particular we have studied the Cabibbo-favored decays D+s --> ρφ and D --> K*ρ in the factorization approximation using several models for the form factors. All the models, with the exception of one, generate partial-wave amplitudes with the hierarchy |S| > |P| > | D|. Even though in most models the D-wave amplitude is an order of magnitude smaller than the S-wave amplitude, its effect on the longitudinal polarization could be as large as 30%. Due to a misidentification of the partial-wave amplitudes in terms of the Lorentz structures in the relevant literature, we cast doubt on the veracity of the listed data for the decay D --> K*ρ, particularly the partial-wave branching ratios. We have also investigated the effect of the isospin ½, JP = 0+ resonant state K*0 (1950) on the decays D0 --> K¯0η and D0 --> K¯0η' as a function of the branching ratio sum r = Br( K*0 (1950) --> K¯0η) + Br( K*0 (1950) --> K¯0η ') and the coupling constants gK*0 K0h , and gK*0 K0h' . We have used a factorized input for the D 0 --> K*0 (1950) weak transition through a πK loop. We estimated both on- and off-shell contributions from the loop. Our calculation shows that the off-shell effects are significant. For r >= 30% a fit to the decay amplitude |A(D 0 --> K¯0η' )| was possible, but the amplitude A(D 0 --> K¯0η) remained at its factorized value and hence a branching ratio too low compared to data. For small values of r, r <= 18%, we were able to fit |A(D0 --> K¯0η)|, and despite the fact that | A(D0 --> K¯ 0η') | could be raised by almost 100% over its factorized value, it still falls short of its experimental value. A simultaneous fit to both amplitudes |(A(D0 --> K¯0η')| and | A(D0 --> K¯ 0η| was not possible. We have also determined the strong phase of the resonant amplitudes for both decays.

  1. On non-BPS effective actions of string theory

    NASA Astrophysics Data System (ADS)

    Hatefi, Ehsan

    2018-05-01

    We discuss some physical prospective of the non-BPS effective actions of type IIA and IIB superstring theories. By dealing with all complete three and four point functions, including a closed Ramond-Ramond string (in terms of both its field strength and its potential), gauge (scalar) fields as well as a real tachyon and under symmetry structures, we find various restricted world volume and bulk Bianchi identities. The complete forms of the non-BPS scattering amplitudes including their Chan-Paton factors are elaborated. All the singularity structures of the non-BPS amplitudes, their all order α ' higher-derivative corrections, their contact terms and various modified Bianchi identities are derived. Finally, we show that scattering amplitudes computed in different super-ghost pictures are compatible when suitable Bianchi identities are imposed on the Ramond-Ramond fields. Moreover, we argue that the higher-derivative expansion in powers of the momenta of the tachyon is universal.

  2. Analyses of Fatigue and Fatigue-Crack Growth under Constant- and Variable-Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily crack growth from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using small-crack theory under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta K(sub eff)) under constant-amplitude loading. Modifications to the delta K(sub eff)-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  3. A possible explanation for the divergent projection of ENSO amplitude change under global warming

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Li, Tim; Yu, Yongqiang; Behera, Swadhin K.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) is the greatest climate variability on interannual time scale, yet what controls ENSO amplitude changes under global warming (GW) is uncertain. Here we show that the fundamental factor that controls the divergent projections of ENSO amplitude change within 20 coupled general circulation models that participated in the Coupled Model Intercomparison Project phase-5 is the change of climatologic mean Pacific subtropical cell (STC), whose strength determines the meridional structure of ENSO perturbations and thus the anomalous thermocline response to the wind forcing. The change of the thermocline response is a key factor regulating the strength of Bjerknes thermocline and zonal advective feedbacks, which ultimately lead to the divergent changes in ENSO amplitude. Furthermore, by forcing an ocean general circulation mode with the change of zonal mean zonal wind stress estimated by a simple theoretical model, a weakening of the STC in future is obtained. Such a change implies that ENSO variability might strengthen under GW, which could have a profound socio-economic consequence.

  4. Non-linear vibrations of sandwich viscoelastic shells

    NASA Astrophysics Data System (ADS)

    Benchouaf, Lahcen; Boutyour, El Hassan; Daya, El Mostafa; Potier-Ferry, Michel

    2018-04-01

    This paper deals with the non-linear vibration of sandwich viscoelastic shell structures. Coupling a harmonic balance method with the Galerkin's procedure, one obtains an amplitude equation depending on two complex coefficients. The latter are determined by solving a classical eigenvalue problem and two linear ones. This permits to get the non-linear frequency and the non-linear loss factor as functions of the displacement amplitude. To validate our approach, these relationships are illustrated in the case of a circular sandwich ring.

  5. Ground penetrating radar applied to rebar corrosion inspection

    NASA Astrophysics Data System (ADS)

    Eisenmann, David; Margetan, Frank; Chiou, Chien-Ping T.; Roberts, Ron; Wendt, Scott

    2013-01-01

    In this paper we investigate the use of ground penetrating radar (GPR) to detect corrosion-induced thinning of rebar in concrete bridge structures. We consider a simple pulse/echo amplitude-based inspection, positing that the backscattered response from a thinned rebar will be smaller than the similar response from a fully-intact rebar. Using a commercial 1600-MHz GPR system we demonstrate that, for laboratory specimens, backscattered amplitude measurements can detect a thinning loss of 50% in rebar diameter over a short length. GPR inspections on a highway bridge then identify several rebar with unexpectedly low amplitudes, possibly signaling thinning. To field a practical amplitude-based system for detecting thinned rebar, one must be able to quantify and assess the many factors that can potentially contribute to GPR signal amplitude variations. These include variability arising from the rebar itself (e.g., thinning) and from other factors (concrete properties, antenna orientation and liftoff, etc.). We report on early efforts to model the GPR instrument and the inspection process so as to assess such variability and to optimize inspections. This includes efforts to map the antenna radiation pattern, to predict how backscattered responses will vary with rebar size and location, and to assess detectability improvements via synthetic aperture focusing techniques (SAFT).

  6. Electron crystallography of PhoE porin, an outer membrane, channel- forming protein from E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walian, P.J.

    1989-11-01

    One approach to studying the structure of membrane proteins is the use of electron crystallography. Dr. Bing Jap has crystallized PhoE pore-forming protein (porin) from the outer membrane of escherichia coli (E. coli) into monolayer crystals. The findings of this research and those of Jap (1988, 1989) have determined these crystals to be highly ordered, yielding structural information to a resolution of better than 2.8 angstroms. The task of this thesis has been to collect and process the electron diffraction patterns necessary to generate a complete three-dimensional set of high resolution structure factor amplitudes of PhoE porin. Fourier processing ofmore » these amplitudes when combined with the corresponding phase data is expected to yield the three-dimensional structure of PhoE porin at better than 3.5 angstroms resolution. 92 refs., 33 figs., 3 tabs. (CBS)« less

  7. Compensating temperature-induced ultrasonic phase and amplitude changes

    NASA Astrophysics Data System (ADS)

    Gong, Peng; Hay, Thomas R.; Greve, David W.; Junker, Warren R.; Oppenheim, Irving J.

    2016-04-01

    In ultrasonic structural health monitoring (SHM), environmental and operational conditions, especially temperature, can significantly affect the propagation of ultrasonic waves and thus degrade damage detection. Typically, temperature effects are compensated using optimal baseline selection (OBS) or optimal signal stretch (OSS). The OSS method achieves compensation by adjusting phase shifts caused by temperature, but it does not fully compensate phase shifts and it does not compensate for accompanying signal amplitude changes. In this paper, we develop a new temperature compensation strategy to address both phase shifts and amplitude changes. In this strategy, OSS is first used to compensate some of the phase shifts and to quantify the temperature effects by stretching factors. Based on stretching factors, empirical adjusting factors for a damage indicator are then applied to compensate for the temperature induced remaining phase shifts and amplitude changes. The empirical adjusting factors can be trained from baseline data with temperature variations in the absence of incremental damage. We applied this temperature compensation approach to detect volume loss in a thick wall aluminum tube with multiple damage levels and temperature variations. Our specimen is a thick-walled short tube, with dimensions closely comparable to the outlet region of a frac iron elbow where flow-induced erosion produces the volume loss that governs the service life of that component, and our experimental sequence simulates the erosion process by removing material in small damage steps. Our results show that damage detection is greatly improved when this new temperature compensation strategy, termed modified-OSS, is implemented.

  8. Method for removing atomic-model bias in macromolecular crystallography

    DOEpatents

    Terwilliger, Thomas C [Santa Fe, NM

    2006-08-01

    Structure factor bias in an electron density map for an unknown crystallographic structure is minimized by using information in a first electron density map to elicit expected structure factor information. Observed structure factor amplitudes are combined with a starting set of crystallographic phases to form a first set of structure factors. A first electron density map is then derived and features of the first electron density map are identified to obtain expected distributions of electron density. Crystallographic phase probability distributions are established for possible crystallographic phases of reflection k, and the process is repeated as k is indexed through all of the plurality of reflections. An updated electron density map is derived from the crystallographic phase probability distributions for each one of the reflections. The entire process is then iterated to obtain a final set of crystallographic phases with minimum bias from known electron density maps.

  9. Amplitude interpretation and visualization of three-dimensional reflection data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enachescu, M.E.

    1994-07-01

    Digital recording and processing of modern three-dimensional surveys allow for relative good preservation and correct spatial positioning of seismic reflection amplitude. A four-dimensional seismic reflection field matrix R (x,y,t,A), which can be computer visualized (i.e., real-time interactively rendered, edited, and animated), is now available to the interpreter. The amplitude contains encoded geological information indirectly related to lithologies and reservoir properties. The magnitude of the amplitude depends not only on the acoustic impedance contrast across a boundary, but is also strongly affected by the shape of the reflective boundary. This allows the interpreter to image subtle tectonic and structural elements notmore » obvious on time-structure maps. The use of modern workstations allows for appropriate color coding of the total available amplitude range, routine on-screen time/amplitude extraction, and late display of horizon amplitude maps (horizon slices) or complex amplitude-structure spatial visualization. Stratigraphic, structural, tectonic, fluid distribution, and paleogeographic information are commonly obtained by displaying the amplitude variation A = A(x,y,t) associated with a particular reflective surface or seismic interval. As illustrated with several case histories, traditional structural and stratigraphic interpretation combined with a detailed amplitude study generally greatly enhance extraction of subsurface geological information from a reflection data volume. In the context of three-dimensional seismic surveys, the horizon amplitude map (horizon slice), amplitude attachment to structure and [open quotes]bright clouds[close quotes] displays are very powerful tools available to the interpreter.« less

  10. Coherent and incoherent ultrasound backscatter from cell aggregates.

    PubMed

    de Monchy, Romain; Destrempes, François; Saha, Ratan K; Cloutier, Guy; Franceschini, Emilie

    2016-09-01

    The effective medium theory (EMT) was recently developed to model the ultrasound backscatter from aggregating red blood cells [Franceschini, Metzger, and Cloutier, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 2668-2679 (2011)]. The EMT assumes that aggregates can be treated as homogeneous effective scatterers, which have effective properties determined by the aggregate compactness and the acoustical characteristics of the cells and the surrounding medium. In this study, the EMT is further developed to decompose the differential backscattering cross section of a single cell aggregate into coherent and incoherent components. The coherent component corresponds to the squared norm of the average scattering amplitude from the effective scatterer, and the incoherent component considers the variance of the scattering amplitude (i.e., the mean squared norm of the fluctuation of the scattering amplitude around its mean) within the effective scatterer. A theoretical expression for the incoherent component based on the structure factor is proposed and compared with another formulation based on the Gaussian direct correlation function. This theoretical improvement is assessed using computer simulations of ultrasound backscatter from aggregating cells. The consideration of the incoherent component based on the structure factor allows us to approximate the simulations satisfactorily for a product of the wavenumber times the aggregate radius kr ag around 2.

  11. Locality and Unitarity of Scattering Amplitudes from Singularities and Gauge Invariance

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Rodina, Laurentiu; Trnka, Jaroslav

    2018-06-01

    We conjecture that the leading two-derivative tree-level amplitudes for gluons and gravitons can be derived from gauge invariance together with mild assumptions on their singularity structure. Assuming locality (that the singularities are associated with the poles of cubic graphs), we prove that gauge invariance in just n -1 particles together with minimal power counting uniquely fixes the amplitude. Unitarity in the form of factorization then follows from locality and gauge invariance. We also give evidence for a stronger conjecture: assuming only that singularities occur when the sum of a subset of external momenta go on shell, we show in nontrivial examples that gauge invariance and power counting demand a graph structure for singularities. Thus, both locality and unitarity emerge from singularities and gauge invariance. Similar statements hold for theories of Goldstone bosons like the nonlinear sigma model and Dirac-Born-Infeld by replacing the condition of gauge invariance with an appropriate degree of vanishing in soft limits.

  12. Studies of the resonance structure in D0→KS0K±π∓ decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zucchelli, S.; LHCb Collaboration

    2016-03-01

    Amplitude models are applied to studies of resonance structure in D0→KS0K-π+ and D0→KS0K+π- decays using p p collision data corresponding to an integrated luminosity of 3.0 fb-1 collected by the LHCb experiment. Relative magnitude and phase information is determined, and coherence factors and related observables are computed for both the whole phase space and a restricted region of 100 MeV /c2 around the K*(892 )± resonance. Two formulations for the K π S -wave are used, both of which give a good description of the data. The ratio of branching fractions B (D0→KS0K+π- )/B (D0→KS0K-π+ ) is measured to be 0.655 ±0.004 (stat ) ±0.006 (syst ) over the full phase space and 0.370 ±0.003 (stat ) ±0.012 (syst ) in the restricted region. A search for C P violation is performed using the amplitude models and no significant effect is found. Predictions from SU(3) flavor symmetry for K*(892 ) K amplitudes of different charges are compared with the amplitude model results.

  13. Structure of amplitude correlations in open chaotic systems

    NASA Astrophysics Data System (ADS)

    Ericson, Torleif E. O.

    2013-02-01

    The Verbaarschot-Weidenmüller-Zirnbauer (VWZ) model is believed to correctly represent the correlations of two S-matrix elements for an open quantum chaotic system, but the solution has considerable complexity and is presently only accessed numerically. Here a procedure is developed to deduce its features over the full range of the parameter space in a transparent and simple analytical form preserving accuracy to a considerable degree. The bulk of the VWZ correlations are described by the Gorin-Seligman expression for the two-amplitude correlations of the Ericson-Gorin-Seligman model. The structure of the remaining correction factors for correlation functions is discussed with special emphasis of the rôle of the level correlation hole both for inelastic and elastic correlations.

  14. A note on NMHV form factors from the Graßmannian and the twistor string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meidinger, David; Nandan, Dhritiman; Penante, Brenda

    In this note we investigate Graßmannian formulas for form factors of the chiral part of the stress-tensor multiplet in N = 4 superconformal Yang-Mills theory. We present an all-n contour for the G(3, n + 2) Graßmannian integral of NMHV form factors derived from on-shell diagrams and the BCFW recursion relation. In addition, we study other G(3, n + 2) formulas obtained from the connected prescription introduced recently. We find a recursive expression for all n and study its properties. For n ≥ 6, our formula has the same recursive structure as its amplitude counterpart, making its soft behaviour manifest.more » Finally, we explore the connection between the two Graßmannian formulations, using the global residue theorem, and find that it is much more intricate compared to scattering amplitudes.« less

  15. A note on NMHV form factors from the Graßmannian and the twistor string

    DOE PAGES

    Meidinger, David; Nandan, Dhritiman; Penante, Brenda; ...

    2017-09-06

    In this note we investigate Graßmannian formulas for form factors of the chiral part of the stress-tensor multiplet in N = 4 superconformal Yang-Mills theory. We present an all-n contour for the G(3, n + 2) Graßmannian integral of NMHV form factors derived from on-shell diagrams and the BCFW recursion relation. In addition, we study other G(3, n + 2) formulas obtained from the connected prescription introduced recently. We find a recursive expression for all n and study its properties. For n ≥ 6, our formula has the same recursive structure as its amplitude counterpart, making its soft behaviour manifest.more » Finally, we explore the connection between the two Graßmannian formulations, using the global residue theorem, and find that it is much more intricate compared to scattering amplitudes.« less

  16. Vibration Penalty Estimates for Indoor Annoyance Caused by Sonic Boom

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Klos, Jacob

    2016-01-01

    Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One key objective is a predictive model for indoor annoyance based on factors such as noise and indoor vibration levels. The current study quantified the increment in indoor sonic boom annoyance when sonic booms can be felt directly through structural vibrations in addition to being heard. A shaker mounted below each chair in the sonic boom simulator emulated vibrations transmitting through the structure to that chair. The vibration amplitudes were determined from numeric models of a large range of residential structures excited by the same sonic boom waveforms used in the experiment. The analysis yielded vibration penalties, which are the increments in sound level needed to increase annoyance as much as the vibration does. For sonic booms at acoustic levels from 75 to 84 dB Perceived Level, vibration signals with lower amplitudes (+1 sigma) yielded penalties from 0 to 5 dB, and vibration signals with higher amplitudes (+3 sigma) yielded penalties from 6 to 10 dB.

  17. Infrared singularities of scattering amplitudes in perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becher, Thomas; Neubert, Matthias

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficientsmore » of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.« less

  18. Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study.

    PubMed

    Li, Nianqiang; Susanto, H; Cemlyn, B R; Henning, I D; Adams, M J

    2018-02-19

    We study the nonlinear dynamics of solitary and optically injected two-element laser arrays with a range of waveguide structures. The analysis is performed with a detailed direct numerical simulation, where high-resolution dynamic maps are generated to identify regions of dynamic instability in the parameter space of interest. Our combined one- and two-parameter bifurcation analysis uncovers globally diverse dynamical regimes (steady-state, oscillation, and chaos) in the solitary laser arrays, which are greatly influenced by static design waveguiding structures, the amplitude-phase coupling factor of the electric field, i.e. the linewidth-enhancement factor, as well as the control parameter, e.g. the pump rate. When external optical injection is introduced to one element of the arrays, we show that the whole system can be either injection-locked simultaneously or display rich, different dynamics outside the locking region. The effect of optical injection is to significantly modify the nature and the regions of nonlinear dynamics from those found in the solitary case. We also show similarities and differences (asymmetry) between the oscillation amplitude of the two elements of the array in specific well-defined regions, which hold for all the waveguiding structures considered. Our findings pave the way to a better understanding of dynamic instability in large arrays of lasers.

  19. Conformal structure of massless scalar amplitudes beyond tree level

    NASA Astrophysics Data System (ADS)

    Banerjee, Nabamita; Banerjee, Shamik; Bhatkar, Sayali Atul; Jain, Sachin

    2018-04-01

    We show that the one-loop on-shell four-point scattering amplitude of massless ϕ 4 scalar field theory in 4D Minkowski space time, when Mellin transformed to the Celestial sphere at infinity, transforms covariantly under the global conformal group (SL(2, ℂ)) on the sphere. The unitarity of the four-point scalar amplitudes is recast into this Mellin basis. We show that the same conformal structure also appears for the two-loop Mellin amplitude. Finally we comment on some universal structure for all loop four-point Mellin amplitudes specific to this theory.

  20. Modifying hydrogen-bonded structures by physical vapor deposition: 4-methyl-3-heptanol

    NASA Astrophysics Data System (ADS)

    Young-Gonzales, A. R.; Guiseppi-Elie, A.; Ediger, M. D.; Richert, R.

    2017-11-01

    We prepared films of 4-methyl-3-heptanol by vapor depositing onto substrates held at temperatures between Tdep = 0.6Tg and Tg, where Tg is the glass transition temperature. Using deposition rates between 0.9 and 6.0 nm/s, we prepared films about 5 μm thick and measured the dielectric properties via an interdigitated electrode cell onto which films were deposited. Samples prepared at Tdep = Tg display the dielectric behavior of the ordinary supercooled liquid. Films deposited at lower deposition temperatures show a high dielectric loss upon heating toward Tg, which decreases by a factor of about 12 by annealing at Tg = 162 K. This change is consistent with either a drop of the Kirkwood correlation factor, gk, by a factor of about 10, or an increase in the dielectric relaxation times, both being indicative of changes toward ring-like hydrogen-bonded structure characteristic of the ordinary liquid. We rationalize the high dielectric relaxation amplitude in the vapor deposited glass by suggesting that depositions at low temperature provide insufficient time for molecules to form ring-like supramolecular structures for which dipole moments cancel. Surprisingly, above Tg of the ordinary liquid, these vapor deposited films fail to completely recover the dielectric properties of the liquid obtained by supercooling. Instead, the dielectric relaxation remains slower and its amplitude much higher than that of the equilibrium liquid state, indicative of a structure that differs from the equilibrium liquid up to at least Tg + 40 K.

  1. Computational study of the melting-freezing transition in the quantum hard-sphere system for intermediate densities. II. Structural features.

    PubMed

    Sesé, Luis M; Bailey, Lorna E

    2007-04-28

    The structural features of the quantum hard-sphere system in the region of the fluid-face-centered-cubic-solid transition, for reduced number densities 0.45

  2. Hydro-dynamic damping theory in flowing water

    NASA Astrophysics Data System (ADS)

    Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.

    2014-03-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.

  3. Influence of Spatial Variation in Ground Motion Peak Acceleration on Local Site Effects Estimation at Bucovina Seismic Array (BURAR) Romania

    NASA Astrophysics Data System (ADS)

    Ghica, D. V.; Radulian, M.; Popa, M.; Grecu, B.

    2006-05-01

    Basically, array processing techniques require a high signal coherency across the seismic site; therefore the local crustal velocities below the station, signal amplitude differences between array elements and local noise conditions, resulting in local site effects will affect calculation of phase arrival times, propagation velocities and ground motion amplitudes. In general, array techniques assume a homogenous structure for all sites, and a simple relief correction is taking in account for the data analysis. To increase the results accuracy, individual element corrections must be applied, based on the biases factors systematically observed. This study aims at identifying the anomalous amplitude variations recorded at the Bucovina Seismic Array (BURAR) and at explaining their influence on site effects estimation. Maximum amplitudes for the teleseismic and regional phases in four narrow frequency bands (0.25-0.5Hz; 0.5-1Hz; 1-2Hz; 1.5-3Hz) are measured. Spatial distribution of ground motion peak acceleration in BURAR site, for each band, is plotted; a different behavior was observed at frequencies below 2Hz. The most important aspect observed is the largest amplitude exhibited by BUR07 across the whole array at high frequencies (an amplification factor of about two). This can be explained by the different geology at BUR07 site (mica schist outcrops), comparing with the rest of elements (green schist outcrops). At the lowest frequencies (0.25-0.5Hz), BUR09 peak amplitudes dominate the other sites. Considering BUR07 as reference site, peak acceleration ratios were investigated. The largest scattering of these ratios appears at the highest frequencies (1.5-3Hz), when the weight of over unit values is about 90 %. No azimuth and distance dependence was found for these effects, suggesting the absence of the dipping layer structures. Although an increase of the ratio values is noticed for epicentral distance between 8000 and 10000 km, for frequencies over 1 Hz. The results of this study are essential to further develop the calibration technique for seismic monitoring with BURAR array, in order to improve the detection and single-array location capabilities of the system.

  4. Taxonomy of Individual Variations in Aesthetic Responses to Fractal Patterns

    PubMed Central

    Spehar, Branka; Walker, Nicholas; Taylor, Richard P.

    2016-01-01

    In two experiments, we investigate group and individual preferences in a range of different types of patterns with varying fractal-like scaling characteristics. In Experiment 1, we used 1/f filtered grayscale images as well as their thresholded (black and white) and edges only counterparts. Separate groups of observers viewed different types of images varying in slope of their amplitude spectra. Although with each image type, the groups exhibited the “universal” pattern of preference for intermediate amplitude spectrum slopes, we identified 4 distinct sub-groups in each case. Sub-group 1 exhibited a typical peak preference for intermediate amplitude spectrum slopes (“intermediate”; approx. 50%); sub-group 2 exhibited a linear increase in preference with increasing amplitude spectrum slope (“smooth”; approx. 20%), while sub-group 3 exhibited a linear decrease in preference as a function of the amplitude spectrum slope (“sharp”; approx. 20%). Sub-group 4 revealed no significant preference (“other”; approx. 10%). In Experiment 2, we extended the range of different image types and investigated preferences within the same observers. We replicate the results of our first experiment and show that individual participants exhibit stable patterns of preference across a wide range of image types. In both experiments, Q-mode factor analysis identified two principal factors that were able to explain more than 80% of interindividual variations in preference across all types of images, suggesting a highly similar dimensional structure of interindividual variations in preference for fractal-like scaling characteristics. PMID:27458365

  5. Inelastic losses in X-ray absorption theory

    NASA Astrophysics Data System (ADS)

    Campbell, Luke Whalin

    There is a surprising lack of many body effects observed in XAS (X-ray Absorption Spectroscopy) experiments. While collective excitations and other satellite effects account for between 20% and 40% of the spectral weight of the core hole and photoelectron excitation spectrum, the only commonly observed many body effect is a relatively structureless amplitude reduction to the fine structure, typically no more than a 10% effect. As a result, many particle effects are typically neglected in the XAS codes used to predict and interpret modern experiments. To compensate, the amplitude reduction factor is simply fitted to experimental data. In this work, a quasi-boson model is developed to treat the case of XAS, when the system has both a photoelectron and a core hole. We find that there is a strong interference between the extrinsic and intrinsic losses. The interference reduces the excitation amplitudes at low energies where the core hole and photo electron induced excitations tend to cancel. At high energies, the interference vanishes, and the theory reduces to the sudden approximation. The x-ray absorption spectrum including many-body excitations is represented by a convolution of the one-electron absorption spectrum with an energy dependent spectral function. The latter has an asymmetric quasiparticle peak and broad satellite structure. The net result is a phasor sum, which yields the many body amplitude reduction and phase shift of the fine structure oscillations (EXAFS), and possibly additional satellite structure. Calculations for several cases of interest are found to be in reasonable agreement with experiment. Edge singularity effects and deviations from the final state rule arising from this theory are also discussed. The ab initio XAS code FEFF has been extended for calculations of the many body amplitude reduction and phase shift in x-ray spectroscopies. A new broadened plasmon pole self energy is added. The dipole matrix elements are modified to include a projection operator to calculate deviations from the final state rule and edge singularities.

  6. Proton polarisability contribution to the Lamb shift in muonic hydrogen at fourth order in chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Birse, M. C.; McGovern, J. A.

    2012-09-01

    We calculate the amplitude T1 for forward doubly virtual Compton scattering in heavy-baryon chiral perturbation theory, to fourth order in the chiral expansion and with the leading contribution of the γ N Δ form factor. This provides a model-independent expression for the amplitude in the low-momentum region, which is the dominant one for its contribution to the Lamb shift. It allows us to significantly reduce the theoretical uncertainty in the proton polarisability contributions to the Lamb shift in muonic hydrogen. We also stress the importance of consistency between the definitions of the Born and structure parts of the amplitude. Our result leaves no room for any effect large enough to explain the discrepancy between proton charge radii as determined from muonic and normal hydrogen.

  7. Structural controls on the hydrogeology of the Costa Rica subduction thrust NW of the Osa Peninisula (Invited)

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J.; Ranero, C. R.

    2013-12-01

    Three-dimensional seismic reflection data from the Costa Rica margin NW of the Osa peninsula have enabled us to map the subduction megathrust from the trench to ~12 km subseafloor beneath the shelf. The subduction thrust has a large, abrupt downdip transition in seismic reflection amplitude from very high to low amplitude 6 km subseafloor beneath the upper slope. This transition broadly corresponds with an increase in concentration of microseismic earthquakes potentially due to a significant increase in plate coupling (Bangs et al., 2012, AGU Fall Meeting, T13A-2587), thus linking seismic reflection amplitude to fluid content and mechanical coupling along the fault. A detailed look at the overriding plate reflectivity shows numerous high-amplitude, continuous seismic reflections through the upper plate, many of which are clearly reversed-polarity from the seafloor reflection and are thus likely active fluid conduits through the overriding margin wedge, the slope cover sediment, and the seafloor. Broadly, the structural grain of the margin wedge trends E-W and dips landward across the lower slope and onto the shelf, presumably due to stress imparted by subducting ridges. However, directly above the abrupt high-to-low plate-boundary reflection amplitude transition, structures within the overlying margin wedge reverse dip, steepen, and change strike to an ESE direction. Within this zone we interpret a set of parallel reflections with small offsets and reverse-polarity as high-angle reverse faults that act as fluid conduits leading directly into shallow fluid migration systems described by Bangs et al., 2012 (AGU Fall Meeting, T13A-2587) and Kluesner et al. [this meeting]. The coincidence between the plate-boundary reflection amplitude patterns and the change in structure implies that the fluid migration pathways that drain the plate interface are locally disrupted by overriding plate structure in two possible ways: 1) by focusing up dip fluid migration along the plate interface into a thinner but richer fluid zone along the subduction thrust, or 2) by creating a more direct, nearly vertical route along high-angle reverse faults through the overlying margin wedge to the seafloor (possibly shortened by a factor of two) and draining deeper portions of the plate-boundary more efficiently.

  8. Are event-related potentials to dynamic facial expressions of emotion related to individual differences in the accuracy of processing facial expressions and identity?

    PubMed

    Recio, Guillermo; Wilhelm, Oliver; Sommer, Werner; Hildebrandt, Andrea

    2017-04-01

    Despite a wealth of knowledge about the neural mechanisms behind emotional facial expression processing, little is known about how they relate to individual differences in social cognition abilities. We studied individual differences in the event-related potentials (ERPs) elicited by dynamic facial expressions. First, we assessed the latent structure of the ERPs, reflecting structural face processing in the N170, and the allocation of processing resources and reflexive attention to emotionally salient stimuli, in the early posterior negativity (EPN) and the late positive complex (LPC). Then we estimated brain-behavior relationships between the ERP factors and behavioral indicators of facial identity and emotion-processing abilities. Structural models revealed that the participants who formed faster structural representations of neutral faces (i.e., shorter N170 latencies) performed better at face perception (r = -.51) and memory (r = -.42). The N170 amplitude was not related to individual differences in face cognition or emotion processing. The latent EPN factor correlated with emotion perception (r = .47) and memory (r = .32), and also with face perception abilities (r = .41). Interestingly, the latent factor representing the difference in EPN amplitudes between the two neutral control conditions (chewing and blinking movements) also correlated with emotion perception (r = .51), highlighting the importance of tracking facial changes in the perception of emotional facial expressions. The LPC factor for negative expressions correlated with the memory for emotional facial expressions. The links revealed between the latency and strength of activations of brain systems and individual differences in processing socio-emotional information provide new insights into the brain mechanisms involved in social communication.

  9. Light scattering by a nematic liquid crystal droplet: Wentzel–Kramers–Brillouin approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.; Miskevich, A. A.

    2016-01-15

    Light scattering by an optically anisotropic liquid crystal (LC) droplet of a nematic in an isotropic polymer matrix is considered in the Wentzel–Kramers–Brillouin (WKB) approximation. General relations are obtained for elements of the amplitude matrix of light scattering by a droplet of arbitrary shape and for the structure of the director field. Analytic expressions for the amplitude matrices are derived for spherical LC droplets with a uniformly oriented structure of local optical axes for strictly forward and strictly backward scattering. The efficiency factors of extinction and backward scattering for a spherical nonabsorbing LC droplet depending on the LC optical anisotropy,more » refractive index of the polymer, illumination conditions, and orientation of the optical axis of the droplet are analyzed. Verification of the obtained solutions has been performed.« less

  10. Forward Compton scattering with weak neutral current: Constraints from sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorchtein, Mikhail; Zhang, Xilin

    2015-06-09

    We generalize forward real Compton amplitude to the case of the interference of the electromagnetic and weak neutral current, formulate a low-energy theorem, relate the new amplitudes to the interference structure functions and obtain a new set of sum rules. Furthermore, we address a possible new sum rule that relates the product of the axial charge and magnetic moment of the nucleon to the 0th moment of the structure function g5(ν, 0). For the dispersive γ Z-box correction to the proton’s weak charge, the application of the GDH sum rule allows us to reduce the uncertainty due to resonance contributionsmore » by a factor of two. Finally, the finite energy sum rule helps addressing the uncertainty in that calculation due to possible duality violations.« less

  11. Development and optimization of a matrix converter supplying an electronic ballast - UV lamp system for water sterilization

    NASA Astrophysics Data System (ADS)

    Bokhtache, Aicha Aissa; Zegaoui, Abdallah; Aillerie, Michel; Djahbar, Abdelkader; Hemici, Kheira

    2018-05-01

    Electronic ballasts dedicated to discharge lamps allow improving the quality of radiation by operating at high frequency. In the present work, the use of a single-phase direct converter with a matrix structure for supplying a low-pressure mercury-argon UVC lamp for water sterilization is proposed. The structure of the converter is based on two switching cells allowing the realization of a fully controllable bidirectional switches. The advantages of such a matrix topology include the delivered of a sinusoidal waveform current with a controllable power factor close to unity, variable in amplitude and frequency. In order to obtain the desired amplitude and frequency, a PWM control was associated in the current realization. Finally, a linear adjustment of the lamp arc current was warranted by using of a PI regulator.

  12. On Three-dimensional Structures in Relativistic Hydrodynamic Jets

    NASA Astrophysics Data System (ADS)

    Hardee, Philip E.

    2000-04-01

    The appearance of wavelike helical structures on steady relativistic jets is studied using a normal mode analysis of the linearized fluid equations. Helical structures produced by the normal modes scale relative to the resonant (most unstable) wavelength and not with the absolute wavelength. The resonant wavelength of the normal modes can be less than the jet radius even on highly relativistic jets. High-pressure regions helically twisted around the jet beam may be confined close to the jet surface, penetrate deeply into the jet interior, or be confined to the jet interior. The high-pressure regions range from thin and ribbon-like to thick and tubelike depending on the mode and wavelength. The wave speeds can be significantly different at different wavelengths but are less than the flow speed. The highest wave speed for the jets studied has a Lorentz factor somewhat more than half that of the underlying flow speed. A maximum pressure fluctuation criterion found through comparison between theory and a set of relativistic axisymmetric jet simulations is applied to estimate the maximum amplitudes of the helical, elliptical, and triangular normal modes. Transverse velocity fluctuations for these asymmetric modes are up to twice the amplitude of those associated with the axisymmetric pinch mode. The maximum amplitude of jet distortions and the accompanying velocity fluctuations at, for example, the resonant wavelength decreases as the Lorentz factor increases. Long-wavelength helical surface mode and shorter wavelength helical first body mode generated structures should be the most significant. Emission from high-pressure regions as they twist around the jet beam can vary significantly as a result of angular variation in the flow direction associated with normal mode structures if they are viewed at about the beaming angle θ=1/γ. Variation in the Doppler boost factor can lead to brightness asymmetries by factors up to 6 as long-wavelength helical structure produced by the helical surface mode winds around the jet. Higher order surface modes and first body modes produce less variation. Angular variation in the flow direction associated with the helical mode appears consistent with precessing jet models that have been proposed to explain the variability in 3C 273 and BL Lac object AO 0235+164. In particular, cyclic angular variation in the flow direction produced by the normal modes could produce the activity seen in BL Lac object OJ 287. Jet precession provides a mechanism for triggering the helical modes on multiple length scales, e.g., the galactic superluminal GRO J1655-40.

  13. Multiloop amplitudes of light-cone gauge superstring field theory: odd spin structure contributions

    NASA Astrophysics Data System (ADS)

    Ishibashi, Nobuyuki; Murakami, Koichi

    2018-03-01

    We study the odd spin structure contributions to the multiloop amplitudes of light-cone gauge superstring field theory. We show that they coincide with the amplitudes in the conformal gauge with two of the vertex operators chosen to be in the pictures different from the standard choice, namely (-1, -1) picture in the type II case and -1 picture in the heterotic case. We also show that the contact term divergences can be regularized in the same way as in the amplitudes for the even structures and we get the amplitudes which coincide with those obtained from the first-quantized approach.

  14. Seasonal variations in the diversity and abundance of diazotrophic communities across soils.

    PubMed

    Pereira e Silva, Michele C; Semenov, Alexander V; van Elsas, Jan Dirk; Salles, Joana Falcão

    2011-07-01

    The nitrogen (N)-fixing community is a key functional community in soil, as it replenishes the pool of biologically available N that is lost to the atmosphere via anaerobic ammonium oxidation and denitrification. We characterized the structure and dynamic changes in diazotrophic communities, based on the nifH gene, across eight different representative Dutch soils during one complete growing season, to evaluate the amplitude of the natural variation in abundance and diversity, and identify possible relationships with abiotic factors. Overall, our results indicate that soil type is the main factor influencing the N-fixing communities, which were more abundant and diverse in the clay soils (n=4) than in the sandy soils (n=4). On average, the amplitude of variation in community size as well as the range-weighted richness were also found to be higher in the clay soils. These results indicate that N-fixing communities associated with sandy and clay soil show a distinct amplitude of variation under field conditions, and suggest that the diazotrophic communities associated with clay soil might be more sensitive to fluctuations associated with the season and agricultural practices. Moreover, soil characteristics such as ammonium content, pH and texture most strongly correlated with the variations observed in the diversity, size and structure of N-fixing communities, whose relative importance was determined across a temporal and spatial scale. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less

  16. Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity

    DOE PAGES

    Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik; ...

    2015-01-15

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less

  17. Miracles in Scattering Amplitudes: from QCD to Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volovich, Anastasia

    2016-10-09

    The goal of my research project "Miracles in Scattering Amplitudes: from QCD to Gravity" involves deepening our understanding of gauge and gravity theories by exploring hidden structures in scattering amplitudes and using these rich structures as much as possible to aid practical calculations.

  18. Dynamic control of spin states in interacting magnetic elements

    DOEpatents

    Jain, Shikha; Novosad, Valentyn

    2014-10-07

    A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.

  19. Process optimization for ultrasonic vibration assisted polishing of micro-structured surfaces on super hard material

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Guo, Bing; Rao, Zhimin; Zhao, Qingliang

    2014-08-01

    In consideration of the excellent property of SiC, the ground micro-structured surface quality is hard to meet the requirement - consequently the ultrasonic vibration assisted polishing (UVAP) of micro-structures of molds is proposed in this paper. Through the orthogonal experiment, the parameters of UVAP of micro-structures were optimized. The experimental results show that, abrasive polishing process, the effect of the workpiece feed rate on the surface roughness (Ra), groove tip radius (R) and material removal rate (MRR) of micro-structures is significant. While, the UVAP, the most significant effect factor for Ra, R and MRR is the ultrasonic amplitude of the ultrasonic vibration. In addition, within the scope of the polishing process parameters selected by preliminary experiments, ultrasonic amplitude of 2.5μm, polishing force of 0.5N, workpiece feed rate of 5 mm·min-1, polishing wheel rotational speed of 50rpm, polishing time of 35min, abrasive size of 100nm and the polishing liquid concentration of 15% is the best technology of UVAP of micro-structures. Under the optimal parameters, the ground traces on the micro-structured surface were removed efficiently and the integrity of the edges of the micro-structure after grinding was maintained efficiently.

  20. From direct-space discrepancy functions to crystallographic least squares.

    PubMed

    Giacovazzo, Carmelo

    2015-01-01

    Crystallographic least squares are a fundamental tool for crystal structure analysis. In this paper their properties are derived from functions estimating the degree of similarity between two electron-density maps. The new approach leads also to modifications of the standard least-squares procedures, potentially able to improve their efficiency. The role of the scaling factor between observed and model amplitudes is analysed: the concept of unlocated model is discussed and its scattering contribution is combined with that arising from the located model. Also, the possible use of an ancillary parameter, to be associated with the classical weight related to the variance of the observed amplitudes, is studied. The crystallographic discrepancy factors, basic tools often combined with least-squares procedures in phasing approaches, are analysed. The mathematical approach here described includes, as a special case, the so-called vector refinement, used when accurate estimates of the target phases are available.

  1. Non-Newtonian fluid structure interaction in flexible biomimetic microchannels

    NASA Astrophysics Data System (ADS)

    Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.

  2. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, P., E-mail: hahnp@ethz.ch; Dual, J.

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results aremore » fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.« less

  3. Investigation on the real-time prediction of ground motions using seismic records observed in deep boreholes

    NASA Astrophysics Data System (ADS)

    Miyakoshi, H.; Tsuno, S.

    2013-12-01

    The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range from 0.8 to 0.9. This result suggests that we could predict ground motions with the high accuracy using peak amplitudes of S-waves in deep boreholes and site amplification factors based on S-wave velocity structures. Also, we estimated parameters which represent radiation coefficients and the P/S velocity ratios around hypocentral regions, using peak amplitudes of P-waves and S-waves observed in deep boreholes, to minimize the residuals between calculations and observations. Correlation coefficients between calculations and observations are slightly lower values in the range from 0.7 to 0.9 than those for site amplification factors. This result suggests that the variability of radiation patterns for individual earthquakes affects the accuracy to predict ground motions using P-waves in deep boreholes.

  4. System for determining the angle of impact of an object on a structure

    NASA Technical Reports Server (NTRS)

    Prosser, William H. (Inventor); Gorman, Michael R. (Inventor)

    1993-01-01

    A method for determining the angle of impact of an object on a thin-walled structure which determines the angle of impact through analysis of the acoustic waves which result when an object impacts a structure is presented. Transducers are placed on and in the surface of the structure which sense the wave caused in the structure by impact. The waves are recorded and saved for analysis. For source motion normal to the surface, the antisymmetric mode has a large amplitude while that of the symmetric mode is very small. As the source angle increases with respect to the surface normal, the symmetric mode amplitude increases while the antisymmetric mode amplitude decreases. Thus, the angle of impact is determined by measuring the relative amplitudes of these two lowest order modes.

  5. Experimental investigation of the radiation of sound from an unflanged duct and a bellmouth, including the flow effect

    NASA Technical Reports Server (NTRS)

    Ville, J. M.; Silcox, R. J.

    1980-01-01

    The radiation of sound from an inlet as a function of flow velocity, frequency, duct mode structure, and inlet geometry was examined by using a spinning mode synthesizer to insure a given space-time structure inside the duct. Measurements of the radiation pattern (amplitude and phase) and of the pressure reflection coefficient were obtained over an azimuthal wave number range of 0 to 6 and a frequency range up to 5000 Hz for an unflanged duct and a bellmouth. The measured radiated field and pressure reflection coefficient without flow for the unflanged duct agree reasonably well with theory. The influence of the inlet contour appears to be very drastic near the cut-on frequency of a mode and reasonable agreement is found between the bellmouth pressure reflection coefficient and a infinite hyperboloidal inlet theory. It is also shown that the flow has a weak effect on the amplitude of the directivity factor but significantly shifts the directivity factor phase. The influence of the flow on the modulus of the pressure reflection coefficient is found to be well described by a theoretical prediction.

  6. Propagation of eigenmodes and transfer functions in waveguide WDM structures

    NASA Astrophysics Data System (ADS)

    Mashkov, Vladimir A.; Francoeur, S.; Geuss, U.; Neiser, K.; Temkin, Henryk

    1998-02-01

    A method of propagation functions and transfer amplitudes suitable for the design of integrated optical circuits is presented. The method is based on vectorial formulation of electrodynamics: the distributions and propagation of electromagnetic fields in optical circuits is described by equivalent surface sources. This approach permits a division of complex optical waveguide structures into sets of primitive blocks and to separately calculate the transfer function and the transfer amplitude for each block. The transfer amplitude of the entire optical system is represented by a convolution of transfer amplitudes of its primitive blocks. The eigenvalues and eigenfunctions of arbitrary waveguide structure are obtained in the WKB approximation and compared with other methods. The general approach is illustrated with the transfer amplitude calculations for Dragone's star coupler and router.

  7. Seismic responses and controlling factors of Miocene deepwater gravity-flow deposits in Block A, Lower Congo Basin

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Wang, Zhenqi; Yu, Shui; Ngia, Ngong Roger

    2016-08-01

    The Miocene deepwater gravity-flow sedimentary system in Block A of the southwestern part of the Lower Congo Basin was identified and interpreted using high-resolution 3-D seismic, drilling and logging data to reveal development characteristics and main controlling factors. Five types of deepwater gravity-flow sedimentary units have been identified in the Miocene section of Block A, including mass transport, deepwater channel, levee, abandoned channel and sedimentary lobe deposits. Each type of sedimentary unit has distinct external features, internal structures and lateral characteristics in seismic profiles. Mass transport deposits (MTDs) in particular correspond to chaotic low-amplitude reflections in contact with mutants on both sides. The cross section of deepwater channel deposits in the seismic profile is in U- or V-shape. The channel deposits change in ascending order from low-amplitude, poor-continuity, chaotic filling reflections at the bottom, to high-amplitude, moderate to poor continuity, chaotic or sub-parallel reflections in the middle section and to moderate-weak amplitude, good continuity, parallel or sub-parallel reflections in the upper section. The sedimentary lobes are laterally lobate, which corresponds to high-amplitude, good-continuity, moundy reflection signatures in the seismic profile. Due to sediment flux, faults, and inherited terrain, few mass transport deposits occur in the northeastern part of the study area. The front of MTDs is mainly composed of channel-levee complex deposits, while abandoned-channel and lobe-deposits are usually developed in high-curvature channel sections and the channel terminals, respectively. The distribution of deepwater channel, levee, abandoned channel and sedimentary lobe deposits is predominantly controlled by relative sea level fluctuations and to a lesser extent by tectonism and inherited terrain.

  8. Explosion Amplitude Reduction due to Fractures in Water-Saturated and Dry Granite

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2013-12-01

    Empirical observations made at the Semipalatinsk Test Site suggest that nuclear tests in the fracture zones left by previous explosions ('repeat shots') show reduced seismic amplitudes compared to the nuclear tests in virgin rocks. Likely mechanisms for the amplitude reduction in the repeat shots include increased porosity and reduced strength and elastic moduli, leading to pore closing and frictional sliding. Presence of pore water significantly decreases rock compressibility and strength, thus affecting seismic amplitudes. A series of explosion experiments were conducted in order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fracture zones of previously detonated explosions. Explosions in water-saturated granite were conducted in central New Hampshire in 2011 and 2012. Additional explosions in dry granite were detonated in Barre, VT in 2013. The amplitude reduction is different between dry and water-saturated crystalline rocks. Significant reduction in seismic amplitudes (by a factor of 2-3) in water-saturated rocks was achieved only when the repeat shot was detonated in the extensive damage zone created by a significantly larger (by a factor of 5) explosion. In case where the first and the second explosions were similar in yield, the amplitude reduction was relatively modest (5-20%). In dry rocks the amplitude reduction reached a factor of 2 even in less extensive damage zones. In addition there are differences in frequency dependence of the spectral amplitude ratios between explosions in dry and water-saturated rocks. Thus the amplitude reduction is sensitive to the extent of the damage zone as well as the pore water content.

  9. Hydrodynamic damping and stiffness prediction in Francis turbine runners using CFD

    NASA Astrophysics Data System (ADS)

    Nennemann, Bernd; Monette, Christine; Chamberland-Lauzon, Joël

    2016-11-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid- to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon has to be considered carefully during the design phase to avoid operational issues on the prototype machine. The RSI dynamic response amplitudes of the runner are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. All three of the above factors are significantly influenced by both mechanical and hydraulic parameters. The prediction of the first two factors has been largely documented in the literature. However, the prediction of hydro-dynamic damping has only recently and only partially been treated. Two mode-based approaches (modal work and coupled single degree of freedom) for the prediction of flow-added dynamic parameters using separate finite element analyses (FEA) in still water and unsteady computational fluid dynamic (CFD) analyses are presented. The modal motion is connected to the time resolved CFD calculation by means of dynamic mesh deformation. This approach has partially been presented in a previous paper applied to a simplified hydrofoil. The present work extends the approach to Francis runners under RSI loading. In particular the travelling wave mode shapes of turbine runners are considered. Reasonable agreement with experimental results is obtained in parts of the operating range.

  10. Experimental investigation of localized disturbances in the straight wing boundary layer, generated by finite surface vibrations

    NASA Astrophysics Data System (ADS)

    Kozlov, V. V.; Katasonov, M. M.; Pavlenko, A. M.

    2017-10-01

    Downstream development of artificial disturbances were investigated experimentally using hot-wire constant temperature anemometry. It is shown that vibrations with high-amplitude of a three-dimensional surface lead to formation of two types of perturbations in the straight wing boundary layer: streamwise oriented localized structures and wave packets. The amplitude of streamwise structure is decay downstream. The wave packets amplitude grows in adverse pressure gradient area. The flow separation is exponentially intensified of the wave packet amplitude.

  11. Overview of refinement procedures within REFMAC5: utilizing data from different sources.

    PubMed

    Kovalevskiy, Oleg; Nicholls, Robert A; Long, Fei; Carlon, Azzurra; Murshudov, Garib N

    2018-03-01

    Refinement is a process that involves bringing into agreement the structural model, available prior knowledge and experimental data. To achieve this, the refinement procedure optimizes a posterior conditional probability distribution of model parameters, including atomic coordinates, atomic displacement parameters (B factors), scale factors, parameters of the solvent model and twin fractions in the case of twinned crystals, given observed data such as observed amplitudes or intensities of structure factors. A library of chemical restraints is typically used to ensure consistency between the model and the prior knowledge of stereochemistry. If the observation-to-parameter ratio is small, for example when diffraction data only extend to low resolution, the Bayesian framework implemented in REFMAC5 uses external restraints to inject additional information extracted from structures of homologous proteins, prior knowledge about secondary-structure formation and even data obtained using different experimental methods, for example NMR. The refinement procedure also generates the `best' weighted electron-density maps, which are useful for further model (re)building. Here, the refinement of macromolecular structures using REFMAC5 and related tools distributed as part of the CCP4 suite is discussed.

  12. Charmless B_{(s)}→ VV decays in factorization-assisted topological-amplitude approach

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Qi-An; Li, Ying; Lü, Cai-Dian

    2017-05-01

    Within the factorization-assisted topological-amplitude approach, we studied the 33 charmless B_{(s)} → VV decays, where V stands for a light vector meson. According to the flavor flows, the amplitude of each process can be decomposed into eight different topologies. In contrast to the conventional flavor diagrammatic approach, we further factorize each topological amplitude into decay constant, form factors and unknown universal parameters. By χ ^2 fitting 46 experimental observables, we extracted 10 theoretical parameters with χ ^2 per degree of freedom around 2. Using the fitted parameters, we calculated the branching fractions, polarization fractions, CP asymmetries and relative phases between polarization amplitudes of each decay mode. The decay channels dominated by tree diagram have large branching fractions and large longitudinal polarization fraction. The branching fractions and longitudinal polarization fractions of color-suppressed decays become smaller. Current experimental data of large transverse polarization fractions in the penguin dominant decay channels can be explained by only one transverse amplitude of penguin annihilation diagram. Our predictions of the not yet measured channels can be tested in the ongoing LHCb experiment and the Belle-II experiment in the future.

  13. An application of PSO algorithm for multi-criteria geometry optimization of printed low-pass filters based on conductive periodic structures

    NASA Astrophysics Data System (ADS)

    Steckiewicz, Adam; Butrylo, Boguslaw

    2017-08-01

    In this paper we discussed the results of a multi-criteria optimization scheme as well as numerical calculations of periodic conductive structures with selected geometry. Thin printed structures embedded on a flexible dielectric substrate may be applied as simple, cheap, passive low-pass filters with an adjustable cutoff frequency in low (up to 1 MHz) radio frequency range. The analysis of an electromagnetic phenomena in presented structures was realized on the basis of a three-dimensional numerical model of three proposed geometries of periodic elements. The finite element method (FEM) was used to obtain a solution of an electromagnetic harmonic field. Equivalent lumped electrical parameters of printed cells obtained in such manner determine the shape of an amplitude transmission characteristic of a low-pass filter. A nonlinear influence of a printed cell geometry on equivalent parameters of cells electric model, makes it difficult to find the desired optimal solution. Therefore an optimization problem of optimal cell geometry estimation with regard to an approximation of the determined amplitude transmission characteristic with an adjusted cutoff frequency, was obtained by the particle swarm optimization (PSO) algorithm. A dynamically suitable inertia factor was also introduced into the algorithm to improve a convergence to a global extremity of a multimodal objective function. Numerical results as well as PSO simulation results were characterized in terms of approximation accuracy of predefined amplitude characteristics in a pass-band, stop-band and cutoff frequency. Three geometries of varying degrees of complexity were considered and their use in signal processing systems was evaluated.

  14. Scattering forms and the positive geometry of kinematics, color and the worldsheet

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Bai, Yuntao; He, Song; Yan, Gongwang

    2018-05-01

    The search for a theory of the S-Matrix over the past five decades has revealed surprising geometric structures underlying scattering amplitudes ranging from the string worldsheet to the amplituhedron, but these are all geometries in auxiliary spaces as opposed to the kinematical space where amplitudes actually live. Motivated by recent advances providing a reformulation of the amplituhedron and planar N = 4 SYM amplitudes directly in kinematic space, we propose a novel geometric understanding of amplitudes in more general theories. The key idea is to think of amplitudes not as functions, but rather as differential forms on kinematic space. We explore the resulting picture for a wide range of massless theories in general spacetime dimensions. For the bi-adjoint ϕ 3 scalar theory, we establish a direct connection between its "scattering form" and a classic polytope — the associahedron — known to mathematicians since the 1960's. We find an associahedron living naturally in kinematic space, and the tree level amplitude is simply the "canonical form" associated with this "positive geometry". Fundamental physical properties such as locality and unitarity, as well as novel "soft" limits, are fully determined by the combinatorial geometry of this polytope. Furthermore, the moduli space for the open string worldsheet has also long been recognized as an associahedron. We show that the scattering equations act as a diffeomorphism between the interior of this old "worldsheet associahedron" and the new "kinematic associahedron", providing a geometric interpretation and simple conceptual derivation of the bi-adjoint CHY formula. We also find "scattering forms" on kinematic space for Yang-Mills theory and the Non-linear Sigma Model, which are dual to the fully color-dressed amplitudes despite having no explicit color factors. This is possible due to a remarkable fact—"Color is Kinematics"— whereby kinematic wedge products in the scattering forms satisfy the same Jacobi relations as color factors. Finally, all our scattering forms are well-defined on the projectivized kinematic space, a property which can be seen to provide a geometric origin for color-kinematics duality.

  15. Investigation of surface wave amplitudes in 3-D velocity and 3-D Q models

    NASA Astrophysics Data System (ADS)

    Ruan, Y.; Zhou, Y.

    2010-12-01

    It has been long recognized that seismic amplitudes depend on both wave speed structures and anelasticity (Q) structures. However, the effects of lateral heterogeneities in wave speed and Q structures on seismic amplitudes has not been well understood. We investigate the effects of 3-D wave speed and 3-D anelasticity (Q) structures on surface-wave amplitudes based upon wave propagation simulations of twelve globally-distributed earthquakes and 801 stations in Earth models with and without lateral heterogeneities in wave speed and anelasticity using a Spectral Element Method (SEM). Our tomographic-like 3-D Q models are converted from a velocity model S20RTS using a set of reasonable mineralogical parameters, assuming lateral perturbations in both velocity and Q are due to temperature perturbations. Surface-wave amplitude variations of SEM seismograms are measured in the period range of 50--200 s using boxcar taper, cosine taper and Slepian multi-tapers. We calculate ray-theoretical predictions of surface-wave amplitude perturbations due to elastic focusing, attenuation, and anelastic focusing which respectively depend upon the second spatial derivative (''roughness'') of perturbations in phase velocity, 1/Q, and the roughness of perturbations in 1/Q. Both numerical experiments and theoretical calculations show that (1) for short-period (~ 50 s) surface waves, the effects of amplitude attenuation due to 3-D Q structures are comparable with elastic focusing effects due to 3-D wave speed structures; and (2) for long-period (> 100 s) surface waves, the effects of attenuation become much weaker than elastic focusing; and (3) elastic focusing effects are correlated with anelastic focusing at all periods due to the correlation between velocity and Q models; and (4) amplitude perturbations are depend on measurement techniques and therefore cannot be directly compared with ray-theoretical predictions because ray theory does not account for the effects of measurement techniques. We calculate 3-D finite-frequency sensitivity of surface-wave amplitude to perturbations in wave speed and anelasticity (Q) which fully account for the effects of elastic focusing, attenuation, anelastic focusing as well as measurement techniques. We show that amplitude perturbations calculated using wave speed and Q sensitivity kernels agree reasonably well with SEM measurements and therefore the sensitivity kernels can be used in a joint inversion of seismic phase delays and amplitudes to simultaneously image high resolution 3-D wave speed and 3-D Q structures in the upper mantle.

  16. Instantons in Script N = 2 magnetized D-brane worlds

    NASA Astrophysics Data System (ADS)

    Billò, Marco; Frau, Marialuisa; Pesando, Igor; Di Vecchia, Paolo; Lerda, Alberto; Marotta, Raffaele

    2007-10-01

    In a toroidal orbifold of type IIB string theory we study instanton effects in Script N = 2 super Yang-Mills theories engineered with systems of wrapped magnetized D9 branes and Euclidean D5 branes. We analyze the various open string sectors in this brane system and study the 1-loop amplitudes described by annulus diagrams with mixed boundary conditions, explaining their rôle in the stringy instanton calculus. We show in particular that the non-holomorphic terms in these annulus amplitudes precisely reconstruct the appropriate Kähler metric factors that are needed to write the instanton correlators in terms of purely holomorphic variables. We also explicitly derive the correct holomorphic structure of the instanton induced low energy effective action in the Coulomb branch.

  17. Shocklets, SLAMS, and Field-Aligned Ion Beams in the Terrestrial Foreshock

    NASA Technical Reports Server (NTRS)

    Wilson, L. B.; Koval, A.; Sibeck, D. G.; Szabo, A.; Cattell, C. A.; Kasper, J. C.; Maruca, B. A.; Pulupa, M.; Salem, C. S.; Wilber, M.

    2012-01-01

    We present Wind spacecraft observations of ion distributions showing field- aligned beams (FABs) and large-amplitude magnetic fluctuations composed of a series of shocklets and short large-amplitude magnetic structures (SLAMS). The FABs are found to have T(sub k) approx 80-850 eV, V(sub b)/V(sub sw) approx 1.3-2.4, T(sub perpendicular,b)/T(sub paralell,b) approx 1-8, and n(sub b)/n(sub o) approx 0.2-11%. Saturation amplitudes for ion/ion resonant and non-resonant instabilities are too small to explain the observed SLAMS amplitudes. We show two examples where groups of SLAMS can act like a local quasi-perpendicular shock reflecting ions to produce the FABs, a scenario distinct from the more-common production at the quasi-perpendicular bow shock. The SLAMS exhibit a foot-like magnetic enhancement with a leading magnetosonic whistler train, consistent with previous observations. Strong ion and electron heating are observed within the series of shocklets and SLAMS with temperatures increasing by factors approx > 5 and approx >3, respectively. Both the core and halo electron components show strong perpendicular heating inside the feature.

  18. Mechanical annealing under low-amplitude cyclic loading in micropillars

    NASA Astrophysics Data System (ADS)

    Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo

    2016-04-01

    Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.

  19. Studies of the resonance structure in D0 → K^∓ π ^± π ^± π ^∓ decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M. O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Da Silva, C. L.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Durham, J. M.; Dutta, D.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Lopes, L.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fontana, M.; Fontanelli, F.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hopchev, P. H.; Hu, W.; Huang, W.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Pereima, D.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pietrzyk, G.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Lener, M. Poli; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Qin, J.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Walsh, J.; Wang, J.; Wang, Y.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Q.; Xu, Z.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.

    2018-06-01

    Amplitude models are constructed to describe the resonance structure of {D0→ K-π +π +π -} and {D0 → K+π -π -π +} decays using pp collision data collected at centre-of-mass energies of 7 and 8 TeV with the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb^{-1}. The largest contributions to both decay amplitudes are found to come from axial resonances, with decay modes D0 → a_1(1260)+ K- and D0 → K_1(1270/1400)+ π - being prominent in {D0→ K-π +π +π -} and D0→ K+π -π -π +, respectively. Precise measurements of the lineshape parameters and couplings of the a_1(1260)+, K_1(1270)- and K(1460)- resonances are made, and a quasi model-independent study of the K(1460)- resonance is performed. The coherence factor of the decays is calculated from the amplitude models to be R_{K3π } = 0.459± 0.010 (stat) ± 0.012 (syst) ± 0.020 (model), which is consistent with direct measurements. These models will be useful in future measurements of the unitary-triangle angle γ and studies of charm mixing and CP violation.

  20. Mapping geoelectric fields during magnetic storms: Synthetic analysis of empirical United States impedances

    NASA Astrophysics Data System (ADS)

    Bedrosian, Paul A.; Love, Jeffrey J.

    2015-12-01

    Empirical impedance tensors obtained from EarthScope magnetotelluric data at sites distributed across the midwestern United States are used to examine the feasibility of mapping magnetic storm induction of geoelectric fields. With these tensors, in order to isolate the effects of Earth conductivity structure, we perform a synthetic analysis—calculating geoelectric field variations induced by a geomagnetic field that is geographically uniform but varying sinusoidally with a chosen set of oscillation frequencies that are characteristic of magnetic storm variations. For north-south oriented geomagnetic oscillations at a period of T0=100 s, induced geoelectric field vectors show substantial geographically distributed differences in amplitude (approximately a factor of 100), direction (up to 130∘), and phase (over a quarter wavelength). These differences are the result of three-dimensional Earth conductivity structure, and they highlight a shortcoming of one-dimensional conductivity models (and other synthetic models not derived from direct geophysical measurement) that are used in the evaluation of storm time geoelectric hazards for the electric power grid industry. A hypothetical extremely intense magnetic storm having 500 nT amplitude at T0=100 s would induce geoelectric fields with an average amplitude across the midwestern United States of about 2.71 V/km, but with a representative site-to-site range of 0.15 V/km to 16.77 V/km. Significant improvement in the evaluation of such hazards will require detailed knowledge of the Earth's interior three-dimensional conductivity structure.

  1. Numerical investigation of contact stresses for fretting fatigue damage initiation

    NASA Astrophysics Data System (ADS)

    Bhatti, N. A.; Abdel Wahab, M.

    2017-05-01

    Fretting fatigue phenomena occurs due to interaction between contacting bodies under application of cyclic and normal loads. In addition to environmental conditions and material properties, the response at the contact interface highly depends on the combination of applied loads. High stress concentration is present at the contact interface, which can start the damage nucleation process. At the culmination of nucleation process several micro cracks are initiated, ultimately leading to the structural failure. In this study, effect of ratio of tangential to normal load on contact stresses, slip amplitude and damage initiation is studied using finite element analysis. The results are evaluated for Ruiz parameter as it involves the slip amplitude which in an important factor in fretting fatigue conditions. It is observed that tangential to normal load ratio influences the stick zone size and damage initiation life. Furthermore, it is observed that tensile stress is the most important factor that drives the damage initiation to failure for the cases where failure occurs predominantly in mode I manner.

  2. The transport of nitric oxide in the upper atmosphere by planetary waves and the zonal mean circulation

    NASA Technical Reports Server (NTRS)

    Jones, G. A.; Avery, S. K.

    1982-01-01

    A time-dependent numerical model was developed and used to study the interaction between planetary waves, the zonal mean circulation, and the trace constituent nitric oxide in the region between 55 km and 120 km. The factors which contribute to the structure of the nitric oxide distribution were examined, and the sensitivity of the distribution to changes in planetary wave amplitude was investigated. Wave-induced changes in the mean nitric oxide concentration were examined as a possible mechanism for the observed winter anomaly. Results indicate that vertically-propagating planetary waves induce a wave-like structure in the nitric oxide distribution and that at certain levels, transports of nitric oxide by planetary waves could significantly affect the mean nitric oxide distribution. The magnitude and direction of these transports at a given level was found to depend not only on the amplitude of the planetary wave, but also on the loss rate of nitric oxide at that level.

  3. Dopant effects on 2-ethyl-1-hexanol: A dual-channel impedance spectroscopy and neutron scattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Lokendra P.; Richert, Ranko, E-mail: ranko@asu.edu; Raihane, Ahmed

    2015-01-07

    A two-channel impedance technique has been used to study the relaxation behavior of 2-ethyl-1-hexanol with polar and non-polar dopants at the few percent concentration level over a wide temperature and frequency range. The non-polar dopants shift both the Debye and the primary structural relaxation time in the same direction, to shorter times for 3-methylpentane and to longer times for squalane, consistent with the relative glass transition temperatures (T{sub g}) of the components. By contrast, polar dopants such as water or methanol modify the α-process towards slower dynamics and increased amplitude, while the Debye process is accelerated and with a decreasedmore » amplitude. This effect of adding water to alcohol is explained by water promoting more compact structures with reduced Kirkwood correlation factors. This picture is consistent with a shift in the neutron scattering pre-peak to lower scattering vectors and with simulation work on alcohol-water systems.« less

  4. Microlensing of Relativistic Knots in the Quasar HE 1104-1805 AB

    NASA Astrophysics Data System (ADS)

    Schechter, Paul L.; Udalski, A.; Szymański, M.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Woźniak, P.; Żebruń, K.; Szewczyk, O.; Wyrzykowski, Ł.

    2003-02-01

    We present 3 years of photometry of the ``Double Hamburger'' lensed quasar, HE 1104-1805 AB, obtained on 102 separate nights using the Optical Gravitational Lensing Experiment 1.3 m telescope. Both the A and B images show variations, but with substantial differences in the light curves at all time delays. At the 310 day delay reported by Wisotzki and collaborators, the difference light curve has an rms amplitude of 0.060 mag. The structure functions for the A and B images are quite different, with image A more than twice as variable as image B (a factor of 4 in structure function) on timescales of less than a month. Adopting microlensing as a working hypothesis for the uncorrelated variability, the short timescale argues for the relativistic motion of one or more components of the source. We argue that the small amplitude of the fluctuations is due to the finite size of the source with respect to the microlenses.

  5. Piezoelectric line moment actuator for active radiation control from light-weight structures

    NASA Astrophysics Data System (ADS)

    Jandak, Vojtech; Svec, Petr; Jiricek, Ondrej; Brothanek, Marek

    2017-11-01

    This article outlines the design of a piezoelectric line moment actuator used for active structural acoustic control. Actuators produce a dynamic bending moment that appears in the controlled structure resulting from the inertial forces when the attached piezoelectric stripe actuators start to oscillate. The article provides a detailed theoretical analysis necessary for the practical realization of these actuators, including considerations concerning their placement, a crucial factor in the overall system performance. Approximate formulas describing the dependency of the moment amplitude on the frequency and the required electric voltage are derived. Recommendations applicable for the system's design based on both theoretical and empirical results are provided.

  6. Constructing the tree-level Yang-Mills S-matrix using complex factorization

    NASA Astrophysics Data System (ADS)

    Schuster, Philip C.; Toro, Natalia

    2009-06-01

    A remarkable connection between BCFW recursion relations and constraints on the S-matrix was made by Benincasa and Cachazo in 0705.4305, who noted that mutual consistency of different BCFW constructions of four-particle amplitudes generates non-trivial (but familiar) constraints on three-particle coupling constants — these include gauge invariance, the equivalence principle, and the lack of non-trivial couplings for spins > 2. These constraints can also be derived with weaker assumptions, by demanding the existence of four-point amplitudes that factorize properly in all unitarity limits with complex momenta. From this starting point, we show that the BCFW prescription can be interpreted as an algorithm for fully constructing a tree-level S-matrix, and that complex factorization of general BCFW amplitudes follows from the factorization of four-particle amplitudes. The allowed set of BCFW deformations is identified, formulated entirely as a statement on the three-particle sector, and using only complex factorization as a guide. Consequently, our analysis based on the physical consistency of the S-matrix is entirely independent of field theory. We analyze the case of pure Yang-Mills, and outline a proof for gravity. For Yang-Mills, we also show that the well-known scaling behavior of BCFW-deformed amplitudes at large z is a simple consequence of factorization. For gravity, factorization in certain channels requires asymptotic behavior ~ 1/z2.

  7. Topics in nuclear chromodynamics: Color transparency and hadronization in the nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S.J.

    1988-03-01

    The nucleus plays two complimentary roles in quantum chromodynamics: (1) A nuclear target can be used as a control medium or background field to modify or probe quark and gluon subprocesses. Some novel examples are color transparency, the predicted transparency of the nucleus to hadrons participating in high momentum transfer exclusive reactions, and formation zone phenomena, the absence of hard, collinear, target-induced radiation by a quark or gluon interacting in a high momentum transfer inclusive reaction if its energy is large compared to a scale proportional to the length of the target. (Soft radiation and elastic initial state interactions inmore » the nucleus still occur.) Coalescence with co-moving spectators is discussed as a mechanism which can lead to increased open charm hadroproduction, but which also suppresses forward charmonium production (relative to lepton pairs) in heavy ion collisions. Also discussed are some novel features of nuclear diffractive amplitudes--high energy hadronic or electromagnetic reactions which leave the entire nucleus intact and give nonadditive contributions to the nuclear structure function at low /kappa cur//sub Bj/. (2) Conversely, the nucleus can be studied as a QCD structure. At short distances, nuclear wave functions and nuclear interactions necessarily involve hidden color, degrees of freedom orthogonal to the channels described by the usual nucleon or isobar degrees of freedom. At asymptotic momentum transfer, the deuteron form factor and distribution amplitude are rigorously calculable. One can also derive new types of testable scaling laws for exclusive nuclear amplitudes in terms of the reduced amplitude formalism.« less

  8. Amplitude of Sdiff across Asia: effects of velocity gradient and Qs in the D'' region and the asphericity of the mantle

    NASA Astrophysics Data System (ADS)

    Kuo, Ban-Yuan

    1999-11-01

    The amplitudes of diffracted SH (S diff) normalized to SKS, together with the S diff-SKS times, were analyzed to constrain the structure of the D" region beneath Asia and the northernmost Indian Ocean. While the S diff-SKS residuals (δt; relative to the Preliminary Reference Earth model, or PREM) are consistently negative from 95° to 120°, the amplitude residuals of S diff/SKS (δ A) show two trends of distance dependence, corresponding to distinct seismic structures in two adjacent zones in D". In zone A, δ A increases significantly with distance, suggesting the presence of a negative velocity gradient in the base of the mantle. The travel time residuals independently require that the average velocity of zone A be faster than that of PREM. One-dimensional structures that reconcile both sets of constraints were sought through systematic forwarding modeling. Models with negative gradients that satisfy δt's match δ A's to an acceptable degree only if a high-quality factor ( Qs) is assumed. The preferred model for zone A has a 400-500 km thick negative gradient layer, with a ~4% velocity discontinuity at the top and Qs = 1000, an about three-fold increase from the PREM value. In zone B, the amplitude-distance curve is virtually flat, and a 200-300 km thick high-velocity layer with PREM-like gradient and Qs explains both observations well. To assess the role of mantle asphericity in δ A, we estimate the strength of focusing of the S waves into the Fresnel zone at the onset of diffraction in vertical cross-sections of 3-D tomographic models SAW12D and SKS12WM13. Both models predict stronger focusing in zone A than in zone B. The focusing effect is translated to a positive base-line shift in δ A, which, if applied to the model predictions, alleviates the need for an extremely high Qs in zone A. The simple 2-D experiment suggests that velocity gradient and the anelastic attenuation of the D" layer as well as the mantle heterogeneity all probably contribute to the decay characteristics and the level of amplitude of S diff. The slab subducted in the Mesozoic may be responsible for the structure depicted in this study.

  9. How far are rheological parameters from amplitude sweep tests predictable using common physicochemical soil properties?

    NASA Astrophysics Data System (ADS)

    Stoppe, N.; Horn, R.

    2017-01-01

    A basic understanding of soil behavior on the mesoscale resp. macroscale (i.e. soil aggregates resp. bulk soil) requires knowledge of the processes at the microscale (i.e. particle scale), therefore rheological investigations of natural soils receive growing attention. In the present research homogenized and sieved (< 2 mm) samples from Marshland soils of the riparian zone of the River Elbe (North Germany) were analyzed with a modular compact rheometer MCR 300 (Anton Paar, Ostfildern, Germany) with a profiled parallel-plate measuring system. Amplitude sweep tests (AST) with controlled shear deformation were conducted to investigate the viscoelastic properties of the studied soils under oszillatory stress. The gradual depletion of microstructural stiffness during AST cannot only be characterized by the well-known rheological parameters G, G″ and tan δ but also by the dimensionless area parameter integral z, which quantifies the elasticity of microstructure. To discover the physicochemical parameters, which influences the microstructural stiffness, statistical tests were used taking the combined effects of these parameters into account. Although the influence of the individual factors varies depending on soil texture, the physicochemical features significantly affecting soil micro structure were identified. Based on the determined statistical relationships between rheological and physicochemical parameters, pedotransfer functions (PTF) have been developed, which allow a mathematical estimation of the rheological target value integral z. Thus, stabilizing factors are: soil organic matter, concentration of Ca2+, content of CaCO3 and pedogenic iron oxides; whereas the concentration of Na+ and water content represent structurally unfavorable factors.

  10. Scattering of massless particles: scalars, gluons and gravitons

    NASA Astrophysics Data System (ADS)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2014-07-01

    In a recent note we presented a compact formula for the complete tree-level S-matrix of pure Yang-Mills and gravity theories in arbitrary spacetime dimension. In this paper we show that a natural formulation also exists for a massless colored cubic scalar theory. In Yang-Mills, the formula is an integral over the space of n marked points on a sphere and has as integrand two factors. The first factor is a combination of Parke-Taylor-like terms dressed with U( N ) color structures while the second is a Pfaffian. The S-matrix of a U( N ) × U( Ñ ) cubic scalar theory is obtained by simply replacing the Pfaffian with a U( Ñ ) version of the previous U( N ) factor. Given that gravity amplitudes are obtained by replacing the U( N ) factor in Yang-Mills by a second Pfaffian, we are led to a natural color-kinematics correspondence. An expansion of the integrand of the scalar theory leads to sums over trivalent graphs and are directly related to the KLT matrix. Combining this and the Yang-Mills formula we find a connection to the BCJ color-kinematics duality as well as a new proof of the BCJ doubling property that gives rise to gravity amplitudes. We end by considering a special kinematic point where the partial amplitude simply counts the number of color-ordered planar trivalent trees, which equals a Catalan number. The scattering equations simplify dramatically and are equivalent to a special Y-system with solutions related to roots of Chebyshev polynomials. The sum of the integrand over the solutions gives rise to a representation of Catalan numbers in terms of eigenvectors and eigenvalues of the adjacency matrix of an A-type Dynkin diagram.

  11. Disappearance of Anisotropic Intermittency in Large-amplitude MHD Turbulence and Its Comparison with Small-amplitude MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua

    2018-03-01

    Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.

  12. Resummed tree heptagon

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2018-04-01

    The form factor program for the regularized space-time S-matrix in planar maximally supersymmetric gauge theory, known as the pentagon operator product expansion, is formulated in terms of flux-tube excitations propagating on a dual two-dimensional world-sheet, whose dynamics is known exactly as a function of 't Hooft coupling. Both MHV and non-MHV amplitudes are described in a uniform, systematic fashion within this framework, with the difference between the two encoded in coupling-dependent helicity form factors expressed via Zhukowski variables. The nontrivial SU(4) tensor structure of flux-tube transitions is coupling independent and is known for any number of charged excitations from solutions of a system of Watson and Mirror equations. This description allows one to resum the infinite series of form factors and recover the space-time S-matrix exactly in kinematical variables at a given order of perturbation series. Recently, this was done for the hexagon. Presently, we successfully perform resummation for the seven-leg tree NMHV amplitude. To this end, we construct the flux-tube integrands of the fifteen independent Grassmann component of the heptagon with an infinite number of small fermion-antifermion pairs accounted for in NMHV two-channel conformal blocks.

  13. N* Experiments and Their Impact on Strong QCD Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkert, Volker D.

    Here, I give a brief overview of experimental studies of the spectrum and the structure of the excited states of the nucleon and what we learn about their internal structure. The focus is on the effort to obtain a more complete picture of the light-quark baryon excitation spectrum employing electromagnetic beams, and on the study of the transition form factors and helicity amplitudes and their dependence on the size of the four-momentum transfer $Q^2$, especially on some of the most prominent resonances. These were obtained in pion and eta electroproduction experiments off proton targets.

  14. N^* Experiments and Their Impact on Strong QCD Physics

    NASA Astrophysics Data System (ADS)

    Burkert, Volker D.

    2018-07-01

    I give a brief report on experimental studies of the spectrum and the structure of the excited states of the nucleon and what we learn about their internal structure. The focus is on the effort to obtain a more complete picture of the light-quark baryon excitation spectrum employing electromagnetic beams, and on the study of the transition form factors and helicity amplitudes an their dependence on the size of the four-momentum transfer Q^2, especially on some of the most prominent resonances. These were obtained in pion and eta electroproduction experiments off proton targets.

  15. N* Experiments and Their Impact on Strong QCD Physics

    DOE PAGES

    Burkert, Volker D.

    2018-04-23

    Here, I give a brief overview of experimental studies of the spectrum and the structure of the excited states of the nucleon and what we learn about their internal structure. The focus is on the effort to obtain a more complete picture of the light-quark baryon excitation spectrum employing electromagnetic beams, and on the study of the transition form factors and helicity amplitudes and their dependence on the size of the four-momentum transfer $Q^2$, especially on some of the most prominent resonances. These were obtained in pion and eta electroproduction experiments off proton targets.

  16. Modelling of resonant MEMS magnetic field sensor with electromagnetic induction sensing

    NASA Astrophysics Data System (ADS)

    Liu, Song; Xu, Huaying; Xu, Dehui; Xiong, Bin

    2017-06-01

    This paper presents an analytical model of resonant MEMS magnetic field sensor with electromagnetic induction sensing. The resonant structure vibrates in square extensional (SE) mode. By analyzing the vibration amplitude and quality factor of the resonant structure, the magnetic field sensitivity as a function of device structure parameters and encapsulation pressure is established. The developed analytical model has been verified by comparing calculated results with experiment results and the deviation between them is only 10.25%, which shows the feasibility of the proposed device model. The model can provide theoretical guidance for further design optimization of the sensor. Moreover, a quantitative study of the magnetic field sensitivity is conducted with respect to the structure parameters and encapsulation pressure based on the proposed model.

  17. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  18. Factorization of chiral string amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less

  19. Factorization of chiral string amplitudes

    DOE PAGES

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-16

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less

  20. Attractor mechanism as a distillation procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levay, Peter; Szalay, Szilard

    2010-07-15

    In a recent paper it was shown that for double extremal static spherical symmetric BPS black hole solutions in the STU model the well-known process of moduli stabilization at the horizon can be recast in a form of a distillation procedure of a three-qubit entangled state of a Greenberger-Horne-Zeilinger type. By studying the full flow in moduli space in this paper we investigate this distillation procedure in more detail. We introduce a three-qubit state with amplitudes depending on the conserved charges, the warp factor, and the moduli. We show that for the recently discovered non-BPS solutions it is possible tomore » see how the distillation procedure unfolds itself as we approach the horizon. For the non-BPS seed solutions at the asymptotically Minkowski region we are starting with a three-qubit state having seven nonequal nonvanishing amplitudes and finally at the horizon we get a Greenberger-Horne-Zeilinger state with merely four nonvanishing ones with equal magnitudes. The magnitude of the surviving nonvanishing amplitudes is proportional to the macroscopic black hole entropy. A systematic study of such attractor states shows that their properties reflect the structure of the fake superpotential. We also demonstrate that when starting with the very special values for the moduli corresponding to flat directions the uniform structure at the horizon deteriorates due to errors generalizing the usual bit flips acting on the qubits of the attractor states.« less

  1. Post-Newtonian factorized multipolar waveforms for spinning, nonprecessing black-hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yi; Buonanno, Alessandra; Racine, Etienne

    2011-03-15

    We generalize the factorized resummation of multipolar waveforms introduced by Damour, Iyer, and Nagar to spinning black holes. For a nonspinning test particle spiraling a Kerr black hole in the equatorial plane, we find that factorized multipolar amplitudes which replace the residual relativistic amplitude f{sub lm} with its lth root, {rho}{sub lm}=f{sub lm}{sup 1/l}, agree quite well with the numerical amplitudes up to the Kerr-spin value q{<=}0.95 for orbital velocities v{<=}0.4. The numerical amplitudes are computed solving the Teukolsky equation with a spectral code. The agreement for prograde orbits and large spin values of the Kerr black-hole can be furthermore » improved at high velocities by properly factoring out the lower-order post-Newtonian contributions in {rho}{sub lm}. The resummation procedure results in a better and systematic agreement between numerical and analytical amplitudes (and energy fluxes) than standard Taylor-expanded post-Newtonian approximants. This is particularly true for higher-order modes, such as (2,1), (3,3), (3,2), and (4,4), for which less spin post-Newtonian terms are known. We also extend the factorized resummation of multipolar amplitudes to generic mass-ratio, nonprecessing, spinning black holes. Lastly, in our study we employ new, recently computed, higher-order post-Newtonian terms in several subdominant modes and compute explicit expressions for the half and one-and-half post-Newtonian contributions to the odd-parity (current) and even-parity (odd) multipoles, respectively. Those results can be used to build more accurate templates for ground-based and space-based gravitational-wave detectors.« less

  2. From the granular Leidenfrost state to buoyancy-driven convection.

    PubMed

    Rivas, Nicolas; Thornton, Anthony R; Luding, Stefan; van der Meer, Devaraj

    2015-04-01

    Grains inside a vertically vibrated box undergo a transition from a density-inverted and horizontally homogeneous state, referred to as the granular Leidenfrost state, to a buoyancy-driven convective state. We perform a simulational study of the precursors of such a transition and quantify their dynamics as the bed of grains is progressively fluidized. The transition is preceded by transient convective states, which increase their correlation time as the transition point is approached. Increasingly correlated convective flows lead to density fluctuations, as quantified by the structure factor, that also shows critical behavior near the transition point. The amplitude of the modulations in the vertical velocity field are seen to be best described by a quintic supercritical amplitude equation with an additive noise term. The validity of such an amplitude equation, and previously observed collective semiperiodic oscillations of the bed of grains, suggests a new interpretation of the transition analogous to a coupled chain of vertically vibrated damped oscillators. Increasing the size of the container shows metastability of convective states, as well as an overall invariant critical behavior close to the transition.

  3. Nonlinear Transient Growth and Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  4. FAST satellite observations of large-amplitude solitary structures

    NASA Astrophysics Data System (ADS)

    Ergun, R. E.; Carlson, C. W.; McFadden, J. P.; Mozer, F. S.; Delory, G. T.; Peria, W.; Chaston, C. C.; Temerin, M.; Roth, I.; Muschietti, L.; Elphic, R.; Strangeway, R.; Pfaff, R.; Cattell, C. A.; Klumpar, D.; Shelley, E.; Peterson, W.; Moebius, E.; Kistler, L.

    We report observations of “fast solitary waves” that are ubiquitous in downward current regions of the mid-altitude auroral zone. The single-period structures have large amplitudes (up to 2.5 V/m), travel much faster than the ion acoustic speed, carry substantial potentials (up to ∼100 Volts), and are associated with strong modulations of energetic electron fluxes. The amplitude and speed of the structures distinguishes them from ion-acoustic solitary waves or weak double layers. The electromagnetic signature appears to be that of an positive charge (electron hole) traveling anti-earthward. We present evidence that the structures are in or near regions of magnetic-field-aligned electric fields and propose that these nonlinear structures play a key role in supporting parallel electric fields in the downward current region of the auroral zone.

  5. Gram-Schmidt orthonormalization for retrieval of amplitude images under sinusoidal patterns of illumination

    USDA-ARS?s Scientific Manuscript database

    Structured illumination using sinusoidal patterns has been utilized for optical imaging of biological tissues in biomedical research and, of horticultural products. Implementation of structured-illumination imaging relies on retrieval of amplitude images, which is conventionally achieved by a phase-...

  6. Recent advances in spin-free state-specific and state-universal multi-reference coupled cluster formalisms: A unitary group adapted approach

    NASA Astrophysics Data System (ADS)

    Maitra, Rahul; Sinha, Debalina; Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2012-06-01

    We present here the formulations and implementations of Mukherjee's State-Specific and State-Universal Multi-reference Coupled Cluster theories, which are explicitly spin free being obtained via the Unitary Group Adapted (UGA) approach, and thus, do not suffer from spin-contamination. We refer to them as UGA-SSMRCC and UGASUMRCC respectively. We propose a new multi-exponential cluster Ansatz analogous to but different from the one suggested by Jeziorski and Monkhorst (JM). Unlike the JM Ansatz, our choice involves spin-free unitary generators for the cluster operators and we replace the traditional exponential structure for the wave-operator by a suitable normal ordered exponential. We sketch the consequences of choosing our Ansatz, which leads to fully spin-free finite power series structure of the direct term of the MRCC equations. The UGA-SUMRCC follows from a suitable hierarchical generation of the cluster amplitudes of increasing rank, while the UGA-SSMRCC requires suitable sufficiency conditions to arrive at a well-defined set of equations for the cluster amplitudes. We discuss two distinct and inequivalent sufficiency conditions and their pros and cons. We also discuss a variant of the UGA-SSMRCC, where the number of cluster amplitudes can be drastically reduced by internal contraction of the two-body inactive cluster amplitudes. These are the most numerous, and thus a spin-free internally contracted description will lead to a high speed-up factor. We refer to this as ICID-UGA-SSMRCC. Essentially the same mathematical manipulations provide us with the UGA-SUMRCC theory as well. Pilot numerical results are presented to indicate the promise and the efficacy of all the three methods.

  7. Method and apparatus for providing pulse pile-up correction in charge quantizing radiation detection systems

    DOEpatents

    Britton, Jr., Charles L.; Wintenberg, Alan L.

    1993-01-01

    A radiation detection method and system for continuously correcting the quantization of detected charge during pulse pile-up conditions. Charge pulses from a radiation detector responsive to the energy of detected radiation events are converted to voltage pulses of predetermined shape whose peak amplitudes are proportional to the quantity of charge of each corresponding detected event by means of a charge-sensitive preamplifier. These peak amplitudes are sampled and stored sequentially in accordance with their respective times of occurrence. Based on the stored peak amplitudes and times of occurrence, a correction factor is generated which represents the fraction of a previous pulses influence on a preceding pulse peak amplitude. This correction factor is subtracted from the following pulse amplitude in a summing amplifier whose output then represents the corrected charge quantity measurement.

  8. Hedgehog bases for A n cluster polylogarithms and an application to six-point amplitudes

    DOE PAGES

    Parker, Daniel E.; Scherlis, Adam; Spradlin, Marcus; ...

    2015-11-20

    Multi-loop scattering amplitudes in N=4 Yang-Mills theory possess cluster algebra structure. In order to develop a computational framework which exploits this connection, we show how to construct bases of Goncharov polylogarithm functions, at any weight, whose symbol alphabet consists of cluster coordinates on the A n cluster algebra. As a result, using such a basis we present a new expression for the 2-loop 6-particle NMHV amplitude which makes some of its cluster structure manifest.

  9. Interaction of emitted sonar pulses and simulated echoes in a false killer whale: an evoked-potential study.

    PubMed

    Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee

    2011-09-01

    Auditory evoked potentials (AEP) were recorded during echolocation in a false killer whale Pseudorca crassidens. An electronically synthesized and played-back (simulated) echo was triggered by an emitted biosonar pulse, and its intensity was proportional to that of the emitted click. The delay and transfer factor of the echo relative to the emitted click was controlled by the operator. The echo delay varied from 2 to 16 ms (by two-fold steps), and the transfer factor varied within ranges from -45 to -30 dB at the 2-ms delay to -60 to -45 dB at the 16-ms delay. Echo-related AEPs featured amplitude dependence both on echo delay at a constant transfer factor (the longer the delay, the higher amplitude) and on echo transfer factor at a constant delay (the higher transfer factor, the higher amplitude). Conjunctional variation of the echo transfer factor and delay kept the AEP amplitude constant when the delay to transfer factor trade was from -7.1 to -8.4 dB per delay doubling. The results confirm the hypothesis that partial forward masking of the echoes by the preceding emitted sonar pulses serves as a time-varying automatic gain control in the auditory system of echolocating odontocetes. © 2011 Acoustical Society of America

  10. Complex amplitude reconstruction for dynamic beam quality M2 factor measurement with self-referencing interferometer wavefront sensor.

    PubMed

    Du, Yongzhao; Fu, Yuqing; Zheng, Lixin

    2016-12-20

    A real-time complex amplitude reconstruction method for determining the dynamic beam quality M2 factor based on a Mach-Zehnder self-referencing interferometer wavefront sensor is developed. By using the proposed complex amplitude reconstruction method, full characterization of the laser beam, including amplitude (intensity profile) and phase information, can be reconstructed from a single interference pattern with the Fourier fringe pattern analysis method in a one-shot measurement. With the reconstructed complex amplitude, the beam fields at any position z along its propagation direction can be obtained by first utilizing the diffraction integral theory. Then the beam quality M2 factor of the dynamic beam is calculated according to the specified method of the Standard ISO11146. The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment, including the static and dynamic beam process. The experimental method is simple, fast, and operates without movable parts and is allowed in order to investigate the laser beam in inaccessible conditions using existing methods.

  11. P300 amplitude as an indicator of externalizing in adolescent males

    PubMed Central

    PATRICK, CHRISTOPHER J.; BERNAT, EDWARD M.; MALONE, STEPHEN M.; IACONO, WILLIAM G.; KRUEGER, ROBERT F.; MCGUE, MATT

    2008-01-01

    Reduced P300 amplitude is reliably found in individuals with a personal or family history of alcohol problems. However, alcoholism is part of a broader externalizing spectrum that includes other substance use and antisocial disorders. We hypothesized that reduced P300 is an indicator of the common factor that underlies disorders within this spectrum. Community males (N=969) were assessed at age 17 in a visual oddball task. Externalizing was defined as the common factor underlying symptoms of alcohol dependence, drug dependence, nicotine dependence, conduct disorder, and adult antisocial behavior. A robust association was found between reduced P300 amplitude and the externalizing factor, and this relation accounted for links between specific externalizing disorders and P300. Our findings indicate that reduced P300 amplitude is an indicator of the broad neurobiological vulnerability that underlies disorders within the externalizing spectrum. PMID:16629688

  12. Modeling TAE Response To Nonlinear Drives

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-10-01

    Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.

  13. Precursor wave structure, prereversal vertical drift, and their relative roles in the development of post sunset equatorial spread-F

    NASA Astrophysics Data System (ADS)

    Abdu, Mangalathayil; Sobral, José; alam Kherani, Esfhan; Batista, Inez S.; Souza, Jonas

    2016-07-01

    The characteristics of large-scale wave structure in the equatorial bottomside F region that are present during daytime as precursor to post sunset development of the spread F/plasma bubble irregularities are investigated in this paper. Digisonde data from three equatorial sites in Brazil (Fortaleza, Sao Luis and Cachimbo) for a period of few months at low to medium/high solar activity phases are analyzed. Small amplitude oscillations in the F layer true heights, representing wave structure in polarization electric field, are identified as upward propagating gravity waves having zonal scale of a few hundred kilometers. Their amplitudes undergo amplification towards sunset, and depending on the amplitude of the prereversal vertical drift (PRE) they may lead to post sunset generation of ESF/plasma bubble irregularities. On days of their larger amplitudes they appear to occur in phase coherence on all days, and correspondingly the PRE vertical drift velocities are larger than on days of the smaller amplitudes of the wave structure that appear at random phase on the different days. The sustenance of these precursor waves structures is supported by the relatively large ratio (approaching unity) of the F region-to- total field line integrated Pedersen conductivities as calculated using the SUPIM simulation of the low latitude ionosphere. This study examines the role of the wave structure relative to that of the prereversal vertical drift in the post sunset spread F irregularity development.

  14. An evaluation of the effects of eyeball structure on ocular pulse amplitude in healthy subjects.

    PubMed

    Ishii, Kotaro; Mori, Mikiro; Oshika, Tetsuro

    2012-12-01

    To evaluate the effects of eyeball structure on ocular pulse amplitude (OPA) measured using dynamic contour tonometer (DCT). In 86 eyes of 43 healthy subjects, we measured OPA and intraocular pressure (IOP) with DCT (DCT-IOP), IOP with Goldmann applanation tonometry (GAT-IOP), central corneal thickness (CCT), corneal thickness 2 mm (2 mmCT) and 4 mm (4 mmCT) apart from the center, corneal volume within a 3.5-mm radius from the corneal center, corneal curvature, anterior chamber depth, anterior chamber volume, and axial length (AL). OPA had a significant positive correlation with GAT-IOP (Pearson's r = 0.412, p < 0.001), DCT-IOP (r = 0.350, p < 0.001), and 4 mmCT (r = 0.244, p = 0.0231), and had a significant negative correlation with AL (r = -0.268, p = 0.0122). In a multiple linear regression analysis, AL and GAT-IOP were significantly associated with OPA. OPA measured with DCT is significantly influenced by several factors, such as IOP, peripheral corneal thickness (4 mmCT), and AL.

  15. Modeling Chinese ionospheric layer parameters based on EOF analysis

    NASA Astrophysics Data System (ADS)

    Yu, You; Wan, Weixing; Xiong, Bo; Ren, Zhipeng; Zhao, Biqiang; Zhang, Yun; Ning, Baiqi; Liu, Libo

    2015-05-01

    Using 24-ionosonde observations in and around China during the 20th solar cycle, an assimilative model is constructed to map the ionospheric layer parameters (foF2, hmF2, M(3000)F2, and foE) over China based on empirical orthogonal function (EOF) analysis. First, we decompose the background maps from the International Reference Ionosphere model 2007 (IRI-07) into different EOF modes. The obtained EOF modes consist of two factors: the EOF patterns and the corresponding EOF amplitudes. These two factors individually reflect the spatial distributions (e.g., the latitudinal dependence such as the equatorial ionization anomaly structure and the longitude structure with east-west difference) and temporal variations on different time scales (e.g., solar cycle, annual, semiannual, and diurnal variations) of the layer parameters. Then, the EOF patterns and long-term observations of ionosondes are assimilated to get the observed EOF amplitudes, which are further used to construct the Chinese Ionospheric Maps (CIMs) of the layer parameters. In contrast with the IRI-07 model, the mapped CIMs successfully capture the inherent temporal and spatial variations of the ionospheric layer parameters. Finally, comparison of the modeled (EOF and IRI-07 model) and observed values reveals that the EOF model reproduces the observation with smaller root-mean-square errors and higher linear correlation coefficients. In addition, IRI discrepancy at the low latitude especially for foF2 is effectively removed by EOF model.

  16. Modeling Chinese ionospheric layer parameters based on EOF analysis

    NASA Astrophysics Data System (ADS)

    Yu, You; Wan, Weixing

    2016-04-01

    Using 24-ionosonde observations in and around China during the 20th solar cycle, an assimilative model is constructed to map the ionospheric layer parameters (foF2, hmF2, M(3000)F2, and foE) over China based on empirical orthogonal function (EOF) analysis. First, we decompose the background maps from the International Reference Ionosphere model 2007 (IRI-07) into different EOF modes. The obtained EOF modes consist of two factors: the EOF patterns and the corresponding EOF amplitudes. These two factors individually reflect the spatial distributions (e.g., the latitudinal dependence such as the equatorial ionization anomaly structure and the longitude structure with east-west difference) and temporal variations on different time scales (e.g., solar cycle, annual, semiannual, and diurnal variations) of the layer parameters. Then, the EOF patterns and long-term observations of ionosondes are assimilated to get the observed EOF amplitudes, which are further used to construct the Chinese Ionospheric Maps (CIMs) of the layer parameters. In contrast with the IRI-07 model, the mapped CIMs successfully capture the inherent temporal and spatial variations of the ionospheric layer parameters. Finally, comparison of the modeled (EOF and IRI-07 model) and observed values reveals that the EOF model reproduces the observation with smaller root-mean-square errors and higher linear correlation co- efficients. In addition, IRI discrepancy at the low latitude especially for foF2 is effectively removed by EOF model.

  17. Experimental access to Transition Distribution Amplitudes with the P¯ANDA experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Erni, W.; Keshelashvili, I.; Krusche, B.; Steinacher, M.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Fink, M.; Heinsius, F. H.; Held, T.; Holtmann, T.; Koch, H.; Kopf, B.; Kümmel, M.; Kuhl, G.; Kuhlmann, M.; Leyhe, M.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Beck, R.; Hammann, C.; Kaiser, D.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Pietreanu, D.; Vasile, M. E.; Patel, B.; Kaplan, D.; Brandys, P.; Czyzewski, T.; Czyzycki, W.; Domagala, M.; Hawryluk, M.; Filo, G.; Krawczyk, M.; Kwiatkowski, D.; Lisowski, E.; Lisowski, F.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Czech, B.; Kliczewski, S.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Malgorzata, K.; Pysz, K.; Schäfer, W.; Siudak, R.; Szczurek, A.; Biernat, J.; Jowzaee, S.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Palka, M.; Psyzniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wrońska, A.; Augustin, I.; Lehmann, I.; Nicmorus, D.; Schepers, G.; Schmitt, L.; Al-Turany, M.; Cahit, U.; Capozza, L.; Dbeyssi, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Karabowicz, R.; Kliemt, R.; Kunkel, J.; Kurilla, U.; Lehmann, D.; Lühning, J.; Maas, F.; Morales Morales, C.; Mora Espí, M. C.; Nerling, F.; Orth, H.; Peters, K.; Rodríguez Piñeiro, D.; Saito, N.; Saito, T.; Sánchez Lorente, A.; Schmidt, C. J.; Schwarz, C.; Schwiening, J.; Traxler, M.; Valente, R.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V. M.; Alexeev, G.; Arefiev, A.; Astakhov, V. I.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Yu. I.; Dodokhov, V. Kh.; Efremov, A. A.; Fedunov, A. G.; Festchenko, A. A.; Galoyan, A. S.; Grigoryan, S.; Karmokov, A.; Koshurnikov, E. K.; Lobanov, V. I.; Lobanov, Yu. Yu.; Makarov, A. F.; Malinina, L. V.; Malyshev, V. L.; Mustafaev, G. A.; Olshevskiy, A.; Pasyuk, M. A.; Perevalova, E. A.; Piskun, A. A.; Pocheptsov, T. A.; Pontecorvo, G.; Rodionov, V. K.; Rogov, Yu. N.; Salmin, R. A.; Samartsev, A. G.; Sapozhnikov, M. G.; Shabratova, G. S.; Skachkov, N. B.; Skachkova, A. N.; Strokovsky, E. A.; Suleimanov, M. K.; Teshev, R. Sh.; Tokmenin, V. V.; Uzhinsky, V. V.; Vodopyanov, A. S.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Woods, P.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savriè, M.; Stancari, G.; Akishina, V.; Kisel, I.; Kulakov, I.; Zyzak, M.; Arora, R.; Bel, T.; Gromliuk, A.; Kalicy, G.; Krebs, M.; Patsyuk, M.; Zuehlsdorf, M.; Bianchi, N.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Pace, E.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Bianco, S.; Bremer, D.; Brinkmann, K. T.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Eissner, T.; Etzelmüller, E.; Föhl, K.; Galuska, M.; Gessler, T.; Gutz, E.; Hayrapetyan, A.; Hu, J.; Kröck, B.; Kühn, W.; Kuske, T.; Lange, S.; Liang, Y.; Merle, O.; Metag, V.; Mülhheim, D.; Münchow, D.; Nanova, M.; Novotny, R.; Pitka, A.; Quagli, T.; Rieke, J.; Rosenbaum, C.; Schnell, R.; Spruck, B.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wasem, T.; Werner, M.; Zaunick, H. G.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P. N.; Kulkarni, A. V.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P.; Lindemulder, M.; Löhner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; van der Weele, J. C.; Tiemens, M.; Veenstra, R.; Vejdani, S.; Kalita, K.; Mohanta, D. P.; Kumar, A.; Roy, A.; Sahoo, R.; Sohlbach, H.; Büscher, M.; Cao, L.; Cebulla, A.; Deermann, D.; Dosdall, R.; Esch, S.; Georgadze, I.; Gillitzer, A.; Goerres, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Kozlov, V.; Lehrach, A.; Leiber, S.; Maier, R.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Ritman, J.; Schadmand, S.; Schumann, J.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Fissum, S.; Hansen, K.; Isaksson, L.; Lundin, M.; Schröder, B.; Achenbach, P.; Bleser, S.; Cardinali, M.; Corell, O.; Deiseroth, M.; Denig, A.; Distler, M.; Feldbauer, F.; Fritsch, M.; Jasinski, P.; Hoek, M.; Kangh, D.; Karavdina, A.; Lauth, W.; Leithoff, H.; Merkel, H.; Michel, M.; Motzko, C.; Müller, U.; Noll, O.; Plueger, S.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Steinen, M.; Thiel, M.; Weber, T.; Zambrana, M.; Dormenev, V. I.; Fedorov, A. A.; Korzihik, M. V.; Missevitch, O. V.; Balanutsa, P.; Balanutsa, V.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Varentsov, V.; Boukharov, A.; Malyshev, O.; Marishev, I.; Semenov, A.; Konorov, I.; Paul, S.; Grieser, S.; Hergemöller, A. K.; Khoukaz, A.; Köhler, E.; Täschner, A.; Wessels, J.; Dash, S.; Jadhav, M.; Kumar, S.; Sarin, P.; Varma, R.; Chandratre, V. B.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A. K.; Roy, B.; Yan, Y.; Chinorat, K.; Khanchai, K.; Ayut, L.; Pornrad, S.; Barnyakov, A. Y.; Blinov, A. E.; Blinov, V. E.; Bobrovnikov, V. S.; Kononov, S. A.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Sokolov, A. A.; Tikhonov, Y. A.; Atomssa, E.; Hennino, T.; Imre, M.; Kunne, R.; Le Galliard, C.; Ma, B.; Marchand, D.; Ong, S.; Ramstein, B.; Rosier, P.; Tomasi-Gustafsson, E.; Van de Wiele, J.; Boca, G.; Costanza, S.; Genova, P.; Lavezzi, L.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Melnik, Y.; Levin, A.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Yabsley, B.; Bäck, T.; Cederwall, B.; Makónyi, K.; Tegnér, P. E.; von Würtemberg, K. M.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Kashchuk, A.; Levitskaya, O.; Manaenkov, S.; Miklukho, O.; Naryshkin, Y.; Suvorov, K.; Veretennikov, D.; Zhadanov, A.; Rai, A. K.; Godre, S. S.; Duchat, R.; Amoroso, A.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Zotti, L.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mingnore, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Younis, H.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Clement, H.; Gålnander, B.; Caldeira Balkeståhl, L.; Calén, H.; Fransson, K.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Pettersson, J.; Schönning, K.; Wolke, M.; Zlomanczuk, J.; Díaz, J.; Ortiz, A.; Vinodkumar, P. C.; Parmar, A.; Chlopik, A.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Suzuki, K.; Widmann, E.; Zmeskal, J.; Fröhlich, B.; Khaneft, D.; Lin, D.; Zimmermann, I.; Semenov-Tian-Shansky, K.

    2015-08-01

    Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion ( πN) TDAs from reaction with the future P¯ANDA detector at the FAIR facility. At high center-of-mass energy and high invariant mass squared of the lepton pair q 2, the amplitude of the signal channel admits a QCD factorized description in terms of πN TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring with the P¯ANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 < q 2 < 4.3 GeV2 and 5 < q 2 GeV2, respectively, with a neutral pion scattered in the forward or backward cone in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the P¯ANDA detector will allow to achieve a background rejection factor of 5 · 107 (1 · 107) at low (high) q 2 for s = 5 GeV2, and of 1 · 108 (6 · 106) at low (high) q 2 for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 fb-1 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with P¯ANDA will provide a new test of the perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing π TDAs.

  18. OCT Amplitude and Speckle Statistics of Discrete Random Media.

    PubMed

    Almasian, Mitra; van Leeuwen, Ton G; Faber, Dirk J

    2017-11-01

    Speckle, amplitude fluctuations in optical coherence tomography (OCT) images, contains information on sub-resolution structural properties of the imaged sample. Speckle statistics could therefore be utilized in the characterization of biological tissues. However, a rigorous theoretical framework relating OCT speckle statistics to structural tissue properties has yet to be developed. As a first step, we present a theoretical description of OCT speckle, relating the OCT amplitude variance to size and organization for samples of discrete random media (DRM). Starting the calculations from the size and organization of the scattering particles, we analytically find expressions for the OCT amplitude mean, amplitude variance, the backscattering coefficient and the scattering coefficient. We assume fully developed speckle and verify the validity of this assumption by experiments on controlled samples of silica microspheres suspended in water. We show that the OCT amplitude variance is sensitive to sub-resolution changes in size and organization of the scattering particles. Experimentally determined and theoretically calculated optical properties are compared and in good agreement.

  19. Effect of flow rate, duty cycle, amplitude, and treatment Time of ultrasonic regimens towards Escherichia coli harbouring lipase

    NASA Astrophysics Data System (ADS)

    Omar, W. S. A. W.; Sulaiman, A. Z.; Ajit, A.; Chisti, Y.; Chor, A. L. T.

    2017-06-01

    A full factorial design (FFD) approach was conducted to assess the effect of four factors, namely flow rate, duty cycle, amplitude, and treatment time of ultrasonic regimens towards Escherichia coli harbouring lipase. The 22 experiments were performed as the following values with six replicates of centre point: flow rate (0.1, 0.2, and 0.3 L/min), duty cycle (0, 20, and 40 ), amplitude (2, 6, and 10), and treatment time (10, 35, and 60 min). The FFD was employed as preliminary screening in shake flask cultivation to choose the significant factors (P< 0.05) for further optimisation process. In this study, zero duty cycle signified non-sonication of amplitude and no treatment time effect to the E. coli culture. Also, the designated flow rate and amplitude accordingly showed no effect towards the amount of dry cells weight (DCW). DCW1 was found significantly degraded after the exposure of high duty cycle and treatment time as other factors remained constant. Whereas for the lipase activity, no significant difference was observed in any main factors or interactions. Paired samples t-test confirms the result at a p-value of 0.625. This experimental study suggests the direct and continuous approach of sonication caused an adverse effect on the cells culture density.

  20. Quantitative analysis of ground penetrating radar data in the Mu Us Sandland

    NASA Astrophysics Data System (ADS)

    Fu, Tianyang; Tan, Lihua; Wu, Yongqiu; Wen, Yanglei; Li, Dawei; Duan, Jinlong

    2018-06-01

    Ground penetrating radar (GPR), which can reveal the sedimentary structure and development process of dunes, is widely used to evaluate aeolian landforms. The interpretations for GPR profiles are mostly based on qualitative descriptions of geometric features of the radar reflections. This research quantitatively analyzed the waveform parameter characteristics of different radar units by extracting the amplitude and time interval parameters of GPR data in the Mu Us Sandland in China, and then identified and interpreted different sedimentary structures. The results showed that different types of radar units had specific waveform parameter characteristics. The main waveform parameter characteristics of sand dune radar facies and sandstone radar facies included low amplitudes and wide ranges of time intervals, ranging from 0 to 0.25 and 4 to 33 ns respectively, and the mean amplitudes changed gradually with time intervals. The amplitude distribution curves of various sand dune radar facies were similar as unimodal distributions. The radar surfaces showed high amplitudes with time intervals concentrated in high-value areas, ranging from 0.08 to 0.61 and 9 to 34 ns respectively, and the mean amplitudes changed drastically with time intervals. The amplitude and time interval values of lacustrine radar facies were between that of sand dune radar facies and radar surfaces, ranging from 0.08 to 0.29 and 11 to 30 ns respectively, and the mean amplitude and time interval curve was approximately trapezoidal. The quantitative extraction and analysis of GPR reflections could help distinguish various radar units and provide evidence for identifying sedimentary structure in aeolian landforms.

  1. Leading multi-soft limits from scattering equations

    NASA Astrophysics Data System (ADS)

    Zlotnikov, Michael

    2017-10-01

    A Cachazo-He-Yuan (CHY) type formula is derived for the leading gluon, bi-adjoint scalar ϕ 3, Yang-Mills-scalar and non-linear sigma model m-soft factors S m in arbitrary dimension. The general formula is used to evaluate explicit examples for up to three soft legs analytically and up to four soft legs numerically via comparison with amplitude ratios under soft kinematics. A structural pattern for gluon m-soft factor is inferred and a simpler formula for its calculation is conjectured. In four dimensions, a Cachazo-Svrček-Witten (CSW) recursive procedure producing the leading m-soft gluon factor in spinor helicity formalism is developed as an alternative, and Britto-Cachazo-Feng-Witten (BCFW) recursion is used to obtain the leading four-soft gluon factor for all analytically distinct helicity configurations.

  2. Female Drosophila melanogaster respond to song-amplitude modulations.

    PubMed

    Brüggemeier, Birgit; Porter, Mason A; Vigoreaux, Jim O; Goodwin, Stephen F

    2018-06-11

    Males in numerous animal species use mating songs to attract females and intimidate competitors. We demonstrate that modulations in song amplitude are behaviourally relevant in the fruit fly Drosophila We show that D rosophila melanogaster females prefer amplitude modulations that are typical of melanogaster song over other modulations, which suggests that amplitude modulations are processed auditorily by D. melanogaster Our work demonstrates that receivers can decode messages in amplitude modulations, complementing the recent finding that male flies actively control song amplitude. To describe amplitude modulations, we propose the concept of song amplitude structure (SAS) and discuss similarities and differences to amplitude modulation with distance (AMD).This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  3. Exchange enhancement of the electron g-factor in a two-dimensional semimetal in HgTe quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovkun, L. S., E-mail: bovkun@ipmras.ru; Krishtopenko, S. S.; Zholudev, M. S.

    The exchange enhancement of the electron g-factor in perpendicular magnetic fields to 12 T in HgTe/CdHgTe quantum wells 20 nm wide with a semimetal band structure is studied. The electron effective mass and g-factor at the Fermi level are determined by analyzing the temperature dependence of the amplitude of Shubnikov–de Haas oscillation in weak fields and near odd Landau-level filling factors ν ≤ 9. The experimental values are compared with theoretical calculations performed in the one-electron approximation using the eight-band kp Hamiltonian. The found dependence of g-factor enhancement on the electron concentration is explained by changes in the contributions ofmore » hole- and electron-like states to exchange corrections to the Landau-level energies in the conduction band.« less

  4. Structure of hadron resonances with a nearby zero of the amplitude

    NASA Astrophysics Data System (ADS)

    Kamiya, Yuki; Hyodo, Tetsuo

    2018-03-01

    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude. If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the K ¯ N -π Σ amplitude, we discuss the origin of the eigenstates in the Λ (1405 ) region.

  5. {lambda}{sub b}{yields}p, {lambda} transition form factors from QCD light-cone sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Yuming; Lue Caidian; Shen Yuelong

    2009-10-01

    Light-cone sum rules for the {lambda}{sub b}{yields}p, {lambda} transition form factors are derived from the correlation functions expanded by the twist of the distribution amplitudes of the {lambda}{sub b} baryon. In terms of the {lambda}{sub b} three-quark distribution amplitude models constrained by the QCD theory, we calculate the form factors at small momentum transfers and compare the results with those estimated in the conventional light-cone sum rules (LCSR) and perturbative QCD approaches. Our results indicate that the two different versions of sum rules can lead to the consistent numbers of form factors responsible for {lambda}{sub b}{yields}p transition. The {lambda}{sub b}{yields}{lambda}more » transition form factors from LCSR with the asymptotic {lambda} baryon distribution amplitudes are found to be almost 1 order larger than those obtained in the {lambda}{sub b}-baryon LCSR, implying that the preasymptotic corrections to the baryonic distribution amplitudes are of great importance. Moreover, the SU(3) symmetry breaking effects between the form factors f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup p} and f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup {lambda}} are computed as 28{sub -8}{sup +14}% in the framework of {lambda}{sub b}-baryon LCSR.« less

  6. Inferences on the Physical Nature of Earth's Inner Core Boundary Region from Observations of Antipodal PKIKP and PKIIKP Waves

    NASA Astrophysics Data System (ADS)

    Cormier, V. F.; Attanayake, J.; Thomas, C.; Koper, K. D.; Miller, M. S.

    2017-12-01

    The Earth's Inner Core Boundary (ICB) is considered a uniform and sharp liquid-to-solid transition in standard Earth models such as PREM and AK135-F. By analysing seismic wave reflections emanating from the ICB, this hypothesis of a simple ICB can be tested. Observed absolute and relative amplitudes and coda of the PKiKP phase that is reflected on the topside of the ICB suggest that the ICB is neither uniform nor has a simple structure. Similarly, waves that are reflected from the underside of the ICB - PKIIKP phase - can be used to determine the physical nature of the region immediately below the ICB. Using high-frequency synthetic waveform experiments, we confirm that antipodal PKIIKP amplitudes can discriminate the state of the uppermost 10 km of the inner core: A standard liquid-to-solid ICB (high shear velocity/shear modulus discontinuity) produces a maximum PKIIKP amplitude equal to only a factor of 0.14 of the PKIKP amplitude, whereas a non-standard liquid-to-near liquid ICB (low shear velocity/shear modulus discontinuity) can produce PKIIKP amplitudes comparable to PKIKP. We searched for PKIIKP in individual and stacked array waveforms in the 170° - 180° distance range for the 2000 to 2016 time period globally to compare with our synthetic results. We attribute a lack of PKIIKP detection in the stacked array recordings due to (1) ranges closer to 170° and not 180°, where the PKIIKP signal-to-noise ratio is very poor; (2) scattered coda following PKIKP masking the PKIIKP phase; and (3) large azimuthal variations of array recordings closer to 180° preventing the formation of an accurate beam. Envelopes of individual recordings in the 178° - 180° distance range, however, clearly show energy peaks correlating with the travel time of PKIIKP phase. Our global set of PKIIKP/PKIKP energy ratio measurements vary between 0.1 and 1.1, indicating significant structural complexity immediately below the ICB. While a complex inner core anisotropy structure and ICB topography could influence these energy ratios, we favor a hypothesis of a thin transition layer of thickness < 10 km below the ICB having a laterally varying shear modulus (or shear velocity) to explain observed rapid lateral variations of PKIIKP/PKIKP energy ratios.

  7. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure

    DOE PAGES

    Hemsing, E.; Garcia, B.; Huang, Z.; ...

    2017-06-19

    Here, we analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG) transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG) and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by themore » microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.« less

  8. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesé, Luis M., E-mail: msese@ccia.uned.es

    2016-03-07

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) thatmore » can be useful to characterize freezing.« less

  9. Responses of squirrel monkeys to their experimentally modified mobbing calls

    NASA Astrophysics Data System (ADS)

    Fichtel, Claudia; Hammerschmidt, Kurt

    2003-05-01

    Previous acoustic analyses suggested emotion-correlated changes in the acoustic structure of squirrel monkey (Saimiri sciureus) vocalizations. Specifically, calls given in aversive contexts were characterized by an upward shift in frequencies, often accompanied by an increase in amplitude. In order to test whether changes in frequencies or amplitude are indeed relevant for conspecific listeners, playback experiments were conducted in which either frequencies or amplitude of mobbing calls were modified. Latency and first orienting response were measured in playback experiments with six adult squirrel monkeys. After broadcasting yaps with increased frequencies or amplitude, squirrel monkeys showed a longer orienting response towards the speaker than after the corresponding control stimuli. Furthermore, after broadcasting yaps with decreased frequencies or amplitude, squirrel monkeys showed a shorter orienting response towards the speaker than after the corresponding manipulated calls with higher frequencies or amplitude. These results suggest that changes in frequencies or amplitude were perceived by squirrel monkeys, indicating that the relationship between call structure and the underlying affective state of the caller agreed with the listener's assessment of the calls. However, a simultaneous increase in frequencies and amplitude did not lead to an enhanced response, compared to each single parameter. Thus, from the receiver's perspective, both call parameters may mutually replace each other.

  10. Small-angle scattering from the Cantor surface fractal on the plane and the Koch snowflake

    NASA Astrophysics Data System (ADS)

    Cherny, Alexander Yu.; Anitas, Eugen M.; Osipov, Vladimir A.; Kuklin, Alexander I.

    The small-angle scattering (SAS) from the Cantor surface fractal on the plane and Koch snowflake is considered. We develop the construction algorithm for the Koch snowflake, which makes possible the recurrence relation for the scattering amplitude. The surface fractals can be decomposed into a sum of surface mass fractals for arbitrary fractal iteration, which enables various approximations for the scattering intensity. It is shown that for the Cantor fractal, one can neglect with a good accuracy the correlations between the mass fractal amplitudes, while for the Koch snowflake, these correlations are important. It is shown that nevertheless, the correlations can be build in the mass fractal amplitudes, which explains the decay of the scattering intensity $I(q)\\sim q^{D_{\\mathrm{s}}-4}$ with $1 < D_{\\mathrm{s}} < 2$ being the fractal dimension of the perimeter. The curve $I(q)q^{4-D_{\\mathrm{s}}}$ is found to be log-periodic in the fractal region with the period equal to the scaling factor of the fractal. The log-periodicity arises from the self-similarity of sizes of basic structural units rather than from correlations between their distances. A recurrence relation is obtained for the radius of gyration of Koch snowflake, which is solved in the limit of infinite iterations. The present analysis allows us to obtain additional information from SAS data, such as the edges of the fractal regions, the fractal iteration number and the scaling factor.

  11. Development of a Novel Approach for Fatigue Life Prediction of Structural Materials

    DTIC Science & Technology

    2008-12-01

    applied when the crack length was 8.45 mm and 14.96 mm, respectively, on these two specimens. A third specimen was subjected to a constant amplitude...The crack growth rate at the middle point (the third point) was determined from the derivative of the parabola. The stress intensity factor for...minimum load was identical in the two loading steps (Fig. 32(b)). The third specimen experienced two-step loading with identical /?-ratio in the two

  12. Analysis of propellant feedline dynamics

    NASA Technical Reports Server (NTRS)

    Holster, J. L.; Astleford, W. J.; Gerlach, C. R.

    1973-01-01

    An analytical model and corresponding computer program for studying disturbances of liquid propellants in typical engine feedline systems were developed. The model includes the effects of steady turbulent mean flow, the influence of distributed compliances, the effects of local compliances, and various factors causing structural-hydraulic coupling. The computer program was set up such that the amplitude and phase of the terminal pressure/input excitation is calculated over any desired frequency range for an arbitrary assembly of various feedline components. A user's manual is included.

  13. A novel technique for micro-hole forming on skull with the assistance of ultrasonic vibration.

    PubMed

    Li, Zhe; Yang, Daoguo; Hao, Weidong; Wu, Tiecheng; Wu, Song; Li, Xiaoping

    2016-04-01

    Micro-hole opening on skull is technically challenging and is hard to realize by micro-drilling. Low-stiffness of the drill bit is a serious drawback in micro-drilling. To deal with this problem, a novel ultrasonic vibration assisted micro-hole forming technique has been developed. Tip geometry and vibration amplitude are two key factors affecting the performance of this hole forming technique. To investigate their effects, experiment was carried out with 300μm diameter tools of three different tip geometries at three different vibration amplitudes. Hole forming performance was evaluated by the required thrust force, dimensional accuracy, exit burr and micro-structure of bone tissue around the generated hole. Based on the findings from current study, the 60° conically tipped tool helps generate a micro-hole of better quality at a smaller thrust force, and it is more suitable for hole forming than the 120° conically tipped tool and the blunt tipped tool. As for the vibration amplitude, when a larger amplitude is used, a micro-hole of better quality and higher dimensional accuracy can be formed at a smaller thrust force. Findings from this study would lay a technical foundation for accurately generating a high-quality micro-hole on skull, which enables minimally invasive insertion of a microelectrode into brain for neural activity measuring. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingdi; Averitt, Richard D., E-mail: xinz@bu.edu, E-mail: raveritt@ucsd.edu; Department of Physics, Boston University, Boston, Massachusetts 02215

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm{sup −1}, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits amore » linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.« less

  15. Holographic maps of quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Dalla Torre, Emanuele G.; He, Yang; Demler, Eugene

    2016-11-01

    The analysis of Fourier-transformed scanning tunnelling microscopy images with subatomic resolution is a common tool for studying the properties of quasiparticle excitations in strongly correlated materials. Although Fourier amplitudes are generally complex valued, earlier analysis primarily focused on their absolute values. Their complex phases were often deemed random, and thus irrelevant, due to the unknown positions of the impurities in the sample. Here we show how to factor out these random phases by analysing overlaps between Fourier amplitudes that differ by reciprocal lattice vectors. The resulting holographic maps provide important and previously unknown information about the electronic structures. When applied to superconducting cuprates, our method solves a long-standing puzzle of the dichotomy between equivalent wavevectors. We show that d-wave Wannier functions of the conduction band provide a natural explanation for experimental results that were interpreted as evidence for competing unconventional charge modulations. Our work opens a new pathway to identify the nature of electronic states in scanning tunnelling microscopy.

  16. Integrated Sachs-Wolfe effect in massive bigravity

    NASA Astrophysics Data System (ADS)

    Enander, Jonas; Akrami, Yashar; Mörtsell, Edvard; Renneby, Malin; Solomon, Adam R.

    2015-04-01

    We study the integrated Sachs-Wolfe (ISW) effect in ghost-free, massive bigravity. We focus on the infinite-branch bigravity (IBB) model which exhibits viable cosmic expansion histories and stable linear perturbations, while the cosmological constant is set to zero and the late-time accelerated expansion of the Universe is due solely to the gravitational interaction terms. The ISW contribution to the CMB auto-correlation power spectrum is predicted, as well as the cross-correlation between the CMB temperature anisotropies and large-scale structure. We use ISW amplitudes as inferred from the WMAP 9-year temperature data together with galaxy and AGN data provided by the WISE mission in order to compare the theoretical predictions to the observations. The ISW amplitudes in IBB are found to be larger than the corresponding ones in the standard Λ CDM model by roughly a factor of 1.5, but are still consistent with the observations.

  17. Exact states in waveguides with periodically modulated nonlinearity

    NASA Astrophysics Data System (ADS)

    Ding, E.; Chan, H. N.; Chow, K. W.; Nakkeeran, K.; Malomed, B. A.

    2017-09-01

    We introduce a one-dimensional model based on the nonlinear Schrödinger/Gross-Pitaevskii equation where the local nonlinearity is subject to spatially periodic modulation in terms of the Jacobi {dn} function, with three free parameters including the period, amplitude, and internal form-factor. An exact periodic solution is found for each set of parameters and, which is more important for physical realizations, we solve the inverse problem and predict the period and amplitude of the modulation that yields a particular exact spatially periodic state. A numerical stability analysis demonstrates that the periodic states become modulationally unstable for large periods, and regain stability in the limit of an infinite period, which corresponds to a bright soliton pinned to a localized nonlinearity-modulation pattern. The exact dark-bright soliton complex in a coupled system with a localized modulation structure is also briefly considered. The system can be realized in planar optical waveguides and cigar-shaped atomic Bose-Einstein condensates.

  18. Movement Precision and Amplitude as Separate Factors in the Control of Movement.

    ERIC Educational Resources Information Center

    Kerr, Robert

    The purpose of this study was to assess Welford's dual controlling factor interpretation of Fitts' Law--describing movement time as being a linear function of movement distance (or amplitude) and the required precision of the movement (or target width). Welford's amplification of the theory postulates that two separate processes ought to be…

  19. Proof of a new colour decomposition for QCD amplitudes

    DOE PAGES

    Melia, Tom

    2015-12-16

    Recently, Johansson and Ochirov conjectured the form of a new colour decom-position for QCD tree-level amplitudes. This note provides a proof of that conjecture. The proof is based on ‘Mario World’ Feynman diagrams, which exhibit the hierarchical Dyck structure previously found to be very useful when dealing with multi-quark amplitudes.

  20. Proof of a new colour decomposition for QCD amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melia, Tom

    Recently, Johansson and Ochirov conjectured the form of a new colour decom-position for QCD tree-level amplitudes. This note provides a proof of that conjecture. The proof is based on ‘Mario World’ Feynman diagrams, which exhibit the hierarchical Dyck structure previously found to be very useful when dealing with multi-quark amplitudes.

  1. Analysis of phases in the structure determination of an icosahedral virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plevka, Pavel; Kaufmann, Bärbel; Rossmann, Michael G.

    2012-03-15

    The constraints imposed on structure-factor phases by noncrystallographic symmetry (NCS) allow phase improvement, phase extension to higher resolution and hence ab initio phase determination. The more numerous the NCS redundancy and the greater the volume used for solvent flattening, the greater the power for phase determination. In a case analyzed here the icosahedral NCS phasing appeared to have broken down, although later successful phase extension was possible when the envelope around the NCS region was tightened. The phases from the failed phase-determination attempt fell into four classes, all of which satisfied the NCS constraints. These four classes corresponded to themore » correct solution, opposite enantiomorph, Babinet inversion and opposite enantiomorph with Babinet inversion. These incorrect solutions can be seeded from structure factors belonging to reciprocal-space volumes that lie close to icosahedral NCS axes where the structure amplitudes tend to be large and the phases tend to be 0 or {pi}. Furthermore, the false solutions can spread more easily if there are large errors in defining the envelope designating the region in which NCS averaging is performed.« less

  2. Analysis of phases in the structure determination of an icosahedral virus.

    PubMed

    Plevka, Pavel; Kaufmann, Bärbel; Rossmann, Michael G

    2011-06-01

    The constraints imposed on structure-factor phases by noncrystallographic symmetry (NCS) allow phase improvement, phase extension to higher resolution and hence ab initio phase determination. The more numerous the NCS redundancy and the greater the volume used for solvent flattening, the greater the power for phase determination. In a case analyzed here the icosahedral NCS phasing appeared to have broken down, although later successful phase extension was possible when the envelope around the NCS region was tightened. The phases from the failed phase-determination attempt fell into four classes, all of which satisfied the NCS constraints. These four classes corresponded to the correct solution, opposite enantiomorph, Babinet inversion and opposite enantiomorph with Babinet inversion. These incorrect solutions can be seeded from structure factors belonging to reciprocal-space volumes that lie close to icosahedral NCS axes where the structure amplitudes tend to be large and the phases tend to be 0 or π. Furthermore, the false solutions can spread more easily if there are large errors in defining the envelope designating the region in which NCS averaging is performed. © 2011 International Union of Crystallography

  3. Analysis of phases in the structure determination of an icosahedral virus

    PubMed Central

    Plevka, Pavel; Kaufmann, Bärbel; Rossmann, Michael G.

    2011-01-01

    The constraints imposed on structure-factor phases by non­crystallographic symmetry (NCS) allow phase improvement, phase extension to higher resolution and hence ab initio phase determination. The more numerous the NCS redundancy and the greater the volume used for solvent flattening, the greater the power for phase determination. In a case analyzed here the icosahedral NCS phasing appeared to have broken down, although later successful phase extension was possible when the envelope around the NCS region was tightened. The phases from the failed phase-determination attempt fell into four classes, all of which satisfied the NCS constraints. These four classes corresponded to the correct solution, opposite enantiomorph, Babinet inversion and opposite enantiomorph with Babinet inversion. These incorrect solutions can be seeded from structure factors belonging to reciprocal-space volumes that lie close to icosahedral NCS axes where the structure amplitudes tend to be large and the phases tend to be 0 or π. Furthermore, the false solutions can spread more easily if there are large errors in defining the envelope designating the region in which NCS averaging is performed. PMID:21636897

  4. Two-level bulk microfabrication of a mechanical broadband vibration amplitude-amplifier with ten coupled resonators

    NASA Astrophysics Data System (ADS)

    Müller, Michelle; Maiwald, Verena; Thiele, Lothar; Beutel, Jan; Roman, Cosmin; Hierold, Christofer

    2018-04-01

    A micromechanical broadband vibration amplitude-amplifier for low power detection of acoustic emission signals is presented. It is based on a coupled mass-spring system and was fabricated in a two-level bulk microfabrication process. The device consists of ten resonators coupled in series, which decrease in mass by a factor of three each, to achieve a high amplification over a broad bandwidth. The fabrication process for this multiscale device is based on front- and backside etching of a silicon-on-insulator wafer. It enables coupling MEMS resonators of two different thicknesses with a weight ratio from largest to smallest mass of 26’244 and reduces die size by resonator stacking. The first ten eigenmodes of the device are in-plane and unidirectional. Steady-state and transient response of the device in comparison to a 1D lumped element model is presented. An average amplitude amplification of 295 over a bandwidth of 10.7 kHz (4.4-15.1 kHz) is achieved and can be reached in less than 1 ms. Applications are low-power detection of short broadband vibration signals e.g. for structural health monitoring (cliffs, pipelines, bridges).

  5. PIC simulation of compressive and rarefactive dust ion-acoustic solitary waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhong-Zheng; Zhang, Heng; Hong, Xue-Ren

    The nonlinear propagations of dust ion-acoustic solitary waves in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated by the particle-in-cell method. By comparing the simulation results with those obtained from the traditional reductive perturbation method, it is observed that the rarefactive KdV solitons propagate stably at a low amplitude, and when the amplitude is increased, the prime wave form evolves and then gradually breaks into several small amplitude solitary waves near the tail of soliton structure. The compressive KdV solitons propagate unstably andmore » oscillation arises near the tail of soliton structure. The finite amplitude rarefactive and compressive Gardner solitons seem to propagate stably.« less

  6. N =4 supergravity next-to-maximally-helicity-violating six-point one-loop amplitude

    NASA Astrophysics Data System (ADS)

    Dunbar, David C.; Perkins, Warren B.

    2016-12-01

    We construct the six-point, next-to-maximally-helicity-violating one-loop amplitude in N =4 supergravity using unitarity and recursion. The use of recursion requires the introduction of rational descendants of the cut-constructible pieces of the amplitude and the computation of the nonstandard factorization terms arising from the loop integrals.

  7. Four experimental demonstrations of active vibration control for flexible structures

    NASA Technical Reports Server (NTRS)

    Phillips, Doug; Collins, Emmanuel G., Jr.

    1990-01-01

    Laboratory experiments designed to test prototype active-vibration-control systems under development for future flexible space structures are described, summarizing previously reported results. The control-synthesis technique employed for all four experiments was the maximum-entropy optimal-projection (MEOP) method (Bernstein and Hyland, 1988). Consideration is given to: (1) a pendulum experiment on large-amplitude LF dynamics; (2) a plate experiment on broadband vibration suppression in a two-dimensional structure; (3) a multiple-hexagon experiment combining the factors studied in (1) and (2) to simulate the complexity of a large space structure; and (4) the NASA Marshall ACES experiment on a lightweight deployable 45-foot beam. Extensive diagrams, drawings, graphs, and photographs are included. The results are shown to validate the MEOP design approach, demonstrating that good performance is achievable using relatively simple low-order decentralized controllers.

  8. Worldsheet factorization for twistor-strings

    NASA Astrophysics Data System (ADS)

    Adamo, Tim

    2014-04-01

    We study the multiparticle factorization properties of two worldsheet theories which — at tree-level — describe the scattering of massless particles in four dimensions: the Berkovits-Witten twistor-string for = 4 super-Yang-Mills coupled to = 4 conformal supergravity, and the Skinner twistor-string for = 8 supergravity. By considering these string-like theories, we can study factorization at the level of the worldsheet before any Wick contractions or integrals have been performed; this is much simpler than considering the factorization properties of the amplitudes themselves. In Skinner's twistor-string this entails the addition of worldsheet gravity as well as a formalism that represents all external states in a manifestly symmetric way, which we develop explicitly at genus zero. We confirm that the scattering amplitudes of Skinner's theory, as well as the gauge theory amplitudes for the planar sector of the Berkovits-Witten theory, factorize appropriately at genus zero. In the non-planar sector, we find behavior indicative of conformal gravity in the Berkovits-Witten twistor-string. We contrast factorization in twistor-strings with the story in ordinary string theory, and also make some remarks on higher genus factorization and disconnected prescriptions.

  9. π π → π γ * amplitude and the resonant ρ → π γ * transition from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceño, Raúl A.; Dudek, Jozef J.; Edwards, Robert G.

    2016-06-01

    We present a determination of themore » $P$-wave $$\\pi\\pi\\to\\pi\\gamma^\\star$$ transition amplitude from lattice quantum chromodynamics. Matrix elements of the vector current in a finite-volume are extracted from three-point correlation functions, and from these we determine the infinite-volume amplitude using a generalization of the Lellouch-L\\"uscher formalism. We determine the amplitude for a range of discrete values of the $$\\pi\\pi$$ energy and virtuality of the photon, and observe the expected dynamical enhancement due to the $$\\rho$$ resonance. Describing the energy dependence of the amplitude, we are able to analytically continue into the complex energy plane and from the residue at the $$\\rho$$ pole extract the $$\\rho\\to\\gamma^\\star\\pi$$ transition form factor. This calculation, at $$m_\\pi\\approx 400$$~MeV, is the first time a form factor of a hadron resonance has been calculated within a first-principles approach to QCD.« less

  10. Amplitude by Peak Interaction but No Evidence of Auditory Mismatch Response Deficits to Frequency Change in Preschool-Aged Children with Fetal Alcohol Spectrum Disorders.

    PubMed

    Kabella, Danielle M; Flynn, Lucinda; Peters, Amanda; Kodituwakku, Piyadasa; Stephen, Julia M

    2018-05-24

    Prior studies indicate that the auditory mismatch response is sensitive to early alterations in brain development in multiple developmental disorders. Prenatal alcohol exposure is known to impact early auditory processing. The current study hypothesized alterations in the mismatch response in young children with fetal alcohol spectrum disorders (FASD). Participants in this study were 9 children with a FASD and 17 control children (Control) aged 3 to 6 years. Participants underwent magnetoencephalography and structural magnetic resonance imaging scans separately. We compared groups on neurophysiological mismatch negativity (MMN) responses to auditory stimuli measured using the auditory oddball paradigm. Frequent (1,000 Hz) and rare (1,200 Hz) tones were presented at 72 dB. There was no significant group difference in MMN response latency or amplitude represented by the peak located ~200 ms after stimulus presentation in the difference time course between frequent and infrequent tones. Examining the time courses to the frequent and infrequent tones separately, repeated measures analysis of variance with condition (frequent vs. rare), peak (N100m and N200m), and hemisphere as within-subject factors and diagnosis and sex as the between-subject factors showed a significant interaction of peak by diagnosis (p = 0.001), with a pattern of decreased amplitude from N100m to N200m in Control children and the opposite pattern in children with FASD. However, no significant difference was found with the simple effects comparisons. No group differences were found in the response latencies of the rare auditory evoked fields. The results indicate that there was no detectable effect of alcohol exposure on the amplitude or latency of the MMNm response to simple tones modulated by frequency change in preschool-aged children with FASD. However, while discrimination abilities to simple tones may be intact, early auditory sensory processing revealed by the interaction between N100m and N200m amplitude indicates that auditory sensory processing may be altered in children with FASD. Copyright © 2018 by the Research Society on Alcoholism.

  11. Enzyme-catalyzed synthesis and kinetics of ultrasonic-assisted biodiesel production from waste tallow.

    PubMed

    Adewale, Peter; Dumont, Marie-Josée; Ngadi, Michael

    2015-11-01

    The use of ultrasonic processing was evaluated for its ability to achieve adequate mixing while providing sufficient activation energy for the enzymatic transesterification of waste tallow. The effects of ultrasonic parameters (amplitude, cycle and pulse) and major reaction factors (molar ratio and enzyme concentration) on the reaction kinetics of biodiesel generation from waste tallow bio-catalyzed by immobilized lipase [Candida antarctica lipase B (CALB)] were investigated. Three sets of experiments namely A, B, and C were conducted. In experiment set A, two factors (ultrasonic amplitude and cycle) were investigated at three levels; in experiment set B, two factors (molar ratio and enzyme concentration) were examined at three levels; and in experiment set C, two factors (ultrasonic amplitude and reaction time) were investigated at five levels. A Ping Pong Bi Bi kinetic model approach was employed to study the effect of ultrasonic amplitude on the enzymatic transesterification. Kinetic constants of transesterification reaction were determined at different ultrasonic amplitudes (30%, 35%, 40%, 45%, and 50%) and enzyme concentrations (4, 6, and 8 wt.% of fat) at constant molar ratio (fat:methanol); 1:6, and ultrasonic cycle; 5 Hz. Optimal conditions for ultrasound-assisted biodiesel production from waste tallow were fat:methanol molar ratio, 1:4; catalyst level 6% (w/w of fat); reaction time, 20 min (30 times less than conventional batch processes); ultrasonic amplitude 40% at 5 Hz. The kinetic model results revealed interesting features of ultrasound assisted enzyme-catalyzed transesterification (as compared to conventional system): at ultrasonic amplitude 40%, the reaction activities within the system seemed to be steady after 20 min which means the reaction could proceed with or without ultrasonic mixing. Reversed phase high performance liquid chromatography indicated the biodiesel yield to be 85.6±0.08%. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Quantifying Residual Stresses by Means of Thermoelastic Stress Analysis

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2001-01-01

    This study focused on the application of the Thermoelastic Stress Analysis (TSA) technique as a tool for assessing the residual stress state of structures. TSA is based on the fact that materials experience small temperature changes when compressed or expanded. When a structure is cyclically loaded, a surface temperature profile results which correlates to the surface stresses. The cyclic surface temperature is measured with an infrared camera. Traditionally, the amplitude of a TSA signal was theoretically defined to be linearly dependent on the cyclic stress amplitude. Recent studies have established that the temperature response is also dependent on the cyclic mean stress (i.e., the static stress state of the structure). In a previous study by the authors, it was shown that mean stresses significantly influenced the TSA results for titanium- and nickel-based alloys. This study continued the effort of accurate direct measurements of the mean stress effect by implementing various experimental modifications. In addition, a more in-depth analysis was conducted which involved analyzing the second harmonic of the temperature response. By obtaining the amplitudes of the first and second harmonics, the stress amplitude and the mean stress at a given point on a structure subjected to a cyclic load can be simultaneously obtained. The experimental results showed good agreement with the theoretical predictions for both the first and second harmonics of the temperature response. As a result, confidence was achieved concerning the ability to simultaneously obtain values for the static stress state as well as the cyclic stress amplitude of structures subjected to cyclic loads using the TSA technique. With continued research, it is now feasible to establish a protocol that would enable the monitoring of residual stresses in structures utilizing TSA.

  13. Universal behavior of the γ⁎γ→(π0,η,η′) transition form factors

    PubMed Central

    Melikhov, Dmitri; Stech, Berthold

    2012-01-01

    The photon transition form factors of π, η and η′ are discussed in view of recent measurements. It is shown that the exact axial anomaly sum rule allows a precise comparison of all three form factors at high-Q2 independent of the different structures and distribution amplitudes of the participating pseudoscalar mesons. We conclude: (i) The πγ form factor reported by Belle is in excellent agreement with the nonstrange I=0 component of the η and η′ form factors obtained from the BaBar measurements. (ii) Within errors, the πγ form factor from Belle is compatible with the asymptotic pQCD behavior, similar to the η and η′ form factors from BaBar. Still, the best fits to the data sets of πγ, ηγ, and η′γ form factors favor a universal small logarithmic rise Q2FPγ(Q2)∼log(Q2). PMID:23226917

  14. Higgs Amplitudes from N=4 Supersymmetric Yang-Mills Theory.

    PubMed

    Brandhuber, Andreas; Kostacińska, Martyna; Penante, Brenda; Travaglini, Gabriele

    2017-10-20

    Higgs plus multigluon amplitudes in QCD can be computed in an effective Lagrangian description. In the infinite top-mass limit, an amplitude with a Higgs boson and n gluons is computed by the form factor of the operator TrF^{2}. Up to two loops and for three gluons, its maximally transcendental part is captured entirely by the form factor of the protected stress tensor multiplet operator T_{2} in N=4 supersymmetric Yang-Mills theory. The next order correction involves the calculation of the form factor of the higher-dimensional, trilinear operator TrF^{3}. We present explicit results at two loops for three gluons, including the subleading transcendental terms derived from a particular descendant of the Konishi operator that contains TrF^{3}. These are expressed in terms of a few universal building blocks already identified in earlier calculations. We show that the maximally transcendental part of this quantity, computed in nonsupersymmetric Yang-Mills theory, is identical to the form factor of another protected operator, T_{3}, in the maximally supersymmetric theory. Our results suggest that the maximally transcendental part of Higgs amplitudes in QCD can be entirely computed through N=4 super Yang-Mills theory.

  15. On observation of local strong heterogeneity in the Earth's inner core below southeastern Asia

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, D. N.; Kaazik, P. B.; Ovtchinnikov, V. M.

    2016-12-01

    The dimensions and nature of multi-scale structural heterogeneities in the Earth's inner core (IC) provide important constraints on its mineralogy and formation history. Teleseismic body waves with turn points close to the inner core boundary (ICB) provide a unique tool for imaging the fine structure of the upper IC. In this study, we invoke differential travel times and amplitudes of PKPBC and PKPDF waveforms observed in crossing polar and equatorial paths to provide more constraints on the heterogeneity previously located in the quasi-eastern hemisphere of the IC (Kaazik et al., 2015; Krasnoshchekov et al., 2016). A more refined analysis of quasi-polar PKPBC/PKPDF amplitude ratios measured within the heterogeneity indicates that seismic attenuation is both frequency and depth dependent, and its relatively low Q-factor at 1 Hz of approximately 118 tends to grow with depth. Outside the heterogeneity, no pronounced polar-equatorial differences are observed; the estimated Q factor is about twice as large and not directionally dependent. We also analyse new differential travel times of rays that enable sampling of the anomaly at greater depths. The analysis exhibits the polar - equatorial contrasts observed in the heterogeneity terminate at approximately 520 km below the ICB, which we interpret to be its bottom. The earlier interpretation of the heterogeneity in terms of strong anisotropic volume amidst the almost isotropic eastern hemisphere of the IC can be retained, and the lower bound of anisotropy strength within the anomaly is determined to be 2%.

  16. Anatomy of Bs → PV decays and effects of next-to-leading order contributions in the perturbative QCD factorization approach

    NASA Astrophysics Data System (ADS)

    Yan, Da-Cheng; Yang, Ping; Liu, Xin; Xiao, Zhen-Jun

    2018-06-01

    In this paper, we will make systematic calculations for the branching ratios and the CP-violating asymmetries of the twenty one Bbars0 → PV decays by employing the perturbative QCD (PQCD) factorization approach. Besides the full leading-order (LO) contributions, all currently known next-to-leading order (NLO) contributions are taken into account. We found numerically that: (a) the NLO contributions can provide ∼ 40% enhancement to the LO PQCD predictions for B (Bbars0 →K0K bar * 0) and B (Bbars0 →K±K*∓), or a ∼ 37% reduction to B (Bbars0 →π-K*+); and we confirmed that the inclusion of the known NLO contributions can improve significantly the agreement between the theory and those currently available experimental measurements; (b) the total effects on the PQCD predictions for the relevant Bs0 → P transition form factors after the inclusion of the NLO twist-2 and twist-3 contributions is generally small in magnitude: less than 10% enhancement respect to the leading order result; (c) for the "tree" dominated decay Bbars0 →K+ρ- and the "color-suppressed-tree" decay Bbars0 →π0K*0, the big difference between the PQCD predictions for their branching ratios are induced by different topological structure and by interference effects among the decay amplitude AT,C and AP: constructive for the first decay but destructive for the second one; and (d) for Bbars0 → V (η ,η‧) decays, the complex pattern of the PQCD predictions for their branching ratios can be understood by rather different topological structures and the interference effects between the decay amplitude A (Vηq) and A (Vηs) due to the η-η‧ mixing.

  17. Current Understanding and Future Directions for Vocal Fold Mechanobiology

    PubMed Central

    Li, Nicole Y.K.; Heris, Hossein K.; Mongeau, Luc

    2013-01-01

    The vocal folds, which are located in the larynx, are the main organ of voice production for human communication. The vocal folds are under continuous biomechanical stress similar to other mechanically active organs, such as the heart, lungs, tendons and muscles. During speech and singing, the vocal folds oscillate at frequencies ranging from 20 Hz to 3 kHz with amplitudes of a few millimeters. The biomechanical stress associated with accumulated phonation is believed to alter vocal fold cell activity and tissue structure in many ways. Excessive phonatory stress can damage tissue structure and induce a cell-mediated inflammatory response, resulting in a pathological vocal fold lesion. On the other hand, phonatory stress is one major factor in the maturation of the vocal folds into a specialized tri-layer structure. One specific form of vocal fold oscillation, which involves low impact and large amplitude excursion, is prescribed therapeutically for patients with mild vocal fold injuries. Although biomechanical forces affect vocal fold physiology and pathology, there is little understanding of how mechanical forces regulate these processes at the cellular and molecular level. Research into vocal fold mechanobiology has burgeoned over the past several years. Vocal fold bioreactors are being developed in several laboratories to provide a biomimic environment that allows the systematic manipulation of physical and biological factors on the cells of interest in vitro. Computer models have been used to simulate the integrated response of cells and proteins as a function of phonation stress. The purpose of this paper is to review current research on the mechanobiology of the vocal folds as it relates to growth, pathogenesis and treatment as well as to propose specific research directions that will advance our understanding of this subject. PMID:24812638

  18. Using Amplitude Ratios from Seismic Arrays for Crustal Structure, Great Earthquakes, and in Icy Environments (Invited)

    NASA Astrophysics Data System (ADS)

    Tsai, V. C.; Lin, F.; Duputel, Z.; Zhan, Z.

    2013-12-01

    Seismic amplitudes, which were previously often deemed too unreliable to use, are now more and more dependable due to advances in instrumentation, quality control measures, and improved installation procedures. With the growing availability of such reliable amplitude information, new methods can now be applied that make use of this amplitude data. Here, we discuss a number of ways we have recently applied such methods. In particular, we describe three very different situations in which we find seismic amplitude ratios to be extremely useful in constraining information that would otherwise be poorly determined. In the first application, we compute Rayleigh-wave horizontal-to-vertical (H/V) ratios for earthquakes observed across USArray, and find that imaging of upper crustal structure is improved significantly over using phase velocities alone. In addition to obtaining better constraints on shallow velocity structure, the complimentary sensitivities of H/V ratios also provide new constraints on density structure and make shallow density tomography possible. In a second application, we find that Rayleigh- and Love-wave amplitude ratios from the Mw 8.6 11 April 2012 Sumatra earthquake observed across the Global Seismographic Network provide excellent long-period constraints on the extended nature of the earthquake source. In particular, we find that the data are robustly fit by a model with two sub-events at nearly 30-km depth and with significant directivity. This multiple-point-source solution is consistent with other observations like high-frequency back projections. In a third and final application, we observe ambient-noise H/V ratios in an unusual environment on the Amery Ice Shelf, Antarctica. Unlike in most crustal settings, we find the dominant features in the H/V ratios to be unrelated to Rayleigh-wave propagation and to be instead determined by P-wave resonances in the low-velocity water layer beneath the ice. All three applications underscore the fact that seismic amplitude ratios are incredibly useful observables and can now be used routinely to help make key inferences about Earth structure and earthquake processes.

  19. Unstable flow structures in the Blasius boundary layer.

    PubMed

    Wedin, H; Bottaro, A; Hanifi, A; Zampogna, G

    2014-04-01

    Finite amplitude coherent structures with a reflection symmetry in the spanwise direction of a parallel boundary layer flow are reported together with a preliminary analysis of their stability. The search for the solutions is based on the self-sustaining process originally described by Waleffe (Phys. Fluids 9, 883 (1997)). This requires adding a body force to the Navier-Stokes equations; to locate a relevant nonlinear solution it is necessary to perform a continuation in the nonlinear regime and parameter space in order to render the body force of vanishing amplitude. Some states computed display a spanwise spacing between streaks of the same length scale as turbulence flow structures observed in experiments (S.K. Robinson, Ann. Rev. Fluid Mech. 23, 601 (1991)), and are found to be situated within the buffer layer. The exact coherent structures are unstable to small amplitude perturbations and thus may be part of a set of unstable nonlinear states of possible use to describe the turbulent transition. The nonlinear solutions survive down to a displacement thickness Reynolds number Re * = 496 , displaying a 4-vortex structure and an amplitude of the streamwise root-mean-square velocity of 6% scaled with the free-stream velocity. At this Re* the exact coherent structure bifurcates supercritically and this is the point where the laminar Blasius flow starts to cohabit the phase space with alternative simple exact solutions of the Navier-Stokes equations.

  20. Evolution of statistical properties for a nonlinearly propagating sinusoid.

    PubMed

    Shepherd, Micah R; Gee, Kent L; Hanford, Amanda D

    2011-07-01

    The nonlinear propagation of a pure sinusoid is considered using time domain statistics. The probability density function, standard deviation, skewness, kurtosis, and crest factor are computed for both the amplitude and amplitude time derivatives as a function of distance. The amplitude statistics vary only in the postshock realm, while the amplitude derivative statistics vary rapidly in the preshock realm. The statistical analysis also suggests that the sawtooth onset distance can be considered to be earlier than previously realized. © 2011 Acoustical Society of America

  1. SANC: the process γγ → ΖΖ

    NASA Astrophysics Data System (ADS)

    Bardin, D.; Bondarenko, S.; Christova, P.; Kalinovskaya, L.; von Schlippe, W.; Uglov, E.

    2017-11-01

    The implementation of the process γγ → ΖΖ at the one-loop level within SANC system multichannel approach is considered. The derived one-loop scalar form factors can be used for any cross channel after an appropriate permutation of their arguments-Mandelstam variables s, t, u. To check of the correctness of the results we observe the independence of the scalar form factors on the gauge parameters and the validity of Ward identity (external photon transversality). We present the complete analytical results for the covariant and tensor structures and helicity amplitudes for this process. We make an extensive comparison of our analytical and numerical results with those existing in the literature.

  2. A covariant model for the gamma N -> N(1535) transition at high momentum transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Ramalho, M.T. Pena

    2011-08-01

    A relativistic constituent quark model is applied to the gamma N -> N(1535) transition. The N(1535) wave function is determined by extending the covariant spectator quark model, previously developed for the nucleon, to the S11 resonance. The model allows us to calculate the valence quark contributions to the gamma N -> N(1535) transition form factors. Because of the nucleon and N(1535) structure the model is valid only for Q^2> 2.3 GeV^2. The results are compared with the experimental data for the electromagnetic form factors F1* and F2* and the helicity amplitudes A_1/2 and S_1/2, at high Q^2.

  3. Fatigue life prediction of bonded primary joints

    NASA Technical Reports Server (NTRS)

    Knauss, J. F.

    1979-01-01

    The validation of a proposed fatigue life prediction methodology was sought through the use of aluminum butt and scarf joint and graphite/epoxy butt joint specimens in a constant amplitude fatigue environment. The structural properties of the HYSOL 9313 adhesive system were obtained by mechanical test of molded heat adhesive specimens. Aluminum contoured double cantilever beam specimens were used to generate crack velocity versus stress intensity factor data. The specific objectives were: (1) to ascertain the feasibility of predicting fatigue failure of an adhesive in a primary bonded composite structure by incorporating linear elastic crack growth behavior; and (2) to ascertain if acoustic emission and/or compliance measurement techniques can be used to detect flaws.

  4. An ignition key for atomic-scale engines

    NASA Astrophysics Data System (ADS)

    Dundas, Daniel; Cunningham, Brian; Buchanan, Claire; Terasawa, Asako; Paxton, Anthony T.; Todorov, Tchavdar N.

    2012-10-01

    A current-carrying resonant nanoscale device, simulated by non-adiabatic molecular dynamics, exhibits sharp activation of non-conservative current-induced forces with bias. The result, above the critical bias, is generalized rotational atomic motion with a large gain in kinetic energy. The activation exploits sharp features in the electronic structure, and constitutes, in effect, an ignition key for atomic-scale motors. A controlling factor for the effect is the non-equilibrium dynamical response matrix for small-amplitude atomic motion under current. This matrix can be found from the steady-state electronic structure by a simpler static calculation, providing a way to detect the likely appearance, or otherwise, of non-conservative dynamics, in advance of real-time modelling.

  5. Utility of T-wave amplitude as a non-invasive risk marker of sudden cardiac death in hypertrophic cardiomyopathy.

    PubMed

    Sugrue, Alan; Killu, Ammar M; DeSimone, Christopher V; Chahal, Anwar A; Vogt, Josh C; Kremen, Vaclav; Hai, JoJo; Hodge, David O; Acker, Nancy G; Geske, Jeffrey B; Ackerman, Michael J; Ommen, Steve R; Lin, Grace; Noseworthy, Peter A; Brady, Peter A

    2017-01-01

    Sudden cardiac arrest (SCA) is the most devastating outcome in hypertrophic cardiomyopathy (HCM). We evaluated repolarisation features on the surface electrocardiogram (ECG) to identify the potential risk factors for SCA. Data was collected from 52 patients with HCM who underwent implantable cardioverter defibrillator (ICD) implantation. Leads V2 and V5 from the ECG closest to the time of ICD implant were utilised for measuring the Tpeak-Tend interval (Tpe), QTc, Tpe/QTc, T-wave duration and T-wave amplitude. The presence of the five traditional SCA-associated risk factors was assessed, as well as the HCM risk-SCD score. 16 (30%) patients experienced aborted cardiac arrest over 8.5±4.1 years, with 9 receiving an ICD shock and 7 receiving ATP. On univariate analysis, T-wave amplitude was associated with appropriate ICD therapy (HR per 0.1 mV 0.79, 95% CI 0.56 to 0.96, p=0.02). Aborted SCA was not associated with a greater mean QTc duration, Tpeak-Tend interval, T-wave duration, or Tpe/QT ratio. Multivariate analysis (adjusting for cardinal HCM SCA-risk factors) showed T-wave amplitude in Lead V2 was an independent predictor of risk (adjusted HR per 0.1 mV 0.74, 95% CI 0.57 to 0.97, p=0.03). Addition of T-wave amplitude in Lead V2 to the traditional risk factors resulted in significant improvement in risk stratification (C-statistic from 0.65 to 0.75) but did not improve the performance of the HCM SCD-risk score. T-wave amplitude is a novel marker of SCA in this high risk HCM population and may provide incremental predictive value to established risk factors. Further work is needed to define the role of repolarisation abnormalities in predicting SCA in HCM.

  6. Evolution of the squeezing-enhanced vacuum state in the amplitude dissipative channel

    NASA Astrophysics Data System (ADS)

    Ren, Gang; Du, Jian-ming; Zhang, Wen-hai

    2018-05-01

    We study the evolution of the squeezing-enhanced vacuum state (SEVS) in the amplitude dissipative channel by using the two-mode entangled state in the Fock space and Kraus operator. The explicit formulation of the output state is also given. It is found that the output state does not exhibit sub-Poissonian behavior for the nonnegative value of the Mandel's Q-parameters in a wide range of values of squeezing parameter and dissipation factor. It is interesting to see that second-order correlation function is independent of the dissipation factor. However, the photon-number distribution of the output quantum state shows remarkable oscillations with respect to the dissipation factor. The shape of Wigner function and the degree of squeezing show that the initial SEVS is dissipated by the amplitude dissipative channel.

  7. The control of ultrasonic transmission by the metamaterials structure of electrorheological fluid and metal foam

    NASA Astrophysics Data System (ADS)

    Li, Linlin; Wang, Mingzhong; Wang, Jiahui; Zhao, Xiaopeng

    2017-11-01

    A metamaterial structure formed by foamed metal and starch and oil-based electrorheological (ER) fluid is designed in this paper. Experiments show that the metamaterial structure exhibits a regulation effect on the amplitude and phase of the transmitted waves of 35-80 kHz ultra-wideband ultrasonic waves in water. With the increase of the electric field, the transmission amplitude and phase of the ultrasonic wave increases, whereas the control ability of the same gradient electric field decreases. The amplitude of the transmission controlled by the metamaterial structure and electric field increases at first, and then decreases with the increase in volume fraction of the ER fluid. Thus, it is thought that the interaction between the microstructure produced by the rheological properties of the ER fluid and the porous foam metal affects the propagation of the acoustic wave.

  8. Observations of large-amplitude MHD waves in Jupiter's foreshock in connection with a quasi-perpendicular shock structure

    NASA Technical Reports Server (NTRS)

    Bavassano-Cattaneo, M. B.; Moreno, G.; Scotto, M. T.; Acuna, M.

    1987-01-01

    Plasma and magnetic field observations performed onboard the Voyager 2 spacecraft have been used to investigate Jupiter's foreshock. Large-amplitude waves have been detected in association with the quasi-perpendicular structure of the Jovian bow shock, thus proving that the upstream turbulence is not a characteristic signature of the quasi-parallel shock.

  9. 2D Variations in Coda Amplitudes in the Middle East

    DOE PAGES

    Pasyanos, Michael E.; Gok, Rengin; Walter, William R.

    2016-08-16

    Here, coda amplitudes have proven to be a stable feature of seismograms, allowing one to reliably measure magnitudes for moderate to large-sized (M≥3) earthquakes over broad regions. Since smaller (M<3) earthquakes are only recorded at higher frequencies where we find larger interstation scatter, amplitude and magnitude estimates for these events are more variable, regional, and path dependent. In this study, we investigate coda amplitude measurements in the Middle East for 2-D variations in attenuation structure.

  10. 2D Variations in Coda Amplitudes in the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasyanos, Michael E.; Gok, Rengin; Walter, William R.

    Here, coda amplitudes have proven to be a stable feature of seismograms, allowing one to reliably measure magnitudes for moderate to large-sized (M≥3) earthquakes over broad regions. Since smaller (M<3) earthquakes are only recorded at higher frequencies where we find larger interstation scatter, amplitude and magnitude estimates for these events are more variable, regional, and path dependent. In this study, we investigate coda amplitude measurements in the Middle East for 2-D variations in attenuation structure.

  11. QCD dipole model and k T factorization

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Navelet, H.; Peschanski, R.

    2001-01-01

    It is shown that the colour dipole approach to hard scattering at high energy is fully compatible with k T factorization at the leading logarithm approximation (in - logx Bj). The relations between the dipole amplitudes and unintegrated diagonal and non-diagonal gluon distributions are given. It is also shown that including the exact gluon kinematics in the k T factorization formula destroys the conservation of transverse position vectors and thus is incompatible with the dipole model for both elastic and diffractive amplitudes.

  12. Validation of the MESSi among adult workers and young students: General health and personality correlates.

    PubMed

    Díaz-Morales, Juan F; Randler, Christoph; Arrona-Palacios, Arturo; Adan, Ana

    2017-01-01

    The aim of this study was to provide validity for the Spanish version of the Morningness-Eveningness-Stability Scale - improved (MESSi), a novel evolved assessment of circadian typology which considers the subjective phase and amplitude by morning affect (MA), eveningness (EV) and distinctness (DI; subjective amplitude) sub-scales. Convergence validity of the MESSi with the reduced Morningness-Eveningness Questionnaire (rMEQ) and relationships with the General Health Questionnaire (GHQ-12) and sensitivity to reward and punishment (SR and SP) were analyzed. Two different Spanish samples, young undergraduate students (n = 891, 18-30 years) and adult workers (n = 577, 31-65 years) participated in this study. Exploratory structural equation modeling (ESEM) of MESSi displayed acceptable fit of a three-factors measurement model. Percentiles of the MA, EV and DI sub-scales were obtained for students and adults. The MESSi showed good convergence validity with the rMEQ scores, with a higher correlation coefficient between MA, EV and lower with DI sub-scales. In both, young students and adult workers, MA was negatively related with the GHQ-12 and SP, but the percentage of explained variance (6% and 3%) was lower than the positive correlations between DI, the GHQ-12 and SP (20% and 13%). Morning types presented higher MA and lower EV scores than the other two typologies in both students and adult workers, whereas only differences in DI were found among students (lowest in evening type). Candidates to psychological symptoms and mental disorders ("true cases"), with the clinical cut-off criteria of the GHQ-12, showed lower MA and higher DI in students, whereas only DI was higher for "true cases" among adults. These results supported that subjective amplitude is a factor related to, but also differentiated of, morningness-eveningness (preferred time for a certain activity). The measure of amplitude might be more important than circadian phase in health consequences.

  13. Changes of spontaneous miniature excitatory postsynaptic currents in rat hippocampal pyramidal cells induced by aniracetam.

    PubMed

    Ghamari-Langroudi, M; Glavinovíc, M I

    1998-01-01

    Spontaneous miniature excitatory postsynaptic currents (mEPSCs) in rat hippocampal pyramidal neurones in slices (CA1 region) were recorded at 35-37 degrees C using the whole-cell patch-clamp technique before and after addition of aniracetam (1 mM) to determine how a partial blockade of desensitization alters the relationship between the amplitude (A) and kinetics of mEPSCs, and to evaluate the factors that determine their variability. The rise time (taur) and the time constant of decay of mEPSCs (taud) are essentially amplitude independent in control conditions, but become clearly amplitude dependent in the presence of aniracetam. The slopes of the best fitting lines to taud:A and taur:A data pairs were (+/- SD; ms/pA; n = 5): (1) (control) 0.07 +/- 0.02 and 0.008 +/- 0.003; (2) (aniracetam) 0.40 +/- 0.19 and 0.22 +/- 0.22. The amplitude-dependent prolongation of taud is explained by the concentration dependence of two related processes, the buffering of glutamate molecules by AMPA receptor channels, and the occupancy of the double-bound activatable states. A slower deactivation makes an amplitude-independent contribution. Desensitization reduces the amplitude dependence of taud by minimizing repeated openings of alpha-amino-3-hydroxy-methyl-isoxazole (AMPA) receptor channels. A greater amplitude dependence of taur probably involves both pre- and postsynaptic factors. The variability of A and taud values did not change significantly, but the factors underlying the variability of taud values were much affected. The greater amplitude dependence and the greater scatter about the best fitting lines to taud:A data pairs are approximately balanced by the greater mean values. The greater scatter of taud about the best fitting lines probably occurs because the saturation of AMPA receptors is not the same at different synapses with different numbers of AMPA receptors.

  14. Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.

    PubMed

    Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo

    2016-11-14

    We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.

  15. Evidence for a nonplanar amplituhedron

    DOE PAGES

    Bern, Zvi; Herrmann, Enrico; Litsey, Sean; ...

    2016-06-17

    The scattering amplitudes of planar N = 4 super-Yang-Mills exhibit a number of remarkable analytic structures, including dual conformal symmetry and logarithmic singularities of integrands. The amplituhedron is a geometric construction of the integrand that incorporates these structures. This geometric construction further implies the amplitude is fully specified by constraining it to vanish on spurious residues. By writing the amplitude in a dlog basis, we provide nontrivial evidence that these analytic properties and “zero conditions” carry over into the nonplanar sector. Finally, this suggests that the concept of the amplituhedron can be extended to the nonplanar sector of N =more » 4 super-Yang-Mills theory.« less

  16. Formulation of spin 7/2 and 9/2 nucleon resonance amplitudes for kaon photoproduction off a proton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clymton, S., E-mail: samsonclymton@gmail.com; Mart, T.

    2016-04-19

    We have constructed the formulation of scattering amplitude for kaon photoproduction off a proton that includes nucleon resonances with spins 7/2 and 9/2. To this end we start with the formalism of projection operator for higher spins and derive the spins 7/2 and 9/2 projection operators. The corresponding Feynman propagators are obtained from these projection operators. To calculate the scattering amplitude we use the vertex factor proposed by Pascalutsa. The scattering amplitudes are then decomposed into six Lorentz- and gauge-invariant amplitudes, from which the cross section and polarization observables can be calculated.

  17. Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel

    NASA Astrophysics Data System (ADS)

    Wang, Ming-Ming; Qu, Zhi-Guo

    2016-11-01

    Quantum secure communication brings a new direction for information security. As an important component of quantum secure communication, deterministic joint remote state preparation (DJRSP) could securely transmit a quantum state with 100 % success probability. In this paper, we study how the efficiency of DJRSP is affected when qubits involved in the protocol are subjected to noise or decoherence. Taking a GHZ-based DJRSP scheme as an example, we study all types of noise usually encountered in real-world implementations of quantum communication protocols, i.e., the bit-flip, phase-flip (phase-damping), depolarizing and amplitude-damping noise. Our study shows that the fidelity of the output state depends on the phase factor, the amplitude factor and the noise parameter in the bit-flip noise, while the fidelity only depends on the amplitude factor and the noise parameter in the other three types of noise. And the receiver will get different output states depending on the first preparer's measurement result in the amplitude-damping noise. Our results will be helpful for improving quantum secure communication in real implementation.

  18. Multimode theory of plasmon excitation at a metal - photonic crystal interface

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. I.; Raspopov, N. A.

    2017-12-01

    Surface plasmon excitation at a photonic crystal - metal interface is studied taking into account multiple scattering of an initial light wave on a periodical crystal structure. The analysis is focused on calculating characteristics of the eigenwaves in a one-dimensional crystal, which comprise a set of harmonics with the wavevectors separated from each other by the value of the crystal lattice wavevector. Reflection from the crystal - metal interface binds the amplitudes of propagating and evanescent modes. Calculations show that for the dielectric characteristics of a synthetic opal and a substrate made of a real metal with a ruby laser radiation used as the initial wave, the fulfilment of plasmon resonance conditions leads to a local increase in the surface plasmon amplitude by a factor of 6.4 - 9 as compared to the average amplitude of the initial wave. As a rule, the effect can only be obtained for a single surface wave, all other waves being substantially weaker than the main plasmon. There is a specific case where the resonance condition holds for two modes simultaneously. In this case, two oppositely directed fluxes of equal intensity are generated at the interface. The resonance condition breaks at a small deviation of the incident angle of the initial wave θ from the normal direction (|θ| ⩾ 10-4 rad). In the latter case, the picture is asymmetric: at angles |θ| ⩾ 5 × 10-3 rad, only one plasmon remains intensive. The local density of electromagnetic energy at the photonic crystal - metal interface may exceed the corresponding value of the initial wave by a factor of 40 - 80.

  19. Nucleon Resonance Structure from Exclusive Meson Electroproduction with CLAS

    DOE PAGES

    Mokeev, Victor I.

    2018-04-06

    Studies of the nucleon resonance electroexcitation amplitudes in a wide range of photon virtualities offer unique information on many facets of strong QCD behind the generation of all prominent excited nucleon states of distinctively different structure. Advances in the evaluation of resonance electroexcitation amplitudes from the data measured with the CLAS detector and the future extension of these studies with the CLAS12 detector at Jefferson Lab are presented in this paper. For the first time, analyses ofmore » $$\\pi^0p$$, $$\\pi^+n$$, $$\\eta p$$, and $$\\pi^+\\pi^-p$$ electroproduction off proton channels have provided electroexcitation amplitudes of most resonances in the mass range up to 1.8 GeV and at photon virtualities $Q^2 < 5$ GeV$^2$. Consistent results on resonance electroexcitation amplitudes determined from different exclusive channels validate a credible extraction of these fundamental quantities. Studies of the resonance electroexcitation amplitudes revealed the $N^*$ structure as a complex interplay between the inner core of three dressed quarks and the external meson-baryon cloud. The successful description of the $$\\Delta(1232)3/2^+$$ and $N(1440)1/2^+$ electrocouplings achieved within the Dyson-Schwinger Equation approach under a traceable connection to the QCD Lagrangian and supported by the novel light front quark model demonstrated the relevance of dressed quarks with dynamically generated masses as an active structural component in baryons. Future experiments with the CLAS12 detector will offer insight into the structure of all prominent resonances at the highest photon virtualities, $Q^2 < 12$ GeV$^2$, ever achieved in exclusive reactions, thus addressing the most challenging problems of the Standard Model on the nature of hadron mass, quark-gluon confinement, and the emergence of nucleon resonance structures from QCD. Finally, a search for new states of hadronic matter, the so-called hybrid-baryons with glue as a structural component, will complete the long term efforts on the resonance spectrum exploration.« less

  20. Nucleon Resonance Structure from Exclusive Meson Electroproduction with CLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokeev, Victor I.

    Studies of the nucleon resonance electroexcitation amplitudes in a wide range of photon virtualities offer unique information on many facets of strong QCD behind the generation of all prominent excited nucleon states of distinctively different structure. Advances in the evaluation of resonance electroexcitation amplitudes from the data measured with the CLAS detector and the future extension of these studies with the CLAS12 detector at Jefferson Lab are presented in this paper. For the first time, analyses ofmore » $$\\pi^0p$$, $$\\pi^+n$$, $$\\eta p$$, and $$\\pi^+\\pi^-p$$ electroproduction off proton channels have provided electroexcitation amplitudes of most resonances in the mass range up to 1.8 GeV and at photon virtualities $Q^2 < 5$ GeV$^2$. Consistent results on resonance electroexcitation amplitudes determined from different exclusive channels validate a credible extraction of these fundamental quantities. Studies of the resonance electroexcitation amplitudes revealed the $N^*$ structure as a complex interplay between the inner core of three dressed quarks and the external meson-baryon cloud. The successful description of the $$\\Delta(1232)3/2^+$$ and $N(1440)1/2^+$ electrocouplings achieved within the Dyson-Schwinger Equation approach under a traceable connection to the QCD Lagrangian and supported by the novel light front quark model demonstrated the relevance of dressed quarks with dynamically generated masses as an active structural component in baryons. Future experiments with the CLAS12 detector will offer insight into the structure of all prominent resonances at the highest photon virtualities, $Q^2 < 12$ GeV$^2$, ever achieved in exclusive reactions, thus addressing the most challenging problems of the Standard Model on the nature of hadron mass, quark-gluon confinement, and the emergence of nucleon resonance structures from QCD. Finally, a search for new states of hadronic matter, the so-called hybrid-baryons with glue as a structural component, will complete the long term efforts on the resonance spectrum exploration.« less

  1. Non-reciprocal wave propagation in one-dimensional nonlinear periodic structures

    NASA Astrophysics Data System (ADS)

    Luo, Benbiao; Gao, Sha; Liu, Jiehui; Mao, Yiwei; Li, Yifeng; Liu, Xiaozhou

    2018-01-01

    We study a one-dimensional nonlinear periodic structure which contains two different spring stiffness and an identical mass in each period. The linear dispersion relationship we obtain indicates that our periodic structure has obvious advantages compared to other kinds of periodic structures (i.e. those with the same spring stiffness but two different mass), including its increased flexibility for manipulating the band gap. Theoretically, the optical cutoff frequency remains unchanged while the acoustic cutoff frequency shifts to a lower or higher frequency. A numerical simulation verifies the dispersion relationship and the effect of the amplitude-dependent signal filter. Based upon this, we design a device which contains both a linear periodic structure and a nonlinear periodic structure. When incident waves with the same, large amplitude pass through it from opposite directions, the output amplitude of the forward input is one order magnitude larger than that of the reverse input. Our devised, non-reciprocal device can potentially act as an acoustic diode (AD) without an electrical circuit and frequency shifting. Our result represents a significant step forwards in the research of non-reciprocal wave manipulation.

  2. Cluster functions and scattering amplitudes for six and seven points

    DOE PAGES

    Harrington, Thomas; Spradlin, Marcus

    2017-07-05

    Scattering amplitudes in planar super-Yang-Mills theory satisfy several basic physical and mathematical constraints, including physical constraints on their branch cut structure and various empirically discovered connections to the mathematics of cluster algebras. The power of the bootstrap program for amplitudes is inversely proportional to the size of the intersection between these physical and mathematical constraints: ideally we would like a list of constraints which determine scattering amplitudes uniquely. Here, we explore this intersection quantitatively for two-loop six- and seven-point amplitudes by providing a complete taxonomy of the Gr(4, 6) and Gr(4, 7) cluster polylogarithm functions of [15] at weight 4.

  3. Atomic dynamics and the problem of the structural stability of free clusters of solidified inert gases

    NASA Astrophysics Data System (ADS)

    Verkhovtseva, É. T.; Gospodarev, I. A.; Grishaev, A. V.; Kovalenko, S. I.; Solnyshkin, D. D.; Syrkin, E. S.; Feodos'ev, S. B.

    2003-05-01

    The dependence of the rms amplitudes of atoms in free clusters of solidified inert gases on the cluster size is investigated theoretically and experimentally. Free clusters are produced by homogeneous nucleation in an adiabatically expanding supersonic stream. Electron diffraction is used to measure the rms amplitudes of the atoms; the Jacobi-matrix method is used for theoretical calculations. A series of distinguishing features of the atomic dynamics of microclusters was found. This was necessary to determine the character of the formation and the stability conditions of the crystal structure. It wass shown that for clusters consisting of less than N˜103 atoms, as the cluster size decreases, the rms amplitudes grow much more rapidly than expected from the increase in the specific contribution of the surface. It is also established that an fcc structure of a free cluster, as a rule, contains twinning defects (nuclei of an hcp phase). One reason for the appearance of such defects is the so-called vertex instability (anomalously large oscillation amplitudes) of the atoms in coordination spheres.

  4. Analysis of coal seam thickness and seismic wave amplitude: A wedge model

    NASA Astrophysics Data System (ADS)

    Zou, Guangui; Xu, Zhiliang; Peng, Suping; Fan, Feng

    2018-01-01

    Coal seam thickness is of great significance in mining coal resources. The focus of this study is to determine the relationship between coal seam thickness and seismic wave amplitude, and the factors influencing this relationship. We used a wedge model to analyze this relationship and its influencing factors. The results show that wave interference from the top and bottom interfaces is the primary reason for the linear relationship between seismic wave amplitude and wedge thickness, when the thickness of the wedge is less than one quarter of the wavelength. This relationship is influenced by the dominant frequency, reflection coefficients from the top and bottom boundaries, depth, thickness, and angle of the wedge. However, when the lateral shift between the reflected waves is smaller than the radius of the first Fresnel zone, the wedge angle and change in lithology at the top and bottom layers are considered to have little effect on the amplitude of the interference wave. The difference in the dominant frequency of seismic waves can be reduced by filtering, and the linear relationship between amplitude and coal thickness can be improved. Field data from Sihe coal mine was analyzed, and the error was found to be within 4% of the predicted seismic wave amplitude. The above conclusions could help predict the thickness of coal seam by seismic amplitude.

  5. Generating topography through tectonic deformation of ice lithospheres: Simulating the formation of Ganymede's grooves

    NASA Astrophysics Data System (ADS)

    Bland, M. T.; McKinnon, W. B.

    2010-12-01

    Ganymede’s iconic topography offers clues to both the satellite’s thermal evolution, and the mechanics of tectonic deformation on icy satellites. Much of Ganymede’s surface consists of bright, young terrain, with a characteristic morphology dubbed “groove terrain”. As reviewed in Pappalardo et al. (2004), in Jupiter - The Planet, Satellites, and Magnetosphere (CUP), grooved terrain consists of sets of quasi-parallel, periodically-spaced, ridges and troughs. Peak-to-trough groove amplitudes are ~500 m, with low topographic slopes (~5°). Groove spacing is strongly periodic within a single groove set, ranging from 3-17 km; shorter wavelength deformation is also apparent in high-resolution images. Grooved terrain likely formed via unstable extension of Ganymede’s ice lithosphere, which was deformed into periodically-spaced pinches and swells, and accommodated by tilt-block normal faulting. Analytical models of unstable extension support this formation mechanism [Dombard and McKinnon 2001, Icarus 154], but initial numerical models of extending ice lithospheres struggled to produce large-amplitude, groove-like deformation [Bland and Showman 2007, Icarus 189]. Here we present simulations that reproduce many of the characteristics of Ganymede’s grooves [Bland et al. 2010, Icarus in press]. By more realistically simulating the decrease in material strength after initial fault development, our model allows strain to become readily localized into discrete zones. Such strain localization leads to the formation of periodic structures with amplitudes of 200-500 m, and wavelengths of 3-20 km. The morphology of the deformation depends on both the lithospheric thermal gradient, and the rate at which material strength decreases with increasing plastic strain. Large-amplitude, graben-like structures form when material weakening occurs rapidly with increasing strain, while lower-amplitude, periodic structures form when the ice retains its strength. Thus, extension can result in complex surface deformation, consistent with the variety of surface morphologies observed within the grooved terrain. Our modeling indicates that moderate thermal gradients (10 K km-1) may be sufficient to explain many of Ganymede’s groove morphologies. The implied heat flow (~50 mW m-2), however, is a factor of two greater than the expected radiogenic heat flux, suggesting additional energy input (e.g., tidal dissipation) may be required. Our modeling of groove formation suggests that understanding tectonic deformation on icy satellites requires a detailed understanding of the mechanical behavior of ice and ice lithospheres, and demonstrates the need for new tectonic models that include localization, realistic plasticity, and energy dissipation.

  6. Reduction of Simulation Times for High-Q Structures using the Resonance Equation

    DOE PAGES

    Hall, Thomas Wesley; Bandaru, Prabhakar R.; Rees, Daniel Earl

    2015-11-17

    Simulating steady state performance of high quality factor (Q) resonant RF structures is computationally difficult for structures with sizes on the order of more than a few wavelengths because of the long times (on the order of ~ 0.1 ms) required to achieve steady state in comparison with maximum time step that can be used in the simulation (typically, on the order of ~ 1 ps). This paper presents analytical and computational approaches that can be used to accelerate the simulation of the steady state performance of such structures. The basis of the proposed approach is the utilization of amore » larger amplitude signal at the beginning to achieve steady state earlier relative to the nominal input signal. Finally, the methodology for finding the necessary input signal is then discussed in detail, and the validity of the approach is evaluated.« less

  7. PKiKP amplitude observations and structure of the inner core boundary

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, D.; Adushkin, V.; Ovtchinnikov, V.

    2003-04-01

    We present PKiKP amplitude observations at distances from 5.6 to 90 degrees that evidence substantial lateral variability of reflecting conditions on the inner core boundary. Unlike other PKiKP studies, that frequently use array data, detection of PKiKP phase in the work was accomplished on single vertical component. We have carefully investigated short-period digital vertical channels of 9 stations in Central Asia that recorded 43 Underground Nuclear Explosions carried out at Nevada, Lop-Nor, Novaya Zemlya and Semipalatinsk Test Sites in 1968 - 1994, and found numerous convincing examples of PKiKP waveforms. The amplitude data set varies in the range from 1 to 62 nm with predominant period of less than 1 s. Using known seismic source parameters we compared the expected PKiKP amplitudes and travel times to the experimental ones. The observed travel times are generally agreed with PREM within 1 s scatter, though amplitudes aren't. In addition, the whole stack of experimental amplitudes may hardly be simultaneously agreed with any regular model of the inner core boundary either sharp or with transition. Thorough analysis of the data set indicates, that detection of PKiKP and its amplitude is basically pre-defined by actual physical conditions at reflection point on the surface of the inner core which may vary substantially due to boundary processes of freezing and chemical (structural) convection.

  8. Seismic attribute analysis for reservoir and fluid prediction, Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansor, M.N.; Rudolph, K.W.; Richards, F.B.

    1994-07-01

    The Malay Basin is characterized by excellent seismic data quality, but complex clastic reservoir architecture. With these characteristics, seismic attribute analysis is a very important tool in exploration and development geoscience and is routinely used for mapping fluids and reservoir, recognizing and risking traps, assessment, depth conversion, well placement, and field development planning. Attribute analysis can be successfully applied to both 2-D and 3-D data as demonstrated by comparisons of 2-D and 3-D amplitude maps of the same area. There are many different methods of extracting amplitude information from seismic data, including amplitude mapping, horizon slice, summed horizon slice, isochronmore » slice, and horizon slice from AVO (amplitude versus offset) cube. Within the Malay Basin, horizon/isochron slice techniques have several advantages over simply extracting amplitudes from a picked horizon: they are much faster, permit examination of the amplitude structure of the entire cube, yield better results for weak/variable signatures, and aid summation of amplitudes. Summation in itself often yields improved results because it incorporates the signature from the entire reservoir interval, reducing any effects due to noise, mispicking, or waveform variations. Dip and azimuth attributes have been widely applied by industry for fault identification. In addition, these attributes can also be used to map signature variations associated with hydrocarbon contacts or stratigraphic changes, and this must be considered when using these attributes for structural interpretation.« less

  9. Bootstrapping a five-loop amplitude using Steinmann relations

    DOE PAGES

    Caron-Huot, Simon; Dixon, Lance J.; McLeod, Andrew; ...

    2016-12-05

    Here, the analytic structure of scattering amplitudes is restricted by Steinmann relations, which enforce the vanishing of certain discontinuities of discontinuities. We show that these relations dramatically simplify the function space for the hexagon function bootstrap in planar maximally supersymmetric Yang-Mills theory. Armed with this simplification, along with the constraints of dual conformal symmetry and Regge exponentiation, we obtain the complete five-loop six-particle amplitude.

  10. Reducing full one-loop amplitudes to scalar integrals at the integrand level

    NASA Astrophysics Data System (ADS)

    Ossola, Giovanni; Papadopoulos, Costas G.; Pittau, Roberto

    2007-02-01

    We show how to extract the coefficients of the 4-, 3-, 2- and 1-point one-loop scalar integrals from the full one-loop amplitude of arbitrary scattering processes. In a similar fashion, also the rational terms can be derived. Basically no information on the analytical structure of the amplitude is required, making our method appealing for an efficient numerical implementation.

  11. A seismic coherency method using spectral amplitudes

    NASA Astrophysics Data System (ADS)

    Sui, Jing-Kun; Zheng, Xiao-Dong; Li, Yan-Dong

    2015-09-01

    Seismic coherence is used to detect discontinuities in underground media. However, strata with steeply dipping structures often produce false low coherence estimates and thus incorrect discontinuity characterization results. It is important to eliminate or reduce the effect of dipping on coherence estimates. To solve this problem, time-domain dip scanning is typically used to improve estimation of coherence in areas with steeply dipping structures. However, the accuracy of the time-domain estimation of dip is limited by the sampling interval. In contrast, the spectrum amplitude is not affected by the time delays in adjacent seismic traces caused by dipping structures. We propose a coherency algorithm that uses the spectral amplitudes of seismic traces within a predefined analysis window to construct the covariance matrix. The coherency estimates with the proposed algorithm is defined as the ratio between the dominant eigenvalue and the sum of all eigenvalues of the constructed covariance matrix. Thus, we eliminate the effect of dipping structures on coherency estimates. In addition, because different frequency bands of spectral amplitudes are used to estimate coherency, the proposed algorithm has multiscale features. Low frequencies are effective for characterizing large-scale faults, whereas high frequencies are better in characterizing small-scale faults. Application to synthetic and real seismic data show that the proposed algorithm can eliminate the effect of dip and produce better coherence estimates than conventional coherency algorithms in areas with steeply dipping structures.

  12. Passive control of coherent structures in a modified backwards-facing step flow

    NASA Astrophysics Data System (ADS)

    Ormonde, Pedro C.; Cavalieri, André V. G.; Silva, Roberto G. A. da; Avelar, Ana C.

    2018-05-01

    We study a modified backwards-facing step flow, with the addition of two different plates; one is a baseline, impermeable plate and the second a perforated one. An experimental investigation is carried out for a turbulent reattaching shear layer downstream of the two plates. The proposed setup is a model configuration to study how the plate characteristics affect the separated shear layer and how turbulent kinetic energies and large-scale coherent structures are modified. Measurements show that the perforated plate changes the mean flow field, mostly by reducing the intensity of reverse flow close to the bottom wall. Disturbance amplitudes are significantly reduced up to five step heights downstream of the trailing edge of the plate, more specifically in the recirculation region. A loudspeaker is then used to introduce phase-locked, low-amplitude perturbations upstream of the plates, and phase-averaged measurements allow a quantitative study of large-scale structures in the shear-layer. The evolution of such coherent structures is evaluated in light of linear stability theory, comparing the eigenfunction of the Kelvin-Helmholtz mode to the experimental results. We observe a close match of linear-stability eigenfunctions with phase-averaged amplitudes for the two tested Strouhal numbers. The perforated plate is found to reduce the amplitude of the Kelvin-Helmholtz coherent structures in comparison to the baseline, impermeable plate, a behavior consistent with the predicted amplification trends from linear stability.

  13. Nuclear structure properties of the double-charge-exchange transition amplitudes

    NASA Astrophysics Data System (ADS)

    Auerbach, N.; Zheng, D. C.

    1992-03-01

    Nuclear structure aspects of the double-charge-exchange (DCX) reaction on nuclei are studied. Using a variety of DCX-type two-body transition operators, we explore the influence of two-body correlations among valence nucleons on the DCX transition amplitudes to the isobaric analog state and to other nonanalog J π=0+ states. In particular, the question of the spin dependence and of the range of the DCX transition operators is explored and the behavior of the transition amplitudes as a function of the valence nucleon number is studied. It is shown that the two-amplitude DCX formula derived by Auerbach, Gibbs, and Piasetzky for a single j n configuration holds also in some cases when configuration mixing is strong. DCX-type transitions from the Ca and Ni isotopes to the Ti and Zn isotopes and from 56Fe to 56Ni are the subject of this study.

  14. Parametrizations of three-body hadronic B - and D -decay amplitudes in terms of analytic and unitary meson-meson form factors

    NASA Astrophysics Data System (ADS)

    Boito, D.; Dedonder, J.-P.; El-Bennich, B.; Escribano, R.; Kamiński, R.; Leśniak, L.; Loiseau, B.

    2017-12-01

    We introduce parametrizations of hadronic three-body B and D weak decay amplitudes that can be readily implemented in experimental analyses and are a sound alternative to the simplistic and widely used sum of Breit-Wigner type amplitudes, also known as the isobar model. These parametrizations can be particularly useful in the interpretation of C P asymmetries in the Dalitz plots. They are derived from previous calculations based on a quasi-two-body factorization approach in which two-body hadronic final-state interactions are fully taken into account in terms of unitary S - and P -wave π π , π K , and K K ¯ form factors. These form factors can be determined rigorously, fulfilling fundamental properties of quantum field-theory amplitudes such as analyticity and unitarity, and are in agreement with the low-energy behavior predicted by effective theories of QCD. They are derived from sets of coupled-channel equations using T -matrix elements constrained by experimental meson-meson phase shifts and inelasticities, chiral symmetry, and asymptotic QCD. We provide explicit amplitude expressions for the decays B±→π+π-π±, B →K π+π-, B±→K+K-K±, D+→π-π+π+, D+→K-π+π+, and D0→KS0π+π-, for which we have shown in previous studies that this approach is phenomenologically successful; in addition, we provide expressions for the D0→KS0K+K- decay. Other three-body hadronic channels can be parametrized likewise.

  15. Effects of geometrical parameters on thermal-hydraulic performance of wavy microtube

    NASA Astrophysics Data System (ADS)

    Khoshvaght-Aliabadi, Morteza; Chamanroy, Zohreh

    2018-03-01

    Laminar flow and heat transfer characteristics of water flow through wavy microtubes (WMTs) with different values of wave length ( l) and wave amplitude ( a) are investigated experimentally. The tested WMTs are fabricated from copper microtube with the internal diameter of 914 μm. Experiments encompass the Reynolds numbers from 640 to 1950. In order to validate the experimental setup and create a base line for comparison, initial tests are also carried out for a straight microtube. The results show that both the heat transfer coefficient and the pressure drop are strongly affected by the studied geometrical factors. For a given Reynolds number, these parameters increase as the wave length decreases and the wave amplitude increases. However, in the studied ranges, the effect of wave amplitude is more than that of wave length. A considerable thermal-hydraulic factor of 1.78 is obtained for a WMT with l = 14.3 mm and a = 6 mm. Finally, correlations are developed to predict the Colburn factor and friction factor of water flow in the WMTs.

  16. Factorization and resummation: A new paradigm to improve gravitational wave amplitudes. II. The higher multipolar modes

    NASA Astrophysics Data System (ADS)

    Messina, Francesco; Maldarella, Alberto; Nagar, Alessandro

    2018-04-01

    The factorization and resummation approach of Nagar and Shah [Phys. Rev. D 94, 104017 (2016), 10.1103/PhysRevD.94.104017], designed to improve the strong-field behavior of the post-Newtonian (PN) residual waveform amplitudes fℓm's entering the effective-one-body, circularized, gravitational waveform for spinning coalescing binaries, is improved and generalized here to all multipoles up to ℓ=6 . For a test particle orbiting a Kerr black hole, each multipolar amplitude is truncated at relative 6 PN order, both for the orbital (nonspinning) and spin factors. By taking a certain Padé approximant (typically the P24 one) of the orbital factor in conjunction with the inverse Taylor (iResum) representation of the spin factor, it is possible to push the analytical/numerical agreement of the energy flux at the level of 5% at the last-stable orbit for a quasimaximally spinning black hole with dimensionless spin parameter +0.99 . When the procedure is generalized to comparable-mass binaries, each orbital factor is kept at relative 3+3 PN order; i.e., the globally 3 PN-accurate comparable-mass terms are hybridized with higher-PN test-particle terms up to 6 PN relative order in each mode. The same Padé resummation is used for continuity. By contrast, the spin factor is only kept at the highest comparable-mass PN order currently available. We illustrate that the consistency between different truncations in the spin content of the waveform amplitudes is more marked in the resummed case than when using the standard Taylor-expanded form of Pan et al. [Phys. Rev. D 83, 064003 (2011), 10.1103/PhysRevD.83.064003]. We finally introduce a method to consistently hybridize comparable-mass and test-particle information also in the presence of spin (including the spin of the particle), discussing it explicitly for the ℓ=m =2 spin-orbit and spin-square terms. The improved, factorized and resummed, multipolar waveform amplitudes presented here are expected to set a new standard for effective one body-based gravitational waveform models.

  17. In Vivo Measurement of Pediatric Vocal Fold Motion Using Structured Light Laser Projection

    PubMed Central

    Patel, Rita R.; Donohue, Kevin D.; Lau, Daniel; Unnikrishnan, Harikrishnan

    2013-01-01

    Summary Objective The aim of the study was to present the development of a miniature structured light laser projection endoscope and to quantify vocal fold length and vibratory features related to impact stress of the pediatric glottis using high-speed imaging. Study Design The custom-developed laser projection system consists of a green laser with a 4-mm diameter optics module at the tip of the endoscope, projecting 20 vertical laser lines on the glottis. Measurements of absolute phonatory vocal fold length, membranous vocal fold length, peak amplitude, amplitude-to-length ratio, average closing velocity, and impact velocity were obtained in five children (6–9 years), two adult male and three adult female participants without voice disorders, and one child (10 years) with bilateral vocal fold nodules during modal phonation. Results Independent measurements made on the glottal length of a vocal fold phantom demonstrated a 0.13 mm bias error with a standard deviation of 0.23 mm, indicating adequate precision and accuracy for measuring vocal fold structures and displacement. First, in vivo measurements of amplitude-to-length ratio, peak closing velocity, and impact velocity during phonation in pediatric population and a child with vocal fold nodules are reported. Conclusion The proposed laser projection system can be used to obtain in vivo measurements of absolute length and vibratory features in children and adults. Children have large amplitude-to-length ratio compared with typically developing adults, whereas nodules result in larger peak amplitude, amplitude-to-length ratio, average closing velocity, and impact velocity compared with typically developing children. PMID:23809569

  18. New fast least-squares algorithm for estimating the best-fitting parameters due to simple geometric-structures from gravity anomalies.

    PubMed

    Essa, Khalid S

    2014-01-01

    A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values.

  19. New fast least-squares algorithm for estimating the best-fitting parameters due to simple geometric-structures from gravity anomalies

    PubMed Central

    Essa, Khalid S.

    2013-01-01

    A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values. PMID:25685472

  20. Amplitude Scintillation due to Atmospheric Turbulence for the Deep Space Network Ka-Band Downlink

    NASA Technical Reports Server (NTRS)

    Ho, C.; Wheelon, A.

    2004-01-01

    Fast amplitude variations due to atmospheric scintillation are the main concerns for the Deep Space Network (DSN) Ka-band downlink under clear weather conditions. A theoretical study of the amplitude scintillation variances for a finite aperture antenna is presented. Amplitude variances for weak scattering scenarios are examined using turbulence theory to describe atmospheric irregularities. We first apply the Kolmogorov turbulent spectrum to a point receiver for three different turbulent profile models, especially for an exponential model varying with altitude. These analytic solutions then are extended to a receiver with a finite aperture antenna for the three profile models. Smoothing effects of antenna aperture are expressed by gain factors. A group of scaling factor relations is derived to show the dependences of amplitude variances on signal wavelength, antenna size, and elevation angle. Finally, we use these analytic solutions to estimate the scintillation intensity for a DSN Goldstone 34-m receiving station. We find that the (rms) amplitude fluctuation is 0.13 dB at 20-deg elevation angle for an exponential model, while the fluctuation is 0.05 dB at 90 deg. These results will aid us in telecommunication system design and signal-fading prediction. They also provide a theoretical basis for further comparison with other measurements at Ka-band.

  1. The Aerodynamic and Dynamic Loading of a Slender Structure by an Impacting Tornado-Like Vortex: The Influence of Relative Vortex-to-Structure Size on Structural Loading

    NASA Astrophysics Data System (ADS)

    Strasser, Matthew N.

    Structural loading produced by an impacting vortex is a hazardous phenomenon that is encountered in numerous applications ranging from the destruction of residences by tornados to the chopping of tip vortices by rotors. Adequate design of structures to resist vortex-induced structural loading necessitates study of the phenomenon that control the structural loading produced by an impacting vortex. This body of work extends the current knowledge base of vortex-structure interaction by evaluating the influence of the relative vortex-to-structure size on the structural loading that the vortex produces. A computer model is utilized to directly simulate the two-dimensional impact of an impinging vortex with a slender, cylindrical structure. The vortex's tangential velocity profile (TVP) is defined by a normalization of the Vatistas analytical (TVP) which realistically replicates the documented spectrum of measured vortex TVPs. The impinging vortex's maximum tangential velocity is fixed, and the vortex's critical radius is incremented from one to one-hundred times the structure's diameter. When the impinging vortex is small, it interacts with vortices produced on the structure by the free stream, and maximum force coefficient amplitudes vary by more than 400% when the impinging vortex impacts the structure at different times. Maximum drag and lift force coefficient amplitudes reach asymptotic values as the impinging vortex's size increases that are respectively 94.77% and 10.66% less than maximum force coefficients produced by an equivalent maximum velocity free stream. The vortex produces maximum structural loading when its path is shifted above the structure's centerline, and maximum drag and lift force coefficients are respectively up to 4.80% and 34.07% greater than maximum force coefficients produced by an equivalent-velocity free stream. Finally, the dynamic load factor (DLF) concept is used to develop a generalized methodology to assess the dynamic amplification of a structure's response to vortex loading and to assess the dynamic loading threat that tornados pose. Typical civil and residential structures will not experience significant response amplification, but responses of very flexible structures may be amplified by up to 2.88 times.

  2. Electron holes in inhomogeneous magnetic field: Electron heating and electron hole evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasko, I. Y.; Space Research Institute of Russian Academy of Science, Moscow; Agapitov, O. V.

    Electron holes are electrostatic non-linear structures widely observed in the space plasma. In the present paper, we analyze the process of energy exchange between electrons trapped within electron hole, untrapped electrons, and an electron hole propagating in a weakly inhomogeneous magnetic field. We show that as the electron hole propagates into the region with stronger magnetic field, trapped electrons are heated due to the conservation of the first adiabatic invariant. At the same time, the electron hole amplitude may increase or decrease in dependence on properties of distribution functions of trapped and untrapped resonant electrons. The energy gain of trappedmore » electrons is due to the energy losses of untrapped electrons and/or decrease of the electron hole energy. We stress that taking into account the energy exchange with untrapped electrons increases the lifetime of electron holes in inhomogeneous magnetic field. We illustrate the suggested mechanism for small-amplitude Schamel's [Phys. Scr. T2, 228–237 (1982)] electron holes and show that during propagation along a positive magnetic field gradient their amplitude should grow. Neglect of the energy exchange with untrapped electrons would result in the electron hole dissipation with only modest heating factor of trapped electrons. The suggested mechanism may contribute to generation of suprathermal electron fluxes in the space plasma.« less

  3. Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion.

    PubMed

    Baig, Zeeshan; Mamat, Othman; Mustapha, Mazli; Mumtaz, Asad; Munir, Khurram S; Sarfraz, Mansoor

    2018-07-01

    The exceptional properties of graphene and its structural uniqueness can improve the performance of nanocomposites if it can attain the uniform dispersion. Tip sonication assisted graphene solvent dispersion has been emerged as an efficient approach but it can cause significant degradation of graphene structure. This study aimed to evaluate the parametric influence of tip sonication on the characteristics of sp 2 carbon structure in graphene nanoplatelets by varying the sonication time and respective energy at three different amplitudes (60%, 80% and 100%). The study is essential to identify appropriate parameters so as to achieve high-quality and defect-free graphene with a highly desirable aspect ratio after solvent dispersion for composite reinforcement. Quantitative approach via Raman spectroscopy is used to find the defect ratio and lateral size of graphene evolved under the effect of tip sonication parameters. Results imply that the defect ratio is steady and increases continually with GNPs, along with the transformation to the nano-crystalline stage I up to 60 min sonication at all amplitudes. Exfoliation was clearly observed at all amplitudes together with sheet re-stacking due to considerable size reduction of sheets with large quantity. Finally, considerable GNPs fragmentation occurred during sonication with increased amplitude and time as confirmed by the reduction of sp 2 domain (La) and flake size. This also validates the formation of edge-type defect in graphene. Convincingly, lower amplitude and time (up to 60 min) produce better results for a low defect content and larger particle size as quantified by Raman analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The Joint Damping Experiment (JDX)

    NASA Technical Reports Server (NTRS)

    Folkman, Steven L.; Bingham, Jeff G.; Crookston, Jess R.; Dutson, Joseph D.; Ferney, Brook D.; Ferney, Greg D.; Rowsell, Edwin A.

    1997-01-01

    The Joint Damping Experiment (JDX), flown on the Shuttle STS-69 Mission, is designed to measure the influence of gravity on the structural damping of a high precision three bay truss. Principal objectives are: (1) Measure vibration damping of a small-scale, pinjointed truss to determine how pin gaps give rise to gravity-dependent damping rates; (2) Evaluate the applicability of ground and low-g aircraft tests for predicting on-orbit behavior; and (3) Evaluate the ability of current nonlinear finite element codes to model the dynamic behavior of the truss. Damping of the truss was inferred from 'Twang' tests that involve plucking the truss structure and recording the decay of the oscillations. Results are summarized as follows. (1) Damping, rates can change by a factor of 3 to 8 through changing the truss orientation; (2) The addition of a few pinned joints to a truss structure can increase the damping by a factor as high as 30; (3) Damping is amplitude dependent; (4) As gravity induced preloads become large (truss long axis perpendicular to gravity vector) the damping is similar to non-pinjointed truss; (5) Impacting in joints drives higher modes in structure; (6) The torsion mode disappears if gravity induced preloads are low.

  5. Chaos and generalised multistability in a mesoscopic model of the electroencephalogram

    NASA Astrophysics Data System (ADS)

    Dafilis, Mathew P.; Frascoli, Federico; Cadusch, Peter J.; Liley, David T. J.

    2009-06-01

    We present evidence for chaos and generalised multistability in a mesoscopic model of the electroencephalogram (EEG). Two limit cycle attractors and one chaotic attractor were found to coexist in a two-dimensional plane of the ten-dimensional volume of initial conditions. The chaotic attractor was found to have a moderate value of the largest Lyapunov exponent (3.4 s -1 base e) with an associated Kaplan-Yorke (Lyapunov) dimension of 2.086. There are two different limit cycles appearing in conjunction with this particular chaotic attractor: one multiperiodic low amplitude limit cycle whose largest spectral peak is within the alpha band (8-13 Hz) of the EEG; and another multiperiodic large-amplitude limit cycle which may correspond to epilepsy. The cause of the coexistence of these structures is explained with a one-parameter bifurcation analysis. Each attractor has a basin of differing complexity: the large-amplitude limit cycle has a basin relatively uncomplicated in its structure while the small-amplitude limit cycle and chaotic attractor each have much more finely structured basins of attraction, but none of the basin boundaries appear to be fractal. The basins of attraction for the chaotic and small-amplitude limit cycle dynamics apparently reside within each other. We briefly discuss the implications of these findings in the context of theoretical attempts to understand the dynamics of brain function and behaviour.

  6. Oblique collision of dust acoustic solitons in a strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boruah, A.; Sharma, S. K., E-mail: sumita-sharma82@yahoo.com; Bailung, H.

    2015-09-15

    The oblique collision between two equal amplitude dust acoustic solitons is observed in a strongly coupled dusty plasma. The solitons are subjected to oblique interaction at different colliding angles. We observe a resonance structure during oblique collision at a critical colliding angle which is described by the idea of three wave resonance interaction modeled by Kadomtsev-Petviashvili equation. After collision, the solitons preserve their identity. The amplitude of the resultant wave formed during interaction is measured for different collision angles as well as for different colliding soliton amplitudes. At resonance, the maximum amplitude of the new soliton formed is nearly 3.7more » times the initial soliton amplitude.« less

  7. Median and ulnar muscle and sensory evoked potentials.

    PubMed

    Felsenthal, G

    1978-08-01

    The medical literature was reviewed to find suggested clinical applications of the study of the amplitude of evoked muscle action potentials (MAP) and sensory action potentials (SAP). In addition, the literature was reviewed to ascertain the normal amplitude and duration of the evoked MAP and SAP as well as the factors affecting the amplitude: age, sex, temperature, ischemia. The present study determined the normal amplitude and duration of the median and ulnar MAP and SAP in fifty normal subjects. The amplitude of evoked muscle or sensory action potentials depends on multiple factors. Increased skin resistance, capacitance, and impedance at the surface of the recording electrode diminishes the amplitude. Similarly, increased distance from the source of the action potential diminishes its amplitude. Increased interelectrode distance increases the amplitude of the bipolarly recorded sensory action potential until a certain interelectrode distance is exceeded and the diphasic response becomes tri- or tetraphasic. Artifact or poor technique may reduce the potential difference between the recording electrodes or obscure the late positive phase of the action potential and thus diminish the peak to peak amplitude measurement. Intraindividual comparison indicated a marked difference of amplitude in opposite hands. The range of the MAP of the abductor pollicis brevis in one hand was 40.0--100% of the response in the opposite hand. For the abductor digiti minimi, the MAP was 58.5--100% of the response of the opposite hand. The median and ulnar SAP was between 50--100% of the opposite SAP. Consequent to these findings the effect of hand dominance on the amplitude of median and ulnar evoked muscle and sensory action potentials was studied in 41 right handed volunteers. The amplitudes of the median muscle action potential (p less than 0.02) and the median and ulnar sensory action potentials (p less than 0.001) were significantly less in the dominant hand. There was no significant difference between the ulnar muscle action potentials or for the median and ulnar distal motor and sensory latencies in the right and left hands of this group of volunteers.

  8. Quasi-two-body decays B → Kρ → Kππ in perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Fei; Li, Hsiang-nan

    2016-12-01

    We analyze the quasi-two-body decays B → Kρ → Kππ in the perturbative QCD (PQCD) approach, in which final-state interactions between the pions in the resonant regions associated with the P-wave states ρ (770) and ρ‧ (1450) are factorized into two-pion distribution amplitudes. Adopting experimental inputs for the time-like pion form factors involved in two-pion distribution amplitudes, we calculate branching ratios and direct CP asymmetries of the B → Kρ (770) , Kρ‧ (1450) → Kππ modes. It is shown that agreement of theoretical results with data can be achieved, through which Gegenbauer moments of the P-wave two-pion distribution amplitudes are determined. The consistency between the three-body and two-body analyses of the B → Kρ (770) → Kππ decays supports the PQCD factorization framework for exclusive hadronic B meson decays.

  9. On the difficulties of detecting PP precursors

    NASA Astrophysics Data System (ADS)

    Lessing, Stephan; Thomas, Christine; Saki, Morvarid; Schmerr, Nicholas; Vanacore, Elizabeth

    2015-06-01

    The PP precursors are seismic waves that form from underside reflections of P waves off discontinuities in the upper mantle transition zone (MTZ). These seismic phases are used to map discontinuity topography, sharpness, and impedance contrasts; the resulting structural variations are then often interpreted as evidence for temperature and/or mineralogy variations within the mantle. The PP precursors as well as other seismic phases have been used to establish the global presence of seismic discontinuities at 410 and 660 km depth. Intriguingly, in more than 80 per cent of PP precursor observations the seismic wave amplitudes are significantly weaker than the amplitudes predicted by seismic reference models. Even more perplexing is the observation that 1-5 per cent of all earthquakes (which are 20-25 per cent of earthquakes with clear PP waveforms) do not show any evidence for the PP precursors from the discontinuities even in the presence of well-developed PP waveforms. Non-detections are found in six different data sets consisting of tens to hundreds of events. We use synthetic modelling to examine a suite of factors that could be responsible for the absence of the PP precursors. The take-off angles for PP and the precursors differ by only 1.2-1.5°; thus source-related complexity would affect PP and the precursors. A PP wave attenuated in the upper mantle would increase the relative amplitude of the PP precursors. Attenuation within the transition zone could reduce precursor amplitudes, but this would be a regional phenomenon restricted to particular source receiver geometries. We also find little evidence for deviations from the theoretical travel path of seismic rays expected for scattered arrivals. Factors that have a strong influence include the stacking procedures used in seismic array techniques in the presence of large, interfering phases, the presence of topography on the discontinuities on the order of tens of kilometres, and 3-D lateral heterogeneity in the velocity and density changes with depth across the transition zone. We also compare the observed precursors' amplitudes with seismic models from calculations of phase equilibria and find that a seismic velocity model derived from a pyrolite composition reproduces the data better than the currently available 1-D earth models. This largely owes to the pyrolite models producing a stronger minimum in the reflection coefficient across the epicentral distances where the reduction in amplitudes of the PP precursors is observed. To suppress the precursors entirely in a small subset of earthquakes, other effects, such as localized discontinuity topography and seismic signal processing effects are required in addition to the changed velocity model.

  10. Anomalously low amplitude of S waves produced by the 3D structures in the lower mantle

    NASA Astrophysics Data System (ADS)

    To, Akiko; Capdeville, Yann; Romanowicz, Barbara

    2016-07-01

    Direct S and Sdiff phases with anomalously low amplitudes are recorded for the earthquakes in Papua New Guinea by seismographs in northern America. According to the prediction by a standard 1D model, the amplitudes are the lowest at stations in southern California, at a distance and azimuth of around 95° and 55°, respectively, from the earthquake. The amplitude anomaly is more prominent at frequencies higher than 0.03 Hz. We checked and ruled out the possibility of the anomalies appearing because of the errors in the focal mechanism used in the reference synthetic waveform calculations. The observed anomaly distribution changes drastically with a relatively small shift in the location of the earthquake. The observations indicate that the amplitude reduction is likely due to the 3D shear velocity (Vs) structure, which deflects the wave energy away from the original ray paths. Moreover, some previous studies suggested that some of the S and Sdiff phases in our dataset are followed by a prominent postcursor and show a large travel time delay, which was explained by placing a large ultra-low velocity zone (ULVZ) located on the core-mantle boundary southwest of Hawaii. In this study, we evaluated the extent of amplitude anomalies that can be explained by the lower mantle structures in the existing models, including the previously proposed ULVZ. In addition, we modified and tested some models and searched for the possible causes of low amplitudes. Full 3D synthetic waveforms were calculated and compared with the observations. Our results show that while the existing models explain the trends of the observed amplitude anomalies, the size of such anomalies remain under-predicted especially at large distances. Adding a low velocity zone, which is spatially larger and has less Vs reduction than ULVZ, on the southwest side of ULVZ, contributes to explain the low amplitudes observed at distances larger than 100° from the earthquake. The newly proposed low velocity zone mostly overlaps with the northern part of the Pacific large low shear velocity province (LLSVP) revealed in tomographic models. Although the very low amplitudes observed at a distance of about 95° remain unexplained, our results indicate that the boundary of the Pacific LLSVP is sharp, and the amplitude of S waves at these large distances is lowered by strong vertical and/or lateral deflection at the boundary toward the interior of the low velocity province.

  11. Photonic molecules for improving the optical response of macroporous silicon photonic crystals for gas sensing purposes.

    PubMed

    Cardador, D; Segura, D; Rodríguez, A

    2018-02-19

    In this paper, we report the benefits of working with photonic molecules in macroporous silicon photonic crystals. In particular, we theoretically and experimentally demonstrate that the optical properties of a resonant peak produced by a single photonic atom of 2.6 µm wide can be sequentially improved if a second and a third cavity of the same length are introduced in the structure. As a consequence of that, the base of the peak is reduced from 500 nm to 100 nm, while its amplitude remains constant, increasing its Q-factor from its initial value of 25 up to 175. In addition, the bandgap is enlarged almost twice and the noise within it is mostly eliminated. In this study we also provide a way of reducing the amplitude of one or two peaks, depending whether we are in the two- or three-cavity case, by modifying the length of the involved photonic molecules so that the remainder can be used to measure gas by spectroscopic methods.

  12. Temperature dependence of pre-edge features in Ti K-edge XANES spectra for ATiO₃ (A = Ca and Sr), A₂TiO₄ (A = Mg and Fe), TiO₂ rutile and TiO₂ anatase.

    PubMed

    Hiratoko, Tatsuya; Yoshiasa, Akira; Nakatani, Tomotaka; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa

    2013-07-01

    XANES (X-ray absorption near-edge structure) spectra of the Ti K-edges of ATiO3 (A = Ca and Sr), A2TiO4 (A = Mg and Fe), TiO2 rutile and TiO2 anatase were measured in the temperature range 20-900 K. Ti atoms for all samples were located in TiO6 octahedral sites. The absorption intensity invariant point (AIIP) was found to be between the pre-edge and post-edge. After the AIIP, amplitudes damped due to Debye-Waller factor effects with temperature. Amplitudes in the pre-edge region increased with temperature normally by thermal vibration. Use of the AIIP peak intensity as a standard point enables a quantitative comparison of the intensity of the pre-edge peaks in various titanium compounds over a wide temperature range.

  13. A factorization approach to next-to-leading-power threshold logarithms

    NASA Astrophysics Data System (ADS)

    Bonocore, D.; Laenen, E.; Magnea, L.; Melville, S.; Vernazza, L.; White, C. D.

    2015-06-01

    Threshold logarithms become dominant in partonic cross sections when the selected final state forces gluon radiation to be soft or collinear. Such radiation factorizes at the level of scattering amplitudes, and this leads to the resummation of threshold logarithms which appear at leading power in the threshold variable. In this paper, we consider the extension of this factorization to include effects suppressed by a single power of the threshold variable. Building upon the Low-Burnett-Kroll-Del Duca (LBKD) theorem, we propose a decomposition of radiative amplitudes into universal building blocks, which contain all effects ultimately responsible for next-to-leading-power (NLP) threshold logarithms in hadronic cross sections for electroweak annihilation processes. In particular, we provide a NLO evaluation of the radiative jet function, responsible for the interference of next-to-soft and collinear effects in these cross sections. As a test, using our expression for the amplitude, we reproduce all abelian-like NLP threshold logarithms in the NNLO Drell-Yan cross section, including the interplay of real and virtual emissions. Our results are a significant step towards developing a generally applicable resummation formalism for NLP threshold effects, and illustrate the breakdown of next-to-soft theorems for gauge theory amplitudes at loop level.

  14. Graphene patterns supported terahertz tunable plasmon induced transparency.

    PubMed

    He, Xiaoyong; Liu, Feng; Lin, Fangting; Shi, Wangzhou

    2018-04-16

    The tunable plasmonic induced transparency has been theoretically investigated based on graphene patterns/SiO 2 /Si/polymer multilayer structure in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that obvious Fano peak can be observed and efficiently modulated because of the strong coupling between incident light and graphene pattern structures. As Fermi level increases, the peak amplitude of Fano resonance increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 40% on condition that the Fermi level changes in the scope of 0.2-1.0 eV. With the distance between cut wire and double semi-circular patterns increases, the peak amplitude and figure of merit increases. The results are very helpful to develop novel graphene plasmonic devices (e.g. sensors, modulators, and antenna) and find potential applications in the fields of biomedical sensing and wireless communications.

  15. Model updating strategy for structures with localised nonlinearities using frequency response measurements

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Hill, Thomas L.; Neild, Simon A.; Shaw, Alexander D.; Haddad Khodaparast, Hamed; Friswell, Michael I.

    2018-02-01

    This paper proposes a model updating strategy for localised nonlinear structures. It utilises an initial finite-element (FE) model of the structure and primary harmonic response data taken from low and high amplitude excitations. The underlying linear part of the FE model is first updated using low-amplitude test data with established techniques. Then, using this linear FE model, the nonlinear elements are localised, characterised, and quantified with primary harmonic response data measured under stepped-sine or swept-sine excitations. Finally, the resulting model is validated by comparing the analytical predictions with both the measured responses used in the updating and with additional test data. The proposed strategy is applied to a clamped beam with a nonlinear mechanism and good agreements between the analytical predictions and measured responses are achieved. Discussions on issues of damping estimation and dealing with data from amplitude-varying force input in the updating process are also provided.

  16. Ball bearing vibrations amplitude modeling and test comparisons

    NASA Technical Reports Server (NTRS)

    Hightower, Richard A., III; Bailey, Dave

    1995-01-01

    Bearings generate disturbances that, when combined with structural gains of a momentum wheel, contribute to induced vibration in the wheel. The frequencies generated by a ball bearing are defined by the bearing's geometry and defects. The amplitudes at these frequencies are dependent upon the actual geometry variations from perfection; therefore, a geometrically perfect bearing will produce no amplitudes at the kinematic frequencies that the design generates. Because perfect geometry can only be approached, emitted vibrations do occur. The most significant vibration is at the spin frequency and can be balanced out in the build process. Other frequencies' amplitudes, however, cannot be balanced out. Momentum wheels are usually the single largest source of vibrations in a spacecraft and can contribute to pointing inaccuracies if emitted vibrations ring the structure or are in the high-gain bandwidth of a sensitive pointing control loop. It is therefore important to be able to provide an a priori knowledge of possible amplitudes that are singular in source or are a result of interacting defects that do not reveal themselves in normal frequency prediction equations. This paper will describe the computer model that provides for the incorporation of bearing geometry errors and then develops an estimation of actual amplitudes and frequencies. Test results were correlated with the model. A momentum wheel was producing an unacceptable 74 Hz amplitude. The model was used to simulate geometry errors and proved successful in identifying a cause that was verified when the parts were inspected.

  17. Hidden simplicity of gauge theory amplitudes

    NASA Astrophysics Data System (ADS)

    Drummond, J. M.

    2010-11-01

    These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in \\ {N}=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.

  18. Nonlinear theory of the narrow-band generation and detection of terahertz radiation in resonant tunneling heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapaev, V. V., E-mail: kapaev@lebedev.ru

    The nonlinear regime of high-frequency response for resonant tunneling structures in a time-periodic electric field has been investigated using a technique for solving the time-dependent Schrödinger equation based on a Floquet mode expansion of the wave functions. The dependences of current harmonic amplitudes on ac signal amplitude have been calculated and the limiting values of the generated field have been determined for singleand double-well resonant tunneling structures. The dynamic Stark effect is shown to play an important role in the formation of response. It leads to a quadratic (in ac field amplitude) shift in the positions of resonances E{sub r}more » in single-well structures and in double-well ones in the nonresonant case and to a splitting at resonance hν ≈ E{sub r2}–E{sub r1} (ν is the signal frequency, E{sub r1} and E{sub r2} are the energies of the size-quantization levels) in double-well structures proportional to the ac signal amplitude. The phenomenon of ac signal detection by resonant tunneling structures has been investigated. The effect of resonant direct-current amplification in double-well structures has been detected at a signal frequency satisfying the condition hν ≈ E{sub r2}–E{sub r1}. In asymmetric systems, detection is shown to be possible in the absence of a dc bias, which allows zero-biased detectors based on them to be created.« less

  19. Computational study of the effect of Reynolds number and motion trajectory asymmetry on the aerodynamics of a pitching airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Hammer, Patrick R.

    It is well established that natural flyers flap their wings to sustain flight due to poor performance of steady wing aerodynamics at low Reynolds number. Natural flyers also benefit from the propulsive force generated by flapping. Unsteady airfoils allow for simplified study of flapping wing aerodynamics. Limited previous work has suggested that both the Reynolds number and motion trajectory asymmetry play a non-negligible role in the resulting forces and wake structure of an oscillating airfoil. In this work, computations are performed to on this topic for a NACA 0012 airfoil purely pitching about its quarter-chord point. Two-dimensional computations are undertaken using the high-order, extensively validated FDL3DI Navier-Strokes solver developed at Wright-Patterson Air Force Base. The Reynolds number range of this study is 2,000-22,000, reduced frequencies as high as 16 are considered, and the pitching amplitude varies from 2° to 10°. In order to simulate the incompressible limit with the current compressible solver, freestream Mach numbers as low as 0.005 are used. The wake structure is accurately resolved using an overset grid approach. The results show that the streamwise force depends on Reynolds number such that the drag-to-thrust crossover reduced frequency decreases with increasing Reynolds number at a given amplitude. As the amplitude increases, the crossover reduced frequency decreases at a given Reynolds number. The crossover frequency data show good collapse for all pitching amplitudes considered when expressed as the Strouhal number based on trailing edge-amplitude for different Reynolds numbers. Appropriate scaling causes the thrust data to become nearly independent of Reynolds number and amplitude. An increase in propulsive efficiency is observed as the Reynolds number increases while less dependence is seen in the peak-to-peak lift and drag amplitudes. Reynolds number dependence is also seen for the wake structure. The crossover reduced frequency to produce a switch in the wake vortex configuration from von Karman (drag) to reverse von Karman (thrust) patterns decreases as the Reynolds number increases. As the pitching amplitude increases, more complex structures form in the wake, particularly at the higher Reynolds numbers considered. Although both the transverse and streamwise spacing depend on amplitude, the vortex array aspect ratio is nearly amplitude independent for each Reynolds number. Motion trajectory asymmetry produces a non-zero average lift and a decrease in average drag. Decomposition of the lift demonstrates that the majority of the average lift is a result of the component from average vortex (circulatory) lift. The average lift is positive at low reduced frequency, but as the reduced frequency increases at a given motion asymmetry, an increasing amount of negative lift occurs over a greater portion of the oscillation cycle, and eventually causes a switch in the sign of the lift. The maximum value, minimum value, and peak-to-peak amplitude of the lift and drag increase with increasing reduced frequency and asymmetry. The wake structure becomes complex with an asymmetric motion trajectory. A faster pitch-up produces a single positive vortex and one or more negative vortices, the number of which depends on the reduced frequency and asymmetry. When the airfoil motion trajectory is asymmetric, the vortex trajectories and properties in the wake exhibit asymmetric behavior.

  20. Variability of acute extracellular action potential measurements with multisite silicon probes

    PubMed Central

    Scott, Kimberly M.; Du, Jiangang; Lester, Henry A.; Masmanidis, Sotiris C.

    2012-01-01

    Device miniaturization technologies have led to significant advances in sensors for extracellular measurements of electrical activity in the brain. Multisite, silicon-based probes containing implantable electrode arrays afford greater coverage of neuronal activity than single electrodes and therefore potentially offer a more complete view of how neuronal ensembles encode information. However, scaling up the number of sites is not sufficient to ensure capture of multiple neurons, as action potential signals from extracellular electrodes may vary due to numerous factors. In order to understand the large-scale recording capabilities and potential limitations of multisite probes, it is important to quantify this variability, and to determine whether certain key device parameters influence the recordings. Here we investigate the effect of four parameters, namely, electrode surface, width of the structural support shafts, shaft number, and position of the recording site relative to the shaft tip. This study employs acutely implanted silicon probes containing up to 64 recording sites, whose performance is evaluated by the metrics of noise, spike amplitude, and spike detection probability. On average, we find no significant effect of device geometry on spike amplitude and detection probability but we find significant differences among individual experiments, with the likelihood of detecting spikes varying by a factor of approximately three across trials. PMID:22971352

  1. Theoretical approach to resonant inelastic x-ray scattering in iron-based superconductors at the energy scale of the superconducting gap

    PubMed Central

    Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen

    2016-01-01

    We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing. PMID:27151253

  2. Theoretical analyses of localized surface plasmon resonance spectrum with nanoparticles imprinted polymers

    NASA Astrophysics Data System (ADS)

    Li, Hong; Peng, Wei; Wang, Yanjie; Hu, Lingling; Liang, Yuzhang; Zhang, Xinpu; Yao, Wenjuan; Yu, Qi; Zhou, Xinlei

    2011-12-01

    Optical sensors based on nanoparticles induced Localized Surface Plasmon Resonance are more sensitive to real-time chemical and biological sensing, which have attracted intensive attentions in many fields. In this paper, we establish a simulation model based on nanoparticles imprinted polymer to increase sensitivity of the LSPR sensor by detecting the changes of Surface Plasmon Resonance signals. Theoretical analysis and numerical simulation of parameters effects to absorption peak and light field distribution are highlighted. Two-dimensional simulated color maps show that LSPR lead to centralization of the light energy around the gold nanoparticles, Transverse Magnetic wave and total reflection become the important factors to enhance the light field in our simulated structure. Fast Fourier Transfer analysis shows that the absorption peak of the surface plasmon resonance signal resulted from gold nanoparticles is sharper while its wavelength is bigger by comparing with silver nanoparticles; a double chain structure make the amplitude of the signals smaller, and make absorption wavelength longer; the absorption peak of enhancement resulted from nanopore arrays has smaller wavelength and weaker amplitude in contrast with nanoparticles. These simulation results of the Localized Surface Plasmon Resonance can be used as an enhanced transduction mechanism for enhancement of sensitivity in recognition and sensing of target analytes in accordance with different requirements.

  3. Manipulation of the Phase-Amplitude Coupling Factor in Quantum Nanostructure Based Devices for On-Chip Chirp Compensation and Low-Cost Applications

    DTIC Science & Technology

    2014-11-17

    Compensation and Low -Cost Applications Frederic Grillot CTRE NAT DE LA RECHERCHE SCIENTIFIQUE 74, RUE DE PARIS CENTRE AFFAIRES OBERTHUR RENNES, 35000...of Scientific Research European Office of Aerospace Research and Development Unit 4515, APO AE 09421-4515 Distribution Statement A: Approved for...Amplitude Coupling Factor in Quantum Nanostructure Based Devices for On-Chip Chirp Compensation and Low -Cost Applications 5a. CONTRACT NUMBER

  4. The relation of digital vascular function to cardiovascular risk factors in African-Americans using digital tonometry: the Jackson Heart Study.

    PubMed

    McClendon, Eric E; Musani, Solomon K; Samdarshi, Tandaw E; Khaire, Sushant; Stokes, Donny; Hamburg, Naomi M; Sheffy, Koby; Mitchell, Gary F; Taylor, Herman R; Benjamin, Emelia J; Fox, Ervin R

    2017-06-01

    Digital vascular tone and function, as measured by peripheral arterial tonometry (PAT), are associated with cardiovascular risk and events in non-Hispanic whites. There are limited data on relations between PAT and cardiovascular risk in African-Americans. PAT was performed on a subset of Jackson Heart Study participants using a fingertip tonometry device. Resting digital vascular tone was assessed as baseline pulse amplitude. Hyperemic vascular response to 5 minutes of ischemia was expressed as the PAT ratio (hyperemic/baseline amplitude ratio). Peripheral augmentation index (AI), a measure of relative wave reflection, also was estimated. The association of baseline pulse amplitude (PA), PAT ratio, and AI to risk factors was assessed using stepwise multivariable models. The study sample consisted of 837 participants from the Jackson Heart Study (mean age, 54 ± 11 years; 61% women). In stepwise multivariable regression models, baseline pulse amplitude was related to male sex, body mass index, and diastolic blood pressure (BP), accounting for 16% of the total variability of the baseline pulse amplitude. Age, male sex, systolic BP, diastolic BP, antihypertensive medication, and prevalent cardiovascular disease contributed to 11% of the total variability of the PAT ratio. Risk factors (primarily age, sex, and heart rate) explained 47% of the total variability of the AI. We confirmed in our cohort of African-Americans, a significant relation between digital vascular tone and function measured by PAT and multiple traditional cardiovascular risk factors. Further studies are warranted to investigate the utility of these measurements in predicting clinical outcomes in African-Americans. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  5. Fatigue crack growth under variable amplitude loading

    NASA Astrophysics Data System (ADS)

    Sidawi, Jihad A.

    1994-09-01

    Fatigue crack growth tests were conducted on an Fe 510 E C-Mn steel and a submerged arc welded joint from the same material under constant, variable, and random loading amplitudes. Paris-Erdogan's crack growth rate law was tested for the evaluation of m and C using the stress intensity factor K, the J-integral, the effective stress intensity factor K(sub eff), and the root mean square stress intensity factor K(sub rms) fracture mechanics concepts. The effect of retardation and residual stresses resulting from welding was also considered. It was found that all concepts gave good life predictions in all cases.

  6. Love-type seam-waves in washout models of coal seams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breitzke, M.; Dresen, L.

    The propagation of Love seam-waves across washouts of coal seams was studied by calculating synthetic seismograms with a finite-difference method. Seam interruption, seam end and seam thinning models ere investigated. The horizontal offset, the dip of the discontinuities and the degree of erosion served as variable parameters. Maximum displacement amplitudes, relative spectral amplitudes and phase and group slowness curves were extracted from the synthetic seismograms. Both seam interruption and seam thinning reduce the maximum displacement amplitudes of the transmitted Love seam-waves. The degree of amplitude reduction depends on the horizontal offset and the degree of erosion. It is four timesmore » greater for a total seam interruption than for an equivalent seam thinning with a horizontal offset of four times the seam thickness. In a seam cut vertically, the impedance contrast between the coal and the washout filling determines the maximum displacement amplitudes of the reflected Love seam-waves. They diminish by a maximum factor of four in oblique interruption zone discontinuities with a dip of maximum 27/sup 0/, and by a maximum factor of ten in a seam thinning with a degree of erosion of at least 22%.« less

  7. Flaw depth sizing using guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.

    2016-02-01

    Guided wave inspection technology is most often applied as a survey tool for pipeline inspection, where relatively low frequency ultrasonic waves, compared to those used in conventional ultrasonic nondestructive evaluation (NDE) methods, propagate along the structure; discontinuities cause a reflection of the sound back to the sensor for flaw detection. Although the technology can be used to accurately locate a flaw over long distances, the flaw sizing performance, especially for flaw depth estimation, is much poorer than other, local NDE approaches. Estimating flaw depth, as opposed to other parameters, is of particular interest for failure analysis of many structures. At present, most guided wave technologies estimate the size of the flaw based on the reflected signal amplitude from the flaw compared to a known geometry reflection, such as a circumferential weld in a pipeline. This process, however, requires many assumptions to be made, such as weld geometry and flaw shape. Furthermore, it is highly dependent on the amplitude of the flaw reflection, which can vary based on many factors, such as attenuation and sensor installation. To improve sizing performance, especially depth estimation, and do so in a way that is not strictly amplitude dependent, this paper describes an approach to estimate the depth of a flaw based on a multimodal analysis. This approach eliminates the need of using geometric reflections for calibration and can be used for both pipeline and plate inspection applications. To verify the approach, a test set was manufactured on plate specimens with flaws of different widths and depths ranging from 5% to 100% of total wall thickness; 90% of these flaws were sized to within 15% of their true value. A description of the initial multimodal sizing strategy and results will be discussed.

  8. In Vivo measurement of pediatric vocal fold motion using structured light laser projection.

    PubMed

    Patel, Rita R; Donohue, Kevin D; Lau, Daniel; Unnikrishnan, Harikrishnan

    2013-07-01

    The aim of the study was to present the development of a miniature structured light laser projection endoscope and to quantify vocal fold length and vibratory features related to impact stress of the pediatric glottis using high-speed imaging. The custom-developed laser projection system consists of a green laser with a 4-mm diameter optics module at the tip of the endoscope, projecting 20 vertical laser lines on the glottis. Measurements of absolute phonatory vocal fold length, membranous vocal fold length, peak amplitude, amplitude-to-length ratio, average closing velocity, and impact velocity were obtained in five children (6-9 years), two adult male and three adult female participants without voice disorders, and one child (10 years) with bilateral vocal fold nodules during modal phonation. Independent measurements made on the glottal length of a vocal fold phantom demonstrated a 0.13mm bias error with a standard deviation of 0.23mm, indicating adequate precision and accuracy for measuring vocal fold structures and displacement. First, in vivo measurements of amplitude-to-length ratio, peak closing velocity, and impact velocity during phonation in pediatric population and a child with vocal fold nodules are reported. The proposed laser projection system can be used to obtain in vivo measurements of absolute length and vibratory features in children and adults. Children have large amplitude-to-length ratio compared with typically developing adults, whereas nodules result in larger peak amplitude, amplitude-to-length ratio, average closing velocity, and impact velocity compared with typically developing children. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  9. The Formation of Ganymede's Grooved Terrain: Importance of Strain Weakening

    NASA Astrophysics Data System (ADS)

    Bland, M. T.; McKinnon, W. B.; Showman, A. P.

    2008-12-01

    Nearly two-thirds of Ganymede's surface consists of relatively bright, young, tectonically deformed terrain dubbed grooved terrain. The grooved terrain consists of sets of parallel, undulatory ridges and troughs with peak to trough amplitudes of several hundred meters and periodic spacings that range from 3 to 10~km. The low slopes and periodic spacing of the grooves suggest that they formed via unstable extension of the ice lithosphere [e.g. Fink and Fletcher 1981, LPS XII; Pappalardo et al. 1998, Icarus 135]. Application of analytical models of unstable extension to Ganymede suggest that large amplitude grooves with appropriate wavelengths can form if the lithosphere is in pervasive brittle failure and if the lithospheric thermal gradient was relatively high (~45K km-1) [Dombard and McKinnon 2001, Icarus 154]; however, numerical models of unstable extension struggle to produce topographic amplitudes consistent with Ganymede's grooves (maximum amplitudes are a factor of five less than typical large amplitude grooves) [Bland and Showman 2007, Icarus 189]. The difficulties in producing large amplitude deformation may be overcome by the inclusion of strain weakening in models of groove formation. Strain weakening effects account for a material's tendency to strain more easily as viscous and/or plastic deformation accumulates, and as strain localizes in shear zones or along faults. When included in models of terrestrial extension, such effects can increase deformation amplitudes by up to several orders of magnitude [e.g. Fredericksen and Braun 2001, EPSL 188; Behn et al. 2002, EPSL 202]. Here we present the results of simulations of Ganymede's groove formation that include various strain weakening processes. Incorporation of a simple damage rheology, in which the yield strength of the ice lithosphere decreases as plastic strain accumulates, permits a factor of three increase in the amplitude of the simulated grooves, generating topography of 200~m or more. Such groove amplitudes are consistent with the lower-end of the range of observed groove amplitudes. More sophisticated strain weakening rheologies are likely to further increase deformation amplitudes. This work is supported by NASA PG&G.

  10. A Census of Plasma Waves and Structures Associated With an Injection Front in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Malaspina, David M.; Ukhorskiy, Aleksandr; Chu, Xiangning; Wygant, John

    2018-04-01

    Now that observations have conclusively established that the inner magnetosphere is abundantly populated with kinetic electric field structures and nonlinear waves, attention has turned to quantifying the ability of these structures and waves to scatter and accelerate inner magnetospheric plasma populations. A necessary step in that quantification is determining the distribution of observed structure and wave properties (e.g., occurrence rates, amplitudes, and spatial scales). Kinetic structures and nonlinear waves have broadband signatures in frequency space, and consequently, high-resolution time domain electric and magnetic field data are required to uniquely identify such structures and waves as well as determine their properties. However, most high-resolution fields data are collected with a strong bias toward high-amplitude signals in a preselected frequency range, strongly biasing observations of structure and wave properties. In this study, an ˜45 min unbroken interval of 16,384 samples/s field burst data, encompassing an electron injection event, is examined. This data set enables an unbiased census of the kinetic structures and nonlinear waves driven by this electron injection, as well as determination of their "typical" properties. It is found that the properties determined using this unbiased burst data are considerably different than those inferred from amplitude-biased burst data, with significant implications for wave-particle interactions due to kinetic structures and nonlinear waves in the inner magnetosphere.

  11. Stress orientation and fracturing during three-dimensional buckling: Numerical simulation and application to chocolate-tablet structures in folded turbidites, SW Portugal

    NASA Astrophysics Data System (ADS)

    Reber, J. E.; Schmalholz, S. M.; Burg, J.-P.

    2010-10-01

    Two orthogonal sets of veins, both orthogonal to bedding, form chocolate tablet structures on the limbs of folded quartzwackes of Carboniferous turbidites in SW Portugal. Structural observations suggest that (1) mode 1 fractures transverse to the fold axes formed while fold amplitudes were small and limbs were under layer-subparallel compression and (2) mode 1 fractures parallel to the fold axes formed while fold amplitudes were large and limbs were brought to be under layer-subparallel tension. We performed two- and three-dimensional numerical simulations investigating the evolution of stress orientations during viscous folding to test whether and how these two successive sets of fractures were related to folding. We employed ellipses and ellipsoids for the visualization and quantification of the local stress field. The numerical simulations show a change in the orientation of the local σ1 direction by almost 90° with respect to the bedding plane in the fold limbs. The coeval σ3 direction rotates from parallel to the fold axis at low fold amplitudes to orthogonal to the fold axis at high fold amplitudes. The stress orientation changes faster in multilayers than in single-layers. The numerical simulations are consistent with observation and provide a mechanical interpretation for the formation of the chocolate tablet structures through consecutive sets of fractures on rotating limbs of folded competent layers.

  12. Daily estimates of the migrating tide and zonal mean temperature in the mesosphere and lower thermosphere derived from SABER data

    NASA Astrophysics Data System (ADS)

    Ortland, David A.

    2017-04-01

    Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and tide components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal tide extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal tide extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating tides is due to changes in the mean flow structure and the superposition of the tidal responses to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.

  13. Wilson loops and QCD/string scattering amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makeenko, Yuri; Olesen, Poul; Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen O

    2009-07-15

    We generalize modern ideas about the duality between Wilson loops and scattering amplitudes in N=4 super Yang-Mills theory to large N QCD by deriving a general relation between QCD meson scattering amplitudes and Wilson loops. We then investigate properties of the open-string disk amplitude integrated over reparametrizations. When the Wilson-loop is approximated by the area behavior, we find that the QCD scattering amplitude is a convolution of the standard Koba-Nielsen integrand and a kernel. As usual poles originate from the first factor, whereas no (momentum-dependent) poles can arise from the kernel. We show that the kernel becomes a constant whenmore » the number of external particles becomes large. The usual Veneziano amplitude then emerges in the kinematical regime, where the Wilson loop can be reliably approximated by the area behavior. In this case, we obtain a direct duality between Wilson loops and scattering amplitudes when spatial variables and momenta are interchanged, in analogy with the N=4 super Yang-Mills theory case.« less

  14. Methods and techniques in helioseismology

    NASA Astrophysics Data System (ADS)

    Cortés, Teodoro Roca

    In the last two decades, the study of global solar oscillations has provided the only effective method to probe the structure of stars, and particularly that of our Sun. As will be seen throughout this short course, we now know the Sun much better than before thanks to Helioseismology. However, the detection of such normal modes of vibration of the Sun has only been possible recently due to the combination of two factors: first the signals to measure, although almost periodic, have very small amplitudes as compared to noise, and second, instrumental and observing techniques have not reached the required sensitivity until now.

  15. Short Large-Amplitude Magnetic Structures (SLAMS) at Venus

    NASA Technical Reports Server (NTRS)

    Collinson, G. A.; Wilson, L. B.; Sibeck, D. G.; Shane, N.; Zhang, T. L.; Moore, T. E.; Coates, A. J.; Barabash, S.

    2012-01-01

    We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.

  16. A cluster bootstrap for two-loop MHV amplitudes

    DOE PAGES

    Golden, John; Spradlin, Marcus

    2015-02-02

    We apply a bootstrap procedure to two-loop MHV amplitudes in planar N=4 super-Yang-Mills theory. We argue that the mathematically most complicated part (the Λ 2 B 2 coproduct component) of the n-particle amplitude is uniquely determined by a simple cluster algebra property together with a few physical constraints (dihedral symmetry, analytic structure, supersymmetry, and well-defined collinear limits). Finally, we present a concise, closed-form expression which manifests these properties for all n.

  17. An innovative re-centering SMA-lead damper and its application to steel frame structures

    NASA Astrophysics Data System (ADS)

    Li, Hong-Nan; Liu, Ming-Ming; Fu, Xing

    2018-07-01

    In this paper, an innovative re-centering damper is presented to reduce the residual deflection of civil structures under strong earthquakes. The schematic diagram of the proposed re-centering SMA-lead damper (RSLD) is provided first. Then the mechanical behaviors of all the sub-components are measured by the testing machine, followed by the proposal of mechanical model of the RSLD. Based on the experimental results, the mechanical model factors for each sub-component are determined by the data fitting method, which is then used to simulate the hysteresis loops of the damper. Meanwhile the experiment of the fabricated RSLD is carried out to study the influence of the loading rate and displacement amplitude on the mechanical properties. Finally, the response analysis of a six-story steel frame structure installed with different damper position configurations is performed, and the results reveal that the proposed RSLD has an outstanding re-centering capacity.

  18. Ion acoustic solitons in an electronegative plasma with electron trapping and nonextensivity effects

    NASA Astrophysics Data System (ADS)

    Ali Shan, S.

    2018-03-01

    The impact of electron trapping and nonextensivity on the low frequency ion acoustic solitary waves in an electronegative plasma is investigated. The energy integral equation with the Sagdeev truncated approach is derived, which is then solved with the help of suitable parameters and necessary conditions to get the solitary structures. The minimum Mach (M) number needed to calculate the solitary structures is found to be varying under the impact of trapping efficiency determining factor β and entropic index q. The results have been illustrated with the help of physically acceptable parameters and the amplitude of nonlinear solitary structures is found to be modified significantly because of electron trapping efficiency β and entropic index q. This study has been made with reference to Laboratory observation, which can also be helpful in Space and astrophysical plasmas where electronegative plasmas have been reported.

  19. One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto; Lopez-Arcos, Cristhiam; Talavera, Pedro

    2017-10-01

    In this paper we reconsider the Cachazo-He-Yuan construction (CHY) of the so called scattering amplitudes at one-loop, in order to obtain quadratic propagators. In theories with colour ordering the key ingredient is the redefinition of the Parke-Taylor factors. After classifying all the possible one-loop CHY-integrands we conjecture a new one-loop amplitude for the massless Bi-adjoint Φ3 theory. The prescription directly reproduces the quadratic propagators of the traditional Feynman approach.

  20. Evaluating Changes in Tendon Crimp with Fatigue Loading as an ex vivo Structural Assessment of Tendon Damage

    PubMed Central

    Freedman, Benjamin R.; Zuskov, Andrey; Sarver, Joseph J.; Buckley, Mark R.; Soslowsky, Louis J.

    2015-01-01

    The complex structure of tendons relates to their mechanical properties. Previous research has associated the waviness of collagen fibers (crimp) during quasi-static tensile loading to tensile mechanics, but less is known about the role of fatigue loading on crimp properties. In this study (IACUC approved), mouse patellar tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties. We demonstrate a novel structural mechanism whereby tendon crimp amplitude and frequency are altered with fatigue loading. In particular, fatigue loading increased the crimp amplitude across the tendon width and length, and these structural alterations were shown to be both region and load dependent. The change in crimp amplitude was strongly correlated to mechanical tissue laxity (defined as the ratio of displacement and gauge length relative to the first cycle of fatigue loading assessed at constant load throughout testing), at all loads and regions evaluated. Together, this study highlights the role of fatigue loading on tendon crimp properties as a function of load applied and region evaluated, and offers an additional structural mechanism for mechanical alterations that may lead to ultimate tendon failure. PMID:25773654

  1. Computing Maximally Supersymmetric Scattering Amplitudes

    NASA Astrophysics Data System (ADS)

    Stankowicz, James Michael, Jr.

    This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at infinity for (L ≥ 4)-loops. Finally in Ch. 7, the current status of ultraviolet divergences in the five-loop four-point mSUGRA amplitude is addressed. This includes a discussion of ongoing work aimed at resolving the mSUGRA finiteness question. The following Mathematica scripts are submitted with this dissertation: • on shell diagrams and numerics.m with dependencies: -- all_trees *.m -- external_kinematics_*_point.m -- rational_external_*_point.m where "*" is a wild-card string of any set of characters of any length -- either an integer or a number spelled out.

  2. Imaging contrast and tip-sample interaction of non-contact amplitude modulation atomic force microscopy with Q-control

    NASA Astrophysics Data System (ADS)

    Shi, Shuai; Guo, Dan; Luo, Jianbin

    2017-10-01

    Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.

  3. Application of polarization in particle reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arash, F.

    In this dissertation polarization phenomena in particle reactions have been used to study the revealing features of the reactions. First, it is shown that it is impossible to design a non-dynamical null-experimental to test the time-reversal invariant. Second, the optimal formalism representation is used to determine proton-proton elastic scattering amplitudes at 579 MeV and 800 MeV. Thirdly, the polarization structure of two-body reaction in a collinear configuration is investigated, and it is demonstrated that the structure becomes much simpler than it was for the general configuration. Fourthly, an amplitude test is conducted to search for dibaryon resonances in p-p elasticmore » scattering and it is found that at the energies around 800 MeV there is no evidence for any singlet partial wave state resonances. There exist, however, some tantalizing subliminal evidence for /sup 3/F/sub 3/ resonance. This method is also applied for pion-deutron elastic scattering to pin point the effect of a dibaryon resonance. Fifthly, evidence for the preeminence of one-particle-exchange mechanism is p-p elastic scattering is also examined in the 300 MeV-6 GeV/c range. Finally, a phenomenological model is developed to explain a striking feature of p-p scattering amplitudes pertaining to the amplitudes being either purely real or purely imaginary, and having three amplitudes almost equal in magnitudes and three times smaller than one amplitude in magnitude. This feature is extended to ..pi../sup +/p and k/sup +/p elastic scattering where spin flip and spin non-flip amplitudes appear to be equal in magnitude.« less

  4. Effects of large pressure amplitude low frequency noise in the parotid gland perivasculo-ductal connective tissue.

    PubMed

    Oliveira, Pedro; Brito, José; Mendes, João; da Fonseca, Jorge; Águas, Artur; Martins dos Santos, José

    2013-01-01

    In tissues and organs exposed to large pressure amplitude low frequency noise fibrosis occurs in the absence of inflammatory signs, which is thought to be a protective response. In the parotid gland the perivasculo-ductal connective tissue surrounds arteries, veins and the ductal tree. Perivasculo-ductal connective tissue is believed to function as a mechanical stabilizer of the glandular tissue. In order to quantify the proliferation of perivasculo-ductal connective tissue in large pressure amplitude low frequency noise-exposed rats we used sixty Wistar rats which were equally divided into 6 groups. One group kept in silence, and the remaining five exposed to continuous large pressure amplitude low frequency noise: g1-168h (1 week); g2-504h (3 weeks); g3-840h (5 weeks); g4-1512h (9 weeks); and g5-2184h (13 weeks). After exposure, parotid glands were removed and the perivasculo-ductal connective tissue area was measured in all groups. We applied ANOVA statistical analysis, using SPSS 13.0. The global trend is an increase in the average perivasculo-ductal connective tissue areas, that develops linearly and significantly with large pressure amplitude low frequency noise exposure time (p < 0.001). It has been suggested that the biological response to large pressure amplitude low frequency noise exposure is associated with the need to maintain structural integrity. The structural reinforcement would be achieved by increased perivasculo-ductal connective tissue. Hence, these results show that in response to large pressure amplitude low frequency noise exposure, rat parotid glands increase their perivasculo-ductal connective tissue.

  5. The Crystal Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction

    DOE R&D Accomplishments Database

    Rundle, R.E.; Shull, C.G.; Wollan, E.O.

    1951-04-20

    Thorium forms a tetragonal lower hydride of composition ThH{sub 2}. The hydrides ThH{sub 2}, ThD{sub 2}, and ZrD{sub 2} have been studied by neutron diffraction in order that hydrogen positions could be determined. The hydrides are isomorphous, and have a deformed fluorite structure. Metal-hydrogen distances in thorium hydride are unusually large, as in UH{sub 3}. Thorium and zirconium scattering amplitudes and a revised scattering amplitude for deuterium are reported.

  6. All two-loop maximally helicity-violating amplitudes in multi-Regge kinematics from applied symbology

    NASA Astrophysics Data System (ADS)

    Prygarin, Alexander; Spradlin, Marcus; Vergu, Cristian; Volovich, Anastasia

    2012-04-01

    Recent progress on scattering amplitudes has benefited from the mathematical technology of symbols for efficiently handling the types of polylogarithm functions which frequently appear in multiloop computations. The symbol for all two-loop maximally helicity violating amplitudes in planar supersymmetric Yang-Mills theory is known, but explicit analytic formulas for the amplitudes are hard to come by except in special limits where things simplify, such as multi-Regge kinematics. By applying symbology we obtain a formula for the leading behavior of the imaginary part (the Mandelstam cut contribution) of this amplitude in multi-Regge kinematics for any number of gluons. Our result predicts a simple recursive structure which agrees with a direct Balitsky-Fadin-Kuraev-Lipatov computation carried out in a parallel publication.

  7. Data-driven sensitivity inference for Thomson scattering electron density measurement systems.

    PubMed

    Fujii, Keisuke; Yamada, Ichihiro; Hasuo, Masahiro

    2017-01-01

    We developed a method to infer the calibration parameters of multichannel measurement systems, such as channel variations of sensitivity and noise amplitude, from experimental data. We regard such uncertainties of the calibration parameters as dependent noise. The statistical properties of the dependent noise and that of the latent functions were modeled and implemented in the Gaussian process kernel. Based on their statistical difference, both parameters were inferred from the data. We applied this method to the electron density measurement system by Thomson scattering for the Large Helical Device plasma, which is equipped with 141 spatial channels. Based on the 210 sets of experimental data, we evaluated the correction factor of the sensitivity and noise amplitude for each channel. The correction factor varies by ≈10%, and the random noise amplitude is ≈2%, i.e., the measurement accuracy increases by a factor of 5 after this sensitivity correction. The certainty improvement in the spatial derivative inference was demonstrated.

  8. Field-theoretical description of electromagnetic Δ resonance production and determination of the magnetic moment of the Δ+ (1232) resonance by the ep → e' N' π' γ' and γp → N' π' γ' reactions

    NASA Astrophysics Data System (ADS)

    Machavariani, A. I.; Faessler, Amand; Buchmann, A. J.

    1999-02-01

    The ep → e' N' π' γ' and γp → N' π' γ' reactions in the Δ resonance region are investigated in the framework of the relativistic field-theoretical spectral decomposition method for the γ ∗N → γ'π'N' transition amplitude. This approach allows us to express the amplitude through three-dimensional diagrams with on-mass shell intermediate states. The Δ resonance is constructed as intermediate cluster state | ΨΔ> with real bare mass MΔ ˜ 1232 MeV and with a complex propagator of Breit-Wigner shape for the P33 π N amplitude. Thus, the usual off-mass shell ambiguities in spin {3}/{2} effective Lagrangians do not affect the present description. Using a unified treatment of nucleons, mesons, and Δ's as bound systems of quarks according to the Haag-Nishijima-Zimmermann field-theoretical approach, it is shown that quark-gluon degrees of freedom only change the rule for constructing the form factors in three-dimensional diagrams for obtaining the γ ∗N → γ'π'N' transition amplitude. However, the structure of these-dimensional diagrams remains the same as in formulations with only meson and nucleon degrees of freedom. A simple redefinition of the γ ∗N → γ'π'N' amplitude which insures gauge invariance in every order of perturbation theory with an arbitrary choice of phenomenological vertices is considered. We calculate the leading diagram of this amplitude in the Δ resonance region. It is demonstrated that the differential cross section of the ep → e' N' π' γ' and γp → N' π' γ' reactions is sensitive to the value of the magnetic moment of the Δ+ resonance. Thus, the measurement of the differential cross section for ep → e' N' π' γ' and γp → N' π' γ' reactions can be used for determining the magnetic dipole moment of Δ+.

  9. Latent factor structure of a behavioral economic cigarette demand curve in adolescent smokers

    PubMed Central

    Bidwell, L. Cinnamon; MacKillop, James; Murphy, James G.; Tidey, Jennifer W.; Colby, Suzanne M.

    2012-01-01

    Behavioral economic demand curves, or quantitative representations of drug consumption across a range of prices, have been used to assess motivation for a variety of drugs. Such curves generate multiple measures of drug demand that are associated with cigarette consumption and nicotine dependence. However, little is known about the relationships among these facets of demand. The aim of the study was to quantify these relationships in adolescent smokers by using exploratory factor analysis to examine the underlying structure of the facets of nicotine incentive value generated from a demand curve measure. Participants were 138 adolescent smokers who completed a hypothetical cigarette purchase task, which assessed estimated cigarette consumption at escalating levels of price/cigarette. Demand curves and five facets of demand were generated from the measure: Elasticity (i.e., 1/α or proportionate price sensitivity); Intensity (i.e., consumption at zero price); Omax (i.e., maximum financial expenditure on cigarettes); Pmax (i.e., price at which expenditure is maximized); and Breakpoint (i.e., the price that suppresses consumption to zero). Principal components analysis was used to examine the latent structure among the variables. The results revealed a two-factor solution, which were interpreted as “Persistence,” reflecting insensitivity to escalating price, and “Amplitude,” reflecting the absolute levels of consumption and price. These findings suggest a two factor structure of nicotine incentive value as measured via a demand curve. If supported, these findings have implications for understanding the relationships among individual demand indices in future behavioral economic studies and may further contribute to understanding of the nature of cigarette reinforcement. PMID:22727784

  10. Phenomenological extraction of two-photon exchange amplitudes from elastic electron-proton scattering cross section data

    NASA Astrophysics Data System (ADS)

    Qattan, I. A.

    2017-05-01

    Background: The inconsistency in the results obtained from the Rosenbluth separation method and the high-Q2 recoil polarization results on the ratio μpGEp/GMp implies a systematic difference between the two techniques. Several studies suggest that missing higher-order radiative corrections to elastic electron-proton scattering cross section σR(ɛ ,Q2) and in particular hard two-photon-exchange (TPE) contributions could account for the discrepancy. Purpose: In this work, I improve on and extend to low and high Q2 values the extractions of the ɛ dependence of the real parts of the TPE amplitudes relative to the magnetic form factor, as well as the ratio Pl/PlBorn(ɛ ,Q2) by using world data on σR(ɛ ,Q2) with an emphasis on precise new data covering the low-momentum region which is sensitive to the large-scale structure of the nucleon. Method: I combine cross section and polarization measurements of elastic electron-proton scattering to extract the TPE amplitudes. Because the recoil polarization data were confirmed "experimentally" to be essentially independent of ɛ , I constrain the ratio Pt/Pl(ɛ ,Q2) to its ɛ -independent term (Born value) by setting the TPE contributions to zero. This allows for the amplitude YM(ɛ ,Q2) and σR(ɛ ,Q2) to be expressed in terms of the remaining two amplitudes YE(ɛ ,Q2) and Y3(ɛ ,Q2) which in turn are parametrized as second-order polynomials in ɛ and Q2 to reserve as possible the linearity of σR(ɛ ,Q2) as well as to account for possible nonlinearities in the TPE amplitudes. Furthermore, I impose the Regge limit which ensures the vanishing of the TPE contributions to σR(ɛ ,Q2) and the TPE amplitudes in the limit ɛ →1 . Results: I provide simple parametrizations of the TPE amplitudes, along with an estimate of the fit uncertainties. The extracted TPE amplitudes are compared with previous phenomenological extractions and TPE calculations. The Pl/PlBorn ratio is extracted by using the new parametrizations of the TPE amplitudes and compared to previous extractions, TPE calculations, and direct measurements at Q2=2.50(GeV /c ) 2 . Conclusions: The extracted TPE amplitudes are on the few-percentage-points level and behave roughly linearly with increasing Q2 where they become nonlinear at high Q2. Contrary to YM, which is influenced mainly by elastic contributions, I find YE to be influenced by inelastic contributions at large Q2 values. While YE and Y3 differ in magnitude, they have opposite sign and tend to partially cancel each other. This suggests that the TPE correction to σR(ɛ ,Q2) is driven mainly by YM and to a lesser extent by Y3 in agreement with previous phenomenological extractions and hadronic TPE calculations.

  11. Partonic structure of neutral pseudoscalars via two photon transition form factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raya, Khepani; Ding, Minghui; Bashir, Adnan

    Here, the γγ* → η c,b transition form factors are computed using a continuum approach to the two valence-body bound-state problem in relativistic quantum field theory, and thereby unified with equivalent calculations of electromagnetic pion elastic and transition form factors. The resulting γγ* → η c form factor, G ηc(Q 2), is consistent with available data; significantly, at accessible momentum transfers, Q 2G ηc(Q 2) lies well below its conformal limit. These observations confirm that the leading-twist parton distribution amplitudes of heavy-heavy bound states are compressed relative to the conformal limit. A clear understanding of the distribution of valence quarksmore » within mesons thus emerges, a picture which connects Goldstone modes, built from the lightest quarks in nature, with systems containing the heaviest valence quarks that can now be studied experimentally, and highlights basic facts about manifestations of mass within the Standard Model.« less

  12. Partonic structure of neutral pseudoscalars via two photon transition form factors

    DOE PAGES

    Raya, Khepani; Ding, Minghui; Bashir, Adnan; ...

    2017-04-10

    Here, the γγ* → η c,b transition form factors are computed using a continuum approach to the two valence-body bound-state problem in relativistic quantum field theory, and thereby unified with equivalent calculations of electromagnetic pion elastic and transition form factors. The resulting γγ* → η c form factor, G ηc(Q 2), is consistent with available data; significantly, at accessible momentum transfers, Q 2G ηc(Q 2) lies well below its conformal limit. These observations confirm that the leading-twist parton distribution amplitudes of heavy-heavy bound states are compressed relative to the conformal limit. A clear understanding of the distribution of valence quarksmore » within mesons thus emerges, a picture which connects Goldstone modes, built from the lightest quarks in nature, with systems containing the heaviest valence quarks that can now be studied experimentally, and highlights basic facts about manifestations of mass within the Standard Model.« less

  13. Resolving High Amplitude Surface Motion with Diffusing Light

    NASA Technical Reports Server (NTRS)

    Wright, W.; Budakian, R.; Putterman, Seth J.

    1996-01-01

    A new technique has been developed for the purpose of imaging high amplitude surface motion. With this method one can quantitatively measure the transition to ripple wave turbulence. In addition, one can measure the phase of the turbulent state. These experiments reveal strong coherent structures in turbulent range of motion.

  14. Amplitude Envelope Perception, Phonology and Prosodic Sensitivity in Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Goswami, Usha; Gerson, Danielle; Astruc, Luisa

    2010-01-01

    Here we explore relations between auditory perception of amplitude envelope structure, prosodic sensitivity, and phonological awareness in a sample of 56 typically-developing children and children with developmental dyslexia. We examine whether rise time sensitivity is linked to prosodic sensitivity, and whether prosodic sensitivity is linked to…

  15. An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling

    NASA Astrophysics Data System (ADS)

    Oda, Hitoshi

    2005-02-01

    We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the spectral inversion makes it possible to estimate the odd-order lateral structure, which cannot be determined by the conventional spectral inversion, which takes no account of the mixed coupling. Higher order structure is biased by the mixed coupling when the conventional spectral inversion is applied to the amplitude spectra incorporating the mixed coupling.

  16. On the Uniqueness and Consistency of Scattering Amplitudes

    NASA Astrophysics Data System (ADS)

    Rodina, Laurentiu

    In this dissertation, we study constraints imposed by locality, unitarity, gauge invariance, the Adler zero, and constructability (scaling under BCFW shifts). In the first part we study scattering amplitudes as the unique mathematical objects which can satisfy various combinations of such principles. In all cases we find that locality and unitarity may be derived from gauge invariance (for Yang-Mills and General Relativity) or from the Adler zero (for the non-linear sigma model and the Dirac-Born-Infeld model), together with mild assumptions on the singularity structure and mass dimension. We also conjecture that constructability and locality together imply gauge invariance, hence also unitarity. All claims are proved through a soft expansion, and in the process we end re-deriving the well-known leading soft theorems for all four theories. Unlike other proofs of these theorems, we do not assume any form of factorization (unitarity). In the second part we show how tensions arising between gauge invariance (as encoded by spinor helicity variables in four dimensions), locality, unitarity and constructability give rise to various physical properties. These include high-spin no-go theorems, the equivalence principle, and the emergence of supersymmetry from spin 3/2 particles. We also complete the fully on-shell constructability proof of gravity amplitudes, by showing that the improved "bonus'' behavior of gravity under BCFW shifts is a simple consequence of Bose symmetry.

  17. Analysis of real-time vibration data

    USGS Publications Warehouse

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  18. Nonlinear finite amplitude vibrations of sharp-edged beams in viscous fluids

    NASA Astrophysics Data System (ADS)

    Aureli, M.; Basaran, M. E.; Porfiri, M.

    2012-03-01

    In this paper, we study flexural vibrations of a cantilever beam with thin rectangular cross section submerged in a quiescent viscous fluid and undergoing oscillations whose amplitude is comparable with its width. The structure is modeled using Euler-Bernoulli beam theory and the distributed hydrodynamic loading is described by a single complex-valued hydrodynamic function which accounts for added mass and fluid damping experienced by the structure. We perform a parametric 2D computational fluid dynamics analysis of an oscillating rigid lamina, representative of a generic beam cross section, to understand the dependence of the hydrodynamic function on the governing flow parameters. We find that increasing the frequency and amplitude of the vibration elicits vortex shedding and convection phenomena which are, in turn, responsible for nonlinear hydrodynamic damping. We establish a manageable nonlinear correction to the classical hydrodynamic function developed for small amplitude vibration and we derive a computationally efficient reduced order modal model for the beam nonlinear oscillations. Numerical and theoretical results are validated by comparison with ad hoc designed experiments on tapered beams and multimodal vibrations and with data available in the literature. Findings from this work are expected to find applications in the design of slender structures of interest in marine applications, such as biomimetic propulsion systems and energy harvesting devices.

  19. Pain and the defense response: structural equation modeling reveals a coordinated psychophysiological response to increasing painful stimulation.

    PubMed

    Donaldson, Gary W; Chapman, C Richard; Nakamura, Yoshi; Bradshaw, David H; Jacobson, Robert C; Chapman, Christopher N

    2003-03-01

    The defense response theory implies that individuals should respond to increasing levels of painful stimulation with correlated increases in affectively mediated psychophysiological responses. This paper employs structural equation modeling to infer the latent processes responsible for correlated growth in the pain report, evoked potential amplitudes, pupil dilation, and skin conductance of 92 normal volunteers who experienced 144 trials of three levels of increasingly painful electrical stimulation. The analysis assumed a two-level model of latent growth as a function of stimulus level. The first level of analysis formulated a nonlinear growth model for each response measure, and allowed intercorrelations among the parameters of these models across individuals. The second level of analysis posited latent process factors to account for these intercorrelations. The best-fitting parsimonious model suggests that two latent processes account for the correlations. One of these latent factors, the activation threshold, determines the initial threshold response, while the other, the response gradient, indicates the magnitude of the coherent increase in response with stimulus level. Collectively, these two second-order factors define the defense response, a broad construct comprising both subjective pain evaluation and physiological mechanisms.

  20. The attenuation of Fourier amplitudes for rock sites in eastern North America

    USGS Publications Warehouse

    Atkinson, Gail M.; Boore, David M.

    2014-01-01

    We develop an empirical model of the decay of Fourier amplitudes for earthquakes of M 3–6 recorded on rock sites in eastern North America and discuss its implications for source parameters. Attenuation at distances from 10 to 500 km may be adequately described using a bilinear model with a geometric spreading of 1/R1.3 to a transition distance of 50 km, with a geometric spreading of 1/R0.5 at greater distances. For low frequencies and distances less than 50 km, the effective geometric spreading given by the model is perturbed using a frequency‐ and hypocentral depth‐dependent factor defined in such a way as to increase amplitudes at lower frequencies near the epicenter but leave the 1 km source amplitudes unchanged. The associated anelastic attenuation is determined for each event, with an average value being given by a regional quality factor of Q=525f 0.45. This model provides a match, on average, between the known seismic moment of events and the inferred low‐frequency spectral amplitudes at R=1  km (obtained by correcting for the attenuation model). The inferred Brune stress parameters from the high‐frequency source terms are about 600 bars (60 MPa), on average, for events of M>4.5.

  1. Human ossicular-joint flexibility transforms the peak amplitude and width of impulsive acoustic stimulia)

    PubMed Central

    Gottlieb, Peter K.; Vaisbuch, Yona

    2018-01-01

    The role of the ossicular joints in the mammalian middle ear is still debated. This work tests the hypothesis that the two synovial joints filter potentially damaging impulsive stimuli by transforming both the peak amplitude and width of these impulses before they reach the cochlea. The three-dimensional (3D) velocity along the ossicular chain in unaltered cadaveric human temporal bones (N = 9), stimulated with acoustic impulses, is measured in the time domain using a Polytec (Waldbronn, Germany) CLV-3D laser Doppler vibrometer. The measurements are repeated after fusing one or both of the ossicular joints with dental cement. Sound transmission is characterized by measuring the amplitude, width, and delay of the impulsive velocity profile as it travels from the eardrum to the cochlea. On average, fusing both ossicular joints causes the stapes velocity amplitude and width to change by a factor of 1.77 (p = 0.0057) and 0.78 (p = 0.011), respectively. Fusing just the incudomalleolar joint has a larger effect on amplitude (a factor of 2.37), while fusing just the incudostapedial joint decreases the stapes velocity on average. The 3D motion of the ossicles is altered by fusing the joints. Finally, the ability of current computational models to predict this behavior is also evaluated.

  2. Coherence resonance in low-density jets

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanhang; Gupta, Vikrant; Li, Larry K. B.

    2017-11-01

    Coherence resonance is a phenomenon in which the response of a stable nonlinear system to noise exhibits a peak in coherence at an intermediate noise amplitude. We report the first experimental evidence of coherence resonance in a purely hydrodynamic system, a low-density jet whose variants can be found in many natural and engineering systems. This evidence comprises four parts: (i) the jet's response amplitude increases as the Reynolds number approaches the instability boundary under a constant noise amplitude; (ii) as the noise amplitude increases, the amplitude distribution of the jet response first becomes unimodal, then bimodal, and finally unimodal again; (iii) a distinct peak emerges in the coherence factor at an intermediate noise amplitude; and (iv) for a subcritical Hopf bifurcation, the decay rate of the autocorrelation function exhibits a maximum at an intermediate noise amplitude, but for a supercritical Hopf bifurcation, the decay rate decreases monotonically with increasing noise amplitude. It is clear that coherence resonance can provide valuable information about a system's nonlinearity even in the unconditionally stable regime, opening up new possibilities for its use in system identification and flow control. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  3. Inhibitory effects of opioids on compound action potentials in frog sciatic nerves and their chemical structures.

    PubMed

    Mizuta, Kotaro; Fujita, Tsugumi; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2008-08-01

    An opioid tramadol more effectively inhibits compound action potentials (CAPs) than its metabolite mono-O-demethyl-tramadol (M1). To address further this issue, we examined the effects of opioids (morphine, codeine, ethylmorphine and dihydrocodeine) and cocaine on CAPs by applying the air-gap method to the frog sciatic nerve. All of the opioids at concentrations less than 10 mM reduced the peak amplitude of the CAP in a reversible and dose-dependent manner. The sequence of the CAP peak amplitude reductions was ethylmorphine>codeine>dihydrocodeine> or = morphine; the effective concentration for half-maximal inhibition (IC(50)) of ethylmorphine was 4.6 mM. All of the CAP inhibitions by opioids were resistant to a non-specific opioid-receptor antagonist naloxone. The CAP peak amplitude reductions produced by morphine, codeine and ethylmorphine were related to their chemical structures in such that this extent enhanced with an increase in the number of -CH(2) in a benzene ring, as seen in the inhibitory actions of tramadol and M1. Cocaine reduced CAP peak amplitudes with an IC(50) value of 0.80 mM. It is concluded that opioids reduce CAP peak amplitudes in a manner being independent of opioid-receptor activation and with an efficacy being much less than that of cocaine. It is suggested that the substituted groups of -OH bound to the benzene ring of morphine, codeine and ethylmorphine as well as of tramadol and M1, the structures of which are quite different from those of the opioids, may play an important role in producing nerve conduction block.

  4. Phase and amplitude beam shaping with two deformable mirrors implementing input plane and Fourier plane phase modifications.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Rzasa, John R; Paulson, Daniel A; Davis, Christopher C

    2018-03-20

    We find that ideas in optical image encryption can be very useful for adaptive optics in achieving simultaneous phase and amplitude shaping of a laser beam. An adaptive optics system with simultaneous phase and amplitude shaping ability is very desirable for atmospheric turbulence compensation. Atmospheric turbulence-induced beam distortions can jeopardize the effectiveness of optical power delivery for directed-energy systems and optical information delivery for free-space optical communication systems. In this paper, a prototype adaptive optics system is proposed based on a famous image encryption structure. The major change is to replace the two random phase plates at the input plane and Fourier plane of the encryption system, respectively, with two deformable mirrors that perform on-demand phase modulations. A Gaussian beam is used as an input to replace the conventional image input. We show through theory, simulation, and experiments that the slightly modified image encryption system can be used to achieve arbitrary phase and amplitude beam shaping within the limits of stroke range and influence function of the deformable mirrors. In application, the proposed technique can be used to perform mode conversion between optical beams, generate structured light signals for imaging and scanning, and compensate atmospheric turbulence-induced phase and amplitude beam distortions.

  5. Large-amplitude nonlinear normal modes of the discrete sine lattices.

    PubMed

    Smirnov, Valeri V; Manevitch, Leonid I

    2017-02-01

    We present an analytical description of the large-amplitude stationary oscillations of the finite discrete system of harmonically coupled pendulums without any restrictions on their amplitudes (excluding a vicinity of π). Although this model has numerous applications in different fields of physics, it was studied earlier in the infinite limit only. The discrete chain with a finite length can be considered as a well analytical analog of the coarse-grain models of flexible polymers in the molecular dynamics simulations. The developed approach allows to find the dispersion relations for arbitrary amplitudes of the nonlinear normal modes. We emphasize that the long-wavelength approximation, which is described by well-known sine-Gordon equation, leads to an inadequate zone structure for the amplitudes of about π/2 even if the chain is long enough. An extremely complex zone structure at the large amplitudes corresponds to multiple resonances between nonlinear normal modes even with strongly different wave numbers. Due to the complexity of the dispersion relations the modes with shorter wavelengths may have smaller frequencies. The stability of the nonlinear normal modes under condition of the resonant interaction are discussed. It is shown that this interaction of the modes in the vicinity of the long wavelength edge of the spectrum leads to the localization of the oscillations. The thresholds of instability and localization are determined explicitly. The numerical simulation of the dynamics of a finite-length chain is in a good agreement with obtained analytical predictions.

  6. Inducing in situ, nonlinear soil response applying an active source

    USGS Publications Warehouse

    Johnson, P.A.; Bodin, P.; Gomberg, J.; Pearce, F.; Lawrence, Z.; Menq, F.-Y.

    2009-01-01

    [1] It is well known that soil sites have a profound effect on ground motion during large earthquakes. The complex structure of soil deposits and the highly nonlinear constitutive behavior of soils largely control nonlinear site response at soil sites. Measurements of nonlinear soil response under natural conditions are critical to advancing our understanding of soil behavior during earthquakes. Many factors limit the use of earthquake observations to estimate nonlinear site response such that quantitative characterization of nonlinear behavior relies almost exclusively on laboratory experiments and modeling of wave propagation. Here we introduce a new method for in situ characterization of the nonlinear behavior of a natural soil formation using measurements obtained immediately adjacent to a large vibrator source. To our knowledge, we are the first group to propose and test such an approach. Employing a large, surface vibrator as a source, we measure the nonlinear behavior of the soil by incrementally increasing the source amplitude over a range of frequencies and monitoring changes in the output spectra. We apply a homodyne algorithm for measuring spectral amplitudes, which provides robust signal-to-noise ratios at the frequencies of interest. Spectral ratios are computed between the receivers and the source as well as receiver pairs located in an array adjacent to the source, providing the means to separate source and near-source nonlinearity from pervasive nonlinearity in the soil column. We find clear evidence of nonlinearity in significant decreases in the frequency of peak spectral ratios, corresponding to material softening with amplitude, observed across the array as the source amplitude is increased. The observed peak shifts are consistent with laboratory measurements of soil nonlinearity. Our results provide constraints for future numerical modeling studies of strong ground motion during earthquakes.

  7. Control of the wrinkle structure on surface-reformed poly(dimethylsiloxane) via ion-beam bombardment

    NASA Astrophysics Data System (ADS)

    Park, Hong-Gyu; Jeong, Hae-Chang; Jung, Yoon Ho; Seo, Dae-Shik

    2015-07-01

    We investigated the surface reformation of poly(dimethylsiloxane) (PDMS) elastomers by means of ion beam bombardment for fabricating wrinkle structures. Oxidation on the PDMS surface formed a silica-like outer layer that interacted with the inner PDMS layer, leading to the formation of wrinkle structures that minimized the combined bending energy of the outer layer and stretching energy of the inner layer. In addition, we controlled the amplitude and period of the wrinkle structures by adjusting the PDMS annealing temperature. As the PDMS annealing temperature was increased, the amplitude and period of the wrinkles formed by IB irradiation changed from 604.35 to 69.01 nm and from 3.07 to 0.80 μm, respectively.

  8. Quantifying Errors in Jet Noise Research Due to Microphone Support Reflection

    NASA Technical Reports Server (NTRS)

    Nallasamy, Nambi; Bridges, James

    2002-01-01

    The reflection coefficient of a microphone support structure used insist noise testing is documented through tests performed in the anechoic AeroAcoustic Propulsion Laboratory. The tests involve the acquisition of acoustic data from a microphone mounted in the support structure while noise is generated from a known broadband source. The ratio of reflected signal amplitude to the original signal amplitude is determined by performing an auto-correlation function on the data. The documentation of the reflection coefficients is one component of the validation of jet noise data acquired using the given microphone support structure. Finally. two forms of acoustic material were applied to the microphone support structure to determine their effectiveness in reducing reflections which give rise to bias errors in the microphone measurements.

  9. Local magnitude scale for earthquakes in Turkey

    NASA Astrophysics Data System (ADS)

    Kılıç, T.; Ottemöller, L.; Havskov, J.; Yanık, K.; Kılıçarslan, Ö.; Alver, F.; Özyazıcıoğlu, M.

    2017-01-01

    Based on the earthquake event data accumulated by the Turkish National Seismic Network between 2007 and 2013, the local magnitude (Richter, Ml) scale is calibrated for Turkey and the close neighborhood. A total of 137 earthquakes (Mw > 3.5) are used for the Ml inversion for the whole country. Three Ml scales, whole country, East, and West Turkey, are developed, and the scales also include the station correction terms. Since the scales for the two parts of the country are very similar, it is concluded that a single Ml scale is suitable for the whole country. Available data indicate the new scale to suffer from saturation beyond magnitude 6.5. For this data set, the horizontal amplitudes are on average larger than vertical amplitudes by a factor of 1.8. The recommendation made is to measure Ml amplitudes on the vertical channels and then add the logarithm scale factor to have a measure of maximum amplitude on the horizontal. The new Ml is compared to Mw from EMSC, and there is almost a 1:1 relationship, indicating that the new scale gives reliable magnitudes for Turkey.

  10. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.

    2012-02-16

    Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z inmore » AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse momentum distributions. The effective confining potential also creates quark-antiquark pairs from the amplitude q {yields} q{bar q}q. Thus in holographic QCD higher Fock states can have any number of extra q{bar q} pairs. We discuss the relevance of higher Fock-states for describing the detailed structure of space and time-like form factors. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also obtained.« less

  11. Amplitude Noise Reduction of Ion Lasers with Optical Feedback

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2011-01-01

    A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.

  12. Influence of mirror therapy on human motor cortex.

    PubMed

    Fukumura, Kenji; Sugawara, Kenichi; Tanabe, Shigeo; Ushiba, Junichi; Tomita, Yutaka

    2007-07-01

    This article investigates whether or not mirror therapy alters the neural mechanisms in human motor cortex. Six healthy volunteers participated. The study investigated the effects of three main factors of mirror therapy (observation of hand movements in a mirror, motor imagery of an assumed affected hand, and assistance in exercising the assumed affected hand) on excitability changes in the human motor cortex to clarify the contribution of each factor. The increase in motor-evoked potential (MEP) amplitudes during motor imagery tended to be larger with a mirror than without one. Moreover, MEP amplitudes increased greatly when movements were assisted. Watching the movement of one hand in a mirror makes it easier to move the other hand in the same way. Moreover, the increase in MEP amplitudes is related to the synergic effects of afferent information and motor imagery.

  13. Connection between angle-dependent phase ambiguities and the uniqueness of the partial-wave decomposition

    NASA Astrophysics Data System (ADS)

    Švarc, A.; Wunderlich, Y.; Osmanović, H.; Hadžimehmedović, M.; Omerović, R.; Stahov, J.; Kashevarov, V.; Nikonov, K.; Ostrick, M.; Tiator, L.; Workman, R.

    2018-05-01

    Unconstrained partial -wave amplitudes, obtained at discrete energies from fits to complete sets of eight independent observables, may be used to reconstruct reaction amplitudes. These partial-wave amplitudes do not vary smoothly with energy and are in principle nonunique. We demonstrate how this behavior can be ascribed to the continuum ambiguity. Starting from the spinless scattering case, we show how an unknown overall phase, depending on energy and angle, mixes the structures seen in the associated partial-wave amplitudes. This process is illustrated using a simple toy model. We then apply these principles to pseudoscalar meson photoproduction, showing how the above effect can be removed through a phase rotation, allowing a consistent comparison with model amplitudes. The effect of this phase ambiguity is also considered for Legendre expansions of experimental observables.

  14. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  15. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE PAGES

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...

    2017-07-03

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  16. Comparing near-regional and local measurements of infrasound from Mount Erebus, Antarctica: Implications for monitoring

    NASA Astrophysics Data System (ADS)

    Dabrowa, A. L.; Green, D. N.; Johnson, J. B.; Phillips, J. C.; Rust, A. C.

    2014-11-01

    Local (100 s of metres from vent) monitoring of volcanic infrasound is a common tool at volcanoes characterized by frequent low-magnitude eruptions, but it is generally not safe or practical to have sensors so close to the vent during more intense eruptions. To investigate the potential and limitations of monitoring at near-regional ranges (10 s of km) we studied infrasound detection and propagation at Mount Erebus, Antarctica. This site has both a good local monitoring network and an additional International Monitoring System infrasound array, IS55, located 25 km away. We compared data recorded at IS55 with a set of 117 known Strombolian events that were recorded with the local network in January 2006. 75% of these events were identified at IS55 by an analyst looking for a pressure transient coincident with an F-statistic detection, which identifies coherent infrasound signals. With the data from January 2006, we developed and calibrated an automated signal-detection algorithm based on threshold values of both the F-statistic and the correlation coefficient. Application of the algorithm across IS55 data for all of 2006 identified infrasonic signals expected to be Strombolian explosions, and proved reliable for indicating trends in eruption frequency. However, detectability at IS55 of known Strombolian events depended strongly on the local signal amplitude: 90% of events with local amplitudes > 25 Pa were identified at IS55, compared to only 26% of events with local amplitudes < 25 Pa. Event detection was also affected by considerable variation in amplitude decay rates between the local and near-regional sensors. Amplitudes recorded at IS55 varied between 3% and 180% of the amplitude expected assuming hemispherical spreading, indicating that amplitudes recorded at near-regional ranges to Erebus are unreliable indicators of event magnitude. Comparing amplitude decay rates with locally collected radiosonde data indicates a close relationship between recorded amplitude and lower atmosphere effective sound speed structure. At times of increased sound speed gradient, higher amplitude decay rates are observed, consistent with increased upward refraction of acoustic energy along the propagation path. This study indicates that whilst monitoring activity levels at near-regional ranges can be successful, variable amplitude decay rate means quantitative analysis of infrasound data for eruption intensity and magnitude is not advisable without the consideration of local atmospheric sound speed structure.

  17. Factorization and resummation: A new paradigm to improve gravitational wave amplitudes

    NASA Astrophysics Data System (ADS)

    Nagar, Alessandro; Shah, Abhay

    2016-11-01

    We introduce a new resummed analytical form of the post-Newtonian (PN), factorized, multipolar amplitude corrections fℓm of the effective-one-body (EOB) gravitational waveform of spinning, nonprecessing, circularized, coalescing black hole binaries (BBHs). This stems from the following two-step paradigm: (i) the factorization of the orbital (spin-independent) terms in fℓm; (ii) the resummation of the residual spin (or orbital) factors. We find that resumming the residual spin factor by taking its inverse resummed (iResum) is an efficient way to obtain amplitudes that are more accurate in the strong-field, fast-velocity regime. The performance of the method is illustrated on the ℓ=2 and m =(1 ,2 ) waveform multipoles, both for a test mass orbiting around a Kerr black hole and for comparable-mass BBHs. In the first case, the iResum fℓm's are much closer to the corresponding "exact" functions (obtained by numerically solving the Teukolsky equation) up to the light ring than the nonresummed ones, especially when the black-hole spin is nearly extremal. The iResum paradigm is also more efficient than including higher post-Newtonian terms (up to 20PN order): the resummed 5PN information yields per se a rather good numerical or analytical agreement at the last stable orbit and a well-controlled behavior up to the light ring. For comparable mass binaries (including the highest PN-order information available, 3.5PN), comparing EOB with numerical relativity (NR) data shows that the EOB/NR fractional disagreement at merger, without NR calibration of the EOB waveform, is generically reduced by iResum, from 40% of the usual approach to just a few percent. This suggests that EOBNR waveform models for coalescing BBHs may be improved by using iResum amplitudes.

  18. The nucleon as a test case to calculate vector-isovector form factors at low energies

    NASA Astrophysics Data System (ADS)

    Leupold, Stefan

    2018-01-01

    Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the nucleons and optionally the Delta baryons. Two methods to include pion rescattering are compared: a) solving the Muskhelishvili-Omnès (MO) equation and b) using an N/D approach. It turns out that the results differ strongly from each other. Furthermore the results are compared to a fully dispersive calculation of the (subthreshold) pion-nucleon amplitudes based on Roy-Steiner (RS) equations. In full agreement with the findings from the hyperon sector it turns out that the inclusion of Delta baryons is not an option but a necessity to obtain reasonable results. The magnetic isovector form factor depends strongly on a low-energy constant of the NLO Lagrangian. If it is adjusted such that the corresponding magnetic radius is reproduced, then the results for the corresponding pion-nucleon scattering amplitude (based on the MO equation) agree very well with the RS results. Also in the electric sector the Delta degrees of freedom are needed to obtain the correct order of magnitude for the isovector charge and the corresponding electric radius. Yet quantitative agreement is not achieved. If the subtraction constant that appears in the solution of the MO equation is not taken from nucleon+Delta chiral perturbation theory but adjusted such that the electric radius is reproduced, then one obtains also in this sector a pion-nucleon scattering amplitude that agrees well with the RS results.

  19. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB.

    PubMed

    Liu, S; Cai, H; DeRose, C T; Davids, P; Pomerene, A; Starbuck, A L; Trotter, D C; Camacho, R; Urayama, J; Lentine, A

    2017-05-15

    We experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 - 1640 nm and 95 nm from 1280 - 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. We investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplers and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. Our demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.

  20. Comparison of seismic waveform inversion results for the rupture history of a finite fault: application to the 1986 North Palm Springs, California, earthquake

    USGS Publications Warehouse

    Hartzell, S.

    1989-01-01

    The July 8, 1986, North Palm Strings earthquake is used as a basis for comparison of several different approaches to the solution for the rupture history of a finite fault. The inversion of different waveform data is considered; both teleseismic P waveforms and local strong ground motion records. Linear parametrizations for slip amplitude are compared with nonlinear parametrizations for both slip amplitude and rupture time. Inversions using both synthetic and empirical Green's functions are considered. In general, accurate Green's functions are more readily calculable for the teleseismic problem where simple ray theory and flat-layered velocity structures are usually sufficient. However, uncertainties in the variation in t* with frequency most limit the resolution of teleseismic inversions. A set of empirical Green's functions that are well recorded at teleseismic distances could avoid the uncertainties in attenuation. In the inversion of strong motion data, the accurate calculation of propagation path effects other than attenuation effects is the limiting factor in the resolution of source parameters. -from Author

  1. Earthquake and ambient vibration monitoring of the steel-frame UCLA factor building

    USGS Publications Warehouse

    Kohler, M.D.; Davis, P.M.; Safak, E.

    2005-01-01

    Dynamic property measurements of the moment-resisting steel-frame University of California, Los Angeles, Factor building are being made to assess how forces are distributed over the building. Fourier amplitude spectra have been calculated from several intervals of ambient vibrations, a 24-hour period of strong winds, and from the 28 March 2003 Encino, California (ML = 2.9), the 3 September 2002 Yorba Linda, California (ML = 4.7), and the 3 November 2002 Central Alaska (Mw = 7.9) earthquakes. Measurements made from the ambient vibration records show that the first-mode frequency of horizontal vibration is between 0.55 and 0.6 Hz. The second horizontal mode has a frequency between 1.6 and 1.9 Hz. In contrast, the first-mode frequencies measured from earthquake data are about 0.05 to 0.1 Hz lower than those corresponding to ambient vibration recordings indicating softening of the soil-structure system as amplitudes become larger. The frequencies revert to pre-earthquake levels within five minutes of the Yorba Linda earthquake. Shaking due to strong winds that occurred during the Encino earthquake dominates the frequency decrease, which correlates in time with the duration of the strong winds. The first shear wave recorded from the Encino and Yorba Linda earthquakes takes about 0.4 sec to travel up the 17-story building. ?? 2005, Earthquake Engineering Research Institute.

  2. Decomposing an urban soundscape to reveal patterns and drivers of variation in anthropogenic noise.

    PubMed

    Gill, Sharon A; Grabarczyk, Erin E; Baker, Kathleen M; Naghshineh, Koorosh; Vonhof, Maarten J

    2017-12-01

    Continuous and intermittent noise may have different effects on humans and wildlife, therefore distinguishing temporal patterns of noise and their drivers is important for policy regarding both public health and wildlife management. We visualized patterns and explored land-use drivers of continuous and high-amplitude intermittent sound pressure levels (SPLs) on an urban campus in Michigan, U.S.A. To visualize patterns of SPLs, we introduce decibel duration curves (DDCs), which show the cumulative frequency distribution of SPLs and aid in the interpretation of statistical SPLs (L n values) that reflect continuous versus intermittent sounds. DDCs and L n values reveal that our 24 recording locations varied in the intensity of both continuous and intermittent noise, with intermittent high-amplitude sound events in particular contributing to variability in SPLs over the study site. Time of day influenced both continuous and intermittent SPLs, as locations relatively close to manmade structures (buildings, roads and parking lots) experienced higher SPLs as the day progressed. Continuous SPLs increased with decreasing distance to manmade structures, whereas intermittent SPLs increased with decreasing distance to roads and increasing distance to buildings. Thus, different land-use factors influenced patterns of continuous and intermittent noise, which suggests that different policy and strategies may be needed to ameliorate their effects on the public and wildlife. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A minimal approach to the scattering of physical massless bosons

    NASA Astrophysics Data System (ADS)

    Boels, Rutger H.; Luo, Hui

    2018-05-01

    Tree and loop level scattering amplitudes which involve physical massless bosons are derived directly from physical constraints such as locality, symmetry and unitarity, bypassing path integral constructions. Amplitudes can be projected onto a minimal basis of kinematic factors through linear algebra, by employing four dimensional spinor helicity methods or at its most general using projection techniques. The linear algebra analysis is closely related to amplitude relations, especially the Bern-Carrasco-Johansson relations for gluon amplitudes and the Kawai-Lewellen-Tye relations between gluons and graviton amplitudes. Projection techniques are known to reduce the computation of loop amplitudes with spinning particles to scalar integrals. Unitarity, locality and integration-by-parts identities can then be used to fix complete tree and loop amplitudes efficiently. The loop amplitudes follow algorithmically from the trees. A number of proof-of-concept examples are presented. These include the planar four point two-loop amplitude in pure Yang-Mills theory as well as a range of one loop amplitudes with internal and external scalars, gluons and gravitons. Several interesting features of the results are highlighted, such as the vanishing of certain basis coefficients for gluon and graviton amplitudes. Effective field theories are naturally and efficiently included into the framework. Dimensional regularisation is employed throughout; different regularisation schemes are worked out explicitly. The presented methods appear most powerful in non-supersymmetric theories in cases with relatively few legs, but with potentially many loops. For instance, in the introduced approach iterated unitarity cuts of four point amplitudes for non-supersymmetric gauge and gravity theories can be computed by matrix multiplication, generalising the so-called rung-rule of maximally supersymmetric theories. The philosophy of the approach to kinematics also leads to a technique to control colour quantum numbers of scattering amplitudes with matter, especially efficient in the adjoint and fundamental representations.

  4. Early differential sensitivity of evoked-potentials to local and global shape during the perception of three-dimensional objects.

    PubMed

    Leek, E Charles; Roberts, Mark; Oliver, Zoe J; Cristino, Filipe; Pegna, Alan J

    2016-08-01

    Here we investigated the time course underlying differential processing of local and global shape information during the perception of complex three-dimensional (3D) objects. Observers made shape matching judgments about pairs of sequentially presented multi-part novel objects. Event-related potentials (ERPs) were used to measure perceptual sensitivity to 3D shape differences in terms of local part structure and global shape configuration - based on predictions derived from hierarchical structural description models of object recognition. There were three types of different object trials in which stimulus pairs (1) shared local parts but differed in global shape configuration; (2) contained different local parts but shared global configuration or (3) shared neither local parts nor global configuration. Analyses of the ERP data showed differential amplitude modulation as a function of shape similarity as early as the N1 component between 146-215ms post-stimulus onset. These negative amplitude deflections were more similar between objects sharing global shape configuration than local part structure. Differentiation among all stimulus types was reflected in N2 amplitude modulations between 276-330ms. sLORETA inverse solutions showed stronger involvement of left occipitotemporal areas during the N1 for object discrimination weighted towards local part structure. The results suggest that the perception of 3D object shape involves parallel processing of information at local and global scales. This processing is characterised by relatively slow derivation of 'fine-grained' local shape structure, and fast derivation of 'coarse-grained' global shape configuration. We propose that the rapid early derivation of global shape attributes underlies the observed patterns of N1 amplitude modulations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. A microwave cryogenic low-noise amplifier based on sige heterostructures

    NASA Astrophysics Data System (ADS)

    Ivanov, B. I.; Grajcar, M.; Novikov, I. L.; Vostretsov, A. G.; Il'ichev, E.

    2016-04-01

    A low-noise cryogenic amplifier for the measurement of weak microwave signals at sub-Kelvin temperatures is constructed. The amplifier has five stages based on SiGe bipolar heterostructure transistors and has a gain factor of 35 dB in the frequency band from 100 MHz to 4 GHz at an operating temperature of 800 mK. The parameters of a superconducting quantum bit measured with this amplifier in the ultralow-power mode are presented as an application example. The amplitude-frequency response of the "supercon-ducting qubit-coplanar cavity" structure is demonstrated. The ground state of the qubit is characterized in the quasi-dispersive measurement mode.

  6. Massive QCD Amplitudes at Higher Orders

    NASA Astrophysics Data System (ADS)

    Moch, S.; Mitov, A.

    2007-11-01

    We consider the factorisation properties of on-shell QCD amplitudes with massive partons in the limit when all kinematical invariants are large compared to the parton mass and discuss the structure of their infrared singularities. The dimensionally regulated soft poles and the large collinear logarithms of the parton masses exponentiate to all orders. Based on this factorisation a simple relation between massless and massive scattering amplitudes in gauge theories can be established. We present recent applications of this relation for the calculation of the two-loop virtual QCD corrections to the hadro-production of heavy quarks.

  7. Towards spinning Mellin amplitudes

    NASA Astrophysics Data System (ADS)

    Chen, Heng-Yu; Kuo, En-Jui; Kyono, Hideki

    2018-06-01

    We construct the Mellin representation of four point conformal correlation function with external primary operators with arbitrary integer spacetime spins, and obtain a natural proposal for spinning Mellin amplitudes. By restricting to the exchange of symmetric traceless primaries, we generalize the Mellin transform for scalar case to introduce discrete Mellin variables for incorporating spin degrees of freedom. Based on the structures about spinning three and four point Witten diagrams, we also obtain a generalization of the Mack polynomial which can be regarded as a natural kinematical polynomial basis for computing spinning Mellin amplitudes using different choices of interaction vertices.

  8. P-wave Velocity Structure in the Lowermost 600 km of the Mantle beneath Western Pacific Inferred from Travel Times and Amplitudes Observed with NECESSArray

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Kawakatsu, H.; Chen, Y. J.; Ning, J.; Grand, S. P.; Niu, F.; Obayashi, M.; Miyakawa, K.; Idehara, K.; Tonegawa, T.; Iritani, R.; Necessarray Project Team

    2011-12-01

    NECESSArray is a large-scale broadband seismic array deployed in northeastern China. Although its primary aims are to reveal the fate of subducted Pacific plate and to address several tectonic issues, it is also useful as a large aperture array to look at deep Earth. Here, we examine P-wave travel times observed with NECESSArray to determine P-wave velocity structure in the lower mantle beneath Western Pacific. Relative travel times with respect to those predicted by PREM are measured on short period seismograms from 15 earthquakes occurred in Tonga, Fiji, and Kermadec regions since Sep. 2009 to April 2010, so far, by using adaptive stacking method [Rawlinson and Kennett, 2004]. The residuals are defined as fluctuations with respect to an average of the whole array for each event. Station correction is defined as a median value of the residuals at each station. After applying the station corrections and distance corrections for the surface focus, we synthesize all the residuals and finally obtain a characteristic residual variation as a function of epicentral distance from 80 to 95 degrees. The travel time residuals show an inverted V-pattern with the maximum delay of 0.2 s at 87 degrees compared from a reference level at 80 and 95 degrees. To simply interpret this pattern through Herglotz-Wiechert inversion, we assume that the velocity structure above 600 km above the core-mantle boundary (CMB) is identical to PREM and find that the difference of the P-wave velocities from those of PREM gradually increase with depth, and reach the maximum velocity reduction of 0.15% and suddenly increase to those being identical to PREM at 270 km above the CMB. Thickness of a small velocity gradient layer at the base of the mantle is reduced to be 130 km instead of 150 km that is PREM's value. P-wave amplitudes are used as supplementary data. Station corrections for amplitude are inferred from 6 deep Fiji earthquakes in the distance range 75 to 90 degrees, in which focal mechanisms are corrected with the Global CMT solutions and theoretical amplitude variations due to elastic and anelastic structures with the reflectivity method are considered. The corrected amplitude that are sensitive to the velocity structure just the above the CMB are obtained from 3 earthquakes occurred in Kermadec islands (their latitudes vary from 29.2 S to 31.6S) in the distance range from 86 to 96 degrees. Although they are closely located each other, the data from the southernmost event indicate significantly rapid amplitude decay, and those from the northernmost event indicate moderate amplitude decay, those from the middle event show a large scatter. This observation suggests that a rapid horizontal change of the D" structure exists in the southwestern edge of the sampled region.

  9. REVERSING CYCLIC ELASTO-PLASTIC DEMANDS ON STRUCTURES DURING STRONG MOTION EARTHQUAKE EXCITATION.

    USGS Publications Warehouse

    Perez, V.; Brady, A.G.; Safak, E.

    1986-01-01

    Using the horizontal components from El Centro 1940, Taft 1952, and 4 accelerograms from the San Fernando earthquake of 2/9/71, the time history of the elasto-plastic displacement response was calculated for oscillators having periods within the range of 1 to 6 s and ductility factors within the range of 3 to 6. The Nth largest peak of the elasto-plastic response (N equals 2,4,8,16), when expressed as a percentage of maximum response (that is, N equals 1), is fairly independent of period within our period range. When considering only plastic peaks occurring, sometimes in a one-directional group of peaks, in the reverse direction from the preceding plastic peak, the amplitude of the Nth reversing plastic peak is similar to the Nth elastic peak, regardless of the ductility factor.

  10. The Small Breathing Amplitude at the Upper Lobes Favors the Attraction of Polymorphonuclear Neutrophils to Mycobacterium tuberculosis Lesions and Helps to Understand the Evolution toward Active Disease in An Individual-Based Model

    PubMed Central

    Cardona, Pere-Joan; Prats, Clara

    2016-01-01

    Infection with Mycobacterium tuberculosis (Mtb) can induce two kinds of lesions, namely proliferative and exudative. The former are based on the presence of macrophages with controlled induction of intragranulomatous necrosis, and are even able to stop its physical progression, thus avoiding the induction of active tuberculosis (TB). In contrast, the most significant characteristic of exudative lesions is their massive infiltration with polymorphonuclear neutrophils (PMNs), which favor enlargement of the lesions and extracellular growth of the bacilli. We have built an individual-based model (IBM) (known as “TBPATCH”) using the NetLogo interface to better understand the progression from Mtb infection to TB. We have tested four main factors previously identified as being able to favor the infiltration of Mtb-infected lesions with PMNs, namely the tolerability of infected macrophages to the bacillary load; the capacity to modulate the Th17 response; the breathing amplitude (BAM) (large or small in the lower and upper lobes respectively), which influences bacillary drainage at the alveoli; and the encapsulation of Mtb-infected lesions by the interlobular septae that structure the pulmonary parenchyma into secondary lobes. Overall, although all the factors analyzed play some role, the small BAM is the major factor determining whether Mtb-infected lesions become exudative, and thus induce TB, thereby helping to understand why this usually takes place in the upper lobes. This information will be very useful for the design of future prophylactic and therapeutic approaches against TB. PMID:27065951

  11. The Small Breathing Amplitude at the Upper Lobes Favors the Attraction of Polymorphonuclear Neutrophils to Mycobacterium tuberculosis Lesions and Helps to Understand the Evolution toward Active Disease in An Individual-Based Model.

    PubMed

    Cardona, Pere-Joan; Prats, Clara

    2016-01-01

    Infection with Mycobacterium tuberculosis (Mtb) can induce two kinds of lesions, namely proliferative and exudative. The former are based on the presence of macrophages with controlled induction of intragranulomatous necrosis, and are even able to stop its physical progression, thus avoiding the induction of active tuberculosis (TB). In contrast, the most significant characteristic of exudative lesions is their massive infiltration with polymorphonuclear neutrophils (PMNs), which favor enlargement of the lesions and extracellular growth of the bacilli. We have built an individual-based model (IBM) (known as "TBPATCH") using the NetLogo interface to better understand the progression from Mtb infection to TB. We have tested four main factors previously identified as being able to favor the infiltration of Mtb-infected lesions with PMNs, namely the tolerability of infected macrophages to the bacillary load; the capacity to modulate the Th17 response; the breathing amplitude (BAM) (large or small in the lower and upper lobes respectively), which influences bacillary drainage at the alveoli; and the encapsulation of Mtb-infected lesions by the interlobular septae that structure the pulmonary parenchyma into secondary lobes. Overall, although all the factors analyzed play some role, the small BAM is the major factor determining whether Mtb-infected lesions become exudative, and thus induce TB, thereby helping to understand why this usually takes place in the upper lobes. This information will be very useful for the design of future prophylactic and therapeutic approaches against TB.

  12. Sensory cortex hyperexcitability predicts short survival in amyotrophic lateral sclerosis.

    PubMed

    Shimizu, Toshio; Bokuda, Kota; Kimura, Hideki; Kamiyama, Tsutomu; Nakayama, Yuki; Kawata, Akihiro; Isozaki, Eiji; Ugawa, Yoshikazu

    2018-05-01

    To investigate somatosensory cortex excitability and its relationship to survival prognosis in patients with amyotrophic lateral sclerosis (ALS). A total of 145 patients with sporadic ALS and 73 healthy control participants were studied. We recorded compound muscle action potential and sensory nerve action potential of the median nerve and the median nerve somatosensory evoked potential (SEP), and we measured parameters, including onset-to-peak amplitude of N13 and N20 and peak-to-peak amplitude between N20 and P25 (N20p-P25p). Clinical prognostic factors, including ALS Functional Rating Scale-Revised, were evaluated. We followed up patients until the endpoints (death or tracheostomy) and analyzed factors associated with survival using multivariate analysis in the Cox proportional hazard model. Compared to controls, patients with ALS showed a larger amplitude of N20p-P25p in the median nerve SEP. Median survival time after examination was shorter in patients with N20p-P25p ≥8 μV (0.82 years) than in those with N20p-P25p <8 μV (1.68 years, p = 0.0002, log-rank test). Multivariate analysis identified a larger N20p-P25p amplitude as a factor that was independently associated with shorter survival ( p = 0.002). Sensory cortex hyperexcitability predicts short survival in patients with ALS. © 2018 American Academy of Neurology.

  13. Revisions to some parameters used in stochastic-method simulations of ground motion

    USGS Publications Warehouse

    Boore, David; Thompson, Eric M.

    2015-01-01

    The stochastic method of ground‐motion simulation specifies the amplitude spectrum as a function of magnitude (M) and distance (R). The manner in which the amplitude spectrum varies with M and R depends on physical‐based parameters that are often constrained by recorded motions for a particular region (e.g., stress parameter, geometrical spreading, quality factor, and crustal amplifications), which we refer to as the seismological model. The remaining ingredient for the stochastic method is the ground‐motion duration. Although the duration obviously affects the character of the ground motion in the time domain, it also significantly affects the response of a single‐degree‐of‐freedom oscillator. Recently published updates to the stochastic method include a new generalized double‐corner‐frequency source model, a new finite‐fault correction, a new parameterization of duration, and a new duration model for active crustal regions. In this article, we augment these updates with a new crustal amplification model and a new duration model for stable continental regions. Random‐vibration theory (RVT) provides a computationally efficient method to compute the peak oscillator response directly from the ground‐motion amplitude spectrum and duration. Because the correction factor used to account for the nonstationarity of the ground motion depends on the ground‐motion amplitude spectrum and duration, we also present new RVT correction factors for both active and stable regions.

  14. Unraveling hadron structure with generalized parton distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrei Belitsky; Anatoly Radyushkin

    2004-10-01

    The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling andmore » QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.« less

  15. A three-dimensional model of co-rotating streams in the solar wind. 2: Hydrodynamic streams

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1979-01-01

    Theoretical aspects of corotating solar wind dynamics on a global scale are explored by means of numerical simulations executed with a nonlinear, inviscid, adiabatic, single-fluid, three-dimensional (3-D) hydrodynamic formulation. A simple, hypothetical 3-D stream structure is defined on a source surface located at 35 solar radius and carefully documents its evolution to 1 AU under the influence of solar rotation. By manipulating the structure of this prototype configuration at the source surface, it is possible to elucidate the factors most strongly affecting stream evolution: (1) the intrinsic correlations among density, temperature, and velocity existing near the source; (2) the amplitude of the stream; (3) the longitudinal breadth of the stream; (4) the latitudinal breadth of the stream; and (5) the heliographic latitude of the centroid of the stream.

  16. Influence of humidity on the characteristics of negative corona discharge in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Pengfei, E-mail: xpftsh@126.com; Zhang, Bo, E-mail: shizbcn@mail.tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn

    Detailed negative corona discharge characteristics, such as the pulse amplitude, repetition frequency, average corona current, rise time, and half-wave time, are systematically studied under various air humidities with a single artificial defect electrode. The experimental result reveals that the pulse amplitude increases with the increase of air humidity; meanwhile, the repetition frequency deceases as the air humidity increases. Empirical formulae are first established for the pulse amplitude and repetition frequency with the humidity factor taken into consideration. The effective ionization integral is calculated and a positive correlation is found between the integral and the pulse amplitude. Furthermore, a simplified negative-ionmore » cloud model is built up to investigate the mechanism of the humidity's influence on negative corona discharge. Based on the theoretical analyses, the correlation between pulse amplitude, repetition frequency, and air humidity is well explained.« less

  17. Improving the signal amplitude of meandering coil EMATs by using ribbon soft magnetic flux concentrators (MFC).

    PubMed

    Dhayalan, R; Satya Narayana Murthy, V; Krishnamurthy, C V; Balasubramaniam, Krishnan

    2011-08-01

    This paper presents a new method of improving the ultrasonic signal amplitude from a meander line EMAT by using soft magnetic alloy ribbon (Fe₆₀Ni₁₀V₁₀B₂₀) as a magnetic flux concentrator (MFC). The flux concentrator is a thin soft amorphous magnetic material (Fe₆₀Ni₁₀V₁₀B₂₀) which is very sensitive to a small flux change. The MFC is used with the EMAT to improve the signal amplitude and it was observed that the peak signal amplitude increases by a factor of two compared to the signal without MFC. Two dimensional numerical models have been developed for the EMAT with MFC to quantify the improvement of the received signal amplitudes. Model calculations and experiments have been carried out for a wide range of ultrasonic frequencies (500 kHz-1 MHz) in different materials. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Auditory Processing in Specific Language Impairment (SLI): Relations with the Perception of Lexical and Phrasal Stress

    ERIC Educational Resources Information Center

    Richards, Susan; Goswami, Usha

    2015-01-01

    Purpose: We investigated whether impaired acoustic processing is a factor in developmental language disorders. The amplitude envelope of the speech signal is known to be important in language processing. We examined whether impaired perception of amplitude envelope rise time is related to impaired perception of lexical and phrasal stress in…

  19. Cascaded Amplitude Modulations in Sound Texture Perception

    PubMed Central

    McWalter, Richard; Dau, Torsten

    2017-01-01

    Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches. PMID:28955191

  20. Cascaded Amplitude Modulations in Sound Texture Perception.

    PubMed

    McWalter, Richard; Dau, Torsten

    2017-01-01

    Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  1. [Amplitude modulation in sound signals by mammals].

    PubMed

    Nikol'skiĭ, A A

    2012-01-01

    Periodic variations in amplitude of a signal, or amplitude modulation (AM), affect the structure of communicative messages spectrum. Within the spectrum of AM-signals, side frequencies are formed both above and below the carrier frequency that is subjected to modulation. In case of harmonic signal structure they are presented near fundamental frequency as well as near harmonics. Thus, AM may by viewed as a relatively simple mechanism for controlling the spectrum of messages transmitted by mammals. Examples of AM affecting the spectrum structure of functionally different sound signals are discussed as applied to representatives of four orders of mammals: rodents (Reodentia), duplicidentates (Lagomorpha), pinnipeds (Pinnipedia), and paridigitates (Artiodactia). For the first time, the classification of AM in animals' sound signals is given. Five forms of AM are picked out in sound signals by mammals: absence of AM, continuous AM, fragmented, heterogeneous, and multilevel one. AM presence/absence is related neither with belonging to any specific order nor with some particular function of a signal. Similar forms of AM can occur in different orders of mammals in parallel. On the contrary, different forms of AM can be detected in signals meant for similar functions. The assumption is made about AM-signals facilitating information encoding and jamprotection of messages transmitted by mammals. Preliminry analysis indicates that hard-driving amplitude modulation is incompatible with hard-driving frequency modulation.

  2. Spatial shaping for generating arbitrary optical dipole traps for ultracold degenerate gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeffrey G., E-mail: jglee@umd.edu; Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742; Hill, W. T., E-mail: wth@umd.edu

    2014-10-15

    We present two spatial-shaping approaches – phase and amplitude – for creating two-dimensional optical dipole potentials for ultracold neutral atoms. When combined with an attractive or repulsive Gaussian sheet formed by an astigmatically focused beam, atoms are trapped in three dimensions resulting in planar confinement with an arbitrary network of potentials – a free-space atom chip. The first approach utilizes an adaptation of the generalized phase-contrast technique to convert a phase structure embedded in a beam after traversing a phase mask, to an identical intensity profile in the image plane. Phase masks, and a requisite phase-contrast filter, can be chemicallymore » etched into optical material (e.g., fused silica) or implemented with spatial light modulators; etching provides the highest quality while spatial light modulators enable prototyping and realtime structure modification. This approach was demonstrated on an ensemble of thermal atoms. Amplitude shaping is possible when the potential structure is made as an opaque mask in the path of a dipole trap beam, followed by imaging the shadow onto the plane of the atoms. While much more lossy, this very simple and inexpensive approach can produce dipole potentials suitable for containing degenerate gases. High-quality amplitude masks can be produced with standard photolithography techniques. Amplitude shaping was demonstrated on a Bose-Einstein condensate.« less

  3. Application of Polarization in Particle Reactions.

    NASA Astrophysics Data System (ADS)

    Arash, Firooz

    In this dissertation we have utilized polarization phenomena in particle reactions to study the revealing features of the reaction. First, it is shown that it is impossible to design a non-dynamical null-experiment to test the time-reversal invariant. Second, the optimal formalism representation is used to determine proton-proton elastic scattering amplitudes at 579 MeV and 800 MeV. It is shown that, despite an extensive set of data at 579 MeV, the resulting amplitudes have a four-fold ambiguity. At 800 MeV, however, we managed to obtain a unique solution. Thirdly, the polarization structure of two-body reaction in a collinear configuration is investigated, and it is demonstrated that the structure becomes much simpler than it was for the general configuration. It is shown that in a collinear reaction all observables in which only one particle is polarized vanish. The results of this study are also applicable to all models in which helicity conservation holds, since they are formally identical with collinear reactions. Fourthly, an amplitude test is conducted to search for dibaryon resonances in p-p elastic scattering and it is found that at the energies around 800 MeV there is no evidence for any singlet partial wave state resonances. There exist, however, some tantalizing subliminal evidence for ('3)F(,3) resonance. This method is also applied for pion-deutron elastic scattering to pin point the effect of a dibaryon resonance. We have also given a practical guideline to carry out a complete set of experiments toward the reconstruction of pion-deutron scattering amplitudes. Fifthly, evidence for the preeminence of one-particle-exchange mechanism is p-p elastic scattering is also examined in the 300 MeV - 6 GeV/c range. Finally, a phenomenological model is developed to explain a striking feature of p-p scattering amplitudes pertaining to the amplitudes being either purely real or purely imaginary, and having three amplitudes almost equal in magnitudes and three times smaller than one amplitude in magnitude. This feature is extended to (pi)('+)p and k('+)p elastic scattering where spin flip and spin non -flip amplitudes appear to be equal in magnitude.

  4. Ultrasonic Structural Health Monitoring to Assess the Integrity of Spinal Growing Rods In Vitro.

    PubMed

    Oetgen, Matthew E; Goodley, Addison; Yoo, Byungseok; Pines, Darryll J; Hsieh, Adam H

    2016-01-01

    Rod fracture is a common complication of growing rods and can result in loss of correction, patient discomfort, and unplanned revision surgery. The ability to quantitate rod integrity at each lengthening would be advantageous to avoid this complication. We investigate the feasibility of applying structural health monitoring to evaluate the integrity of growing rods in vitro. Single-rod titanium 4.5-mm growing rod constructs (n = 9), one screw proximally and one distally connected by in-line connectors, were assembled with pedicle screws fixed in polyethylene blocks. Proximal and distal ends were loaded and constructs subjected to cyclic axial compression (0-100 N at 1 Hz), with incrementally increasing maximum compressive loads of 10 N every 9k cycles until failure. Four piezoceramic transducers (PZTs) were mounted along the length the constructs to interrogate the integrity of the rods with an ultrasonic, guided lamb wave approach. Every 9k cycles, an 80 V excitatory voltage was applied to a PZT to generate high-frequency vibrations, which, after propagating through the construct, was detected by the remaining PZTs. Amplitude differences between pre- and postload waveform signals were calculated until rod failure. Average construct lifetime was 88,991 ± 13,398 cycles. All constructs failed due to rod fracture within 21 mm (mean = 15 ± 4.5 mm) of a screw or connector. Amplitude differences between pre- and postload increased in a stepwise fashion as constructs were cycled. Compared to baseline, we found a 1.8 ± 0.6-fold increase in amplitude 18k cycles before failure, a 2.2 ± 1.0-fold increase in amplitude 9k cycles before failure, and a 2.75 ± 1.5-fold increase in amplitude immediately before rod fracture. We describe a potential method for assessing the structural integrity of growing rods using ultrasonic structural health monitoring. These preliminary data demonstrate the ability of periodic rod assessment to detect structural changes in cycled growing rods, which appear to correspond to subclinical rod fatigue before rod fracture. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  5. Surface spontaneous parametric down-conversion.

    PubMed

    Perina, Jan; Luks, Antonín; Haderka, Ondrej; Scalora, Michael

    2009-08-07

    Surface spontaneous parametric down-conversion is predicted as a consequence of continuity requirements for electric- and magnetic-field amplitudes at a discontinuity of chi;{(2)} nonlinearity. A generalization of the usual two-photon spectral amplitude is suggested to describe this effect. Examples of nonlinear layered structures and periodically poled nonlinear crystals show that surface contributions to spontaneous down-conversion can be important.

  6. Seismic Structure in the Vicinity of the Inner Core Boundary beneath northeastern Asia

    NASA Astrophysics Data System (ADS)

    Ibourichene, A. S.; Romanowicz, B. A.

    2016-12-01

    The inner core boundary (ICB) separates the solid inner core from the liquid outer core. The crystallization of iron occurring at this limit induces the expulsion of lighter elements such as H, O, S, Si into the outer core, generating chemically-driven convection, which provides power for the geodynamo. Both the F layer, right above the ICB, and the uppermost inner core, are affected by this process so that their properties provide important constraints for a better understanding of core dynamics and, ultimately, the generation and sustained character of the earth's magnetic field. In this study, we investigate the evolution of model parameters (P-velocity, density and quality factor) with depth in the vicinity of the ICB. For this purpose, we combine observations of two body wave phases sensitive to this region: the PKP(DF) phase refracted in the inner core and the PKiKP reflected on the ICB. Variations in the PKP(DF)/PKiKP amplitude ratio and PKP(DF)-PKiKP differential travel times can be related to structure around the ICB. We use waveform data from earthquakes located in Sumatra and recorded by the dense USArray seismic network, which allows us to sample ICB structure beneath northeastern Asia. Observed waveforms are compared to synthetics computed using the DSM method (e.g., Geller et Takeuchi, 1995) in model AK135 (e.g., Montagner & Kennett, 1996) in order to measure amplitude and travel time anomalies. Previous studies (e.g., Tanaka, 1997 ; Cao and Romanowicz, 2004, Yu and Wen, 2006; Waszek and Deuss, 2011) have observed an hemispherical pattern in the vicinity of the ICB exhibiting a faster and more attenuated eastern hemisphere compared to the western hemisphere. The region studied is located in the eastern hemisphere. We find that, on average, travel time anomalies are consistent with previous studies of the eastern hemisphere, however, amplitude ratios are not. We conduct a parameter search for the 1D model that best fits our data. We also consider fluctuations around this best fitting average model and quantify the statistical properties of the short wavelength fluctuations.

  7. High-strength bolt corrosion fatigue life model and application.

    PubMed

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life.

  8. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1993-01-01

    The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  9. Latent factor structure of a behavioral economic cigarette demand curve in adolescent smokers.

    PubMed

    Bidwell, L Cinnamon; MacKillop, James; Murphy, James G; Tidey, Jennifer W; Colby, Suzanne M

    2012-11-01

    Behavioral economic demand curves, or quantitative representations of drug consumption across a range of prices, have been used to assess motivation for a variety of drugs. Such curves generate multiple measures of drug demand that are associated with cigarette consumption and nicotine dependence. However, little is known about the relationships among these facets of demand. The aim of the study was to quantify these relationships in adolescent smokers by using exploratory factor analysis to examine the underlying structure of the facets of nicotine incentive value generated from a demand curve measure. Participants were 138 adolescent smokers who completed a hypothetical cigarette purchase task, which assessed estimated cigarette consumption at escalating levels of price/cigarette. Demand curves and five facets of demand were generated from the measure: Elasticity (i.e., 1/α or proportionate price sensitivity); Intensity (i.e., consumption at zero price); O(max) (i.e., maximum financial expenditure on cigarettes); P(max) (i.e., price at which expenditure is maximized); and Breakpoint (i.e., the price that suppresses consumption to zero). Principal components analysis was used to examine the latent structure among the variables. The results revealed a two-factor solution, which were interpreted as "Persistence," reflecting insensitivity to escalating price, and "Amplitude," reflecting the absolute levels of consumption and price. These findings suggest a two factor structure of nicotine incentive value as measured via a demand curve. If supported, these findings have implications for understanding the relationships among individual demand indices in future behavioral economic studies and may further contribute to understanding of the nature of cigarette reinforcement. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The Nucleon Axial Form Factor and Staggered Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Aaron Scott

    The study of neutrino oscillation physics is a major research goal of the worldwide particle physics program over the upcoming decade. Many new experiments are being built to study the properties of neutrinos and to answer questions about the phenomenon of neutrino oscillation. These experiments need precise theoretical cross sections in order to access fundamental neutrino properties. Neutrino oscillation experiments often use large atomic nuclei as scattering targets, which are challenging for theorists to model. Nuclear models rely on free-nucleon amplitudes as inputs. These amplitudes are constrained by scattering experiments with large nuclear targets that rely on the very samemore » nuclear models. The work in this dissertation is the rst step of a new initiative to isolate and compute elementary amplitudes with theoretical calculations to support the neutrino oscillation experimental program. Here, the eort focuses on computing the axial form factor, which is the largest contributor of systematic error in the primary signal measurement process for neutrino oscillation studies, quasielastic scattering. Two approaches are taken. First, neutrino scattering data on a deuterium target are reanalyzed with a model-independent parametrization of the axial form factor to quantify the present uncertainty in the free-nucleon amplitudes. The uncertainties on the free-nucleon cross section are found to be underestimated by about an order of magnitude compared to the ubiquitous dipole model parametrization. The second approach uses lattice QCD to perform a rst-principles computation of the nucleon axial form factor. The Highly Improved Staggered Quark (HISQ) action is employed for both valence and sea quarks. The results presented in this dissertation are computed at physical pion mass for one lattice spacing. This work presents a computation of the axial form factor at zero momentum transfer, and forms the basis for a computation of the axial form factor momentum dependence with an extrapolation to the continuum limit and a full systematic error budget.« less

  11. Discriminating Simulated Vocal Tremor Source Using Amplitude Modulation Spectra

    PubMed Central

    Carbonell, Kathy M.; Lester, Rosemary A.; Story, Brad H.; Lotto, Andrew J.

    2014-01-01

    Objectives/Hypothesis Sources of vocal tremor are difficult to categorize perceptually and acoustically. This paper describes a preliminary attempt to discriminate vocal tremor sources through the use of spectral measures of the amplitude envelope. The hypothesis is that different vocal tremor sources are associated with distinct patterns of acoustic amplitude modulations. Study Design Statistical categorization methods (discriminant function analysis) were used to discriminate signals from simulated vocal tremor with different sources using only acoustic measures derived from the amplitude envelopes. Methods Simulations of vocal tremor were created by modulating parameters of a vocal fold model corresponding to oscillations of respiratory driving pressure (respiratory tremor), degree of vocal fold adduction (adductory tremor) and fundamental frequency of vocal fold vibration (F0 tremor). The acoustic measures were based on spectral analyses of the amplitude envelope computed across the entire signal and within select frequency bands. Results The signals could be categorized (with accuracy well above chance) in terms of the simulated tremor source using only measures of the amplitude envelope spectrum even when multiple sources of tremor were included. Conclusions These results supply initial support for an amplitude-envelope based approach to identify the source of vocal tremor and provide further evidence for the rich information about talker characteristics present in the temporal structure of the amplitude envelope. PMID:25532813

  12. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: II. Fatigue crack growth, lifetime and scaling

    NASA Astrophysics Data System (ADS)

    Le, Jia-Liang; Bažant, Zdeněk P.

    2011-07-01

    This paper extends the theoretical framework presented in the preceding Part I to the lifetime distribution of quasibrittle structures failing at the fracture of one representative volume element under constant amplitude fatigue. The probability distribution of the critical stress amplitude is derived for a given number of cycles and a given minimum-to-maximum stress ratio. The physical mechanism underlying the Paris law for fatigue crack growth is explained under certain plausible assumptions about the damage accumulation in the cyclic fracture process zone at the tip of subcritical crack. This law is then used to relate the probability distribution of critical stress amplitude to the probability distribution of fatigue lifetime. The theory naturally yields a power-law relation for the stress-life curve (S-N curve), which agrees with Basquin's law. Furthermore, the theory indicates that, for quasibrittle structures, the S-N curve must be size dependent. Finally, physical explanation is provided to the experimentally observed systematic deviations of lifetime histograms of various ceramics and bones from the Weibull distribution, and their close fits by the present theory are demonstrated.

  13. Nonlinear Tollmien-Schlichting/vortex interaction in boundary layers

    NASA Technical Reports Server (NTRS)

    Hall, P.; Smith, F. T.

    1988-01-01

    The nonlinear reaction between two oblique 3-D Tollmein-Schlichting (TS) waves and their induced streamwise-vortex flow is considered theoretically for an imcompressible boundary layer. The same theory applies to the destabilization of an incident vortex motion by subharmonic TS waves, followed by interaction. The scales and flow structure involved are addressed for high Reynolds numbers. The nonlionear interaction is powerful, starting at quite low amplitudes with a triple-deck structure for the TS waves but a large-scale structure for the induced vortex, after which strong nonlinear amplification occurs. This includes nonparallel-flow effects. The nonlinear interaction is governed by a partial differential system for the vortex flow coupled with an ordinary-differential one for the TS pressure. The solution properties found sometimes produce a breakup within a finite distance and sometimes further downstream, depending on the input amplitudes upstream and on the wave angles, and that then leads to the second stages of interaction associated with higher amplitudes, the main second stages giving either long-scale phenomena significantly affected by nonparallelism or shorter quasi-parallel ones governed by the full nonlinear triple-deck response.

  14. Further Constraints and Uncertainties on the Deep Seismic Structure of the Moon

    NASA Technical Reports Server (NTRS)

    Lin, Pei-Ying Patty; Weber, Renee C.; Garnero, Ed J.; Schmerr, Nicholas C.

    2011-01-01

    The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972, that continuously recorded lunar ground motion until late 1977. The APSE data provide a unique opportunity for investigating the interior of a planet other than Earth, generating the most direct constraints on the elastic structure, and hence the thermal and compositional evolution of the Moon. Owing to the lack of far side moonquakes, past seismic models of the lunar interior were unable to constrain the lowermost 500 km of the interior. Recently, array methodologies aimed at detecting deep lunar seismic reflections found evidence for a lunar core, providing an elastic model of the deepest lunar interior consistent with geodetic parameters. Here we study the uncertainties in these models associated with the double array stacking of deep moonquakes for imaging deep reflectors in the Moon. We investigate the dependency of the array stacking results on a suite of parameters, including amplitude normalization assumptions, polarization filters, assumed velocity structure, and seismic phases that interfere with our desired target phases. These efforts are facilitated by the generation of synthetic seismograms at high frequencies (approx. 1Hz), allowing us to directly study the trade-offs between different parameters. We also investigate expected amplitudes of deep reflections relative to direct P and S arrivals, including predictions from arbitrarily oriented focal mechanisms in our synthetics. Results from separate versus combined station stacking help to establish the robustness of stacks. Synthetics for every path geometry of data were processed identically to that done with data. Different experiments were aimed at examining various processing assumptions, such as adding random noise to synthetics and mixing 3 components to some degree. The principal stacked energy peaks put forth in recent work persist, but their amplitude (which maps into reflector impedance contrast) and timing (which maps into reflector depth) depend on factors that are not well constrained -- most notably, the velocity structure of the overlying lunar interior. Thus, while evidence for the lunar core remains strong, the depths of imaged reflectors have associated uncertainties that will require new seismic data and observations to constrain. These results strongly advocate further investigations on the Moon to better resolve the interior (e.g., Selene missions), for the Moon apparently has a rich history of construction and evolution that is inextricably tied to that of Earth.

  15. The seismic response of the Los Angeles basin, California

    USGS Publications Warehouse

    Wald, D.J.; Graves, R.W.

    1998-01-01

    Using strong-motion data recorded in the Los Angeles region from the 1992 (Mw 7.3) Landers earthquake, we have tested the accuracy of existing three-dimensional (3D) velocity models on the simulation of long-period (???2 sec) ground motions in the Los Angeles basin and surrounding San Fernando and San Gabriel Valleys. First, the overall pattern and degree of long-period excitation of the basins were identified in the observations. Within the Los Angeles basin, the recorded amplitudes are about three to four times larger than at sites outside the basins; amplitudes within the San Fernando and San Gabriel Valleys are nearly a factor of 3 greater than surrounding bedrock sites. Then, using a 3D finite-difference numerical modeling approach, we analyzed how variations in 3D earth structure affect simulated waveforms, amplitudes, and the fit to the observed patterns of amplification. Significant differences exist in the 3D velocity models of southern California that we tested (Magistrale et al., 1996; Graves, 1996a; Hauksson and Haase, 1997). Major differences in the models include the velocity of the assumed background models; the depth of the Los Angeles basin; and the depth, location, and geometry of smaller basins. The largest disparities in the response of the models are seen for the San Fernando Valley and the deepest portion of the Los Angeles basin. These arise in large part from variations in the structure of the basins, particularly the effective depth extent, which is mainly due to alternative assumptions about the nature of the basin sediment fill. The general ground-motion characteristics are matched by the 3D model simulations, validating the use of 3D modeling with geologically based velocity-structure models. However, significant shortcomings exist in the overall patterns of amplification and the duration of the long-period response. The successes and limitations of the models for reproducing the recorded ground motions as discussed provide the basis and direction for necessary improvements to earth structure models, whether geologically or tomographically derived. The differences in the response of the earth models tested also translate to variable success in the ability to successfully model the data and add uncertainty to estimates of the basin response given input "scenario" earthquake source models.

  16. Nonlinear finite amplitude torsional vibrations of cantilevers in viscous fluids

    NASA Astrophysics Data System (ADS)

    Aureli, Matteo; Pagano, Christopher; Porfiri, Maurizio

    2012-06-01

    In this paper, we study torsional vibrations of cantilever beams undergoing moderately large oscillations within a quiescent viscous fluid. The structure is modeled as an Euler-Bernoulli beam, with thin rectangular cross section, under base excitation. The distributed hydrodynamic loading experienced by the vibrating structure is described through a complex-valued hydrodynamic function which incorporates added mass and fluid damping elicited by moderately large rotations. We conduct a parametric study on the two dimensional computational fluid dynamics of a pitching rigid lamina, representative of a generic beam cross section, to investigate the dependence of the hydrodynamic function on the governing flow parameters. As the frequency and amplitude of the oscillation increase, vortex shedding and convection phenomena increase, thus resulting into nonlinear hydrodynamic damping. We derive a handleable nonlinear correction to the classical hydrodynamic function developed for small amplitude torsional vibrations for use in a reduced order nonlinear modal model and we validate theoretical results against experimental findings.

  17. Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields

    NASA Astrophysics Data System (ADS)

    Bordelon, David E.; Cornejo, Christine; Grüttner, Cordula; Westphal, Fritz; DeWeese, Theodore L.; Ivkov, Robert

    2011-06-01

    Magnetic nanoparticles can create heat that can be exploited to treat cancer when they are exposed to alternating magnetic fields (AMF). At a fixed frequency, the particle heating efficiency or specific power loss (SPL) depends upon the magnitude of the AMF. We characterized the amplitude-dependent SPL of three commercial dextran-iron oxide nanoparticle suspensions through saturation to 94 kA/m with a calorimeter comprising a solenoid coil that generates a uniform field to 100 kA/m at ˜150 kHz. We also describe a novel method to empirically determine the appropriate range of the heating curve from which the SPL is then calculated. These results agree with SPL values calculated from the phenomenological Box-Lucas equation. We note that the amplitude-dependent SPL among the samples was markedly different, indicating significant magneto-structural variation not anticipated by current models.

  18. Renormalization group analysis of B →π form factors with B -meson light-cone sum rules

    NASA Astrophysics Data System (ADS)

    Shen, Yue-Long; Wei, Yan-Bing; Lü, Cai-Dian

    2018-03-01

    Within the framework of the B -meson light-cone sum rules, we review the calculation of radiative corrections to the three B →π transition form factors at leading power in Λ /mb. To resum large logarithmic terms, we perform the complete renormalization group evolution of the correlation function. We employ the integral transformation which diagonalizes evolution equations of the jet function and the B -meson light-cone distribution amplitude to solve these evolution equations and obtain renormalization group improved sum rules for the B →π form factors. Results of the form factors are extrapolated to the whole physical q2 region and are compared with that of other approaches. The effect of B -meson three-particle light-cone distribution amplitudes, which will contribute to the form factors at next-to-leading power in Λ /mb at tree level, is not considered in this paper.

  19. String-theoretic deformation of the Parke-Taylor factor

    NASA Astrophysics Data System (ADS)

    Mizera, Sebastian; Zhang, Guojun

    2017-09-01

    Scattering amplitudes in a range of quantum field theories can be computed using the Cachazo-He-Yuan (CHY) formalism. In theories with color ordering, the key ingredient is the so-called Parke-Taylor factor. In this paper we give a fully SL (2 ,C )-covariant definition and study the properties of a new integrand called the "string Parke-Taylor" factor. It has an α' expansion whose leading coefficient is the field-theoretic Parke-Taylor factor. Its main application is that it leads to a CHY formulation of open string tree-level amplitudes. In fact, the definition of the string Parke-Taylor factor was motivated by trying to extend the compact formula for the first α' correction found by He and Zhang, while the main ingredient in its definition is a determinant of a matrix introduced in the context of string theory by Stieberger and Taylor.

  20. Multiphysics Simulation of Low-Amplitude Acoustic Wave Detection by Piezoelectric Wafer Active Sensors Validated by In-Situ AE-Fatigue Experiment

    PubMed Central

    Giurgiutiu, Victor

    2017-01-01

    Piezoelectric wafer active sensors (PWAS) are commonly used for detecting Lamb waves for structural health monitoring application. However, in most applications of active sensing, the signals are of high-amplitude and easy to detect. In this article, we have shown a new avenue of using the PWAS transducer for detecting the low-amplitude fatigue-crack related acoustic emission (AE) signals. Multiphysics finite element (FE) simulations were performed with two PWAS transducers bonded to the structure. Various configurations of the sensors were studied by using the simulations. One PWAS was placed near to the fatigue-crack and the other one was placed at a certain distance from the crack. The simulated AE event was generated at the crack tip. The simulation results showed that both PWAS transducers were capable of sensing the AE signals. To validate the multiphysics simulation results, an in-situ AE-fatigue experiment was performed. Two PWAS transducers were bonded to the thin aerospace test coupon. The fatigue crack was generated in the test coupon which had produced low-amplitude acoustic waves. The low-amplitude fatigue-crack related AE signals were successfully captured by the PWAS transducers. The distance effect on the captured AE signals was also studied. It has been shown that some high-frequency contents of the AE signal have developed as they travel away from the crack. PMID:28817081

  1. Calculation of selective filters of a device for primary analysis of speech signals

    NASA Astrophysics Data System (ADS)

    Chudnovskii, L. S.; Ageev, V. M.

    2014-07-01

    The amplitude-frequency responses of filters for primary analysis of speech signals, which have a low quality factor and a high rolloff factor in the high-frequency range, are calculated using the linear theory of speech production and psychoacoustic measurement data. The frequency resolution of the filter system for a sinusoidal signal is 40-200 Hz. The modulation-frequency resolution of amplitude- and frequency-modulated signals is 3-6 Hz. The aforementioned features of the calculated filters are close to the amplitudefrequency responses of biological auditory systems at the level of the eighth nerve.

  2. An Analysis of Fundamental Mode Surface Wave Amplitude Measurements

    NASA Astrophysics Data System (ADS)

    Schardong, L.; Ferreira, A. M.; van Heijst, H. J.; Ritsema, J.

    2014-12-01

    Seismic tomography is a powerful tool to decipher the Earth's interior structure at various scales. Traveltimes of seismic waves are widely used to build velocity models, whereas amplitudes are still only seldomly accounted for. This mainly results from our limited ability to separate the various physical effects responsible for observed amplitude variations, such as focussing/defocussing, scattering and source effects. We present new measurements from 50 global earthquakes of fundamental-mode Rayleigh and Love wave amplitude anomalies measured in the period range 35-275 seconds using two different schemes: (i) a standard time-domain amplitude power ratio technique; and (ii) a mode-branch stripping scheme. For minor-arc data, we observe amplitude anomalies with respect to PREM in the range of 0-4, for which the two measurement techniques show a very good overall agreement. We present here a statistical analysis and comparison of these datasets, as well as comparisons with theoretical calculations for a variety of 3-D Earth models. We assess the geographical coherency of the measurements, and investigate the impact of source, path and receiver effects on surface wave amplitudes, as well as their variations with frequency in a wider range than previously studied.

  3. Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling.

    PubMed

    Kawatani, Yoshio; Hamilton, Kevin

    2013-05-23

    The zonal wind in the tropical stratosphere switches between prevailing easterlies and westerlies with a period of about 28 months. In the lowermost stratosphere, the vertical structure of this quasibiennial oscillation (QBO) is linked to the mean upwelling, which itself is a key factor in determining stratospheric composition. Evidence for changes in the QBO have until now been equivocal, raising questions as to the extent of stratospheric circulation changes in a global warming context. Here we report an analysis of near-equatorial radiosonde observations for 1953-2012, and reveal a long-term trend of weakening amplitude in the zonal wind QBO in the tropical lower stratosphere. The trend is particularly notable at the 70-hectopascal pressure level (an altitude of about 19 kilometres), where the QBO amplitudes dropped by roughly one-third over the period. This trend is also apparent in the global warming simulations of the four models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) that realistically simulate the QBO. The weakening is most reasonably explained as resulting from a trend of increased mean tropical upwelling in the lower stratosphere. Almost all comprehensive climate models have projected an intensifying tropical upwelling in global warming scenarios, but attempts to estimate changes in the upwelling by using observational data have yielded ambiguous, inconclusive or contradictory results. Our discovery of a weakening trend in the lower-stratosphere QBO amplitude provides strong support for the existence of a long-term trend of enhanced upwelling near the tropical tropopause.

  4. Brewster-plate spoiler - A novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities

    NASA Technical Reports Server (NTRS)

    Webster, C. R.

    1985-01-01

    A simple method is described for substantially reducing the amplitude of interference fringes that limit the sensitivities of tunable-laser high-resolution absorption spectrometers. A lead-salt diode laser operating in the 7-micron region is used with a single Brewster-plate spoiler to reduce the fringe amplitude by a factor of 30 and also to allow the detection of absorptances 0.001 percent in a single laser scan without subtraction techniques, without complex frequency modulation, and without distortion of the molecular line-shape signals. Application to multipass-cell spectrometers is described.

  5. Noisy transcription factor NF-κB oscillations stabilize and sensitize cytokine signaling in space

    NASA Astrophysics Data System (ADS)

    Gangstad, Sirin W.; Feldager, Cilie W.; Juul, Jeppe; Trusina, Ala

    2013-02-01

    NF-κB is a major transcription factor mediating inflammatory response. In response to a pro-inflammatory stimulus, it exhibits a characteristic response—a pulse followed by noisy oscillations in concentrations of considerably smaller amplitude. NF-κB is an important mediator of cellular communication, as it is both activated by and upregulates production of cytokines, signals used by white blood cells to find the source of inflammation. While the oscillatory dynamics of NF-κB has been extensively investigated both experimentally and theoretically, the role of the noise and the lower secondary amplitude has not been addressed. We use a cellular automaton model to address these issues in the context of spatially distributed communicating cells. We find that noisy secondary oscillations stabilize concentric wave patterns, thus improving signal quality. Furthermore, both lower secondary amplitude as well as noise in the oscillation period might be working against chronic inflammation, the state of self-sustained and stimulus-independent excitations. Our findings suggest that the characteristic irregular secondary oscillations of lower amplitude are not accidental. On the contrary, they might have evolved to increase robustness of the inflammatory response and the system's ability to return to a pre-stimulated state.

  6. Effect of equation of state on laser imprinting by comparing diamond and polystyrene foils

    NASA Astrophysics Data System (ADS)

    Kato, H.; Shigemori, K.; Nagatomo, H.; Nakai, M.; Sakaiya, T.; Ueda, T.; Terasaki, H.; Hironaka, Y.; Shimizu, K.; Azechi, H.

    2018-03-01

    We present herein a comprehensive study of how the equation of state affects laser imprinting by nonuniform laser irradiation of an inertial fusion target. It has been suggested that a stiffer and denser material would reduce laser imprinting based on the equation of motion with pressure perturbation. We examine the detailed temporal evolution of the imprint amplitude by using the two-dimensional radiation hydrodynamic simulation PINOCO-2D for diamond, which is a candidate stiff-ablator material for inertial fusion targets. The simulated laser imprinting amplitude is compared with experimental measurements of areal-density perturbations obtained by using face-on x-ray backlighting for diamond and polystyrene (PS) (the latter as a reference). The experimental results are well reproduced by the results of the PINOCO-2D simulation, which indicates that the imprinting amplitude due to nonuniform irradiation (average intensity, 4.0 × 1012 to 5.0 × 1013) differs by a factor of two to three between diamond and PS. The difference in laser imprinting is mainly related to the material density and compressibility. These parameters are key factors that determine the laser imprinting amplitude.

  7. Solar burst with millimetre-wave emission at high frequency only

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Correia, E.; Costa, J. E. R.; Vaz, A. M. Z.; Dennis, B. R.

    1985-01-01

    The first high sensitivity and high time-resolution observations of a solar burst taken simultaneously at 90 GHz and at 30 GHz are presented. These identify a unique impulsive burst on May 21, 1984 with fast pulsed emission that was considerably more intense at 90 GHz than at lower frequencies. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHz structures to better than 1 s. The structure of the onset of the major 90 GHz burst coincided with the hard X-ray structure to within 128 ms. All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 s and amplitudes that were large compared with the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses.

  8. Sensitivities Kernels of Seismic Traveltimes and Amplitudes for Quality Factor and Boundary Topography

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Zhao, L.; Ma, K.

    2010-12-01

    Finite-frequency approach enables seismic tomography to fully utilize the spatial and temporal distributions of the seismic wavefield to improve resolution. In achieving this goal, one of the most important tasks is to compute efficiently and accurately the (Fréchet) sensitivity kernels of finite-frequency seismic observables such as traveltime and amplitude to the perturbations of model parameters. In scattering-integral approach, the Fréchet kernels are expressed in terms of the strain Green tensors (SGTs), and a pre-established SGT database is necessary to achieve practical efficiency for a three-dimensional reference model in which the SGTs must be calculated numerically. Methods for computing Fréchet kernels for seismic velocities have long been established. In this study, we develop algorithms based on the finite-difference method for calculating Fréchet kernels for the quality factor Qμ and seismic boundary topography. Kernels for the quality factor can be obtained in a way similar to those for seismic velocities with the help of the Hilbert transform. The effects of seismic velocities and quality factor on either traveltime or amplitude are coupled. Kernels for boundary topography involve spatial gradient of the SGTs and they also exhibit interesting finite-frequency characteristics. Examples of quality factor and boundary topography kernels will be shown for a realistic model for the Taiwan region with three-dimensional velocity variation as well as surface and Moho discontinuity topography.

  9. Gravitational tides in the outer planets. I - Implications of classical tidal theory. II - Interior calculations and estimation of the tidal dissipation factor

    NASA Technical Reports Server (NTRS)

    Ioannou, Petros J.; Lindzen, Richard S.

    1993-01-01

    Classical tidal theory is applied to the atmospheres of the outer planets. The tidal geopotential due to satellites of the outer planets is discussed, and the solution of Laplace's tidal equation for Hough modes appropriate to tides on the outer planets is examined. The vertical structure of tidal modes is described, noting that only relatively high-order meridional mode numbers can propagate vertically with growing amplitude. Expected magnitudes for tides in the visible atmosphere of Jupiter are discussed. The classical theory is extended to planetary interiors taking the effects of spherically and self-gravity into account. The thermodynamic structure of Jupiter is described and the WKB theory of the vertical structure equation is presented. The regions for which inertial, gravity, and acoustic oscillations are possible are delineated. The case of a planet with a neutral interior is treated, discussing the various atmospheric boundary conditions and showing that the tidal response is small.

  10. Influence of the measurement location on the resistance index in the umbilical arteries: a hemodynamic approach.

    PubMed

    Vieyres, P; Durand, A; Patat, F; Descamps, P; Gregoire, J M; Pourcelot, D; Pourcelot, L

    1991-12-01

    A computer model was used to study the primary factors generating the reduction in resistance index, (S-D)/S, values observed by ultrasonic Doppler measurements in the umbilical artery, from the fetal insertion to the placental insertion (S represents the amplitude of the systolic peak and D the amplitude of the diastolic peak). This hemodynamic approach shows that the placental resistance is the primary factor, the viscosity and the cord length playing secondary roles. Clinically, the position of the measurement along the cord is an important factor. To increase the sensitivity of the index, the Doppler measurement must be performed near the fetal insertion, whereas a measurement near the placental insertion will make the Doppler examination more specific.

  11. Efficient Optical Logic, Interconnections and Processing Using Quantum Confined Structures

    DTIC Science & Technology

    1991-05-01

    No bis I With bias Ra ( b ’ OotI o lNo bias Use Il) felectro-refraicc n to phase-s’:t A- X I 3 Wavelength 3 Figure II-1. Efficient modulation in a...operation. The top (bottom) mirror of an AFP structure has an amplitude reflection coefficient of rt( b ) and power reflectivity of RT( B )=Ir0)12, viewed...and ( b ) for the case of a=O and a=ln(rb/rt), respectively. Adding (1) and (2), we obtain the total amplitude reflection rto as: -13- I Ii/V aoabl

  12. Quasiperiodic oscillation and possible Second Law violation in a nanosystem

    NASA Astrophysics Data System (ADS)

    Quick, R.; Singharoy, A.; Ortoleva, P.

    2013-05-01

    Simulation of a virus-like particle reveals persistent oscillation about a free-energy minimizing structure. For an icosahedral structure of 12 human papillomavirus (HPV) L1 protein pentamers, the period is about 70 picoseconds and has amplitude of about 4 Å at 300 K and pH 7. The pentamers move radially and out-of-phase with their neighbors. As temperature increases the amplitude and period decrease. Since the dynamics are shown to be friction-dominated and free-energy driven, the oscillations are noninertial. These anomalous oscillations are an apparent violation of the Second Law mediated by fluctuations accompanying nanosystem behavior.

  13. Spatio-temporal evolutions of non-orthogonal equatorial wave modes derived from observations

    NASA Astrophysics Data System (ADS)

    Barton, Cory

    Equatorial waves have been studied extensively due to their importance to the tropical climate and weather systems. Historically, their activity is diagnosed mainly in the wavenumber-frequency domain. Recently, many studies have projected observational data onto parabolic cylinder functions (PCFs), which represent the meridional structure of individual wave modes, to attain time-dependent spatial wave structures. The non-orthogonality of wave modes has yet posed a problem when attempting to separate data into wave fields where the waves project onto the same structure functions. We propose the development and application of a new methodology for equatorial wave expansion of instantaneous flows using the full equatorial wave spectrum. By creating a mapping from the meridional structure function amplitudes to the equatorial wave class amplitudes, we are able to diagnose instantaneous wave fields and determine their evolution. Because all meridional modes are shared by some subset of the wave classes, we require constraints on the wave class amplitudes to yield a closed system with a unique solution for all waves' spatial structures, including IG waves. A synthetic field is analyzed using this method to determine its accuracy for data of a single vertical mode. The wave class spectra diagnosed using this method successfully match the correct dispersion curves even if the incorrect depth is chosen for the spatial decomposition. In the case of more than one depth scale, waves with varying equivalent depth may be similarly identified using the dispersion curves. The primary vertical mode is the 200 m equivalent depth mode, which is that of the peak projection response. A distinct spectral power peak along the Kelvin wave dispersion curve for this value validates our choice of equivalent depth, although the possibility of depth varying with time and height is explored. The wave class spectra diagnosed assuming this depth scale mostly match their expected dispersion curves, showing that this method successfully partitions the wave spectra by calculating wave amplitudes in physical space. This is particularly striking because the time evolution, and therefore the frequency characteristics, is determined simply by a timeseries of independently-diagnosed instantaneous horizontal fields. We use the wave fields diagnosed by this method to study wave evolution in the context of the stratospheric QBO of zonal wind, confirming the continuous evolution of the selection mechanism for equatorial waves in the middle atmosphere. The amplitude cycle synchronized with the background zonal wind as predicted by QBO theory is present in the wave class fields even though the dynamics are not forced by the method itself. We have additionally identified a time-evolution of the zonal wavenumber spectrum responsible for the amplitude variability in physical space. Similar to the temporal characteristics, the vertical structures are also the result of a simple height cross-section through multiple independently-diagnosed levels.

  14. Amplitude modulation detection with concurrent frequency modulation.

    PubMed

    Nagaraj, Naveen K

    2016-09-01

    Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.

  15. Trade-off of Elastic Structure and Q in Interpretations of Seismic Attenuation

    NASA Astrophysics Data System (ADS)

    Deng, Wubing; Morozov, Igor B.

    2017-10-01

    The quality factor Q is an important phenomenological parameter measured from seismic or laboratory seismic data and representing wave-energy dissipation rate. However, depending on the types of measurements and models or assumptions about the elastic structure, several types of Qs exist, such as intrinsic and scattering Qs, coda Q, and apparent Qs observed from wavefield fluctuations. We consider three general types of elastic structures that are commonly encountered in seismology: (1) shapes and dimensions of rock specimens in laboratory studies, (2) geometric spreading or scattering in body-, surface- and coda-wave studies, and (3) reflectivity on fine layering in reflection seismic studies. For each of these types, the measured Q strongly trades off with the (inherently limited) knowledge about the respective elastic structure. For the third of the above types, the trade-off is examined quantitatively in this paper. For a layered sequence of reflectors (e.g., an oil or gas reservoir or a hydrothermal zone), reflection amplitudes and phases vary with frequency, which is analogous to a reflection from a contrast in attenuation. We demonstrate a quantitative equivalence between phase-shifted reflections from anelastic zones and reflections from elastic layering. Reflections from the top of an elastic layer followed by weaker reflections from its bottom can appear as resulting from a low Q within or above this layer. This apparent Q can be frequency-independent or -dependent, according to the pattern of thin layering. Due to the layering, the interpreted Q can be positive or negative, and it can depend on source-receiver offsets. Therefore, estimating Q values from frequency-dependent or phase-shifted reflection amplitudes always requires additional geologic or rock-physics constraints, such as sparseness and/or randomness of reflectors, the absence of attenuation in certain layers, or specific physical mechanisms of attenuation. Similar conclusions about the necessity of extremely detailed models of the elastic structure apply to other types of Q measurements.

  16. Properties of scattering forms and their relation to associahedra

    NASA Astrophysics Data System (ADS)

    de la Cruz, Leonardo; Kniss, Alexander; Weinzierl, Stefan

    2018-03-01

    We show that the half-integrands in the CHY representation of tree amplitudes give rise to the definition of differential forms — the scattering forms — on the moduli space of a Riemann sphere with n marked points. These differential forms have some remarkable properties. We show that all singularities are on the divisor {\\overline{M}}_{0,n}\\backslash {M}_{0,n} . Each singularity is logarithmic and the residue factorises into two differential forms of lower points. In order for this to work, we provide a threefold generalisation of the CHY polarisation factor (also known as reduced Pfaffian) towards off-shell momenta, unphysical polarisations and away from the solutions of the scattering equations. We discuss explicitly the cases of bi-adjoint scalar amplitudes, Yang-Mills amplitudes and gravity amplitudes.

  17. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, S.; Cai, H.; DeRose, C. T.

    Here, we experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 – 1640 nm and 95 nm from 1280 – 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. Furthermore, we investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplersmore » and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. This demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.« less

  18. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB

    DOE PAGES

    Liu, S.; Cai, H.; DeRose, C. T.; ...

    2017-05-04

    Here, we experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 – 1640 nm and 95 nm from 1280 – 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. Furthermore, we investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplersmore » and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. This demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.« less

  19. Emphasis of spatial cues in the temporal fine structure during the rising segments of amplitude-modulated sounds

    PubMed Central

    Dietz, Mathias; Marquardt, Torsten; Salminen, Nelli H.; McAlpine, David

    2013-01-01

    The ability to locate the direction of a target sound in a background of competing sources is critical to the survival of many species and important for human communication. Nevertheless, brain mechanisms that provide for such accurate localization abilities remain poorly understood. In particular, it remains unclear how the auditory brain is able to extract reliable spatial information directly from the source when competing sounds and reflections dominate all but the earliest moments of the sound wave reaching each ear. We developed a stimulus mimicking the mutual relationship of sound amplitude and binaural cues, characteristic to reverberant speech. This stimulus, named amplitude modulated binaural beat, allows for a parametric and isolated change of modulation frequency and phase relations. Employing magnetoencephalography and psychoacoustics it is demonstrated that the auditory brain uses binaural information in the stimulus fine structure only during the rising portion of each modulation cycle, rendering spatial information recoverable in an otherwise unlocalizable sound. The data suggest that amplitude modulation provides a means of “glimpsing” low-frequency spatial cues in a manner that benefits listening in noisy or reverberant environments. PMID:23980161

  20. Conformal amplitude hierarchy and the Poincaré disk

    NASA Astrophysics Data System (ADS)

    Shimada, Hirohiko

    2018-02-01

    The amplitude for the singlet channels in the 4-point function of the fundamental field in the conformal field theory of the 2d O(n) model is studied as a function of n. For a generic value of n, the 4-point function has infinitely many amplitudes, whose landscape can be very spiky as the higher amplitude changes its sign many times at the simple poles, which generalize the unique pole of the energy operator amplitude at n = 0. In the stadard parameterization of n by angle in unit of π, we find that the zeros and poles happen at the rational angles, forming a hierarchical tree structure inherent in the Poincaré disk. Some relation between the amplitude and the Farey path, a piecewise geodesic that visits these zeros and poles, is suggested. In this hierarchy, the symmetry of the congruence subgroup Γ(2) of SL(2, ℤ) naturally arises from the two clearly distinct even/odd classes of the rational angles, in which one respectively gets the truncated operator algebras and the logarithmic 4-point functions.

  1. Seismic imaging in hardrock environments: The role of heterogeneity?

    NASA Astrophysics Data System (ADS)

    Bongajum, Emmanuel; Milkereit, Bernd; Adam, Erick; Meng, Yijian

    2012-10-01

    We investigate the effect of petrophysical scale parameters and structural dips on wave propagation and imaging in heterogeneous media. Seismic wave propagation effects within the heterogeneous media are studied for different velocity models with scale lengths determined via stochastic analysis of petrophysical logs from the Matagami mine, Quebec, Canada. The elastic modeling study reveals that provided certain conditions of the velocity fluctuations are met, strong local distortions of amplitude and arrival times of propagating waves are observed as the degree of scale length anisotropy in the P-wave velocity increases. The location of these local amplitude anomalies is related to the dips characterizing the fabric of the host rocks. This result is different from the elliptical shape of direct waves often defined by effective anisotropic parameters used for layered media. Although estimates of anisotropic parameters suggest weak anisotropy in the investigated models, these effective anisotropic parameters often used in VTI/TTI do not sufficiently describe the effects of scale length anisotropy in heterogeneous media that show such local amplitude, travel time, and phase distortions in the wavefields. Numerical investigations on the implications for reverse time migration (RTM) routines corroborate that mean P-wave velocity of the host rocks produces reliable imaging results. Based on the RTM results, we postulate the following: weak anisotropy in hardrock environments is a sufficient assumption for processing seismic data; and seismic scattering effects due to velocity heterogeneity with a dip component is not sufficient to cause mislocation errors of target structures as observed in the discrepancy between the location of the strong seismic reflections associated to the Matagami sulfide orebody and its true location. Future work will investigate other factors that may provide plausible explanations for these mislocation problems, with the objective of providing a mitigation strategy for incorporation into the seismic data processing sequence when imaging in hardrock settings.

  2. High-resolution spectroscopy of the C-N stretching band of methylamine

    NASA Astrophysics Data System (ADS)

    Lees, Ronald M.; Sun, Zhen-Dong; Billinghurst, B. E.

    2011-09-01

    The C-N stretching infrared fundamental of CH3NH2 has been investigated by high-resolution laser sideband and Fourier transform synchrotron spectroscopy to explore the energy level structure and to look for possible interactions with high-lying torsional levels of the ground state and other vibrational modes. The spectrum is complicated by two coupled large-amplitude motions in the molecule, the CH3 torsion and the NH2 inversion, which lead to rich spectral structure with a wide range of energy level splittings and relative line intensities. Numerous sub-bands have been assigned for K values ranging up to 12 for the stronger a inversion species for the vt = 0 torsional state, along with many of the weaker sub-bands of the s species. The C-N stretching sub-state origins have been determined by fitting the upper-state term values to J(J + 1) power-series expansions. For comparison with the ground-state behaviour, both ground and C-N stretch origins have been fitted to a phenomenological Fourier series model that produces an interesting pattern with the differing periodicities of the torsional and inversion energies. The amplitude of the torsional energy oscillation increases substantially for the C-N stretch, while the amplitude of the inversion energy oscillation is relatively unchanged. Independent inertial scale factors ρ were fitted for the torsion and the inversion and differ significantly in the upper state. The C-N stretching vibrational energy is determined to be 1044.817 cm-1, while the effective upper state B-value is 0.7318 cm-1. Several anharmonic resonances with vt = 4 ground-state levels have been observed and partially characterized. A variety of J-localized level-crossing resonances have also been seen, five of which display forbidden transitions arising from intensity borrowing that allow determination of the interaction coupling constants.

  3. Evaluation of the effectiveness of elastomeric mount using vibration power flow and transmissibility methods

    NASA Astrophysics Data System (ADS)

    Arib Rejab, M. N.; Shukor, S. A. Abdul; Sofian, M. R. Mohd; Inayat-Hussain, J. I.; Nazirah, A.; Asyraf, I.

    2017-10-01

    This paper presents the results of an experimental work to determine the dynamic stiffness and loss factor of elastomeric mounts. It also presents the results of theoretical analysis to determine the transmissibility and vibration power flow of these mounts, which are associated with their contribution to structure-borne noise. Four types of elastomeric mounts were considered, where three of them were made from green natural rubber material (SMR CV60, Ekoprena and Pureprena) and one made from petroleum based synthetic rubber (EPDM). In order to determine the dynamic stiffness and loss factor of these elastomeric mounts, dynamic tests were conducted using MTS 830 Elastomer Test System. Dynamic stiffness and loss factor of these mounts were measured for a range of frequency between 5 Hz and 150 Hz, and with a dynamic amplitude of 0.2 mm (p-p). The transmissibility and vibration power flow were determined based on a simple 2-Degree-of-Freedom model representing a vibration isolation system with a flexible receiver. This model reprsents the three main parts of a vehicle, which are the powertrain and engine mounting, the flexible structure and the floor of the vehicle. The results revealed that synthetic rubber (EPDM) was only effective at high frequency region. Natural rubber (Ekoprena), on the other hand, was found to be effective at both low and high frequency regions due to its low transmissibility at resonant frequency and its ability to damp the resonance. The estimated structure-borne noise emission showed that Ekoprena has a lower contribution to structure-borne noise as compared to the other types of elastomeric mounts.

  4. Differential numbers of foci of lymphocytes within the brains of Lewis rats exposed to weak complex nocturnal magnetic fields during development of experimental allergic encephalomyelitis.

    PubMed

    Persinger, Michael A

    2009-01-01

    To discern if specific structures of the rat brain contained more foci of lymphocytes following induction of experimental allergic encephalomyelitis and exposures to weak, amplitude-modulated magnetic fields for 6 min once per hour during the scotophase, the residuals between the observed and predicted values for the numbers of foci for 320 structures were obtained. Compared to the brains of sham-field exposed rats, the brains of rats exposed to 7-Hz 50 nT (0.5 mG) amplitude-modulated fields showed more foci within hippocampal structures and the dorsal central grey of the midbrain while those exposed to 7-Hz 500 nT (5 mG) fields showed greater densities within the hypothalamus and optic chiasm. The brains of rats exposed to either the 50 nT or 500 nT amplitude-modulated 40-Hz fields displayed greater densities of foci within the midbrain structures related to rapid eye movement. Most of the enhancements of infiltrations within the magnetic field-exposed rats occurred in structures within periventricular or periaqueductal regions and were both frequency- and intensity-dependent. The specificity and complexity of the configurations of the residuals of the numbers of infiltrated foci following exposures to the different fields suggest that the brain itself may be a "sensory organ" for the detection of these stimuli.

  5. Nanoparticle agglomeration in an evaporating levitated droplet for different acoustic amplitudes

    NASA Astrophysics Data System (ADS)

    Tijerino, Erick; Basu, Saptarshi; Kumar, Ranganathan

    2013-01-01

    Radiatively heated levitated functional droplets with nanosilica suspensions exhibit three distinct stages namely pure evaporation, agglomeration, and finally structure formation. The temporal history of the droplet surface temperature shows two inflection points. One inflection point corresponds to a local maximum and demarcates the end of transient heating of the droplet and domination of vaporization. The second inflection point is a local minimum and indicates slowing down of the evaporation rate due to surface accumulation of nanoparticles. Morphology and final precipitation structures of levitated droplets are due to competing mechanisms of particle agglomeration, evaporation, and shape deformation. In this work, we provide a detailed analysis for each process and propose two important timescales for evaporation and agglomeration that determine the final diameter of the structure formed. It is seen that both agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound pressure level), droplet size, viscosity, and density. However, we show that while the agglomeration timescale decreases with initial particle concentration, the evaporation timescale shows the opposite trend. The final normalized diameter can be shown to be dependent solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic amplitudes. The structures also exhibit various aspect ratios (bowls, rings, spheroids) which depend on the ratio of the deformation timescale (tdef) and the agglomeration timescale (tg). For tdef

  6. Surface-wave amplitude analysis for array data with non-linear waveform fitting: Toward high-resolution attenuation models of the upper mantle

    NASA Astrophysics Data System (ADS)

    Hamada, K.; Yoshizawa, K.

    2013-12-01

    Anelastic attenuation of seismic waves provides us with valuable information on temperature and water content in the Earth's mantle. While seismic velocity models have been investigated by many researchers, anelastic attenuation (or Q) models have yet to be investigated in detail mainly due to the intrinsic difficulties and uncertainties in the amplitude analysis of observed seismic waveforms. To increase the horizontal resolution of surface wave attenuation models on a regional scale, we have developed a new method of fully non-linear waveform fitting to measure inter-station phase velocities and amplitude ratios simultaneously, using the Neighborhood Algorithm (NA) as a global optimizer. Model parameter space (perturbations of phase speed and amplitude ratio) is explored to fit two observed waveforms on a common great-circle path by perturbing both phase and amplitude of the fundamental-mode surface waves. This method has been applied to observed waveform data of the USArray from 2007 to 2008, and a large-number of inter-station amplitude and phase speed data are corrected in a period range from 20 to 200 seconds. We have constructed preliminary phase speed and attenuation models using the observed phase and amplitude data, with careful considerations of the effects of elastic focusing and station correction factors for amplitude data. The phase velocity models indicate good correlation with the conventional tomographic results in North America on a large-scale; e.g., significant slow velocity anomaly in volcanic regions in the western United States. The preliminary results of surface-wave attenuation achieved a better variance reduction when the amplitude data are inverted for attenuation models in conjunction with corrections for receiver factors. We have also taken into account the amplitude correction for elastic focusing based on a geometrical ray theory, but its effects on the final model is somewhat limited and our attenuation model show anti-correlation with the phase velocity models; i.e., lower attenuation is found in slower velocity areas that cannot readily be explained by the temperature effects alone. Some former global scale studies (e.g., Dalton et al., JGR, 2006) indicated that the ray-theoretical focusing corrections on amplitude data tend to eliminate such anti-correlation of phase speed and attenuation, but this seems not to work sufficiently well for our regional scale model, which is affected by stronger velocity gradient relative to global-scale models. Thus, the estimated elastic focusing effects based on ray theory may be underestimated in our regional-scale studies. More rigorous ways to estimate the focusing corrections as well as data selection criteria for amplitude measurements are required to achieve a high-resolution attenuation models on regional scales in the future.

  7. Breather solutions of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits

    NASA Astrophysics Data System (ADS)

    Chowdury, Amdad; Krolikowski, Wieslaw; Akhmediev, N.

    2017-10-01

    We present one- and two-breather solutions of the fourth-order nonlinear Schrödinger equation. With several parameters to play with, the solution may take a variety of forms. We consider most of these cases including the general form and limiting cases when the modulation frequencies are 0 or coincide. The zero-frequency limit produces a combination of breather-soliton structures on a constant background. The case of equal modulation frequencies produces a degenerate solution that requires a special technique for deriving. A zero-frequency limit of this degenerate solution produces a rational second-order rogue wave solution with a stretching factor involved. Taking, in addition, the zero limit of the stretching factor transforms the second-order rogue waves into a soliton. Adding a differential shift in the degenerate solution results in structural changes in the wave profile. Moreover, the zero-frequency limit of the degenerate solution with differential shift results in a rogue wave triplet. The zero limit of the stretching factor in this solution, in turn, transforms the triplet into a singlet plus a low-amplitude soliton on the background. A large value of the differential shift parameter converts the triplet into a pure singlet.

  8. Breather solutions of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits.

    PubMed

    Chowdury, Amdad; Krolikowski, Wieslaw; Akhmediev, N

    2017-10-01

    We present one- and two-breather solutions of the fourth-order nonlinear Schrödinger equation. With several parameters to play with, the solution may take a variety of forms. We consider most of these cases including the general form and limiting cases when the modulation frequencies are 0 or coincide. The zero-frequency limit produces a combination of breather-soliton structures on a constant background. The case of equal modulation frequencies produces a degenerate solution that requires a special technique for deriving. A zero-frequency limit of this degenerate solution produces a rational second-order rogue wave solution with a stretching factor involved. Taking, in addition, the zero limit of the stretching factor transforms the second-order rogue waves into a soliton. Adding a differential shift in the degenerate solution results in structural changes in the wave profile. Moreover, the zero-frequency limit of the degenerate solution with differential shift results in a rogue wave triplet. The zero limit of the stretching factor in this solution, in turn, transforms the triplet into a singlet plus a low-amplitude soliton on the background. A large value of the differential shift parameter converts the triplet into a pure singlet.

  9. Extraction of helicity amplitude ratios from exclusive ρ 0-meson electroproduction on transversely polarized protons

    NASA Astrophysics Data System (ADS)

    Manaenkov, S. I.; HERMES Collaboration

    2017-12-01

    Exclusive ρ 0-meson electroproduction is studied by the HERMES experiment, using the 27.6 GeV longitudinally polarized electron/positron beam of HERA and a transversely polarized hydrogen target, in the kinematic region 1.0 GeV2 < Q 2 < 7.0 GeV2, 3.0 GeV < W < 6.3 GeV, and -t‧ < 0.4 GeV2. Using an unbinned maximum-likelihood method, 25 parameters are extracted. They determine the real and imaginary parts of the ratios of certain helicity amplitudes (describing ρ 0-meson production by a virtual photon) and the dominant amplitude {F}0\\frac{1{2}0\\frac{1}{2}} without the nucleon-helicity flip. The latter amplitude describes the production of a longitudinal ρ 0 meson by a longitudinal virtual photon. The transverse target polarization allows for the first time the extraction of ratios of a number of nucleon-helicity-flip amplitudes to {F}0\\frac{1{2}0\\frac{1}{2}}. The ratios of nucleon-helicity-non-flip amplitudes to {F}0\\frac{1{2}0\\frac{1}{2}} are found to be in good agreement with those from the previous HERMES analysis. A comparison of the extracted amplitude ratios with the Goloskokov-Kroll model shows the necessity to add pion exchange amplitudes with positive πρ form factor to the amplitudes based on generalized parton distributions to improve the HERMES data description.

  10. Buffet induced structural/flight-control system interaction of the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Voracek, David F.; Clarke, Robert

    1991-01-01

    High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.

  11. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 2: Structural fatigue, thermal cycling, creep, and residual strength

    NASA Technical Reports Server (NTRS)

    Blichfeldt, B.; Mccarty, J. E.

    1972-01-01

    Specimens representative of metal aircraft structural components reinforced with boron filamentary composites were manufactured and tested under cyclic loading, cyclic temperature, or continuously applied loading to evaluate some of the factors that affect structural integrity under cyclic conditions. Bonded, stepped joints were used throughout to provide composite-to-metal transition regions at load introduction points. Honeycomb panels with titanium or aluminum faces reinforced with unidirectional boron composite were fatigue tested at constant amplitude under completely reversed loading. Results indicated that the matrix material was the most fatigue-sensitive part of the design, with debonding initiating in the stepped joints. However, comparisons with equal weight all-metal specimens show a 10 to 50 times improved fatigue life. Fatigue crack propagation and residual strength were studied for several different stiffened panel concepts, and were found to vary considerably depending on the configuration. Composite-reinforced metal specimens were also subjected to creep and thermal cycling tests. Thermal cycling of stepped joint tensile specimens resulted in a ten percent decrease in residual strength after 4000 cycles.

  12. Two Step Acceleration Process of Electrons in the Outer Van Allen Radiation Belt by Time Domain Electric Field Bursts and Large Amplitude Chorus Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.

    2014-12-01

    A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.

  13. Disinhibition of the extracellular-signal-regulated kinase restores the amplification of circadian rhythms by lithium in cells from bipolar disorder patients.

    PubMed

    McCarthy, Michael J; Wei, Heather; Landgraf, Dominic; Le Roux, Melissa J; Welsh, David K

    2016-08-01

    Bipolar disorder (BD) is characterized by depression, mania, and circadian rhythm abnormalities. Lithium, a treatment for BD stabilizes mood and increases circadian rhythm amplitude. However, in fibroblasts grown from BD patients, lithium has weak effects on rhythm amplitude compared to healthy controls. To understand the mechanism by which lithium differentially affects rhythm amplitude in BD cells, we investigated the extracellular-signal-regulated kinase (ERK) and related signaling molecules linked to BD and circadian rhythms. In fibroblasts from BD patients, controls and mice, we assessed the contribution of the ERK pathway to lithium-induced circadian rhythm amplification. Protein analyses revealed low phospho-ERK1/2 (p-ERK) content in fibroblasts from BD patients vs. Pharmacological inhibition of ERK1/2 by PD98059 attenuated the rhythm amplification effect of lithium, while inhibition of two related kinases, c-Jun N-terminal kinase (JNK), and P38 did not. Knockdown of the transcription factors CREB and EGR-1, downstream effectors of ERK1/2, reduced baseline rhythm amplitude, but did not alter rhythm amplification by lithium. In contrast, ELK-1 knockdown amplified rhythms, an effect that was not increased further by the addition of lithium, suggesting this transcription factor may regulate the effect of lithium on amplitude. Augmentation of ERK1/2 signaling through DUSP6 knockdown sensitized NIH3T3 cells to rhythm amplification by lithium. In BD fibroblasts, DUSP6 knockdown reversed the BD rhythm phenotype, restoring the ability of lithium to increase amplitude in these cells. We conclude that the inability of lithium to regulate circadian rhythms in BD may reflect reduced ERK activity, and signaling through ELK-1. Published by Elsevier B.V.

  14. Factors Influencing Intracavitary Electrocardiographic P-Wave Changes during Central Venous Catheter Placement

    PubMed Central

    Wang, Guorong; Guo, Ling; Jiang, Bin; Huang, Min; Zhang, Jian; Qin, Ying

    2015-01-01

    Amplitude changes in the P-wave of intracavitary electrocardiography have been used to assess the tip placement of central venous catheters. The research assessed the sensitivity and specificity of this sign in comparison with standard radiographic techniques for tip location, focusing on factors influencing its clinical utility. Both intracavitary electrocardiography guided tip location and X-ray positioning were used to verify catheter tip locations in patients undergoing central venous catheter insertion. Intracavitary electrocardiograms from 1119 patients (of a total 1160 subjects) showed specific amplitude changes in the P-wave. As the results show, compared with X-ray positioning, the sensitivity of electrocardiography-guided tip location was 97.3%, with false negative rate of 2.7%; the specificity was 1, with false positive rate of zero. Univariate analyses indicated that features including age, gender, height, body weight, and heart rate have no statistically significant influence on P-wave amplitude changes (P>0.05). Multivariate logistic regression revealed that catheter insertion routes (OR = 2.280, P = 0.003) and basal P-wave amplitude (OR = 0.553, P = 0.003) have statistically significant impacts on P-wave amplitude changes. As a reliable indicator of tip location, amplitude change in the P-wave has proved of good sensitivity and excellent specificity, and the minor, zero, false positive rate supports the clinical utility of this technique in early recognition of malpositioned tips. A better sensitivity was achieved in placement of centrally inserted central catheters (CICCs) than that of peripherally inserted central catheters (PICCs). In clinical practice, a combination of intracavitary electrocardiography, ultrasonic inspection and the anthropometric measurement method would further improve the accuracy. PMID:25915758

  15. Impact of respiratory-correlated CT sorting algorithms on the choice of margin definition for free-breathing lung radiotherapy treatments.

    PubMed

    Thengumpallil, Sheeba; Germond, Jean-François; Bourhis, Jean; Bochud, François; Moeckli, Raphaël

    2016-06-01

    To investigate the impact of Toshiba phase- and amplitude-sorting algorithms on the margin strategies for free-breathing lung radiotherapy treatments in the presence of breathing variations. 4D CT of a sphere inside a dynamic thorax phantom was acquired. The 4D CT was reconstructed according to the phase- and amplitude-sorting algorithms. The phantom was moved by reproducing amplitude, frequency, and a mix of amplitude and frequency variations. Artefact analysis was performed for Mid-Ventilation and ITV-based strategies on the images reconstructed by phase- and amplitude-sorting algorithms. The target volume deviation was assessed by comparing the target volume acquired during irregular motion to the volume acquired during regular motion. The amplitude-sorting algorithm shows reduced artefacts for only amplitude variations while the phase-sorting algorithm for only frequency variations. For amplitude and frequency variations, both algorithms perform similarly. Most of the artefacts are blurring and incomplete structures. We found larger artefacts and volume differences for the Mid-Ventilation with respect to the ITV strategy, resulting in a higher relative difference of the surface distortion value which ranges between maximum 14.6% and minimum 4.1%. The amplitude- is superior to the phase-sorting algorithm in the reduction of motion artefacts for amplitude variations while phase-sorting for frequency variations. A proper choice of 4D CT sorting algorithm is important in order to reduce motion artefacts, especially if Mid-Ventilation strategy is used. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Exposing strangeness: Projections for kaon electromagnetic form factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Chang, Lei; Liu, Yu -Xin

    A continuum approach to the kaon and pion bound-state problems is used to reveal their electromagnetic structure. For both systems, when used with parton distribution amplitudes appropriate to the scale of the experiment, Standard Model hard-scattering formulas are accurate to within 25% at momentum transfers Q 2 ≈ 8 GeV 2. There are measurable differences between the distribution of strange and normal matter within the kaons, e.g. the ratio of their separate contributions reaches a peak value of 1.5 at Q 2 ≈ 6 GeV 2. Its subsequent Q 2 evolution is accurately described by the hard scattering formulas. Projectionsmore » for the ratio of kaon and pion form factors at timelike momenta beyond the resonance region are also presented. In conclusion, these results and projections should prove useful in planning next-generation experiments.« less

  17. Exposing strangeness: Projections for kaon electromagnetic form factors

    DOE PAGES

    Gao, Fei; Chang, Lei; Liu, Yu -Xin; ...

    2017-08-28

    A continuum approach to the kaon and pion bound-state problems is used to reveal their electromagnetic structure. For both systems, when used with parton distribution amplitudes appropriate to the scale of the experiment, Standard Model hard-scattering formulas are accurate to within 25% at momentum transfers Q 2 ≈ 8 GeV 2. There are measurable differences between the distribution of strange and normal matter within the kaons, e.g. the ratio of their separate contributions reaches a peak value of 1.5 at Q 2 ≈ 6 GeV 2. Its subsequent Q 2 evolution is accurately described by the hard scattering formulas. Projectionsmore » for the ratio of kaon and pion form factors at timelike momenta beyond the resonance region are also presented. In conclusion, these results and projections should prove useful in planning next-generation experiments.« less

  18. Angular dependence of novel magnetic quantum oscillations in a quasi-two-dimensional multiband Fermi liquid with impurities

    NASA Astrophysics Data System (ADS)

    Bratkovsky, A. M.; Alexandrov, A. S.

    2002-03-01

    The semiclassical Lifshitz-Kosevich-type description is given for the angular dependence of quantum oscillations with combination frequencies in a multiband quasi-two-dimensional Fermi liquid with a constant number of electrons. The analytical expressions are found for the Dingle, thermal, spin, and amplitude (Yamaji) reduction factors of the novel combination harmonics, where the latter two strongly oscillate with the direction of the field [1]. At the magic angles those factors reduce to the purely two-dimensional expressions given earlier. The combination harmonics are suppressed in the presence of the nonquantized background states, and they decay exponentially faster with temperature and/or disorder compared to the standard harmonics, providing an additional tool for electronic structure determination. The theory is applied to Sr2RuO4. [1] A.M. Bratkovsky and A.S. Alexandrov, Phys. Rev. B 65, xxxx (2002); cond-mat/0104520.

  19. Amplitude Variation of Bottom Simulating Reflection with Respect to Frequency - Transitional Base or Attenuation?

    USGS Publications Warehouse

    Lee, Myung W.

    2007-01-01

    The amplitude of a bottom simulating reflection (BSR), which occurs near the phase boundary between gas hydrate-bearing sediments and underlying gas-filled sediments, strongly depends on the frequency content of a seismic signal, as well as the impedance contrast across the phase boundary. A strong-amplitude BSR, detectable in a conventional seismic profile, is a good indicator of the presence of free gas beneath the phase boundary. However, the BSR as observed in low-frequency multichannel seismic data is generally difficult to identify in high-frequency, single-channel seismic data. To investigate the frequency dependence of BSR amplitudes, single-channel seismic data acquired with an air gun source at Blake Ridge, which is located off the shore of South Carolina, were analyzed in the frequency range of 10-240 Hz. The frequency-dependent impedance contrast caused by the velocity dispersion in partially gas saturated sediments is important to accurately analyze BSR amplitude. Analysis indicates that seismic attenuation of gas hydrate-bearing sediments, velocity dispersion, and a transitional base all contribute to the frequency-dependent BSR amplitude variation in the frequency range of 10-500 Hz. When velocity dispersion is incorporated into the BSR amplitude analysis, the frequency-dependent BSR amplitude at Blake Ridge can be explained with gas hydrate-bearing sediments having a quality factor of about 250 and a transitional base with a thickness of about 1 meter.

  20. TOPICS IN THEORY OF GENERALIZED PARTON DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radyushkin, Anatoly V.

    Several topics in the theory of generalized parton distributions (GPDs) are reviewed. First, we give a brief overview of the basics of the theory of generalized parton distributions and their relationship with simpler phenomenological functions, viz. form factors, parton densities and distribution amplitudes. Then, we discuss recent developments in building models for GPDs that are based on the formalism of double distributions (DDs). A special attention is given to a careful analysis of the singularity structure of DDs. The DD formalism is applied to construction of a model GPDs with a singular Regge behavior. Within the developed DD-based approach, wemore » discuss the structure of GPD sum rules. It is shown that separation of DDs into the so-called ``plus'' part and the $D$-term part may be treated as a renormalization procedure for the GPD sum rules. This approach is compared with an alternative prescription based on analytic regularization.« less

  1. Revisiting the NVSS number count dipole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Prabhakar; Nusser, Adi, E-mail: ptiwari@physics.technion.ac.il, E-mail: adi@physics.technion.ac.il

    We present a realistic modeling of the dipole component of the projected sky distribution of NVSS radio galaxies. The modeling relies on mock catalogs generated within the context of ΛCDM cosmology, in the linear regime of structure formation. After removing the contribution from the solar motion, the mocks show that the remaining observed signal is mostly (70%) due to structures within z ∼< 0.1. The amplitude of the model signal depends on the bias factor b of the NVSS mock galaxies. For sources with flux density, S > 15 mJy, the bias recipe inferred from higher order moments is consistent with the observed dipole signalmore » at 2.12σ. Flux thresholds above 20 mJy yield a disagreement close to the 3σ level. A constant high bias, b = 3 is needed to mitigate the tension to the ∼ 2.3σ level.« less

  2. Ae Behavior of Smart Stress Memory Patch after Variable Amplitude Loading

    NASA Astrophysics Data System (ADS)

    Fujino, Y.; Nambu, S.; Enoki, M.

    Recently, the structural health monitoring becomes increasingly great important to assure the ease and safety of our life, and it is required significantly to develop non-destructive evaluation for structures such as bridges and tunnels. Some sacrificed specimens have been developed to evaluate the fatigue damage of structures such as fatigue cycles and residual lifetime, but it can be applied only when the stress history is known beforehand. These fatigue sensors need no cable and can be used at low cost in contrast to strain gage. In previous study, a smart stress memory patch was developed as a new fatigue sensor. The patch can measure simultaneously the maximum stress, stress amplitude and the number of fatigue cycles by crack length measurement and Kaiser effect of Acoustic Emission (AE). The crack growth behavior under constant amplitude (CA) loading has been investigated, and AE behavior also has been evaluated only after CA loading. However, AE characteristics after variable amplitude (VA) loading in service are extremely important. Moreover, it is very important to control AE behavior of the smart patch in order to evaluate the applied stress using Kaiser effect. In this study, fatigue test with single overload was investigated to evaluate its influence. Moreover, effect of crack length and heat treatment on AE behavior was also investigated. Finally, AE behavior of the patch was evaluated after fatigue CA loading with overload or VA loading with log-normal distribution and overload.

  3. Variable-amplitude oscillatory shear response of amorphous materials.

    PubMed

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  4. Communication: Fast dynamics perspective on the breakdown of the Stokes-Einstein law in fragile glassformers

    NASA Astrophysics Data System (ADS)

    Puosi, F.; Pasturel, A.; Jakse, N.; Leporini, D.

    2018-04-01

    The breakdown of the Stokes-Einstein (SE) law in fragile glassformers is examined by Molecular-Dynamics simulations of atomic liquids and polymers and consideration of the experimental data concerning the archetypical ortho-terphenyl glassformer. All the four systems comply with the universal scaling between the viscosity (or the structural relaxation) and the Debye-Waller factor ⟨u2⟩, the mean square amplitude of the particle rattling in the cage formed by the surrounding neighbors. It is found that the SE breakdown is scaled in a master curve by a reduced ⟨u2⟩. Two approximated expressions of the latter, with no and one adjustable parameter, respectively, are derived.

  5. Modelling and measurement of crack closure and crack growth following overloads and underloads

    NASA Technical Reports Server (NTRS)

    Dexter, R. J.; Hudak, S. J.; Davidson, D. L.

    1989-01-01

    Ignoring crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading. Crack closure is believed to contribute to the crack growth retardation, although the specific closure mechanism is dabatable. The delay period and corresponding crack growth rate transients following overload and overload/underload cycles were systematically measured as a function of load ratio and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth, i.e. the effective stress intensity factor range. Experimental results are compared with the predictions of a Dugdale-type (1960) crack closure model, and improvements in the model are suggested.

  6. Gravity on-shell diagrams

    DOE PAGES

    Herrmann, Enrico; Trnka, Jaroslav

    2016-11-22

    Here, we study on-shell diagrams for gravity theories with any number of super-symmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only d log-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for N = 8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinitymore » are present, in complete agreement with the conjecture presented in.« less

  7. Normalization of respiratory sinus arrhythmia by factoring in tidal volume.

    PubMed

    Kobayashi, H

    1998-09-01

    The amplitude of respiratory sinus arrhythmia (RSA) was measured in eight healthy young male students with special reference to the effect of tidal volume (Vt). Under simultaneously controlled respiratory frequency and Vt, the heart rate variability (HRV) of the subjects was measured. While the respiratory frequency was adjusted to either 0.25 or 0.10 Hz, the Vt was controlled at 13 different volumes for each frequency. Linear relationships between RSA amplitude and Vt were observed and close correlations were obtained for 0.25 Hz compared with 0.10 Hz. However, regression equations showed a marked variation among subjects. Furthermore, RSA amplitude was related to vital capacity. Subjects who had lower vital capacity tended to show higher RSA amplitudes at the same Vt. Therefore, the ratio (% Vt) of Vt to vital capacity is a more effective index in normalizing RSA than raw tidal volume. From these results, we have proposed a normalized RSA (RSA amplitude/% Vt) as a new index of autonomic activity that provides a constant value regardless of Vt.

  8. Amplitude Variations in Pulsating Red Giants. II. Some Systematics

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Laing, J.

    2017-12-01

    In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.

  9. M5-brane and D-brane scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Heydeman, Matthew; Schwarz, John H.; Wen, Congkao

    2017-12-01

    We present tree-level n-particle on-shell scattering amplitudes of various brane theories with 16 conserved supercharges. These include the world-volume theory of a probe D3-brane or D5-brane in 10D Minkowski spacetime as well as a probe M5-brane in 11D Minkowski spacetime, which describes self interactions of an abelian tensor supermultiplet with 6D (2, 0) supersymmetry. Twistor-string-like formulas are proposed for tree-level scattering amplitudes of all multiplicities for each of these theories. The R symmetry of the D3-brane theory is shown to be SU(4) × U(1), and the U(1) factor implies that its amplitudes are helicity conserving. Each of 6D theories (D5-brane and M5-brane) reduces to the D3-brane theory by dimensional reduction. As special cases of the general M5-brane amplitudes, we present compact formulas for examples involving only the self-dual B field with n = 4, 6, 8.

  10. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation.

    PubMed

    Tomazou, Marios; Barahona, Mauricio; Polizzi, Karen M; Stan, Guy-Bart

    2018-04-25

    To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The Effects of Glacial and Oceanic Advection on Spatial Patterns of Freshwater Contents and Temperatures of Small Fjords and Major Basins in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Gay, S. M., III

    2016-02-01

    Using spatial principal component (PC) analysis, the variation in freshwater contents and temperatures in the upper 100m are quantified for small fjords and primary basins within Prince William Sound, Alaska. Two EOF modes explain over 90% of the variance in the freshwater content anomalies (FWCA) giving the total magnitude and vertical structure of the FWCAs respectively. Large, positive PC amplitudes (PCAs) of modes 1 and 2 indicate stratification from surface freshening, shown also by negative surface salinity anomalies, whereas positive FWCA PCAs in conjunction with negative mode 2 amplitudes infer higher subsurface freshening due to either vertical mixing or advection. In contrast, basins with negative mode 1 amplitudes are typically salty to slightly brackish, but the mode 2 PCAs determine if the FWC is concentrated near the surface or mixed deeper in the water column. The vertical structure of the temperature anomalies (TA) is more complicated, and at least three EOF modes are required to explain over 90% of the variance. The reasons for this include differences in solar heating (i.e. local climates) modulated by cold alpine runoff and advection of cold, brackish surface and subsurface glacial water. Fjords and major basins influenced by the latter exhibit large, positive mode 1 amplitudes of FWCA and negative mode 1 and 2 PCAs of TA and FWCA respectively. In certain fjords, however, advection of glacial water into the outer basins enhances the total FWC, whereas other fjords exhibit atypically low FWC due to unusual topographic features of the watersheds and inner basins. This combination of factors leads to generally poor correlations between average FWC and watershed to fjord surface area ratios or hydrology. With exception of a few sites, gradients in FWC between the small fjords and major basins are relatively weak. Thus the main driver of baroclinic flow in northern and western PWS is cold, brackish surface and subsurface water propagating from large tidewater glacial fjords. The glacial water has a marked affect on the dynamic topography, which shows southerly baroclinic-geostrophic flows within the western sound. At Montague Strait and Hinchinbrook Entrance inflows may occur from either fresh or salty conditions; low water density of the latter being shown by negative (positive) FWCA (TA) PCAs respectively.

  12. The role of coherent structures in the generation of noise for subsonic jets

    NASA Technical Reports Server (NTRS)

    Morrison, G. L.

    1981-01-01

    Results from mean flow field surveys are reported. Flow fluctuation amplitude measurements and acoustic measurements are presented. The organized structure was characterized in terms of axial flow and radial flow.

  13. [Perception by teenagers and adults of the changed by amplitude sound sequences used in models of movement of the sound source].

    PubMed

    Andreeva, I G; Vartanian, I A

    2012-01-01

    The ability to evaluate direction of amplitude changes of sound stimuli was studied in adults and in the 11-12- and 15-16-year old teenagers. The stimuli representing sequences of fragments of the tone of 1 kHz, whose amplitude is changing with time, are used as model of approach and withdrawal of the sound sources. The 11-12-year old teenagers at estimation of direction of amplitude changes were shown to make the significantly higher number of errors as compared with two other examined groups, including those in repeated experiments. The structure of errors - the ratio of the portion of errors at estimation of increasing and decreasing by amplitude stimulus - turned out to be different in teenagers and in adults. The question is discussed about the effect of unspecific activation of the large hemisphere cortex in teenagers on processes if taking solution about the complex sound stimulus, including a possibility estimation of approach and withdrawal of the sound source.

  14. Attenuation - The Ugly Stepsister of Velocity in the Noise Correlation Family

    NASA Astrophysics Data System (ADS)

    Lawrence, J. F.; Prieto, G.; Denolle, M.; Seats, K. J.

    2012-12-01

    Noise correlation functions and noise transfer functions have shown in practice to preserve the relative amplitude information, despite the challenge to reliably resolve it compared to phase information. Yet amplitude contains important information about wavefield interactions with the subsurface structure, including focusing/defocusing and seismic attenuation. To focus on the anelastic effects, or attenuation, we measure amplitude decay with increased station separation (distance). We present numerical results showing that the noise correlation functions (NCFs) preserve the relative amplitude information and properly retrieve seismic attenuation for sufficient noise source distribution and appropriate processing. Attenuation is only preserved through the relative decay of distinct waves from multiple simultaneous source locations. With appropriate whitening (and no time domain normalization), the coherency preserves correlation amplitudes proportional to the relative decay expected with all the inter-station spacing. We present new attenuation results for the United States, and particularly the Yellowstone region that illustrate lateral variations that strongly correlate with known geological features such as sedimentary basins, crustal blocks and active volcanism.

  15. Amplitude and timing properties of a Geiger discharge in a SiPM cell

    NASA Astrophysics Data System (ADS)

    Popova, E.; Buzhan, P.; Pleshko, A.; Vinogradov, S.; Stifutkin, A.; Ilyin, A.; Besson, D.; Mirzoyan, R.

    2015-07-01

    The amplitude and timing properties of a Geiger discharge in a stand-alone SiPM cell have been investigated in detail. Use of a single stand-alone SiPM cell allows us to perform measurements with better accuracy than the multicell structure of conventional SiPMs. We have studied the dependence of the output charge and amplitude from an SiPM cell illuminated by focused light vs the number of primary photoelectrons. We propose a SPICE model which explains the amplitude over saturation (when the SiPM's amplitude is greater than the sum over all cells) characteristics of SiPM signals for more than one initial photoelectrons. The time resolutions of a SiPM cell have been measured for the case of single (SPTR) and multiphoton light pulses. The Full Width Half Max (FWHM) for SPTR has been found to be at the level of 30 ps for focused and 40 ps for unfocused light (100 μm cell size).

  16. Layered Structures and Internal Waves in the Ionosphere and Atmosphere as Seen from GPS Occultation Data

    NASA Astrophysics Data System (ADS)

    Pavelyev, Alexander; Pavelyev, Alexander; Gubenko, Vladimir; Wickert, Jens; Liou, Yuei An

    High-precision signals emitted by GPS satellites create favourable conditions both for monitoring of the atmosphere and ionosphere and for investigation of the radio wave propagation effects. Comparative theoretical and experimental analysis of the phase and amplitude variations of the GPS radio-holograms discovered a relationship which relates the refraction attenuation, the phase path excess acceleration and Doppler frequency via a classical dynamics equationtype. The advantages of the introduced relationship consist in: (1) a possibility to separate the layered structure and turbulence contributions to RO signal; (2) a possibility to estimate the absorption in the atmosphere by dividing the refraction attenuations found from amplitude and phase data; (3) a possibility to locate the tangent point in the atmosphere with accuracy in the distance from the standard position of of about ±100 km. The suggested method has a general importance because it may be applied for analysis in the trans-ionospheric satellite-to-Earth links. We showed also that the amplitude variations of GPS occultation signals are very sensitive sensors to the internal waves in the atmosphere. The sensitivity of the amplitude method is inversely proportional to the square of the vertical period of the internal wave, indicating high sensitivity of the amplitude data to the wave structures with small vertical periods in the 0.8-4 km interval. Combined analysis of the amplitude and phase of radio occultation signal allows one to determine with high level of reliability the main characteristics of the atmospheric and ionospheric layeres including the vertical distribution of the refractivity, electron density and their gradients. A possibility exists to measure important parameters of the internal waves: the intrinsic phase speed, the horizontal wind perturbations and, under some assumptions, the intrinsic frequency as functions of height in the atmosphere. A new technique has been applied to measurements provided during CHAllenging Minisatellite Payload (CHAMP) and the Formosa Satellite-3 and Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) radio occultation (RO) missions.

  17. The semantic component of the evoked potential of differentiation.

    PubMed

    Izmailov, Chingis A; Korshunova, Svetlana G; Sokolov, Yevgeniy N

    2008-05-01

    This work analyzes data from recordings of (occipital and temporal) cortical evoked potentials (called evoked potentials of differentiation (EPD) occurring in humans in response to an abrupt substitution of stimuli. As stimuli we used three groups of words: the names of the ten basic colors taken from Newton's color circle; the names of seven basic emotions forming Shlossberg's circle of emotions; and seven nonsense words comprised of random combinations of letters. Within each group of word stimuli we constructed a matrix of the differences between the amplitudes of mid-latency components of EPD for each pair of words. This matrix was analyzed using the method of multidimensional scaling. As a result of this analysis we were able to distinguish the semantic and configurational components of EPD amplitude. The semantic component of EPD amplitude was evaluated by comparing structure of the data obtained to the circular structures of emotion and color names. The configurational component was evaluated on the basis of the attribute of word length (number of letters). It was demonstrated that the semantic component of the EPD can only be detected in the left occipital lead at an interpeak amplitude of P120-N180. The configurational component is reflected in the occipital and temporal leads to an identical extent, but only in the amplitude of a later (N180-P230) component of the EPD. The results obtained are discussed in terms of the coding of categorized, configurational, and semantic attributes of a visual stimulus.

  18. Design of an oil squeeze film damper bearing for a multimass flexible-rotor bearing system

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.; Gunter, E. J., Jr.; Fleming, D. P.

    1975-01-01

    A single-mass flexible-rotor analysis was used to optimize the stiffness and damping of a flexible support for a symmetric five-mass rotor. The flexible, damped support attenuates the amplitudes of motions and forces transmitted to the support bearings when the rotor operates through and above its first bending critical speed. An oil squeeze film damper was designed based on short bearing lubrication theory. The damper design was verified by an unbalance response computer program. Rotor amplitudes were reduced by a factor of 16 and loads reduced by a factor of 36 compared with the same rotor with rigid bearing supports.

  19. Theory of optimal balance predicts and explains the amplitude and decay time of synaptic inhibition

    PubMed Central

    Kim, Jaekyung K.; Fiorillo, Christopher D.

    2017-01-01

    Synaptic inhibition counterbalances excitation, but it is not known what constitutes optimal inhibition. We previously proposed that perfect balance is achieved when the peak of an excitatory postsynaptic potential (EPSP) is exactly at spike threshold, so that the slightest variation in excitation determines whether a spike is generated. Using simulations, we show that the optimal inhibitory postsynaptic conductance (IPSG) increases in amplitude and decay rate as synaptic excitation increases from 1 to 800 Hz. As further proposed by theory, we show that optimal IPSG parameters can be learned through anti-Hebbian rules. Finally, we compare our theoretical optima to published experimental data from 21 types of neurons, in which rates of synaptic excitation and IPSG decay times vary by factors of about 100 (5–600 Hz) and 50 (1–50 ms), respectively. From an infinite range of possible decay times, theory predicted experimental decay times within less than a factor of 2. Across a distinct set of 15 types of neuron recorded in vivo, theory predicted the amplitude of synaptic inhibition within a factor of 1.7. Thus, the theory can explain biophysical quantities from first principles. PMID:28281523

  20. Theory of optimal balance predicts and explains the amplitude and decay time of synaptic inhibition

    NASA Astrophysics Data System (ADS)

    Kim, Jaekyung K.; Fiorillo, Christopher D.

    2017-03-01

    Synaptic inhibition counterbalances excitation, but it is not known what constitutes optimal inhibition. We previously proposed that perfect balance is achieved when the peak of an excitatory postsynaptic potential (EPSP) is exactly at spike threshold, so that the slightest variation in excitation determines whether a spike is generated. Using simulations, we show that the optimal inhibitory postsynaptic conductance (IPSG) increases in amplitude and decay rate as synaptic excitation increases from 1 to 800 Hz. As further proposed by theory, we show that optimal IPSG parameters can be learned through anti-Hebbian rules. Finally, we compare our theoretical optima to published experimental data from 21 types of neurons, in which rates of synaptic excitation and IPSG decay times vary by factors of about 100 (5-600 Hz) and 50 (1-50 ms), respectively. From an infinite range of possible decay times, theory predicted experimental decay times within less than a factor of 2. Across a distinct set of 15 types of neuron recorded in vivo, theory predicted the amplitude of synaptic inhibition within a factor of 1.7. Thus, the theory can explain biophysical quantities from first principles.

  1. Research on temperature characteristics of laser energy meter absorber irradiated by ms magnitude long pulse laser

    NASA Astrophysics Data System (ADS)

    Li, Nan; Qiao, Chunhong; Fan, Chengyu; Zhang, Jinghui; Yang, Gaochao

    2017-10-01

    The research on temperature characteristics for large-energy laser energy meter absorber is about continuous wave (CW) laser before. For the measuring requirements of millisecond magnitude long pulse laser energy, the temperature characteristics for absorber are numerically calculated and analyzed. In calculation, the temperature field distributions are described by heat conduction equations, and the metal cylinder cavity is used for absorber model. The results show that, the temperature of absorber inwall appears periodic oscillation with pulse structure, the oscillation period and amplitude respectively relate to the pulse repetition frequency and single pulse energy. With the wall deep increasing, the oscillation amplitude decreases rapidly. The temperature of absorber outerwall is without periodism, and rises gradually with time. The factors to affect the temperature rise of absorber are single pulse energy, pulse width and repetition frequency. When the laser irradiation stops, the temperature between absorber inwall and outerwall will reach agreement rapidly. After special technology processing to enhance the capacity of resisting laser damage for absorber inwall, the ms magnitude long pulse laser energy can be obtained with the method of measuring the temperature of absorber outerwall. Meanwhile, by optimization design of absorber structure, when the repetition frequency of ms magnitude pulse laser is less than 10Hz, the energy of every pulse for low repetition frequency pulse sequence can be measured. The work offers valuable references for the design of ms magnitude large-energy pulse laser energy meter.

  2. Direct comparison of elastic incoherent neutron scattering experiments with molecular dynamics simulations of DMPC phase transitions.

    PubMed

    Aoun, Bachir; Pellegrini, Eric; Trapp, Marcus; Natali, Francesca; Cantù, Laura; Brocca, Paola; Gerelli, Yuri; Demé, Bruno; Marek Koza, Michael; Johnson, Mark; Peters, Judith

    2016-04-01

    Neutron scattering techniques have been employed to investigate 1,2-dimyristoyl-sn -glycero-3-phosphocholine (DMPC) membranes in the form of multilamellar vesicles (MLVs) and deposited, stacked multilamellar-bilayers (MLBs), covering transitions from the gel to the liquid phase. Neutron diffraction was used to characterise the samples in terms of transition temperatures, whereas elastic incoherent neutron scattering (EINS) demonstrates that the dynamics on the sub-macromolecular length-scale and pico- to nano-second time-scale are correlated with the structural transitions through a discontinuity in the observed elastic intensities and the derived mean square displacements. Molecular dynamics simulations have been performed in parallel focussing on the length-, time- and temperature-scales of the neutron experiments. They correctly reproduce the structural features of the main gel-liquid phase transition. Particular emphasis is placed on the dynamical amplitudes derived from experiment and simulations. Two methods are used to analyse the experimental data and mean square displacements. They agree within a factor of 2 irrespective of the probed time-scale, i.e. the instrument utilized. Mean square displacements computed from simulations show a comparable level of agreement with the experimental values, albeit, the best match with the two methods varies for the two instruments. Consequently, experiments and simulations together give a consistent picture of the structural and dynamical aspects of the main lipid transition and provide a basis for future, theoretical modelling of dynamics and phase behaviour in membranes. The need for more detailed analytical models is pointed out by the remaining variation of the dynamical amplitudes derived in two different ways from experiments on the one hand and simulations on the other.

  3. Bio-sensing based on plasmon-coupling caused by rotated sub-micrometer gratings in metal-dielectric interfacial layers

    NASA Astrophysics Data System (ADS)

    Csete, M.; Sipos, Á.; Szalai, A.; Mathesz, A.; Deli, M. A.; Veszelka, Sz.; Schmatulla, A.; Kőházi-Kis, A.; Osvay, K.; Marti, O.; Bor, Zs.

    2007-09-01

    Novel plasmonic sensor chips are prepared by generating sub-micrometer periodic patterns in the interfacial layers of bimetal-polymer films via master-grating based interference method. Poly-carbonate films spin-coated onto vacuum evaporated silver-gold bimetallic layers are irradiated by the two interfering UV beams of a Nd:YAG laser. It is proven by pulsed force mode AFM that periodic adhesion pattern corresponds to the surface relief gratings, consisting of sub-micrometer droplet arrays and continuous polymer stripes, induced by p- and s-polarized beams, respectively. The characteristic periods are the same, but more complex and larger amplitude adhesion modulation is detectable on the droplet arrays. The polar and azimuthal angle dependence of the resonance characteristic of plasmons is studied by combining the prism- and grating-coupling methods in a modified Kretschmann arrangement, illuminating the structured metal-polymer interface by a frequency doubled Nd:YAG laser through a semi-cylinder. It is proven that the grating-coupling results in double-peaked plasmon resonance curves on both of the droplet arrays and line gratings, when the grooves are rotated to an appropriate azimuthal angle, and the modulation amplitude of the structure is sufficiently large. Streptavidin seeding is performed to demonstrate that small amount of protein can be detected monitoring the shift of the secondary resonance minima. The available high concentration sensitivity is explained by the promotion of protein adherence in the structure's valleys due to the enhanced adhesion. The line-shaped polymer gratings resulting in narrow resonance peaks are utilized to demonstrate the effect of therapeutic molecules on Amyloid-Β peptide, a pathogenic factor in Alzheimer disease.

  4. Effects of Prolonged Spaceflight on Atrial Size, Atrial Electrophysiology, and Risk of Atrial Fibrillation.

    PubMed

    Khine, Htet W; Steding-Ehrenborg, Katarina; Hastings, Jeffrey L; Kowal, Jamie; Daniels, James D; Page, Richard L; Goldberger, Jeffery J; Ng, Jason; Adams-Huet, Beverley; Bungo, Michael W; Levine, Benjamin D

    2018-05-01

    The prevalence of atrial fibrillation (AF) in active astronauts is ≈5%, similar to the general population but at a younger age. Risk factors for AF include left atrial enlargement, increased number of premature atrial complexes, and certain parameters on signal-averaged electrocardiography, such as P-wave duration, root mean square voltage for the terminal 20 ms of the signal-averaged P wave, and P-wave amplitude. We aimed to evaluate changes in atrial structure, supraventricular beats, and atrial electrophysiology to determine whether spaceflight could increase the risk of AF. Thirteen astronauts underwent cardiac magnetic resonance imaging to assess atrial structure and function before and after 6 months in space and high-resolution Holter monitoring for multiple 48-hour time periods before flight, during flight, and on landing day. Left atrial volume transiently increased after 6 months in space (12±18 mL; P =0.03) without changing atrial function. Right atrial size remained unchanged. No changes in supraventricular beats were noted. One astronaut had a large increase in supraventricular ectopic beats but none developed AF. Filtered P-wave duration did not change over time, but root mean square voltage for the terminal 20 ms decreased on all fight days except landing day. No changes in P-wave amplitude were seen in leads II or V 1 except landing day for lead V 1 . Six months of spaceflight may be sufficient to cause transient changes in left atrial structure and atrial electrophysiology that increase the risk of AF. However, there was no definite evidence of increased supraventricular arrhythmias and no identified episodes of AF. © 2018 American Heart Association, Inc.

  5. Application of a deconvolution method for identifying burst amplitudes and arrival times in Alcator C-Mod far SOL plasma fluctuations

    NASA Astrophysics Data System (ADS)

    Theodorsen, Audun; Garcia, Odd Erik; Kube, Ralph; Labombard, Brian; Terry, Jim

    2017-10-01

    In the far scrape-off layer (SOL), radial motion of filamentary structures leads to excess transport of particles and heat. Amplitudes and arrival times of these filaments have previously been studied by conditional averaging in single-point measurements from Langmuir Probes and Gas Puff Imaging (GPI). Conditional averaging can be problematic: the cutoff for large amplitudes is mostly chosen by convention; the conditional windows used may influence the arrival time distribution; and the amplitudes cannot be separated from a background. Previous work has shown that SOL fluctuations are well described by a stochastic model consisting of a super-position of pulses with fixed shape and randomly distributed amplitudes and arrival times. The model can be formulated as a pulse shape convolved with a train of delta pulses. By choosing a pulse shape consistent with the power spectrum of the fluctuation time series, Richardson-Lucy deconvolution can be used to recover the underlying amplitudes and arrival times of the delta pulses. We apply this technique to both L and H-mode GPI data from the Alcator C-Mod tokamak. The pulse arrival times are shown to be uncorrelated and uniformly distributed, consistent with a Poisson process, and the amplitude distribution has an exponential tail.

  6. Cyclic Mario worlds — color-decomposition for one-loop QCD

    NASA Astrophysics Data System (ADS)

    Kälin, Gregor

    2018-04-01

    We present a new color decomposition for QCD amplitudes at one-loop level as a generalization of the Del Duca-Dixon-Maltoni and Johansson-Ochirov decomposition at tree level. Starting from a minimal basis of planar primitive amplitudes we write down a color decomposition that is free of linear dependencies among appearing primitive amplitudes or color factors. The conjectured decomposition applies to any number of quark flavors and is independent of the choice of gauge group and matter representation. The results also hold for higher-dimensional or supersymmetric extensions of QCD. We provide expressions for any number of external quark-antiquark pairs and gluons. [Figure not available: see fulltext.

  7. The role of amplitude-to-phase conversion in the generation of oscillator flicker phase noise

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.

    1985-01-01

    The role of amplitude-to-phase conversion as a factor in feedback oscillator flicker phase noise is examined. A limiting stage consisting of parallel-connected opposite polarity diodes operating in a circuit environment contining reactance is shown to exhibit amplitude-to-phase conversion. This mechanism coupled with resistive upconversion provides an indirect route for very low frequency flicker noise to be transferred into the phase of an oscillator signal. It is concluded that this effect is more significant in the lower frequency regimes where the onlinear reactances associated with active devices are overwhelmed by linear reactive elements.

  8. Age-related changes in human posture control: Motor coordination tests

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1989-01-01

    Postural responses to support surface displacements were measured in 214 normal human subjects ranging in age from 7 to 81 years. Motor tests measured leg muscle Electromyography (EMG) latencies, body sway, and the amplitude and timing of changes in center of pressure displacements in response to sudden forward and backward horizontal translations of the support surface upon which the subjects stood. There were small increases in both EMG latencies and the time to reach the peak amplitude of center of pressure responses with increasing age. The amplitude of center of pressure responses showed little change with age if the amplitude measures were normalized by a factor related to subject height. In general, postural responses to sudden translations showed minimal changes with age, and all age related trends which were identified were small relative to the variability within the population.

  9. Instrument Reflections and Scene Amplitude Modulation in a Polychromatic Microwave Quadrature Interferometer

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Jones, Jonathan E.; Chavers, Greg

    2003-01-01

    A polychromatic microwave quadrature interferometer has been characterized using several laboratory plasmas. Reflections between the transmitter and the receiver have been observed, and the effects of including reflection terms in the data reduction equation have been examined. An error analysis which includes the reflections, modulation of the scene beam amplitude by the plasma, and simultaneous measurements at two frequencies has been applied to the empirical database, and the results are summarized. For reflection amplitudes around 1096, the reflection terms were found to reduce the calculated error bars for electron density measurements by about a factor of 2. The impact of amplitude modulation is also quantified. In the complete analysis, the mean error bar for high- density measurements is 7.596, and the mean phase shift error for low-density measurements is 1.2". .

  10. Three-Dimensional Sensitivity Kernels of Z/H Amplitude Ratios of Surface and Body Waves

    NASA Astrophysics Data System (ADS)

    Bao, X.; Shen, Y.

    2017-12-01

    The ellipticity of Rayleigh wave particle motion, or Z/H amplitude ratio, has received increasing attention in inversion for shallow Earth structures. Previous studies of the Z/H ratio assumed one-dimensional (1D) velocity structures beneath the receiver, ignoring the effects of three-dimensional (3D) heterogeneities on wave amplitudes. This simplification may introduce bias in the resulting models. Here we present 3D sensitivity kernels of the Z/H ratio to Vs, Vp, and density perturbations, based on finite-difference modeling of wave propagation in 3D structures and the scattering-integral method. Our full-wave approach overcomes two main issues in previous studies of Rayleigh wave ellipticity: (1) the finite-frequency effects of wave propagation in 3D Earth structures, and (2) isolation of the fundamental mode Rayleigh waves from Rayleigh wave overtones and converted Love waves. In contrast to the 1D depth sensitivity kernels in previous studies, our 3D sensitivity kernels exhibit patterns that vary with azimuths and distances to the receiver. The laterally-summed 3D sensitivity kernels and 1D depth sensitivity kernels, based on the same homogeneous reference model, are nearly identical with small differences that are attributable to the single period of the 1D kernels and a finite period range of the 3D kernels. We further verify the 3D sensitivity kernels by comparing the predictions from the kernels with the measurements from numerical simulations of wave propagation for models with various small-scale perturbations. We also calculate and verify the amplitude kernels for P waves. This study shows that both Rayleigh and body wave Z/H ratios provide vertical and lateral constraints on the structure near the receiver. With seismic arrays, the 3D kernels afford a powerful tool to use the Z/H ratios to obtain accurate and high-resolution Earth models.

  11. Implications of movement-related cortical potential for understanding neural adaptations in muscle strength tasks

    PubMed Central

    2014-01-01

    This systematic review aims to provide information about the implications of the movement-related cortical potential (MRCP) in acute and chronic responses to the counter resistance training. The structuring of the methods of this study followed the proposals of the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses). It was performed an electronically search in Pubmed/Medline and ISI Web of Knowledge data bases, from 1987 to 2013, besides the manual search in the selected references. The following terms were used: Bereitschaftspotential, MRCP, strength and force. The logical operator “AND” was used to combine descriptors and terms used to search publications. At the end, 11 studies attended all the eligibility criteria and the results demonstrated that the behavior of MRCP is altered because of different factors such as: force level, rate of force development, fatigue induced by exercise, and the specific phase of muscular action, leading to an increase in the amplitude in eccentric actions compared to concentric actions, in acute effects. The long-term adaptations demonstrated that the counter resistance training provokes an attenuation in the amplitude in areas related to the movement, which may be caused by neural adaptation occurred in the motor cortex. PMID:24602228

  12. Statistical characteristic in time-domain of direct current corona-generated audible noise from conductor in corona cage

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Cui, Xiang; Lu, Tiebing; Ma, Wenzuo; Bian, Xingming; Wang, Donglai; Hiziroglu, Huseyin

    2016-03-01

    The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.

  13. Blob structure and motion in the edge and SOL of NSTX

    DOE PAGES

    Zweben, S. J.; Myra, J. R.; Davis, W. M.; ...

    2016-01-28

    Here, the structure and motion of discrete plasma blobs (a.k.a. filaments) in the edge and scrape-off layer of NSTX is studied for representative Ohmic and H-mode discharges. Individual blobs were tracked in the 2D radial versus poloidal plane using data from the gas puff imaging diagnostic taken at 400 000 frames s -1. A database of blob amplitude, size, ellipticity, tilt, and velocity was obtained for ~45 000 individual blobs. Empirical relationships between various properties are described, e.g. blob speed versus amplitude and blob tilt versus ellipticity. The blob velocities are also compared with analytic models.

  14. Relatively stable, large-amplitude Alfvenic waves seen at 2.5 and 5.0 AU

    NASA Technical Reports Server (NTRS)

    Mavromichalaki, H.; Moussas, X.; Quenby, J. J.; Valdes-Galicia, J. F.; Smith, E. J.

    1988-01-01

    Pioneer 11 and 10 observations of the wave structure seen in a corotating interaction region at 2.5 AU on day 284 of 1973 and 8 days later at 5 AU reveal large-amplitude Alfvenic structures with many detailed correlations seen between their features at the two radial distances. Hodogram analysis suggests the dominance of near plane polarized, transverse Alfvenic mode fluctuations with periods between 2 min and one hour or more. Some wave evolution close to the Corotating Interaction Region (CIR) shock is noticed, but waves towards the center of the compression seem to propagate with little damping between the spacecraft observation positions.

  15. Spin-flavor structure of chiral-odd generalized parton distributions in the large- N c limit

    DOE PAGES

    Schweitzer, P.; Weiss, C.

    2016-10-05

    We study the spin-flavor structure of the nucleon's chiral-odd generalized parton distributions (transversity GPDs) in the large-N c limit of QCD. In contrast to the chiral-even case, only three combinations of the four chiral-odd GPDs are nonzero in the leading order of the 1/N c expansion: E-bar T = E T+2H-tilde T, H T, and E-tilde T. The degeneracy is explained by the absence of spin-orbit interactions correlating the transverse momentum transfer with the transverse quark spin. It can also be deduced from the natural N c scaling of the quark-nucleon helicity amplitudes associated with the GPDs. In the GPDmore » E-bar T the flavor-singlet component u+d is leading in the 1/N c expansion, while in H T and E-tilde T it is the flavor-nonsinglet components u–d. Furthermore, the large-N c relations are consistent with the spin-flavor structure extracted from hard exclusive π 0 and η electroproduction data, if it is assumed that the processes are mediated by twist-3 amplitudes involving the chiral-odd GPDs and the chiral-odd pseudoscalar meson distribution amplitudes.« less

  16. Heritability and molecular-genetic basis of the P3 event-related brain potential: A genome-wide association study

    PubMed Central

    MALONE, STEPHEN M.; VAIDYANATHAN, UMA; BASU, SAONLI; MILLER, MICHAEL B.; MCGUE, MATT; IACONO, WILLIAM G.

    2014-01-01

    P3 amplitude is a candidate endophenotype for disinhibitory psychopathology, psychosis, and other disorders. The present study is a comprehensive analysis of the behavioral- and molecular-genetic basis of P3 amplitude and a P3 genetic factor score in a large community sample (N = 4,211) of adolescent twins and their parents, genotyped for 527,829 single nucleotide polymorphisms (SNPs). Biometric models indicated that as much as 65% of the variance in each measure was due to additive genes. All SNPs in aggregate accounted for approximately 40% to 50% of the heritable variance. However, analyses of individual SNPs did not yield any significant associations. Analyses of individual genes did not confirm previous associations between P3 amplitude and candidate genes but did yield a novel association with myelin expression factor 2 (MYEF2). Main effects of individual variants may be too small to be detected by GWAS without larger samples. PMID:25387705

  17. Superconducting nanowires as nonlinear inductive elements for qubits

    NASA Astrophysics Data System (ADS)

    Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey

    2011-03-01

    We report microwave transmission measurements of superconducting Fabry-Perot resonators, having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonlinearity of the current-phase relationship of the nanowire. The results are explained within a nonlinear oscillator model of the Duffing oscillator, in which the nanowire acts as a purely inductive element, in the limit of low temperatures and low amplitudes. The low-quality factor sample exhibits a ``crater'' at the resonance peak at higher driving power, which is due to dissipation. We observe a hysteretic bifurcation behavior of the transmission response to frequency sweep in a sample with a higher quality factor. The Duffing model is used to explain the Duffing bistability diagram. NSF DMR-1005645, DOE DO-FG02-07ER46453.

  18. Some factors affecting efficiency of the ultrasound-aided enzymatic hydrolysis of cotton cellulose.

    PubMed

    Szabo, Orsolya Erzsebet; Csiszar, Emilia

    2017-01-20

    The efficiency of the enzymatic hydrolysis of cellulose with low frequency ultrasound (horn-type reactor) was investigated and characterized by the concentration of reducing sugars liberated. Small squares of bleached cotton fabric were used for comparing the efficiency of different agitation methods (i.e. magnetic stirring, horizontal and vertical mechanical agitation) and ultrasound. At the same enzyme dosage and substrate level, sonication at 40, 60 and 80% amplitudes (I diss : 16.2, 32.2 and 43.4W/cm 2 , respectively) intensified the hydrolysis over the most efficient mechanical agitation (i.e. magnetic stirring) alone by 15%, 24% and 54%, respectively. For mapping the ultrasonicated field, fabric layers positioned perpendicularly to the ultrasonic probe at different distances were hydrolysed. The optimal operating conditions were reached at 60% amplitude and 9mm The yield depended mainly on important factors such as amplitude, the presence of a reflector, distance from horn and form of substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A finite-element method for large-amplitude, two-dimensional panel flutter at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Gray, Carl E.

    1989-01-01

    The nonlinear flutter behavior of a two-dimensional panel in hypersonic flow is investigated analytically. An FEM formulation based unsteady third-order piston theory (Ashley and Zartarian, 1956; McIntosh, 1970) and taking nonlinear structural and aerodynamic phenomena into account is derived; the solution procedure is outlined; and typical results are presented in extensive tables and graphs. A 12-element finite-element solution obtained using an alternative method for linearizing the assumed limit-cycle time function is shown to give predictions in good agreement with classical analytical results for large-amplitude vibration in a vacuum and large-amplitude panel flutter, using linear aerodynamics.

  20. Dynamic optical arbitrary waveform generation with amplitude controlled by interference of two FBG arrays.

    PubMed

    Zhang, Ailing; Li, Changxiu

    2012-10-08

    In this paper, a novel structure of dynamic optical arbitrary waveform generation (O-AWG) with amplitude controlled by interference of two fiber Bragg grating (FBG) arrays is proposed. The FBG array consists of several FBGs and fiber stretchers (FSs). The amplitude is controlled by FSs through interference of two FBG arrays. The phase is controlled by FSs simultaneously. As a result, optical pulse trains with various waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width in each period are obtained via FSs adjustment to change the phase shift of signal in each array.

  1. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Technical Reports Server (NTRS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-01-01

    Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  2. Amplitude Control of Solid-State Modulators for Precision Fast Kicker Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J A; Anaya, R M; Caporaso, G C

    2002-11-15

    A solid-state modulator with very fast rise and fall times, pulse width agility, and multi-pulse burst and intra-pulse amplitude adjustment capability for use with high speed electron beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. Amplitude adjustment is provided by controlling individual modules in the adder, and is used to compensate for transverse e-beam motion as well as the dynamic response and beam-induced steering effects associated with the kicker structure. A control algorithm calculates a voltage based on measured e-beam displacement and adjusts the modulator to regulate beammore » centroid position. This paper presents design details of amplitude control along with measured performance data from kicker operation on the ETA-II accelerator at LLNL.« less

  3. Control of amplitude chimeras by time delay in oscillator networks

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna

    2017-04-01

    We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.

  4. Polynomial reduction and evaluation of tree- and loop-level CHY amplitudes

    DOE PAGES

    Zlotnikov, Michael

    2016-08-24

    We develop a polynomial reduction procedure that transforms any gauge fixed CHY amplitude integrand for n scattering particles into a σ-moduli multivariate polynomial of what we call the standard form. We show that a standard form polynomial must have a specific ladder type monomial structure, which has finite size at any n, with highest multivariate degree given by (n – 3)(n – 4)/2. This set of monomials spans a complete basis for polynomials with rational coefficients in kinematic data on the support of scattering equations. Subsequently, at tree and one-loop level, we employ the global residue theorem to derive amore » prescription that evaluates any CHY amplitude by means of collecting simple residues at infinity only. Furthermore, the prescription is then applied explicitly to some tree and one-loop amplitude examples.« less

  5. A new energy transfer model for turbulent free shear flow

    NASA Technical Reports Server (NTRS)

    Liou, William W.-W.

    1992-01-01

    A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.

  6. Actinic imaging and evaluation of phase structures on EUV lithography masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mochi, Iacopo; Goldberg, Kenneth; Huh, Sungmin

    2010-09-28

    The authors describe the implementation of a phase-retrieval algorithm to reconstruct phase and complex amplitude of structures on EUV lithography masks. Many native defects commonly found on EUV reticles are difficult to detect and review accurately because they have a strong phase component. Understanding the complex amplitude of mask features is essential for predictive modeling of defect printability and defect repair. Besides printing in a stepper, the most accurate way to characterize such defects is with actinic inspection, performed at the design, EUV wavelength. Phase defect and phase structures show a distinct through-focus behavior that enables qualitative evaluation of themore » object phase from two or more high-resolution intensity measurements. For the first time, phase of structures and defects on EUV masks were quantitatively reconstructed based on aerial image measurements, using a modified version of a phase-retrieval algorithm developed to test optical phase shifting reticles.« less

  7. Deformation structure analysis of material at fatigue on the basis of the vector field

    NASA Astrophysics Data System (ADS)

    Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.

    2017-12-01

    In the paper, spatial distributions of deformation, circulation, and shear amplitudes and shear angles are obtained from the displacement vector field measured by the DIC technique. This vector field and its characteristics of shears and vortices are given as an example of such approach. The basic formulae are also given. The experiment shows that honeycomb deformation structures can arise in the center of a macrovortex at developed plastic flow. The spatial distribution of local circulation and shears is discovered, which coincides with the deformation structure but their amplitudes are different. The analysis proves that the spatial distribution of shear angles is a result of maximum tangential and normal stresses. The anticlockwise circulation of most local vortices obeys the normal Gaussian law in the area of interest.

  8. Observation of J/ψϕ Structures Consistent with Exotic States from Amplitude Analysis of B^{+}→J/ψϕK^{+} Decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, I; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhukov, V; Zucchelli, S

    2017-01-13

    The first full amplitude analysis of B^{+}→J/ψϕK^{+} with J/ψ→μ^{+}μ^{-}, ϕ→K^{+}K^{-} decays is performed with a data sample of 3  fb^{-1} of pp collision data collected at sqrt[s]=7 and 8 TeV with the LHCb detector. The data cannot be described by a model that contains only excited kaon states decaying into ϕK^{+}, and four J/ψϕ structures are observed, each with significance over 5 standard deviations. The quantum numbers of these structures are determined with significance of at least 4 standard deviations. The lightest has mass consistent with, but width much larger than, previous measurements of the claimed X(4140) state.

  9. Multichannel conformal blocks for scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2018-05-01

    By performing resummation of small fermion-antifermion pairs within the pentagon form factor program to scattering amplitudes in planar N = 4 superYang-Mills theory, we construct multichannel conformal blocks within the flux-tube picture for N-sided NMHV polygons. This procedure is equivalent to summation of descendants of conformal primaries in the OPE framework. The resulting conformal partial waves are determined by multivariable hypergeometric series of Lauricella-Saran type.

  10. Clinical and electrodiagnostic characteristics of nitrous oxide-induced neuropathy in Taiwan.

    PubMed

    Li, Han-Tao; Chu, Chun-Che; Chang, Kuo-Hsuan; Liao, Ming-Feng; Chang, Hong-Shiu; Kuo, Hung-Chou; Lyu, Rong-Kuo

    2016-10-01

    Nitrous oxide-induced neuropathy is toxic neuropathy occasionally encountered in Taiwanese neurological clinics. Only several case reports described their electrodiagnostic features. We used a case-control design to investigate the detailed electrodiagnostic characteristics and possible factors relating to severe nerve injury. We retrospectively reviewed 33 patients with nitrous oxide-induced neuropathy over a 10-year period and reported their demographic data, spinal cord MRI, laboratory examinations and nerve conduction studies. 56 healthy controls' nerve conduction studies were collected for comparison analysis. We noted significant motor and sensory amplitudes reduction, conduction velocities slowing, and latencies prolongation in most tested nerves compared to the controls. Similar nerve conduction study characteristics with prominent lower limbs' motor and sensory amplitudes reduction was observed in patient groups with or without abnormal vitamin B12 and/or homocysteine levels. Among those with lower limbs' motor or sensory amplitudes reduction <20% of the lower limit of normal, higher homocysteine levels were detected. Severe impairments of the lower limbs' sensory and motor amplitudes were frequently noted in patients with nitrous oxide exposure. Nitrous oxide exposure itself is an important factor for the development of neuropathy. Our study contributes to the understanding of electrodiagnostic features underlying the nitrous oxide-induced neuropathy. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft

    NASA Astrophysics Data System (ADS)

    Ding, Feng; Wan, Weixing; Mao, Tian; Wang, Min; Ning, Baiqi; Zhao, Biqiang; Xiong, Bo

    2014-05-01

    We used a dense GPS network in China to track the ionospheric response to waves excited by the launch of the rocket that carried Shenzhou 10 spacecraft on 11 June 2013. The long-distance propagation of shock and acoustic waves were observed on both sides of the rocket's trajectory. On the southern side, the wave structures (characterized by a horizontal extension of ~1400 km and initial amplitudes of 0.3 total electron content unit (TECU) and 0.1 TECU for the shock and acoustic waves, respectively), traveled southwestward a distance of ~1500 km at mean velocities of 1011 m s-1 and 709 m s-1, respectively. On the northern side, northward propagating waves were seen to travel a distance of ~600 km with much smaller amplitudes of less than 0.05 TECU. Subsequent waves with amplitudes of less than 0.02 TECU could also be seen. Clear wave structures were found at a distance of ~600-2000 km from launch site.

  12. Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Kaichen, E-mail: dkc12@mails.tsinghua.edu.cn, E-mail: wuj@berkeley.edu; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084

    2016-07-11

    Due to its thermally driven structural phase transition, vanadium dioxide (VO{sub 2}) has emerged as a promising material for micro/nano-actuators with superior volumetric work density, actuation amplitude, and repetition frequency. However, the high initial curvature of VO{sub 2} actuators severely obstructs the actuation performance and application. Here, we introduce a “seesaw” method of fabricating tri-layer cantilevers to compensate for the residual stress and realize nearly arbitrary curvature control of VO{sub 2} actuators. By simply adjusting the thicknesses of the individual layers, cantilevers with positive, zero, or negative curvatures can be engineered. The actuation amplitude can be decoupled from the curvaturemore » and controlled independently as well. Based on the experimentally measured residual stresses, we demonstrate sub-micron thick VO{sub 2} actuators with nearly zero final curvature and a high actuation amplitude simultaneously. This “seesaw” method can be further extended to the curvature engineering of other microelectromechanical system multi-layer structures where large stress-mismatch between layers are inevitable.« less

  13. Lump waves and breather waves for a (3+1)-dimensional generalized Kadomtsev-Petviashvili Benjamin-Bona-Mahony equation for an offshore structure

    NASA Astrophysics Data System (ADS)

    Yin, Ying; Tian, Bo; Wu, Xiao-Yu; Yin, Hui-Min; Zhang, Chen-Rong

    2018-04-01

    In this paper, we investigate a (3+1)-dimensional generalized Kadomtsev-Petviashvili Benjamin-Bona-Mahony equation, which describes the fluid flow in the case of an offshore structure. By virtue of the Hirota method and symbolic computation, bilinear forms, the lump-wave and breather-wave solutions are derived. Propagation characteristics and interaction of lump waves and breather waves are graphically discussed. Amplitudes and locations of the lump waves, amplitudes and periods of the breather waves all vary with the wavelengths in the three spatial directions, ratio of the wave amplitude to the depth of water, or product of the depth of water and the relative wavelength along the main direction of propagation. Of the interactions between the lump waves and solitons, there exist two different cases: (i) the energy is transferred from the lump wave to the soliton; (ii) the energy is transferred from the soliton to the lump wave.

  14. Comparison of damping in buildings under low-amplitude and strong motions

    USGS Publications Warehouse

    Celebi, M.

    1996-01-01

    This paper presents a comprehensive assessment of damping values and other dynamic characteristics of five buildings using strong-motion and low-amplitude (ambient vibration) data. The strong-motion dynamic characteristics of five buildings within the San Francisco Bay area are extracted from recordings of the 17 October 1989 Loma Prieta earthquake (LPE). Ambient vibration response characteristics for the same five buildings were inferred using data collected in 1990 following LPE. Additional earthquake data other than LPE for one building and ambient vibration data collected before LPE for two other buildings provide additional confirmation of the results obtained. For each building, the percentages of critical damping and the corresponding fundamental periods determined from low-amplitude test data are appreciably lower than those determined from strong-motion recordings. These differences are attributed mainly to soil-structure interaction and other non-linear behavior affecting the structures during strong shaking. Significant contribution of radiation damping to the effective damping of a specific building is discussed in detail.

  15. Effect of resonant magnetic perturbations on secondary structures in drift-wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leconte, M.; Diamond, P. H.; CMTFO and CASS, UCSD, California 92093

    2011-08-15

    Recent experiments showed a decrease of long range correlations during the application of resonant magnetic perturbations (RMPs) [Y. Xu et al., Nucl. Fusion 51, 063020 (2011)]. This finding suggests that RMPs damp zonal flows. To elucidate the effect of the RMPs on zonal structures in drift wave turbulence, we construct a generalized Hasegawa-Wakatani model including RMP fields. The effect of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density gradient, which drives the system to a state of electron radial force balance for large RMP amplitude. A predator-prey model coupling the primarymore » drift wave dynamics to the zonal modes evolution is derived. This model has both turbulence drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. The novel regime has a power threshold which increases with RMP amplitude as {gamma}{sub c}{approx}[({delta}B{sub r}/B)]{sup 2}.« less

  16. Near wall effects on flexible splitter plate behind a cylinder

    NASA Astrophysics Data System (ADS)

    Venkat Narayanan, K.; Vengadesan, S.; Murali, K.

    2017-11-01

    Vortex induced vibrations(VIV) of a rigid circular cylinder with a flexible plate attached to its rear end, close to the plane wall is numerically studied for Re = 200. Amplitude modulations were observed in the response of the flexible plate at the ground distance of G/D=0.5. Numerical simulations were conducted for a range of reduced velocities Ur(3,4,5 and 6), which appropriately captures the synchronization range of VIV of the structure. At Ur=3 there is no significant amplitude modulation. As Ur is increased further, the modulation appears. The modulation appears symmetric about the peak amplitude for successive cycles at Ur=4. The phase plots of lift coefficient CL and plate tip displacement revealed the change in sign of energy transfer between the plate and the wake. Amplitude modulation is reflected in the interaction of shed vortices and the plane wall. Shed vortices are convected parallel to the wall when the amplitude of the plate rises to its local maximum during modulation. During the growth and damping phase of the amplitudes in each modulation cycle, the vortex shedding is observed to be oblique towards the wall.

  17. Finite amplitude transverse oscillations of a magnetic rope

    NASA Astrophysics Data System (ADS)

    Kolotkov, Dmitrii Y.; Nisticò, Giuseppe; Rowlands, George; Nakariakov, Valery M.

    2018-07-01

    The effects of finite amplitudes on the transverse oscillations of a quiescent prominence represented by a magnetic rope are investigated in terms of the model proposed by Kolotkov et al. (2016). We consider a weakly nonlinear case governed by a quadratic nonlinearity, and also analyse the fully nonlinear equations of motion. We treat the prominence as a massive line current located above the photosphere and interacting with the magnetised dipped environment via the Lorentz force. In this concept the magnetic dip is produced by two external current sources located at the photosphere. Finite amplitude horizontal and vertical oscillations are found to be strongly coupled between each other. The coupling is more efficient for larger amplitudes and smaller attack angles between the direction of the driver and the horizontal axis. Spatial structure of oscillations is represented by Lissajous-like curves with the limit cycle of a hourglass shape, appearing in the resonant case, when the frequency of the vertical mode is twice the horizontal mode frequency. A metastable equilibrium of the prominence is revealed, which is stable for small amplitude displacements, and becomes horizontally unstable, when the amplitude exceeds a threshold value. The maximum oscillation amplitudes are also analytically derived and analysed. Typical oscillation periods are determined by the oscillation amplitude, prominence current, its mass and position above the photosphere, and the parameters of the magnetic dip. The main new effects of the finite amplitude are the coupling of the horizontally and vertically polarised transverse oscillations (i.e. the lack of a simple, elliptically polarised regime) and the presence of metastable equilibria of prominences.

  18. DYNAMICS OF A PROMINENCE-HORN STRUCTURE DURING ITS EVAPORATION IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bing; Chen, Yao; Fu, Jie

    The physical connections among and formation mechanisms of various components of the prominence-horn cavity system remain elusive. Here we present observations of such a system, focusing on a section of the prominence that rises and separates gradually from the main body. This forms a configuration sufficiently simple to yield clues regarding the above issues. It is characterized by embedding horns, oscillations, and a gradual disappearance of the separated material. The prominence-horn structure exhibits a large-amplitude longitudinal oscillation with a period of ∼150 minutes and an amplitude of ∼30 Mm along the trajectory defined by the concave horn structure. The hornsmore » also experience a simultaneous transverse oscillation with a much smaller amplitude (∼3 Mm) and a shorter period (∼10–15 minutes), likely representative of a global mode of the large-scale magnetic structure. The gradual disappearance of the structure indicates that the horn, an observational manifestation of the field-aligned transition region separating the cool and dense prominence from the hot and tenuous corona, is formed due to the heating and diluting process of the central prominence mass; most previous studies suggested that it is the opposite process, i.e., the cooling and condensation of coronal plasmas, that formed the horn. This study also demonstrates how the prominence transports magnetic flux to the upper corona, a process essential for the gradual build-up of pre-eruption magnetic energy.« less

  19. From mitochondrial large amplitude swelling to the permeability transition - a short historic overview.

    PubMed

    Wojtczak, Lech; Więckowski, Mariusz R

    An outline of studies on the mitochondrial large conductance permeability pore is presented starting from the early observations in the 1950s on the large amplitude mitochondrial swelling, through the concept of the permeability transition and various theories on the structure of the related permeability transition pore, up to its present identification as a part of mitochondrial (F 1 F O ) ATPase/ATP synthase.

  20. Calibration of Attenuation Structure in Eurasia to Improve Discrimination and Yield

    DTIC Science & Technology

    2010-09-01

    and travel-times over large and tectonically complicated regions. As a result regional discrimination methods (e.g., high-frequency P/S, Ms:mb) and...a poor job of predicting both regional amplitudes and travel-times over large and tectonically complicated regions. As a result regional...regions. Earthquake-explosion discrimination using high-frequency regional P/S amplitude ratios over large and tectonically complicated regions can only

  1. Representation of complex vocalizations in the Lusitanian toadfish auditory system: evidence of fine temporal, frequency and amplitude discrimination

    PubMed Central

    Vasconcelos, Raquel O.; Fonseca, Paulo J.; Amorim, M. Clara P.; Ladich, Friedrich

    2011-01-01

    Many fishes rely on their auditory skills to interpret crucial information about predators and prey, and to communicate intraspecifically. Few studies, however, have examined how complex natural sounds are perceived in fishes. We investigated the representation of conspecific mating and agonistic calls in the auditory system of the Lusitanian toadfish Halobatrachus didactylus, and analysed auditory responses to heterospecific signals from ecologically relevant species: a sympatric vocal fish (meagre Argyrosomus regius) and a potential predator (dolphin Tursiops truncatus). Using auditory evoked potential (AEP) recordings, we showed that both sexes can resolve fine features of conspecific calls. The toadfish auditory system was most sensitive to frequencies well represented in the conspecific vocalizations (namely the mating boatwhistle), and revealed a fine representation of duration and pulsed structure of agonistic and mating calls. Stimuli and corresponding AEP amplitudes were highly correlated, indicating an accurate encoding of amplitude modulation. Moreover, Lusitanian toadfish were able to detect T. truncatus foraging sounds and A. regius calls, although at higher amplitudes. We provide strong evidence that the auditory system of a vocal fish, lacking accessory hearing structures, is capable of resolving fine features of complex vocalizations that are probably important for intraspecific communication and other relevant stimuli from the auditory scene. PMID:20861044

  2. High-energy photon-hadron scattering in holographic QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishio, Ryoichi; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwano-ha 5-1-5, 277-8583; Watari, Taizan

    2011-10-01

    This article provides an in-depth look at hadron high-energy scattering by using gravity dual descriptions of strongly coupled gauge theories. Just like deeply inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) serve as clean experimental probes into nonperturbative internal structure of hadrons, elastic scattering amplitude of a hadron and a (virtual) photon in gravity dual can be exploited as a theoretical probe. Since the scattering amplitude at sufficiently high energy (small Bjorken x) is dominated by parton contributions (=Pomeron contributions) even in strong coupling regime, there is a chance to learn a lesson for generalized parton distribution (GPD) bymore » using gravity dual models. We begin with refining derivation of the Brower-Polchinski-Strassler-Tan (BPST) Pomeron kernel in gravity dual, paying particular attention to the role played by the complex spin variable j. The BPST Pomeron on warped spacetime consists of a Kaluza-Klein tower of 4D Pomerons with nonlinear trajectories, and we clarify the relation between Pomeron couplings and the Pomeron form factor. We emphasize that the saddle-point value j* of the scattering amplitude in the complex j-plane representation is a very important concept in understanding qualitative behavior of the scattering amplitude. The total Pomeron contribution to the scattering is decomposed into the saddle-point contribution and at most a finite number of pole contributions, and when the pole contributions are absent (which we call saddle-point phase), kinematical variable (q,x,t)-dependence of ln(1/q) evolution and ln(1/x) evolution parameters {gamma}{sub eff} and {lambda}{sub eff} in DIS and t-slope parameter B of DVCS in HERA experiment are all reproduced qualitatively in gravity dual. All of these observations shed a new light on modeling of GPD. Straightforward application of those results to other hadron high-energy scattering is also discussed.« less

  3. A new class of solar burst with MM-wave emission but only at the highest frequency (90 GHz)

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Correia, E.; Costa, J. E. R.; Vaz, A. M. Z.; Dennis, B. R.

    1984-01-01

    High sensitivity and high time resolution solar observations at 90 GHz (lambda = 3.3 mm) have identified a unique impulsive burst on May 21, 1984 with emission that was more intense at this frequency than at lower frequencies. The first major time structure of the burst was over 10 times more intense at 90 GHz than at 30 GHz, 7 GHz, or 2.8 GHz.Only 6 seconds later, the 30 GHz impulsive structures started to be observed but still with lower intensity than at 90 GHz. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHZ structures (to better than one second). All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 sec and amplitudes large compared to the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses.

  4. The Effects of Magnetic-Field Geometry on Longitudinal Oscillations of Solar Prominences: Cross-Sectional Area Variation for Thin Tubes

    NASA Technical Reports Server (NTRS)

    Luna, M.; Diaz, A. J.; Oliver, R.; Terradas, J.; Karpen, J.

    2016-01-01

    Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the filament channel magnetic structure that supports the cool prominence plasma against gravity. Our pendulum model, in which the restoring force is the gravity projected along the dipped field lines of the magnetic structure, best explains these oscillations. However, several factors can influence the longitudinal oscillations, potentially invalidating the pendulum model. Aims. The aim of this work is to study the influence of large-scale variations in the magnetic field strength along the field lines, i.e., variations of the cross-sectional area along the flux tubes supporting prominence threads. Methods. We studied the normal modes of several flux tube configurations, using linear perturbation analysis, to assess the influence of different geometrical parameters on the oscillation properties. Results. We found that the influence of the symmetric and asymmetric expansion factors on longitudinal oscillations is small.Conclusions. We conclude that the longitudinal oscillations are not significantly influenced by variations of the cross-section of the flux tubes, validating the pendulum model in this context.

  5. Convergent and construct validity and test-retest reliability of the Caen Chronotype Questionnaire in six languages.

    PubMed

    Laborde, Sylvain; Dosseville, Fabrice; Aloui, Asma; Ben Saad, Helmi; Bertollo, Maurizio; Bortoli, Laura; Braun, Barbara; Chamari, Karim; Chtourou, Hamdi; De Kort, Yvonne; Farooq, Abdulaziz; Gordijn, Marijke Cm; Greco, Pablo; Guillén, Félix; Haddad, Monoem; Hosang, Thomas; Khalladi, Karim; Lericollais, Romain; Lopes, Mariana; Robazza, Claudio; Smolders, Karin; Wurm, Alexander; Allen, Mark S

    2018-06-06

    Chronotype questionnaires provide a simple and time-effective approach to assessing individual differences in circadian variations. Chronotype questionnaires traditionally focused on one dimension of chronotype, namely its orientation along a continuum of morningness and eveningness. The Caen Chronotype Questionnaire (CCQ) was developed to assess an additional dimension of chronotype that captures the extent to which individual functioning varies during the day (amplitude). The aim of this study was to provide a multilanguage validation of the CCQ in six world regions (Arabic, Dutch, German, Italian, Portuguese and Spanish). At Time 1, a total of 2788 participants agreed to take part in the study (Arabic, n = 731; Dutch, n = 538; German, n = 329; Italian, n = 473; Portuguese, n = 361; Spanish, n = 356). Participants completed an assessment of the CCQ together with the Morningness-Eveningness Questionnaire (MEQ; Horne & Ostberg 1976) as well as questions related to factors theoretically related to chronotype (age, shift work, physical activity, sleep parameters and coffee consumption). One month later, participants again completed the CCQ. Results showed that the two-factor structure (morningness-eveningness and amplitude) of the CCQ could be replicated in all six languages. However, measurement invariance could not be assumed regarding the factor loadings across languages, meaning that items loaded more on their factors in some translations than in others. Test-retest reliability of the CCQ ranged from unacceptable (German version) to excellent (Dutch, Portuguese). Convergent validity was established through small-medium effect size correlations between the morningness-eveningness dimension of the CCQ and the MEQ. Taken together, our findings generally support the use of the translated versions of the CCQ. Further validation work on the CCQ is required including convergent validation against physiological markers of sleep, health and well-being.

  6. Neural substrate of the late positive potential in emotional processing

    PubMed Central

    Liu, Yuelu; Huang, Haiqing; McGinnis, Menton; Keil, Andreas; Ding, Mingzhou

    2012-01-01

    The late positive potential (LPP) is a reliable electrophysiological index of emotional perception in humans. Despite years of research the brain structures that contribute to the generation and modulation of LPP are not well understood. Recording EEG and fMRI simultaneously, and applying a recently proposed single-trial ERP analysis method, we addressed the problem by correlating the single-trial LPP amplitude evoked by affective pictures with the blood-oxygen-level-dependent (BOLD) activity. Three results were found. First, relative to neutral pictures, pleasant and unpleasant pictures elicited enhanced LPP, as well as heightened BOLD activity in both visual cortices and emotion-processing structures such as amygdala and prefrontal cortex, consistent with previous findings. Second, the LPP amplitude across three picture categories was significantly correlated with BOLD activity in visual cortices, temporal cortices, amygdala, orbitofrontal cortex, and insula. Third, within each picture category, LPP-BOLD coupling revealed category-specific differences. For pleasant pictures, the LPP amplitude was coupled with BOLD in occipitotemporal junction, medial prefrontal cortex, amygdala, and precuneus, whereas for unpleasant pictures, significant LPP-BOLD correlation was observed in ventrolateral prefrontal cortex, insula, and posterior cingulate cortex. These results suggest that LPP is generated and modulated by an extensive brain network comprised of both cortical and subcortical structures associated with visual and emotional processing and the degree of contribution by each of these structures to the LPP modulation is valence-specific. PMID:23077042

  7. Seismic attenuation structure of the Seattle Basin, Washington State from explosive-source refraction data

    USGS Publications Warehouse

    Li, Q.; Wilcock, W.S.D.; Pratt, T.L.; Snelson, C.M.; Brocher, T.M.

    2006-01-01

    We used waveform data from the 1999 SHIPS (Seismic Hazard Investigation of Puget Sound) seismic refraction experiment to constrain the attenuation structure of the Seattle basin, Washington State. We inverted the spectral amplitudes of compressional- and shear-wave arrivals for source spectra, site responses, and one- and two-dimensional Q-1 models at frequencies between 1 and 40 Hz for P waves and 1 and 10 Hz for S waves. We also obtained Q-1 models from t* values calculated from the spectral slopes of P waves between 10 and 40 Hz. One-dimensional inversions show that Qp at the surface is 22 at 1 Hz, 130 at 5 Hz, and 390 at 20 Hz. The corresponding values at 18 km depth are 100, 440, and 1900. Qs at the surface is 16 and 160 at 1 Hz and 8 Hz, respectively, increasing to 80 and 500 at 18 km depth. The t* inversion yields a Qp model that is consistent with the amplitude inversions at 20 and 30 Hz. The basin geometry is clearly resolved in the t* inversion, but the amplitude inversions only imaged the basin structure after removing anomalously high-amplitude shots near Seattle. When these shots are removed, we infer that Q-1 values may be ???30% higher in the center of the basin than the one-dimensional models predict. We infer that seismic attenuation in the Seattle basin will significantly reduce ground motions at frequencies at and above 1 Hz, partially countering amplification effects within the basin.

  8. Density perturbation mode structure of high frequency compressional and global Alfvén eigenmodes in the National Spherical Torus Experiment using a novel reflectometer analysis technique

    NASA Astrophysics Data System (ADS)

    Crocker, N. A.; Kubota, S.; Peebles, W. A.; Rhodes, T. L.; Fredrickson, E. D.; Belova, E.; Diallo, A.; LeBlanc, B. P.; Sabbagh, S. A.

    2018-01-01

    Reflectometry measurements of compressional (CAE) and global (GAE) Alfvén eigenmodes are analyzed to obtain the amplitude and spatial structure of the density perturbations associated with the modes. A novel analysis technique developed for this purpose is presented. The analysis also naturally yields the amplitude and spatial structure of the density contour radial displacement, which is found to be 2-4 times larger than the value estimated directly from the reflectometer measurements using the much simpler ‘mirror approximation’. The modes were driven by beam ions in a high power (6 MW) neutral beam heated H-mode discharge (#141398) in the National Spherical Torus Experiment. The results of the analysis are used to assess the contribution of the modes to core energy transport and ion heating. The total displacement amplitude of the modes, which is shown to be larger than previously estimated (Crocker et al 2013 Nucl. Fusion 53 43017), is compared to the predicted threshold (Gorelenkov et al 2010 Nucl. Fusion 50 84012) for the anomalously high heat diffusion inferred from transport modeling in similar NSTX discharges. The results of the analysis also have strong implications for the energy transport via coupling of CAEs to kinetic Alfvén waves seen in simulations with the Hybrid MHD code (Belova et al 2015 Phys. Rev. Lett. 115 15001). Finally, the amplitudes of the observed CAEs fall well below the threshold for causing significant ion heating by stochastic velocity space diffusion (Gates et al 2001 Phys. Rev. Lett. 87 205003).

  9. A Reinforcement-Based Learning Paradigm Increases Anatomical Learning and Retention—A Neuroeducation Study

    PubMed Central

    Anderson, Sarah J.; Hecker, Kent G.; Krigolson, Olave E.; Jamniczky, Heather A.

    2018-01-01

    In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise. PMID:29467638

  10. A Reinforcement-Based Learning Paradigm Increases Anatomical Learning and Retention-A Neuroeducation Study.

    PubMed

    Anderson, Sarah J; Hecker, Kent G; Krigolson, Olave E; Jamniczky, Heather A

    2018-01-01

    In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise.

  11. Nonlinear aeroelastic analysis, flight dynamics, and control of a complete aircraft

    NASA Astrophysics Data System (ADS)

    Patil, Mayuresh Jayawant

    The focus of this research was to analyze a high-aspect-ratio wing aircraft flying at low subsonic speeds. Such aircraft are designed for high-altitude, long-endurance missions. Due to the high flexibility and associated wing deformation, accurate prediction of aircraft response requires use of nonlinear theories. Also strong interactions between flight dynamics and aeroelasticity are expected. To analyze such aircraft one needs to have an analysis tool which includes the various couplings and interactions. A theoretical basis has been established for a consistent analysis which takes into account, (i) material anisotropy, (ii) geometrical nonlinearities of the structure, (iii) rigid-body motions, (iv) unsteady flow behavior, and (v) dynamic stall. The airplane structure is modeled as a set of rigidly attached beams. Each of the beams is modeled using the geometrically exact mixed variational formulation, thus taking into account geometrical nonlinearities arising due to large displacements and rotations. The cross-sectional stiffnesses are obtained using an asymptotically exact analysis, which can model arbitrary cross sections and material properties. An aerodynamic model, consisting of a unified lift model, a consistent combination of finite-state inflow model and a modified ONERA dynamic stall model, is coupled to the structural system to determine the equations of motion. The results obtained indicate the necessity of including nonlinear effects in aeroelastic analysis. Structural geometric nonlinearities result in drastic changes in aeroelastic characteristics, especially in case of high-aspect-ratio wings. The nonlinear stall effect is the dominant factor in limiting the amplitude of oscillation for most wings. The limit cycle oscillation (LCO) phenomenon is also investigated. Post-flutter and pre-flutter LCOs are possible depending on the disturbance mode and amplitude. Finally, static output feedback (SOF) controllers are designed for flutter suppression and gust alleviation. SOF controllers are very simple and thus easy to implement. For the case considered, SOF controllers with proper choice of sensors give results comparable to full state feedback (linear quadratic regulator) designs.

  12. Association of Amplitude and Stability of Circadian Rhythm, Sleep Quality, and Occupational Stress with Sickness Absence among a Gas Company Employees-A Cross Sectional Study from Iran.

    PubMed

    Zare, Rezvan; Choobineh, Alireza; Keshavarzi, Sareh

    2017-09-01

    The present study was carried out to assess the relationship between sickness absence and occupational stress, sleep quality, and amplitude and stability of circadian rhythm as well as to determine contributing factors of sickness absence. This cross sectional study was conducted on 400 randomly selected employees of an Iranian gas company. The data were collected using Pittsburgh sleep quality index, Karolinska sleepiness scale, circadian type inventory, and Osipow occupational stress questionnaires. The mean age and job tenure of the participants were 33.18 ± 5.64 years and 6.06 ± 4.99 years, respectively. Also, the participants had been absent from work on average 2.16 days a year. According to the results, 209 participants had no absences, 129 participants had short-term absences, and 62 participants had long-term absences. The results showed a significant relationship between short-term absenteeism and amplitude of circadian rhythm [odds ratio (OR) = 6.13], sleep quality (OR = 14.46), sleepiness (OR = 2.08), role boundary (OR = 6.45), and responsibility (OR = 5.23). Long-term absenteeism was also significantly associated with amplitude of circadian rhythm (OR = 2.42), sleep quality (OR = 21.56), sleepiness (OR = 6.44), role overload (OR = 4.84), role boundary (OR = 4.27), and responsibility (OR = 3.72). The results revealed that poor sleep quality, amplitude of circadian rhythm, and occupational stress were the contributing factors for sickness absence in the study population.

  13. Hadron diffractive production at ultrahigh energies and shadow effects

    NASA Astrophysics Data System (ADS)

    Anisovich, V. V.; Matveev, M. A.; Nikonov, V. A.

    2016-10-01

    Shadow effects at collisions of hadrons with light nuclei at high energies were subject of scientific interest of V.N. Gribov, first, we mean his study of the hadron-deuteron scattering, see Sov. Phys. JETP 29, 483 (1969) [Zh. Eksp. Teor. Fiz. 56, 892 (1969)] and discovery of the reinforcement of shadowing due to inelastic diffractive rescatterings. It turns out that the similar effect exists on hadron level though at ultrahigh energies. Diffractive production is considered in the ultrahigh energy region where pomeron exchange amplitudes are transformed into black disk ones due to rescattering corrections. The corresponding corrections in hadron reactions h1 + h3 → h1 + h2 + h3 with small momenta transferred (q1→12 ˜ m2/ln2s, q3→32 ˜ m2/ln2s) are calculated in terms of the K-matrix technique modified for ultrahigh energies. Small values of the momenta transferred are crucial for introducing equations for amplitudes. The three-body equation for hadron diffractive production reaction h1 + h3 → h1 + h2 + h3 is written and solved precisely in the eikonal approach. In the black disk regime final state scattering processes do not change the shapes of amplitudes principally but dump amplitudes by a factor ˜ 1 4; initial state rescatterings result in additional factor ˜ 1 2. In the resonant disk regime initial and final state scatterings damp strongly the production amplitude that corresponds to σinel/σtot → 0 at s →∞ in this mode.

  14. Hadron Diffractive Production at Ultrahigh Energies and Shadow Effects

    NASA Astrophysics Data System (ADS)

    Anisovich, V. V.; Matveev, M. A.; Nikonov, V. A.

    Shadow effects at collisions of hadrons with light nuclei at high energies were subject of scientific interest of V.N. Gribov, first, we mean his study of the hadron-deuteron scattering, see Sov. Phys. JETP 29, 483 (1969) [Zh. Eksp. Teor. Fiz. 56, 892 (1969)] and discovery of the reinforcement of shadowing due to inelastic diffractive rescatterings. It turns out that the similar effect exists on hadron level though at ultrahigh energies... Diffractive production is considered in the ultrahigh energy region where pomeron exchange amplitudes are transformed into black disk ones due to rescattering corrections. The corresponding corrections in hadron reactions h1 + h3 → h1 + h2 + h3 with small momenta transferred (q^2_{1 to 1} m^2/ ln^2 s, q^2_{3 to 3} m^2/ ln^2 s) are calculated in terms of the K-matrix technique modified for ultrahigh energies. Small values of the momenta transferred are crucial for introducing equations for amplitudes. The three-body equation for hadron diffractive production reaction h1 + h3 → h1 + h2 + h3 is written and solved precisely in the eikonal approach. In the black disk regime final state scattering processes do not change the shapes of amplitudes principally but dump amplitudes by a factor 1/4 initial state rescatterings result in additional factor 1/2. In the resonant disk regime initial and final state scatterings damp strongly the production amplitude that corresponds to σ_{inel}/σ_{tot} to 0 at √{s}to ∞ in this mode.

  15. Dynamical diagnostics of the SST annual cycle in the eastern equatorial Pacific: Part II analysis of CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Ying; Jin, Fei-Fei

    2017-12-01

    In this study, a simple coupled framework established in Part I is utilized to investigate inter-model diversity in simulating the equatorial Pacific SST annual cycle (SSTAC). It demonstrates that the simulated amplitude and phase characteristics of SSTAC in models are controlled by two internal dynamical factors (the damping rate and phase speed) and two external forcing factors (the strength of the annual and semi-annual harmonic forcing). These four diagnostic factors are further condensed into a dynamical response factor and a forcing factor to derive theoretical solutions of amplitude and phase of SSTAC. The theoretical solutions are in remarkable agreement with observations and CMIP5 simulations. The great diversity in the simulated SSTACs is related to the spreads in these dynamic and forcing factors. Most models tend to simulate a weak SSTAC, due to their weak damping rate and annual harmonic forcing. The latter is due to bias in the meridional asymmetry of the annual mean state of the tropical Pacific, represented by the weak cross-equatorial winds in the cold tongue region.

  16. On the derivation of the semiclassical approximation to the quantum propagator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Stefan G., E-mail: stefan.fischer@physik.uni-freiburg.de; Buchleitner, Andreas

    2015-07-15

    In order to rigorously derive the amplitude factor of the semiclassical approximation to the quantum propagator, we extend an existing method originally devised to evaluate Gaussian path-integral expressions. Using a result which relates the determinant of symmetric block-tridiagonal matrices to the determinants of their blocks, two difference equations are obtained. The first one allows to establish the connection of the amplitude factor to Jacobi’s accessory equations in the continuous-time limit, while the second one leads to an additional factor which, however, contributes to the final result only in exceptional cases. In order to demonstrate the wide applicability of these differencemore » equations, we treat explicitly the case where the time-sliced Lagrangian is written in generalized coordinates, for which a general derivation has so far been unavailable.« less

  17. Determination of Dimensionless Attenuation Coefficient in Shaped Resonators

    NASA Technical Reports Server (NTRS)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2003-01-01

    The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.

  18. Einstein-Yang-Mills scattering amplitudes from scattering equations

    NASA Astrophysics Data System (ADS)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2015-01-01

    We present the building blocks that can be combined to produce tree-level S-matrix elements of a variety of theories with various spins mixed in arbitrary dimensions. The new formulas for the scattering of n massless particles are given by integrals over the positions of n points on a sphere restricted to satisfy the scattering equations. As applications, we obtain all single-trace amplitudes in Einstein-Yang-Mills (EYM) theory, and generalizations to include scalars. Also in EYM but extended by a B-field and a dilaton, we present all double-trace gluon amplitudes. The building blocks are made of Pfaffians and Parke-Taylor-like factors of subsets of particle labels.

  19. Grassmannians for scattering amplitudes in 4d $$\\mathcal{N}=4 $$ SYM and 3d ABJM

    DOE PAGES

    Elvang, Henriette; Huang, Yu-tin; Keeler, Cynthia; ...

    2014-12-31

    Scattering amplitudes in 4d N=4 super Yang-Mills theory (SYM) can be described by Grassmannian contour integrals whose form depends on whether the external data is encoded in momentum space, twistor space, or momentum twistor space. Here, after a pedagogical review, we present a new, streamlined proof of the equivalence of the three integral formulations. A similar strategy allows us to derive a new Grassmannian integral for 3d N = 6 ABJM theory amplitudes in momentum twistor space: it is a contour integral in an orthogonal Grassmannian with the novel property that the internal metric depends on the external data. Themore » result can be viewed as a central step towards developing an amplituhedron formulation for ABJM amplitudes. Various properties of Grassmannian integrals are examined, including boundary properties, pole structure, and a homological interpretation of the global residue theorems for N = 4 SYM.« less

  20. The influence of a time-varying least squares parametric model when estimating SFOAEs evoked with swept-frequency tones

    NASA Astrophysics Data System (ADS)

    Hajicek, Joshua J.; Selesnick, Ivan W.; Henin, Simon; Talmadge, Carrick L.; Long, Glenis R.

    2018-05-01

    Stimulus frequency otoacoustic emissions (SFOAEs) were evoked and estimated using swept-frequency tones with and without the use of swept suppressor tones. SFOAEs were estimated using a least-squares fitting procedure. The estimated SFOAEs for the two paradigms (with- and without-suppression) were similar in amplitude and phase. The fitting procedure minimizes the square error between a parametric model of total ear-canal pressure (with unknown amplitudes and phases) and ear-canal pressure acquired during each paradigm. Modifying the parametric model to allow SFOAE amplitude and phase to vary over time revealed additional amplitude and phase fine structure in the without-suppressor, but not the with-suppressor paradigm. The use of a time-varying parametric model to estimate SFOAEs without-suppression may provide additional information about cochlear mechanics not available when using a with-suppressor paradigm.

  1. Cyclic deformation and phase transformation of 6Mo superaustenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Shing-Hoa; Wu, Chia-Chang; Chen, Chih-Yuan; Yang, Jer-Ren; Chiu, Po-Kay; Fang, Jason

    2007-08-01

    A fatigue behavior analysis was performed on superaustenitic stainless steel UNS S31254 (Avesta Sheffield 254 SMO), which contains about 6wt.% molybdenum, to examine the cyclic hardening/softening trend, hysteresis loops, the degree of hardening, and fatigue life during cyclic straining in the total strain amplitude range from 0.2 to 1.5%. Independent of strain rate, hardening occurs first, followed by softening. The degree of hardening is dependent on the magnitude of strain amplitude. The cyclic stress-strain curve shows material softening. The lower slope of the degree of hardening versus the strain amplitude curve at a high strain rate is attributed to the fast development of dislocation structures and quick saturation. The ɛ martensite formation, either in band or sheath form, depending on the strain rate, leads to secondary hardening at the high strain amplitude of 1.5%.

  2. Anomalously strong observations of PKiKP/PcP amplitude ratios on a global scale

    NASA Astrophysics Data System (ADS)

    Waszek, Lauren; Deuss, Arwen

    2015-07-01

    The inner core boundary marks the phase transition between the solid inner core and the fluid outer core. As the site of inner core solidification, the boundary provides insight into the processes generating the seismic structures of the inner core. In particular, it may hold the key to understanding the previously observed hemispherical asymmetry in inner core seismic velocity, anisotropy, and attenuation. Here we use a large PKiKP-PcP amplitude ratio and travel time residual data set to investigate velocity and density contrast properties near the inner core boundary. Although hemispherical structure at the boundary has been proposed by previous inner core studies, we find no evidence for hemispheres in the amplitude ratios or travel time residuals. In addition, we find that the amplitude ratios are much larger than can be explained by variations in density contrast at the inner core boundary or core-mantle boundary. This indicates that PKiKP is primarily observed when it is anomalously large, due to focusing along its raypath. Using data in which PKiKP is not detected above the noise level, we calculate an upper estimate for the inner core boundary (ICB) density contrast of 1.2 kg m-3. The travel time residuals display large regional variations, which differ on long and short length scales. These regions may be explained by large-scale velocity variations in the F layer just above the inner core boundary, and/or small-scale topography of varying magnitude on the ICB, which also causes the large amplitudes. Such differences could arise from localized freezing and melting of the inner core.

  3. Insights into the structure and function of fungal β-mannosidases from glycoside hydrolase family 2 based on multiple crystal structures of the Trichoderma harzianum enzyme.

    PubMed

    Nascimento, Alessandro S; Muniz, Joao Renato C; Aparício, Ricardo; Golubev, Alexander M; Polikarpov, Igor

    2014-09-01

    Hemicellulose is an important part of the plant cell wall biomass, and is relevant to cellulosic ethanol technologies. β-Mannosidases are enzymes capable of cleaving nonreducing residues of β-d-mannose from β-d-mannosides and hemicellulose mannose-containing polysaccharides, such as mannans and galactomannans. β-Mannosidases are distributed between glycoside hydrolase (GH) families 1, 2, and 5, and only a handful of the enzymes have been structurally characterized to date. The only published X-ray structure of a GH family 2 mannosidase is that of the bacterial Bacteroides thetaiotaomicron enzyme. No structures of eukaryotic mannosidases of this family are currently available. To fill this gap, we set out to solve the structure of Trichoderma harzianum GH family 2 β-mannosidase and to refine it to 1.9-Å resolution. Structural comparisons of the T. harzianum GH2 β-mannosidase highlight similarities in its structural architecture with other members of GH family 2, reveal the molecular mechanism of β-mannoside binding and recognition, and shed light on its putative galactomannan-binding site. Coordinates and observed structure factor amplitudes have been deposited with the Protein Data Bank (4CVU and 4UOJ). The T. harzianum β-mannosidase 2A nucleotide sequence has GenBank accession number BankIt1712036 GeneMark.hmm KJ624918. © 2014 FEBS.

  4. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Astrophysics Data System (ADS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-09-01

    Using high-resolution time-sequence photographs of solar granulation from the SOUP experiment on Spacelab 2 the authors observed large-scale horizontal flows in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into the surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  5. Reflection of shear elastic waves from the interface of a ferromagnetic half–space

    NASA Astrophysics Data System (ADS)

    Atoyan, L. H.; Terzyan, S. H.

    2018-04-01

    In this paper, the problems of reflection and refraction of a pure elastic wave incident from a nonmagnetic medium on the surface of contact between two semi-infinite media of an infinite nonmagnetic/magnetic structure are considered. The resonance character of the interaction between elastic and magnetic waves is shown, and the dependence of the magnetoelastic wave amplitudes on the the incident elastic wave amplitude is also established.

  6. Properties of entangled photon pairs generated in one-dimensional nonlinear photonic-band-gap structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perina, Jan Jr.; Centini, Marco; Sibilia, Concita

    We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49more » layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency.« less

  7. Mars Internal Structure: Seismic Predictions for Core Phase Arrivals in Anticipation of the InSight Mission

    NASA Astrophysics Data System (ADS)

    Weber, R. C.; Banerdt, W. B.; Lognonne, P. H.; Hempel, S.; Panning, M. P.; Schmerr, N. C.; Garcia, R.; Shiro, B.; Gudkova, T.

    2016-12-01

    We present a methodology to constrain the seismic structure of the Martian core in preparation for the return of data from the InSight mission. Expected amplitudes for marsquakes assuming a medium seismicity model support the likely observation of core reflections of P and S energy for events with magnitude greater than MW 4.5. For the mission duration, we would expect to record on the order of 10 events of at least this magnitude. Our method predicts the ray density of core reflected (PcP, ScS) and transmitted (PKP, SKS) phases for various core sizes with core-mantle boundary depths between 1650 and 2100 km. Ray density is defined as the fraction of rays in a small source-receiver interval normalized by the total number of rays over a great circle slice through the planet. The ray density of a given phase is scaled by predicted amplitudes calculated considering attenuation, geometric spreading and reflection/transmission coefficients at discontinuities along the ray path. Maximum PcP/ScS amplitudes are expected at epicentral distances of 40-100 degrees. Thus, if present, strong seismicity in the Hellas and Tharsis region may facilitate core detection. For events with MW above 4.5, ScS and SKS signals are expected to lie above the lander noise, but PcP and PKP signals may barely be visible. The resolution of these phases can be improved by applying stacking techniques to account for expected background noise, scattering, and interfering seismic phases. These techniques were successfully applied to Apollo seismograms to infer the radial structure of the lunar core. Even if source depth and location have large uncertainties during a single-station mission to Mars, different phases can be distinguished by their slownesses. Prior to the summation of the traces of individual events, signals are aligned to a reference phase, e.g. the PcP onset assuming various core radii. A maximum in signal coherency corresponds to the best fitting core radius. In the case of lunar seismograms, the coherency of the stacked signals was further improved by applying polarization filters. Such filtering may also be useful on Mars depending on the scattering environment of the shallow regolith. In the case of ScS, gravimetric factors and Love number will additionally be able to separate models with similar ScS arrival times.

  8. Libration and obliquity of Mercury from the BepiColombo radio science and camera experiments

    NASA Astrophysics Data System (ADS)

    Pfyffer, G.; van Hoolst, T.; Dehant, V.

    2008-12-01

    Mercury is the most enigmatic among the terrestrial planets, but the space missions MESSENGER and BepiColombo are expected to advance largely our knowledge of the structure, formation, and evolution of Mercury. In particular, insight into Mercury's deep interior will be obtained from observations of the 88-day forced libration, the obliquity and the degree-two coefficients of the gravity field of Mercury. Of those quantities, the libration is the most difficult to measure and will hence be a limiting factor We report here on aspects of the observational strategy to determine the libration amplitude and obliquity, taking into account the space and ground segment of the experiment. Repeated photographic measurements of selected target positions on the surface of Mercury are central to the strategy to determine the obliquity and libration in the frame of the BepiColombo mission. We simulated these measurements in order to estimate the accuracy of the reconstruction of the orientation and rotational motion of the planet, as a function of the amount of measurements made, the number of different targets considered and their locations on the surface of the planet. From this study, we determine criteria for the distribution and number of target positions to maximize the accuracy on the orientation and rotation determination, from which the obliquity and libration are extracted. We take into account the errors arising from the relative positions of the spacecraft, Mercury and the Earth. We consider various error sources such as the solar thermal influence on the spacecraft bus and the Earth based tracking constraint near solar conjunctions of Mercury. The accuracy on the retrieved parameters is then interpreted in terms of accuracy on the constraints on the interior structure of the planet. Our simulations show that the achievable level of accuracy on the libration amplitude and obliquity will be sufficient to constrain Mercury interior structure models, if the orbiter follows the ESA baseline mission scenario and at least 50 landmarks are imaged at least twice over the mission duration, the libration amplitude can be determined in two Mercury years (176 days) with an accuracy of 3 arcsec or better, which is sufficient to constrain the size and physical state of the planetary core.

  9. Tunnel junction based memristors as artificial synapses

    PubMed Central

    Thomas, Andy; Niehörster, Stefan; Fabretti, Savio; Shepheard, Norman; Kuschel, Olga; Küpper, Karsten; Wollschläger, Joachim; Krzysteczko, Patryk; Chicca, Elisabetta

    2015-01-01

    We prepared magnesia, tantalum oxide, and barium titanate based tunnel junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of long-term potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices toward their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms. PMID:26217173

  10. Long-Time Variation of Magnetic Structure in (Pr xLa 1-x)Co 2Si 2: Coexistence of Slow and Fast Processes in Magnetic Phase Transition

    DOE PAGES

    Motoya, Kiyoichiro; Hagihala, Masato; Shigeoka, Toru; ...

    2017-03-14

    In this paper, long-time variations of the magnetic structure in PrCo 2Si 2 and (Pr 0.98La 0.02)Co 2Si 2 were studied by magnetization and time-resolved neutron scattering measurements. The amplitudes of magnetic Bragg peaks showed marked time variations after cooling or heating across the magnetic transition temperature T 1 between two different antiferromagnetic phases. However, the amplitude of the time variation decreased rapidly with increasing distance from T 1. Finally, we analyzed the results on the basis of a phase transition model that includes the coexistence of fast and slow processes.

  11. A continuous-wave ultrasound system for displacement amplitude and phase measurement.

    PubMed

    Finneran, James J; Hastings, Mardi C

    2004-06-01

    A noninvasive, continuous-wave ultrasonic technique was developed to measure the displacement amplitude and phase of mechanical structures. The measurement system was based on a method developed by Rogers and Hastings ["Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated," U.S. Patent No. 4,819,643 (1989)] and expanded to include phase measurement. A low-frequency sound source was used to generate harmonic vibrations in a target of interest. The target was simultaneously insonified by a low-power, continuous-wave ultrasonic source. Reflected ultrasound was phase modulated by the target motion and detected with a separate ultrasonic transducer. The target displacement amplitude was obtained directly from the received ultrasound frequency spectrum by comparing the carrier and sideband amplitudes. Phase information was obtained by demodulating the received signal using a double-balanced mixer and low-pass filter. A theoretical model for the ultrasonic receiver field is also presented. This model coupled existing models for focused piston radiators and for pulse-echo ultrasonic fields. Experimental measurements of the resulting receiver fields compared favorably with theoretical predictions.

  12. Evaluation of amplitude-based sorting algorithm to reduce lung tumor blurring in PET images using 4D NCAT phantom.

    PubMed

    Wang, Jiali; Byrne, James; Franquiz, Juan; McGoron, Anthony

    2007-08-01

    develop and validate a PET sorting algorithm based on the respiratory amplitude to correct for abnormal respiratory cycles. using the 4D NCAT phantom model, 3D PET images were simulated in lung and other structures at different times within a respiratory cycle and noise was added. To validate the amplitude binning algorithm, NCAT phantom was used to simulate one case of five different respiratory periods and another case of five respiratory periods alone with five respiratory amplitudes. Comparison was performed for gated and un-gated images and for the new amplitude binning algorithm with the time binning algorithm by calculating the mean number of counts in the ROI (region of interest). an average of 8.87+/-5.10% improvement was reported for total 16 tumors with different tumor sizes and different T/B (tumor to background) ratios using the new sorting algorithm. As both the T/B ratio and tumor size decreases, image degradation due to respiration increases. The greater benefit for smaller diameter tumor and lower T/B ratio indicates a potential improvement in detecting more problematic tumors.

  13. On the causes of trends in the seasonal amplitude of atmospheric CO2.

    PubMed

    Piao, Shilong; Liu, Zhuo; Wang, Yilong; Ciais, Philippe; Yao, Yitong; Peng, Shushi; Chevallier, Frédéric; Friedlingstein, Pierre; Janssens, Ivan A; Peñuelas, Josep; Sitch, Stephen; Wang, Tao

    2018-02-01

    No consensus has yet been reached on the major factors driving the observed increase in the seasonal amplitude of atmospheric CO 2 in the northern latitudes. In this study, we used atmospheric CO 2 records from 26 northern hemisphere stations with a temporal coverage longer than 15 years, and an atmospheric transport model prescribed with net biome productivity (NBP) from an ensemble of nine terrestrial ecosystem models, to attribute change in the seasonal amplitude of atmospheric CO 2 . We found significant (p < .05) increases in seasonal peak-to-trough CO 2 amplitude (AMP P -T ) at nine stations, and in trough-to-peak amplitude (AMP T -P ) at eight stations over the last three decades. Most of the stations that recorded increasing amplitudes are in Arctic and boreal regions (>50°N), consistent with previous observations that the amplitude increased faster at Barrow (Arctic) than at Mauna Loa (subtropics). The multi-model ensemble mean (MMEM) shows that the response of ecosystem carbon cycling to rising CO 2 concentration (eCO 2 ) and climate change are dominant drivers of the increase in AMP P -T and AMP T -P in the high latitudes. At the Barrow station, the observed increase of AMP P -T and AMP T -P over the last 33 years is explained by eCO 2 (39% and 42%) almost equally than by climate change (32% and 35%). The increased carbon losses during the months with a net carbon release in response to eCO 2 are associated with higher ecosystem respiration due to the increase in carbon storage caused by eCO 2 during carbon uptake period. Air-sea CO 2 fluxes (10% for AMP P -T and 11% for AMP T -P ) and the impacts of land-use change (marginally significant 3% for AMP P -T and 4% for AMP T -P ) also contributed to the CO 2 measured at Barrow, highlighting the role of these factors in regulating seasonal changes in the global carbon cycle. © 2017 John Wiley & Sons Ltd.

  14. Quantifying the Interannual Variability in Global Carbon Fluxes from Heterotrophic Respiration using a Testbed and Pulse Response Modeling Approach.

    NASA Astrophysics Data System (ADS)

    Basile, S.; Wieder, W. R.; Hartman, M. D.; Keppel-Aleks, G.

    2017-12-01

    The atmospheric growth rate of carbon dioxide (CO2) varies interannually and is strongly correlated with climate factors, including temperature and drought. These climate drivers affect vegetation productivity and the rate of respiration of organic matter to CO2 (heterotrophic respiration). Here we quantified the interannual variability in global carbon fluxes from heterotrophic respiration and their relationship to climate drivers. We used a novel testbed approach to simulate respiration, then simulated the imprint that these modeled heterotrophic fluxes have on atmospheric CO2 using an idealized pulse response model. Two of the testbed formulations (MIMICS and CORPSE) are microbially explicit by incorporation of microbial physiological tradeoffs and microbial activity in soil near fine roots (rhizosphere soils), respectively, while the third model (CASA) uses a CENTURY-like microbially implicit framework. Modeled respiration exhibited subtle differences, with MIMICS showing the largest seasonal amplitude in the Northern Hemisphere and the strongest correlation with global temperature variations. At Mauna Loa (MLO) the simulated seasonal CO2 amplitude in response to global heterotrophic respiration ranged by a factor of 1.5 across the models with the MIMICS and CASA models producing the higher amplitude responses between 1987 and 2006. The seasonal CO2 amplitude at MLO varied by about 5% interannually, with the largest variation in the MIMICS model. In the Northern Hemisphere there was a similar response range in average peak-to-trough seasonal CO2 but all models showed slightly higher amplitude values. Comparatively in the Northern Hemisphere, the average seasonal CO2 amplitude in response to respiration ranged between 30%-41% of the seasonal CO2 amplitude in response to net primary productivity. We expect that exploring the imprint of heterotrophic respiration on atmospheric CO2 from these three different models will improve our understanding of the imprint that heterotrophic respiration imparts on atmospheric data. The aim of this work is to ultimately yield an approach for combining CO2 observations with remote sensing-based observations of terrestrial productivity to produce regional constraints on heterotrophic respiration.

  15. The ultrasonic characteristics of high frequency modulated arc and its application in material processing.

    PubMed

    He, Longbiao; Yang, Ping; Li, Luming; Wu, Minsheng

    2014-12-01

    To solve the difficulty of introducing traditional ultrasonic transducers to welding molten pool, high frequency current is used to modulate plasma arc and ultrasonic wave is excited successfully. The characteristics of the excited ultrasonic field are studied. The results show that the amplitude-frequency response of the ultrasonic emission is flat. The modulating current is the main factor influencing the ultrasonic power and the sound pressure depends on the variation of arc plasma stream force. Experimental study of the welding structure indicates grain refinement by the ultrasonic emission of the modulated arc and the test results showed there should be an energy region for the arc ultrasonic to get best welding joints. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Spin wave nonreciprocity for logic device applications

    NASA Astrophysics Data System (ADS)

    Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo

    2013-11-01

    The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Liang; Au-Yeung, Ka Yan; Yang, Min

    Damping of low frequency vibration by lightweight and compact devices has been a serious challenge in various areas of engineering science. Here we report the experimental realization of a type of miniature low frequency vibration dampers based on decorated membrane resonators. At frequency around 150 Hz, two dampers, each with outer dimensions of 28 mm in diameter and 5 mm in height, and a total mass of 1.78 g which is less than 0.6% of the host structure (a nearly free-standing aluminum beam), can reduce its vibrational amplitude by a factor of 1400, or limit its maximum resonance quality factormore » to 18. Furthermore, the conceptual design of the dampers lays the foundation and demonstrates the potential of further miniaturization of low frequency dampers.« less

  18. Modified PTS-based PAPR Reduction for FBMC-OQAM Systems

    NASA Astrophysics Data System (ADS)

    Deng, Honggui; Ren, Shuang; Liu, Yan; Tang, Chengying

    2017-10-01

    The filter bank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) has been raised great concern in the 5G communication research. However FBMC-OQAM has also the inherent drawback of high peak-to-average power ratio (PAPR) that should be addressed. Due to the overlapping structure of FBMC-OQAM signals, it is proven that directly employing conventional partial transmit sequence (PTS) scheme proposed for OFDM to FBMC-OQAM is ineffective. In this paper, we propose a modified PTS-based scheme by employing phase rotation factors to optimize only the phase of the sparse peak signals, called as sparse PTS (S-PTS) scheme. Theoretical analysis and simulation results show that the proposed S-PTS scheme provides a significant PAPR reduction performance with lower computational complexity.

  19. Spin wave nonreciprocity for logic device applications

    PubMed Central

    Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo

    2013-01-01

    The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications. PMID:24196318

  20. A quantitative approach to the topology of large-scale structure. [for galactic clustering computation

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III; Weinberg, David H.; Melott, Adrian L.

    1987-01-01

    A quantitative measure of the topology of large-scale structure: the genus of density contours in a smoothed density distribution, is described and applied. For random phase (Gaussian) density fields, the mean genus per unit volume exhibits a universal dependence on threshold density, with a normalizing factor that can be calculated from the power spectrum. If large-scale structure formed from the gravitational instability of small-amplitude density fluctuations, the topology observed today on suitable scales should follow the topology in the initial conditions. The technique is illustrated by applying it to simulations of galaxy clustering in a flat universe dominated by cold dark matter. The technique is also applied to a volume-limited sample of the CfA redshift survey and to a model in which galaxies reside on the surfaces of polyhedral 'bubbles'. The topology of the evolved mass distribution and 'biased' galaxy distribution in the cold dark matter models closely matches the topology of the density fluctuations in the initial conditions. The topology of the observational sample is consistent with the random phase, cold dark matter model.

  1. Performance evaluation of the Fiber Bragg Grating (FBG) sensing device and comparison with piezoelectric sensors for AE detection

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Bond, Leonard J.

    2017-02-01

    Structural health monitoring (SHM) of engineering structures in service has assumed a significant role in assessing their safety and integrity. Several sensing modalities have been developed to monitor cracking, using acoustic emission (AE). Piezoelectric sensors are commonly used in AE systems, however, for some applications there are limitations and challenges. One alternative approach that is being investigated is using Fiber Bragg Grating (FBG) sensors which have emerged as a reliable, in situ and nondestructive tool in some applications for monitoring and diagnostics in large-scale structure. The main objective of this work is to evaluate and compare the AE sensing characteristics for FBG and piezoelectric sensors. A ball drop impact is used as the source for generating waves in an Aluminum plate. The source repeatability was verified and a 4-channel FBG AE detection device was used to compare with the response of PZT sensors, investigating amplitude and frequency response which can indicate sensitivity. The low sensitivity and slow sampling rate are identified, for the unit investigated, as the main factors limiting FBG engineering AE applications.

  2. Characterising the effect of global and local geometric imperfections on the numerical performance of a brace member

    NASA Astrophysics Data System (ADS)

    Hassan, M. S.; Goggins, J.; Salawdeh, S.

    2015-07-01

    A numerical imperfection study is carried out on a hot rolled tubular brace member under displacement controlled amplitudes. An appropriate range of global and local imperfections is used in the finite element analyses to evaluate the initial-post buckling compressive strength, lateral storey drift, energy dissipation and mid-length lateral deformation of the brace member. The purpose of this study is to assess the impact of the geometrical imperfection on the numerical performance, and to determine an amplitude range that can be used unequivocally for numerical modelling of brace members. It is shown that the amplitude of global imperfections has an effect on the initial response, whereas the amplitude of local imperfections has influence on the resistance capacity of the brace member at higher ductility level. Based on the results, a refined range of amplitude of global and local imperfections is proposed. This range is found to have a good agreement with design standards. In addition, an already established equation to find lateral deformation is compared to results from the analyses and found that the equation with some modification can be used accurately in design. In this paper, a modification factor is proposed in the equation to find the lateral deformation to account for the imperfection amplitude in the numerical analyses of brace members.

  3. Adaptive match filter based method for time vs. amplitude characterization of microvolt ECG T-wave alternans.

    PubMed

    Burattini, Laura; Zareba, Wojciech; Burattini, Roberto

    2008-09-01

    To develop a new method for non-invasive identification of patients prone to ventricular tachyarrhythmia and sudden cardiac death, an adaptive match-filter (AMF) was applied to detect and characterize T-wave alternans (TWA) in 200 coronary artery diseased (CAD) patients compared with 176 healthy (H) subjects. TWA was characterized in terms of duration (TWAD), amplitude (TWAA), and magnitude (TWAM, defined as the product of TWAD times TWAA). A criterion derived from these parameters, estimated over the H-population, allowed discrimination between a risk (TWA+) and a normality (NO TWA) zone in the TWAD-TWAA plane. To gain further ability to discriminate among different risk levels, the TWA+ zone was divided into four sub-zones respectively characterized by low duration and low amplitude (LDLA), low duration and high amplitude (LDHA), high duration and low amplitude (HDLA), and high duration and high amplitude (HDHA). With our methodology, 21 CAD-patients (10.5%) were identified as TWA+, 9 falling in the LDLA zone, 4 in the HDLA, 7 in the LDHA, and 1 in the HDHA. These results are in agreement with clinical expectations and pave the way to further clinical follow-up studies finalized to analyze pathophysiological implications and risk factors associated to each TWA+ zone.

  4. Poor functional recovery and muscle polyinnervation after facial nerve injury in fibroblast growth factor-2-/- mice can be improved by manual stimulation of denervated vibrissal muscles.

    PubMed

    Seitz, M; Grosheva, M; Skouras, E; Angelova, S K; Ankerne, J; Jungnickel, J; Grothe, C; Klimaschewski, L; Hübbers, C U; Dunlop, S A; Angelov, D N

    2011-05-19

    Functional recovery following facial nerve injury is poor. Adjacent neuromuscular junctions (NMJs) are "bridged" by terminal Schwann cells and numerous regenerating axonal sprouts. We have recently shown that manual stimulation (MS) restores whisking function and reduces polyinnervation of NMJs. Furthermore, MS requires both insulin-like growth factor-1 (IGF-1) and brain-derived neurotrophic factor (BDNF). Here, we investigated whether fibroblast growth factor-2 (FGF-2) was also required for the beneficial effects of MS. Following transection and suture of the facial nerve (facial-facial anastomisis, FFA) in homozygous mice lacking FGF-2 (FGF-2(-/-)), vibrissal motor performance and the percentage of poly-innervated NMJ were quantified. In intact FGF-2(-/-) mice and their wildtype (WT) counterparts, there were no differences in amplitude of vibrissal whisking (about 50°) or in the percentage of polyinnervated NMJ (0%). After 2 months FFA and handling alone (i.e. no MS), the amplitude of vibrissal whisking in WT-mice decreased to 22±3°. In the FGF-2(-/-) mice, the amplitude was reduced further to 15±4°, that is, function was significantly poorer. Functional deficits were mirrored by increased polyinnervation of NMJ in WT mice (40.33±2.16%) with polyinnervation being increased further in FGF-2(-/-) mice (50.33±4.33%). However, regardless of the genotype, MS increased vibrissal whisking amplitude (WT: 33.9°±7.7; FGF-2(-/-): 33.4°±8.1) and concomitantly reduced polyinnervation (WT: 33.9%±7.7; FGF-2(-/-): 33.4%±8.1) to a similar extent. We conclude that, whereas lack of FGF-2 leads to poor functional recovery and target reinnervation, MS can nevertheless confer some functional benefit in its absence. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Preliminary analysis of amplitude and phase fluctuations in the JAPE multiple tone data to distances of 500 meters

    NASA Technical Reports Server (NTRS)

    Rogers, James; Sokolov, Radomir; Hicks, Daniel; Cartwright, Lloyd

    1993-01-01

    The JAPE short range data provide a good opportunity for studying phase and amplitude fluctuations of acoustic signals in the atmosphere over distances of several hundred meters. Several factors contribute to the usefulness of these data: extensive meteorological measurements were made, controlled sources were used, the data were recorded with a high dynamic range digital system that preserved phase information and a significant number of measurement points were obtained allowing both longitudinal and transverse studies. Further, Michigan Tech, in cooperation with the U.S. Army TARDEC, has developed phase tracking algorithms for studying vehicle acoustic signals. These techniques provide an excellent tool for analyzing the amplitude and phase fluctuations of the JAPE data. The results of studies such as those reported here have application at several levels: the mechanisms of signal amplitude and phase fluctuations in propagating acoustic signals are not well understood nor are the mathematical models highly developed, acoustic arrays depend strongly on signal coherence and signal amplitude stability in order to perform to their design specifications and active noise control implementation in regions considerably removed from the primary and secondary sources depends upon signal amplitude and phase stability. Work reported here is preliminary in nature but it does indicate the utility of the phase tracking and amplitude detection algorithms. The results obtained indicate that the phase fluctuations of the JAPE continuous multiple tone data (simultaneous transmission of 80, 200 and 500 Hz) are in general agreement with existing theories but the amplitude fluctuations are seen to be less well behaved and show less consistency.

  6. The Influence of the External Signal Modulation Waveform and Frequency on the Performance of a Photonic Forced Oscillator.

    PubMed

    Sánchez-Castro, Noemi; Palomino-Ovando, Martha Alicia; Estrada-Wiese, Denise; Valladares, Nydia Xcaret; Del Río, Jesus Antonio; de la Mora, Maria Beatriz; Doti, Rafael; Faubert, Jocelyn; Lugo, Jesus Eduardo

    2018-05-21

    Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular) were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform.

  7. The Influence of the External Signal Modulation Waveform and Frequency on the Performance of a Photonic Forced Oscillator

    PubMed Central

    Sánchez-Castro, Noemi; Palomino-Ovando, Martha Alicia; Estrada-Wiese, Denise; Valladares, Nydia Xcaret; del Río, Jesus Antonio; Doti, Rafael; Faubert, Jocelyn; Lugo, Jesus Eduardo

    2018-01-01

    Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular) were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform. PMID:29883393

  8. A capacitive ultrasonic transducer based on parametric resonance.

    PubMed

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F

    2017-07-24

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  9. Evaluating the integrity of the reinforced concrete structure repaired by epoxy injection using simulated transfer function of impact-echo response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chia-Chi; Yu, Chih-peng; Wu, Jiunn-Hong

    2014-02-18

    Cracks and honeycombs are often found inside reinforced concrete (RC) structure caused by excessive external force, or improper casting of concrete. The repairing method usually involves epoxy injection. The impact-echo method, which is a sensitive for detecting of the interior voids, may not be applicable to assess the integrity of the repaired member as both air and epoxy are less in acoustic impedances. In this study, the repaired RC structure was evaluated by the simulated transfer function of the IE displacement waveform where the R-wave displacement waveform is used as a base of a simulated force-time function. The effect ofmore » different thickness of the epoxy layer to the amplitude corresponding to the interface is studied by testing on specimen containing repaired naturally delaminated cracks with crack widths about 1 mm, 3 mm and 5 mm. The impact-echo responses were compared with the drilling cores at the test positions. The results showed the cracks were not fully filled with epoxy when the peak amplitude corresponding to the interface dropped less than 20%. The peak corresponding to the thicker epoxy layer tends to be larger in amplitude. A field study was also performed on a column damaged by earthquake before and after repairing.« less

  10. Understanding the dynamical structure of pulsating stars: The Baade-Wesselink projection factor of the δ Scuti stars AI Velorum and β Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Guiglion, G.; Nardetto, N.; Mathias, P.; Domiciano de Souza, A.; Poretti, E.; Rainer, M.; Fokin, A.; Mourard, D.; Gieren, W.

    2013-02-01

    Aims: The Baade-Wesselink method of distance determination is based on the oscillations of pulsating stars. The key parameter of this method is the projection factor used to convert the radial velocity into the pulsation velocity. Our analysis was aimed at deriving for the first time the projection factor of δ Scuti stars, using high-resolution spectra of the high-amplitude pulsator AI Vel and of the fast rotator β Cas. Methods: The geometric component of the projection factor (i.e. p0) was calculated using a limb-darkening model of the intensity distribution for AI Vel, and a fast-rotator model for β Cas. Then, using SOPHIE/OHP data for β Cas and HARPS/ESO data for AI Vel, we compared the radial velocity curves of several spectral lines forming at different levels in the atmosphere and derived the velocity gradient associated to the spectral-line-forming regions in the atmosphere of the star. This velocity gradient was used to derive a dynamical projection factor p. Results: We find a flat velocity gradient for both stars and finally p = p0 = 1.44 for AI Vel and p = p0 = 1.41 for β Cas. By comparing Cepheids and δ Scuti stars, these results bring valuable insights into the dynamical structure of pulsating star atmospheres. They suggest that the period-projection factor relation derived for Cepheids is also applicable to δ Scuti stars pulsating in a dominant radial mode. This work uses observations made with the HARPS instrument at the 3.6 m telescope (La Silla, Chile) in the framework of the LP185.D-0056 and with the SOPHIE instrument at OHP (France).

  11. D0-D¯0 mixing parameter y in the factorization-assisted topological-amplitude approach

    NASA Astrophysics Data System (ADS)

    Jiang, Hua-Yu; Yu, Fu-Sheng; Qin, Qin; Li, Hsiang-nan; Lü, Cai-Dian

    2018-05-01

    We calculate the {{{D}}}0{-}{\\overline{{{D}}}}0 mixing parameter y in the factorization-assisted topological-amplitude (FAT) approach, considering contributions from {{{D}}}0\\to {PP}, PV, and VV modes, where P (V) stands for a pseudoscalar (vector) meson. The {{{D}}}0\\to {PP} and PV decay amplitudes are extracted in the FAT approach, and the {{{D}}}0\\to {VV} decay amplitudes with final states in the longitudinal polarization are estimated via the parameter set for {{{D}}}0\\to {PV}. It is found that the VV contribution to y, being of order of 10‑4, is negligible, and that the PP and PV contributions amount only up to {y}{{PP+PV}}=(0.21+/- 0.07) % , a prediction more precise than those previously obtained in the literature, and much lower than the experimental data {y}{{\\exp }}=(0.61+/- 0.08) % . We conclude that D0 meson decays into other two-body and multi-particle final states are relevant to the evaluation of y, so it is difficult to understand it fully in an exclusive approach. Supported by National Natural Science Foundation of China (11347027, 11505083, 11375208, 11521505, 1162113100, 11235005, U1732101), Ministry of Science and Technology of R.O.C. (MOST-104-2112-M-001-037-MY3) and DFG Forschergruppe FOR 1873 “Quark Flavour Physics and Effective Field Theories”

  12. Fracture Decoupling of Small Chemical Explosions in Granite and Limestone

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Bonner, J. L.; Reinke, R.; Lenox, E. A.

    2012-12-01

    Reduction of the seismic amplitudes produced by underground explosions due to dissipation in a low-coupling medium poses a significant challenge for nuclear test monitoring. We examined the data from two experiments, which involved conducting explosions in the damage zone created by previous explosions ("repeat shots"). The first experiment was conducted in central New Hampshire in a fluid saturated granodiorite. The experiment involved detonating two 46 kg explosions: one in virgin rock and the other in the fractured rock zone produced by a larger (232 kg) explosion. The second experiment took place near Albuquerque, NM, in dry limestone. In this scenario the second explosion was conducted in the cavity created by the first explosion. Both limestone explosions had yields of 90.5 kg. The reduction of the seismic amplitudes was observed for both repeat shots: in granodiorite the amplitudes were reduced by a factor of 2-3, in limestone by a factor of 3-4 compared to the shots in the undamaged rocks. For the granodiorite repeat shot the decoupling ratios were frequency dependent with stronger amplitude reduction at higher frequencies. In addition, the virgin rock shot produced higher corner frequency and overshoot parameter than the repeat shot. For the limestone shot the decoupling ratios were nearly flat at all frequencies with similar corner frequencies. This observation suggests different mechanisms of energy dissipation for the two experiments.

  13. Accessing the Elastic Form-Factors of the $Delta(1232)$ Using the Beam-Normal Asymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, Mark M.

    2016-08-01

    The beam-normal single-spin asymmetry,more » $$B_n$$, exists in the scattering of high energy electrons, polarized transverse to their direction of motion, from nuclear targets. To first order, this asymmetry is caused by the interference of the one-photon exchange amplitude with the imaginary part of the two-photon exchange amplitude. Measurements of $$B_n$$, for the production of a $$\\Delta(1232)$$ resonance from a proton target, will soon become available from the Qweak experiment at Jefferson Lab and the A4 experiment at Mainz. The imaginary part of two-photon exchange allows only intermediate states that are on-shell, including the $$\\Delta$$ itself. Therefore such data is sensitive to $$\\gamma\\Delta\\Delta$$, the elastic form-factors of the $$\\Delta$$. This article will introduce the form-factors of the $$\\Delta$$, discuss what might be learned about the elastic form-factors from these new data, describe ongoing efforts in calculation and measurement, and outline the possibility of future measurements.« less

  14. Oscillation Mode Variability in Evolved Compact Pulsators from Kepler Photometry. I. The Hot B Subdwarf Star KIC 3527751

    NASA Astrophysics Data System (ADS)

    Zong, Weikai; Charpinet, Stéphane; Fu, Jian-Ning; Vauclair, Gérard; Niu, Jia-Shu; Su, Jie

    2018-02-01

    We present the first results of an ensemble and systematic survey of oscillation mode variability in pulsating hot B subdwarf (sdB) and white dwarf stars observed with the original Kepler mission. The satellite provides uninterrupted high-quality photometric data with a time baseline that can reach up to 4 yr collected on pulsating stars. This is a unique opportunity to characterize long-term behaviors of oscillation modes. A mode modulation in amplitude and frequency can be independently inferred by its fine structure in the Fourier spectrum, from the sLSP, or with prewhitening methods applied to various parts of the light curve. We apply all these techniques to the sdB star KIC 3527751, a long-period-dominated hybrid pulsator. We find that all the detected modes with sufficiently large amplitudes to be thoroughly studied show amplitude and/or frequency variations. Components of three identified quintuplets around 92, 114, and 253 μHz show signatures that can be linked to nonlinear interactions according to the resonant mode coupling theory. This interpretation is further supported by the fact that many oscillation modes are found to have amplitudes and frequencies showing correlated or anticorrelated variations, a behavior that can be linked to the amplitude equation formalism, where nonlinear frequency corrections are determined by their amplitude variations. Our results suggest that oscillation modes varying with diverse patterns are a very common phenomenon in pulsating sdB stars. Close structures around main frequencies therefore need to be carefully interpreted in light of this finding to secure a robust identification of real eigenfrequencies, which is crucial for seismic modeling. The various modulation patterns uncovered should encourage further developments in the field of nonlinear stellar oscillation theory. It also raises a warning to any long-term project aiming at measuring the rate of period change of pulsations caused by stellar evolution, or at discovering stellar (planetary) companions around pulsating stars using timing methods, as both require very stable pulsation modes.

  15. 3-D Waveform Modeling of the 11 September 2001 World Trade Center Collapse Events in New York City

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Rhie, J.; Kim, W.

    2010-12-01

    The seismic signals from collapse of the twin towers of World Trade Center (WTC), NYC were well recorded by the seismographic stations in the northeastern United States. The building collapse can be represented by a vertical single force which does not generate tangential component seismic signals during the source process. The waveforms recorded by the Basking Ridge, NJ (BRNJ) station located due west of the WTC site show that the amplitude on tangential component is negligible and indicates that a vertical single force assumption is valid and the velocity structure is more or less homogeneous along the propagation path. However, 3-component seismograms recorded at Palisades, NY (PAL), which is located 33.8 km due north of the WTC site along the Hudson River (azimuth = 15.2°), show abnormal features. The amplitude on tangential component is larger than on vertical- or on radial-component. This observation may be attributable to the complex energy conversion between Rayleigh and Love waves due to the strong low velocity anomaly associated with unconsolidated sediments under the Hudson River. To test the effects of the low velocity anomaly on the enhanced amplitude in tangential component, we developed a 3D velocity model by considering local geology such as unconsolidated sediment layer, Palisades sill, Triassic sandstone, and crystalline basement and simulated waveforms at PAL. The preliminary synthetic results show that 3D velocity structure can significantly enhance the amplitude in tangential component but it is not as large as the observation. Although a more precise 3D model is required to better explain the observations, our results confirm that the low velocity layer under the Hudson River can enhance the amplitude in tangential component at PAL. This result suggests that a good understanding of the amplitude enhancements for specific event-site pairs may be important to evaluate seismic hazard of metropolitan New York City.

  16. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

    1996-12-17

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

  17. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, Roger N.; Boulanger, Albert; Bagdonas, Edward P.; Xu, Liqing; He, Wei

    1996-01-01

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

  18. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, David S.; Catchings, Rufus D.; Goldman, Mark R.; Gohn, Gregory S.; Horton, J. Wright; Edwards, Lucy E.; Rymer, Michael J.; Gandhok, Gini

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20-30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.

  19. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor

    PubMed Central

    Dennis, John Ojur; Ahmad, Farooq; Khir, M. Haris Bin Md; Hamid, Nor Hisham Bin

    2015-01-01

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972

  20. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.

    PubMed

    Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham

    2015-07-27

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.

  1. At-edge minima in elastic photon scattering amplitudes for dilute aqueous ions

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Hugtenburg, R. P.; Yusoff, A. L.

    2006-11-01

    Elastic photon scattering and absorption in the vicinity of core atomic orbital energies give rise to resonances in the elastic photon scattering cross-section. Of interest is whether a dilute-ion aqueous system provides an environment suitable for testing independent particle approximation (IPA) predictions. Predictions of the energy of these resonances have been determined for a Dirac-Slater exchange potential with a Latter tail. At BM28 (ESRF), tuneable X-rays were obtained at eV resolution using a 1 1 1 Si monochromator. From target systems including Cu 2+ and Zn 2+, the X-rays were scattered through high angle from an aqueous medium contained in a thin Perspex cell provided with 8 μm kaplan windows. An energy resolution of ˜500 eV from the HPGe detector was adequate to separate the elastic scattering signal from K α radiation but not from Compton or K β contributions. The Compton contribution from the medium was removed assuming validity of the relativistic impulse approximation. The contribution due to K β fluorescence and the resonant X-ray Raman scattering process were handled by assuming the branching ratio for K α and K β contributions to be constant and to be accurately described by fluorescent yields measured above edge. At ionic concentrations ranging from 0.01 to 0.1 mol/l, resonance structures accord with predictions of elastic scattering cross-sections calculated within IPA. Amplitudes calculated using modified form-factors and anomalous scatter factors computed from a Dirac-Slater exchange potential were convolved with a Lorentzian of several eV (FWHM).

  2. Control of base-excited dynamical systems through piezoelectric energy harvesting absorber

    NASA Astrophysics Data System (ADS)

    Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-09-01

    The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester are determined. It is shown that, in addition to efficiently control the oscillating amplitudes of the primary structure, broadband resonance regions can take place and hence high levels of the harvested power are obtained.

  3. Librations and Interior Structure of the Galilean Satellites

    NASA Astrophysics Data System (ADS)

    van Hoolst, T.; Baland, R.; Karatekin, O.; Rambaux, N.

    2009-12-01

    We investigate the influence of the interior structure of the Galilean satellites on their rotation variations (or librations). Since the Galilean satellites are significantly aspherical due to rotation and static tides, Jupiter exerts a gravitational torque on them. In a circular orbit, the long axis of a satellite would always point towards Jupiter and the gravitational torque would be zero. However, the eccentric orbits of the Galilean satellites lead to misalignment of the long axis with the direction to Jupiter and result in non-zero gravitational torques that tend to modify the rotation of the satellites. Since the torque varies with the orbital phase, the main libration period is equal to the orbital period. In a first-order approximation, the libration amplitude is usually calculated by assuming that the satellite reacts rigidly to the gravitational torque. The corresponding amplitudes, expressed as a shift at the surface of the orientation of the long axis with respect to that for the mean rotation rate, decrease with increasing distance from Jupiter from a few hundred meters for Io to about ten meter for Callisto. Internal liquid layers, such as a subsurface ocean, can lead to differential rotation of the solid and liquid layers and to differences of the libration of surface with respect to that for a rigid libration. Here, we present a method to determine the influence of gravitational and pressure interactions between internal layers on the libration of the Galilean satellites. For Io, we show that the liquid core has only a small effect on the surface librations. For Europa, Ganymede and Callisto, the presence of a subsurface ocean can significantly increase the libration amplitude. We also study the effect of the possible existence of two liquid layers in Ganymede and Europa: a subsurface ocean and a liquid core. We quantify the sensitivity of the libration amplitude to the internal structure and assess expected improvements in the interior structure of the Galilean satellites from future libration observations with the joint NASA/ESA Europa Jupiter System Mission.

  4. Wave structure and flow amplitude-frequency characteristics in the turbine nozzle lattice in the presence of phase transition

    NASA Astrophysics Data System (ADS)

    Gribin, V. G.; Gavrilov, I. Yu.; Tishchenko, A. A.; Tishchenko, V. A.; Alekseev, R. A.

    2017-05-01

    This paper is devoted to the wave structure of a flow at its near- and supersonic velocities in a flat turbine cascade of profiles in the zone of phase transitions. The main task was investigation of the mechanics of interaction of the condensation jump with the adiabatic jumps of packing in a change of the initial condition of the flow. The obtained results are necessary for verification of the calculation models of the moisture-steam flow in the elements of lotic parts of the steam turbines. The experimental tests were made on a stand of the wet steam contour (WSC-2) in the Moscow Power Engineering Institute (MPEI, National Research University) at various initial states of steam in a wide range of Mach numbers. In the investigation of the wave structure, use was made of an instrument based on the Schlieren-method principle. The amplitude-frequency characteristics of the flow was found by measurement of static pressure pulsations by means of the piezo resistive sensors established on a bandage plate along the bevel cut of the cascade. It is shown that appearance of phase transitions in the bevel cut of the nozzle turbine cascade leads to a change in the wave structure of the flow. In case of condensation jump, the system of adiabatic jumps in the bevel cut of the cascade becomes nonstationary, and the amplitude-frequency characteristics of static pressure pulsations are restructured. In this, a change in the frequency pulsations of pressure and amplitude takes place. It is noted that, at near-sonic speeds of the flow and the state of saturation at the input, the low-frequency pulsations of static pressure appear that lead to periodic disappearance of the condensation jump and of the adiabatic jump. As a result, in this mode, the flow discharge variations take place.

  5. Theory on the Dynamics of Oscillatory Loops in the Transcription Factor Networks

    PubMed Central

    Murugan, Rajamanickam

    2014-01-01

    We develop a detailed theoretical framework for various types of transcription factor gene oscillators. We further demonstrate that one can build genetic-oscillators which are tunable and robust against perturbations in the critical control parameters by coupling two or more independent Goodwin-Griffith oscillators through either -OR- or -AND- type logic. Most of the coupled oscillators constructed in the literature so far seem to be of -OR- type. When there are transient perturbations in one of the -OR- type coupled-oscillators, then the overall period of the system remains constant (period-buffering) whereas in case of -AND- type coupling the overall period of the system moves towards the perturbed oscillator. Though there is a period-buffering, the amplitudes of oscillators coupled through -OR- type logic are more sensitive to perturbations in the parameters associated with the promoter state dynamics than -AND- type. Further analysis shows that the period of -AND- type coupled dual-feedback oscillators can be tuned without conceding on the amplitudes. Using these results we derive the basic design principles governing the robust and tunable synthetic gene oscillators without compromising on their amplitudes. PMID:25111803

  6. Superconducting nanowires as nonlinear inductive elements for qubits

    NASA Astrophysics Data System (ADS)

    Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey

    2010-10-01

    We report microwave transmission measurements of superconducting Fabry-Perot resonators, having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonlinearity of the current-phase relationship of the nanowire. The results are explained within a nonlinear oscillator model of the Duffing oscillator, in which the nanowire acts as a purely inductive element, in the limit of low temperatures and low amplitudes. The low-quality factor sample exhibits a “crater” at the resonance peak at higher driving power, which is due to dissipation. We observe a hysteretic bifurcation behavior of the transmission response to frequency sweep in a sample with a higher quality factor. The Duffing model is used to explain the Duffing bistability diagram. We also propose a concept of a nanowire-based qubit that relies on the current dependence of the kinetic inductance of a superconducting nanowire.

  7. The Cloud Top Distribution and Diurnal Variation of Clouds Over East Asia: Preliminary Results From Advanced Himawari Imager

    NASA Astrophysics Data System (ADS)

    Chen, Dandan; Guo, Jianping; Wang, Hongqing; Li, Jian; Min, Min; Zhao, Wenhui; Yao, Dan

    2018-04-01

    Clouds, as one of the most uncertain factors in climate system, have been intensively studied as satellites with advanced instruments emerged in recent years. However, few studies examine the vertical distributions of cloud top and their temporal variations over East Asia based on geostationary satellite data. In this study, the vertical structures of cloud top and its diurnal variations in summer of 2016 are analyzed using the Advanced Himawari Imager/Himawari-8 cloud products. Results show that clouds occur most frequently over the southern Tibetan Plateau and the Bay of Bengal. We find a steep gradient of cloud occurrence frequency extending from southwest to northeast China and low-value centers over the eastern Pacific and the Inner Mongolia Plateau. The vertical structures of cloud top are highly dependent on latitude, in addition to the nonnegligible roles of both terrain and land-sea thermal contrast. In terms of the diurnal cycle, clouds tend to occur more often in the afternoon, peaking around 1700 local time over land and ocean. The amplitude of cloud diurnal variation over ocean is much smaller than that over land, and complex terrain tends to be linked to larger amplitude. In vertical, the diurnal cycle of cloud frequency exhibits bimodal pattern over both land and ocean. The high-level peaks occur at almost the same altitude over land and ocean. In contrast, the low-level peaks over ocean mainly reside in the boundary layer, much lower than those over land, which could be indicative of the frequent occurrence of marine boundary layer clouds.

  8. Spatial Light Modulators and Applications. 1988 Technical Digest Series, Volume 8

    DTIC Science & Technology

    1988-06-01

    presence of an applied field but without run- ning gratings; then the fringes are allowed to move, with a velocity that optimizes self- in which F0...Laboratories. The optimization of an MQW modulator for both phase and amplitude modulation is reported, along with preliminary structural N.J design for a...Canyon Road Malibu, California 90265 ABSTRACT The optimization of an MOW modulator for both phase and amplitude modulation is reported,along with

  9. Numerical simulation of interaction of long-wave disturbances with a shock wave on a wedge for the problem of mode decomposition of supersonic flow oscillations

    NASA Astrophysics Data System (ADS)

    Kirilovskiy, S. V.; Poplavskaya, T. V.; Tsyryulnikov, I. S.

    2016-10-01

    This work is aimed at obtaining conversion factors of free stream disturbances from shock wave angle φ, angle of acoustic disturbances distribution θ and Mach number M∞ by solving a problem of interaction of long-wave (with the wavelength λ greater than the model length) free-stream disturbances with a shock wave formed in a supersonic flow around the wedge. Conversion factors at x/λ=0.2 as a ration between amplitude of pressure pulsations on the wedge surface and free stream disturbances amplitude were obtained. Factors of conversion were described by the dependence on angle θ of disturbances distribution, shock wave angle φ and Mach number M∞. These dependences are necessary for solving the problem of mode decomposition of disturbances in supersonic flows in wind tunnels.

  10. The Barrett-Crane model: asymptotic measure factor

    NASA Astrophysics Data System (ADS)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2014-04-01

    The original spin foam model construction for 4D gravity by Barrett and Crane suffers from a few troubling issues. In the simple examples of the vertex amplitude they can be summarized as the existence of contributions to the asymptotics from non-geometric configurations. Even restricted to geometric contributions the amplitude is not completely worked out. While the phase is known to be the Regge action, the so-called measure factor has remained mysterious for a decade. In the toy model case of the 6j symbol this measure factor has a nice geometric interpretation of V-1/2 leading to speculations that a similar interpretation should be possible also in the 4D case. In this paper we provide the first geometric interpretation of the geometric part of the asymptotic for the spin foam consisting of two glued 4-simplices (decomposition of the 4-sphere) in the Barrett-Crane model in the large internal spin regime.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baghram, Shant; Abolhasani, Ali Akbar; Firouzjahi, Hassan

    We study the predictions of anomalous inflationary models on the abundance of structures in large scale structure observations. The anomalous features encoded in primordial curvature perturbation power spectrum are (a): localized feature in momentum space, (b): hemispherical asymmetry and (c): statistical anisotropies. We present a model-independent expression relating the number density of structures to the changes in the matter density variance. Models with localized feature can alleviate the tension between observations and numerical simulations of cold dark matter structures on galactic scales as a possible solution to the missing satellite problem. In models with hemispherical asymmetry we show that themore » abundance of structures becomes asymmetric depending on the direction of observation to sky. In addition, we study the effects of scale-dependent dipole amplitude on the abundance of structures. Using the quasars data and adopting the power-law scaling k{sup n{sub A}-1} for the amplitude of dipole we find the upper bound n{sub A} < 0.6 for the spectral index of the dipole asymmetry. In all cases there is a critical mass scale M{sub c} in which for M M{sub c}) the enhancement in variance induced from anomalous feature decreases (increases) the abundance of dark matter structures in Universe.« less

  12. Cortical Sensitivity to Guitar Note Patterns: EEG Entrainment to Repetition and Key.

    PubMed

    Bridwell, David A; Leslie, Emily; McCoy, Dakarai Q; Plis, Sergey M; Calhoun, Vince D

    2017-01-01

    Music is ubiquitous throughout recent human culture, and many individual's have an innate ability to appreciate and understand music. Our appreciation of music likely emerges from the brain's ability to process a series of repeated complex acoustic patterns. In order to understand these processes further, cortical responses were measured to a series of guitar notes presented with a musical pattern or without a pattern. ERP responses to individual notes were measured using a 24 electrode Bluetooth mobile EEG system (Smarting mBrainTrain) while 13 healthy non-musicians listened to structured (i.e., within musical keys and with repetition) or random sequences of guitar notes for 10 min each. We demonstrate an increased amplitude to the ERP that appears ~200 ms to notes presented within the musical sequence. This amplitude difference between random notes and patterned notes likely reflects individual's cortical sensitivity to guitar note patterns. These amplitudes were compared to ERP responses to a rare note embedded within a stream of frequent notes to determine whether the sensitivity to complex musical structure overlaps with the sensitivity to simple irregularities reflected in traditional auditory oddball experiments. Response amplitudes to the negative peak at ~175 ms are statistically correlated with the mismatch negativity (MMN) response measured to a rare note presented among a series of frequent notes (i.e., in a traditional oddball sequence), but responses to the subsequent positive peak at ~200 do not show a statistical relationship with the P300 response. Thus, the sensitivity to musical structure identified to 4 Hz note patterns appears somewhat distinct from the sensitivity to statistical regularities reflected in the traditional "auditory oddball" sequence. Overall, we suggest that this is a promising approach to examine individual's sensitivity to complex acoustic patterns, which may overlap with higher level cognitive processes, including language.

  13. Instabilities and subharmonic resonances of subsonic heated round jets, volume 2. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ng, Lian Lai

    1990-01-01

    When a jet is perturbed by a periodic excitation of suitable frequency, a large-scale coherent structure develops and grows in amplitude as it propagates downstream. The structure eventually rolls up into vortices at some downstream location. The wavy flow associated with the roll-up of a coherent structure is approximated by a parallel mean flow and a small, spatially periodic, axisymmetric wave whose phase velocity and mode shape are given by classical (primary) stability theory. The periodic wave acts as a parametric excitation in the differential equations governing the secondary instability of a subharmonic disturbance. The (resonant) conditions for which the periodic flow can strongly destabilize a subharmonic disturbance are derived. When the resonant conditions are met, the periodic wave plays a catalytic role to enhance the growth rate of the subharmonic. The stability characteristics of the subharmonic disturbance, as a function of jet Mach number, jet heating, mode number and the amplitude of the periodic wave, are studied via a secondary instability analysis using two independent but complementary methods: (1) method of multiple scales, and (2) normal mode analysis. It is found that the growth rates of the subharmonic waves with azimuthal numbers beta = 0 and beta = 1 are enhanced strongly, but comparably, when the amplitude of the periodic wave is increased. Furthermore, compressibility at subsonic Mach numbers has a moderate stabilizing influence on the subharmonic instability modes. Heating suppresses moderately the subharmonic growth rate of an axisymmetric mode, and it reduces more significantly the corresponding growth rate for the first spinning mode. Calculations also indicate that while the presence of a finite-amplitude periodic wave enhances the growth rates of subharmonic instability modes, it minimally distorts the mode shapes of the subharmonic waves.

  14. Three-Dimensional Model of Holographic Formation of Inhomogeneous PPLC Diffraction Structures

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    2018-05-01

    A three-dimensional theoretical model of holographic formation of inhomogeneous diffraction structures in composite photopolymer - liquid crystal materials is presented considering both the nonlinearity of recording and the amplitude-phase inhomogeneity of the recording light field. Based on the results of numerical simulation, the kinematics of formations of such structures and their spatial profile are investigated.

  15. Double Linear Damage Rule for Fatigue Analysis

    NASA Technical Reports Server (NTRS)

    Halford, G.; Manson, S.

    1985-01-01

    Double Linear Damage Rule (DLDR) method for use by structural designers to determine fatigue-crack-initiation life when structure subjected to unsteady, variable-amplitude cyclic loadings. Method calculates in advance of service how many loading cycles imposed on structural component before macroscopic crack initiates. Approach eventually used in design of high performance systems and incorporated into design handbooks and codes.

  16. Revisiting final state interaction in charmless Bq→P P decays

    NASA Astrophysics Data System (ADS)

    Chua, Chun-Khiang

    2018-05-01

    Various new measurements in charmless Bu ,d ,s→P P modes, where P is a low lying pseudoscalar meson, are reported by Belle and LHCb. These include the rates of B0→π0π0, η π0, Bs→η'η', B0→K+K- and Bs0→π+π- decays. Some of these modes are highly suppressed and are among the rarest B decays. Direct C P asymmetries on various modes are constantly updated. It is well known that direct C P asymmetries and rates of suppressed modes are sensitive to final state interaction (FSI). As new measurements are reported and more data will be collected, it is interesting and timely to revisit the rescattering effects in Bu ,d ,s→P P states. We perform a χ2 analysis with all available data on C P -averaged rates and C P asymmetries in B¯u ,d ,s→P P decays. Our numerical results are compared to data and those from factorization approach. The quality of the fit is improved significantly from the factorization results in the presence of rescattering. The relations on topological amplitudes and rescattering are explored and they help to provide a better understanding of the effects of FSI. As suggested by U(3) symmetry on topological amplitudes and FSI, a vanishing exchange rescattering scenario is considered. The exchange, annihilation, u -penguin, u -penguin annihilation, and some electroweak penguin amplitudes are enhanced significantly via annihilation and total annihilation rescatterings. In particular, the u -penguin annihilation amplitude is sizably enhanced by the tree amplitude via total annihilation rescattering. These enhancements affect rates and C P asymmetries. Predictions can be checked in the near future.

  17. Do we care about the powerless third? An ERP study of the three-person ultimatum game

    PubMed Central

    Alexopoulos, Johanna; Pfabigan, Daniela M.; Lamm, Claus; Bauer, Herbert; Fischmeister, Florian Ph. S.

    2012-01-01

    Recent years have provided increasing insights into the factors affecting economic decision-making. Little is known about how these factors influence decisions that also bear consequences for other people. We examined whether decisions that also affected a third, passive player modulate the behavioral and neural responses to monetary offers in a modified version of the three-person ultimatum game. We aimed to elucidate to what extent social preferences affect early neuronal processing when subjects were evaluating offers that were fair or unfair to themselves, to the third player, or to both. As an event-related potential (ERP) index for early evaluation processes in economic decision-making, we recorded the medial frontal negativity (MFN) component in response to such offers. Unfair offers were rejected more often than equitable ones, in particular when negatively affecting the subject. While the MFN amplitude was higher following unfair as compared to fair offers to the subject, MFN amplitude was not modulated by the shares assigned to the third, passive player. Furthermore, rejection rates and MFN amplitudes following fair offers were positively correlated, as subjects showing lower MFN amplitudes following fair offers tended to reject unfair offers more often—but only if those offers negatively affected their own payoff. Altogether, the rejection behavior suggests that humans mainly care about a powerless third when they are confronted with inequality as well. The correlation between rejection rates and the MFN amplitude supports the notion that this ERP component is also modulated by positive events and highlights how our expectations concerning other humans' behavior guide our own decisions. However, social preferences like inequality aversion and concern for the well-being of others are not reflected in this early neuronal response, but seem to result from later, deliberate and higher-order cognitive processes. PMID:22470328

  18. Do we care about the powerless third? An ERP study of the three-person ultimatum game.

    PubMed

    Alexopoulos, Johanna; Pfabigan, Daniela M; Lamm, Claus; Bauer, Herbert; Fischmeister, Florian Ph S

    2012-01-01

    Recent years have provided increasing insights into the factors affecting economic decision-making. Little is known about how these factors influence decisions that also bear consequences for other people. We examined whether decisions that also affected a third, passive player modulate the behavioral and neural responses to monetary offers in a modified version of the three-person ultimatum game. We aimed to elucidate to what extent social preferences affect early neuronal processing when subjects were evaluating offers that were fair or unfair to themselves, to the third player, or to both. As an event-related potential (ERP) index for early evaluation processes in economic decision-making, we recorded the medial frontal negativity (MFN) component in response to such offers. Unfair offers were rejected more often than equitable ones, in particular when negatively affecting the subject. While the MFN amplitude was higher following unfair as compared to fair offers to the subject, MFN amplitude was not modulated by the shares assigned to the third, passive player. Furthermore, rejection rates and MFN amplitudes following fair offers were positively correlated, as subjects showing lower MFN amplitudes following fair offers tended to reject unfair offers more often-but only if those offers negatively affected their own payoff. Altogether, the rejection behavior suggests that humans mainly care about a powerless third when they are confronted with inequality as well. The correlation between rejection rates and the MFN amplitude supports the notion that this ERP component is also modulated by positive events and highlights how our expectations concerning other humans' behavior guide our own decisions. However, social preferences like inequality aversion and concern for the well-being of others are not reflected in this early neuronal response, but seem to result from later, deliberate and higher-order cognitive processes.

  19. Testing QCD factorization with phase determinations in B →K π , K ρ , and K*π decays

    NASA Astrophysics Data System (ADS)

    Pham, T. N.

    2016-06-01

    The success of QCD factorization (QCDF) in predicting branching ratios for charmless B decays to light pseudoscalar and vector mesons and the small C P asymmetries measured at BABAR, Belle, and LHCb show that the phase in these decays, as predicted by QCDF, are not large. For a precise test of QCDF, one needs to extract from the measured decay rates the phase of the decay amplitude which appears in the interference terms between the tree and penguin contribution. Since the tree amplitude is known at the leading order in ΛQCD/mb and is consistent with the measured tree-dominated decay rates, the QCDF value for the tree amplitude can be used with the measured decay rates to obtain the phases in B →K π , K ρ , and K*π decay rates. This is similar to the extraction of the final-state interaction phases in the interference term between p p ¯→J /Ψ →e+e- and p p ¯→e+e- and in J /Ψ →0-0- done previously. In this paper, we present a determination of the phase between the I =3 /2 tree and I =1 /2 penguin amplitudes in B →K π , K ρ , and K*π decays using the measured decay rates and the QCDF I =3 /2 tree amplitude obtained from the I =2 B+→π+π0,ρ0π+,ρ+π0 tree-dominated decays and compare the result with the phase given by QCDF. It is remarkable that the phase extracted from experiments differs only slightly from the QCDF values. This shows that there is no large final-state interaction strong phase in B →K π , K ρ , and K*π decays.

  20. Systematic assessment of noise amplitude generated by toys intended for young children.

    PubMed

    Mahboubi, Hossein; Oliaei, Sepehr; Badran, Karam W; Ziai, Kasra; Chang, Janice; Zardouz, Shawn; Shahriari, Shawn; Djalilian, Hamid R

    2013-06-01

    To systematically evaluate the noise generated by toys targeted for children and to compare the results over the course of 4 consecutive holiday shopping seasons. Experimental study. Academic medical center. During 2008-2011, more than 200 toys marketed for children older than 6 months were screened for loudness. The toys with sound output of more than 80 dBA at speaker level were retested in a soundproof audiometry booth. The generated sound amplitude of each toy was measured at speaker level and at 30 cm away from the speaker. Ninety different toys were analyzed. The mean (SD) noise amplitude was 100 (8) dBA (range, 80-121 dBA) at the speaker level and 80 (11) dBA (range, 60-109 dBA) at 30 cm away from the speaker. Eighty-eight (98%) had more than an 85-dBA noise amplitude at speaker level, whereas 19 (26%) had more than an 85-dBA noise amplitude at a 30-cm distance. Only the mean noise amplitude at 30 cm significantly declined during the studied period (P < .001). There was no significant difference in mean noise amplitude of different toys specified for different age groups. Our findings demonstrate the persistence of extremely loud toys marketed for very young children. Acoustic trauma from toys remains a potential risk factor for noise-induced hearing loss in this age group, warranting promotion of public awareness and regulatory considerations for manufacture and marketing of toys.

Top