Sample records for structure formation implications

  1. Coffee melanoidins: structures, mechanisms of formation and potential health impacts.

    PubMed

    Moreira, Ana S P; Nunes, Fernando M; Domingues, M Rosário; Coimbra, Manuel A

    2012-09-01

    During the roasting process, coffee bean components undergo structural changes leading to the formation of melanoidins, which are defined as high molecular weight nitrogenous and brown-colored compounds. As coffee brew is one of the main sources of melanoidins in the human diet, their health implications are of great interest. In fact, several biological activities, such as antioxidant, antimicrobial, anticariogenic, anti-inflammatory, antihypertensive, and antiglycative activities, have been attributed to coffee melanoidins. To understand the potential of coffee melanoidin health benefits, it is essential to know their chemical structures. The studies undertaken to date dealing with the structural characterization of coffee melanoidins have shown that polysaccharides, proteins, and chlorogenic acids are involved in coffee melanoidin formation. However, exact structures of coffee melanoidins and mechanisms involved in their formation are far to be elucidated. This paper systematizes the available information and provides a critical overview of the knowledge obtained so far about the structure of coffee melanoidins, mechanisms of their formation, and their potential health implications.

  2. Cosmic Rays and Gamma-Rays in Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Inoue, Susumu; Nagashima, Masahiro; Suzuki, Takeru K.; Aoki, Wako

    2004-12-01

    During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of 6Li by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.

  3. Physiological and molecular biochemical mechanisms of bile formation

    PubMed Central

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  4. Anticorrosive Microbial Polysaccharides: Structure-Function Relationships

    USDA-ARS?s Scientific Manuscript database

    Water-soluble microbial polysaccharides are often implicated in biofilm formation and are believed to mediate cell-cell aggregation and adhesion to surfaces. Generally, biofilm formation is considered harmful or undesirable, as it leads to increased drag, plugging of pores, dimished heat transfer, ...

  5. The formation of galaxies

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Silk, J.

    1983-01-01

    Current models of galaxy formation are examined in a review of recent observational and theoretical studies. Observational data on elliptical galaxies, disk galaxies, luminosity functions, clustering, and angular fluctuations in the cosmic microwave background are summarized. Theoretical aspects discussed include the origin and early evolution of small fluctuations, matter and radiation fluctuations, the formation of large-scale structure, dissipationless galaxy formation, galaxy mergers, dissipational galaxy formation, and the implications of particle physics (GUTs, massive neutrinos, and gravitinos) for cosmology.

  6. Alternative DNA structure formation in the mutagenic human c-MYC promoter

    PubMed Central

    del Mundo, Imee Marie A.; Zewail-Foote, Maha; Kerwin, Sean M.

    2017-01-01

    Abstract Mutation ‘hotspot’ regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene. PMID:28334873

  7. Pauling and Corey's alpha-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease.

    PubMed

    Armen, Roger S; DeMarco, Mari L; Alonso, Darwin O V; Daggett, Valerie

    2004-08-10

    Transthyretin, beta(2)-microglobulin, lysozyme, and the prion protein are four of the best-characterized proteins implicated in amyloid disease. Upon partial acid denaturation, these proteins undergo conformational change into an amyloidogenic intermediate that can self-assemble into amyloid fibrils. Many experiments have shown that pH-mediated changes in structure are required for the formation of the amyloidogeneic intermediate, but it has proved impossible to characterize these conformational changes at high resolution using experimental means. To probe these conformational changes at atomic resolution, we have performed molecular dynamics simulations of these proteins at neutral and low pH. In low-pH simulations of all four proteins, we observe the formation of alpha-pleated sheet secondary structure, which was first proposed by L. Pauling and R. B. Corey [(1951) Proc. Natl. Acad. Sci. USA 37, 251-256]. In all beta-sheet proteins, transthyretin and beta(2)-microglobulin, alpha-pleated sheet structure formed over the strands that are highly protected in hydrogen-exchange experiments probing amyloidogenic conditions. In lysozyme and the prion protein, alpha-sheets formed in the specific regions of the protein implicated in the amyloidogenic conversion. We propose that the formation of alpha-pleated sheet structure may be a common conformational transition in amyloidosis.

  8. Pauling and Corey's α-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease

    PubMed Central

    Armen, Roger S.; DeMarco, Mari L.; Alonso, Darwin O. V.; Daggett, Valerie

    2004-01-01

    Transthyretin, β2-microglobulin, lysozyme, and the prion protein are four of the best-characterized proteins implicated in amyloid disease. Upon partial acid denaturation, these proteins undergo conformational change into an amyloidogenic intermediate that can self-assemble into amyloid fibrils. Many experiments have shown that pH-mediated changes in structure are required for the formation of the amyloidogeneic intermediate, but it has proved impossible to characterize these conformational changes at high resolution using experimental means. To probe these conformational changes at atomic resolution, we have performed molecular dynamics simulations of these proteins at neutral and low pH. In low-pH simulations of all four proteins, we observe the formation of α-pleated sheet secondary structure, which was first proposed by L. Pauling and R. B. Corey [(1951) Proc. Natl. Acad. Sci. USA 37, 251–256]. In all β-sheet proteins, transthyretin and β2-microglobulin, α-pleated sheet structure formed over the strands that are highly protected in hydrogen-exchange experiments probing amyloidogenic conditions. In lysozyme and the prion protein, α-sheets formed in the specific regions of the protein implicated in the amyloidogenic conversion. We propose that the formation of α-pleated sheet structure may be a common conformational transition in amyloidosis. PMID:15280548

  9. Alternative DNA structure formation in the mutagenic human c-MYC promoter.

    PubMed

    Del Mundo, Imee Marie A; Zewail-Foote, Maha; Kerwin, Sean M; Vasquez, Karen M

    2017-05-05

    Mutation 'hotspot' regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Orientale multi-ringed basin interior and implications for the petrogenesis of lunar highland samples

    NASA Technical Reports Server (NTRS)

    Head, J. W.

    1974-01-01

    The lunar Orientale basin is a 900 km diam circular topographic depression covering an area of over 700,000 sq km on the western limb of the moon. Three major rings surround the central Mare Orientale. Orientale basin structures are considered along with Orientale basin deposits and the sequence of formation of structures and deposits. It is found that the structures and facies are related in time and mode of origin to the formation of a major impact crater approximately 620 km in diam. The study suggests that the Orientale basin configuration is very nearly the same as its geometry at its time of formation. The formation of multiringed basins such as Orientale provides a mechanism for an instantaneous production of tremendous volumes of melted lunar crystal material.

  11. Amyloid-β annular protofibrils evade fibrillar fate in Alzheimer disease brain.

    PubMed

    Lasagna-Reeves, Cristian A; Glabe, Charles G; Kayed, Rakez

    2011-06-24

    Annular protofibrils (APFs) represent a new and distinct class of amyloid structures formed by disease-associated proteins. In vitro, these pore-like structures have been implicated in membrane permeabilization and ion homeostasis via pore formation. Still, evidence for their formation and relevance in vivo is lacking. Herein, we report that APFs are in a distinct pathway from fibril formation in vitro and in vivo. In human Alzheimer disease brain samples, amyloid-β APFs were associated with diffuse plaques, but not compact plaques; moreover, we show the formation of intracellular APFs. Our results together with previous studies suggest that the prevention of amyloid-β annular protofibril formation could be a relevant target for the prevention of amyloid-β toxicity in Alzheimer disease.

  12. Nomadism: Against Methodological Nationalism

    ERIC Educational Resources Information Center

    Braidotti, Rosi

    2010-01-01

    This article is inspired by Gilles Deleuze's philosophical nomadology and stresses the idea of subjectivity. It stresses the non-unitary, complex and inter-relational structure of the process of subject-formation and explores some of the implications of this structure for ethical relations, politics and for pedagogical practice. As for ethical…

  13. Another Face of the Hero: "The Matrix" as Modern Hero-Quest.

    ERIC Educational Resources Information Center

    Stroud, Scott R.

    This paper analyzes the interesting narrative structure of the hero-quest myth contained within the 1999 film, "The Matrix," and explicates the implications of this message upon the audience. Initially, the relevance of myth to movies and the format of Joseph Campbell's hero-quest is illustrated. This format is then applied to "The…

  14. Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Sheng; Santamarina, J. Carlos

    Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. However, hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate lens topology, system connectivity, and physical macro-scale properties of clay-dominated hydrate-bearing sediments. This situation hinders further analyses of the global carbon budget as well as engineering challenges/solutions related to hydrate instability and production. This project studies hydrate-bearing clay-dominated sediments with emphasis on the enhanced fundamental understanding of hydrate formation and resulting morphology, the development laboratory techniques to emulate naturalmore » hydrate formations, the assessment of analytical tools to predict physical properties, the evaluation of engineering and geological implications, and the advanced understanding of gas production potential from finegrained sediments.« less

  15. Learning the 3-D structure of objects from 2-D views depends on shape, not format

    PubMed Central

    Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit

    2016-01-01

    Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196

  16. Nick-free formation of reciprocal heteroduplexes: a simple solution to the topological problem.

    PubMed Central

    Wilson, J H

    1979-01-01

    Because the individual strands of DNA are intertwined, formation of heteroduplex structures between duplexes--as in presumed recombination intermediates--presents a topological puzzle, known as the winding problem. Previous approaches to this problem have assumed that single-strand breaks are required to permit formation of fully coiled heteroduplexes. This paper describes a simple, nick-free solution to the winding problem that satisfies all topological constraints. Homologous duplexes associated by their minor-groove surfaces can switch strand pairing to form reciprocal heteroduplexes that coil together into a compact, four-stranded helix throughout the region of pairing. Model building shows that this fused heteroduplex structure is plausible, being composed entirely of right-handed primary helices with Watson-Crick base pairing throughout. Its simplicity of formation, structural symmetry, and high degree of specificity are suggestive of a natural mechanism for alignment by base pairing between intact homologous duplexes. Implications for genetic recombination are discussed. Images PMID:291028

  17. Fundamental tests of galaxy formation theory

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1982-01-01

    The structure of the universe as an environment where traces exist of the seed fluctuations from which galaxies formed is studied. The evolution of the density fluctuation modes that led to the eventual formation of matter inhomogeneities is reviewed, How the resulting clumps developed into galaxies and galaxy clusters acquiring characteristic masses, velocity dispersions, and metallicities, is discussed. Tests are described that utilize the large scale structure of the universe, including the dynamics of the local supercluster, the large scale matter distribution, and the anisotropy of the cosmic background radiation, to probe the earliest accessible stages of evolution. Finally, the role of particle physics is described with regard to its observable implications for galaxy formation.

  18. Fine-scale genetic structure and social organization in female white-tailed deer

    Treesearch

    Christopher E. Comer; John C. Kilgo; Gino J. D' Angelo; Travis C. Glenn; Karl V. Miller

    2005-01-01

    Social behavior of white-tailed deer (Odocoileus virginianus) can have important management implications. The formation of matrilineal social groups among female deer has been documented and management strategies have been proposed based on this well-developed social structure. Using radiocollared (n = 17) and hunter or vehicle-killed (n = 21) does, we examined spatial...

  19. Functional genomics of gam56: characterisation of the role of a 56 kilodalton sexual stage antigen in oocyst wall formation in Eimeria maxima.

    PubMed

    Belli, Sabina I; Witcombe, David; Wallach, Michael G; Smith, Nicholas C

    2002-12-19

    Gam56 (M(r) 56,000) is an antigen found in the sexual (macrogametocyte) stage of the intestinal parasite Eimeria maxima that is implicated in protective immunity. The gene (gam56) encoding this protein was cloned and sequenced. It is a single-copy, intronless gene, that localises to a 1,754 bp transcript, and is first detected at 120 h p.i. The gene predicts two distinct protein domains; a tyrosine-serine rich region, composed of amino acids implicated in oocyst wall formation in Eimeria spp., and a proline-methionine rich region often detected in extensins, protein components of plant cell walls. The tyrosine-serine rich region predicts a secondary structure commonly seen in the structural protein fibroin, a component of the cocoon of the caterpillar Bombyx mori. The inference that gam56 is a structural component of the oocyst wall was confirmed when a specific antibody to gam56 recognised the wall forming bodies in macrogametocytes, and the walls of oocysts and sporocysts. Together, these data identify a developmentally regulated, sexual stage gene in E. maxima that shares primary and secondary structure features in common with intrinsic structural proteins in other parasites such as Schistosoma mansoni and Fasciola hepatica, and other organisms across different phyla, including the caterpillar Bombyx mori. In addition, these findings provide evidence for the molecular mechanisms underlying oocyst wall formation in Eimeria and the role of gametocyte antigens in this process.

  20. Spontaneous scale-free structure in adaptive networks with synchronously dynamical linking

    NASA Astrophysics Data System (ADS)

    Yuan, Wu-Jie; Zhou, Jian-Fang; Li, Qun; Chen, De-Bao; Wang, Zhen

    2013-08-01

    Inspired by the anti-Hebbian learning rule in neural systems, we study how the feedback from dynamical synchronization shapes network structure by adding new links. Through extensive numerical simulations, we find that an adaptive network spontaneously forms scale-free structure, as confirmed in many real systems. Moreover, the adaptive process produces two nontrivial power-law behaviors of deviation strength from mean activity of the network and negative degree correlation, which exists widely in technological and biological networks. Importantly, these scalings are robust to variation of the adaptive network parameters, which may have meaningful implications in the scale-free formation and manipulation of dynamical networks. Our study thus suggests an alternative adaptive mechanism for the formation of scale-free structure with negative degree correlation, which means that nodes of high degree tend to connect, on average, with others of low degree and vice versa. The relevance of the results to structure formation and dynamical property in neural networks is briefly discussed as well.

  1. Structural synaptic plasticity in the hippocampus induced by spatial experience and its implications in information processing.

    PubMed

    Carasatorre, M; Ramírez-Amaya, V; Díaz Cintra, S

    2016-10-01

    Long-lasting memory formation requires that groups of neurons processing new information develop the ability to reproduce the patterns of neural activity acquired by experience. Changes in synaptic efficiency let neurons organise to form ensembles that repeat certain activity patterns again and again. Among other changes in synaptic plasticity, structural modifications tend to be long-lasting which suggests that they underlie long-term memory. There is a large body of evidence supporting that experience promotes changes in the synaptic structure, particularly in the hippocampus. Structural changes to the hippocampus may be functionally implicated in stabilising acquired memories and encoding new information. Copyright © 2012 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Understanding phylogenies in biology: the influence of a Gestalt Perceptual Principle.

    PubMed

    Novick, Laura R; Catley, Kefyn M

    2007-12-01

    Cladograms, hierarchical diagrams depicting evolutionary histories among (groups of) species, are commonly drawn in 2 informationally equivalent formats--tree and ladder. The authors hypothesize that these formats are not computationally equivalent because the Gestalt principle of good continuation obscures the hierarchical structure of ladders. Experimental results confirmed that university students (N = 44) prefer to subdivide ladders in accordance with good continuation rather than with the underlying hierarchical structure. Two subsequent experiments (N = 164) investigated cladogram understanding by examining students' ability to translate between formats (e.g., from tree to ladder). As predicted, students had greater difficulty understanding ladders than trees. This effect was larger for students with weaker backgrounds in biology. These results have important implications for evolution education reform.

  3. Alliance Building in the Information and Online Database Industry.

    ERIC Educational Resources Information Center

    Alexander, Johanna Olson

    2001-01-01

    Presents an analysis of information industry alliance formation using environmental scanning methods. Highlights include why libraries and academic institutions should be interested; a literature review; historical context; industry and market structures; commercial and academic models; trends; and implications for information providers,…

  4. "The Wonder Years" of XML.

    ERIC Educational Resources Information Center

    Gazan, Rich

    2000-01-01

    Surveys the current state of Extensible Markup Language (XML), a metalanguage for creating structured documents that describe their own content, and its implications for information professionals. Predicts that XML will become the common language underlying Web, word processing, and database formats. Also discusses Extensible Stylesheet Language…

  5. Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation

    NASA Astrophysics Data System (ADS)

    Keep, Myra; Hansen, Vicki L.

    1994-12-01

    Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surfce deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus, northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structural fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength, and inferred amplitude of mapped structures are small, (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implication of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a ``deformation-from-below'' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.

  6. Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation

    NASA Astrophysics Data System (ADS)

    Keep, Myra; Hansen, Vicki L.

    1994-12-01

    Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surface deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus' northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structure fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength and inferred amplitude of mapped structures are small; (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implications of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a 'deformation-from-below' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.

  7. Polyunsaturated Fatty Acids in Lipid Bilayers and Tubules

    NASA Astrophysics Data System (ADS)

    Hirst, Linda S.; Yuan, Jing; Pramudya, Yohannes; Nguyen, Lam T.

    2007-03-01

    Omega-3 polyunsaturated fatty acids (PUFAs) are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, typical molecules include DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) which have been the focus of considerable attention in recent years. We are interested in the phase behavior of these molecules in the lipid bilayer. The addition of lipid molecules with polyunsaturated chains has a clear effect on the fluidity and curvature of the membrane and we investigate the effects the addition of polyunsaturated lipids on bilayer structure and tubule formation. Self-assembled cylindrical lipid tubules have attracted considerable attention because of their interesting structures and potential technological applications. Using x-ray diffraction techniques, Atomic Force Microscopy and confocal fluorescence imaging, both symmetric and mixed chain lipids were incorporated into model membranes and the effects on bilayer structure and tubule formation investigated.

  8. Structural analysis of biofilm formation by rapidly and slowly growing nontuberculous mycobacteria

    EPA Science Inventory

    Mycobacterium avium complex (MAC) and rapidly growing mycobacteria (RGM) such as M. abscessus, M. mucogenicum, M. chelonae and M. fortuitum, implicated in healthcare-associated infections, are often isolated from potable water supplies as part of the microbial flora. To understa...

  9. Extraction of consensus protein patterns in regions containing non-proline cis peptide bonds and their functional assessment.

    PubMed

    Exarchos, Konstantinos P; Exarchos, Themis P; Rigas, Georgios; Papaloukas, Costas; Fotiadis, Dimitrios I

    2011-05-10

    In peptides and proteins, only a small percentile of peptide bonds adopts the cis configuration. Especially in the case of amide peptide bonds, the amount of cis conformations is quite limited thus hampering systematic studies, until recently. However, lately the emerging population of databases with more 3D structures of proteins has produced a considerable number of sequences containing non-proline cis formations (cis-nonPro). In our work, we extract regular expression-type patterns that are descriptive of regions surrounding the cis-nonPro formations. For this purpose, three types of pattern discovery are performed: i) exact pattern discovery, ii) pattern discovery using a chemical equivalency set, and iii) pattern discovery using a structural equivalency set. Afterwards, using each pattern as predicate, we search the Eukaryotic Linear Motif (ELM) resource to identify potential functional implications of regions with cis-nonPro peptide bonds. The patterns extracted from each type of pattern discovery are further employed, in order to formulate a pattern-based classifier, which is used to discriminate between cis-nonPro and trans-nonPro formations. In terms of functional implications, we observe a significant association of cis-nonPro peptide bonds towards ligand/binding functionalities. As for the pattern-based classification scheme, the highest results were obtained using the structural equivalency set, which yielded 70% accuracy, 77% sensitivity and 63% specificity.

  10. Electrostatic interactions lead to the formation of asymmetric collagen-phosphophoryn aggregates.

    PubMed

    Dahl, Thomas; Veis, Arthur

    2003-01-01

    In bone and dentin the formation and mineralization of the extra cellular matrix structure is a complex process highly dependent on intermolecular interactions. In dentin, the phosphophoryns (PP) and type I collagen (COL1) are the major constituents implicated in mineralization. Thus, as a first step in understanding the tissue organization, we have initiated a study of their interaction as a function of pH, ionic strength, and relative concentrations or mixing ratios. Complex formation has been analyzed by dynamic light scattering to detect aggregate formation and by rotary shadowing electron microscopy (EM) to determine aggregate shape. The EM data showed that at the pH values studied, the PP-COL1 interaction leads to the formation of large fibrillar aggregates in which the PP are present along the fibril surfaces. The quantitative phase distribution data showed a 1/1 molar equivalence at the maximum aggregation point, not at electrostatic PP-COL1 equivalence. As the ionic strength was raised, the PP-COL1 aggregates became smaller but the binding and asymmetric fibrillar aggregation persisted. In EM, the PP appear as dense spheres. Along the surfaces of the collagen aggregates, the PP are larger and more open or extended, suggesting that COL1-bound PP may undergo a conformational change, opening up so that a single PP molecule might interact with and electrostatically link several COL1 molecules. This might have important implications for dentin structure, stability, and mineralization.

  11. Experimental determination of the kinetics of formation of the benzene-ethane co-crystal and implications for Titan

    NASA Astrophysics Data System (ADS)

    Cable, Morgan L.; Vu, Tuan H.; Hodyss, Robert; Choukroun, Mathieu; Malaska, Michael J.; Beauchamp, Patricia

    2014-08-01

    Benzene is found on Titan and is a likely constituent of the putative evaporite deposits formed around the hydrocarbon lakes. We have recently demonstrated the formation of a benzene-ethane co-crystal under Titan-like surface conditions. Here we investigate the kinetics of formation of this new structure as a function of temperature. We show that the formation process would reach completion under Titan surface conditions in ~18 h and that benzene precipitates from liquid ethane as the co-crystal. This suggests that benzene-rich evaporite basins around ethane/methane lakes and seas may not contain pure crystalline benzene, but instead benzene-ethane co-crystals. This co-crystalline form of benzene with ethane represents a new class of materials for Titan's surface, analogous to hydrated minerals on Earth. This new structure may also influence evaporite characteristics such as particle size, dissolution rate, and infrared spectral properties.

  12. Application of high explosion cratering data to planetary problems

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.

    1977-01-01

    The present paper deals with the conditions of explosion or nuclear cratering required to simulate impact crater formation. Some planetary problems associated with three different aspects of crater formation are discussed, and solutions based on high-explosion data are proposed. Structures of impact craters and some selected explosion craters formed in layered media are examined and are related to the structure of lunar basins. The mode of ejection of material from impact craters is identified using explosion analogs. The ejection mode is shown to have important implications for the origin of material in crater and basin deposits. Equally important are the populations of secondary craters on lunar and planetary surfaces.

  13. Density functional studies of the defect-induced electronic structure modifications in bilayer boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-05-01

    The van der Waals interaction-corrected density functional theory is used in this study to investigate the formation, energetic stability, and inter-layer cohesion in bilayer hexagonal boronitrene. The effect of inter-layer separation on the electronic structure is systematically investigated. The formation and energetic stability of intrinsic defects are also investigated at the equilibrium inter-layer separation. It is found that nonstoichiometric defects, and their complexes, that induce excess nitrogen or excess boron, in each case, are relatively more stable in the atmosphere that corresponds to the excess atomic species. The modifications of the electronic structure due to formation of complexes are also investigated. It is shown that van der Waals density functional theory gives an improved description of the cohesive properties but not the electronic structure in bilayer boronitrene compared to other functionals. We identify energetically favourable topological defects that retain the energy gap in the electronic structure, and discuss their implications for band gap engineering in low-n layer boronitrene insulators. The relative strengths and weaknesses of the functionals in predicting the properties of bilayer boronitrene are also discussed.

  14. Methane hydrate formation and decomposition: structural studies via neutron diffraction and empirical potential structure refinement.

    PubMed

    Thompson, Helen; Soper, Alan K; Buchanan, Piers; Aldiwan, Nawaf; Creek, Jefferson L; Koh, Carolyn A

    2006-04-28

    Neutron diffraction studies with hydrogen/deuterium isotope substitution measurements are performed to investigate the water structure at the early, medium, and late periods of methane clathrate hydrate formation and decomposition. These measurements are coupled with simultaneous gas consumption measurements to track the formation of methane hydrate from a gas/water mixture, and then the complete decomposition of hydrate. Empirical potential structure refinement computer simulations are used to analyze the neutron diffraction data and extract from the data the water structure in the bulk methane hydrate solution. The results highlight the significant changes in the water structure of the remaining liquid at various stages of hydrate formation and decomposition, and give further insight into the way in which hydrates form. The results also have important implications on the memory effect, suggesting that the water structure in the presence of hydrate crystallites is significantly different at equivalent stages of forming compared to decomposing. These results are in sharp contrast to the previously reported cases when all remaining hydrate crystallites are absent from the solution. For these systems there is no detectable change in the water structure or the methane hydration shell before hydrate formation and after decomposition. Based on the new results presented in this paper, it is clear that the local water structure is affected by the presence of hydrate crystallites, which may in turn be responsible for the "history" or "memory" effect where the production of hydrate from a solution of formed and then subsequently melted hydrate is reportedly much quicker than producing hydrate from a fresh water/gas mixture.

  15. Physiological Implications of Myocardial Scar Structure

    PubMed Central

    Richardson, WJ; Clarke, SA; Quinn, TA; Holmes, JW

    2016-01-01

    Once myocardium dies during a heart attack, it is replaced by scar tissue over the course of several weeks. The size, location, composition, structure and mechanical properties of the healing scar are all critical determinants of the fate of patients who survive the initial infarction. While the central importance of scar structure in determining pump function and remodeling has long been recognized, it has proven remarkably difficult to design therapies that improve heart function or limit remodeling by modifying scar structure. Many exciting new therapies are under development, but predicting their long-term effects requires a detailed understanding of how infarct scar forms, how its properties impact left ventricular function and remodeling, and how changes in scar structure and properties feed back to affect not only heart mechanics but also electrical conduction, reflex hemodynamic compensations, and the ongoing process of scar formation itself. In this article, we outline the scar formation process following an MI, discuss interpretation of standard measures of heart function in the setting of a healing infarct, then present implications of infarct scar geometry and structure for both mechanical and electrical function of the heart and summarize experiences to date with therapeutic interventions that aim to modify scar geometry and structure. One important conclusion that emerges from the studies reviewed here is that computational modeling is an essential tool for integrating the wealth of information required to understand this complex system and predict the impact of novel therapies on scar healing, heart function, and remodeling following myocardial infarction. PMID:26426470

  16. Racial Differences in the Formation of Postsecondary Educational Expectations: A Structural Model

    ERIC Educational Resources Information Center

    Museus, Samuel D.; Harper, Shaun R.; Nichols, Andrew H.

    2010-01-01

    Background: Educational attainment is associated with a plethora of positive economic and social implications for individuals, institutions, and the broader society. One factor that has been identified as an important predictor of students' educational attainment is their educational expectations. Thus, understanding how educational expectations…

  17. HIGH-ANGLE AEOLIAN CROSSBEDDING AT TRAIL RIDGE, FLORIDA.

    USGS Publications Warehouse

    Force, Eric; Garnar, Tom

    1985-01-01

    This paper described new evidence concerning the origin of the Trail Ridge mineral sands deposit in Florida. Rarely exposed sections of the orebody exhibit structures indicative of sand dune formation rather than coastal beach sand accumulation. The implications for mineral sands exploration, and therefore resources, in the southeastern USA are highlighted.

  18. The Effect of Water and Confinement on Self-Assembly of Imidazolium Based Ionic Liquids at Mica Interfaces

    PubMed Central

    Cheng, H.-W.; Dienemann, J.-N.; Stock, P.; Merola, C.; Chen, Y.-J.; Valtiner, M.

    2016-01-01

    Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations. PMID:27452615

  19. The Effect of Water and Confinement on Self-Assembly of Imidazolium Based Ionic Liquids at Mica Interfaces.

    PubMed

    Cheng, H-W; Dienemann, J-N; Stock, P; Merola, C; Chen, Y-J; Valtiner, M

    2016-07-25

    Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations.

  20. Graft union formation in tomato plants: peroxidase and catalase involvement.

    PubMed

    Fernandez-Garcia, Nieves; Carvajal, Micaela; Olmos, Enrique

    2004-01-01

    The use of grafted plants in vegetable crop production is now being expanded greatly. However, few data are available on the formation of graft unions in vegetables. In this work, the structural development of the graft union formation in tomato plants is studied, together with the possible relationship with activities of peroxidases and catalases. Tomato (Lycopersicon esculentum Mill.) seedlings of cultivar Fanny were grafted on the rootstock of cultivar AR-9704 using the 'tongue approach grafting' method, and were grown in a crop chamber. A study of the structural development of the graft union and the involvement of peroxidases and catalases in the process of graft formation was carried out during the first stages of the graft union (4, 8 and 15 d after grafting). Observation of the structure of the graft union showed formation of xylem and phloem vessels through the graft union 8 d after grafting. In addition, root hydraulic conductance, L0, indicate that the graft union is fully functional 8 d after grafting, which coincided with an increase of peroxidase and catalase activities. These results suggest that increased peroxidase and catalase activities might be implicated in graft development in tomato plants.

  1. The Ionization History of The Intergalactic Medium:

    NASA Technical Reports Server (NTRS)

    Madau, Piero

    2003-01-01

    The funded project seeked a unified description of the ionization, physical structure, and evolution of the intergalactic medium (IGM) and quasar intervening absorption systems. We proposed to conduct theoretical studies of the IGM and QSO absorbers in the context of current theories of galaxy formation, developing and using numerical and analytical techniques aimed at a detailed modeling of cosmological radiative transfer, gas dynamics, and thermal and ionization evolution. The ionization history of the IGM has important implications for the metagalactic UV background, intergalactic helium absorption 21-cm tomography, metal absorption systems, fluctuations in the microwave background, and the cosmic rate of structure and star formation. All the original objectives of our program have been achieved, and the results widely used and quoted by the community. Indeed, they remain relevant as the level and complexity of research in this area has increased substantially since our proposal was submitted, due to new discoveries on galaxy formation and evolution, a flood of high-quality data on the distant universe, new theoretical ideas and direct numerical simulations of structure formation in hierarchical clustering theories.

  2. Evolution of Hot Gas in Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Mathews, William G.

    2004-01-01

    This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.

  3. Evaluation of the Implications of Nanoscale Architectures on Contextual Knowledge Discovery and Memory: Self-Assembled Architectures and Memory

    DTIC Science & Technology

    2008-05-01

    patterns. Our strategy to nucleate Ag nanoparticles has been to use a templating protein (e.g., streptavidin) that has been chemically pre- charged with...assembly is used to direct the formation of switching devices and wires to create logic circuitry, memory, and I/O interfaces . We can control the reaction...determines the formation of structures (through complementarity ). Sequence design is important because it determines many aspects of the target DNA

  4. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  5. R-spondins: novel matricellular regulators of the skeleton.

    PubMed

    Knight, M Noelle; Hankenson, Kurt D

    2014-07-01

    R-spondins are a family of four matricellular proteins produced by a variety of cell-types. Structurally, R-spondins contain a TSR1 domain that retains the tryptophan structure and a modified cysteine-rich CSVCTG region. In addition, the R-spondins contain two furin repeats implicated in canonical Wnt signaling. R-spondins positively regulate canonical Wnt signaling by reducing Wnt receptor turnover and thereby increasing beta-catenin stabilization. R-spondins are prominently expressed in the developing skeleton and contribute to limb formation, particularly of the distal digit. Additionally, results suggest that R-spondins may contribute to the maintenance of adult bone mass by regulating osteoblastogenesis and bone formation. Copyright © 2014. Published by Elsevier B.V.

  6. Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor

    NASA Astrophysics Data System (ADS)

    Middleton, Chris T.; Marek, Peter; Cao, Ping; Chiu, Chi-Cheng; Singh, Sadanand; Woys, Ann Marie; de Pablo, Juan J.; Raleigh, Daniel P.; Zanni, Martin T.

    2012-05-01

    Amyloid formation has been implicated in the pathology of over 20 human diseases, but the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labelling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin (the peptide responsible for islet amyloid formation in type 2 diabetes) with a known inhibitor (rat amylin). Based on its sequence, rat amylin should block formation of the C-terminal β-sheet, but at 8 h after mixing, rat amylin blocks the N-terminal β-sheet instead. At 24 h after mixing, rat amylin blocks neither β-sheet and forms its own β-sheet, most probably on the outside of the human fibrils. This is striking, because rat amylin is natively disordered and not previously known to form amyloid β-sheets. The results show that even seemingly intuitive inhibitors may function by unforeseen and complex structural processes.

  7. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments

    PubMed Central

    Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M

    2017-01-01

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83–248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence. PMID:28915104

  8. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments.

    PubMed

    Barski, Michal; Brennan, Benjamin; Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M; Schwarz-Linek, Ulrich

    2017-09-15

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.

  9. Surveying Galaxy Evolution in the Far-Infrared: A Far-Infrared All-Sky Survey Concept

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Amato, M. J.; Dwek, E.; Freund, M. M.; Gardner, J. P.; Kashlinsky, A.; Leisawitz, D. T.; Mather, J. C.; Moseley, S. H.; Shafer, R. A.

    2004-01-01

    Half of the total luminosity in the Universe is emitted at rest wavelengths approximately 80-100 microns. At the highest known galaxy redshifts (z greater than or equal to 6) this energy is redshifted to approximately 600 microns. Quantifying the evolution of galaxies at these wavelengths is crucial to our understanding of the formation of structure in the Universe following the big bang. Surveying the whole sky will find the rare and unique objects, enabling follow-up observations. SIRCE, the Survey of Infrared Cosmic Evolution, is such a mission concept under study at NASA's Goddard Space Flight Center. A helium-cooled telescope with ultrasensitive detectors can image the whole sky to the confusion limit in 6 months. Multiple wavelength bands permit the extraction of photometric redshifts, while a large telescope yields a low confusion limit. We discuss the implications of such a survey for galaxy formation and evolution, large-scale structure, star formation, and the structure of interstellar dust.

  10. Types of Timberland Ownership

    Treesearch

    William C. Siegel

    1999-01-01

    The form of ownership in which you hold your woodland is important from a tax standpoint. Further, if your forest property is structured as a business, the type of business organization chosen also has significant tax implications. Additionally, non-tax factors bear on choosing an ownership and/or business format. These include forest management goals, size of the...

  11. ALEPH: Israel's Research Library Network: Background, Evolution, and Implications for Networking in a Small Country.

    ERIC Educational Resources Information Center

    Lazinger, Susan S.

    1991-01-01

    Describes ALEPH, the research library network in Israel, and analyzes the strengths and weaknesses of its decentralized structure. Highlights include comparisons between RLIN and ALEPH; centralized versus decentralized networks; the format of ALEPH; authority control in ALEPH; and non-Roman scripts in both networks. (16 references) (LRW)

  12. Development of a Structured Undergraduate Research Experience: Framework and Implications

    ERIC Educational Resources Information Center

    Brown, Anne M.; Lewis, Stephanie N.; Bevan, David R.

    2016-01-01

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process.…

  13. Changes in the Nature and Structure of Work: Implications for Skill Requirements and Skill Formation.

    ERIC Educational Resources Information Center

    Bailey, Thomas

    Changes in the economy and the workplace are changing job skill requirements and the process of skill acquisition. A study analyzed occupational trends and projections, performed case studies of four industry sectors (apparel and textile, accounting, management consulting, and software development), and reviewed research on changing skill demands…

  14. Folds on Europa: implications for crustal cycling and accommodation of extension.

    PubMed

    Prockter, L M; Pappalardo, R T

    2000-08-11

    Regional-scale undulations with associated small-scale secondary structures are inferred to be folds on Jupiter's moon Europa. Formation is consistent with stresses from tidal deformation, potentially triggering compressional instability of a region of locally high thermal gradient. Folds may compensate for extension elsewhere on Europa and then relax away over time.

  15. Computational investigation of fullerene-DNA interactions: Implications of fullerene's size and functionalization on DNA structure and binding energetics.

    PubMed

    Papavasileiou, Konstantinos D; Avramopoulos, Aggelos; Leonis, Georgios; Papadopoulos, Manthos G

    2017-06-01

    DNA is the building block of life, as it carries the biological information controlling development, function and reproduction of all organisms. However, its central role in storing and transferring genetic information can be severely hindered by molecules with structure altering abilities. Fullerenes are nanoparticles that find a broad spectrum of uses, but their toxicological effects on living organisms upon exposure remain unclear. The present study examines the interactions of a diverse array of fullerenes with DNA, by means of Molecular Dynamics and MM-PBSA methodologies, with special focus on structural deformations that may hint toxicity implications. Our results show that pristine and hydroxylated fullerenes have no unwinding effects upon DNA structure, with the latter displaying binding preference to the DNA major groove, achieved by both direct formation of hydrogen bonds and water molecule mediation. Fluorinated derivatives are capable of penetrating DNA structure, forming intercalative complexes with high binding affinities. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. On cooperative effects and aggregation of GNNQQNY and NNQQNY peptides

    NASA Astrophysics Data System (ADS)

    Nochebuena, Jorge; Ireta, Joel

    2015-10-01

    Some health disturbances like neurodegenerative diseases are associated to the presence of amyloids. GNNQQNY and NNQQNY peptides are considered as prototypical examples for studying the formation of amyloids. These exhibit quite different aggregation behaviors despite they solely differ in size by one residue. To get insight into the reasons for such difference, we have examined association energies of aggregates (parallel β-sheets, fibril-spines, and crystal structures) from GNNQQNY and NNQQY using density functional theory. As we found that GNNQQNY tends to form a zwitterion in the crystal structure, we have investigated the energetics of parallel β-sheets and fibril-spines in the canonical and zwitterionic states. We found that the formation of GNNQQNY aggregates is energetically more favored than the formation of the NNQQNY ones. We show that the latter is connected to the network of hydrogen bonds formed by each aggregate. Moreover, we found that the formation of some NNQQNY aggregates is anticooperative, whereas cooperative with GNNQQNY. These results have interesting implications for deciphering the factors determining peptide aggregation propensities.

  17. MDC1: The art of keeping things in focus.

    PubMed

    Jungmichel, Stephanie; Stucki, Manuel

    2010-08-01

    The chromatin structure is important for recognition and repair of DNA damage. Many DNA damage response proteins accumulate in large chromatin domains flanking sites of DNA double-strand breaks. The assembly of these structures-usually termed DNA damage foci-is primarily regulated by MDC1, a large nuclear mediator/adaptor protein that is composed of several distinct structural and functional domains. Here, we are summarizing the latest discoveries about the mechanisms by which MDC1 mediates DNA damage foci formation, and we are reviewing the considerable efforts taken to understand the functional implication of these structures.

  18. Fundamental Principles of Network Formation among Preschool Children1

    PubMed Central

    Schaefer, David R.; Light, John M.; Fabes, Richard A.; Hanish, Laura D.; Martin, Carol Lynn

    2009-01-01

    The goal of this research was to investigate the origins of social networks by examining the formation of children’s peer relationships in 11 preschool classes throughout the school year. We investigated whether several fundamental processes of relationship formation were evident at this age, including reciprocity, popularity, and triadic closure effects. We expected these mechanisms to change in importance over time as the network crystallizes, allowing more complex structures to evolve from simpler ones in a process we refer to as structural cascading. We analyzed intensive longitudinal observational data of children’s interactions using the SIENA actor-based model. We found evidence that reciprocity, popularity, and triadic closure all shaped the formation of preschool children’s networks. The influence of reciprocity remained consistent, whereas popularity and triadic closure became increasingly important over the course of the school year. Interactions between age and endogenous network effects were nonsignificant, suggesting that these network formation processes were not moderated by age in this sample of young children. We discuss the implications of our longitudinal network approach and findings for the study of early network developmental processes. PMID:20161606

  19. An Investigation of the Ionization Structure of the Carina Spiral Arm with WHAM

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert A.; Krishnarao, Dhanesh; Haffner, L. Matthew

    2018-01-01

    Recent investigations of the Sagittarius-Carina spiral arm with the Wisconsin H-alpha Mapper (Krishnarao et al 2017) show the presence of ionized gas stretching up to three kiloparsecs above and below the Carina section of this spiral arm. This arm segment, which wraps outside the solar circle in the fourth quadrant of the Galactic disk, seems to be unusual when compared to the other Milky Way spiral arms measured with WHAM. We review the status of what is known about the vertical ionization structure of the spiral arms of the Milky Way Galaxy and relate the properties of this spiral arm section to recent investigations of midplane HII regions and star formation in the Milky Way disk. We discuss potential implications of this star formation and ionization for our understanding of Milky Way Galactic structure.

  20. Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes.

    PubMed

    Delage, Elise; Cervantes, Diégo Cordero; Pénard, Esthel; Schmitt, Christine; Syan, Sylvie; Disanza, Andrea; Scita, Giorgio; Zurzolo, Chiara

    2016-12-23

    Tunneling Nanotubes (TNTs) are actin enriched filopodia-like protrusions that play a pivotal role in long-range intercellular communication. Different pathogens use TNT-like structures as "freeways" to propagate across cells. TNTs are also implicated in cancer and neurodegenerative diseases, making them promising therapeutic targets. Understanding the mechanism of their formation, and their relation with filopodia is of fundamental importance to uncover their physiological function, particularly since filopodia, differently from TNTs, are not able to mediate transfer of cargo between distant cells. Here we studied different regulatory complexes of actin, which play a role in the formation of both these structures. We demonstrate that the filopodia-promoting CDC42/IRSp53/VASP network negatively regulates TNT formation and impairs TNT-mediated intercellular vesicle transfer. Conversely, elevation of Eps8, an actin regulatory protein that inhibits the extension of filopodia in neurons, increases TNT formation. Notably, Eps8-mediated TNT induction requires Eps8 bundling but not its capping activity. Thus, despite their structural similarities, filopodia and TNTs form through distinct molecular mechanisms. Our results further suggest that a switch in the molecular composition in common actin regulatory complexes is critical in driving the formation of either type of membrane protrusion.

  1. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas

    PubMed Central

    Matthaeus, W. H.; Wan, Minping; Servidio, S.; Greco, A.; Osman, K. T.; Oughton, S.; Dmitruk, P.

    2015-01-01

    An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction. PMID:25848085

  2. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    PubMed

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  3. Understanding the Rationale for Preschool Physical Education: Implications for Practitioners' and Children's Embodied Practices and Subjectivity Formation

    ERIC Educational Resources Information Center

    McEvilly, Nollaig; Atencio, Matthew; Verheul, Martine; Jess, Mike

    2013-01-01

    This paper provides an overview of selected academic research literature that underpins contemporary preschool physical education. We highlight and interrogate diverse rationales and beliefs that serve to influence and structure preschool physical education in various forms. We speculate as to how preschool practitioners and children might engage…

  4. On the Nature of Syntactic Variation: Evidence from Complex Predicates and Complex Word-Formation.

    ERIC Educational Resources Information Center

    Snyder, William

    2001-01-01

    Provides evidence from child language acquisition and comparative syntax for existence of a syntactic parameter in the classical sense of Chomsky (1981), with simultaneous effects on syntactic argument structure. Implications are that syntax is subject to points of substantive parametric variation as envisioned in Chomsky, and the time course of…

  5. p300/CBP Histone Acetyltransferase Activity Is Required for Newly Acquired and Reactivated Fear Memories in the Lateral Amygdala

    ERIC Educational Resources Information Center

    Maddox, Stephanie A.; Watts, Casey S.; Schafe, Glenn E.

    2013-01-01

    Modifications in chromatin structure have been widely implicated in memory and cognition, most notably using hippocampal-dependent memory paradigms including object recognition, spatial memory, and contextual fear memory. Relatively little is known, however, about the role of chromatin-modifying enzymes in amygdala-dependent memory formation.…

  6. Testing the Big Bang: Light elements, neutrinos, dark matter and large-scale structure

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    Several experimental and observational tests of the standard cosmological model are examined. In particular, a detailed discussion is presented regarding: (1) nucleosynthesis, the light element abundances, and neutrino counting; (2) the dark matter problems; and (3) the formation of galaxies and large-scale structure. Comments are made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing and the cosmological and astrophysical constraints on it.

  7. Architecture of Columnar Nacre, and Implications for Its Formation Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Rebecca A.; Olabisi, Ronke M.; Coppersmith, Susan N.

    2007-06-29

    We analyze the structure of Haliotis rufescens nacre, or mother-of-pearl, using synchrotron spectromicroscopy and x-ray absorption near-edge structure spectroscopy. We observe imaging contrast between adjacent individual nacre tablets, arising because different tablets have different crystal orientations with respect to the radiation's polarization vector. Comparing previous data and our new data with models for columnar nacre growth, we find the data are most consistent with a model in which nacre tablets are nucleated by randomly distributed sites in the organic matrix layers.

  8. Ar-40 to Ar-39 dating of pseudotachylites from the Witwatersrand basin, South Africa, with implications for the formation of the Vredefort Dome

    NASA Technical Reports Server (NTRS)

    Trieloff, M.; Kunz, J.; Jessberger, E. K.; Reimold, W. U.; Boer, R. H.; Jackson, M. C.

    1992-01-01

    The formation of the Vredefort Dome, a structure in excess of 100 km in diameter and located in the approximate center of the Witwatersrand basin, is still the subject of lively geological controversy. It is widely accepted that its formation seems to have taken place in a single sudden event, herein referred to as the Vredefort event, accompanied by the release of gigantic amounts of energy. It is debated, however, whether this central event was an internal one, i.e., a cryptoexplosion triggered by volcanic or tectonic processes, or the impact of an extraterrestrial body. The results of this debate are presented.

  9. A TNF-Regulated Recombinatorial Macrophage Immune Receptor Implicated in Granuloma Formation in Tuberculosis

    PubMed Central

    Streich, Roswita; Breysach, Caroline; Raddatz, Dirk; Oniga, Septimia; Peccerella, Teresa; Findeisen, Peter; Kzhyshkowska, Julia; Gratchev, Alexei; Schweyer, Stefan; Saunders, Bernadette; Wessels, Johannes T.; Möbius, Wiebke; Keane, Joseph; Becker, Heinz; Ganser, Arnold; Neumaier, Michael; Kaminski, Wolfgang E.

    2011-01-01

    Macrophages play a central role in host defense against mycobacterial infection and anti- TNF therapy is associated with granuloma disorganization and reactivation of tuberculosis in humans. Here, we provide evidence for the presence of a T cell receptor (TCR) αβ based recombinatorial immune receptor in subpopulations of human and mouse monocytes and macrophages. In vitro, we find that the macrophage-TCRαβ induces the release of CCL2 and modulates phagocytosis. TNF blockade suppresses macrophage-TCRαβ expression. Infection of macrophages from healthy individuals with mycobacteria triggers formation of clusters that express restricted TCR Vβ repertoires. In vivo, TCRαβ bearing macrophages abundantly accumulate at the inner host-pathogen contact zone of caseous granulomas from patients with lung tuberculosis. In chimeric mouse models, deletion of the variable macrophage-TCRαβ or TNF is associated with structurally compromised granulomas of pulmonary tuberculosis even in the presence of intact T cells. These results uncover a TNF-regulated recombinatorial immune receptor in monocytes/macrophages and demonstrate its implication in granuloma formation in tuberculosis. PMID:22114556

  10. A Rich Morphological Diversity of Biosaline Drying Patterns Is Generated by Different Bacterial Species, Different Salts and Concentrations: Astrobiological Implications

    NASA Astrophysics Data System (ADS)

    Gómez Gómez, José María; Medina, Jesús; Rull, Fernando

    2016-07-01

    Biosaline formations (BSFs) are complex self-organized biomineral patterns formed by "hibernating" bacteria as the biofilm that contains them dries out. They were initially described in drying biofilms of Escherichia coli cells + NaCl. Due to their intricate 3-D morphology and anhydrobiosis, these biomineralogical structures are of great interest in astrobiology. Here we report experimental data obtained with various alkali halide salts (NaF, NaCl, NaBr, LiCl, KCl, CsCl) on BSF formation with E. coli and Bacillus subtilis bacteria at two saline concentrations: 9 and 18 mg/mL. Our results indicate that, except for LiCl, which is inactive, all the salts assayed are active during BSF formation and capable of promoting the generation of distinctive drying patterns at each salt concentration. Remarkably, the BSFs produced by these two bacterial species produce characteristic architectural hallmarks as the BSF dries. The potential biogenicity of these biosaline drying patterns is studied, and the astrobiological implications of these findings are discussed.

  11. Volcanic Structures Within Niger and Dao Valles, Mars, and Implications for Outflow Channel Evolution and Hellas Basin Rim Development

    NASA Astrophysics Data System (ADS)

    Korteniemi, J.; Kukkonen, S.

    2018-04-01

    Outflow channel formation on the eastern Hellas rim region is traditionally thought to have been triggered by activity phases of the nearby volcanoes Hadriacus and Tyrrhenus Montes: As a result of volcanic heating subsurface volatiles were mobilized. It is, however, under debate, whether eastern Hellas volcanism was in fact more extensive, and if there were volcanic centers separate from the identified central volcanoes. This work describes previously unrecognized structures in the Niger-Dao Valles outflow channel complex. We interpret them as volcanic edifices: cones, a shield, and a caldera. The structures provide evidence of an additional volcanic center within the valles and indicate volcanic activity both prior to and following the formation of the outflow events. They expand the extent, type, and duration of volcanic activity in the Circum-Hellas Volcanic Province and provide new information on interaction between volcanism and fluvial activity.

  12. The New Era of Precision Cosmology: Testing Gravity at Large Scales

    NASA Technical Reports Server (NTRS)

    Prescod-Weinstein, Chanda

    2011-01-01

    Cosmic acceleration may be the biggest phenomenological mystery in cosmology today. Various explanations for its cause have been proposed, including the cosmological constant, dark energy and modified gravities. Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy ore modified gravity implement the Press & Schechter formalism (PGF). However, does the PGF apply in all cosmologies? The search is on for a better understanding of universality in the PGF In this talk, I explore the potential for universality and talk about what dark matter haloes may be able to tell us about cosmology. I will also discuss the implications of this and new cosmological experiments for better understanding our theory of gravity.

  13. Inactivation of a putative efflux pump (LmrB) in Streptococcus mutans results in altered biofilm structure and increased exopolysaccharide synthesis: implications for biofilm resistance.

    PubMed

    Liu, Jia; Zhang, Jianying; Guo, Lihong; Zhao, Wei; Hu, Xiaoli; Wei, Xi

    2017-07-01

    Efflux pumps are a mechanism associated with biofilm formation and resistance. There is limited information regarding efflux pumps in Streptococcus mutans, a major pathogen in dental caries. The aim of this study was to investigate potential roles of a putative efflux pump (LmrB) in S. mutans biofilm formation and susceptibility. Upon lmrB inactivation and antimicrobial exposure, the biofilm structure and expression of other efflux pumps were examined using confocal laser scanning microscopy (CLSM) and qRT-PCR. lmrB inactivation resulted in biofilm structural changes, increased EPS formation and EPS-related gene transcription (p < 0.05), but no improvement in susceptibility was observed. The expression of most efflux pump genes increased upon lmrB inactivation when exposed to antimicrobials (p < 0.05), suggesting a feedback mechanism that activated the transcription of other efflux pumps to compensate for the loss of lmrB. These observations imply that sole inactivation of lmrB is not an effective solution to control biofilms.

  14. Shock structures in a strongly coupled self-gravitating opposite-polarity dust plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, A. A.; Schlickeiser, R.

    2016-03-15

    A strongly coupled, self-gravitating, opposite-polarity dust plasma (containing strongly coupled inertial positive and negative dust fluids, and inertialess weakly coupled ions) is considered. The generalized hydrodynamic model and the reductive perturbation method are employed to examine the possibility for the formation of the dust-acoustic (DA) shock structures in such an opposite-polarity dust plasma. It has been shown that the strong correlation among charged dust is a source of dissipation and is responsible for the formation of the DA shock structures in such the opposite-polarity dust plasma medium. The parametric regimes for the existence of the DA shock structures (associated withmore » electrostatic and gravitational potentials) and their basic properties (viz., polarity, amplitude, width, and speed) are found to be significantly modified by the combined effects of positively charged dust component, self-gravitational field, and strong correlation among charged dust. The implications of our results in different space plasma environments and laboratory plasma devices are briefly discussed.« less

  15. Structural insights into the histone H1-nucleosome complex

    PubMed Central

    Zhou, Bing-Rui; Feng, Hanqiao; Kato, Hidenori; Dai, Liang; Yang, Yuedong; Zhou, Yaoqi; Bai, Yawen

    2013-01-01

    Linker H1 histones facilitate formation of higher-order chromatin structures and play important roles in various cell functions. Despite several decades of effort, the structural basis of how H1 interacts with the nucleosome remains elusive. Here, we investigated Drosophila H1 in complex with the nucleosome, using solution nuclear magnetic resonance spectroscopy and other biophysical methods. We found that the globular domain of H1 bridges the nucleosome core and one 10-base pair linker DNA asymmetrically, with its α3 helix facing the nucleosomal DNA near the dyad axis. Two short regions in the C-terminal tail of H1 and the C-terminal tail of one of the two H2A histones are also involved in the formation of the H1–nucleosome complex. Our results lead to a residue-specific structural model for the globular domain of the Drosophila H1 in complex with the nucleosome, which is different from all previous experiment-based models and has implications for chromatin dynamics in vivo. PMID:24218562

  16. Solid-state NMR Study Reveals Collagen I Structural Modifications of Amino Acid Side Chains upon Fibrillogenesis*

    PubMed Central

    De Sa Peixoto, Paulo; Laurent, Guillaume; Azaïs, Thierry; Mosser, Gervaise

    2013-01-01

    In vivo, collagen I, the major structural protein in human body, is found assembled into fibrils. In the present work, we study a high concentrated collagen sample in its soluble, fibrillar, and denatured states using one and two dimensional {1H}-13C solid-state NMR spectroscopy. We interpret 13C chemical shift variations in terms of dihedral angle conformation changes. Our data show that fibrillogenesis increases the side chain and backbone structural complexity. Nevertheless, only three to five rotameric equilibria are found for each amino acid residue, indicating a relatively low structural heterogeneity of collagen upon fibrillogenesis. Using side chain statistical data, we calculate equilibrium constants for a great number of amino acid residues. Moreover, based on a 13C quantitative spectrum, we estimate the percentage of residues implicated in each equilibrium. Our data indicate that fibril formation greatly affects hydroxyproline and proline prolyl pucker ring conformation. Finally, we discuss the implication of these structural data and propose a model in which the attractive force of fibrillogenesis comes from a structural reorganization of 10 to 15% of the amino acids. These results allow us to further understand the self-assembling process and fibrillar structure of collagen. PMID:23341452

  17. The Effect of Response Format on the Psychometric Properties of the Narcissistic Personality Inventory: Consequences for Item Meaning and Factor Structure.

    PubMed

    Ackerman, Robert A; Donnellan, M Brent; Roberts, Brent W; Fraley, R Chris

    2016-04-01

    The Narcissistic Personality Inventory (NPI) is currently the most widely used measure of narcissism in social/personality psychology. It is also relatively unique because it uses a forced-choice response format. We investigate the consequences of changing the NPI's response format for item meaning and factor structure. Participants were randomly assigned to one of three conditions: 40 forced-choice items (n = 2,754), 80 single-stimulus dichotomous items (i.e., separate true/false responses for each item; n = 2,275), or 80 single-stimulus rating scale items (i.e., 5-point Likert-type response scales for each item; n = 2,156). Analyses suggested that the "narcissistic" and "nonnarcissistic" response options from the Entitlement and Superiority subscales refer to independent personality dimensions rather than high and low levels of the same attribute. In addition, factor analyses revealed that although the Leadership dimension was evident across formats, dimensions with entitlement and superiority were not as robust. Implications for continued use of the NPI are discussed. © The Author(s) 2015.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaro, Mariana; Wellbrock, Thorben; Birch, David J. S.

    The fluorescence decay of beta-amyloid's (Aβ) intrinsic fluorophore tyrosine has been used for sensing the oligomer formation of dye-labelled Aβ monomers and the results compared with previously studied oligomerization of the non-labelled Aβ peptides. It has been demonstrated that two different sized, covalently bound probes 7-diethylaminocoumarin-3-carbonyl and Hilyte Fluor 488 (HLF), alter the rate and character of oligomerization to different extents. The ability of HLF to inhibit formation of highly ordered structures containing beta-sheets was also shown. The implications of our findings for using fluorescence methods in amyloidosis research are discussed and the advantages of this auto-fluorescence approach highlighted.

  19. Bottom-up Formation of Carbon-Based Structures with Multilevel Hierarchy from MOF-Guest Polyhedra.

    PubMed

    Wang, Tiesheng; Kim, Hyun-Kyung; Liu, Yingjun; Li, Weiwei; Griffiths, James T; Wu, Yue; Laha, Sourav; Fong, Kara D; Podjaski, Filip; Yun, Chao; Kumar, R Vasant; Lotsch, Bettina V; Cheetham, Anthony K; Smoukov, Stoyan K

    2018-05-16

    Three-dimensional carbon-based structures have proven useful for tailoring material properties in structural mechanical and energy storage applications. One approach to obtain them has been by carbonization of selected metal-organic frameworks (MOFs) with catalytic metals, but this is not applicable to most common MOF structures. Here, we present a strategy to transform common MOFs, by guest inclusions and high-temperature MOF-guest interactions, into complex carbon-based, diatom-like, hierarchical structures (named for the morphological similarities with the naturally existing diatomaceous species). As an example, we introduce metal salt guests into HKUST-1-type MOFs to generate a family of carbon-based nano-diatoms with two to four levels of structural hierarchy. We report control of the morphology by simple changes in the chemistry of the MOF and guest, with implications for the formation mechanisms. We demonstrate that one of these structures has unique advantages as a fast-charging lithium-ion battery anode. The tunability of composition should enable further studies of reaction mechanisms and result in the growth of a myriad of unprecedented carbon-based structures from the enormous variety of currently available MOF-guest candidates.

  20. The Influence of Local Geometric Effects on Mars Polar Processes

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.

    2005-01-01

    Using simple, qualitative heat balance models, this paper addresses textures and structures that will result from the evolution of volatile layers by accretion and by ablation. Such phenomena may have global implications that are not apparent when only flat or sloped surfaces are modeled. In general, structures such as mounds or depressions formed out of volatile materials will evolve in shape such that the growth or retreat of any particular surface will be maximized. It can be shown that the local radius of curvature is proportional to the growth or retreat rate. For example, icy surfaces will tend to form facets that face the dominant sun direction. Two such cases are evaluated: a) Features associated with condensation of volatiles, include cold-trapping and redistribution, such as the concentration of frost around the Viking 2 lander [1]. Here I will focus on textures that likely result from the formation of seasonal CO2 deposits. b) Features associated with sublimation of volatiles, such as those described by Ingersoll et. al. [2] result in textured surfaces that affect both the apparent emissivity and albedo. Similar calculations have been performed with respect to the "Swiss cheese" features on the South Polar Cap [3]. Here, I evaluate the likely sublimation rates from optimal ice scarp structures and their implications for the long-term evolution of the polar caps and formation of layered terrain.

  1. Protein glycation, diabetes, and aging.

    PubMed

    Ulrich, P; Cerami, A

    2001-01-01

    Biological amines react with reducing sugars to form a complex family of rearranged and dehydrated covalent adducts that are often yellow-brown and/or fluorescent and include many cross-linked structures. Food chemists have long studied this process as a source of flavor, color, and texture changes in cooked, processed, and stored foods. During the 1970s and 1980s, it was realized that this process, called the Maillard reaction or advanced glycation, also occurs slowly in vivo. Advanced glycation endproducts (AGEs) that form are implicated, causing the complications of diabetes and aging, primarily via adventitious and crosslinking of proteins. Long-lived proteins such as structural collagen and lens crystallins particularly are implicated as pathogenic targets of AGE processes. AGE formation in vascular wall collagen appears to be an especially deleterious event, causing crosslinking of collagen molecules to each other and to circulating proteins. This leads to plaque formation, basement membrane thickening, and loss of vascular elasticity. The chemistry of these later-stage, glycation-derived crosslinks is still incompletely understood but, based on the hypothesis that AGE formation involves reactive carbonyl groups, the authors introduced the carbonyl reagent aminoguanidine hydrochloride as an inhibitor of AGE formation in vivo in the mid 1980s. Subsequent studies by many researchers have shown the effectiveness of aminoguanidine in slowing or preventing a wide range of complications of diabetes and aging in animals and, recently, in humans. Since, the authors have developed a new class of agents, exemplified by 4,5-dimethyl-3-phenacylthiazolium chloride (DPTC), which can chemically break already-formed AGE protein-protein crosslinks. These agents are based on a new theory of AGE crosslinking that postulates that alpha-dicarbonyl structures are present in AGE protein-protein crosslinks. In studies in aged animals, DPTC has been shown to be capable of reverting indices of vascular compliance to levels seen in younger animals. Human clinical trials are underway.

  2. Oncogenic Mutations Differentially Affect Bax Monomer, Dimer, and Oligomeric Pore Formation in the Membrane.

    PubMed

    Zhang, Mingzhen; Zheng, Jie; Nussinov, Ruth; Ma, Buyong

    2016-09-15

    Dysfunction of Bax, a pro-apoptotic regulator of cellular metabolism is implicated in neurodegenerative diseases and cancer. We have constructed the first atomistic models of the Bax oligomeric pore consisting with experimental residue-residue distances. The models are stable, capturing well double electron-electron resonance (DEER) spectroscopy measurements and provide structural details in line with the DEER data. Comparison with the latest experimental results revealed that our models agree well with both Bax and Bak pores, pointed to a converged structural arrangement for Bax and Bak pore formation. Using multi-scale molecular dynamics simulations, we probed mutational effects on Bax transformation from monomer → dimer → membrane pore formation at atomic resolution. We observe that two cancer-related mutations, G40E and S118I, allosterically destabilize the monomer and stabilize an off-pathway swapped dimer, preventing productive pore formation. This observation suggests a mechanism whereby the mutations may work mainly by over-stabilizing the monomer → dimer transformation toward an unproductive off-pathway swapped-dimer state. Our observations point to misfolded Bax states, shedding light on the molecular mechanism of Bax mutation-elicited cancer. Most importantly, the structure of the Bax pore facilitates future study of releases cytochrome C in atomic detail.

  3. Oncogenic Mutations Differentially Affect Bax Monomer, Dimer, and Oligomeric Pore Formation in the Membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Mingzhen; Zheng, Jie; Nussinov, Ruth; Ma, Buyong

    2016-09-01

    Dysfunction of Bax, a pro-apoptotic regulator of cellular metabolism is implicated in neurodegenerative diseases and cancer. We have constructed the first atomistic models of the Bax oligomeric pore consisting with experimental residue-residue distances. The models are stable, capturing well double electron-electron resonance (DEER) spectroscopy measurements and provide structural details in line with the DEER data. Comparison with the latest experimental results revealed that our models agree well with both Bax and Bak pores, pointed to a converged structural arrangement for Bax and Bak pore formation. Using multi-scale molecular dynamics simulations, we probed mutational effects on Bax transformation from monomer → dimer → membrane pore formation at atomic resolution. We observe that two cancer-related mutations, G40E and S118I, allosterically destabilize the monomer and stabilize an off-pathway swapped dimer, preventing productive pore formation. This observation suggests a mechanism whereby the mutations may work mainly by over-stabilizing the monomer → dimer transformation toward an unproductive off-pathway swapped-dimer state. Our observations point to misfolded Bax states, shedding light on the molecular mechanism of Bax mutation-elicited cancer. Most importantly, the structure of the Bax pore facilitates future study of releases cytochrome C in atomic detail.

  4. Energy landscapes of a mechanical prion and their implications for the molecular mechanism of long-term memory.

    PubMed

    Chen, Mingchen; Zheng, Weihua; Wolynes, Peter G

    2016-05-03

    Aplysia cytoplasmic polyadenylation element binding (CPEB) protein, a translational regulator that recruits mRNAs and facilitates translation, has been shown to be a key component in the formation of long-term memory. Experimental data show that CPEB exists in at least a low-molecular weight coiled-coil oligomeric form and an amyloid fiber form involving the Q-rich domain (CPEB-Q). Using a coarse-grained energy landscape model, we predict the structures of the low-molecular weight oligomeric form and the dynamics of their transitions to the β-form. Up to the decamer, the oligomeric structures are predicted to be coiled coils. Free energy profiles confirm that the coiled coil is the most stable form for dimers and trimers. The structural transition from α to β is shown to be concentration dependent, with the transition barrier decreasing with increased concentration. We observe that a mechanical pulling force can facilitate the α-helix to β-sheet (α-to-β) transition by lowering the free energy barrier between the two forms. Interactome analysis of the CPEB protein suggests that its interactions with the cytoskeleton could provide the necessary mechanical force. We propose that, by exerting mechanical forces on CPEB oligomers, an active cytoskeleton can facilitate fiber formation. This mechanical catalysis makes possible a positive feedback loop that would help localize the formation of CPEB fibers to active synapse areas and mark those synapses for forming a long-term memory after the prion form is established. The functional role of the CPEB helical oligomers in this mechanism carries with it implications for targeting such species in neurodegenerative diseases.

  5. Brownian dynamics simulation of sickle hemoglobin bundle formation

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Gunton, James; Chakrabarti, Amit

    2010-03-01

    The physical properties of biopolymer fibers, such as their stability and degree of aggregation, are implicated in many diseases, including sickle cell anemia. The natural chirality of protofilaments plays a crucial role in the formation of sickle hemoglobin fiber which leads to the permanent blockage of microvessels. We use Brownian dynamics to investigate the kinetics of fiber aggregation. The geometrical helical structure and chirality of the filaments are modeled by anisotropic patch-like interactions. We present the kinetics of fiber formation and study the possibility of a finite critical fiber bundle size. We compare our results with various experimental and theoretical results. This work is supported by grants from the NSF and the G. Harold and Leila Y. Mathers Foundation.

  6. Characteristics and formation of amino acids and hydroxy acids of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Cooper, G. W.; Pizzarello, S.

    1995-01-01

    Eight characteristics of the unique suite of amino acids and hydroxy acids found in the Murchison meteorite can be recognized on the basis of detailed molecular and isotopic analyses. The marked structural correspondence between the alpha-amino acids and alpha-hydroxy acids and the high deuterium/hydrogen ratio argue persuasively for their formation by aqueous phase Strecker reactions in the meteorite parent body from presolar, i.e., interstellar, aldehydes, ketones, ammonia, and hydrogen cyanide. The characteristics of the meteoritic suite of amino acids and hydroxy acids are briefly enumerated and discussed with regard to their consonance with this interstellar-parent body formation hypothesis. The hypothesis has interesting implications for the organic composition of both the primitive parent body and the presolar nebula.

  7. John H. Dillon Medal Talk: Protein Fibrils, Polymer Physics: Encounter at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Mezzenga, Raffaele

    2011-03-01

    Aggregation of proteins is central to many aspects of daily life, ranging from blood coagulation, to eye cataract formation disease, food processing, or neurodegenerative infections. In particular, the physical mechanisms responsible for amyloidosis, the irreversible fibril formation of various proteins implicated in protein misfolding disorders such as Alzheimer, Creutzfeldt-Jakob or Huntington's diseases, have not yet been fully elucidated. In this talk I will discuss how polymer physics and colloidal science concepts can be used to reveal very useful information on the formation, structure and properties of amyloid protein fibrils. I will discuss their physical properties at various length scales, from their collective liquid crystalline behavior in solution to their structural features at the single molecule length scale and show how polymer science notions can shed a new light on these interesting systems. 1) ``Understanding amyloid aggregation by statistical analysis of atomic force microscopy images'' J. Adamcik, J.-M. Jung, J. Flakowski, P. De Los Rios, G. Dietler and R. Mezzenga, Nature nanotechnology, 5, 423 (2010)

  8. Willy: A prize noble Ur-Fremdling - Its history and implications for the formation of Fremdlinge and CAI

    NASA Technical Reports Server (NTRS)

    Armstrong, J. T.; El Goresy, A.; Wasserburg, G. J.

    1985-01-01

    The structure and composition of Willy, a 150-micron-diameter Fremdling in CAI 5241 from the Allende meteorite, are investigated using optical, secondary-electron, and electron-backscatter microscopy and electron-microprobe analysis. The results are presented in diagrams, maps, tables, graphs, and micrographs and compared with those for other Allende Fremdlinge. Willy is found to have a concentric-zone structure comprising a complex porous core of magnetite, metal, sulfide, scheelite, and other minor phases; a compact magnetite-apatite mantle; a thin (20 microns or less) reaction-assemblage zone; and a dense outer rim of fassaite with minor spinel. A multistage formation sequence involving changes in T and fO2 and preceding the introduction of Willy into the CAI (which itself preceded CAI spinel and silicate formation) is postulated, and it is inferred from the apparent lack of post-capture recrystallization that Willy has not been subjected to temperatures in excess of 600 C and may represent the precursor material for many other Fremdlinge.

  9. Implications of the giant planets for the formation and evolution of planetary systems

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.

    1989-01-01

    The giant planet region in the solar system appears to be bounded inside by the limit of water condensation, suggesting that the most abundant astrophysical condensate plays an important role in giant planet formation. Indeed, Jupiter and Saturn exhibit evidence for rock and/or ice cores or central concentrations that probably accumulated first, acting as nuclei for subsequent gas accumulation. This is a 'planetary' accumulation process, distinct from the stellar formation process, even though most of Jupiter has a similar composition to the primordial sun. Uranus and Neptune appear to exhibit evidence of an important role for giant impacts in their structure and evolution. No simple picture emerges for the temperature structure of the solar nebula from observations alone. However, it seems likely that Jupiter is the key to the planetary system, and a similar planet could be expected for other systems. The data and inferences from these data are summarized for the entire known solar system beyond the asteroid belt.

  10. Investigation of a Modern Incipient Stromatolite from Obsidian Pool Prime, Yellowstone National Park: Implications for Early Lithification in the Formation of Light-Dark Stromatolite Laminae

    NASA Astrophysics Data System (ADS)

    Corsetti, F. A.; Berelson, W.; Pepe-Ranney, C. P.; Mata, S. A.; Spear, J. R.

    2016-12-01

    Stromatolites have been defined multiple ways, but the presence of lamination is common to all definitions. Despite this commonality, the origin of the lamination in many ancient stromatolites remains vague. Lamination styles vary, but sub-mm light-dark couplets are common in many ancient stromatolites. Here, we investigate an actively forming incipient stromatolite from Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park, to better understand the formation of light-dark couplets similar to many ancient stromatolites in texture and structure. In the OPP stromatolites, a dense network of layer-parallel bundles of cyanobacterial filaments (a dark layer) is followed by an open network of layer-perpendicular or random filaments (a light layer) that reflect a diurnal cycle in the leading edge of the microbial mat that coats the stromatolite's surface. Silica crust encases the cyanobacterial filaments maintaining the integrity of the lamination. Bubbles formed via oxygenic photosynthesis are commonly trapped within the light layers, indicating that lithification occurs rapidly before the bubbles can collapse. The filamentous, non-heterocystous stromatoite-building cyanobacterium from OPP is most closely related to a stromatolite-building cyanobacterium from a hot spring in Japan. Once built, "tenants" from multiple microbial phyla move into the structure, mixing and mingling to produce a complicated integrated biogeochemical signal that may be difficult to untangle in ancient examples. While the cyanobacterial response to the diurnal cycle has been previously implicated in the formation of light-dark couplets, the OPP example highlights the importance of early lithification in maintaining the fabric. Thus, the presence of light-dark couplets and bubble structures may indicate very early lithification and therefore a certain degree of mineral saturation in the ancient ocean or other aquatic system, and that bubble structures, if present, may be evidence for oxygenic photosynthesis. Other lamination hypotheses suggest that lithification is driven by sulfate reduction within a stratified microbial mat—a possibility in some stromatolites, but the lithification engine must move deeper in the mat where the formation of fine light-dark couplets becomes more problematic.

  11. The problem of measurement model misspecification in behavioral and organizational research and some recommended solutions.

    PubMed

    MacKenzie, Scott B; Podsakoff, Philip M; Jarvis, Cheryl Burke

    2005-07-01

    The purpose of this study was to review the distinction between formative- and reflective-indicator measurement models, articulate a set of criteria for deciding whether measures are formative or reflective, illustrate some commonly researched constructs that have formative indicators, empirically test the effects of measurement model misspecification using a Monte Carlo simulation, and recommend new scale development procedures for latent constructs with formative indicators. Results of the Monte Carlo simulation indicated that measurement model misspecification can inflate unstandardized structural parameter estimates by as much as 400% or deflate them by as much as 80% and lead to Type I or Type II errors of inference, depending on whether the exogenous or the endogenous latent construct is misspecified. Implications of this research are discussed. Copyright 2005 APA, all rights reserved.

  12. Trace and Contextual Fear Conditioning Require Neural Activity and NMDA Receptor-Dependent Transmission in the Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Gilmartin, Marieke R.; Helmstetter, Fred J.

    2010-01-01

    The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a…

  13. Getting in (and out of) the loop: regulating higher order telomere structures.

    PubMed

    Luke-Glaser, Sarah; Poschke, Heiko; Luke, Brian

    2012-01-01

    The DNA at the ends of linear chromosomes (the telomere) folds back onto itself and forms an intramolecular lariat-like structure. Although the telomere loop has been implicated in the protection of chromosome ends from nuclease-mediated resection and unscheduled DNA repair activities, it potentially poses an obstacle to the DNA replication machinery during S-phase. Therefore, the coordinated regulation of telomere loop formation, maintenance, and resolution is required in order to establish a balance between protecting the chromosome ends and promoting their duplication prior to cell division. Until recently, the only factor known to influence telomere looping in human cells was TRF2, a component of the shelterin complex. Recent work in yeast and mouse cells has uncovered additional regulatory factors that affect the loop structure at telomeres. In the following "perspective" we outline what is known about telomere looping and highlight the latest results regarding the regulation of this chromosome end structure. We speculate about how the manipulation of the telomere loop may have therapeutic implications in terms of diseases associated with telomere dysfunction and uncontrolled proliferation.

  14. Crystal growth of cholesterol in hydrogels and its characterization

    NASA Astrophysics Data System (ADS)

    Manuel Bravo-Arredondo, J.; Moreno, A.; Mendoza, M. E.

    2014-09-01

    In this work, we report the crystallization of cholesterol in ethanol solution and in three different hydrogel media: tetramethyl orthosilane, sodium metasilicate, and poly(vinyl)alcohol, whose structures are similar to the gel-like polymer structure of mucin, which is found in the mucus present in bile stone formation. The monohydrated triclinic phase was identified in all the samples by means of X-ray powder diffraction. The characteristic polymorphic crystalline transition of the anhydrous cholesterol was detected by differential thermal analysis and modulated differential scanning calorimetry only in crystals grown in ethanol, sodium silicate, and tetramethyl orthosilane. Finally, hysteresis of the phase transition temperature was measured by modulated differential scanning calorimetry in crystals grown in ethanol. The biological implications of the crystallization of cholesterol for bile stones formation are discussed in the last part of this contribution.

  15. Multimodal Chemical Imaging of Amyloid Plaque Polymorphism Reveals Aβ Aggregation Dependent Anionic Lipid Accumulations and Metabolism.

    PubMed

    Michno, Wojciech; Kaya, Ibrahim; Nyström, Sofie; Guerard, Laurent; Nilsson, K Peter R; Hammarström, Per; Blennow, Kaj; Zetterberg, Henrik; Hanrieder, Jörg

    2018-06-01

    Amyloid plaque formation constitutes one of the main pathological hallmark of Alzheimer's disease (AD) and is suggested to be a critical factor driving disease pathogenesis. Interestingly, in patients that display amyloid pathology but remain cognitively normal, Aβ deposits are predominantly of diffuse morphology suggesting that cored plaque formation is primarily associated with cognitive deterioration and AD pathogenesis. Little is known about the molecular mechanism responsible for conversion of monomeric Aβ into neurotoxic aggregates and the predominantly cored deposits observed in AD. The structural diversity among Aβ plaques, including cored/compact- and diffuse, may be linked to their distinct Aβ profile and other chemical species including neuronal lipids. We developed a novel, chemical imaging paradigm combining matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) and fluorescent amyloid staining. This multimodal imaging approach was used to probe the lipid chemistry associated with structural plaque heterogeneity in transgenic AD mice (tgAPPSwe) and was correlated to Aβ profiles determined by subsequent laser microdissection and immunoprecipitation-mass spectrometry. Multivariate image analysis revealed an inverse localization of ceramides and their matching metabolites to diffuse and cored structures within single plaques, respectively. Moreover, phosphatidylinositols implicated in AD pathogenesis, were found to localise to the diffuse Aβ structures and correlate with Aβ1-42. Further, lysophospholipids implicated in neuroinflammation were increased in all Aβ deposits. The results support previous clinical findings on the importance of lipid disturbances in AD pathophysiology and associated sphingolipid processing. These data highlight the potential of multimodal imaging as a powerful technology to probe neuropathological mechanisms.

  16. An exploratory mixed-methods crossover study comparing DVD- vs. Web-based patient decision support in three conditions: The importance of patient perspectives.

    PubMed

    Halley, Meghan C; Rendle, Katharine A S; Gillespie, Katherine A; Stanley, Katherine M; Frosch, Dominick L

    2015-12-01

    The last 15 years have witnessed considerable progress in the development of decision support interventions (DESIs). However, fundamental questions about design and format of delivery remain. An exploratory, randomized mixed-method crossover study was conducted to compare a DVD- and Web-based DESI. Randomized participants used either the Web or the DVD first, followed by the alternative format. Participants completed a questionnaire to assess decision-specific knowledge at baseline and a questionnaire and structured qualitative interview after viewing each format. Tracking software was used to capture Web utilization. Transcripts were analyzed using integrated inductive and deductive approaches. Quantitative data were analyzed using exploratory bivariate and multivariate analyses. Exploratory knowledge analyses suggest that both formats increased knowledge, with limited evidence that the DVD increased knowledge more than the Web. Format preference varied across participants: 44% preferred the Web, 32% preferred the DVD and 24% preferred 'both'. Patient discussions of preferences for DESI information structure and the importance of a patients' stage of a given decision suggest these characteristics may be important factors underlying variation in utilization, format preferences and knowledge outcomes. Our results suggest that both DESI formats effectively increase knowledge. Patients' perceptions of these two formats further suggest that there may be no single 'best' format for all patients. These results have important implications for understanding why different DESI formats might be preferable to and more effective for different patients. Further research is needed to explore the relationship between these factors and DESI utilization outcomes across diverse patient populations. © 2014 John Wiley & Sons Ltd.

  17. Phosphodiester Cleavage in Ribonuclease H Occurs via an Associative Two-Metal-Aided Catalytic Mechanism

    PubMed Central

    De Vivo, Marco; Dal Peraro, Matteo; Klein, Michael L.

    2009-01-01

    Ribonuclease H (RNase H) belongs to the nucleotidyl-transferase (NT) superfamily and hydrolyzes the phosphodiester linkages that form the backbone of the RNA strand in RNA·DNA hybrids. This enzyme is implicated in replication initiation and DNA topology restoration and represents a very promising target for anti-HIV drug design. Structural information has been provided by high-resolution crystal structures of the complex RNase H/RNA·DNA from Bacillus halodurans (Bh), which reveals that two metal ions are required for formation of a catalytic active complex. Here, we use classical force field-based and quantum mechanics/molecular mechanics calculations for modeling the nucleotidyl transfer reaction in RNase H, clarifying the role of the metal ions and the nature of the nucleophile (water versus hydroxide ion). During the catalysis, the two metal ions act cooperatively, facilitating nucleophile formation and stabilizing both transition state and leaving group. Importantly, the two Mg2+ metals also support the formation of a meta-stable phosphorane intermediate along the reaction, which resembles the phosphorane intermediate structure obtained only in the debated β-phosphoglucomutase crystal. The nucleophile formation (i.e., water deprotonation) can be achieved in situ, after migration of one proton from the water to the scissile phosphate in the transition state. This proton transfer is actually mediated by solvation water molecules. Due to the highly conserved nature of the enzymatic bimetal motif, these results might also be relevant for structurally similar enzymes belonging to the NT superfamily. PMID:18662000

  18. Inhibition of beta-amyloid aggregation by fluorescent dye labels

    NASA Astrophysics Data System (ADS)

    Amaro, Mariana; Wellbrock, Thorben; Birch, David J. S.; Rolinski, Olaf J.

    2014-02-01

    The fluorescence decay of beta-amyloid's (Aβ) intrinsic fluorophore tyrosine has been used for sensing the oligomer formation of dye-labelled Aβ monomers and the results compared with previously studied oligomerization of the non-labelled Aβ peptides. It has been demonstrated that two different sized, covalently bound probes 7-diethylaminocoumarin-3-carbonyl and Hilyte Fluor 488 (HLF), alter the rate and character of oligomerization to different extents. The ability of HLF to inhibit formation of highly ordered structures containing beta-sheets was also shown. The implications of our findings for using fluorescence methods in amyloidosis research are discussed and the advantages of this auto-fluorescence approach highlighted.

  19. Ionic Strength Modulation of the Free Energy Landscape of Aβ40 Peptide Fibril Formation.

    PubMed

    Abelein, Axel; Jarvet, Jüri; Barth, Andreas; Gräslund, Astrid; Danielsson, Jens

    2016-06-01

    Protein misfolding and formation of cross-β structured amyloid fibrils are linked to many neurodegenerative disorders. Although recently developed quantitative approaches have started to reveal the molecular nature of self-assembly and fibril formation of proteins and peptides, it is yet unclear how these self-organization events are precisely modulated by microenvironmental factors, which are known to strongly affect the macroscopic aggregation properties. Here, we characterize the explicit effect of ionic strength on the microscopic aggregation rates of amyloid β peptide (Aβ40) self-association, implicated in Alzheimer's disease. We found that physiological ionic strength accelerates Aβ40 aggregation kinetics by promoting surface-catalyzed secondary nucleation reactions. This promoted catalytic effect can be assigned to shielding of electrostatic repulsion between monomers on the fibril surface or between the fibril surface itself and monomeric peptides. Furthermore, we observe the formation of two different β-structured states with similar but distinct spectroscopic features, which can be assigned to an off-pathway immature state (Fβ*) and a mature stable state (Fβ), where salt favors formation of the Fβ fibril morphology. Addition of salt to preformed Fβ* accelerates transition to Fβ, underlining the dynamic nature of Aβ40 fibrils in solution. On the basis of these results we suggest a model where salt decreases the free-energy barrier for Aβ40 folding to the Fβ state, favoring the buildup of the mature fibril morphology while omitting competing, energetically less favorable structural states.

  20. Empirical data on corpus design and usage in biomedical natural language processing.

    PubMed

    Cohen, K Bretonnel; Fox, Lynne; Ogren, Philip V; Hunter, Lawrence

    2005-01-01

    This paper describes the design of six publicly available biomedical corpora. We then present usage data for the six corpora. We show that corpora that are carefully annotated with respect to structural and linguistic characteristics and that are distributed in standard formats are more widely used than corpora that are not. These findings have implications for the design of the next generation of biomedical corpora.

  1. The structure and evolution of ancient impact basins on Mars

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Schultz, R. A.; Rogers, J.

    1982-01-01

    It is pointed out that characteristic styles of degradation and modification of obvious Martian basins make it possible to recognize more subtle expressions. This approach is seen as providing not only additional basins to the existing inventory but also fundamental clues for initial impact basin structure and stratigraphy. It also reveals the long-lasting influence of basin formation on the crust of Mars in spite of extensive erosion and resurfacing. Consideration is given to five clear examples of modified impact basins, and regions around each that have undergone similar processes (fracturing, collapse, channeling) are delineated. These processes among the different basins are then compared, and similar zones of modification are correlated with concentric basin rings. Consideration is then given to the implications of these observations for current models of basin formation and to the role of impact basins in controlling regional tectonics. The results indicate that large multiring impact scars leave a major but sometimes subtle imprint on the geologic structure of stable crustal regions on Mars.

  2. Profile formation of academic self-concept in elementary school students in grades 1 to 4.

    PubMed

    Schmidt, Isabelle; Brunner, Martin; Keller, Lena; Scherrer, Vsevolod; Wollschläger, Rachel; Baudson, Tanja Gabriele; Preckel, Franzis

    2017-01-01

    Academic self-concept (ASC) is comprised of individual perceptions of one's own academic ability. In a cross-sectional quasi-representative sample of 3,779 German elementary school children in grades 1 to 4, we investigated (a) the structure of ASC, (b) ASC profile formation, an aspect of differentiation that is reflected in lower correlations between domain-specific ASCs with increasing grade level, (c) the impact of (internal) dimensional comparisons of one's own ability in different school subjects for profile formation of ASC, and (d) the role played by differences in school grades between subjects for these dimensional comparisons. The nested Marsh/Shavelson model, with general ASC at the apex and math, writing, and reading ASC as specific factors nested under general ASC fitted the data at all grade levels. A first-order factor model with math, writing, reading, and general ASCs as correlated factors provided a good fit, too. ASC profile formation became apparent during the first two to three years of school. Dimensional comparisons across subjects contributed to ASC profile formation. School grades enhanced these comparisons, especially when achievement profiles were uneven. In part, findings depended on the assumed structural model of ASCs. Implications for further research are discussed with special regard to factors influencing and moderating dimensional comparisons.

  3. An ALMA Survey of Planet Forming Disks in Rho Ophiuchus

    NASA Astrophysics Data System (ADS)

    Cox, Erin Guilfoil; Looney, Leslie; Harris, Robert J.; Dong, Jiayin; Segura-Cox, Dominique; Tobin, John J.; Sadavoy, Sarah; Li, Zhi-Yun; Dunham, Michael; Perez, Laura M.; Chandler, Claire J.; Kratter, Kaitlin M.; Melis, Carl; Chiang, Hsin-Fang

    2017-01-01

    Relatively evolved (~ 1 Myr old) protostars with little residual natal envelope, but massive disks, are commonly assumed to be the sites of ongoing planet formation. Critical to our study of these objects is information about the available mass reservior and dust structure, as they directly tie in to how much mass is available for planets as well as the modes of planet formation that occur (i.e., core-accretion vs. gravitational instability). Millimeter-wave observations provide this critical information as continuum emission is relatively optically thin, allowing for mass estimates, and the availability of high-resolution interferometry, allowing structure constraints. We present high-resolution observations of the population of Class II protostars in the Rho-Ophiuchus cloud (d ~ 130 pc). Our survey observed ~50 of these older protostars at 870µm, using the Atacama Large Millimeter/submillimeter Array (ALMA). Out of these sources, there are ~10 transition disks, where we see a ring of dust emission surrounding the central protostar -- indicative of ongoing planet formation -- as well as many binary systems. Both of these stages have implications for star and planet formation. We present results from both 1-D and 2-D disk modeling, where we try to understand disk substructure that might indicate on-going planet formation, in particular, transition disk cavities, disk gaps, and asymmetries in the dust emission.

  4. Profile formation of academic self-concept in elementary school students in grades 1 to 4

    PubMed Central

    Schmidt, Isabelle; Brunner, Martin; Keller, Lena; Scherrer, Vsevolod; Wollschläger, Rachel; Baudson, Tanja Gabriele; Preckel, Franzis

    2017-01-01

    Academic self-concept (ASC) is comprised of individual perceptions of one’s own academic ability. In a cross-sectional quasi-representative sample of 3,779 German elementary school children in grades 1 to 4, we investigated (a) the structure of ASC, (b) ASC profile formation, an aspect of differentiation that is reflected in lower correlations between domain-specific ASCs with increasing grade level, (c) the impact of (internal) dimensional comparisons of one’s own ability in different school subjects for profile formation of ASC, and (d) the role played by differences in school grades between subjects for these dimensional comparisons. The nested Marsh/Shavelson model, with general ASC at the apex and math, writing, and reading ASC as specific factors nested under general ASC fitted the data at all grade levels. A first-order factor model with math, writing, reading, and general ASCs as correlated factors provided a good fit, too. ASC profile formation became apparent during the first two to three years of school. Dimensional comparisons across subjects contributed to ASC profile formation. School grades enhanced these comparisons, especially when achievement profiles were uneven. In part, findings depended on the assumed structural model of ASCs. Implications for further research are discussed with special regard to factors influencing and moderating dimensional comparisons. PMID:28542384

  5. A Nonbactericidal Zinc-Complexing Ligand as a Biofilm Inhibitor: Structure-Guided Contrasting Effects on Staphylococcus aureus Biofilm.

    PubMed

    Kapoor, Vidushi; Rai, Rajanikant; Thiyagarajan, Durairaj; Mukherjee, Sandipan; Das, Gopal; Ramesh, Aiyagari

    2017-08-04

    Zinc-complexing ligands are prospective anti-biofilm agents because of the pivotal role of zinc in the formation of Staphylococcus aureus biofilm. Accordingly, the potential of a thiosemicarbazone (compound C1) and a benzothiazole-based ligand (compound C4) in the prevention of S. aureus biofilm formation was assessed. Compound C1 displayed a bimodal activity, hindering biofilm formation only at low concentrations and promoting biofilm growth at higher concentrations. In the case of C4, a dose-dependent inhibition of S. aureus biofilm growth was observed. Atomic force microscopy analysis suggested that at higher concentrations C1 formed globular aggregates, which perhaps formed a substratum that favored adhesion of cells and biofilm formation. In the case of C4, zinc supplementation experiments validated zinc complexation as a plausible mechanism of inhibition of S. aureus biofilm. Interestingly, C4 was nontoxic to cultured HeLa cells and thus has promise as a therapeutic anti-biofilm agent. The essential understanding of the structure-driven implications of zinc-complexing ligands acquired in this study might assist future screening regimes for identification of potent anti-biofilm agents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of lower Triassic wrinkle structures: implications for the search for life on other planets.

    PubMed

    Mata, Scott A; Bottjer, David J

    2009-11-01

    Wrinkle structures are microbially mediated sedimentary structures that are a common feature of Proterozoic and earliest Phanerozoic siliciclastic seafloors on Earth and occur only rarely in post-Cambrian strata. These macroscopic microbially induced sedimentary structures are readily identifiable at the outcrop scale, and their recognition on other planetary bodies by landed missions may suggest the presence of past microbial life. Wrinkle structures of the Lower Triassic (Spathian) Virgin Limestone Member of the Moenkopi Formation in the western United States record an occurrence of widespread microbialite formation in the wake of the end-Permian mass extinction, the largest biotic crisis of the Phanerozoic. Wrinkle structures occur on proximal sandy tempestites deposited within the offshore transition. Storm layers appear to have been rapidly colonized by microbial mats and were subsequently buried by mud during fair-weather conditions. Wrinkle structures exhibit flat-topped crests and sinuous troughs, with associated mica grains oriented parallel to bedding, suggestive of trapping and binding activity. Although Lower Triassic wrinkle structures postdate the widespread occurrence of these features during the Proterozoic and Cambrian, they exhibit many of the same characteristics and environmental trends, which suggests a conservation of microbial formational and preservational processes in subtidal siliciclastic settings on Earth from the Precambrian into the Phanerozoic. In the search for extraterrestrial life, it may be these conservative characteristics that prove to be the most useful and robust for recognizing microbial features on other planetary bodies, and may add to an ever-growing foundation of knowledge for directing future explorations aimed at seeking out macroscopic microbial signatures.

  7. The Galactic Distribution of Massive Star Formation from the Red MSX Source Survey

    NASA Astrophysics Data System (ADS)

    Figura, Charles C.; Urquhart, J. S.

    2013-01-01

    Massive stars inject enormous amounts of energy into their environments in the form of UV radiation and molecular outflows, creating HII regions and enriching local chemistry. These effects provide feedback mechanisms that aid in regulating star formation in the region, and may trigger the formation of subsequent generations of stars. Understanding the mechanics of massive star formation presents an important key to understanding this process and its role in shaping the dynamics of galactic structure. The Red MSX Source (RMS) survey is a multi-wavelength investigation of ~1200 massive young stellar objects (MYSO) and ultra-compact HII (UCHII) regions identified from a sample of colour-selected sources from the Midcourse Space Experiment (MSX) point source catalog and Two Micron All Sky Survey. We present a study of over 900 MYSO and UCHII regions investigated by the RMS survey. We review the methods used to determine distances, and investigate the radial galactocentric distribution of these sources in context with the observed structure of the galaxy. The distribution of MYSO and UCHII regions is found to be spatially correlated with the spiral arms and galactic bar. We examine the radial distribution of MYSOs and UCHII regions and find variations in the star formation rate between the inner and outer Galaxy and discuss the implications for star formation throughout the galactic disc.

  8. Homology modeling and virtual screening to discover potent inhibitors targeting the imidazole glycerophosphate dehydratase protein in Staphylococcus xylosus

    NASA Astrophysics Data System (ADS)

    Chen, Xing-Ru; Wang, Xiao-Ting; Hao, Mei-Qi; Zhou, Yong-Hui; Cui, Wen-Qiang; Xing, Xiao-Xu; Xu, Chang-Geng; Bai, Jing-Wen; Li, Yan-Hua

    2017-11-01

    The imidazole glycerophosphate dehydratase (IGPD) protein is a therapeutic target for herbicide discovery. It is also regarded as a possible target in Staphylococcus xylosus (S. xylosus) for solving mastitis in the dairy cow. The 3D structure of IGPD protein is essential for discovering novel inhibitors during high-throughput virtual screening. However, to date, the 3D structure of IGPD protein of S. xylosus has not been solved. In this study, a series of computational techniques including homology modeling, Ramachandran Plots, and Verify 3D were performed in order to construct an appropriate 3D model of IGPD protein of S. xylosus. Nine hits were identified from 2500 compounds by docking studies. Then, these 9 compounds were first tested in vitro in S. xylosus biofilm formation using crystal violet staining. One of the potential compounds, baicalin was shown to significantly inhibit S. xylosus biofilm formation. Finally, the baicalin was further evaluated, which showed better inhibition of biofilm formation capability in S. xylosus by scanning electron microscopy. Hence, we have predicted the structure of IGPD protein of S. xylosus using computational techniques. We further discovered the IGPD protein was targeted by baicalin compound which inhibited the biofilm formation in S. xylosus. Our findings here would provide implications for the further development of novel IGPD inhibitors for the treatment of dairy mastitis.

  9. Homology Modeling and Virtual Screening to Discover Potent Inhibitors Targeting the Imidazole Glycerophosphate Dehydratase Protein in Staphylococcus xylosus.

    PubMed

    Chen, Xing-Ru; Wang, Xiao-Ting; Hao, Mei-Qi; Zhou, Yong-Hui; Cui, Wen-Qiang; Xing, Xiao-Xu; Xu, Chang-Geng; Bai, Jing-Wen; Li, Yan-Hua

    2017-01-01

    The imidazole glycerophosphate dehydratase (IGPD) protein is a therapeutic target for herbicide discovery. It is also regarded as a possible target in Staphylococcus xylosus ( S. xylosus ) for solving mastitis in the dairy cow. The 3D structure of IGPD protein is essential for discovering novel inhibitors during high-throughput virtual screening. However, to date, the 3D structure of IGPD protein of S. xylosus has not been solved. In this study, a series of computational techniques including homology modeling, Ramachandran Plots, and Verify 3D were performed in order to construct an appropriate 3D model of IGPD protein of S. xylosus . Nine hits were identified from 2,500 compounds by docking studies. Then, these nine compounds were first tested in vitro in S. xylosus biofilm formation using crystal violet staining. One of the potential compounds, baicalin was shown to significantly inhibit S. xylosus biofilm formation. Finally, the baicalin was further evaluated, which showed better inhibition of biofilm formation capability in S. xylosus by scanning electron microscopy. Hence, we have predicted the structure of IGPD protein of S. xylosus using computational techniques. We further discovered the IGPD protein was targeted by baicalin compound which inhibited the biofilm formation in S. xylosus . Our findings here would provide implications for the further development of novel IGPD inhibitors for the treatment of dairy mastitis.

  10. X-ray insights into star and planet formation.

    PubMed

    Feigelson, Eric D

    2010-04-20

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA's (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases.

  11. X-ray insights into star and planet formation

    PubMed Central

    Feigelson, Eric D.

    2010-01-01

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197

  12. The global evolution of the primordial solar nebula

    NASA Technical Reports Server (NTRS)

    Ruden, S. P.; Lin, D. N. C.

    1986-01-01

    Complete radial, time-dependent calculations of the structure and evolution of the primordial solar nebula during the viscous diffusion stage are presented. The viscous stress is derived from analytic one-zone models of the vertical nebular structure based on detailed grain opacities. Comparisons with full numerical integrations indicate that the effective viscous alpha parameter is about 0.01. The evolution time of a minimum mass nebula is one-million yr or less. The flow pattern of fluid elements in the disk is examined and the implications the results have on the theory of the formation of the solar system are discussed.

  13. Ab initio characterization of ClOOH - Implications for atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rendell, Alistair P.

    1993-01-01

    The equilibrium structure, dipole moment, harmonic vibrational frequencies, and infrared intensities of ClOOH are determined using the CCSD(T) (singles and doubles coupled-cluster theory plus a perturbational estimate of the effects of connected triple excitations) electronic structure method in conjunction with a TZ2P (triple xi plus double polarization) basis set. The heat of formation of CIOOH is determined (using two different isodesmic reactions) to be +1.5 +/- 1 kcal/mol at 0 K or +0.2 +/- 1 kcal/mol at 298.15 K. Using the computed heat of formation, we examined the stability of ClOOH with respect to the ClO + OH, ClOO + H, and HOO + Cl dissociation limits. Since ClOOH is found to be quite stable, it is argued that the chemistry of ClOOH should be included in any accurate modeling of the stratosphere.

  14. Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties.

    PubMed Central

    Brown, J E; Khodr, H; Hider, R C; Rice-Evans, C A

    1998-01-01

    The flavonoids constitute a large group of polyphenolic phytochemicals with antioxidant properties in vitro. The interactions of four structurally related flavonoids (quercetin, kaempferol, rutin and luteolin) with Cu2+ ions were investigated in terms of the extent to which they undergo complex formation through chelation or modification through oxidation, as well as in their structural dependence. The ortho 3',4'-dihydroxy substitution in the B ring is shown to be important for Cu2+-chelate formation, thereby influencing the antioxidant activity. The presence of a 3-hydroxy group in the flavonoid structure enhances the oxidation of quercetin and kaempferol, whereas luteolin and rutin, each lacking the 3-hydroxy group, do not oxidize as readily in the presence of Cu2+ ions. The results also demonstrate that the reactivities of the flavonoids in protecting low-density lipoprotein (LDL) against Cu2+ ion-induced oxidation are dependent on their structural properties in terms of the response of the particular flavonoid to Cu2+ ions, whether chelation or oxidation, their partitioning abilities between the aqueous compartment and the lipophilic environment within the LDL particle, and their hydrogen-donating antioxidant properties. PMID:9494082

  15. Hierarchy of on-orbit servicing interfaces

    NASA Technical Reports Server (NTRS)

    Moe, Rud V.

    1989-01-01

    A series of equipment interfaces is involved in on-orbit servicing operations. The end-to-end hierarchy of servicing interfaces is presented. The interface concepts presented include structure and handling, and formats for transfer of resources (power, data, fluids, etc.). Consequences on cost, performance, and service ability of the use of standard designs or unique designs with interface adapters are discussed. Implications of the interface designs compatibility with remote servicing using telerobotic servicers are discussed.

  16. Interactions driving the collapse of islet amyloid polypeptide: Implications for amyloid aggregation

    NASA Astrophysics Data System (ADS)

    Cope, Stephanie M.

    Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-residue intrinsically disordered hormone involved in glucose regulation and gastric emptying. The aggregation of hIAPP into amyloid fibrils is believed to play a causal role in type 2 diabetes. To date, not much is known about the monomeric state of hIAPP or how it undergoes an irreversible transformation from disordered peptide to insoluble aggregate. IAPP contains a highly conserved disulfide bond that restricts hIAPP(1-8) into a short ring-like structure: N_loop. Removal or chemical reduction of N_loop not only prevents cell response upon binding to the CGRP receptor, but also alters the mass per length distribution of hIAPP fibers and the kinetics of fibril formation. The mechanism by which N_loop affects hIAPP aggregation is not yet understood, but is important for rationalizing kinetics and developing potential inhibitors. By measuring end-to-end contact formation rates, Vaiana et al. showed that N_loop induces collapsed states in IAPP monomers, implying attractive interactions between N_loop and other regions of the disordered polypeptide chain . We show that in addition to being involved in intra-protein interactions, the N_loop is involved in inter-protein interactions, which lead to the formation of extremely long and stable beta-turn fibers. These non-amyloid fibers are present in the 10 muM concentration range, under the same solution conditions in which hIAPP forms amyloid fibers. We discuss the effect of peptide cyclization on both intra- and inter-protein interactions, and its possible implications for aggregation. Our findings indicate a potential role of N_loop-N_loop interactions in hIAPP aggregation, which has not previously been explored. Though our findings suggest that N_loop plays an important role in the pathway of amyloid formation, other naturally occurring IAPP variants that contain this structural feature are incapable of forming amyloids. For example, hIAPP readily forms amyloid fibrils in vitro, whereas the rat variant (rIAPP), differing by six amino acids, does not. In addition to being highly soluble, rIAPP is an effective inhibitor of hIAPP fibril formation . Both of these properties have been attributed to rIAPP's three proline residues: A25P, S28P and S29P. Single proline mutants of hIAPP have also been shown to kinetically inhibit hIAPP fibril formation. Because of their intrinsic dihedral angle preferences, prolines are expected to affect conformational ensembles of intrinsically disordered proteins. The specific effect of proline substitutions on IAPP structure and dynamics has not yet been explored, as the detection of such properties is experimentally challenging due to the low molecular weight, fast reconfiguration times, and very low solubility of IAPP peptides. High-resolution techniques able to measure tertiary contact formations are needed to address this issue. We employ a nanosecond laser spectroscopy technique to measure end-to-end contact formation rates in IAPP mutants. We explore the proline substitutions in IAPP and quantify their effects in terms of intrinsic chain stiffness. We find that the three proline mutations found in rIAPP increase chain stiffness. Interestingly, we also find that residue R18 plays an important role in rIAPP's unique chain stiffness and, together with the proline residues, is a determinant for its non-amyloidogenic properties. We discuss the implications of our findings on the role of prolines in IDPs.

  17. Crystal Structure and Oligomeric State of the RetS Signaling Kinase Sensory Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, X.; Jaw, J; Robinson, H

    2010-01-01

    The opportunistic pathogen Pseudomonas aeruginosa may cause both acute and chronic-persistent infections in predisposed individuals. Acute infections require the presence of a functional type III secretion system (T3SS), whereas chronic P. aeruginosa infections are characterized by the formation of drug-resistant biofilms. The T3SS and biofilm formation are reciprocally regulated by the signaling kinases LadS, RetS, and GacS. RetS downregulates biofilm formation and upregulates expression of the T3SS through a unique mechanism. RetS forms a heterodimeric complex with GacS and thus prevents GacS autophosphorylation and downstream signaling. The signals that regulate RetS are not known but RetS possesses a distinctive periplasmicmore » sensor domain that is believed to serve as receptor for the regulatory ligand. We have determined the crystal structure of the RetS sensory domain at 2.0 {angstrom} resolution. The structure closely resembles those of carbohydrate binding modules of other proteins, suggesting that the elusive ligands are likely carbohydrate moieties. In addition to the conserved beta-sandwich structure, the sensory domain features two alpha helices which create a unique surface topology. Protein-protein crosslinking and fluorescence energy transfer experiments also revealed that the sensory domain dimerizes with a dissociation constant of K{sub d} = 580 {+-} 50 nM, a result with interesting implications for our understanding of the underlying signaling mechanism.« less

  18. The crystal structure of the C45S mutant of annelid Arenicola marina peroxiredoxin 6 supports its assignment to the mechanistically typical 2-Cys subfamily without any formation of toroid-shaped decamers

    PubMed Central

    Smeets, Aude; Loumaye, Eléonore; Clippe, André; Rees, Jean-François; Knoops, Bernard; Declercq, Jean-Paul

    2008-01-01

    The peroxiredoxins (PRDXs) define a superfamily of thiol-dependent peroxidases able to reduce hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. Besides their cytoprotective antioxidant function, PRDXs have been implicated in redox signaling and chaperone activity, the latter depending on the formation of decameric high-molecular-weight structures. PRDXs have been mechanistically divided into three major subfamilies, namely typical 2-Cys, atypical 2-Cys, and 1-Cys PRDXs, based on the number and position of cysteines involved in the catalysis. We report the structure of the C45S mutant of annelid worm Arenicola marina PRDX6 in three different crystal forms determined at 1.6, 2.0, and 2.4 Å resolution. Although A. marina PRDX6 was cloned during the search of annelid homologs of mammalian 1-Cys PRDX6s, the crystal structures support its assignment to the mechanistically typical 2-Cys PRDX subfamily. The protein is composed of two distinct domains: a C-terminal domain and an N-terminal domain exhibiting a thioredoxin fold. The subunits are associated in dimers compatible with the formation of intersubunit disulfide bonds between the peroxidatic and the resolving cysteine residues in the wild-type enzyme. The packing of two crystal forms is very similar, with pairs of dimers associated as tetramers. The toroid-shaped decamers formed by dimer association and observed in most typical 2-Cys PRDXs is not present. Thus, A. marina PRDX6 presents structural features of typical 2-Cys PRDXs without any formation of toroid-shaped decamers, suggesting that it should function more like a cytoprotective antioxidant enzyme or a modulator of peroxide-dependent cell signaling rather than a molecular chaperone. PMID:18359859

  19. Early stages of carbonate mineralization revealed from molecular simulations: Implications for biomineral formation

    NASA Astrophysics Data System (ADS)

    Wallace, A. F.; DeYoreo, J.; Banfield, J. F.

    2011-12-01

    The carbonate mineral constituents of many biomineralized products, formed both in and ex vivo, grow by a multi-stage crystallization process that involves the nucleation and structural reorganization of transient amorphous phases. The existence of transient phases and cluster species has significant implications for carbonate nucleation and growth in natural and engineered environments, both modern and ancient. The structure of these intermediate phases remains elusive, as does the nature of the disorder to order transition, however, these process details may strongly influence the interpretation of elemental and isotopic climate proxy data obtained from authigenic and biogenic carbonates. While molecular simulations have been applied to certain aspects of crystal growth, studies of metal carbonate nucleation are strongly inhibited by the presence of kinetic traps that prevent adequate sampling of the potential landscape upon which the growing clusters reside within timescales accessible by simulation. This research addresses this challenge by marrying the recent Kawska-Zahn (KZ) approach to simulation of crystal nucleation and growth from solution with replica-exchange molecular dynamics (REMD) techniques. REMD has been used previously to enhance sampling of protein conformations that occupy energy wells that are separated by sizable thermodynamic and kinetic barriers, and is used here to probe the initial formation and onset of order within hydrated calcium and iron carbonate cluster species during nucleation. Results to date suggest that growing clusters initiate as short linear ion chains that evolve into two- and three-dimensional structures with continued growth. The planar structures exhibit an obvious 2d lattice, while establishment of a 3d lattice is hindered by incomplete ion desolvation. The formation of a dehydrated core consisting of a single carbonate ion is observed when the clusters are ~0.75 nm. At the same size a distorted, but discernible calcite-type lattice is also apparent. Continued growth results in expansion of the dehydrated core, however, complete desolvation and incorporation of cations into the growing carbonate phase is not achieved until the cluster grows to ~1.2 nm. Exploration of the system free energy along the crystallization path reveals "special" cluster sizes that correlate with ion desolvation milestones. The formation of these species comprise critical bottlenecks on the energy landscape and for the establishment of order within the growing clusters.

  20. Bone Disease in Axial Spondyloarthritis.

    PubMed

    Van Mechelen, Margot; Gulino, Giulia Rossana; de Vlam, Kurt; Lories, Rik

    2018-05-01

    Axial spondyloarthritis is a chronic inflammatory skeletal disorder with an important burden of disease, affecting the spine and sacroiliac joints and typically presenting in young adults. Ankylosing spondylitis, diagnosed by the presence of structural changes to the skeleton, is the prototype of this disease group. Bone disease in axial spondyloarthritis is a complex phenomenon with the coexistence of bone loss and new bone formation, both contributing to the morbidity of the disease, in addition to pain caused by inflammation. The skeletal structural changes respectively lead to increased fracture risk and to permanent disability caused by ankylosis of the sacroiliac joints and the spine. The mechanism of this new bone formation leading to ankylosis is insufficiently known. The process appears to originate from entheses, specialized structures that provide a transition zone in which tendon and ligaments insert into the underlying bone. Growth factor signaling pathways such as bone morphogenetic proteins, Wnts, and Hedgehogs have been identified as molecular drivers of new bone formation, but the relationship between inflammation and activation of these pathways remains debated. Long-standing control of inflammation appears necessary to avoid ankylosis. Recent evidence and concepts suggest an important role for biomechanical factors in both the onset and progression of the disease. With regard to new bone formation, these processes can be understood as ectopic repair responses secondary to inflammation-induced bone loss and instability. In this review, we discuss the clinical implications of the skeletal changes as well as the underlying molecular mechanisms, the relation between inflammation and new bone formation, and the potential role of biomechanical stress.

  1. The development of episodic memory: items, contexts, and relations.

    PubMed

    Yim, Hyungwook; Dennis, Simon J; Sloutsky, Vladimir M

    2013-11-01

    Episodic memory involves the formation of relational structures that bind information about the stimuli people experience to the contexts in which they experience them. The ability to form and retain such structures may be at the core of the development of episodic memory. In the first experiment reported here, 4- and 7-year-olds were presented with paired-associate learning tasks requiring memory structures of different complexity. A multinomial-processing tree model was applied to estimate the use of different structures in the two age groups. The use of two-way list-context-to-target structures and three-way structures was found to increase between the ages of 4 and 7. Experiment 2 demonstrated that the ability to form increasingly complex relational memory structures develops between the ages of 4 and 7 years and that this development extends well into adulthood. These results have important implications for theories of memory development.

  2. Molecular Characterization of Caveolin-induced Membrane Curvature*

    PubMed Central

    Ariotti, Nicholas; Rae, James; Leneva, Natalya; Ferguson, Charles; Loo, Dorothy; Okano, Satomi; Hill, Michelle M.; Walser, Piers; Collins, Brett M.; Parton, Robert G.

    2015-01-01

    The generation of caveolae involves insertion of the cholesterol-binding integral membrane protein caveolin-1 (Cav1) into the membrane, however, the precise molecular mechanisms are as yet unknown. We have speculated that insertion of the caveolin scaffolding domain (CSD), a conserved amphipathic region implicated in interactions with signaling proteins, is crucial for caveola formation. We now define the core membrane-juxtaposed region of Cav1 and show that the oligomerization domain and CSD are protected by tight association with the membrane in both mature mammalian caveolae and a model prokaryotic system for caveola biogenesis. Cryoelectron tomography reveals the core membrane-juxtaposed domain to be sufficient to maintain oligomerization as defined by polyhedral distortion of the caveolar membrane. Through mutagenesis we demonstrate the importance of the membrane association of the oligomerization domain/CSD for defined caveola biogenesis and furthermore, highlight the functional significance of the intramembrane domain and the CSD for defined caveolin-induced membrane deformation. Finally, we define the core structural domain of Cav1, constituting only 66 amino acids and of great potential to nanoengineering applications, which is required for caveolin-induced vesicle formation in a bacterial system. These results have significant implications for understanding the role of Cav1 in caveola formation and in regulating cellular signaling events. PMID:26304117

  3. Molecular Characterization of Caveolin-induced Membrane Curvature.

    PubMed

    Ariotti, Nicholas; Rae, James; Leneva, Natalya; Ferguson, Charles; Loo, Dorothy; Okano, Satomi; Hill, Michelle M; Walser, Piers; Collins, Brett M; Parton, Robert G

    2015-10-09

    The generation of caveolae involves insertion of the cholesterol-binding integral membrane protein caveolin-1 (Cav1) into the membrane, however, the precise molecular mechanisms are as yet unknown. We have speculated that insertion of the caveolin scaffolding domain (CSD), a conserved amphipathic region implicated in interactions with signaling proteins, is crucial for caveola formation. We now define the core membrane-juxtaposed region of Cav1 and show that the oligomerization domain and CSD are protected by tight association with the membrane in both mature mammalian caveolae and a model prokaryotic system for caveola biogenesis. Cryoelectron tomography reveals the core membrane-juxtaposed domain to be sufficient to maintain oligomerization as defined by polyhedral distortion of the caveolar membrane. Through mutagenesis we demonstrate the importance of the membrane association of the oligomerization domain/CSD for defined caveola biogenesis and furthermore, highlight the functional significance of the intramembrane domain and the CSD for defined caveolin-induced membrane deformation. Finally, we define the core structural domain of Cav1, constituting only 66 amino acids and of great potential to nanoengineering applications, which is required for caveolin-induced vesicle formation in a bacterial system. These results have significant implications for understanding the role of Cav1 in caveola formation and in regulating cellular signaling events. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    NASA Astrophysics Data System (ADS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.

  5. 2-D Structure of the A Region of Xist RNA and Its Implication for PRC2 Association

    PubMed Central

    Maenner, Sylvain; Blaud, Magali; Fouillen, Laetitia; Savoye, Anne; Marchand, Virginie; Dubois, Agnès; Sanglier-Cianférani, Sarah; Van Dorsselaer, Alain; Clerc, Philippe; Avner, Philip; Visvikis, Athanase; Branlant, Christiane

    2010-01-01

    In placental mammals, inactivation of one of the X chromosomes in female cells ensures sex chromosome dosage compensation. The 17 kb non-coding Xist RNA is crucial to this process and accumulates on the future inactive X chromosome. The most conserved Xist RNA region, the A region, contains eight or nine repeats separated by U-rich spacers. It is implicated in the recruitment of late inactivated X genes to the silencing compartment and likely in the recruitment of complex PRC2. Little is known about the structure of the A region and more generally about Xist RNA structure. Knowledge of its structure is restricted to an NMR study of a single A repeat element. Our study is the first experimental analysis of the structure of the entire A region in solution. By the use of chemical and enzymatic probes and FRET experiments, using oligonucleotides carrying fluorescent dyes, we resolved problems linked to sequence redundancies and established a 2-D structure for the A region that contains two long stem-loop structures each including four repeats. Interactions formed between repeats and between repeats and spacers stabilize these structures. Conservation of the spacer terminal sequences allows formation of such structures in all sequenced Xist RNAs. By combination of RNP affinity chromatography, immunoprecipitation assays, mass spectrometry, and Western blot analysis, we demonstrate that the A region can associate with components of the PRC2 complex in mouse ES cell nuclear extracts. Whilst a single four-repeat motif is able to associate with components of this complex, recruitment of Suz12 is clearly more efficient when the entire A region is present. Our data with their emphasis on the importance of inter-repeat pairing change fundamentally our conception of the 2-D structure of the A region of Xist RNA and support its possible implication in recruitment of the PRC2 complex. PMID:20052282

  6. The influence of relational formative discourse on students' positional identities in a middle school science classroom

    NASA Astrophysics Data System (ADS)

    Trauth-Nare, Amy

    Formative assessment is the process of eliciting students' understanding during instruction in order to make sensitive instructional decisions and provide feedback to enhance students' learning. Research indicates that when used properly, formative assessment can lead to significant learning gains and enhance students' self-efficacy. Drawing on previous research and a framework of relational pedagogy, I studied the positional identities claimed, assigned and negotiated by a middle school science teacher and her students during formative assessment interactions. Critical discourse analysis was used to analyze classroom interactions, teacher debriefings and student interviews. Findings from this study indicated that the teacher normatively positioned herself as authority during formative assessment interactions, yet students were not completely powerless. Through assertions of content knowledge and re-directions of topical focus, students positioned themselves actively and had the capacity to influence the direction and focus of formative assessment. Outside of classroom instruction, the teacher simultaneously positioned herself as both hindered by institutional structures yet actively subverted those structures in both covert and overt ways in the service of meaningful science learning. As indicated from interviews and SPAQ questionnaire responses, many students in this classroom positioned themselves positively in relation to science, the teacher and her methods of assessment, while some felt marginalized. This research has implications for the ways in which formative assessment is used to support teaching and learning in science classrooms. Findings from this study indicate that formative assessment is not simply an instrumental act carried out by teachers, but rather is a relational process that necessarily involves students. As a result, formative assessment should balance authoritative and dialogic discourse as a means for supporting and engaging students as they develop rich conceptions of science while connecting those conceptions to their own experiences.

  7. Role of C-terminal residues in oligomerization and stability of lambda CII: implications for lysis-lysogeny decision of the phage.

    PubMed

    Datta, Ajit Bikram; Roy, Siddhartha; Parrack, Pradeep

    2005-01-14

    A crucial element in the lysis-lysogeny decision of the temperate coliphage lambda is the phage protein CII, which has several interesting properties. It promotes lysogeny through activation of three phage promoters p(E), p(I) and p(aQ), recognizing a direct repeat sequence TTGCN6TTGC at each. The three-dimensional structure of CII, a homo-tetramer of 97 residue subunits, is unknown. It is an unstable protein in vivo, being rapidly degraded by the host protease HflB (FtsH). This instability is essential for the function of CII in the lysis-lysogeny switch. From NMR and limited proteolysis we show that about 15 C-terminal residues of CII are highly flexible, and may act as a target for proteolysis in vivo. From in vitro transcription, isothermal calorimetry and gel chromatography of CII (1-97) and its truncated fragments CIIA (4-81/82) and CIIB (4-69), we find that residues 70-81/82 are essential for (a) tetramer formation, (b) operator binding and (c) transcription activation. Presumably, tetramerization is necessary for the latter functions. Based on these results, we propose a model for CII structure, in which protein-protein contacts for dimer and tetramer formation are different. The implications of tetrameric organization, essential for CII activity, on the recognition of the direct repeat sequence is discussed.

  8. Mesoscale Raised Rim Depressions (MRRDs) on Earth: A Review of the Characteristics, Processes, and Spatial Distributions of Analogs for Mars

    NASA Technical Reports Server (NTRS)

    Burr, Devon M.; Bruno, Barbara C.; Lanagan, Peter D.; Glaze, Lori; Jaeger, Windy L.; Soare, Richard J.; Tseung, Jean-Michel Wan Bun; Skinner, James A. Jr.; Baloga, Stephen M.

    2008-01-01

    Fields of mesoscale raised rim depressions (MRRDs) of various origins are found on Earth and Mars. Examples include rootless cones, mud volcanoes, collapsed pingos, rimmed kettle holes, and basaltic ring structures. Correct identification of MRRDs on Mars is valuable because different MRRD types have different geologic and/or climatic implications and are often associated with volcanism and/or water, which may provide locales for biotic or prebiotic activity. In order to facilitate correct identification of fields of MRRDs on Mars and their implications, this work provides a review of common terrestrial MRRD types that occur in fields. In this review, MRRDs by formation mechanism, including hydrovolcanic (phreatomagmatic cones, basaltic ring structures), sedimentological (mud volcanoes), and ice-related (pingos, volatile ice-block forms) mechanisms. For each broad mechanism, we present a comparative synopsis of (i) morphology and observations, (ii) physical formation processes, and (iii) published hypothesized locations on Mars. Because the morphology for MRRDs may be ambiguous, an additional tool is provided for distinguishing fields of MRRDs by origin on Mars, namely, spatial distribution analyses for MRRDs within fields on Earth. We find that MRRDs have both distinguishing and similar characteristics, and observation that applies both to their mesoscale morphology and to their spatial distribution statistics. Thus, this review provides tools for distinguishing between various MRRDs, while highlighting the utility of the multiple working hypotheses approach.

  9. Tectonosedimentary framework of Upper Cretaceous -Neogene series in the Gulf of Tunis inferred from subsurface data: implications for petroleum exploration

    NASA Astrophysics Data System (ADS)

    Dhraief, Wissem; Dhahri, Ferid; Chalwati, Imen; Boukadi, Noureddine

    2017-04-01

    The objective and the main contribution of this issue are dedicated to using subsurface data to delineate a basin beneath the Gulf of Tunis and its neighbouring areas, and to investigate the potential of this area in terms of hydrocarbon resources. Available well data provided information about the subsurface geology beneath the Gulf of Tunis. 2D seismic data allowed delineation of the basin shape, strata geometries, and some potential promising subsurface structures in terms of hydrocarbon accumulation. Together with lithostratigraphic data obtained from drilled wells, seismic data permitted the construction of isochron and isobath maps of Upper Cretaceous-Neogene strata. Structural and lithostratigraphic interpretations indicate that the area is tectonically complex, and they highlight the tectonic control of strata deposition during the Cretaceous and Neogene. Tectonic activity related to the geodynamic evolution of the northern African margin appears to have been responsible for several thickness and facies variations, and to have played a significant role in the establishment and evolution of petroleum systems in northeastern Tunisia. As for petroleum systems in the basin, the Cretaceous series of the Bahloul, Mouelha and Fahdene formations are acknowledged to be the main source rocks. In addition, potential reservoirs (Fractured Abiod and Bou Dabbous carbonated formations) sealed by shaly and marly formations (Haria and Souar formations respectively) show favourable geometries of trap structures (anticlines, tilted blocks, unconformities, etc.) which make this area adequate for hydrocarbon accumulations.

  10. Advances in Chemical and Structural Characterization of Concretion with Implications for Modeling Marine Corrosion

    NASA Astrophysics Data System (ADS)

    Johnson, Donald L.; DeAngelis, Robert J.; Medlin, Dana J.; Carr, James D.; Conlin, David L.

    2014-05-01

    The Weins number model and concretion equivalent corrosion rate methodology were developed as potential minimum-impact, cost-effective techniques to determine corrosion damage on submerged steel structures. To apply the full potential of these technologies, a detailed chemical and structural characterization of the concretion (hard biofouling) that transforms into iron bearing minerals is required. The fractions of existing compounds and the quantitative chemistries are difficult to determine from x-ray diffraction. Environmental scanning electron microscopy was used to present chemical compositions by means of energy-dispersive spectroscopy (EDS). EDS demonstrates the chemical data in mapping format or in point or selected area chemistries. Selected-area EDS data collection at precise locations is presented in terms of atomic percent. The mechanism of formation and distribution of the iron-bearing mineral species at specific locations will be presented. Based on water retention measurements, porosity in terms of void volume varies from 15 v/o to 30 v/o (vol.%). The void path displayed by scanning electron microscopy imaging illustrates the tortuous path by which oxygen migrates in the water phase within the concretion from seaside to metalside.

  11. Structure and Evolution of Insect Sperm: New Interpretations in the Age of Phylogenomics.

    PubMed

    Dallai, Romano; Gottardo, Marco; Beutel, Rolf Georg

    2016-01-01

    This comprehensive review of the structure of sperm in all orders of insects evaluates phylogenetic implications, with the background of a phylogeny based on transcriptomes. Sperm characters strongly support several major branches of the phylogeny of insects-for instance, Cercophora, Dicondylia, and Psocodea-and also different infraordinal groups. Some closely related taxa, such as Trichoptera and Lepidoptera (Amphiesmenoptera), differ greatly in sperm structure. Sperm characters are very conservative in some groups (Heteroptera, Odonata) but highly variable in others, including Zoraptera, a small and morphologically uniform group with a tremendously accelerated rate of sperm evolution. Unusual patterns such as sperm dimorphism, the formation of bundles, or aflagellate and immotile sperm have evolved independently in several groups.

  12. Caveolae.

    PubMed

    Parton, Robert G; Tillu, Vikas A; Collins, Brett M

    2018-04-23

    Caveolae are one of the most abundant and striking features of the plasma membrane of many mammalian cell types. These surface pits have fascinated biologists since their discovery by the pioneers of electron microscopy in the middle of the last century, but we are only just starting to understand their multiple functions. Molecular understanding of caveolar formation is advancing rapidly and we now know that sculpting the membrane to generate the characteristic bulb-shaped caveolar pit involves the coordinated action of integral membrane proteins and peripheral membrane coat proteins in a process dependent on their multiple interactions with membrane lipids. The resulting structure is further stabilised by protein complexes at the caveolar neck. Caveolae can bud to generate an endocytic carrier but can also be disassembled in response to specific stimuli to function as a mechanoprotective device. These structures have also been linked to numerous signalling pathways. Here, we will briefly summarise the current molecular and structural understanding of caveolar formation and dynamics, discuss how the crucial structural components of caveolae work together to generate a dynamic sensing domain, and discuss the implications of recent studies on the diverse roles proposed for caveolae in different cells and tissues. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Formation of biogenic sheath-like Fe oxyhydroxides in a near-neutral pH hot spring: Implications for the origin of microfossils in high-temperature, Fe-rich environments

    NASA Astrophysics Data System (ADS)

    Peng, Xiaotong; Chen, Shun; Xu, Hengchao

    2013-12-01

    small hot spring that is informally called "Fe-waterfall spring" and is located in the Rehai geothermal area discharges hot (42 to 73°C), near-neutral (pH = 7.65) Fe-rich water. Submerged reddish precipitates are composed largely of ferrihydrite, goethite, lepidocrocite, opal-A, quartz, and anorthite, as revealed by X-ray diffraction (XRD) and Mössbauer spectroscopy. Molecular phylogenetic analysis demonstrates that the bacterial community in these precipitates is mainly composed of Cyanobacteria, Planctomycetes, β-proteobacteria, Deinococci-Thermus, and Chlorobi. Scanning electron microscopy and high-resolution transmission electron microscopy examinations show that abundant sheath-like Fe oxyhydroxides, which exhibit different morphologies and sizes, are present in Fe-rich precipitates. These sheath-like structures are composed of ferrihydrite rather than more crystalline lepidocrocite or goethite. Energy-dispersive X-ray spectrometer, scanning transmission electron microscopy, and nano secondary ion mass spectrometry reveal that they are mainly composed of Fe, Si, and O, together with some trace elements. Most of the sheath-like structures are not morphologically comparable to biogenic Fe oxyhydroxides produced by known chemolithotrophic Fe oxidizers, which is consistent with the fact that no chemolithotrophic Fe oxidizers were identified by molecular analysis in the precipitates. We suggest that the sheath-like Fe oxyhydroxides are formed through passive Fe sorption and nucleation onto the cell walls of various thermophiles rather than by the direct metabolic activities of chemolithotrophic Fe oxidizers. Biogenic sheath-like Fe oxyhydroxides in Fe-waterfall spring have important implications for geochemical cycles driven by microorganisms, the origin of microfossils, and the formation of banded iron formations (BIFs) in the Archean ocean.

  14. The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Tim; Golabek, Gregor J.; Gerya, Taras V.; Meyer, Michael R.

    2016-08-01

    The thermal history and internal structure of chondritic planetesimals, assembled before the giant impact phase of chaotic growth, potentially yield important implications for the final composition and evolution of terrestrial planets. These parameters critically depend on the internal balance of heating versus cooling, which is mostly determined by the presence of short-lived radionuclides (SLRs), such as 26Al and 60Fe, as well as the heat conductivity of the material. The heating by SLRs depends on their initial abundances, the formation time of the planetesimal and its size. It has been argued that the cooling history is determined by the porosity of the granular material, which undergoes dramatic changes via compaction processes and tends to decrease with time. In this study we assess the influence of these parameters on the thermo-mechanical evolution of young planetesimals with both 2D and 3D simulations. Using the code family I2ELVIS/I3ELVIS we have run numerous 2D and 3D numerical finite-difference fluid dynamic models with varying planetesimal radius, formation time and initial porosity. Our results indicate that powdery materials lowered the threshold for melting and convection in planetesimals, depending on the amount of SLRs present. A subset of planetesimals retained a powdery surface layer which lowered the thermal conductivity and hindered cooling. The effect of initial porosity was small, however, compared to those of planetesimal size and formation time, which dominated the thermo-mechanical evolution and were the primary factors for the onset of melting and differentiation. We comment on the implications of this work concerning the structure and evolution of these planetesimals, as well as their behavior as possible building blocks of terrestrial planets.

  15. Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation.

    PubMed

    Norris, Scott A; Samela, Juha; Bukonte, Laura; Backman, Marie; Djurabekova, Flyura; Nordlund, Kai; Madi, Charbel S; Brenner, Michael P; Aziz, Michael J

    2011-01-01

    Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation.

  16. Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet

    PubMed Central

    Buchanan, Lauren E.; Dunkelberger, Emily B.; Tran, Huong Q.; Cheng, Pin-Nan; Chiu, Chi-Cheng; Cao, Ping; Raleigh, Daniel P.; de Pablo, Juan J.; Nowick, James S.; Zanni, Martin T.

    2013-01-01

    Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel β-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize β-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric β-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques. PMID:24218609

  17. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications.

    PubMed

    Fortunato, Tiago M; Beltrami, Cristina; Emanueli, Costanza; De Bank, Paul A; Pula, Giordano

    2016-05-04

    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs.

  18. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications

    PubMed Central

    Fortunato, Tiago M.; Beltrami, Cristina; Emanueli, Costanza; De Bank, Paul A.; Pula, Giordano

    2016-01-01

    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs. PMID:27141997

  19. Short peptides self-assemble to produce catalytic amyloids

    NASA Astrophysics Data System (ADS)

    Rufo, Caroline M.; Moroz, Yurii S.; Moroz, Olesia V.; Stöhr, Jan; Smith, Tyler A.; Hu, Xiaozhen; Degrado, William F.; Korendovych, Ivan V.

    2014-04-01

    Enzymes fold into unique three-dimensional structures, which underlie their remarkable catalytic properties. The requirement to adopt a stable, folded conformation is likely to contribute to their relatively large size (>10,000 Da). However, much shorter peptides can achieve well-defined conformations through the formation of amyloid fibrils. To test whether short amyloid-forming peptides might in fact be capable of enzyme-like catalysis, we designed a series of seven-residue peptides that act as Zn2+-dependent esterases. Zn2+ helps stabilize the fibril formation, while also acting as a cofactor to catalyse acyl ester hydrolysis. These results indicate that prion-like fibrils are able to not only catalyse their own formation, but they can also catalyse chemical reactions. Thus, they might have served as intermediates in the evolution of modern-day enzymes. These results also have implications for the design of self-assembling nanostructured catalysts including ones containing a variety of biological and non-biological metal ions.

  20. Platelet response heterogeneity in thrombus formation.

    PubMed

    Munnix, Imke C A; Cosemans, Judith M E M; Auger, Jocelyn M; Heemskerk, Johan W M

    2009-12-01

    Vascular injury leads to formation of a structured thrombus as a consequence of platelet activation and aggregation, thrombin and fibrin formation, and trapping of leukocytes and red cells. This review summarises current evidence for heterogeneity of platelet responses and functions in the thrombus-forming process. Environmental factors contribute to response heterogeneity, as the platelets in a thrombus adhere to different substrates, and sense specific (ant)agonists and rheological conditions. Contraction of platelets and interaction with fibrin and other blood cells cause further response variation. On the other hand, response heterogeneity can also be due to intrinsic differences between platelets in age and in receptor and signalling proteins. As a result, at least three subpopulations of platelets are formed in a thrombus: aggregating platelets with (reversible) integrin activation, procoagulant (coated) platelets exposing phosphatidylserine and binding coagulation factors, and contracting platelets with cell-cell contacts. This recognition of thrombus heterogeneity has implications for the use and development of antiplatelet medication.

  1. Geometrical appearance and spatial arrangement of structural blocks of the Malan loess in NW China: implications for the formation of loess columns

    NASA Astrophysics Data System (ADS)

    Li, Yanrong; Zhang, Tao; Zhang, Yongbo; Xu, Qiang

    2018-06-01

    Loess, as one of the main Quaternary deposits, covers approximately 6% of the land surface of the Earth. Although loess is loose and fragile, loess columns are popular and they can stand stably for hundreds of years, thereby forming a spectacular landform. The formation of such special column-shaped soil structures is puzzling, and the underlying fundamentals remain unclear. The present study focuses on quantifying and examining the geometrical shape and spatial alignment of structural blocks of the Malan loess at different locations in the Loess Plateau of China. The structural blocks under investigation include clay- and silt-sized particles, aggregates, fragments, lumps, and columns, which vary in size from microns to tens of meters. Regardless of their size, the structural blocks of the Malan loess are found to be similar in shape, i.e., elongated with a length-to-width ratio of approximately 2.6. The aggregates, fragments, lumps, columns, and macropores between aggregates exhibit strong concentration in the vertical or subvertical alignment. These phenomena imply that the Malan loess is anisotropic and it is composed of a combination of vertically aligned strong units and vertically aligned weak segments. Based on this, "vertiloess" structure is proposed to denote this combination. The vertiloess structure prevents horizontal erosion, but favors spalling, peeling, toppling, falling and cracking-sliding of vertical loess pieces, thereby forming loess columns.

  2. Assessment of degradation byproducts and NDMA formation potential during UV and UV/H2O2 treatment of doxylamine in the presence of monochloramine.

    PubMed

    Farré, Maria José; Radjenovic, Jelena; Gernjak, Wolfgang

    2012-12-04

    UV-C radiation is the U.S. EPA recommended technology to remove N-nitrosodimethylamine (NDMA) during drinking and recycled water production. Frequently, H(2)O(2) is added to the treatment to remove other recalcitrant compounds and to prevent NDMA reformation. However, the transformation of NDMA precursors during the UV and UV/H(2)O(2) process and the consequences for NDMA formation potential are currently not well understood, in particular in the presence of monochloramine. In this study, doxylamine has been chosen as a model compound to elucidate its degradation byproducts in the UV and UV/H(2)O(2) process and correlate those with changes to the NDMA formation potential. This study shows that during UV treatment in the presence and absence of monochloramine, NDMA formation potential can be halved. However, an increase of more than 30% was observed when hydrogen peroxide was added. Ultrafast liquid chromatography coupled to quadrupole-linear ion trap mass spectrometer was used for screening and structural elucidation of degradation byproducts identifying 21 chemical structures from the original parent compound. This work shows that further oxidation of NDMA precursors does not necessarily lead to a decrease in NDMA formation potential. Degradation byproducts with increased electron density in the vicinity of the dimethylamino moiety, for example induced by hydroxylation, may have a higher yield of nucleophilic substitution and subsequent NDMA formation compared to the parent compound during chloramination. This work demonstrates the need to consider the formation of oxidation byproducts and associated implications for the control and management of NDMA formation in downstream processes and distribution when integrating oxidative treatments into a treatment train generating either drinking water or recycled water for potable reuse.

  3. Transcriptional Modulation of Genes Encoding Structural Characteristics of Differentiating Enterocytes During Development of a Polarized Epithelium In Vitro

    PubMed Central

    Halbleib, Jennifer M.; Sääf, Annika M.

    2007-01-01

    Although there is considerable evidence implicating posttranslational mechanisms in the development of epithelial cell polarity, little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized the temporal program of gene expression during cell–cell adhesion–initiated polarization of human Caco-2 cells in tissue culture, which develop structural and functional polarity similar to that of enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts between neighboring cells. Expression of genes involved in cell proliferation was down-regulated concomitant with induction of genes necessary for functional specialization of polarized epithelial cells. Transcriptional up-regulation of these latter genes correlated with formation of important structural and functional features in enterocyte differentiation and establishment of structural and functional cell polarity; components of the apical microvilli were induced as the brush border formed during polarization; as barrier function was established, expression of tight junction transmembrane proteins peaked; transcripts encoding components of the apical, but not the basal-lateral trafficking machinery were increased during polarization. Coordinated expression of genes encoding components of functional cell structures were often observed indicating temporal control of expression and assembly of multiprotein complexes. PMID:17699590

  4. Preprocessing Structured Clinical Data for Predictive Modeling and Decision Support

    PubMed Central

    Oliveira, Mónica Duarte; Janela, Filipe; Martins, Henrique M. G.

    2016-01-01

    Summary Background EHR systems have high potential to improve healthcare delivery and management. Although structured EHR data generates information in machine-readable formats, their use for decision support still poses technical challenges for researchers due to the need to preprocess and convert data into a matrix format. During our research, we observed that clinical informatics literature does not provide guidance for researchers on how to build this matrix while avoiding potential pitfalls. Objectives This article aims to provide researchers a roadmap of the main technical challenges of preprocessing structured EHR data and possible strategies to overcome them. Methods Along standard data processing stages – extracting database entries, defining features, processing data, assessing feature values and integrating data elements, within an EDPAI framework –, we identified the main challenges faced by researchers and reflect on how to address those challenges based on lessons learned from our research experience and on best practices from related literature. We highlight the main potential sources of error, present strategies to approach those challenges and discuss implications of these strategies. Results Following the EDPAI framework, researchers face five key challenges: (1) gathering and integrating data, (2) identifying and handling different feature types, (3) combining features to handle redundancy and granularity, (4) addressing data missingness, and (5) handling multiple feature values. Strategies to address these challenges include: cross-checking identifiers for robust data retrieval and integration; applying clinical knowledge in identifying feature types, in addressing redundancy and granularity, and in accommodating multiple feature values; and investigating missing patterns adequately. Conclusions This article contributes to literature by providing a roadmap to inform structured EHR data preprocessing. It may advise researchers on potential pitfalls and implications of methodological decisions in handling structured data, so as to avoid biases and help realize the benefits of the secondary use of EHR data. PMID:27924347

  5. Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation.

    PubMed

    Wybenga-Groot, Leanne E; McGlade, C Jane

    2013-12-01

    The Src-like adaptor proteins (SLAP/SLAP2) are key components of Cbl-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling in hematopoietic cells. SLAP and SLAP2 consist of adjacent SH3 and SH2 domains that are most similar in sequence to Src family kinases (SFKs). Notably, the SH3-SH2 connector sequence is significantly shorter in SLAP/SLAP2 than in SFKs. To understand the structural implication of a short SH3-SH2 connector sequence, we solved the crystal structure of a protein encompassing the SH3 domain, SH3-SH2 connector, and SH2 domain of SLAP2 (SLAP2-32). While both domains adopt typical folds, the short SH3-SH2 connector places them in close association. Strand βe of the SH3 domain interacts with strand βA of the SH2 domain, resulting in the formation of a continuous β sheet that spans the length of the protein. Disruption of the SH3/SH2 interface through mutagenesis decreases SLAP-32 stability in vitro, consistent with inter-domain binding being an important component of SLAP2 structure and function. The canonical peptide binding pockets of the SH3 and SH2 domains are fully accessible, in contrast to other protein structures that display direct interaction between SH3 and SH2 domains, in which either peptide binding surface is obstructed by the interaction. Our results reveal potential sites of novel interaction for SH3 and SH2 domains, and illustrate the adaptability of SH2 and SH3 domains in mediating interactions. As well, our results suggest that the SH3 and SH2 domains of SLAP2 function interdependently, with implications on their mode of substrate binding. © 2013.

  6. The Development, Implementation and Application of Accurate Quantum Chemical Methods for Molecular Structure, Spectra and Reaction Paths

    DTIC Science & Technology

    2016-02-02

    Bartlett, Nigel G. J. Richards, Robert W. Molt, Alison M. Lecher. Facile Csp2 Csp2 bond cleavage in oxalic acid -derived radicals: Implications for...sway a strong bond link in oxalate can be broken by manganese containing enzymes. The intermediate steps involved the formation of either a radical or...catalysis by oxalate decarboxylase, Journal of the American Chemical Society, (03 2015): 3248. doi: 10.1021/ja510666r Erik Deumens, Victor F. Lotrich

  7. Isotope Effects and Mechanism of the Asymmetric BOROX Brønsted Acid Catalyzed Aziridination Reaction

    PubMed Central

    Vetticatt, Mathew J.; Desai, Aman A.; Wulff, William D.

    2013-01-01

    The mechanism of the chiral VANOL-BOROX Brønsted acid catalyzed aziridination reaction of imines and ethyldiazoacetate has been studied using a combination of experimental kinetic isotope effects and theoretical calculations. A stepwise mechanism where reversible formation of a diazonium ion intermediate precedes rate-limiting ring-closure to form the cis-aziridine is implicated. A revised model for the origin of enantio- and diastereoselectivity is proposed based on relative energies of the ring closing transition structures. PMID:23687986

  8. The origin of comets - Implications for planetary formation

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1985-01-01

    Primordial and episodic theories for the origin of comets are discussed. The implications of the former type for the origin of the solar system are considered. Candidate sites for the formation of comets are compared. The possible existence of a massive inner Oort cloud is discussed.

  9. Soft-sediment deformation structures in Cambrian Series 2 tidal deposits (NW Estonia): implications for identifying endogenic triggering mechanisms in ancient sedimentary record

    NASA Astrophysics Data System (ADS)

    Põldsaar, Kairi

    2015-04-01

    Soft-sediment deformation structures (SSDS) are documented in several horizons within silt- and sandstones of the Cambrian Series 2 (Dominopolian Stage) Tiskre Formation, and some in the below-deposited argillaceous deposits of the Lükati Formation (northern part of the Baltoscandian Palaeobasin, NW Estonia). The aim of this study was to map, describe, and analyze these deformation features, discuss their deformation mechanism and possible triggers. Load structures (simple load casts, pillows, flame structures, convoluted lamination) with varying shapes and sizes occur in the Tiskre Fm in sedimentary interfaces within medium-bedded peritidal rhythmites (siltstone-argillaceous material) as well as within up to 3 m thick slightly seaward inclined stacked sandstone sequences. Homogenized beds, dish-and-pillar structures, and severely deformed bedding are also found within these stacked units and within a large tidal runoff channel infill. Autoclastic breccias and water-escape channels are rare and occur only in small-scale -- always related to thin, horizontal tidal laminae. Profound sedimentary dykes, sand volcanoes, and thrust faults, which are often related to earthquake triggered soft sediment deformation, were not observed within the studied intervals. Deformation horizon or horizons with large flat-topped pillows often with elongated morphologies occur at or near the boundary between the Tiskre and Lükati formations. Deformation mechanisms identified in this study for the various deformation types are gravitationally unstable reversed density gradient (especially in case of load features that are related to profound sedimentary interfaces) and lateral shear stress due to sediment current drag (in case of deformation structures that not related to loading at any apparent sedimentary interface). Synsedimentary liquefaction was identified as the primary driving force in most of the observed deformation horizons. Clay thixotropy may have contributed in the formation of large sandstone pillows within the Tiskre-Lükati boundary interval at some localities. It is discussed here that the formation of the observed SSDS is genetically related to the restless dynamics of the storm-influenced open marine tidal depositional environment. The most obvious causes of deformation were rapid-deposition, shear and slumping caused by tidal surges, and storm-wave loading.

  10. DNA-RNA hybrid formation mediates RNAi-directed heterochromatin formation.

    PubMed

    Nakama, Mina; Kawakami, Kei; Kajitani, Takuya; Urano, Takeshi; Murakami, Yota

    2012-03-01

    Certain noncoding RNAs (ncRNAs) implicated in the regulation of chromatin structure associate with chromatin. During the formation of RNAi-directed heterochromatin in fission yeast, ncRNAs transcribed from heterochromatin are thought to recruit the RNAi machinery to chromatin for the formation of heterochromatin; however, the molecular details of this association are not clear. Here, using RNA immunoprecipitation assay, we showed that the heterochromatic ncRNA was associated with chromatin via the formation of a DNA-RNA hybrid and bound to the RNA-induced transcriptional silencing (RITS) complex. The presence of DNA-RNA hybrid in the cell was also confirmed by immunofluorescence analysis using anti-DNA-RNA hybrid antibody. Over-expression and depletion of RNase H in vivo decreased and increased the amount of DNA-RNA hybrid formed, respectively, and both disturbed heterochromatin. Moreover, DNA-RNA hybrid was formed on, and over-expression of RNase H inhibited the formation of, artificial heterochromatin induced by tethering of RITS to mRNA. These results indicate that heterochromatic ncRNAs are retained on chromatin via the formation of DNA-RNA hybrids and provide a platform for the RNAi-directed heterochromatin assembly and suggest that DNA-RNA hybrid formation plays a role in chromatic ncRNA function. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  11. Detergent-Mediated Formation of β-Hematin: Heme Crystallization Promoted by Detergents Implicates Nanostructure Formation for Use as a Biological Mimic

    PubMed Central

    2016-01-01

    Hemozoin is a unique biomineral that results from the sequestration of toxic free heme liberated as a consequence of hemoglobin degradation in the malaria parasite. Synthetic neutral lipid droplets (SNLDs) and phospholipids were previously shown to support the rapid formation of β-hematin, abiological hemozoin, under physiologically relevant pH and temperature, though the mechanism by which heme crystallization occurs remains unclear. Detergents are particularly interesting as a template because they are amphiphilic molecules that spontaneously organize into nanostructures and have been previously shown to mediate β-hematin formation. Here, 11 detergents were investigated to elucidate the physicochemical properties that best recapitulate crystal formation in the parasite. A strong correlation between the detergent’s molecular structure and the corresponding kinetics of β-hematin formation was observed, where higher molecular weight polar chains promoted faster reactions. The larger hydrophilic chains correlated to the detergent’s ability to rapidly sequester heme into the lipophilic core, allowing for crystal nucleation to occur. The data presented here suggest that detergent nanostructures promote β-hematin formation in a similar manner to SNLDs and phospholipids. Through understanding mediator properties that promote optimal crystal formation, we are able to establish an in vitro assay to probe this drug target pathway. PMID:27175104

  12. Assessment of biofilm changes and concentration-depth profiles during arsenopyrite oxidation by Acidithiobacillus thiooxidans.

    PubMed

    Ramírez-Aldaba, Hugo; Vazquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Valdez-Pérez, Donato; Ruiz-Baca, Estela; García-Meza, Jessica Viridiana; Trejo-Córdova, Gabriel; Lara, René H

    2017-08-01

    Biofilm formation and evolution are key factors to consider to better understand the kinetics of arsenopyrite biooxidation. Chemical and surface analyses were carried out using Raman spectroscopy, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS), and protein analysis (i.e., quantification) in order to evaluate the formation of intermediate secondary compounds and any significant changes arising in the biofilm structure of Acidithiobacillus thiooxidans during a 120-h period of biooxidation. Results show that the biofilm first evolves from a low cell density structure (1 to 12 h) into a formation of microcolonies (24 to 120 h) and then finally becomes enclosed by a secondary compound matrix that includes pyrite (FeS 2 )-like, S n 2- /S 0 , and As 2 S 3 compounds, as shown by Raman and SEM-EDS. GDS analyses (concentration-depth profiles, i.e., 12 h) indicate significant differences for depth speciation between abiotic control and biooxidized surfaces, thus providing a quantitative assessment of surface-bulk changes across samples (i.e. reactivity and /or structure-activity relationship). Respectively, quantitative protein analyses and CLSM analyses suggest variations in the type of extracellular protein expressed and changes in the biofilm structure from hydrophilic (i.e., exopolysaccharides) to hydrophobic (i.e., lipids) due to arsenopyrite and cell interactions during the 120-h period of biooxidation. We suggest feasible environmental and industrial implications for arsenopyrite biooxidation based on the findings of this study.

  13. Detailed Quantitative Classifications of Galaxy Morphology

    NASA Astrophysics Data System (ADS)

    Nair, Preethi

    2018-01-01

    Understanding the physical processes responsible for the growth of galaxies is one of the key challenges in extragalactic astronomy. The assembly history of a galaxy is imprinted in a galaxy’s detailed morphology. The bulge-to-total ratio of galaxies, the presence or absence of bars, rings, spiral arms, tidal tails etc, all have implications for the past merger, star formation, and feedback history of a galaxy. However, current quantitative galaxy classification schemes are only useful for broad binning. They cannot classify or exploit the wide variety of galaxy structures seen in nature. Therefore, comparisons of observations with theoretical predictions of secular structure formation have only been conducted on small samples of visually classified galaxies. However large samples are needed to disentangle the complex physical processes of galaxy formation. With the advent of large surveys, like the Sloan Digital Sky Survey (SDSS) and the upcoming Large Synoptic Survey Telescope (LSST) and WFIRST, the problem of statistics will be resolved. However, the need for a robust quantitative classification scheme will still remain. Here I will present early results on promising machine learning algorithms that are providing detailed classifications, identifying bars, rings, multi-armed spiral galaxies, and Hubble type.

  14. A molecular model for self-assembly of amyloid fibrils: Immunoglobulin light chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, F.J.; Myatt, E.A.; Westholm, F.A.

    1995-08-29

    The formation and pathological deposition of amyloid fibrils are defining features of many acquired and inherited disorders, including primary or light-chain-associated amyloidosis, Alzheimer`s disease, and adult-onset diabetes. No pharmacological methods exist to block this process or to effect the removal of fibrils from tissue, and thus, little can be done to prevent organ failure and ultimate death that result from deposition of amyloid. Knowledge of the pathogenesis, treatment, or prevention of these presently incurable diseases is limited due to the relative paucity of information regarding the biophysical basis of amyloid formation. Antibody light chains of different amino acid sequence showmore » differential amyloid-forming tendencies and, as such, can provide insight into the structural organization of amyloid fibrils as well as into basic mechanisms of protein self-assembly. We have compared primary structures of 180 human monoclonal light chains and have identified particular residues and positions within the variable domain that differentiate amyloid-from nonamyloid-associated proteins. We propose a molecular model that accounts for amyloid formation by antibody light chains and might also have implications for other forms of amyloidosis. 24 refs., 2 figs., 1 tab.« less

  15. Azimuthally anisotropic hydride lens structures in Zircaloy 4 nuclear fuel cladding: High-resolution neutron radiography imaging and BISON finite element analysis

    NASA Astrophysics Data System (ADS)

    Lin, Jun-Li; Zhong, Weicheng; Bilheux, Hassina Z.; Heuser, Brent J.

    2017-12-01

    High-resolution neutron radiography has been used to image bulk circumferential hydride lens particles in unirradiated Zircaloy 4 tubing cross section specimens. Zircaloy 4 is a common light water nuclear reactor (LWR) fuel cladding; hydrogen pickup, hydride formation, and the concomitant effect on the mechanical response are important for LWR applications. Ring cross section specimens with three hydrogen concentrations (460, 950, and 2830 parts per million by weight) and an as-received reference specimen were imaged. Azimuthally anisotropic hydride lens particles were observed at 950 and 2830 wppm. The BISON finite element analysis nuclear fuel performance code was used to model the system elastic response induced by hydride volumetric dilatation. The compressive hoop stress within the lens structure becomes azimuthally anisotropic at high hydrogen concentrations or high hydride phase fraction. This compressive stress anisotropy matches the observed lens anisotropy, implicating the effect of stress on hydride formation as the cause of the observed lens azimuthal asymmetry. The cause and effect relation between compressive stress and hydride lens anisotropy represents an indirect validation of a key BISON output, the evolved hoop stress associated with hydride formation.

  16. Re-initiation of bottom water formation in the East Sea (Japan Sea) in a warming world.

    PubMed

    Yoon, Seung-Tae; Chang, Kyung-Il; Nam, SungHyun; Rho, TaeKeun; Kang, Dong-Jin; Lee, Tongsup; Park, Kyung-Ae; Lobanov, Vyacheslav; Kaplunenko, Dmitry; Tishchenko, Pavel; Kim, Kyung-Ryul

    2018-01-25

    The East Sea (Japan Sea), a small marginal sea in the northwestern Pacific, is ventilated deeply down to the bottom and sensitive to changing surface conditions. Addressing the response of this marginal sea to the hydrological cycle and atmospheric forcing would be helpful for better understanding present and future environmental changes in oceans at the global and regional scales. Here, we present an analysis of observations revealing a slowdown of the long-term deepening in water boundaries associated with changes of water formation rate. Our results indicate that bottom (central) water formation has been enhanced (reduced) with more (less) oxygen supply to the bottom (central) layer since the 2000s. This paper presents a new projection that allows a three-layered deep structure, which retains bottom water, at least until 2040, contrasting previous results. This projection considers recent increase of slope convections mainly due to the salt supply via air-sea freshwater exchange and sea ice formation and decrease of open-ocean convections evidenced by reduced mixed layer depth in the northern East Sea, resulting in more bottom water and less central water formations. Such vigorous changes in water formation and ventilation provide certain implications on future climate changes.

  17. Microgravity

    NASA Image and Video Library

    2004-04-15

    Ribbons is a program developed at UAB used worldwide to graphically depict complicated protein structures in a simplified format. The program uses sophisticated computer systems to understand the implications of protein structures. The Influenza virus remains a major causative agent for a large number of deaths among the elderly and young children and huge economic losses due to illness. Finding a cure will have a general impact both on the basic research of viral pathologists of fast evolving infectious agents and clinical treatment of influenza virus infection. The reproduction process of all strains of influenza are dependent on the same enzyme neuraminidase. Shown here is a segmented representation of the neuraminidase inhibitor compound sitting inside a cave-like contour of the neuraminidase enzyme surface. This cave-like formation present in every neuraminidase enzyme is the active site crucial to the flu's ability to infect. The space-grown crystals of neuraminidase have provided significant new details about the three-dimensional characteristics of this active site thus allowing researchers to design drugs that fit tighter into the site. Principal Investigator: Dr. Larry DeLucas

  18. Formation of highly stable chimeric trimers by fusion of an adenovirus fiber shaft fragment with the foldon domain of bacteriophage t4 fibritin.

    PubMed

    Papanikolopoulou, Katerina; Forge, Vincent; Goeltz, Pierrette; Mitraki, Anna

    2004-03-05

    The folding of beta-structured, fibrous proteins is a largely unexplored area. A class of such proteins is used by viruses as adhesins, and recent studies revealed novel beta-structured motifs for them. We have been studying the folding and assembly of adenovirus fibers that consist of a globular C-terminal domain, a central fibrous shaft, and an N-terminal part that attaches to the viral capsid. The globular C-terminal, or "head" domain, has been postulated to be necessary for the trimerization of the fiber and might act as a registration signal that directs its correct folding and assembly. In this work, we replaced the head of the fiber by the trimerization domain of the bacteriophage T4 fibritin, termed "foldon." Two chimeric proteins, comprising the foldon domain connected at the C-terminal end of four fiber shaft repeats with or without the use of a natural linker sequence, fold into highly stable, SDS-resistant trimers. The structural signatures of the chimeric proteins as seen by CD and infrared spectroscopy are reported. The results suggest that the foldon domain can successfully replace the fiber head domain in ensuring correct trimerization of the shaft sequences. Biological implications and implications for engineering highly stable, beta-structured nanorods are discussed.

  19. Structural and petrographic constraints on the stratigraphy of the Lapataia Formation, with implications for the tectonic evolution of the Fuegian Andes

    NASA Astrophysics Data System (ADS)

    Cao, Sebastián J.; Torres Carbonell, Pablo J.; Dimieri, Luis V.

    2018-07-01

    The structure of the Fuegian Andes central belt is characterized by a first phase of peak metamorphism and ductile deformation, followed by a brittle-ductile thrusting phase including juxtaposition of different (first phase) structural levels; both related to the closure and inversion of the Late Jurassic-Early Cretaceous Rocas Verdes basin. The second phase involved thrust sheets of pre-Jurassic basement, as well as Upper Jurassic and Lower Cretaceous units from the volcanic-sedimentary fill of the basin. Rock exposures in the Parque Nacional Tierra del Fuego reveal a diversity of metamorphic mineral assemblages, dynamic recrystallization grades and associated structures, evidencing a variety of protoliths and positions in the crust during their orogenic evolution. Among the units present in this sector, the Lapataia Formation portrays the higher metamorphic grade reported in the Argentine side of the Fuegian Andes, and since no precise radiometric ages have been established to date, its stratigraphic position remains a matter of debate: the discussion being whether it belongs to the pre-Jurassic basement, or the Upper Jurassic volcanic/volcaniclastic initial fill of the Rocas Verdes basin. The mapping and petrographic/microstructural study of the Lapataia Formation and those of undoubtedly Mesozoic age, allow to characterize the former as a group of rocks with great lithological affinity with the Upper Jurassic metamorphic rocks found elsewhere in the central belt of the Fuegian Andes. The main differences in metamorphic grade are indebted to its deformation at deeper crustal levels, but during the same stages than the Mesozoic rocks. Accordingly, we interpret the regional structure to be associated with the stacking of thrust sheets from different structural levels through the emplacement of a duplex system during the growth of the Fuegian Andes.

  20. A systematic review of state and manufacturer physician payment disclosure websites: implications for implementation of the Sunshine Act.

    PubMed

    Hwong, Alison R; Qaragholi, Noor; Carpenter, Daniel; Joffe, Steven; Campbell, Eric G; Soleymani Lehmann, Lisa

    2014-01-01

    Under the Physician Payment Sunshine Act (PPSA), payments to physicians from pharmaceutical, biologics, and medical device manufacturers will be disclosed on a national, publicly available website. To inform the development of the federal website, we evaluated 21 existing state and industry disclosure websites. The presentation formats and language used suggest that industry websites are aimed at patient audiences whereas state websites are structured to transmit data to researchers and guide compliance officers. These findings raise questions about the intended audience and aims of the PPSA disclosure database and expected outcomes of the law. Based on our evaluation, we offer recommendations for the national website and discuss implications of this policy for the health care system. © 2014 American Society of Law, Medicine & Ethics, Inc.

  1. Comparative evaluation of the content and structure of communication using two handoff tools: implications for patient safety.

    PubMed

    Abraham, Joanna; Kannampallil, Thomas G; Almoosa, Khalid F; Patel, Bela; Patel, Vimla L

    2014-04-01

    Handoffs vary in their structure and content, raising concerns regarding standardization. We conducted a comparative evaluation of the nature and patterns of communication on 2 functionally similar but conceptually different handoff tools: Subjective, Objective, Assessment and Plan, based on a patient problem-based format, and Handoff Intervention Tool (HAND-IT), based on a body system-based format. A nonrandomized pre-post prospective intervention study supported by audio recordings and observations of 82 resident handoffs was conducted in a medical intensive care unit. Qualitative analysis was complemented with exploratory sequential pattern analysis techniques to capture the characteristics and types of communication events (CEs) and breakdowns. Use of HAND-IT led to fewer communication breakdowns (F1,80 = 45.66: P < .0001), greater number of CEs (t40 = 4.56; P < .001), with more ideal CEs than Subjective, Objective, Assessment and Plan (t40 = 9.27; P < .001). In addition, the use of HAND-IT was characterized by more request-response CE transitions. The HAND-IT's body system-based structure afforded physicians the ability to better organize and comprehend patient information and led to an interactive and streamlined communication, with limited external input. Our results also emphasize the importance of information organization using a medical knowledge hierarchical format for fostering effective communication. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Enhanced lysis and accelerated establishment of viscoelastic properties of fibrin clots are associated with pulmonary embolism.

    PubMed

    Martinez, Marissa R; Cuker, Adam; Mills, Angela M; Crichlow, Amanda; Lightfoot, Richard T; Chernysh, Irina N; Nagaswami, Chandrasekaran; Weisel, John W; Ischiropoulos, Harry

    2014-03-01

    The factors that contribute to pulmonary embolism (PE), a potentially fatal complication of deep vein thrombosis (DVT), remain poorly understood. Whereas fibrin clot structure and functional properties have been implicated in the pathology of venous thromboembolism and the risk for cardiovascular complications, their significance in PE remains uncertain. Therefore, we systematically compared and quantified clot formation and lysis time, plasminogen levels, viscoelastic properties, activated factor XIII cross-linking, and fibrin clot structure in isolated DVT and PE subjects. Clots made from plasma of PE subjects showed faster clot lysis times with no differences in lag time, rate of clot formation, or maximum absorbance of turbidity compared with DVT. Differences in lysis times were not due to alterations in plasminogen levels. Compared with DVT, clots derived from PE subjects showed accelerated establishment of viscoelastic properties, documented by a decrease in lag time and an increase in the rate of viscoelastic property formation. The rate and extent of fibrin cross-linking by activated factor XIII were similar between clots from DVT and PE subjects. Electron microscopy revealed that plasma fibrin clots from PE subjects exhibited lower fiber density compared with those from DVT subjects. These data suggest that clot structure and functional properties differ between DVT and PE subjects and provide insights into mechanisms that may regulate embolization.

  3. Enhanced lysis and accelerated establishment of viscoelastic properties of fibrin clots are associated with pulmonary embolism

    PubMed Central

    Martinez, Marissa R.; Cuker, Adam; Mills, Angela M.; Crichlow, Amanda; Lightfoot, Richard T.; Chernysh, Irina N.; Nagaswami, Chandrasekaran; Weisel, John W.

    2014-01-01

    The factors that contribute to pulmonary embolism (PE), a potentially fatal complication of deep vein thrombosis (DVT), remain poorly understood. Whereas fibrin clot structure and functional properties have been implicated in the pathology of venous thromboembolism and the risk for cardiovascular complications, their significance in PE remains uncertain. Therefore, we systematically compared and quantified clot formation and lysis time, plasminogen levels, viscoelastic properties, activated factor XIII cross-linking, and fibrin clot structure in isolated DVT and PE subjects. Clots made from plasma of PE subjects showed faster clot lysis times with no differences in lag time, rate of clot formation, or maximum absorbance of turbidity compared with DVT. Differences in lysis times were not due to alterations in plasminogen levels. Compared with DVT, clots derived from PE subjects showed accelerated establishment of viscoelastic properties, documented by a decrease in lag time and an increase in the rate of viscoelastic property formation. The rate and extent of fibrin cross-linking by activated factor XIII were similar between clots from DVT and PE subjects. Electron microscopy revealed that plasma fibrin clots from PE subjects exhibited lower fiber density compared with those from DVT subjects. These data suggest that clot structure and functional properties differ between DVT and PE subjects and provide insights into mechanisms that may regulate embolization. PMID:24414255

  4. New Mesotheriidae (Mammalia, Notoungulata, Typotheria), geochronology and tectonics of the Caragua area, northernmost Chile

    NASA Astrophysics Data System (ADS)

    Flynn, John J.; Croft, Darin A.; Charrier, Reynaldo; Wyss, André R.; Hérail, Gérard; García, Marcelo

    2005-05-01

    Few mammal fossils were known from the Altiplano or adjoining parts of northern Chile until recently. We report a partial mesotheriid palate from the vicinity of Caragua (Huaylas Formation) in northernmost Chile. The new material helps resolve contradictory taxonomic assignments (and age implications) of the two mesotheriid specimens previously reported from the area. Herein we refer all three mesotheriid specimens to a new taxon, Caraguatypotherium munozi, which is closely related to Plesiotypotherium, Typotheriopsis, Pseudotypotherium, and Mesotherium. This phylogenetic placement permits a revised biochronologic estimate of a post-Friasian/pre-Huayquerian (˜15-9 Ma) age for the Huaylas Formation, consistent with new radioisotopic dates from the upper Huaylas Formation and its bracketing stratigraphic units. Improved geochronologic control for the Huaylas Formation has important implications for the timing of tectonic events in the Precordillera/Altiplano of northern Chile. Structural, stratigraphic, and temporal data suggest the onset of rapid, progressive deformation shortly after the deposition of the older Zapahuira Formation, continuing at least partly through deposition of the Huaylas Formation. Deposition of the Huaylas Formation was short lived (between ˜10-12 Ma), possibly stemming from activity on the Copaquilla-Tignámar Fault in the eastern Precordillera. This deformation is associated with the development of the Oxaya Anticline and activity of the Ausipar Fault west of the study region on the frontal limb of the anticline in the westernmost Precordillera. Faulting and folding occurred rapidly, beginning at ˜11.4 Ma (shortly after deposition of the youngest extrusives of the Zapahuira Formation) and before ˜10.7 Ma (the age of the gently dipping horizons within the upper Huaylas Formation that overlie the mammal fossils and an intraformational unconformity). Mesotheriids are the only Tertiary fossil mammals known from the Precordillera of northernmost Chile thus far; the group is common and diverse in faunas from the Altiplano of Bolivia (and a fauna recently recovered from the Chilean Altiplano), in contrast to most higher-latitude and tropical assemblages. This distinctiveness indicates that intermediate latitudes may have been biogeographically distinct and served as a center of diversification for mesotheriids and other groups of indigenous South American mammals.

  5. Methane Recovery from Hydrate-bearing Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations,more » and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.« less

  6. Helix formation in arrestin accompanies recognition of photoactivated rhodopsin.

    PubMed

    Feuerstein, Sophie E; Pulvermüller, Alexander; Hartmann, Rudolf; Granzin, Joachim; Stoldt, Matthias; Henklein, Peter; Ernst, Oliver P; Heck, Martin; Willbold, Dieter; Koenig, Bernd W

    2009-11-17

    Binding of arrestin to photoactivated phosphorylated rhodopsin terminates the amplification of visual signals in photoreceptor cells. Currently, there is no crystal structure of a rhodopsin-arrestin complex available, although structures of unbound rhodopsin and arrestin have been determined. High-affinity receptor binding is dependent on distinct arrestin sites responsible for recognition of rhodopsin activation and phosphorylation. The loop connecting beta-strands V and VI in rod arrestin has been implicated in the recognition of active rhodopsin. We report the structure of receptor-bound arrestin peptide Arr(67-77) mimicking this loop based on solution NMR data. The peptide binds photoactivated rhodopsin in the unphosphorylated and phosphorylated form with similar affinities and stabilizes the metarhodopsin II photointermediate. A largely alpha-helical conformation of the receptor-bound peptide is observed.

  7. Mechanistic aspects of protein corona formation: insulin adsorption onto gold nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Grass, Stefan; Treuel, Lennart

    2014-02-01

    In biological fluids, an adsorption layer of proteins, a "protein corona" forms around nanoparticles (NPs) largely determining their biological identity. In many interactions with NPs proteins can undergo structural changes. Here, we study the adsorption of insulin onto gold NPs (mean hydrodynamic particle diameter 80 ± 18 nm), focusing on the structural consequences of the adsorption process for the protein. We use surface enhanced Raman scattering (SERS) spectroscopy to study changes in the protein's secondary structure as well as the impact on integrity and conformations of disulfide bonds immediately on the NP surface. A detailed comparison to SERS spectra of cysteine and cystine provides first mechanistic insights into the causes for these conformational changes. Potential biological and toxicological implications of these findings are also discussed.

  8. β-hairpin-mediated nucleation of polyglutamine amyloid formation

    PubMed Central

    Kar, Karunakar; Hoop, Cody L.; Drombosky, Kenneth W.; Baker, Matthew A.; Kodali, Ravindra; Arduini, Irene; van der Wel, Patrick C. A.; Horne, W. Seth; Wetzel, Ronald

    2013-01-01

    The conformational preferences of polyglutamine (polyQ) sequences are of major interest because of their central importance in the expanded CAG repeat diseases that include Huntington’s disease (HD). Here we explore the response of various biophysical parameters to the introduction of β-hairpin motifs within polyQ sequences. These motifs (trpzip, disulfide, D-Pro-Gly, Coulombic attraction, L-Pro-Gly) enhance formation rates and stabilities of amyloid fibrils with degrees of effectiveness well-correlated with their known abilities to enhance β-hairpin formation in other peptides. These changes led to decreases in the critical nucleus for amyloid formation from a value of n* = 4 for a simple, unbroken Q23 sequence to approximate unitary n* values for similar length polyQs containing β-hairpin motifs. At the same time, the morphologies, secondary structures, and bioactivities of the resulting fibrils were essentially unchanged from simple polyQ aggregates. In particular, the signature pattern of SSNMR 13C Gln resonances that appears to be unique to polyQ amyloid is replicated exactly in fibrils from a β-hairpin polyQ. Importantly, while β-hairpin motifs do produce enhancements in the equilibrium constant for nucleation in aggregation reactions, these Kn* values remain quite low (~ 10−10) and there is no evidence for significant embellishment of β-structure within the monomer ensemble. The results indicate an important role for β-turns in the nucleation mechanism and structure of polyQ amyloid and have implications for the nature of the toxic species in expanded CAG repeat diseases. PMID:23353826

  9. Inversion of the Erlian Basin (NE China) in the early Late Cretaceous: Implications for the collision of the Okhotomorsk Block with East Asia

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-Xin; Shi, Yuan-Peng; Yang, Yong-Tai; Jiang, Shuan-Qi; Li, Lin-Bo; Zhao, Zhi-Gang

    2018-04-01

    A significant transition in tectonic regime from extension to compression occurred throughout East Asia during the mid-Cretaceous and has stimulated much attention. However, the timing and driving mechanisms of the transition remain disputed. The Erlian Basin, a giant late Mesozoic intracontinental petroliferous basin located in the Inner Mongolia, Northeast China, contains important sedimentary and structural records related to the mid-Cretaceous compressional event. The stratigraphical, sedimentological and structural analyses reveal that a NW-SE compressional inversion occurred in the Erlian Basin between the depositions of the Lower Cretaceous Saihan and Upper Cretaceous Erlian formations, causing intense folding of the Saihan Formation and underlying strata, and the northwestward migration of the depocenters of the Erlian Formation. Based on the newly obtained detrital zircon U-Pb data and previously published paleomagnetism- and fossil-based ages, the Saihan and Erlian formations are suggested as latest Aptian-Albian and post-early Cenomanian in age, respectively, implying that the inversion in the Erlian Basin occurred in the early Late Cretaceous (Cenomanian time). Apatite fission-track thermochronological data record an early Late Cretaceous cooling/exhuming event in the basin, corresponding well with the aforementioned sedimentary, structural and chronological analyses. Combining with the tectono-sedimentary evolutions of the neighboring basins of the Erlian Basin, we suggest that the early Late Cretaceous inversional event in the Erlian Basin and the large scale tectonic transition in East Asia shared the common driving mechanism, probably resulting from the Okhotomorsk Block-East Asia collisional event at about 100-89 Ma.

  10. Mesoscale raised rim depressions (MRRDs) on Earth: A review of the characteristics, processes, and spatial distributions of analogs for Mars

    USGS Publications Warehouse

    Burr, D.M.; Bruno, B.C.; Lanagan, P.D.; Glaze, L.S.; Jaeger, W.L.; Soare, R.J.; Wan, Bun Tseung J.-M.; Skinner, J.A.; Baloga, S.M.

    2009-01-01

    Fields of mesoscale raised rim depressions (MRRDs) of various origins are found on Earth and Mars. Examples include rootless cones, mud volcanoes, collapsed pingos, rimmed kettle holes, and basaltic ring structures. Correct identification of MRRDs on Mars is valuable because different MRRD types have different geologic and/or climatic implications and are often associated with volcanism and/or water, which may provide locales for biotic or prebiotic activity. In order to facilitate correct identification of fields of MRRDs on Mars and their implications, this work provides a review of common terrestrial MRRD types that occur in fields. In this review, MRRDs by formation mechanism, including hydrovolcanic (phreatomagmatic cones, basaltic ring structures), sedimentological (mud volcanoes), and ice-related (pingos, volatile ice-block forms) mechanisms. For each broad mechanism, we present a comparative synopsis of (i) morphology and observations, (ii) physical formation processes, and (iii) published hypothesized locations on Mars. Because the morphology for MRRDs may be ambiguous, an additional tool is provided for distinguishing fields of MRRDs by origin on Mars, namely, spatial distribution analyses for MRRDs within fields on Earth. We find that MRRDs have both distinguishing and similar characteristics, and observation that applies both to their mesoscale morphology and to their spatial distribution statistics. Thus, this review provides tools for distinguishing between various MRRDs, while highlighting the utility of the multiple working hypotheses approach. ?? 2008 Elsevier Ltd.

  11. Internet Gaming Disorder as a formative construct: Implications for conceptualization and measurement.

    PubMed

    van Rooij, Antonius J; Van Looy, Jan; Billieux, Joël

    2017-07-01

    Some people have serious problems controlling their Internet and video game use. The DSM-5 now includes a proposal for 'Internet Gaming Disorder' (IGD) as a condition in need of further study. Various studies aim to validate the proposed diagnostic criteria for IGD and multiple new scales have been introduced that cover the suggested criteria. Using a structured approach, we demonstrate that IGD might be better interpreted as a formative construct, as opposed to the current practice of conceptualizing it as a reflective construct. Incorrectly approaching a formative construct as a reflective one causes serious problems in scale development, including: (i) incorrect reliance on item-to-total scale correlation to exclude items and incorrectly relying on indices of inter-item reliability that do not fit the measurement model (e.g., Cronbach's α); (ii) incorrect interpretation of composite or mean scores that assume all items are equal in contributing value to a sum score; and (iii) biased estimation of model parameters in statistical models. We show that these issues are impacting current validation efforts through two recent examples. A reinterpretation of IGD as a formative construct has broad consequences for current validation efforts and provides opportunities to reanalyze existing data. We discuss three broad implications for current research: (i) composite latent constructs should be defined and used in models; (ii) item exclusion and selection should not rely on item-to-total scale correlations; and (iii) existing definitions of IGD should be enriched further. © 2016 The Authors. Psychiatry and Clinical Neurosciences © 2016 Japanese Society of Psychiatry and Neurology.

  12. Lunar and Planetary Science XXXVI, Part 13

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: A Fast, Non-Destructive Method for Classifying Ordinary Chondrite Falls Using Density and Magnetic Susceptibility. An Update on Results from the Magnetic Properties Experiments on the Mars Exploration Rovers, Spirit and Opportunity. Measurement Protocols for In Situ Analysis of Organic Compounds at Mars and Comets. Piping Structures on Earth and Possibly Mars: Astrobiological Implications. Uranium and Lead in the Early Planetary Core Formation: New Insights Given by High Pressure and Temperature Experiments. The Mast Cameras and Mars Descent Imager (MARDI) for the 2009 Mars Science Laboratory. MGS MOC: First Views of Mars at Sub-Meter Resolution from Orbit. Analysis of Candor Chasma Interior Layered Deposits from OMEGA/MEX Spectra. Analysis of Valley Networks on Valles Marineris Plateau Using HRSC/MEX Data. Solar Abundance of Elements from Neutron-Capture Cross Sections. Preliminary Evaluation of the Secondary Ion/Accelerator Mass Spectrometer, MegaSIMS. Equilibrium Landforms in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars. Continued Study of Ba Isotopic Compositions of Presolar Silicon Carbide Grains from Supernovae. Paleoenviromental Evolution of the Holden-Uzboi Area. Stability of Magnesium Sulfate Minerals in Martian Environments. Tungsten Isotopic Constraints on the Formation and Evolution of Iron Meteorite Parent Bodies. Migration of Dust Particles and Volatiles Delivery to the Inner Planets. On the Sitting of Trapped Noble Gases in Insoluble Organic Matter of Primitive Meteorites. Trapping of Xenon Upon Evaporation-Condensation of Organic Matter Under UV Irradiation: Isotopic Fractionation and Electron Paramagnetic Resonance Analysis. Stability of Water on Mars. A Didactic Activity. Analysis of Coronae in the Parga Chasma Region, Venus. Photometric and Compositional Surface Properties of the Gusev Crater Region, Mars, as Derived from Multi-Angle, Multi-Spectral Investigation of Mars Express HRSC Data. Mapping Compositional Diversity on Mars: Spatial Distribution and Geological Implications. A New Simulation Chamber for Studying Planetary Environments. Folded Structure in Terra Sirenum. Mars. Nitrogen-Noble Gas Static Mass Spectrometry of Genesis Collector Materials. Neon Isotope Heterogeneity in the Terrestrial Mantle: Implication for the Acquisition of Volatile Elements in Terrestrial Planets. The Cosmic Clock, the Cycle of Terrestrial Mass Extinctions.

  13. U-Pb Zircon Geochronology of the Emigrant Gap Composite Pluton, Northern Sierra Nevada, California: Implications for the Nevadan Orogeny

    USGS Publications Warehouse

    Girty, G. H.; Yoshinobu, S.; Wracher, M.D.; Girty, M.S.; Bryan, K.A.; Skinner, J.E.; McNulty, B.A.; Bracchi, K.A.; Harwood, D.S.; Hanson, R.E.

    1993-01-01

    The undeformed Emigrant Gap composite pluton postdates the Lower to Middle Jurassic Sailor Canyon and Middle Jurassic Tuttle Lake Formations. According to earlier workers, these latterformations contain main and late phase Nevadan-aged (155 +/-3 Ma) spaced, slaty, phyllitic, and crenulation cleavage. Recently discovered fossils indicate that the upper part of the Sailor Canyon Formation can be no older than early Bajocian and no younger than Bathonian. The Tuttle Lake Formation stratigraphically overlies the Sailor Canyon Formation and thus probably includes middle to late Bajocian and/or Bathonian strata.The results of U-Pb work suggest that the Emigrant Gap composite pluton is composed of units that range in age from 168 +/-2 Ma (latest Bathonian to early Callovian) to 163-164 Ma (late Callovian). These new data, when combined with observations summarized above, imply that the Tuttle Lake Formation is older than the undeformed oldest unit of the Emigrant Gap composite pluton (i.e., latest Bathonian or early Callovian), and thus was probably deposited and deformed sometime between middle Bajocian and middle late Bathonian time. Hence, the cleavage contained within the Sailor Canyon and Tuttle Lake Formations could not have formed during the Late Jurassic Nevadan orogeny 155 +/-3 Ma as suggested by earlier workers.Within the foothills belt, just to the west of the Emigrant Gap composite pluton, a pronounced contractional deformation occurred sometime between 200 and 163 Ma (Early to Middle Jurassic). This middle Mesozoic deformation apparently was the result of a collision between an oceanic arc and continental North America. Because of the gross similarity in timing of structures produced during this collision and structures in the wall rocks of the Emigrant Gap composite pluton, we suggest that the latter Middle Jurassic structures are also the result of arc-continent collision, albeit a slightly more continentward expression.

  14. Near-optimal reconfiguration and maintenance of close spacecraft formations.

    PubMed

    Lovell, T A; Tragesser, S G

    2004-05-01

    This paper investigates orbit guidance algorithms for formation flying experiments. The relative motion of one satellite about a reference satellite is formulated in terms of a set of parameters that clearly describe the size, shape, and orientation of the formation. A nominal three-impulse burn maneuver algorithm is presented that is applicable for both reconfiguration and maintenance of spacecraft formations. Two methods of implementing the algorithm are discussed, one involving fixed times between each burn and one allowing the wait times to vary. The implications of employing four or more impulses for maneuvers are assessed. Examples applying the algorithm to various formation scenarios are presented, along with practical implications of each result.

  15. Surfactant-induced assembly of enzymatically-stable peptide hydrogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Brad H.; Martinez, Alina M.; Wheeler, Jill S.

    The secondary structure of peptides in the presence of interacting additives is an important topic of study, having implications in the application of peptide science to a broad range of modern technologies. Surfactants constitute a class of biologically relevant compounds that are known to influence both peptide conformation and aggregation or assembly. In addition, we have characterized the secondary structure of a linear nonapeptide composed of a hydrophobic alanine/phenylalanine core flanked by hydrophilic acid/amine units. We show that the anionic surfactant sodium dodecyl sulfate (SDS) induces the formation of β-sheets and macroscopic gelation in this otherwise unstructured peptide. Through comparisonmore » to related additives, we propose that SDS-induced secondary structure formation is the result of amphiphilicity created by electrostatic binding of SDS to the peptide. In addition, we demonstrate a novel utility of surfactants in manipulating and stabilizing peptide nanostructures. SDS is used to simultaneously induce secondary structure in a peptide and to inhibit the activity of a model enzyme, resulting in a peptide hydrogel that is impervious to enzymatic degradation. These results complement our understanding of the behavior of peptides in the presence of interacting secondary molecules and provide new potential pathways for programmable organization of peptides by the addition of such components.« less

  16. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. Wemore » have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.« less

  17. Surfactant-induced assembly of enzymatically-stable peptide hydrogels

    DOE PAGES

    Jones, Brad H.; Martinez, Alina M.; Wheeler, Jill S.; ...

    2015-04-07

    The secondary structure of peptides in the presence of interacting additives is an important topic of study, having implications in the application of peptide science to a broad range of modern technologies. Surfactants constitute a class of biologically relevant compounds that are known to influence both peptide conformation and aggregation or assembly. In addition, we have characterized the secondary structure of a linear nonapeptide composed of a hydrophobic alanine/phenylalanine core flanked by hydrophilic acid/amine units. We show that the anionic surfactant sodium dodecyl sulfate (SDS) induces the formation of β-sheets and macroscopic gelation in this otherwise unstructured peptide. Through comparisonmore » to related additives, we propose that SDS-induced secondary structure formation is the result of amphiphilicity created by electrostatic binding of SDS to the peptide. In addition, we demonstrate a novel utility of surfactants in manipulating and stabilizing peptide nanostructures. SDS is used to simultaneously induce secondary structure in a peptide and to inhibit the activity of a model enzyme, resulting in a peptide hydrogel that is impervious to enzymatic degradation. These results complement our understanding of the behavior of peptides in the presence of interacting secondary molecules and provide new potential pathways for programmable organization of peptides by the addition of such components.« less

  18. Binding Modes of Phthalocyanines to Amyloid β Peptide and Their Effects on Amyloid Fibril Formation.

    PubMed

    Valiente-Gabioud, Ariel A; Riedel, Dietmar; Outeiro, Tiago F; Menacho-Márquez, Mauricio A; Griesinger, Christian; Fernández, Claudio O

    2018-03-13

    The inherent tendency of proteins to convert from their native states into amyloid aggregates is associated with a range of human disorders, including Alzheimer's and Parkinson's diseases. In that sense, the use of small molecules as probes for the structural and toxic mechanism related to amyloid aggregation has become an active area of research. Compared with other compounds, the structural and molecular basis behind the inhibitory interaction of phthalocyanine tetrasulfonate (PcTS) with proteins such as αS and tau has been well established, contributing to a better understanding of the amyloid aggregation process in these proteins. We present here the structural characterization of the binding of PcTS and its Cu(II) and Zn(II)-loaded forms to the amyloid β-peptide (Aβ) and the impact of these interactions on the peptide amyloid fibril assembly. Elucidation of the PcTS binding modes to Aβ 40 revealed the involvement of specific aromatic and hydrophobic interactions in the formation of the Aβ 40 -PcTS complex, ascribed to a binding mode in which the planarity and hydrophobicity of the aromatic ring system in the phthalocyanine act as main structural determinants for the interaction. Our results demonstrated that formation of the Aβ 40 -PcTS complex does not interfere with the progression of the peptide toward the formation of amyloid fibrils. On the other hand, conjugation of Zn(II) but not Cu(II) at the center of the PcTS macrocyclic ring modified substantially the binding profile of this phthalocyanine to Aβ 40 and became crucial to reverse the effects of metal-free PcTS on the fibril assembly of the peptide. Overall, our results provide a firm basis to understand the structural rules directing phthalocyanine-protein interactions and their implications on the amyloid fibril assembly of the target proteins; in particular, our results contradict the hypothesis that PcTS might have similar mechanisms of action in slowing the formation of a variety of pathological aggregates. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Multifrequency acoustics as a probe of mesoscopic blood coagulation dynamics

    NASA Astrophysics Data System (ADS)

    Ganesan, Adarsh; Rajendran, Gokulnath; Ercole, Ari; Seshia, Ashwin

    2016-08-01

    Coagulation is a complex enzymatic polymerisation cascade. Disordered coagulation is common in medicine and may be life-threatening yet clinical assays are typically bulky and/or provide an incomplete picture of clot mechanical evolution. We present the adaptation of an in-plane acoustic wave device: quartz crystal microbalance with dissipation at multiple harmonics to determine the time-evolution of mesoscale mechanical properties of clot formation in vitro. This approach is sensitive to changes in surface and bulk clot structure in various models of induced coagulopathy. Furthermore, we are able to show that clot formation at surfaces has different kinetics and mechanical strength to that in the bulk, which may have implications for the design of bioprosthetic materials. The "Multifrequency acoustics" approach thus enables unique capability to portray biological processes concerning blood coagulation.

  20. Chandra Early Type Galaxy Atals

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer; McCollough, Michael; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Vrtilek, Saeqa Dil; Trinchieri, Ginevra

    2017-08-01

    The hot gas in early type galaxies (ETGs) plays a crucial role in understanding their formation and evolution. As the hot gas is often extended to the outskirts beyond the optical size, the large scale structural features identified by Chandra (including jets, cavities, cold fronts, filaments and tails) point to key evolutionary mechanisms, e.g., AGN feedback, merging history, accretion, stripping and star formation and its quenching. We have systematically analyzed the archival Chandra data of ~100 ETGs to study the hot ISM. We produce the uniformly derived data products with spatially resolved spectral information and will make them accessible via a public web site. With 2D spectral infomation, we further discuss gas morphology, scaling relations, X-ray based mass profiles and their implications related to various physical mechanisms (e.g., stellar and AGN feedback).

  1. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto

    2015-06-09

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic compounds including isoprene, emission representative of the tropics, produce minor quantities of ELVOC, and the role of OH radical oxidation is relatively larger. Implementing these findings into a global modeling framework showsmore » that detailed assessment of ELVOC production pathways is crucial for understanding biogenic secondary organic aerosol and atmospheric CCN formation.« less

  2. Optical characterization of contaminant film. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Blakkolb, Brian K.; Yaung, James Y.; Kosic, Tom; Bowen, Howard

    1992-01-01

    The so called 'nicotine stain' documented at many locations on the Long Duration Exposure Facility is still unexplained as to the exact origin and mechanism of deposition, although enough is known to have some understanding of the conditions coincident for the formation of the deposits. Direct and scattered atomic oxygen flux, and solar ultraviolet radiation interacting with materials outgassing products have all been implicated in the formation of the dark brown contamination deposits. The nicotine stain represents a potential of performance degradation for spacecraft designed for long term operation in low Earth orbit and therefore, a need exists to characterize this form of spacecraft self contamination and quantify the impact on thermal/optical systems. Optical property measurements in the spectral range of 2 to 10 microns were performed on specimens of the contaminated film. Reflectance measurements of the contaminant film as deposited on the surface and as free standing films are presented along with transmission spectra for the bulk material. Thickness measurements along with micrographic examination of the cross section of the deposit reveal the layered structure of the deposit which further implicates solar illumination as a factor in the deposition mechanism.

  3. Microbial community diversity associated with moonmilk deposits in a karstic cave system in Ireland

    NASA Astrophysics Data System (ADS)

    Rooney, D.; Hutchens, E.; Clipson, Nick; McDermott, Frank

    2009-04-01

    Microbial ecology in subterranean systems has yet to be fully studied. Cave systems present highly unusual and extreme habitats, where microbial activity can potentially play a major role in nutrient cycling and possibly contribute to the formation of characteristic subaerial structures. How microorganisms actually function in cave systems, and what ecological roles they may perform, has yet to be widely addressed, although recent studies using molecular techniques combined with analytical geochemistry have begun to answer some questions surrounding subterranean microbial ecology (Northup et al., 2003). Moonmilk has a ‘cottage-cheese' like consistency, comprised of fine crystal aggregates of carbonate minerals, commonly calcite, hydromagnesite and gypsum, and is believed to be at least partially precipitated by microbial activity (Baskar et al., 2006). Microbial metabolic processes have been implicated in the formation of moonmilk, probably a result of biochemical corrosion of bedrock under high moisture conditions. Mineral weathering via bacterial activity has become accepted as a major influence on subsurface geochemistry and formation of belowground structures (Summers-Engel et al., 2004). While many studies focus on bacterial communities in subterranean systems, fungal community structure is also likely to be important in cave systems, given the important role fungi play in the transformations of organic and inorganic substrates (Gadd, 2004) and the significant role of fungi in mineral dissolution and secondary mineral formation (Burford et al., 2003). In general, it is agreed that both biotic and abiotic processes influence moonmilk formation, yet the diversity of the microbial community associated with moonmilk formations has not been characterised to date. Ballinamintra Cave (Waterford County, Ireland) is largely protected from human influence due to accessibility difficulties and thereby offers an opportunity to study microbial community structure that has been unaltered by human disturbance or practices. The aim of this study was to examine microbial community diversity associated with moonmilk deposits at Ballynamintra Cave, Ireland using automated ribosomal intergenic spacer analysis (ARISA). The results revealed considerable bacterial and fungal diversity associated with moonmilk in a karstic cave system, suggesting that the microbial community implicated in moonmilk formation may be more diverse than previously thought. These results suggest that microbes may have important functional roles in subterranean environments. Although the moonmilk in this study was largely comprised of calcite, microbial involvement in calcite precipitation could result in the bioavailability of a range of organic compounds for subsequent microbial metabolism. References: Baskar, S., Baskar, R., Mauclaire, L., and McKenzie, J.A. 2006. Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Current Science 90: 58-64. Burford, E.P., Fomina, M., Gadd, G. 2003. Fungal involvement in bioweathering and biotrasformations of rocks and minerals. Min Mag 67(6):1172-1155. Engel, A.S., Stern, L.A., Bennett, P.C. 2004. Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology 32(5): 369-372. Gadd, G.M. (2004). Mycotransformation of organic and inorganic substrates. Mycologist 18: 60-70. Northup, D., Barns, S.M., Yu, Laura, E., Spilde, M.N., Schelble, R.T., Dano, K.E., Crossey, L.J., Connolly, C.A., Boston, P.J., and Dahm, C.N. 2003. Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environmental Microbiology 5(11): 1071-1086.

  4. Functional formation of domain V of the poliovirus noncoding region: significance of unpaired bases.

    PubMed

    Rowe, A; Burlison, J; Macadam, A J; Minor, P D

    2001-10-10

    Previously we have shown that polioviruses with mutations that disrupt the predicted secondary structure of the 5' noncoding region of domain V are temperature sensitive for growth. Non-temperature-sensitive revertant viruses had mutations that re-formed secondary structure by a direct back mutation of changes in the opposite strand. We mutated unpaired regions and selected revertants of viruses with single base deletions, where no obvious back mutation was available in order to gain information on secondary structure. Results indicated that conservation of length of a three base loop between two double-stranded stems was essential for a functional domain V to form. The requirement for the unpaired "hinge" base at 484 which is implicated in the attenuation of Sabin 2 was also confirmed. Results also underline the necessity for functional folding over local secondary structure stability. Copyright 2001 Academic Press.

  5. Paleo­geographic implications of molluscan assemblages in the Upper Cretaceous (Campanian) Pigeon Point Formation, California

    USGS Publications Warehouse

    Elder, William P.; Saul, LouElla

    1993-01-01

    The Pigeon Point Formation crops out along the San Mateo County coastline in a northern and southern sequence of folded and faulted strata. Correlation of the two sequences remains somewhat equivocal, although on the basis of biostratigraphy and a reversed magnetic interval both appear to have been deposited during the early to middle Campanian. Sedimentary structures suggest that the northern sequence was deposited by turbidity currents in a continental rise setting, whereas the southern sequence primarily reflects deposition in shelf and slope environments . Right-lateral offset on the San Andreas and subsidiary faults to the east of the Pigeon Point Formation can account for 100's of km of northward transport since its deposition. However, Champion and others (1984) suggested 2500 km of northward transport from a tropical setting of about 21°N. Molluscan assemblages in the formation argue strongly for a less tropical site of deposition. Relative abundances of warm and temperate taxa and the presence or absence of key species are similar to those of the Santa Ana Mountains Cretaceous section, and are indicative of a war

  6. Synthesis of Akaganeite in the Presence of Sulfate: Implications for Akaganeite Formation in Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, T. S.; Fox, A.; Sutter, B.; Niles, P. B.; Adams, M.; Morris, R. V.; Ming, D. W.

    2016-01-01

    Akaganeite (beta-FeOOH) is an Fe(III) (hydr)oxide with a tunnel structure usually occupied by chloride. Akaganeite has been recently discovered in a mudstone on the surface of Mars by the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instruments onboard the Mars Science Laboratory (MSL) Curiosity Rover in Gale crater [1, 2]. Akaganeite was detected together with sulfate minerals [anhydrite (CaSO4) and basanite (2CaSO4·2H2O)] in the drilled Cumberland and John Clein mudstone samples at Yellowknife Bay [2]. Discovery of akaganeite and sulfates in the same samples suggests that sulfate ions could be present in aqueous solution during akaganeite formation. However, mechanism and aqueous environmental conditions of akaganeite formation (e.g., pH and range of sulfate concentration) in Yellowknife Bay remain unknown. The objective of our work was to perform synthesis of akaganeite without or with sulfate addition at variable pHs in order to constrain formation conditions of akaganeite in Yellowknife Bay, Gale crater on Mars.

  7. Turbulence and star formation in molecular clouds

    NASA Astrophysics Data System (ADS)

    Larson, R. B.

    1981-03-01

    Consideration is given to the turbulence properties of molecular clouds and their implications for star formation. Data for 54 molecular clouds and condensations is presented which reveals cloud velocity dispersion and region size to follow a power-law relation, similar to the Kolmogoroff law for subsonic turbulence. Examination of the dynamics of the molecular clouds for which mass determinations are available reveals essentially all of them to be gravitationally bound, and to approximately satisfy the virial theorem. The observation of moderate scatter in the dispersion-size relation is noted to imply that most regions have not collapsed much since formation, suggesting that processes of turbulent hydrodynamics have played an important role in producing the observed substructures. A lower limit to the size of subcondensations at which their internal motions are no longer supersonic is shown to predict a minimum protostellar mass on the order of a few tenths of a solar mass, while massive protostellar clumps are found to develop complex internal structures, probably leading to the formation of prestellar condensation nuclei. The observed turbulence of molecular clouds is noted to imply lifetimes of less than 10 million years.

  8. Adaptability of Protein Structures to Enable Functional Interactions and Evolutionary Implications

    PubMed Central

    Haliloglu, Turkan; Bahar, Ivet

    2015-01-01

    Several studies in recent years have drawn attention to the ability of proteins to adapt to intermolecular interactions by conformational changes along structure-encoded collective modes of motions. These so-called soft modes, primarily driven by entropic effects, facilitate, if not enable, functional interactions. They represent excursions on the conformational space along principal low-ascent directions/paths away from the original free energy minimum, and they are accessible to the protein even prior to protein-protein/ligand interactions. An emerging concept from these studies is the evolution of structures or modular domains to favor such modes of motion that will be recruited or integrated for enabling functional interactions. Structural dynamics, including the allosteric switches in conformation that are often stabilized upon formation of complexes and multimeric assemblies, emerge as key properties that are evolutionarily maintained to accomplish biological activities, consistent with the paradigm sequence → structure → dynamics → function where ‘dynamics’ bridges structure and function. PMID:26254902

  9. Geological and geochemical implications of gas hydrates in the Gulf of Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, J.M.; Bryant, W.R.

    1985-09-01

    This document presents the results of a study of the geological and geochemical implications of gas hydrates in the Gulf of Mexico. The report is based primarily on data obtained from available seismic surveys of the Green Canyon, Garden Banks, Mississippi Canyon, and Orca Basins areas of the northern continental margin of the Gulf of Mexico. The study also includes the data and analysis obtained from several gas hydrate cores recovered in these areas. The report provides new data relevant to gas hydrate research for more in-depth research of the Gulf of Mexico gas hydrates and provides significant information whichmore » advances the knowledge and understanding of gas hydrate formations in the natural environment. The report contains several high resolution seismic surveys. In the four hydrate sites studied in detail, the seismic ''wipeout'' zones were all associated with collapsed structures, fault scarps, and/or salt piercement structures. These features provide conduits for the upward migration of either biogenic or thermogenic gas from depth. 35 refs., 47 figs., 9 tabs.« less

  10. Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function

    PubMed Central

    Gahbauer, Stefan; Böckmann, Rainer A.

    2016-01-01

    The dimerization or even oligomerization of G protein coupled receptors (GPCRs) causes ongoing, controversial debates about its functional role and the coupled biophysical, biochemical or biomedical implications. A continously growing number of studies hints to a relation between oligomerization and function of GPCRs and strengthens the assumption that receptor assembly plays a key role in the regulation of protein function. Additionally, progress in the structural analysis of GPCR-G protein and GPCR-ligand interactions allows to distinguish between actively functional and non-signaling complexes. Recent findings further suggest that the surrounding membrane, i.e., its lipid composition may modulate the preferred dimerization interface and as a result the abundance of distinct dimeric conformations. In this review, the association of GPCRs and the role of the membrane in oligomerization will be discussed. An overview of the different reported oligomeric interfaces is provided and their capability for signaling discussed. The currently available data is summarized with regard to the formation of GPCR oligomers, their structures and dependency on the membrane microenvironment as well as the coupling of oligomerization to receptor function. PMID:27826255

  11. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.

  12. Role of groundwater in formation of Martian channels

    NASA Technical Reports Server (NTRS)

    Howard, Alan D.

    1991-01-01

    A global 3-D model of groundwater flow has been used to study possible behavior of groundwater on Mars and its role in creating fluvial features. Conclusions drawn from an earlier 2-D groundwater model are supplemented and expanded. Topical headings are discussed as follows: timescales of groundwater flow; wet areas on Mars and location of outflow channels; implications for valley networks; the enigma of Hellas; absence of fluvial or periglacial features on Syrtis Major; development of chaotic terrain and associated outflow channels; and structurally controlled valley networks.

  13. Primary cilia: cellular sensors for the skeleton.

    PubMed

    Anderson, Charles T; Castillo, Alesha B; Brugmann, Samantha A; Helms, Jill A; Jacobs, Christopher R; Stearns, Tim

    2008-09-01

    The primary cilium is a solitary, immotile cilium that is present in almost every mammalian cell type. Primary cilia are thought to function as chemosensors, mechanosensors, or both, depending on cell type, and have been linked to several developmental signaling pathways. Primary cilium malfunction has been implicated in several human diseases, the symptoms of which include vision and hearing loss, polydactyly, and polycystic kidneys. Recently, primary cilia have also been implicated in the development and homeostasis of the skeleton. In this review, we discuss the structure and formation of the primary cilium and some of the mechanical and chemical signals to which it could be sensitive, with a focus on skeletal biology. We also raise several unanswered questions regarding the role of primary cilia as mechanosensors and chemosensors and identify potential research avenues to address these questions.

  14. Primary Cilia: Cellular Sensors for the Skeleton

    PubMed Central

    Anderson, Charles T.; Castillo, Alesha B.; Brugmann, Samantha A.; Helms, Jill A.; Jacobs, Christopher R.; Stearns, Tim

    2010-01-01

    The primary cilium is a solitary, immotile cilium that is present in almost every mammalian cell type. Primary cilia are thought to function as chemosensors, mechanosensors, or both, depending on cell type, and have been linked to several developmental signaling pathways. Primary cilium malfunction has been implicated in several human diseases, the symptoms of which include vision and hearing loss, polydactyly, and polycystic kidneys. Recently, primary cilia have also been implicated in the development and homeostasis of the skeleton. In this review, we discuss the structure and formation of the primary cilium and some of the mechanical and chemical signals to which it could be sensitive, with a focus on skeletal biology. We also raise several unanswered questions regarding the role of primary cilia as mechanosensors and chemosensors and identify potential research avenues to address these questions. PMID:18727074

  15. Microstructural Rearrangements and their Rheological Implications in a Model Thixotropic Elastoviscoplastic Fluid

    NASA Astrophysics Data System (ADS)

    Jamali, Safa; McKinley, Gareth H.; Armstrong, Robert C.

    2017-01-01

    We identify the sequence of microstructural changes that characterize the evolution of an attractive particulate gel under flow and discuss their implications on macroscopic rheology. Dissipative particle dynamics is used to monitor shear-driven evolution of a fabric tensor constructed from the ensemble spatial configuration of individual attractive constituents within the gel. By decomposing this tensor into isotropic and nonisotropic components we show that the average coordination number correlates directly with the flow curve of the shear stress versus shear rate, consistent with theoretical predictions for attractive systems. We show that the evolution in nonisotropic local particle rearrangements are primarily responsible for stress overshoots (strain-hardening) at the inception of steady shear flow and also lead, at larger times and longer scales, to microstructural localization phenomena such as shear banding flow-induced structure formation in the vorticity direction.

  16. Investigating Microbial Biofilm Formations on Crustal Rock Substrates

    NASA Astrophysics Data System (ADS)

    Weiser, M.; D'Angelo, T.; Carr, S. A.; Orcutt, B.

    2017-12-01

    Ocean crust hosts microbial life that, in some cases, alter the component rocks as a means of obtaining energy. Variations in crust lithology, included trace metal and mineral content, as well as the chemistry of the fluids circulating through them, provide substrates for some microbes to metabolize, leading to formation of biofilm community structures. Microbes have different parameters for the situations in which they will form biofilms, but they must have some source of energy in excess at the site of biofilm formation for them to become stationary and form the carbohydrate-rich structures connecting the cells to one another and the substrate. Generally, the requirements for microbes to form biofilms on crustal minerals are unclear. We designed two experiments to test (1) mineral preference and biofilm formation rates by natural seawater microbial communities, and (2) biofilm development as a function of phosphate availability for an organism isolated from subseafloor ocean crust. In Experiment 1, we observed that phyric basalt groundmass is preferentially colonized over aphyric basalt or metal sulfides in a shallow water and oxic seawater environment. In experiment 2, tests of the anaerobic heterotroph Thalassospira bacteria isolated from oceanic crustal fluids showed that they preferentially form biofilms, lose motility, and increase exponentially in number over time in higher-PO4 treatments (50 micromolar), including with phosphate-doped basalts, than in treatments with low phosphate concentrations (0.5 micromolar) often found in crustal fluids. These observations suggest phosphate as a main driver of biofilm formation in subsurface crust. Overall, these data suggest that the drivers of microbial biofilm formation on crustal substrates are selective to the substrate conditions, which has important implications for estimating the global biomass of life harbored in oceanic crust.

  17. Epigallocatechin gallate (EGCG) reduces the intensity of pancreatic amyloid fibrils in human islet amyloid polypeptide (hIAPP) transgenic mice.

    PubMed

    Franko, Andras; Rodriguez Camargo, Diana C; Böddrich, Annett; Garg, Divita; Rodriguez Camargo, Andres; Rathkolb, Birgit; Janik, Dirk; Aichler, Michaela; Feuchtinger, Annette; Neff, Frauke; Fuchs, Helmut; Wanker, Erich E; Reif, Bernd; Häring, Hans-Ulrich; Peter, Andreas; Hrabě de Angelis, Martin

    2018-01-18

    The formation of amyloid fibrils by human islet amyloid polypeptide protein (hIAPP) has been implicated in pancreas dysfunction and diabetes. However, efficient treatment options to reduce amyloid fibrils in vivo are still lacking. Therefore, we tested the effect of epigallocatechin gallate (EGCG) on fibril formation in vitro and in vivo. To determine the binding of hIAPP and EGCG, in vitro interaction studies were performed. To inhibit amyloid plaque formation in vivo, homozygous (tg/tg), hemizygous (wt/tg), and control mice (wt/wt) were treated with EGCG. EGCG bound to hIAPP in vitro and induced formation of amorphous aggregates instead of amyloid fibrils. Amyloid fibrils were detected in the pancreatic islets of tg/tg mice, which was associated with disrupted islet structure and diabetes. Although pancreatic amyloid fibrils could be detected in wt/tg mice, these animals were non-diabetic. EGCG application decreased amyloid fibril intensity in wt/tg mice, however it was ineffective in tg/tg animals. Our data indicate that EGCG inhibits amyloid fibril formation in vitro and reduces fibril intensity in non-diabetic wt/tg mice. These results demonstrate a possible in vivo effectiveness of EGCG on amyloid formation and suggest an early therapeutical application.

  18. Silver-cotton nanocomposites: Nano-design of microfibrillar structure causes morphological changes and increased tenacity

    PubMed Central

    Nam, Sunghyun; Condon, Brian D.; Delhom, Christopher D.; Fontenot, Krystal R.

    2016-01-01

    The interactions of nanoparticles with polymer hosts have important implications for directing the macroscopic properties of composite fibers, yet little is known about such interactions with hierarchically ordered natural polymers due to the difficulty of achieving uniform dispersion of nanoparticles within semi-crystalline natural fiber. In this study we have homogeneously dispersed silver nanoparticles throughout an entire volume of cotton fiber. The resulting electrostatic interaction and distinct supramolecular structure of the cotton fiber provided a favorable environment for the controlled formation of nanoparticles (12 ± 3 nm in diameter). With a high surface-to-volume ratio, the extensive interfacial contacts of the nanoparticles efficiently “glued” the structural elements of microfibrils together, producing a unique inorganic-organic hybrid substructure that reinforced the multilayered architecture of the cotton fiber. PMID:27849038

  19. Mineral Trends in Early Hesperian Lacustrine Mudstone at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Ming, D. W.; Grotzinger, J. P.; Morris, R. V.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Morrison, S. M.; Yen, A. S.; Chipera, S. J.; hide

    2017-01-01

    The Mars Science Laboratory Curiosity rover landed in Gale crater in August 2012 to study the layered sediments of lower Aeolis Mons (i.e., Mount Sharp), which have signatures of phyllosilicates, hydrated sulfates, and iron oxides in orbital visible/near-infrared observations. The observed mineralogy within the stratigraphy, from phyllosilicates in lower units to sulfates in higher units, suggests an evolution in the environments in which these secondary phases formed. Curiosity is currently investigating the sedimentary structures, geochemistry, and mineralogy of the Murray formation, the lowest exposed unit of Mount Sharp. The Murray formation is dominated by laminated lacustrine mudstone and is approx.200 m thick. Curiosity previously investigated lacustrine mudstone early in the mission at Yellowknife Bay, which represents the lowest studied stratigraphic unit. Here, we present the minerals identified in lacus-trine mudstone from Yellowknife Bay and the Murray formation. We discuss trends in mineralogy within the stratigraphy and the implications for ancient lacustrine environments, diagenesis, and sediment sources.

  20. Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers

    NASA Astrophysics Data System (ADS)

    Esnault, L.; Jullien, M.; Mustin, C.; Bildstein, O.; Libert, M.

    In deep geological environments foreseen for the disposal of radioactive waste, metallic containers will undergo anaerobic corrosion. In this context, the formation of corrosion products such as magnetite may reduce the rate of corrosion processes through the formation of a protective layer. This study aims at determining the direct impact of iron-reducing bacteria (IRB) activity on the stability of corrosion protective layers. Batch experiments investigating iron corrosion processes including the formation of secondary magnetite and its subsequent alteration in the presence of IRB show the bacteria ability to use structural Fe(III) for respiration which leads to the sustainment of a high corrosion rate. With the bio-reduction of corrosion products such as magnetite, and H 2 as electron donor, IRB promote the reactivation of corrosion processes in corrosive environments by altering the protective layer. This phenomenon could have a major impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level radioactive waste containment.

  1. Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection.

    PubMed

    Wierzchos, Jacek; Sancho, Leopoldo García; Ascaso, Carmen

    2005-04-01

    In some zones of Antarctica's cold and dry desert, the extinction of cryptoendolithic microorganisms leaves behind inorganic traces of microbial life. In this paper, we examine the transition from live microorganisms, through their decay, to microbial fossils using in situ microscopy (transmission electron microscopy, scanning electron microscopy in back-scattered electron mode) and microanalytical (energy dispersive X-ray spectroscopy) techniques. Our results demonstrate that, after their death, endolithic microorganisms inhabiting Commonwealth Glacier sandstone from the Antarctica McMurdo Dry Valleys become mineralized. In some cases, epicellular deposition of minerals and/or simply filling up of empty moulds by minerals leads to the formation of cell-shaped structures that may be considered biomarkers. The continuous deposition of allochthonous clay minerals and sulfate-rich salts fills the sandstone pores. This process can give rise to microbial fossils with distinguishable cell wall structures. Often, fossilized cell interiors were of a different chemical composition to the mineralized cell walls. We propose that the microbial fossil formation observed was induced by mineral precipitation resulting from inorganic processes occurring after the death of cryptoendolithic microorganisms. Nevertheless, it must have been the organic template that provoked the diffusion of mineral elements and gave rise to their characteristic distribution pattern inside the fossilized cells.

  2. Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue.

    PubMed

    Sood, Disha; Chwalek, Karolina; Stuntz, Emily; Pouli, Dimitra; Du, Chuang; Tang-Schomer, Min; Georgakoudi, Irene; Black, Lauren D; Kaplan, David L

    2016-01-01

    The extracellular matrix (ECM) constituting up to 20% of the organ volume is a significant component of the brain due to its instructive role in the compartmentalization of functional microdomains in every brain structure. The composition, quantity and structure of ECM changes dramatically during the development of an organism greatly contributing to the remarkably sophisticated architecture and function of the brain. Since fetal brain is highly plastic, we hypothesize that the fetal brain ECM may contain cues promoting neural growth and differentiation, highly desired in regenerative medicine. Thus, we studied the effect of brain-derived fetal and adult ECM complemented with matricellular proteins on cortical neurons using in vitro 3D bioengineered model of cortical brain tissue. The tested parameters included neuronal network density, cell viability, calcium signaling and electrophysiology. Both, adult and fetal brain ECM as well as matricellular proteins significantly improved neural network formation as compared to single component, collagen I matrix. Additionally, the brain ECM improved cell viability and lowered glutamate release. The fetal brain ECM induced superior neural network formation, calcium signaling and spontaneous spiking activity over adult brain ECM. This study highlights the difference in the neuroinductive properties of fetal and adult brain ECM and suggests that delineating the basis for this divergence may have implications for regenerative medicine.

  3. Formation of blood clot on biomaterial implants influences bone healing.

    PubMed

    Shiu, Hoi Ting; Goss, Ben; Lutton, Cameron; Crawford, Ross; Xiao, Yin

    2014-12-01

    The first step in bone healing is forming a blood clot at injured bones. During bone implantation, biomaterials unavoidably come into direct contact with blood, leading to a blood clot formation on its surface prior to bone regeneration. Despite both situations being similar in forming a blood clot at the defect site, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Dental implantology has long demonstrated that the fibrin structure and cellular content of a peri-implant clot can greatly affect osteoconduction and de novo bone formation on implant surfaces. This article reviews the formation of a blood clot during bone healing in relation to the use of platelet-rich plasma (PRP) gels. It is implicated that PRP gels are dramatically altered from a normal clot in healing, resulting in conflicting effect on bone regeneration. These results indicate that the effect of clots on bone regeneration depends on how the clots are formed. Factors that influence blood clot structure and properties in relation to bone healing are also highlighted. Such knowledge is essential for developing strategies to optimally control blood clot formation, which ultimately alter the healing microenvironment of bone. Of particular interest are modification of surface chemistry of biomaterials, which displays functional groups at varied composition for the purpose of tailoring blood coagulation activation, resultant clot fibrin architecture, rigidity, susceptibility to lysis, and growth factor release. This opens new scope of in situ blood clot modification as a promising approach in accelerating and controlling bone regeneration.

  4. Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr

    NASA Astrophysics Data System (ADS)

    Chiang, Yi-Kuan; Overzier, Roderik A.; Gebhardt, Karl; Henriques, Bruno

    2017-08-01

    Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological context using a set of N-body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z = 0 to z = 7. We show that (proto)cluster galaxies are an important and even dominant population at high redshift, as their expected contribution to the cosmic star formation rate density rises (from 1% at z = 0) to 20% at z = 2 and 50% at z = 10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z ˜ 10-5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the universe; at z ˜ 5-1.5, rapid star formation occurred within the entire 10-20 Mpc structures, forming most of their present-day stellar mass; at z ≲ 1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during cosmic noon, and their connection to reionization during cosmic dawn.

  5. Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2

    PubMed Central

    Kenchappa, Chandra S.; Heidarsson, Pétur O.; Kragelund, Birthe B.; Garrett, Roger A.; Poulsen, Flemming M.

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) form the basis of diverse adaptive immune systems directed primarily against invading genetic elements of archaea and bacteria. Cbp1 of the crenarchaeal thermoacidophilic order Sulfolobales, carrying three imperfect repeats, binds specifically to CRISPR DNA repeats and has been implicated in facilitating production of long transcripts from CRISPR loci. Here, a second related class of CRISPR DNA repeat-binding protein, denoted Cbp2, is characterized that contains two imperfect repeats and is found amongst members of the crenarchaeal thermoneutrophilic order Desulfurococcales. DNA repeat-binding properties of the Hyperthermus butylicus protein Cbp2Hb were characterized and its three-dimensional structure was determined by NMR spectroscopy. The two repeats generate helix-turn-helix structures separated by a basic linker that is implicated in facilitating high affinity DNA binding of Cbp2 by tethering the two domains. Structural studies on mutant proteins provide support for Cys7 and Cys28 enhancing high thermal stability of Cbp2Hb through disulphide bridge formation. Consistent with their proposed CRISPR transcriptional regulatory role, Cbp2Hb and, by inference, other Cbp1 and Cbp2 proteins are closely related in structure to homeodomain proteins with linked helix-turn-helix (HTH) domains, in particular the paired domain Pax and Myb family proteins that are involved in eukaryal transcriptional regulation. PMID:23325851

  6. Opisthobranchia (Mollusca, Gastropoda) – more than just slimy slugs. Shell reduction and its implications on defence and foraging

    PubMed Central

    Wägele, Heike; Klussmann-Kolb, Annette

    2005-01-01

    Background In general shell-less slugs are considered to be slimy animals with a rather dull appearance and a pest to garden plants. But marine slugs usually are beautifully coloured animals belonging to the less-known Opisthobranchia. They are characterized by a large array of interesting biological phenomena, usually related to foraging and/or defence. In this paper our knowledge of shell reduction, correlated with the evolution of different defensive and foraging strategies is reviewed, and new results on histology of different glandular systems are included. Results Based on a phylogeny obtained by morphological and histological data, the parallel reduction of the shell within the different groups is outlined. Major food sources are given and glandular structures are described as possible defensive structures in the external epithelia, and as internal glands. Conclusion According to phylogenetic analyses, the reduction of the shell correlates with the evolution of defensive strategies. Many different kinds of defence structures, like cleptocnides, mantle dermal formations (MDFs), and acid glands, are only present in shell-less slugs. In several cases, it is not clear whether the defensive devices were a prerequisite for the reduction of the shell, or reduction occurred before. Reduction of the shell and acquisition of different defensive structures had an implication on exploration of new food sources and therefore likely enhanced adaptive radiation of several groups. PMID:15715915

  7. Structural and Functional Assessment of APOBEC3G Macromolecular Complexes

    PubMed Central

    Polevoda, Bogdan; McDougall, William M.; Bennett, Ryan P.; Salter, Jason D.; Smith, Harold C.

    2016-01-01

    There are eleven members in the human APOBEC family of proteins that are evolutionarily related through their zinc-dependent cytidine deaminase domains. The human APOBEC gene clusters arose on chromosome 6 and 22 through gene duplication and divergence to where current day APOBEC proteins are functionally diverse and broadly expressed in tissues. APOBEC serve enzymatic and non enzymatic functions in cells. In both cases, formation of higher-order structures driven by APOBEC protein-protein interactions and binding to RNA and/or single stranded DNA are integral to their function. In some circumstances, these interactions are regulatory and modulate APOBEC activities. We are just beginning to understand how macromolecular interactions drive processes such as APOBEC subcellular compartmentalization, formation of holoenzyme complexes, gene targeting, foreign DNA restriction, anti-retroviral activity, formation of ribonucleoprotein particles and APOBEC degradation. Protein-protein and protein-nucleic acid cross-linking methods coupled with mass spectrometry, electrophoretic mobility shift assays, glycerol gradient sedimentation, fluorescence anisotropy and APOBEC deaminase assays are enabling mapping of interacting surfaces that are essential for these functions. The goal of this methods review is through example of our research on APOBEC3G, describe the application of cross-linking methods to characterize and quantify macromolecular interactions and their functional implications. Given the homology in structure and function, it is proposed that these methods will be generally applicable to the discovery process for other APOBEC and RNA and DNA editing and modifying proteins. PMID:26988126

  8. The implications of the COBE diffuse microwave radiation results for cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Stebbins, Albert; Bouchet, Francois R.

    1992-01-01

    We compare the anisotropies in the cosmic microwave background radiation measured by the COBE experiment to those predicted by cosmic string theories. We use an analytic model for the Delta T/T power spectrum that is based on our previous numerical simulations of strings, under the assumption that cosmic strings are the sole source of the measured anisotropy. This implies a value for the string mass per unit length of 1.5 +/- 0.5 x 10 exp -6 C-squared/G. This is within the range of values required for cosmic strings to successfully seed the formation of large-scale structures in the universe. These results clearly encourage further studies of Delta T/T and large-scale structure in the cosmic string model.

  9. Structure and function of histone acetyltransferase MOF

    PubMed Central

    Chen, Qiao Yi; Costa, Max; Sun, Hong

    2016-01-01

    MOF was first identified in Drosophila melanogaster as an important component of the dosage compensation complex. As a member of MYST family of histone acetyltransferase, MOF specifically deposits the acetyl groups to histone H4 lysine 16. Throughout evolution, MOF and its mammalian ortholog have retained highly conserved substrate specificity and similar enzymatic activities. MOF plays important roles in dosage compensation, ESC self-renewal, DNA damage and repair, cell survival, and gene expression regulation. Dysregulation of MOF has been implicated in tumor formation and progression of many types of human cancers. This review will discuss the structure and activity of mammalian hMOF as well as its function in H4K16 acetylation, DNA damage response, stem cell pluripotency, and carcinogenesis. PMID:28503659

  10. Structure and function of histone acetyltransferase MOF.

    PubMed

    Chen, Qiao Yi; Costa, Max; Sun, Hong

    2015-01-01

    MOF was first identified in Drosophila melanogaster as an important component of the dosage compensation complex. As a member of MYST family of histone acetyltransferase, MOF specifically deposits the acetyl groups to histone H4 lysine 16. Throughout evolution, MOF and its mammalian ortholog have retained highly conserved substrate specificity and similar enzymatic activities. MOF plays important roles in dosage compensation, ESC self-renewal, DNA damage and repair, cell survival, and gene expression regulation. Dysregulation of MOF has been implicated in tumor formation and progression of many types of human cancers. This review will discuss the structure and activity of mammalian hMOF as well as its function in H4K16 acetylation, DNA damage response, stem cell pluripotency, and carcinogenesis.

  11. RTG resource book for western states and provinces: Final proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Western Interstate Energy Board held a workshop and liaison activities among western states, provinces, and utilities on the formation of Regional Transmission Groups (RTGs). Purpose of the activities was to examine the policy implications for western states and provinces in the formation of RTGs in the West, the implications for western ratepayers and utilities of the RTG formation and potential impacts of RTGs on the western electricity system. The workshop contributed to fulfilling the transmission access and competition objectives of Title VII of the Energy Policy Act of 1992.

  12. Cyanobacterial Community Structure In Lithifying Mats of A Yellowstone Hotspring-Implications for Precambrian Stromatolite Biocomplexity

    NASA Technical Reports Server (NTRS)

    Lau, Evan; Nash, C. Z.; Vogler, D. R.; Cullings, K.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Denaturing Gradient Gel Electrophoresis (DGGE) of partial 16S rRNA gene sequences was used to investigate the molecular biodiversity of cyanobacterial communities inhabiting various lithified morpho-structures in two hotsprings of Yellowstone National Park. These morpho-structures - flat-topped columns, columnar cones, and ridged cones - resemble ancient stromatolites, which are possibly biogenic in origin. The top, middle and bottom sections of these lithified morpho-structures, as well as surrounding non-lithified mats were analyzed to determine the vertical and spatial distribution of cyanobacterial communities. Results from DGGE indicate that the cyanobacterial community composition of lithified morpho-structures (flat-topped columns, columnar cones, and ridged cones) were largely similar in vertical distribution as well as among the morpho-structures being studied. Preliminary results indicate that the cyanobacterial communities in these lithified morpho-structures were significantly different from communities in surrounding non-lithified mats. These results provide additional support to the theory that certain Phormidium/Leptolyngbya species are involved in the morphogenesis of lithifying morpho-structures in hotsprings and may have played a role in the formation of ancient stromatolites.

  13. A possible structural model of members of the CPF family of cuticular proteins implicating binding to components other than chitin

    PubMed Central

    Papandreou, Nikos C.; Iconomidou, Vassiliki A.; Willis, Judith H.; Hamodrakas, Stavros J.

    2010-01-01

    The physical properties of cuticle are determined by the structure of its two major components, cuticular proteins (CPs) and chitin, and, also, by their interactions. A common consensus region (extended R&R Consensus) found in the majority of cuticular proteins, the CPRs, binds to chitin. Previous work established that β-pleated sheet predominates in the Consensus region and we proposed that it is responsible for the formation of helicoidal cuticle. Remote sequence similarity between CPRs and a lipocalin, bovine plasma retinol binding protein (RBP), led us to suggest an antiparallel β-sheet half-barrel structure as the basic folding motif of the R&R Consensus. There are several other families of cuticular proteins. One of the best defined is CPF. Its four members in Anopheles gambiae are expressed during the early stages of either pharate pupal or pharate adult development, suggesting that the proteins contribute to the outer regions of the cuticle, the epi- and/or exocuticle. These proteins did not bind to chitin in the same assay used successfully for CPRs. Although CPFs are distinct in sequence from CPRs, the same lipocalin could also be used to derive homology models for one Anopheles gambiae and one Drosophila melanogaster CPF. For the CPFs, the basic folding motif predicted is an eight-stranded, antiparallel β-sheet, full-barrel structure. Possible implications of this structure are discussed and docking experiments were carried out with one possible Drosophila ligand, 7(Z), 11(Z)-heptacosadiene. PMID:20417215

  14. The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.

    PubMed

    Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos

    2014-10-21

    Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed.

  15. Experimental approaches to identify cellular G-quadruplex structures and functions.

    PubMed

    Di Antonio, Marco; Rodriguez, Raphaël; Balasubramanian, Shankar

    2012-05-01

    Guanine-rich nucleic acids can fold into non-canonical DNA secondary structures called G-quadruplexes. The formation of these structures can interfere with the biology that is crucial to sustain cellular homeostases and metabolism via mechanisms that include transcription, translation, splicing, telomere maintenance and DNA recombination. Thus, due to their implication in several biological processes and possible role promoting genomic instability, G-quadruplex forming sequences have emerged as potential therapeutic targets. There has been a growing interest in the development of synthetic molecules and biomolecules for sensing G-quadruplex structures in cellular DNA. In this review, we summarise and discuss recent methods developed for cellular imaging of G-quadruplexes, and the application of experimental genomic approaches to detect G-quadruplexes throughout genomic DNA. In particular, we will discuss the use of engineered small molecules and natural proteins to enable pull-down, ChIP-Seq, ChIP-chip and fluorescence imaging of G-quadruplex structures in cellular DNA. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. The impact of dark energy on galaxy formation. What does the future of our Universe hold?

    NASA Astrophysics Data System (ADS)

    Salcido, Jaime; Bower, Richard G.; Barnes, Luke A.; Lewis, Geraint F.; Elahi, Pascal J.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop

    2018-04-01

    We investigate the effect of the accelerated expansion of the Universe due to a cosmological constant, Λ, on the cosmic star formation rate. We utilise hydrodynamical simulations from the EAGLE suite, comparing a ΛCDM Universe to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of growth of structure, we find that dark energy, at its observed value, has negligible impact on star formation in the Universe. We study these effects beyond the present day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We show that the impact of Λ becomes significant only when the Universe has already produced most of its stellar mass, only decreasing the total co-moving density of stars ever formed by ≈15%. We develop a simple analytic model for the cosmic star formation rate that captures the suppression due to a cosmological constant. The main reason for the similarity between the models is that feedback from accreting black holes dramatically reduces the cosmic star formation at late times. Interestingly, simulations without feedback from accreting black holes predict an upturn in the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive (>1011M⊙) galaxies. We briefly discuss the implication of the weak dependence of the cosmic star formation on Λ in the context of the anthropic principle.

  17. Internal kinematics and dynamics of galaxies; Proceedings of the Symposium, Universitede Franche-Comte, Besancon, France, August 9-13, 1982

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.

    Various aspects of the internal kinematics and dynamics of galaxies are considered. The kinematics of the gas and the underlying mass distribution are discussed, including the systematics of H II rotation curves, H I velocity fields and rotation curves, the distribution of molecular clouds in spiral galaxies, gas at large radii, the implications for galactic mass models of vertical motion and the thickness of H I disks, and mass distribution and dark halos. The theory of spiral structure is addressed, along with conflicts and directions in spiral structure studies. Theories of warps are covered. Barred galaxies are treated, including their morphology, stellar kinematics, and dynamics, the stability of their disks, theoretical studies of their gas flows, and the formation of rings and lenses. Spheroidal systems are considered, including dynamics of early type galaxies, models of ellipticals and bulges, and interstellar matter in elliptical galaxies. Simulations and observational evidence for mergers are addressed, and the formation of galaxies and dynamics of globular cluster systems are examined. For individual items see A83-49202 to A83-49267

  18. Neuraminidase Ribbon Diagram

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Ribbons is a program developed at UAB used worldwide to graphically depict complicated protein structures in a simplified format. The program uses sophisticated computer systems to understand the implications of protein structures. The Influenza virus remains a major causative agent for a large number of deaths among the elderly and young children and huge economic losses due to illness. Finding a cure will have a general impact both on the basic research of viral pathologists of fast evolving infectious agents and clinical treatment of influenza virus infection. The reproduction process of all strains of influenza are dependent on the same enzyme neuraminidase. Shown here is a segmented representation of the neuraminidase inhibitor compound sitting inside a cave-like contour of the neuraminidase enzyme surface. This cave-like formation present in every neuraminidase enzyme is the active site crucial to the flu's ability to infect. The space-grown crystals of neuraminidase have provided significant new details about the three-dimensional characteristics of this active site thus allowing researchers to design drugs that fit tighter into the site. Principal Investigator: Dr. Larry DeLucas

  19. Comparison of Constitutional and Replication Stress-Induced Genome Structural Variation by SNP Array and Mate-Pair Sequencing

    PubMed Central

    Arlt, Martin F.; Ozdemir, Alev Cagla; Birkeland, Shanda R.; Lyons, Robert H.; Glover, Thomas W.; Wilson, Thomas E.

    2011-01-01

    Copy-number variants (CNVs) are a major source of genetic variation in human health and disease. Previous studies have implicated replication stress as a causative factor in CNV formation. However, existing data are technically limited in the quality of comparisons that can be made between human CNVs and experimentally induced variants. Here, we used two high-resolution strategies—single nucleotide polymorphism (SNP) arrays and mate-pair sequencing—to compare CNVs that occur constitutionally to those that arise following aphidicolin-induced DNA replication stress in the same human cells. Although the optimized methods provided complementary information, sequencing was more sensitive to small variants and provided superior structural descriptions. The majority of constitutional and all aphidicolin-induced CNVs appear to be formed via homology-independent mechanisms, while aphidicolin-induced CNVs were of a larger median size than constitutional events even when mate-pair data were considered. Aphidicolin thus appears to stimulate formation of CNVs that closely resemble human pathogenic CNVs and the subset of larger nonhomologous constitutional CNVs. PMID:21212237

  20. Dewetting dynamics of a gold film on graphene: implications for nanoparticle formation.

    PubMed

    Namsani, Sadanandam; Singh, Jayant K

    2016-01-01

    The dynamics of dewetting of gold films on graphene surfaces is investigated using molecular dynamics simulation. The effect of temperature (973-1533 K), film diameter (30-40 nm) and film thickness (0.5-3 nm) on the dewetting mechanism, leading to the formation of nanoparticles, is reported. The dewetting behavior for films ≤5 Å is in contrast to the behavior seen for thicker films. The retraction velocity, in the order of ∼300 m s(-1) for a 1 nm film, decreases with an increase in film thickness, whereas it increases with temperature. However at no point do nanoparticles detach from the surface within the temperature range considered in this work. We further investigated the self-assembly behavior of nanoparticles on graphene at different temperatures (673-1073 K). The process of self-assembly of gold nanoparticles is favorable at lower temperatures than at higher temperatures, based on the free-energy landscape analysis. Furthermore, the shape of an assembled structure is found to change from spherical to hexagonal, with a marked propensity towards an icosahedral structure based on the bond-orientational order parameters.

  1. Magnetospheric Multiscale Mission Observations of Magnetic Flux Ropes in the Earth's Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.; Akhavan-Tafti, M.; Poh, G.; Le, G.; Russell, C. T.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Gershman, D. J.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Burch, J. L.

    2017-12-01

    A major discovery by the Cluster mission and the previous generation of science missions is the presence of earthward and tailward moving magnetic flux ropes in the Earth's plasma sheet. However, the lack of high-time resolution plasma measurements severely limited progress concerning the formation and evolution of these reconnection generated structures. We use high-time resolution magnetic and electric field and plasma measurements from the Magnetospheric Multiscale mission's first tail season to investigate: 1) the distribution of flux rope diameters relative to the local ion and electron inertial lengths; 2) the internal force balance sustaining these structures; and 3) the magnetic connectivity of the flux ropes to the Earth and/or the interplanetary medium; 4) the specific entropy of earthward moving flux ropes and the possible effect of "buoyancy" on how deep they penetrate into the inner magnetosphere; and 5) evidence for coalescence of adjacent flux ropes and/or the division of existing flux ropes through the formation of secondary X-lines. The results of these initial analyses will be discussed in terms of their implications for reconnection-driven magnetospheric dynamics and substorms.

  2. Immunity and Immunopathology in the Tuberculous Granuloma

    PubMed Central

    Pagán, Antonio J.; Ramakrishnan, Lalita

    2015-01-01

    Granulomas, organized aggregates of immune cells, are a defining feature of tuberculosis (TB). Granuloma formation is implicated in the pathogenesis of a variety of inflammatory disorders. However, the tuberculous granuloma has been assigned the role of a host protective structure which “walls-off” mycobacteria. Work conducted over the past decade has provided a more nuanced view of its role in pathogenesis. On the one hand, pathogenic mycobacteria accelerate and exploit granuloma formation for their expansion and dissemination by manipulating host immune responses to turn leukocyte recruitment and cell death pathways in their favor. On the other hand, granuloma macrophages can preserve granuloma integrity by exerting a microbicidal immune response, thus preventing an even more rampant expansion of infection in the extracellular milieu. Even this host-beneficial immune response required to maintain the bacteria intracellular must be tempered, as an overly vigorous immune response can also cause granuloma breakdown, thereby directly supporting bacterial growth extracellularly. This review will discuss how mycobacteria manipulate inflammatory responses to drive granuloma formation and will consider the roles of the granuloma in pathogenesis and protective immunity, drawing from clinical studies of TB in humans and from animal models—rodents, zebrafish, and nonhuman primates. A deeper understanding of TB pathogenesis and immunity in the granuloma could suggest therapeutic approaches to abrogate the host-detrimental aspects of granuloma formation to convert it into the host-beneficial structure that it has been thought to be for nearly a century. PMID:25377142

  3. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration.

    PubMed

    Douterelo, I; Sharpe, R; Boxall, J

    2014-07-01

    To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. © 2014 The Authors. published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  4. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration

    PubMed Central

    Douterelo, I; Sharpe, R; Boxall, J

    2014-01-01

    Aims To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Methods and Results Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Conclusions Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. Significance and Importance of the Study This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. PMID:24712449

  5. The Discovery of a Disk-Jet System Directly Exposed to Strong Ultraviolet Fields in the Rosette Nebula

    NASA Astrophysics Data System (ADS)

    Li, Jin Zeng; Rector, Travis A.

    2004-01-01

    We report on the discovery of an optical jet with a striking morphology in the Rosette Nebula. It could be the most extreme case known of an accretion disk and jet system directly exposed to strong ionization fields that impose strong effects on disk evolution. Unlike typical optical flows, this jet system is found to have a high excitation nature mainly due to disruptive interaction with the violent environment. As a result, the extension of the highly collimated jet and possible former episodes of the degenerated counterjet all show bow-shocked structures. Our results provide implications on how incipience of massive stars in giant molecular clouds prevents further generations of low-mass star formation, and possibly also how isolated substellar/planetary-mass objects in regions of massive star formation are formed.

  6. Galaxies and large scale structure at high redshifts

    PubMed Central

    Steidel, Charles C.

    1998-01-01

    It is now straightforward to assemble large samples of very high redshift (z ∼ 3) field galaxies selected by their pronounced spectral discontinuity at the rest frame Lyman limit of hydrogen (at 912 Å). This makes possible both statistical analyses of the properties of the galaxies and the first direct glimpse of the progression of the growth of their large-scale distribution at such an early epoch. Here I present a summary of the progress made in these areas to date and some preliminary results of and future plans for a targeted redshift survey at z = 2.7–3.4. Also discussed is how the same discovery method may be used to obtain a “census” of star formation in the high redshift Universe, and the current implications for the history of galaxy formation as a function of cosmic epoch. PMID:9419319

  7. Clinical implications of acute pelvicaliceal hematoma formation during percutaneous catheter nephrostomy insertion.

    PubMed

    Stewart, Jessica K; Smith, Tony P; Kim, Charles Y

    To determine the clinical implications of acute pelvicaliceal hematoma formation during percutaneous catheter nephrostomy (PCN) insertion. Collecting system hematoma burden was retrospectively assessed for 694 PCN insertions in 502 patients. Pelvicaliceal hematoma formation occurred in 146 kidneys (21%) in 136 patients. Clinically significant blood loss occurred in 3 patients with hematomas within one week compared to 4 patients without hematomas (p=0.39). Twenty-four patients with hematomas underwent catheter exchange within one week, compared to 55 patients without hematomas (p=0.49). Pelvicaliceal hematoma formation after PCN insertion is not uncommon and is associated with very rare clinical sequelae. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Structural analysis of secretory phospholipase A2 from Clonorchis sinensis: therapeutic implications for hepatic fibrosis.

    PubMed

    Hariprasad, Gururao; Kaur, Punit; Srinivasan, Alagiri; Singh, Tej Pal; Kumar, Manoj

    2012-07-01

    Hepatic fibrosis is a common complication of the infection by the parasite, Clonorchis sinensis. There is a high incidence of this disease in the Asian countries with an increased risk of conversion to cancer. A secretory phospholipase A(2) (PLA(2)) enzyme from the parasite is implicated in the pathology. This is an attractive drug target in the light of extensive structural characterization of this class of enzyme. In this study, the structure of the enzyme was modeled based on its sequence homology to the group III bee venom PLA(2). On analysis, the overall structure essentially is comprised of three helices, two sets of β-wings and an elongated C-terminal extension. The structure is stabilized by four disulfide bonds. The structure is comprised of a calcium binding loop, active site and a substrate binding hydrophobic channel. The active site of the enzyme shows the classical features of PLA(2) with the participation of the three residues: histidine-aspartic acid-tyrosine in hydrogen bond formation. This is an interesting variation from the house keeping group III PLA(2) enzyme of human which has a histidine-aspartic acid and phenylalanine arrangement at the active site. This difference is therefore an important structural parameter that can be exploited to design specific inhibitor molecules against the pathogen PLA(2). Likewise, there are certain unique structural features in the hydrophobic channel and the putative membrane binding surface of the PLA(2) from Clonorchis sinensis that not only help understand the mechanism of action but also provide knowledge for a targeted therapy of liver fibrosis caused by the parasite.

  9. Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes*

    PubMed Central

    Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M.; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A.; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J.; Lenhert, Steven; Niyogi, Krishna K.; Kirchhoff, Helmut

    2015-01-01

    The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion. PMID:25897076

  10. Microbial shaping of sedimentary wrinkle structures

    NASA Astrophysics Data System (ADS)

    Mariotti, G.; Pruss, S. B.; Perron, J. T.; Bosak, T.

    2014-10-01

    Wrinkle structures on sandy bed surfaces were present in some of the earliest sedimentary environments, but are rare in modern environments. These enigmatic millimetre- to centimetre-scale ridges or pits are particularly common in sediments that harbour trace fossils and imprints of early animals, and appeared in the aftermath of some large mass extinctions. Wrinkle structures have been interpreted as possible remnants of microbial mats, but the formation mechanism and associated palaeoenvironmental and palaeoecological implications of these structures remain debated. Here we show that microbial aggregates can form wrinkle structures on a bed of bare sand in wave tank experiments. Waves with a small orbital amplitude at the bed surface do not move sand grains directly. However, they move millimetre-size, light microbial fragments and thereby produce linear sand ridges and rounded scour pits at the wavelengths observed in nature within hours. We conclude that wrinkle structures are morphological biosignatures that form at the sediment-water interface in wave-dominated environments, and not beneath microbial mats as previously thought. During early animal evolution, grazing by eukaryotic organisms may have temporarily increased the abundance of microbial fragments and thus the production of wrinkle structures.

  11. Inferring Enceladus' ice shell strength and structure from Tiger Stripe formation

    NASA Astrophysics Data System (ADS)

    Rhoden, A.; Hurford, T., Jr.; Spitale, J.; Henning, W. G.

    2017-12-01

    The tiger stripe fractures (TSFs) of Enceladus are four, roughly parallel, linear fractures that correlate with plume sources and high heat flows measured by Cassini. Diurnal variations of plume eruptions along the TSFs strongly suggest that tides modulate the eruptions. Several attempts have been made to infer Enceladus' ice shell structure, and the mechanical process of plume formation, by matching variations in the plumes' eruptive output with tidal stresses for different interior models. Unfortunately, the many, often degenerate, unknowns make these analyses non-unique. Tidal-interior models that best match the observed plume variability imply very low tidal stresses (<14 kPa), much lower than the 1 MPa tensile strength of ice implied by lab experiments or the 100 kPa threshold inferred for Europa's ice. In addition, the interior models that give the best matches are inconsistent with the constraints from observed librations. To gain more insight into the interior structure and rheology of Enceladus and the role of tidal stress in the development of the south polar terrain, we utilize the orientations of the TSFs themselves as observational constraints on tidal-interior models. While the initial formation of the TSFs has previously been attributed to tidal stress, detailed modeling of their formation has not been performed until now. We compute tidal stresses for a suite of rheologically-layered interior models, consistent with Enceladus' observed librations, and apply a variety of failure conditions. We then compare the measured orientations at 6391 points along the TSFs with the predicted orientations from the tidal models. Ultimately, we compute the likelihood of forming the TSFs with tidal stresses for each model and failure condition. We find that tidal stresses are a good match to the observed orientations of the TSFs and likely led to their formation. We also find that the model with the highest likelihood changes depending on the failure criterion applied. We will discuss the implications of our model results on the structure and strength of Enceladus's ice shell and the evolution of the SPT.

  12. Controls on Gut Phosphatisation: The Trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    PubMed Central

    Lerosey-Aubril, Rudy; Hegna, Thomas A.; Kier, Carlo; Bonino, Enrico; Habersetzer, Jörg; Carré, Matthieu

    2012-01-01

    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods – typically the most diverse fossilised organisms in Cambrian ecosystems – where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace. PMID:22431989

  13. Structural Mapping of Paterae and Mountains on Io: Implications for Crustal Stresses and Feature Evolution

    NASA Astrophysics Data System (ADS)

    Ahern, A.; Radebaugh, J.; Christiansen, E. H.; Harris, R. A.

    2015-12-01

    Paterae and mountains are some of the most distinguishing and well-distributed surface features on Io, and they reveal the role of tectonism in Io's crust. Paterae, similar to calderas, are volcano-tectonic collapse features that often have straight margins. Io's mountains are some of the highest in the solar system and contain linear features that reveal crustal stresses. Paterae and mountains are often found adjacent to one another, suggesting possible genetic relationships. We have produced twelve detailed regional structural maps from high-resolution images of relevant features, where available, as well as a global structural map from the Io Global Color Mosaic. The regional structural maps identify features such as fractures, lineations, folds, faults, and mass wasting scarps, which are then interpreted in the context of global and regional stress regimes. A total of 1048 structural lineations have been identified globally. Preliminary analyses of major thrust and normal fault orientations are dominantly 90° offset from each other, suggesting the maximum contractional stresses leading to large mountain formation are not a direct result of tidal extension. Rather, these results corroborate the model of volcanic loading of the crust and global shortening, leading to thrust faulting and uplift of coherent crustal blocks. Several paterae, such as Hi'iaka and Tohil, are found adjacent to mountains inside extensional basins where lava has migrated up normal faults to erupt onto patera floors. Over time, mass wasting and volcanic resurfacing can change mountains from young, steep, and angular peaks to older, gentler, and more rounded hills. Mass wasting scarps make up 53% of all features identified. The structural maps highlight the significant effect of mass wasting on Io's surface, the evolution of mountains through time, the role of tectonics in the formation of paterae, and the formation of mountains through global contraction due to volcanism.

  14. Nanocrystallography measurements of early stage synthetic malaria pigment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilanian, Ruben A.; Streltsov, Victor; Coughlan, Hannah D.

    The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of β-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in β-hematin data collected during SFX and synchrotron crystallography experiments. To interpret these differences two possibilities are considered: structural differences between the nanocrystal and larger crystalline forms of β-hematin, and radiation damage. Simulation studies show that structural inhomogeneity appears at present to provide a better fit to the experimental data.more » If confirmed, these observations will have implications for designing compounds that inhibit hemozoin formation and suggest that, for some systems at least, additional information may be gained by comparing structures obtained from nanocrystals and macroscopic crystals of the same molecule.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilanian, Ruben A.; Streltsov, Victor; Coughlan, Hannah D.

    The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of β-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in β-hematin data collected during SFX and synchrotron crystallography experiments. To interpret these differences two possibilities are considered: structural differences between the nanocrystal and larger crystalline forms of β-hematin, and radiation damage. Simulation studies show that structural inhomogeneity appears at present to provide a better fit to the experimental data.more » If confirmed, these observations will have implications for designing compounds that inhibit hemozoin formation and suggest that, for some systems at least, additional information may be gained by comparing structures obtained from nanocrystals and macroscopic crystals of the same molecule.« less

  16. Nanocrystallography measurements of early stage synthetic malaria pigment

    DOE PAGES

    Dilanian, Ruben A.; Streltsov, Victor; Coughlan, Hannah D.; ...

    2017-09-28

    The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of β-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in β-hematin data collected during SFX and synchrotron crystallography experiments. To interpret these differences two possibilities are considered: structural differences between the nanocrystal and larger crystalline forms of β-hematin, and radiation damage. Simulation studies show that structural inhomogeneity appears at present to provide a better fit to the experimental data.more » If confirmed, these observations will have implications for designing compounds that inhibit hemozoin formation and suggest that, for some systems at least, additional information may be gained by comparing structures obtained from nanocrystals and macroscopic crystals of the same molecule.« less

  17. Structure of a bacterial homologue of vitamin K epoxide reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weikai; Schulman, Sol; Dutton, Rachel J.

    Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain {gamma}-carboxylation of many blood coagulation factors. Here, we report the 3.6 {angstrom} crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins tomore » reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.« less

  18. Ab initio surface properties of Ag-Sn alloys: implications for lead-free soldering.

    PubMed

    Saleh, Gabriele; Xu, Chen; Sanvito, Stefano

    2018-02-07

    Ag and Sn are the major components of solder alloys adopted to assemble printed circuit boards. The qualities that make them the alloys of choice for the modern electronic industry are related to their physical and chemical properties. For corrosion resistance and solderability, surface properties are particularly important. Yet, atomic-level information about the surfaces of these alloys is not known. Here we fill this gap by presenting an extensive ab initio investigation of composition, energetics, structure and reactivity of Ag-Sn alloy surfaces. The structure and stability of various surfaces is evaluated, and the main factors determining the energetics of surface formation are uncovered. Oxygen and sulphur chemisorptions are studied and discussed in the framework of corrosion tendency, an important issue for printed circuit boards. Adsorption energy trends are rationalized based on the analysis of structural and electronic features.

  19. Fine-scale genetic structure and social organization in female white-tailed deer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comer, Christopher E.; Kilgo, John C.; D'Angelo, Gino J.

    Abstract: Social behavior of white-tailed deer (Odocoileus virginianus) can have important management implications. The formation of matrilineal social groups among female deer has been documented and management strategies have been proposed based on this well-developed social structure. Using radiocollared (n = 17) and hunter or vehicle-killed (n = 21) does, we examined spatial and genetic structure in white-tailed deer on a 7,000-ha portion of the Savannah River Site in the upper Coastal Plain of South Carolina, USA. We used 14 microsatellite DNA loci to calculate pairwise relatedness among individual deer and to assign doe pairs to putative relationship categories. Linearmore » distance and genetic relatedness were weakly correlated (r = –0.08, P = 0.058). Relationship categories differed in mean spatial distance, but only 60% of first-degree-related doe pairs (full sibling or mother–offspring pairs) and 38% of second-degree-related doe pairs (half sibling, grandmother–granddaughter pairs) were members of the same social group based on spatial association. Heavy hunting pressure in this population has created a young age structure among does, where the average age is <2.5 years, and <4% of does are >4.5 years old. This—combined with potentially elevated dispersal among young does—could limit the formation of persistent, cohesive social groups. Our results question the universal applicability of recently proposed models of spatial and genetic structuring in white-tailed deer, particularly in areas with differing harvest histories.« less

  20. Structure and Dynamics of the tRNA-like Structure Domain of Brome Mosaic Virus

    NASA Astrophysics Data System (ADS)

    Vieweger, Mario; Nesbitt, David

    2014-03-01

    Conformational switching is widely accepted as regulatory mechanism in gene expression in bacterial systems. More recently, similar regulation mechanisms are emerging for viral systems. One of the most abundant and best studied systems is the tRNA-like structure domain that is found in a number of plant viruses across eight genera. In this work, the folding dynamics of the tRNA-like structure domain of Brome Mosaic Virus are investigated using single-molecule Fluorescence Resonance Energy Transfer techniques. In particular, Burst fluorescence is applied to observe metal-ion induced folding in freely diffusing RNA constructs resembling the 3'-terminal 169nt of BMV RNA3. Histograms of EFRET probabilities reveal a complex equilibrium of three distinct populations. A step-wise kinetic model for TLS folding is developed in accord with the evolution of conformational populations and structural information in the literature. In this mechanism, formation of functional TLS domains from unfolded RNAs requires two consecutive steps; 1) hybridization of a long-range stem interaction followed by 2) formation of a 3' pseudoknot. This three-state equilibrium is well described by step-wise dissociation constants K1(328(30) μM) and K2(1092(183) μM) for [Mg2+] and K1(74(6) mM) and K2(243(52) mM) for [Na+]-induced folding. The kinetic model is validated by oligo competition with the STEM interaction. Implications of this conformational folding mechanism are discussed in regards to regulation of virus replication.

  1. Human Topoisomerase I C-Terminal Domain Fragment Containing the Active Site Tyrosine is a Molten Globule: Implication for the Formation of Competent Productive Complex

    PubMed Central

    Punchihewa, Chandanamali; Dai, Jixun; Carver, Megan; Yang, Danzhou

    2007-01-01

    Human topoisomerase I (topo I) is an essential cellular enzyme that relaxes DNA supercoiling. The 6.3 kDa C-terminal domain of topo I contains the active site tyrosine (Tyr723) but lacks enzymatic activity by itself. Activity can be fully reconstituted when the C-terminal is associated with the 56 kDa core domain. Even though several crystal structures of topo I/DNA complexes are available, crystal structures of the free topo I protein or its individual domain fragments have been difficult to obtain. In this report we analyze the human topo I C-terminal domain structure using a variety of biophysical methods. Our results indicate that this fragment protein (topo6.3) appears to be in a molten globule state. It appears to have a native-like tertiary fold that contains a large population of α-helix secondary structure and extensive surface hydrophobic regions. Topo6.3 is known to be readily activated with the association of the topo I core domain, and the molten globule state of topo6.3 is likely to be an energy-favorable conformation for the free topo I C-terminal domain protein. The structural fluctuation and plasticity may represent an efficient mechanism in the topo I functional pathway, where the flexibility aids in the complementary association with the core domain and in the formation of a fully productive topo I complex. PMID:17434318

  2. Comparing data accuracy between structured abstracts and full-text journal articles: implications in their use for informing clinical decisions.

    PubMed

    Fontelo, Paul; Gavino, Alex; Sarmiento, Raymond Francis

    2013-12-01

    The abstract is the most frequently read section of a research article. The use of 'Consensus Abstracts', a clinician-oriented web application formatted for mobile devices to search MEDLINE/PubMed, for informing clinical decisions was proposed recently; however, inaccuracies between abstracts and the full-text article have been shown. Efforts have been made to improve quality. We compared data in 60 recent-structured abstracts and full-text articles from six highly read medical journals. Data inaccuracies were identified and then classified as either clinically significant or not significant. Data inaccuracies were observed in 53.33% of articles ranging from 3.33% to 45% based on the IMRAD format sections. The Results section showed the highest discrepancies (45%) although these were deemed to be mostly not significant clinically except in one. The two most common discrepancies were mismatched numbers or percentages (11.67%) and numerical data or calculations found in structured abstracts but not mentioned in the full text (40%). There was no significant relationship between journals and the presence of discrepancies (Fisher's exact p value =0.3405). Although we found a high percentage of inaccuracy between structured abstracts and full-text articles, these were not significant clinically. The inaccuracies do not seem to affect the conclusion and interpretation overall. Structured abstracts appear to be informative and may be useful to practitioners as a resource for guiding clinical decisions.

  3. Mitosis in Barbulanympha. I. Spindle structure, formation, and kinetochore engagement

    PubMed Central

    1978-01-01

    Successful culture of the obligatorily anaerobic symbionts residing in the hindgut of the wood-eating cockroach Cryptocercus punctulatus now permits continuous observation of mitosis in individual Barbulanympha cells. In Part I of this two-part paper, we report methods for culture of the protozoa, preparation of microscope slide cultures in which Barbulanympha survived and divided for up to 3 days, and an optical arrangement which permits observation and through-focus photographic recording of dividing cells, sequentially in differential interference contrast and rectified polarized light microscopy. We describe the following prophase events and structures: development of the astral rays and large extranuclear central spindle from the tips of the elongate-centrioles; the fine structure of spindle fibers and astral rays which were deduced in vivo from polarized light microscopy and seen as a particular array of microtubules in thin-section electron micrographs; formation of chromosomal spindle fibers by dynamic engagement of astral rays to the kinetochores embedded in the persistent nuclear envelope; and repetitive shortening of chromosomal spindle fibers which appear to hoist the nucleus to the spindle surface, cyclically jostle the kinetochores within the nuclear envelope, and churn the prophase chromosomes. The observations described here and in Part II have implications both for the evolution of mitosis and for understanding the mitotic process generally. PMID:681451

  4. Healthcare quality improvement -- policy implications and practicalities.

    PubMed

    Esain, Ann Elizabeth; Williams, Sharon J; Gakhal, Sandeep; Caley, Lynne; Cooke, Matthew W

    2012-01-01

    This article aims to explore quality improvement (QI) at individual, group and organisational level. It also aims to identify restraining forces using formative evaluation and discuss implications for current UK policy, particularly quality, innovation, productivity and prevention. Learning events combined with work-based projects, focusing on individual and group responses are evaluated. A total of 11 multi-disciplinary groups drawn from NHS England healthcare Trusts (self-governing operational groups) were sampled. These Trusts have different geographic locations and participants were drawn from primary, secondary and commissioning arms. Mixed methods: questionnaires, observations and reflective accounts were used. The paper finds that solution versus problem identification causes confusion and influences success. Time for problem solving to achieve QI was absent. Feedback and learning structures are often not in place or inflexible. Limited focus on patient-centred services may be related to past assumptions regarding organisational design, hence assumptions and models need to be understood and challenged. The authors revise the Plan, Do, Study; Act (PDSA) model by adding an explicit problem identification step and hence avoiding solution-focused habits; demonstrating the need for more formative evaluations to inform managers and policy makers about healthcare QI processes. - Although UK-centric, the quality agenda is a USA and European theme, findings may help those embarking on this journey or those struggling with QI.

  5. Preferential recognition of undisruptable dimers of inducible nitric oxide synthase by a monoclonal antibody directed against an N-terminal epitope.

    PubMed

    Mazumdar, Tuhina; Eissa, N Tony

    2005-02-15

    Overproduction of NO by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer in which the subunits align in a head-to-head manner, with the N-terminal oxygenase domains forming the dimer interface and a zinc metal center stabilizing the dimer. Thus, dimerization represents a critical locus for therapeutic interventions for regulation of NO synthesis. We have recently shown that intracellular iNOS forms dimers that are "undisruptable (UD)" by heat, SDS, strong denaturants, and/or reducing agents. Our data further suggest that the zinc metal center plays a role in forming and/or stabilizing iNOS undisruptable dimers (UD-dimers). In this study, we show that a mAb directed against a unique epitope at the oxygenase domain of human iNOS preferentially recognizes UD-dimers. This observation has implications for the mechanism of formation and regulation of dimer formation of iNOS. Our data suggest that UD-dimers of iNOS, in spite of SDS-PAGE denaturation, still maintain features of the quaternary structure of iNOS particularly at its N-terminal end and including head-to-head contact of the oxygenase domains.

  6. Wiring Olfaction: The Cellular and Molecular Mechanisms that Guide the Development of Synaptic Connections from the Nose to the Cortex

    PubMed Central

    de Castro, Fernando

    2009-01-01

    Within the central nervous system, the olfactory system fascinates by its developmental and physiological particularities, and is one of the most studied models to understand the mechanisms underlying the guidance of growing axons to their appropriate targets. A constellation of contact-mediated (laminins, CAMs, ephrins, etc.) and secreted mechanisms (semaphorins, slits, growth factors, etc.) are known to play different roles in the establishment of synaptic interactions between the olfactory epithelium, olfactory bulb (OB) and olfactory cortex. Specific mechanisms of this system (including the amazing family of about 1000 different olfactory receptors) have been also proposed. In the last years, different reviews have focused in partial sights, specially in the mechanisms involved in the formation of the olfactory nerve, but a detailed review of the mechanisms implicated in the development of the connections among the different olfactory structures (olfactory epithelium, OB, olfactory cortex) remains to be written. In the present work, we afford this systematic review: the different cellular and molecular mechanisms which rule the formation of the olfactory nerve, the lateral olfactory tract and the intracortical connections, as well as the few data available regarding the accessory olfactory system. These mechanisms are compared, and the implications of the differences and similarities discussed in this fundamental scenario of ontogeny. PMID:20582279

  7. COBE limits on explosive structure formation scenarios

    NASA Technical Reports Server (NTRS)

    Levin, Janna J.; Freese, Katherine; Spergle, David N.

    1992-01-01

    The Compton y-distortion that would result from an epoch of explosions at moderate redshifts is estimated and compared to recent measurements of the CBR spectrum made by the COBE satellite. The temperature anisotropy on large angular scales is estimated, and it is found that in general the limits on the overall spectral distortion are more constraining than those on the temperature anisotropy. It is found that most of the y-distortion is produced during the early, noncosmological phase of bubble evolution. An expression is obtained for the y-distortion including the effects of Compton cooling. The implications of the findings are discussed.

  8. Interior of the Moon

    NASA Technical Reports Server (NTRS)

    Weber, Renee C.

    2013-01-01

    A variety of geophysical measurements made from Earth, from spacecraft in orbit around the Moon, and by astronauts on the lunar surface allow us to probe beyond the lunar surface to learn about its interior. Similarly to the Earth, the Moon is thought to consist of a distinct crust, mantle, and core. The crust is globally asymmetric in thickness, the mantle is largely homogeneous, and the core is probably layered, with evidence for molten material. This chapter will review a range of methods used to infer the Moon's internal structure, and briefly discuss the implications for the Moon's formation and evolution.

  9. High-Resolution Topography and its Implications for the Formation of Europa's Ridged Plains

    NASA Astrophysics Data System (ADS)

    Leonard, E. J.; Pappalardo, R. T.; Yin, A.; Patthoff, D. A.; Schenk, P.

    2015-12-01

    The Galileo Solid State Imager (SSI) recorded nine very high-resolution frames—eight at 12 m/pixel and one at 6 m/pixel—during the E12 flyby of Europa in Dec. 1997. To understand the implications for the small-scale structure and evolution of Europa, we mosaicked these frames (observations 12ESMOTTLE01 and 02, incidence ≈18°, emission ≈77°) into their regional context (part of observation 11ESREGMAP01, 220 m/pixel, incidence ≈74°, emission ≈23°). The topography data, which was created from the image mosaic overlaps, is sparse and segmented over the high-resolution images but connected by the underlying regional resolution topography. The high-resolution topography (24 m/pixel) is among the best for the current Europan dataset. From this dataset we ascertain the root mean square, or RMS, slope for some of the most common Europan surface features in a new region. We also employ a Fourier Transform method previously used on Ganymede and on other areas of Europa (Patel et al., 1999 JGR), to derive common wavelengths for the subunits of the ubiquitous ridged plains terrain. These results have important implications for differentiating between possible formation mechanisms—extensional tilt blocks (Pappalardo et al., 1995 JGR) or folds (Leonard et al., 2015 LPSC Abstract)—and for potential future missions. We continue this method for another high-resolution region taken in the E12 orbit, WEDGES01 and 02, with the specific goal of investigating how the variations in ridged plains morphologies relate across the surface of Europa.

  10. Amyloid fibrils: formation, replication, and physics behind them

    NASA Astrophysics Data System (ADS)

    Saric, Andela

    The assembly of normally soluble proteins into long fibrils, known as amyloids, is associated with a range of pathologies, including Alzheimer's and Parkinson's diseases. A large number of structurally unrelated proteins form this type of fibrils, and we are in a pursuit of physical principles that underlie the amyloid formation and propagation. We show that small disorders oligomers, which are increasingly believed to be the prime cause for cellular toxicity, serve as nucleation centers for the fibril formation. We then relate experimentally measurable kinetic descriptors of amyloid aggregation to the microscopic mechanisms of the process. Once formed, amyloid fibrils can catalyse the formation of new oligomers and fibrils in a process that resembles self-replication. By combining simulations with biosensing and kinetic measurements of the aggregation of Alzheimer's A β peptide, we propose a mechanistic explanation for the self-replication of protein fibrils, and discuss its thermodynamic signature. Finally, we consider the design of possible inhibitors of the fibril self-replication process. Mechanistic understandings provided here not only have implications for future efforts to control pathological protein aggregation, but are also of interest for the rational assembly of bionanomaterials, where achieving and controlling self-replication is one of the unfulfilled goals.

  11. Observation of small cluster formation in concentrated monoclonal antibody solutions and its implications to solution viscosity.

    PubMed

    Yearley, Eric J; Godfrin, Paul D; Perevozchikova, Tatiana; Zhang, Hailiang; Falus, Peter; Porcar, Lionel; Nagao, Michihiro; Curtis, Joseph E; Gawande, Pradad; Taing, Rosalynn; Zarraga, Isidro E; Wagner, Norman J; Liu, Yun

    2014-04-15

    Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals. It is hypothesized that some concentrated mAb solutions exhibit formation of a solution phase consisting of reversibly self-associated aggregates (or reversible clusters), which is speculated to be responsible for their distinct solution properties. Here, we report direct observation of reversible clusters in concentrated solutions of mAbs using neutron spin echo. Specifically, a stable mAb solution is studied across a transition from dispersed monomers in dilute solution to clustered states at more concentrated conditions, where clusters of a preferred size are observed. Once mAb clusters have formed, their size, in contrast to that observed in typical globular protein solutions, is observed to remain nearly constant over a wide range of concentrations. Our results not only conclusively establish a clear relationship between the undesirable high viscosity of some mAb solutions and the formation of reversible clusters with extended open structures, but also directly observe self-assembled mAb protein clusters of preferred small finite size similar to that in micelle formation that dominate the properties of concentrated mAb solutions. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. A case study on the formation and sharing process of science classroom norms

    NASA Astrophysics Data System (ADS)

    Chang, Jina; Song, Jinwoong

    2016-03-01

    The teaching and learning of science in school are influenced by various factors, including both individual factors, such as member beliefs, and social factors, such as the power structure of the class. To understand this complex context affected by various factors in schools, we investigated the formation and sharing process of science classroom norms in connection with these factors. By examining the developmental process of science classroom norms, we identified how the norms were realized, shared, and internalized among the members. We collected data through classroom observations and interviews focusing on two elementary science classrooms in Korea. From these data, factors influencing norm formation were extracted and developed as stories about norm establishment. The results indicate that every science classroom norm was established, shared, and internalized differently according to the values ingrained in the norms, the agent of norm formation, and the members' understanding about the norm itself. The desirable norms originating from values in science education, such as having an inquiring mind, were not established spontaneously by students, but were instead established through well-organized norm networks to encourage concrete practice. Educational implications were discussed in terms of the practice of school science inquiry, cultural studies, and value-oriented education.

  13. Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Yi-Kuan; Overzier, Roderik A.; Gebhardt, Karl

    Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological context using a set of N -body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z = 0 to z = 7. We show that (proto)cluster galaxies are an important and even dominant population at high redshift, as their expected contribution to the cosmic star formation rate density rises (from 1% at zmore » = 0) to 20% at z = 2 and 50% at z = 10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z ∼ 10–5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the universe; at z ∼ 5–1.5, rapid star formation occurred within the entire 10–20 Mpc structures, forming most of their present-day stellar mass; at z ≲ 1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during cosmic noon, and their connection to reionization during cosmic dawn.« less

  14. Some implications of large impact craters and basins on Venus for terrestrial ringed craters and planetary evolution

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.; Alexopoulos, J. S.

    1994-01-01

    Approximately 950 impact craters have been identified on the surface of Venus, mainly in Magellan radar images. From a combination of Earth-based Arecibo, Venera 15/1, and Magellan radar images, we have interpreted 72 as unequivocal peak-ring craters and four as multiringed basins. The morphological and structural preservation of these craters is high owing to the low level of geologic activity on the venusian surface (which is in some ways similar to the terrestrial benthic environment). Thus these craters should prove crucial to understanding the mechanics of ringed crater formation. They are also the most direct analogs for craters formed on the Earth in Phanerozoic time, such as Chicxulub. We summarize our findings to date concerning these structures.

  15. Active site architecture of a sugar N-oxygenase.

    PubMed

    Thoden, James B; Branch, Megan C; Zimmer, Alex L; Bruender, Nathan A; Holden, Hazel M

    2013-05-14

    KijD3 is a flavin-dependent N-oxygenase implicated in the formation of the nitro-containing sugar d-kijanose, found attached to the antibiotic kijanimicin. For this investigation, the structure of KijD3 in complex with FMN and its dTDP-sugar substrate was solved to 2.1 Å resolution. In contrast to the apoenzyme structure, the C-terminus of the protein becomes ordered and projects into the active site cleft [Bruender, N. A., Thoden, J. B., and Holden, H. M. (2010) Biochemistry 49, 3517-3524]. The amino group of the dTDP-aminosugar that is oxidized is located 4.9 Å from C4a of the flavin ring. The model provides a molecular basis for understanding the manner in which KijD3 catalyzes its unusual chemical transformation.

  16. Crystal Structure of Streptococcus pyogenes Cas1 and Its Interaction with Csn2 in the Type II CRISPR-Cas System.

    PubMed

    Ka, Donghyun; Lee, Hasup; Jung, Yi-Deun; Kim, Kyunggon; Seok, Chaok; Suh, Nayoung; Bae, Euiyoung

    2016-01-05

    CRISPRs and Cas proteins constitute an RNA-guided microbial immune system against invading nucleic acids. Cas1 is a universal Cas protein found in all three types of CRISPR-Cas systems, and its role is implicated in new spacer acquisition during CRISPR-mediated adaptive immunity. Here, we report the crystal structure of Streptococcus pyogenes Cas1 (SpCas1) in a type II CRISPR-Cas system and characterize its interaction with S. pyogenes Csn2 (SpCsn2). The SpCas1 structure reveals a unique conformational state distinct from type I Cas1 structures, resulting in a more extensive dimerization interface, a more globular overall structure, and a disruption of potential metal-binding sites for catalysis. We demonstrate that SpCas1 directly interacts with SpCsn2, and identify the binding interface and key residues for Cas complex formation. These results provide structural information for a type II Cas1 protein, and lay a foundation for studying multiprotein Cas complexes functioning in type II CRISPR-Cas systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Golden rule for buttressing vulnerable soluble proteins.

    PubMed

    Fernández, Ariel; Berry, R Stephen

    2010-05-07

    Local weaknesses in the structure of soluble proteins have received little attention. The structure may be inherently weak at sites where hydration of the protein backbone is locally hampered by formation of an intramolecular hydrogen bond which in turn is not fully stabilized through burial within a hydrophobic environment. The result is insufficient compensation for the thermodynamic cost of dehydrating the backbone polar groups. This work shows that these structural deficiencies, the unburied backbone hydrogen bonds, are compensated in natural proteins by disulfide bonds that are needed to maintain the structural integrity. Examination of all PDB-reported soluble structures reveals that, after suitable normalization, the number of disulfide bonds, X, correlates tightly with the number of unburied backbone hydrogen bonds, Y, beyond the baseline level Y = 20, revealing a simple balance relation: Y = 5X + 20. This equation introduces a 1:5 ratio associated with the buttressing of soluble proteins with structural deficiencies. The results are justified on thermodynamic grounds and have implications for biomolecular engineering as they introduce two constants of universal applicability determining the architecture of soluble proteins.

  18. Emergent perversions in the buckling of heterogeneous elastic strips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shuangping; Yao, Zhenwei; Chiou, Kevin

    A perversion in an otherwise uniform helical structure, such as a climbing plant tendril, refers to a kink that connects two helices with opposite chiralities. Such singularity structures are widely seen in natural and artificial mechanical systems, and they provide the fundamental mechanism of helical symmetry breaking. However, it is still not clear how perversions arise in various helical structures and which universal principles govern them. As such, a heterogeneous elastic bistrip system provides an excellent model to address these questions. In this paper, we investigate intrinsic perversion properties which are independent of strip shapes. This study reveals the richmore » physics of perversions in the 3D elastic system, including the condensation of strain energy over perversions during their formation, the repulsive nature of the perversion–perversion interaction, and the coalescence of perversions that finally leads to a linear defect structure. Finally, this study may have implications for understanding relevant biological motifs and for use of perversions as energy storers in the design of micromuscles and soft robotics.« less

  19. The Effects of Polyunsaturated Lipid Components on bilayer Structure

    NASA Astrophysics Data System (ADS)

    Pramudya, Y.; Kiss, A.; Nguyen, Lam T.; Yuan, J.; Hirst, Linda S.

    2007-03-01

    Polyunsaturated fatty acids (PUFAs), such as DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) have been the focus of much research attention in recent years, due to their apparent health benefits and effects on cell physiology. They are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, particularly in the retinal rod cells and the central nervous system. In this work lipid bilayer structure has been investigated in lipid mixtures, incorporating polyunsaturated fatty acid moieties. The structural effects of increasing concentrations of both symmetric and asymmetric PUFA materials on the bilayer structure are investigated via synchrotron x-ray diffraction on solution samples. We observe bilayer spacings to increase with the percentage of unsaturated fatty acid lipid in the membrane, whilst the degree of ordering significantly decreases. In fact above 20% of fatty acid, well defined bilayers are no longer observed to form. Evidence of phase separation can be clearly seen from these x-ray results and in combination with AFM measurements.

  20. Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications.

    PubMed

    Leemhuis, Hans; Pijning, Tjaard; Dobruchowska, Justyna M; van Leeuwen, Sander S; Kralj, Slavko; Dijkstra, Bauke W; Dijkhuizen, Lubbert

    2013-01-20

    Glucansucrases are extracellular enzymes that synthesize a wide variety of α-glucan polymers and oligosaccharides, such as dextran. These carbohydrates have found numerous applications in food and health industries, and can be used as pure compounds or even be produced in situ by generally regarded as safe (GRAS) lactic acid bacteria in food applications. Research in the recent years has resulted in big steps forward in the understanding and exploitation of the biocatalytic potential of glucansucrases. This paper provides an overview of glucansucrase enzymes, their recently elucidated crystal structures, their reaction and product specificity, and the structural analysis and applications of α-glucan polymers. Furthermore, we discuss key developments in the understanding of α-glucan polymer formation based on the recently elucidated three-dimensional structures of glucansucrase proteins. Finally we discuss the (potential) applications of α-glucans produced by lactic acid bacteria in food and health related industries. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Emergent perversions in the buckling of heterogeneous elastic strips

    DOE PAGES

    Liu, Shuangping; Yao, Zhenwei; Chiou, Kevin; ...

    2016-06-14

    A perversion in an otherwise uniform helical structure, such as a climbing plant tendril, refers to a kink that connects two helices with opposite chiralities. Such singularity structures are widely seen in natural and artificial mechanical systems, and they provide the fundamental mechanism of helical symmetry breaking. However, it is still not clear how perversions arise in various helical structures and which universal principles govern them. As such, a heterogeneous elastic bistrip system provides an excellent model to address these questions. In this paper, we investigate intrinsic perversion properties which are independent of strip shapes. This study reveals the richmore » physics of perversions in the 3D elastic system, including the condensation of strain energy over perversions during their formation, the repulsive nature of the perversion–perversion interaction, and the coalescence of perversions that finally leads to a linear defect structure. Finally, this study may have implications for understanding relevant biological motifs and for use of perversions as energy storers in the design of micromuscles and soft robotics.« less

  2. Specific noncovalent interactions at protein-ligand interface: implications for rational drug design.

    PubMed

    Zhou, P; Huang, J; Tian, F

    2012-01-01

    Specific noncovalent interactions that are indicative of attractive, directional intermolecular forces have always been of key interest to medicinal chemists in their search for the "glue" that holds drugs and their targets together. With the rapid increase in the number of solved biomolecular structures as well as the performance enhancement of computer hardware and software in recent years, it is now possible to give more comprehensive insight into the geometrical characteristics and energetic landscape of certain sophisticated noncovalent interactions present at the binding interface of protein receptors and small ligands based on accumulated knowledge gaining from the combination of two quite disparate but complementary approaches: crystallographic data analysis and quantum-mechanical ab initio calculation. In this perspective, we survey massive body of published works relating to structural characterization and theoretical investigation of three kinds of strong, specific, direct, enthalpy-driven intermolecular forces, including hydrogen bond, halogen bond and salt bridge, involved in the formation of protein-ligand complex architecture in order to characterize their biological functions in conferring affinity and specificity for ligand recognition by host protein. In particular, the biomedical implications of raised knowledge are discussed with respect to potential applications in rational drug design.

  3. Biomimetic synthesis of struvite with biogenic morphology and implication for pathological biomineralization

    NASA Astrophysics Data System (ADS)

    Li, Han; Yao, Qi-Zhi; Wang, Yu-Ying; Li, Yi-Liang; Zhou, Gen-Tao

    2015-01-01

    Recent studies have found that certain urinary proteins can efficiently inhibit stone formation. These discoveries are significant for developing effective therapies for stone disease, but the inhibition mechanism of crystallization remains elusive. In the present study, polyaspartic acid (PASP) was employed as a model peptide to investigate the effect of urinary proteins on the crystallization and morphological evolution of struvite. The results demonstrate that selective adsorption/binding of PASP onto the {010} and {101} faces of struvite crystals results in arrowhead-shaped morphology, which further evolves into X-shaped and unusual tabular structures with time. Noticeably, these morphologies are reminiscent of biogenic struvite morphology. Concentration-dependent experiments show that PASP can inhibit struvite growth and the inhibitory capacity increases with increasing PASP concentration, whereas aspartic acid monomers do not show a significant effect. Considering that PASP is a structural and functional analogue of the subdomains of aspartic acid-rich proteins, our results reveal that aspartic acid-rich proteins play a key role in regulating biogenic struvite morphology, and aspartic acid residues contribute to the inhibitory capacity of urinary proteins. The potential implications of PASP for developing therapeutic agents for urinary stone disease is also discussed.

  4. Biomimetic synthesis of struvite with biogenic morphology and implication for pathological biomineralization.

    PubMed

    Li, Han; Yao, Qi-Zhi; Wang, Yu-Ying; Li, Yi-Liang; Zhou, Gen-Tao

    2015-01-16

    Recent studies have found that certain urinary proteins can efficiently inhibit stone formation. These discoveries are significant for developing effective therapies for stone disease, but the inhibition mechanism of crystallization remains elusive. In the present study, polyaspartic acid (PASP) was employed as a model peptide to investigate the effect of urinary proteins on the crystallization and morphological evolution of struvite. The results demonstrate that selective adsorption/binding of PASP onto the {010} and {101} faces of struvite crystals results in arrowhead-shaped morphology, which further evolves into X-shaped and unusual tabular structures with time. Noticeably, these morphologies are reminiscent of biogenic struvite morphology. Concentration-dependent experiments show that PASP can inhibit struvite growth and the inhibitory capacity increases with increasing PASP concentration, whereas aspartic acid monomers do not show a significant effect. Considering that PASP is a structural and functional analogue of the subdomains of aspartic acid-rich proteins, our results reveal that aspartic acid-rich proteins play a key role in regulating biogenic struvite morphology, and aspartic acid residues contribute to the inhibitory capacity of urinary proteins. The potential implications of PASP for developing therapeutic agents for urinary stone disease is also discussed.

  5. Mechanical properties and fibrin characteristics of endovascular coil–clot complexes: relevance to endovascular cerebral aneurysm repair paradigms

    PubMed Central

    Haworth, Kevin J; Weidner, Christopher R; Abruzzo, Todd A; Shearn, Jason T; Holland, Christy K

    2015-01-01

    Background Although coil embolization is known to prevent rebleeding from acutely ruptured cerebral aneurysms, the underlying biological and mechanical mechanisms have not been characterized. We sought to determine if microcoil-dependent interactions with thrombus induce structural and mechanical changes in the adjacent fibrin network. Such changes could play an important role in the prevention of aneurysm rebleeding. Methods The stiffness of in vitro human blood clots and coil–clot complexes implanted into aneurysm phantoms were measured immediately after formation and after retraction for 3 days using unconfined uniaxial compression assays. Scanning electron microscopy of the coil–clot complexes showed the effect of coiling on clot structure. Results The coil packing densities achieved were in the range of clinical practice. Bare platinum coils increased clot stiffness relative to clot alone (Young’s modulus 6.9 kPa and 0.83 kPa, respectively) but did not affect fibrin structure. Hydrogel-coated coils prevented formation of a clot and had no significant effect on clot stiffness (Young’s modulus 2 kPa) relative to clot alone. Clot age decreased fiber density by 0.2 fibers/µm2 but not the stiffness of the bare platinum coil–clot complex. Conclusions The stiffness of coil–clot complexes is related to the summative stiffness of the fibrin network and associated microcoils. Hydrogel-coated coils exhibit significantly less stiffness due to the mechanical properties of the hydrogel and the inhibition of fibrin network formation by the hydrogel. These findings have important implications for the design and engineering of aneurysm occlusion devices. PMID:24668257

  6. "Straitjacket" or "Springboard for Sustainable Learning"? The Implications of Formative Assessment Practices in Vocational Learning Cultures

    ERIC Educational Resources Information Center

    Davies, Jenifer; Ecclestone, Kathryn

    2008-01-01

    In contrast to theoretical and empirical insights from research into formative assessment in compulsory schooling, understanding the relationship between formative assessment, motivation and learning in vocational education has been a topic neglected by researchers. The Improving Formative Assessment project (IFA) addresses this gap, using a…

  7. Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: Archaeological and ecological implications

    PubMed Central

    Piperno, Dolores R.; Holst, Irene; Wessel-Beaver, Linda; Andres, Thomas C.

    2002-01-01

    Many angiosperms, both monocotyledons and dicotyledons, heavily impregnate their vegetative and reproductive organs with solid particles of silicon dioxide (SiO2) known as opaline phytoliths. The underlying mechanisms accounting for the formation of phytoliths in plants are poorly understood, however. Using wild and domesticated species in the genus Cucurbita along with their F1 and F2 progeny, we have demonstrated that the production of large diagnostic phytoliths in fruit rinds exhibits a one-to-one correspondence to the lignification of these structures. We propose that phytolith formation in Cucurbita fruits is primarily determined by a dominant genetic locus, called hard rind (Hr), previously shown to code for lignin deposition. If true, this evidence represents a demonstration of genetic control over phytolith production in a dicotyledon and provides considerable support to hypotheses that silica phytoliths constitute another important system of mechanical defense in plants. Our research also identifies Hr as another single locus controlling more than one important phenotypic difference between wild and domesticated plants, and establishes rind tissue cell structure and hardness under the effects of Hr as an important determinant of phytolith morphology. When recovered from pre-Columbian archaeological sites, Cucurbita phytoliths represent genetically controlled fossil markers of exploitation and domestication in this important economic genus. PMID:12149443

  8. Laser Boost of a Small Interstellar Ram Jet to Obtain Operational Velocity. Implications for the DM Rocket/Ram Jet Model

    NASA Astrophysics Data System (ADS)

    Walcott Beckwith, Andrew

    2010-05-01

    In other conference research papers, Beckwith obtained a maximum DM mass/energy value of up to 5 TeV, as opposed to 400 GeV for DM, which may mean more convertible power for a dark matter ram jet. The consequences are from assuming that axions are CDM, and KK gravitons are for WDM, then ρWarm-Dark-Matter would dominate not only structure formation in early universe formation, but would also influence the viability of the DM ram jet applications for interstellar travel. The increase in convertible DM mass makes the ram jet a conceivable option. This paper in addition to describing the scientific issues leading to that 5 TeV mass for DM also what are necessary and sufficient laser boost systems which would permit a ram net to become operational.

  9. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis

    PubMed Central

    Martin, Carol-Anne; Murray, Jennie E.; Carroll, Paula; Leitch, Andrea; Mackenzie, Karen J.; Halachev, Mihail; Fetit, Ahmed E.; Keith, Charlotte; Bicknell, Louise S.; Fluteau, Adeline; Gautier, Philippe; Hall, Emma A.; Joss, Shelagh; Soares, Gabriela; Silva, João; Bober, Michael B.; Duker, Angela; Wise, Carol A.; Quigley, Alan J.; Phadke, Shubha R.; Wood, Andrew J.; Vagnarelli, Paola; Jackson, Andrew P.

    2016-01-01

    Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish “condensinopathies” as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size. PMID:27737959

  10. Myosin motor function: the ins and outs of actin-based membrane protrusions

    PubMed Central

    Nambiar, Rajalakshmi; McConnell, Russell E.

    2011-01-01

    Cells build plasma membrane protrusions supported by parallel bundles of F-actin to enable a wide variety of biological functions, ranging from motility to host defense. Filopodia, microvilli and stereocilia are three such protrusions that have been the focus of intense biological and biophysical investigation in recent years. While it is evident that actin dynamics play a significant role in the formation of these organelles, members of the myosin superfamily have also been implicated as key players in the maintenance of protrusion architecture and function. Based on a simple analysis of the physical forces that control protrusion formation and morphology, as well as our review of available data, we propose that myosins play two general roles within these structures: (1) as cargo transporters to move critical regulatory components toward distal tips and (2) as mediators of membrane-cytoskeleton adhesion. PMID:20107861

  11. Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2)-dependent Oligomerization of Fibroblast Growth Factor 2 (FGF2) Triggers the Formation of a Lipidic Membrane Pore Implicated in Unconventional Secretion*

    PubMed Central

    Steringer, Julia P.; Bleicken, Stephanie; Andreas, Helena; Zacherl, Sonja; Laussmann, Mareike; Temmerman, Koen; Contreras, F. Xabier; Bharat, Tanmay A. M.; Lechner, Johannes; Müller, Hans-Michael; Briggs, John A. G.; García-Sáez, Ana J.; Nickel, Walter

    2012-01-01

    Fibroblast growth factor 2 (FGF2) is a critical mitogen with a central role in specific steps of tumor-induced angiogenesis. It is known to be secreted by unconventional means bypassing the endoplasmic reticulum/Golgi-dependent secretory pathway. However, the mechanism of FGF2 membrane translocation into the extracellular space has remained elusive. Here, we show that phosphatidylinositol 4,5-bisphosphate-dependent membrane recruitment causes FGF2 to oligomerize, which in turn triggers the formation of a lipidic membrane pore with a putative toroidal structure. This process is strongly up-regulated by tyrosine phosphorylation of FGF2. Our findings explain key requirements of FGF2 secretion from living cells and suggest a novel self-sustained mechanism of protein translocation across membranes with a lipidic membrane pore being a transient translocation intermediate. PMID:22730382

  12. Unpacking commitment and exploration: preliminary validation of an integrative model of late adolescent identity formation.

    PubMed

    Luyckx, Koen; Goossens, Luc; Soenens, Bart; Beyers, Wim

    2006-06-01

    A model of identity formation comprising four structural dimensions (Commitment Making, Identification with Commitment, Exploration in Depth, and Exploration in Breadth) was developed through confirmatory factor analysis. In a sample of 565 emerging adults, this model provided a better fit than did alternative two- and three-dimensional models, thereby validating the unpacking of both exploration and commitment. Regression analyses indicated that Commitment Making was significantly related to family context in accordance with hypotheses. Identification with Commitment and both exploration dimensions were significantly related to adjustment and family context, again in accordance with hypotheses. Identification with Commitment was positively related to positive adjustment indicators and negatively to depressive symptoms, whereas Exploration in Breadth was positively related to depressive symptoms and substance use. Exploration in Depth, on the other hand, was positively related to academic adjustment and negatively to substance use. Implications and suggestions for future research are discussed.

  13. Ensuring Patient Safety in Care Transitions: An Empirical Evaluation of a Handoff Intervention Tool

    PubMed Central

    Abraham, Joanna; Kannampallil, Thomas; Patel, Bela; Almoosa, Khalid; Patel, Vimla L.

    2012-01-01

    Successful handoffs ensure smooth, efficient and safe patient care transitions. Tools and systems designed for standardization of clinician handoffs often focuses on ensuring the communication activity during transitions, with limited support for preparatory activities such as information seeking and organization. We designed and evaluated a Handoff Intervention Tool (HAND-IT) based on a checklist-inspired, body system format allowing structured information organization, and a problem-case narrative format allowing temporal description of patient care events. Based on a pre-post prospective study using a multi-method analysis we evaluated the effectiveness of HAND-IT as a documentation tool. We found that the use of HAND-IT led to fewer transition breakdowns, greater tool resilience, and likely led to better learning outcomes for less-experienced clinicians when compared to the current tool. We discuss the implications of our results for improving patient safety with a continuity of care-based approach. PMID:23304268

  14. Evolving Gravitationally Unstable Disks over Cosmic Time: Implications for Thick Disk Formation

    NASA Astrophysics Data System (ADS)

    Forbes, John; Krumholz, Mark; Burkert, Andreas

    2012-07-01

    Observations of disk galaxies at z ~ 2 have demonstrated that turbulence driven by gravitational instability can dominate the energetics of the disk. We present a one-dimensional simulation code, which we have made publicly available, that economically evolves these galaxies from z ~ 2 to z ~ 0 on a single CPU in a matter of minutes, tracking column density, metallicity, and velocity dispersions of gaseous and multiple stellar components. We include an H2-regulated star formation law and the effects of stellar heating by transient spiral structure. We use this code to demonstrate a possible explanation for the existence of a thin and thick disk stellar population and the age-velocity-dispersion correlation of stars in the solar neighborhood: the high velocity dispersion of gas in disks at z ~ 2 decreases along with the cosmological accretion rate, while at lower redshift the dynamically colder gas forms the low velocity dispersion stars of the thin disk.

  15. Concurrent Formative Evaluation: Guidelines and Implications for Multimedia Designers.

    ERIC Educational Resources Information Center

    Northrup, Pamela Taylor

    1995-01-01

    Discusses formative evaluation for multimedia instruction and presents guidelines for formatively evaluating multimedia instruction concurrent with analysis, design, and development. Data collection criteria that include group involvement, data collection strategies, and information to be gathered are presented, and rapid prototypes and…

  16. The impact of dark energy on galaxy formation. What does the future of our Universe hold?

    NASA Astrophysics Data System (ADS)

    Salcido, Jaime; Bower, Richard G.; Barnes, Luke A.; Lewis, Geraint F.; Elahi, Pascal J.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop

    2018-07-01

    We investigate the effect of the accelerated expansion of the Universe due to a cosmological constant, Λ, on the cosmic star formation rate. We utilize hydrodynamical simulations from the EAGLE suite, comparing a ΛCDM (cold dark matter) Universe to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of growth of structure, we find that dark energy, at its observed value, has negligible impact on star formation in the Universe. We study these effects beyond the present day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We show that the impact of Λ becomes significant only when the Universe has already produced most of its stellar mass, only decreasing the total comoving density of stars ever formed by ≈ 15 per cent. We develop a simple analytic model for the cosmic star formation rate that captures the suppression due to a cosmological constant. The main reason for the similarity between the models is that feedback from accreting black holes dramatically reduces the cosmic star formation at late times. Interestingly, simulations without feedback from accreting black holes predict an upturn in the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive (>1011 M⊙) galaxies. We briefly discuss the implication of the weak dependence of the cosmic star formation on Λ in the context of the anthropic principle.

  17. Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion

    PubMed Central

    Horsthemke, Markus; Bachg, Anne C.; Groll, Katharina; Moyzio, Sven; Müther, Barbara; Hemkemeyer, Sandra A.; Wedlich-Söldner, Roland; Sixt, Michael; Tacke, Sebastian; Bähler, Martin; Hanley, Peter J.

    2017-01-01

    Macrophage filopodia, finger-like membrane protrusions, were first implicated in phagocytosis more than 100 years ago, but little is still known about the involvement of these actin-dependent structures in particle clearance. Using spinning disk confocal microscopy to image filopodial dynamics in mouse resident Lifeact-EGFP macrophages, we show that filopodia, or filopodia-like structures, support pathogen clearance by multiple means. Filopodia supported the phagocytic uptake of bacterial (Escherichia coli) particles by (i) capturing along the filopodial shaft and surfing toward the cell body, the most common mode of capture; (ii) capturing via the tip followed by retraction; (iii) combinations of surfing and retraction; or (iv) sweeping actions. In addition, filopodia supported the uptake of zymosan (Saccharomyces cerevisiae) particles by (i) providing fixation, (ii) capturing at the tip and filopodia-guided actin anterograde flow with phagocytic cup formation, and (iii) the rapid growth of new protrusions. To explore the role of filopodia-inducing Cdc42, we generated myeloid-restricted Cdc42 knock-out mice. Cdc42-deficient macrophages exhibited rapid phagocytic cup kinetics, but reduced particle clearance, which could be explained by the marked rounded-up morphology of these cells. Macrophages lacking Myo10, thought to act downstream of Cdc42, had normal morphology, motility, and phagocytic cup formation, but displayed markedly reduced filopodia formation. In conclusion, live-cell imaging revealed multiple mechanisms involving macrophage filopodia in particle capture and engulfment. Cdc42 is not critical for filopodia or phagocytic cup formation, but plays a key role in driving macrophage lamellipodial spreading. PMID:28289096

  18. An integrated structural and geochemical study of fracture aperture growth in the Campito Formation of eastern California

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Eichhubl, P.

    2015-12-01

    Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.

  19. Finding Space for Participation: Fisherfolk Mobility and Co-Management of Lake Victoria Fisheries

    NASA Astrophysics Data System (ADS)

    Nunan, Fiona; Luomba, Joseph; Lwenya, Caroline; Yongo, Ernest; Odongkara, Konstantine; Ntambi, Baker

    2012-08-01

    The literature on fisheries co-management is almost silent on the issue of the movement of fisherfolk within fisheries, although such movement must have implications for the effectiveness of co-management. The introduction of co-management often involves the formation of new structures that should enable the participation of key stakeholder groups in decision-making and management, but such participation is challenging for migrating fishers. The article reports on a study on Lake Victoria, East Africa, which investigated the extent of movement around the lake and the implications of movement for how fishers participate and are represented in co-management, and the implications of the extent and nature of movement for co-management structures and processes. The analysis draws on the concept of space from the literature on participation in development and on a framework of representation in fisheries co-management in addressing these questions. The created space is on an `invited' rather than open basis, reflecting the top-down nature of implementation and the desire to secure participation of different occupational groups, as well as women in a male-dominated sector. The more powerful boat owners dominate positions of power within the co-management system, particularly as the levels of co-management, from sub-district to national, are traversed. The limited power and resources of boat crew are exacerbated by the degree and nature of movement around the lake, making effective participation in co-management decision-making a challenge.

  20. Mapping the Properties of Blue Compact Dwarf Galaxies by Means of Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Weilbacher, P.; Papaderos, P.; García-Lorenzo, B.

    Blue Compact Dwarf (BCD) galaxies are metal-poor and gas-rich systems undergoing intense, spatially extended star-forming activity. These galaxies offer a unique opportunity to investigate dwarf galaxy formation and evolution, and probe violent star formation and its implications on the chemical, dynamical and structural properties of low-mass extragalactic systems near and far. Several fundamental questions in BCD research, such as their star formation histories and the mechanisms that control their cyclic starburst activity, are still far from well understood. In order to improve our understanding on BCD evolution, we are carrying out a comprehensive Integral Field Spectroscopic (IFS) survey of a large sample of BCDs. Integral Field Unit (IFU) spectroscopy provides simultaneously spectral and spatial information, allowing, in just one shot, to study the morphology and evolutionary status of the stellar component, and the physical properties of the warm interstellar medium (e.g., extinction, chemical abundances, kinematics). This ongoing IFS survey will supply much needed local templates that will ease the interpretation of IFS data for intermediate and high-redshift star-forming galaxies.

  1. Tracing the Origins of Nitrogen Bearing Organics Toward Orion KL with Alma

    NASA Astrophysics Data System (ADS)

    Carroll, Brandon; Crockett, Nathan; Wilkins, Olivia H.; Bergin, Edwin; Blake, Geoffrey

    2017-06-01

    A comprehensive analysis of a broadband 1.2 THz wide spectral survey of the Orion Kleinmann-Low nebula (Orion KL) has shown that nitrogen bearing complex organics trace systematically hotter gas than O-bearing organics toward this source. The origin of this O/N dichotomy remains a mystery. If complex molecules originate from grain surfaces, N-bearing species may be more difficult to remove from grain surfaces than O-bearing organics. Theoretical studies, however, have shown that hot (T=300 K) gas phase chemistry can produce high abundances of N-bearing organics while suppressing the formation of O-bearing complex molecules. In order to distinguish these distinct formation pathways we have obtained extremely high angular resolution observations of methyl cyanide (CH_3CN) using the Atacama Large Millimeter/Submillimeter Array (ALMA) toward Orion KL. By simultaneously imaging ^{13}CH_3CN and CH_2DCN we map the temperature structure and D/H ratio of CH_3CN. We will present updated results of these observations and discuss their implications for the formation of N-bearing organics in the interstellar medium.

  2. Tracing the Origins of Nitrogen Bearing Organics Toward Orion KL with Alma

    NASA Astrophysics Data System (ADS)

    Carroll, Brandon; Crockett, Nathan; Bergin, Edwin; Blake, Geoffrey

    2016-06-01

    A comprehensive analysis of a broadband 1.2 THz wide spectral survey of the Orion Kleinmann-Low nebula (Orion KL) from the Herschel Space Telescope has shown that nitrogen bearing complex organics trace systematically hotter gas than O-bearing organics toward this source. The origin of this O/N dichotomy remains a mystery. If complex molecules originate from grain surfaces, N-bearing species may be more difficult to remove from grain surfaces than O-bearing organics. Theoretical studies, however, have shown that hot (T=300 K) gas phase chemistry can produce high abundances of N-bearing organics while suppressing the formation of O-bearing complex molecules. In order to distinguish these distinct formation pathways we have obtained extremely high angular resolution observations of methyl cyanide (CH_3CN) using the Atacama Large Millimeter/Submillimeter Array (ALMA) toward Orion KL. By simultaneously imaging 13CH_3CN and CH_2DCN we map the temperature structure and D/H ratio of CH_3CN. We will present the initial results of these observations and discuss their implications for the formation of N-bearing organics in the interstellar medium.

  3. Morphological and proteomic analysis of biofilms from the Antarctic archaeon, Halorubrum lacusprofundi.

    PubMed

    Liao, Y; Williams, T J; Ye, J; Charlesworth, J; Burns, B P; Poljak, A; Raftery, M J; Cavicchioli, R

    2016-11-22

    Biofilms enhance rates of gene exchange, access to specific nutrients, and cell survivability. Haloarchaea in Deep Lake, Antarctica, are characterized by high rates of intergenera gene exchange, metabolic specialization that promotes niche adaptation, and are exposed to high levels of UV-irradiation in summer. Halorubrum lacusprofundi from Deep Lake has previously been reported to form biofilms. Here we defined growth conditions that promoted the formation of biofilms and used microscopy and enzymatic digestion of extracellular material to characterize biofilm structures. Extracellular DNA was found to be critical to biofilms, with cell surface proteins and quorum sensing also implicated in biofilm formation. Quantitative proteomics was used to define pathways and cellular processes involved in forming biofilms; these included enhanced purine synthesis and specific cell surface proteins involved in DNA metabolism; post-translational modification of cell surface proteins; specific pathways of carbon metabolism involving acetyl-CoA; and specific responses to oxidative stress. The study provides a new level of understanding about the molecular mechanisms involved in biofilm formation of this important member of the Deep Lake community.

  4. Morphological and proteomic analysis of biofilms from the Antarctic archaeon, Halorubrum lacusprofundi

    PubMed Central

    Liao, Y.; Williams, T. J.; Ye, J.; Charlesworth, J.; Burns, B. P.; Poljak, A.; Raftery, M. J.; Cavicchioli, R.

    2016-01-01

    Biofilms enhance rates of gene exchange, access to specific nutrients, and cell survivability. Haloarchaea in Deep Lake, Antarctica, are characterized by high rates of intergenera gene exchange, metabolic specialization that promotes niche adaptation, and are exposed to high levels of UV-irradiation in summer. Halorubrum lacusprofundi from Deep Lake has previously been reported to form biofilms. Here we defined growth conditions that promoted the formation of biofilms and used microscopy and enzymatic digestion of extracellular material to characterize biofilm structures. Extracellular DNA was found to be critical to biofilms, with cell surface proteins and quorum sensing also implicated in biofilm formation. Quantitative proteomics was used to define pathways and cellular processes involved in forming biofilms; these included enhanced purine synthesis and specific cell surface proteins involved in DNA metabolism; post-translational modification of cell surface proteins; specific pathways of carbon metabolism involving acetyl-CoA; and specific responses to oxidative stress. The study provides a new level of understanding about the molecular mechanisms involved in biofilm formation of this important member of the Deep Lake community. PMID:27874045

  5. Numerical modeling the formation of impact craters: Implications for the structure of Europa's ice shell

    NASA Astrophysics Data System (ADS)

    Silber, E. A.; Johnson, B. C.

    2017-12-01

    Craters produced by hypervelocity impacts are an invaluable tool for studying planetary surfaces. The observed impact crater depth-diameter (d-D) on the Galilean moon Europa exhibits three distinct transition regimes, two of which may correspond to the presence of warm convecting ice at depths of 7-8 km and a liquid ocean at 19-25 km, respectively [1]. In our study, we use iSALE2D to model formation of impact craters on Europa to investigate thickness and internal structure of its ice shell. This study is different from previous modeling studies [2,3] in that we consider the both fully conductive ice shell over ocean, as well as conductive lid overlying warm convecting ice, to discern the boundary conditions at the interface between the ice and the underlying ocean. Moreover, our model includes implementation of the full viscoelastic-plastic rheology for ice. Our results suggest that both conductive shell over ocean and conductive lid over warm convective ice are equally probable on Europa. We will discuss the implications and relevance of these results. The plausible scenarios are either a 6 - 7 km thick conductive ice lid overlying warm convecting ice at 265 K, or an 8 km completely conductive ice shell over ocean. Acknowledgements: We gratefully acknowledge the developers of iSALE-2D (www.isale-code.de), the simulation code used in our research, including G. Collins, K. Wünnermann, D. Elbeshausen, B. Ivanov and J. Melosh. References: [1] Schenk P. (2002) Nature, 417, 419-421. [2] Bray V.J. et al. (2014) Icarus, 231, 394-406. [3] Cox R. and Beuer A.W. (2015) JGR - Planets, 120(10), 1708-1719.

  6. Formative use of select-and-fill-in concept maps in online instruction: Implications for students of different learning styles

    NASA Astrophysics Data System (ADS)

    Kaminski, Charles William

    The purpose of this research was to investigate the formative use of Select and Fill-In (SAFI) maps in online instruction and the cognitive, metacognitive, and affective responses of students to their use. In particular, the implications of their use with students of different learning styles was considered. The research question investigated in this qualitative study was: How do students of different learning styles respond to online instruction in which SAFI maps are utilized? This question was explored by using an emergent, collective case study. Each case consisted of community college students who shared a dominant learning style and were enrolled in an online course in environmental studies. Cases in the study were determined using Kolb's Learning Style Inventory (LSI). Seven forms of data were collected during the study. During the first phase of data collection, dominant learning style and background information on student experience with concept mapping and online instruction was determined. In the second phase of data collection, participants completed SAFI maps and quiz items that corresponded to the content of the maps. Achievement data on the map activities and quiz and student responses to a post-SAFI survey and questionnaire were recorded to identify learner cognitive, metacognitive, and affective responses to the tasks. Upon completion of data collection, cases were constructed and compared across learning styles. Cases are presented using the trends, across participants sharing the same dominant learning style, in achievement, behaviors and attitudes as seen in the evidence present in the data. Triangulation of multiple data sources increased reliability and validity, through cross-case analyses, and produced a thick description of the relationship between the cases for each learning style. Evidence suggesting a cognitive response to the SAFI tasks was inconsistent across cases. However, learners with an affinity towards reflective learning activities demonstrated more positive metacognitive and affective responses to the SAFI tasks. This suggests that the contemplation and consideration of relationships expressed in the map requires learners, while completing the SAFI task, to compare their existing cognitive structure with an accepted structure and to reflect on the differences and similarities that may exist. Subsequently, the value of formative online SAFI map use for learners lies within the cognitive process of completing the tasks, not in the construction of an abstract cognitive structure reflecting an accepted structure and organization of concepts suggested by a completed map.

  7. The Evolution of the Earth's Mantle Structure and Surface and Core-mantle Boundary Heat Flux since the Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Zhong, S.

    2010-12-01

    The cause for and time evolution of the seismically observed African and Pacific slow anomalies (i.e., superplumes) are still unclear with two competing proposals. First, the African and Pacific superplumes have remained largely unchanged for at least the last 300 Ma and possibly much longer. Second, the African superplume is formed sometime after the formation of Pangea (i.e., at 330 Ma ago) and the mantle in the African hemisphere is predominated by cold downwelling structures before and during the assembly of Pangea, while the Pacific superplume has been stable for the Pangea supercontinent cycle (i.e., globally a degree-1 structure before the Pangea formation). Here, we construct a plate motion history back to 450 Ma and use it as time-dependent surface boundary conditions in 3-dimensional spherical models of thermochemical mantle convection to study the evolution of mantle structure as well as the surface and core-mantle boundary heat flux. Our results for the mantle structures suggest that while the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of the African superplume structure can be formed before ~240 Ma (i.e., ~100 Ma after the assembly of Pangea). The evolution of mantle structure has implications for heat flux at the surface and core-mantle boundary (CMB). Our results show that while the plate motion controls the surface heat flux, the major cold downwellings control the core-mantle boundary heat flux. A notable feature in surface heat flux from our models is that the surface heat flux peaks at ~100 Ma ago but decreases for the last 100 Ma due to the breakup of Pangea and its subsequent plate evolution. The CMB heat flux in the equatorial regions shows two minima during period 320-250 Ma and period 120-84 Ma. The first minimum clearly results from the disappearance of a major cold downwelling above the CMB below the Pangea after the assembly of Pangea ends the subduction and convergence between Gondwana and Laurussia. The second minimum arises because the break-up of Pangea leads to subduction of much smaller and younger oceanic lithosphere in the equatorial regions of the CMB. Considering the recent suggestion that CMB heat flux in the equatorial regions controls the frequency of magnetic polarity reversals (Olson et al., 2010), our results have important implications for the Kaiman Reversal Superchron and Cretaceous Normal Superchron.

  8. Attention improves memory by suppressing spiking-neuron activity in the human anterior temporal lobe.

    PubMed

    Wittig, John H; Jang, Anthony I; Cocjin, John B; Inati, Sara K; Zaghloul, Kareem A

    2018-06-01

    We identify a memory-specific attention mechanism in the human anterior temporal lobe, an area implicated in semantic processing and episodic memory formation. Spiking neuron activity is suppressed and becomes more reliable in preparation for verbal memory formation. Intracranial electroencephalography signals implicate this region as a source of executive control for attentional selection. Consistent with this interpretation, its surgical removal causes significant memory impairment for attended words relative to unattended words.

  9. Structural Basis of a Thiol-Disulfide Oxidoreductase in the Hedgehog-Forming Actinobacterium Corynebacterium matruchotii.

    PubMed

    Luong, Truc Thanh; Tirgar, Reyhaneh; Reardon-Robinson, Melissa E; Joachimiak, Andrzej; Osipiuk, Jerzy; Ton-That, Hung

    2018-05-01

    The actinobacterium Corynebacterium matruchotii has been implicated in nucleation of oral microbial consortia leading to biofilm formation. Due to the lack of genetic tools, little is known about basic cellular processes, including protein secretion and folding, in this organism. We report here a survey of the C. matruchotii genome, which encodes a large number of exported proteins containing paired cysteine residues, and identified an oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA (MdbA Cd ). Crystallization studies uncovered that the 1.2-Å resolution structure of C. matruchotii MdbA (MdbA Cm ) possesses two conserved features found in actinobacterial MdbA enzymes, a thioredoxin-like fold and an extended α-helical domain. By reconstituting the disulfide bond-forming machine in vitro , we demonstrated that MdbA Cm catalyzes disulfide bond formation within the actinobacterial pilin FimA. A new gene deletion method supported that mdbA is essential in C. matruchotii Remarkably, heterologous expression of MdbA Cm in the C. diphtheriae Δ mdbA mutant rescued its known defects in cell growth and morphology, toxin production, and pilus assembly, and this thiol-disulfide oxidoreductase activity required the catalytic motif CXXC. Altogether, the results suggest that MdbA Cm is a major thiol-disulfide oxidoreductase, which likely mediates posttranslocational protein folding in C. matruchotii by a mechanism that is conserved in Actinobacteria IMPORTANCE The actinobacterium Corynebacterium matruchotii has been implicated in the development of oral biofilms or dental plaque; however, little is known about the basic cellular processes in this organism. We report here a high-resolution structure of a C. matruchotii oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA. By biochemical analysis, we demonstrated that C. matruchotii MdbA catalyzes disulfide bond formation in vitro Furthermore, a new gene deletion method revealed that deletion of mdbA is lethal in C. matruchotii Remarkably, C. matruchotii MdbA can replace C. diphtheriae MdbA to maintain normal cell growth and morphology, toxin production, and pilus assembly. Overall, our studies support the hypothesis that C. matruchotii utilizes MdbA as a major oxidoreductase to catalyze oxidative protein folding. Copyright © 2018 American Society for Microbiology.

  10. The crust and upper mantle of central East Greenland - implications for continental accretion and rift evolution

    NASA Astrophysics Data System (ADS)

    Schiffer, Christian; Balling, Niels; Ebbing, Jörg; Holm Jacobsen, Bo; Bom Nielsen, Søren

    2016-04-01

    The geological evolution of the North Atlantic Realm during the past 450 Myr, which has shaped the present-day topographic, crustal and upper mantle features, was dominated by the Caledonian orogeny and the formation of the North Atlantic and associated igneous activity. The distinct high altitude-low relief landscapes that accompany the North Atlantic rifted passive margins are the focus of a discussion of whether they are remnant and modified Caledonian features or, alternatively, recently uplifted peneplains. Teleseismic receiver function analysis of 11 broadband seismometers in the Central Fjord Region in East Greenland indicates the presence of a fossil subduction complex, including a slab of eclogitised mafic crust and an overlying wedge of hydrated mantle peridotite. This model is generally consistent with gravity and topography. It is shown that the entire structure including crustal thickness variations and sub-Moho heterogeneity gives a superior gravity and isostatic topographic fit compared to a model with a homogeneous lithospheric layer (1). The high topography of >1000 m in the western part of the area is supported by the c. 40 km thick crust. The eastern part requires buoyancy from the low velocity/low density mantle wedge. The geometry, velocities and densities are consistent with structures associated with a fossil subduction zone. The spatial relations with Caledonian structures suggest a Caledonian origin. The results indicate that topography is isostatically compensated by density variations within the lithosphere and that significant present-day dynamic topography seems not to be required. Further, this structure is suggested to be geophysically very similar to the Flannan reflector imaged north of Scotland, and that these are the remnants of the same fossil subduction zone, broken apart and separated during the formation of the North Atlantic in the early Cenozoic (2). 1) Schiffer, C., Jacobsen, B.H., Balling, N., Ebbing, J. and Nielsen, S.B., 2015. The East Greenland Caledonides - teleseismic signature, gravity and isostasy. Geophysical Journal International, 203, 1400-1418. 2) Schiffer, C., Stephenson, R.A., Petersen, K.D., Nielsen, S.B., Jacobsen, B.H., Balling, N. and Macdonald, D.I.M., 2015. A sub-crustal piercing point for North Atlantic reconstructions and tectonic implications. Geology, 43, 1087-1090.

  11. A slow-forming isopeptide bond in the structure of the major pilin SpaD from Corynebacterium diphtheriae has implications for pilus assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Hae Joo; Paterson, Neil G.; Kim, Chae Un

    2014-05-01

    Two crystal structures of the major pilin SpaD from C. diphtheriae have been determined at 1.87 and 2.5 Å resolution. The N-terminal domain is found to contain an isopeptide bond that forms slowly over time in the recombinant protein. Given its structural context, this provides insight into the relationship between internal isopeptide-bond formation and pilus assembly. The Gram-positive organism Corynebacterium diphtheriae, the cause of diphtheria in humans, expresses pili on its surface which it uses for adhesion and colonization of its host. These pili are covalent protein polymers composed of three types of pilin subunit that are assembled by specificmore » sortase enzymes. A structural analysis of the major pilin SpaD, which forms the polymeric backbone of one of the three types of pilus expressed by C. diphtheriae, is reported. Mass-spectral and crystallographic analysis shows that SpaD contains three internal Lys–Asn isopeptide bonds. One of these, shown by mass spectrometry to be located in the N-terminal D1 domain of the protein, only forms slowly, implying an energy barrier to bond formation. Two crystal structures, of the full-length three-domain protein at 2.5 Å resolution and of a two-domain (D2-D3) construct at 1.87 Å resolution, show that each of the three Ig-like domains contains a single Lys–Asn isopeptide-bond cross-link, assumed to give mechanical stability as in other such pili. Additional stabilizing features include a disulfide bond in the D3 domain and a calcium-binding loop in D2. The N-terminal D1 domain is more flexible than the others and, by analogy with other major pilins of this type, the slow formation of its isopeptide bond can be attributed to its location adjacent to the lysine used in sortase-mediated polymerization during pilus assembly.« less

  12. Structural modulation of factor VIIa by full-length tissue factor (TF1-263): implication of novel interactions between EGF2 domain and TF.

    PubMed

    Prasad, Ramesh; Sen, Prosenjit

    2018-02-01

    Tissue factor (TF)-mediated factor VII (FVII) activation and a subsequent proteolytic TF-FVIIa binary complex formation is the key step initiating the coagulation cascade, with implications in various homeostatic and pathologic scenarios. TF binding allosterically modifies zymogen-like free FVIIa to its highly catalytically active form. As a result of unresolved crystal structure of the full-length TF 1-263 -FVIIa binary complex and free FVIIa, allosteric alterations in FVIIa following its binding to full-length TF and the consequences of these on function are not entirely clear. The present study aims to map and identify structural alterations in FVIIa and TF resulting from full-length TF binding to FVIIa and the key events responsible for enhanced FVIIa activity in coagulation. We constructed the full-length TF 1-263 -FVIIa membrane bound complex using computational modeling and subjected it to molecular dynamics (MD) simulations. MD simulations showed that TF alters the structure of each domain of FVIIa and these combined alterations contribute to enhanced TF-FVIIa activity. Detailed, domain-wise investigation revealed several new non-covalent interactions between TF and FVIIa that were not found in the truncated soluble TF-FVIIa crystal structure. The structural modulation of each FVIIa domain imparted by TF indicated that both inter and intra-domain communication is crucial for allosteric modulation of FVIIa. Our results suggest that these newly formed interactions can provide additional stability to the protease domain and regulate its activity profile by governing catalytic triad (CT) orientation and localization. The unexplored newly formed interactions between EGF2 and TF provides a possible explanation for TF-induced allosteric activation of FVIIa.

  13. Aromatic interactions are not required for amyloid fibril formation by islet amyloid polypeptide but do influence the rate of fibril formation and fibril morphology.

    PubMed

    Marek, Peter; Abedini, Andisheh; Song, BenBen; Kanungo, Mandakini; Johnson, Megan E; Gupta, Ruchi; Zaman, Warda; Wong, Stanislaus S; Raleigh, Daniel P

    2007-03-20

    Amyloid formation has been implicated in a wide range of human diseases, and a diverse set of proteins is involved. There is considerable interest in elucidating the interactions which lead to amyloid formation and which contribute to amyloid fibril stability. Recent attention has been focused upon the potential role of aromatic-aromatic and aromatic-hydrophobic interactions in amyloid formation by short to midsized polypeptides. Here we examine whether aromatic residues are necessary for amyloid formation by islet amyloid polypeptide (IAPP). IAPP is responsible for the formation of islet amyloid in type II diabetes which is thought to play a role in the pathology of the disease. IAPP is 37 residues in length and contains three aromatic residues, Phe-15, Phe-23, and Tyr-37. Structural models of IAPP amyloid fibrils postulate that Tyr-37 is near one of the phenylalanine residues, and it is known that Tyr-37 interacts with one of the phenylalanines during fibrillization; however, it is not known if aromatic-aromatic or aromatic-hydrophobic interactions are absolutely required for amyloid formation. An F15L/F23L/Y37L triple mutant (IAPP-3XL) was prepared, and its ability to form amyloid was tested. CD, thioflavin binding assays, AFM, and TEM measurements all show that the triple leucine mutant readily forms amyloid fibrils. The substitutions do, however, decrease the rate of fibril formation and alter the tendency of fibrils to aggregate. Thus, while aromatic residues are not an absolute requirement for amyloid formation by IAPP, they do play a role in the fibril assembly process.

  14. Geological implications and controls on the determination of water saturation in shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Hartigan, David; Lovell, Mike; Davies, Sarah

    2014-05-01

    A significant challenge to the petrophysical evaluation of shale gas systems can be attributed to the conductivity behaviour of clay minerals and entrained clay bound waters. This is compounded by centimetre to sub-millimetre vertical and lateral heterogeneity in formation composition and structure. Where despite significant variation in formation geological and therefore petrophysical properties, we routinely rely on conventional resistivity methods for the determination of water saturation (Sw), and hence the free gas saturation (Sg) in gas bearing mudstones. The application of resistivity based methods is the subject of continuing debate, and there is often significant uncertainty in both how they are applied and the saturation estimates they produce. This is partly a consequence of the view that "the quantification of the behaviour of shale conductivity....has only limited geological significance" (Rider 1986). As a result, there is a separation between our geological understanding of shale gas systems and the petrophysical rational and methods employed to evaluate them. In response to this uncertainty, many petrophysicists are moving away from the use of more complex 'shaly-sand' based evaluation techniques and returning to traditional Archie methods for answers. The Archie equation requires various parameter inputs such as porosity and saturation exponents (m and n), as well as values for connate fluid resistivity (Rw). Many of these parameters are difficult to determine in shale gas systems, where obtaining a water sample, or carrying out laboratory experiments on recovered core is often technically impractical. Here we assess the geological implications and controls on variations in pseudo Archie parameters across two geological formations, using well data spanning multiple basinal settings for a prominent shale gas play in the northern Gulf of Mexico basin. The results, of numerical analysis and systematic modification of parameter values to minimise the error between core derived Sw (Dean Stark analysis) and computed Sw, links sample structure with composition, highlighting some unanticipated impacts of clay minerals on the effective bulk fluid resistivity (Rwe) and thus formation resistivity (Rt). In addition, it highlights simple corrective empirical adaptations that can significantly reduce the error in Sw estimation for some wells. Observed results hint at the possibility of developing a predictive capability in selecting Archie parameter values based on geological facies association and log composition indicators (i.e. V Clay), establishing a link between formation depositional systems and their petrophysical properties in gas bearing mudstones. Rider, M.H., 1986. The Geological Interpretation of Well Logs, Blackie.

  15. Other Species in the Aqueous Environment of a Peptide Can Invert its Intrinsic Solvated Polyproline II/Beta Propensity: Implications for Amyloid Formation.

    PubMed

    Mirkin, Noemi G; Krimm, Samuel

    2016-02-02

    As we have previously shown, the predominance of the polyproline II conformation in the circular dichroism spectra of aqueous polypeptides is related to its lower energy than that of the beta conformation. In order to test whether this is still the case in the presence of additional components in the medium, we have calculated the energy difference between these two conformations in an alanine-dipeptide/twelve-water system without and with the addition of an HCl molecule. We find in the latter case that the beta conformer is of lower energy than the polyproline II. Energy profiles near the minima in both cases also permit conclusions about the relative entropies of these structures. These results emphasize the importance of considering the peptide-plus-medium state as the relevant entity in determining the structural properties of such systems. Such an inversion could be relevant to the formation of amyloid and could thus lead to new strategies for studying its role in the development of neurodegenerative diseases. This article is protected by copyright. All rights reserved. © 2016 Wiley Periodicals, Inc.

  16. Chemical Properties of Caffeic and Ferulic Acids in Biological System: Implications in Cancer Therapy. A Review.

    PubMed

    Damasceno, Sarah S; Dantas, Bruna B; Ribeiro-Filho, Jaime; Antônio M Araújo, Demetrius; Galberto M da Costa, José

    2017-01-01

    The antioxidant properties of caffeic and ferulic acids in biological systems have been extensively demonstrated. As antioxidants, these compounds prevent the production of reactive oxygen species (ROS), which cause cell lesions that are associated with the development of several diseases, including cancer. Recent findings suggest that the chemoprotective action of these phenolic acids occurs through the following mechanisms: regulation of gene expression, chelation and / or reduction of transition metals, formation of covalent adducts and direct toxicity. The biological efficacy of these promising chemoprotective agents is strongly related with their chemical structure. Therefore, in this study, we discuss the structural characteristics of ferulic and caffeic acids that are responsible for their biological activities, as well as the mechanisms of action involved with the anti-cancer activity. Several reports indicated that the antioxidant effect of these phenylpropanoids results from reactions with free radicals with formation of stable products in the cells. The chelating effect of these compounds was also reported as an important protective mechanism against oxidative. Finally, the lipophilicity of these agents facilitates their entry into the cells, and thus, contributes to the anticancer activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Molecular architecture of the ATP-dependent CodWX protease having an N-terminal serine active site

    PubMed Central

    Kang, Min Suk; Kim, Soon Rae; Kwack, Pyeongsu; Lim, Byung Kook; Ahn, Sung Won; Rho, Young Min; Seong, Ihn Sik; Park, Seong-Chul; Eom, Soo Hyun; Cheong, Gang-Won; Chung, Chin Ha

    2003-01-01

    CodWX in Bacillus subtilis is an ATP-dependent, N-terminal serine protease, consisting of CodW peptidase and CodX ATPase. Here we show that CodWX is an alkaline protease and has a distinct molecular architecture. ATP hydrolysis is required for the formation of the CodWX complex and thus for its proteolytic function. Remarkably, CodX has a ‘spool-like’ structure that is formed by interaction of the intermediate domains of two hexameric or heptameric rings. In the CodWX complex, CodW consisting of two stacked hexameric rings (WW) binds to either or both ends of a CodX double ring (XX), forming asymmetric (WWXX) or symmetric cylindrical particles (WWXXWW). CodWX can also form an elongated particle, in which an additional CodX double ring is bound to the symmetric particle (WWXXWWXX). In addition, CodWX is capable of degrading EzrA, an inhibitor of FtsZ ring formation, implicating it in the regulation of cell division. Thus, CodWX appears to constitute a new type of protease that is distinct from other ATP-dependent proteases in its structure and proteolytic mechanism. PMID:12805205

  18. Stone formation and calcification by nanobacteria in the human body

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Bjorklund, Michael; Kajander, E. Olavi

    1998-07-01

    The formation of discrete and organized inorganic crystalline structures within macromolecular extracellular matrices is a widespread biological phenomenon generally referred to as biomineralization. Recently, bacteria have been implicated as factors in biogeochemical cycles for formation of many minerals in aqueous sediments. We have found nanobacterial culture systems that allow for reproducible production of apatite calcification in vitro. Depending on the culture conditions, tiny nanocolloid-sized particles covered with apatite, forming various size of aggregates and stones were observed. In this study, we detected the presence of nanobacteria in demineralized trilobit fossil, geode, apatite, and calcite stones by immunofluorescence staining. Amethyst and other quartz stones, and chalk gave negative results. Microorganisms are capable of depositing apatite outside the thermodynamic equilibrium in sea water. We bring now evidence that this occurs in the human body as well. Previously, only struvite kidney stones composed of magnesium ammonium phosphate and small amounts of apatite have been regarded as bacteria related. 90 percent of demineralized human kidney stones now screened, contained nanobacteria. At least three different distribution patterns of nanobacteria were conditions, and human kidney stones that are formed from small apatite units. Prerequisites for the formation of kidney stones are the supersaturation of urine and presence of nidi for crystallization. Nanobacteria are important nidi and their presence might be of special interest in space flights where supersaturation of urine is present due to the loss of bone. Furthermore, we bring evidence that nanobacteria may act as crystallization nidi for the formation of biogenic apatite structures in tissue calcification found in e.g., atherosclerotic plaques, extensive metastatic and tumoral calcification, acute periarthritis, malacoplakia, and malignant diseases. In nanaobacteria-infected fibroblasts, electron microscopy revealed intra- and extra-cellular needle-like crystal deposits, which were stainable with von Kossa stain and resemble calcospherules found in pathological calcification. Thus bacteria-mediated apatite formation takes place in aqueous environments, in humans and in geological sediments.

  19. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu; Kawas, Neal P., E-mail: nealkawas@ucla.edu; Lutz, Andre, E-mail: andre.lutz@hotmail.de

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structuremore » varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.« less

  20. High-speed atomic force microscopy reveals structural dynamics of amyloid β1–42 aggregates

    PubMed Central

    Watanabe-Nakayama, Takahiro; Ono, Kenjiro; Itami, Masahiro; Takahashi, Ryoichi; Teplow, David B.; Yamada, Masahito

    2016-01-01

    Aggregation of amyloidogenic proteins into insoluble amyloid fibrils is implicated in various neurodegenerative diseases. This process involves protein assembly into oligomeric intermediates and fibrils with highly polymorphic molecular structures. These structural differences may be responsible for different disease presentations. For this reason, elucidation of the structural features and assembly kinetics of amyloidogenic proteins has been an area of intense study. We report here the results of high-speed atomic force microscopy (HS-AFM) studies of fibril formation and elongation by the 42-residue form of the amyloid β-protein (Aβ1–42), a key pathogenetic agent of Alzheimer's disease. Our data demonstrate two different growth modes of Aβ1–42, one producing straight fibrils and the other producing spiral fibrils. Each mode depends on initial fibril nucleus structure, but switching from one growth mode to another was occasionally observed, suggesting that fibril end structure fluctuated between the two growth modes. This switching phenomenon was affected by buffer salt composition. Our findings indicate that polymorphism in fibril structure can occur after fibril nucleation and is affected by relatively modest changes in environmental conditions. PMID:27162352

  1. The mammillary bodies and memory: more than a hippocampal relay

    PubMed Central

    Vann, Seralynne D.; Nelson, Andrew J.D.

    2015-01-01

    Although the mammillary bodies were one of the first neural structures to be implicated in memory, it has long been assumed that their main function was to act primarily as a hippocampal relay, passing information on to the anterior thalamic nuclei and from there to the cingulate cortex. This view not only afforded the mammillary bodies no independent role in memory, it also neglected the potential significance of other, nonhippocampal, inputs to the mammillary bodies. Recent advances have transformed the picture, revealing that projections from the tegmental nuclei of Gudden, and not the hippocampal formation, are critical for sustaining mammillary body function. By uncovering a role for the mammillary bodies that is independent of its subicular inputs, this work signals the need to consider a wider network of structures that form the neural bases of episodic memory. PMID:26072239

  2. From Disorder to Mis-Order: Structural Aspects of Pathogenic Oligomerization in Conformational Diseases.

    PubMed

    Yiu, Chin Pang Benny; Chen, Yu Wai

    2017-01-01

    Proteins implicated in neurological conformational diseases contain substantial amounts of "intrinsic disorder". These native monomeric functional states may transit into some oligomeric states that have high β-sheet contents and seed the formation of insoluble amyloid fibrils. The prevailing view is that these "toxic" oligomers should be targeted for drug development. Here, an overview of the diseases was presented, within the general framework of the oligomerization of intrinsically disordered proteins. These systems pose some specific challenges to structural studies: the toxic oligomers are transient, low in concentration, and often need to be studied in a heterogeneous environment. Nevertheless, there have been much exciting progress as a result of the creative use of experimental techniques, a selection of these were outlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Pi-Pi contacts are an overlooked protein feature relevant to phase separation

    PubMed Central

    Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong

    2018-01-01

    Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. PMID:29424691

  4. Emergence of Scale-Free Leadership Structure in Social Recommender Systems

    PubMed Central

    Zhou, Tao; Medo, Matúš; Cimini, Giulio; Zhang, Zi-Ke; Zhang, Yi-Cheng

    2011-01-01

    The study of the organization of social networks is important for the understanding of opinion formation, rumor spreading, and the emergence of trends and fashion. This paper reports empirical analysis of networks extracted from four leading sites with social functionality (Delicious, Flickr, Twitter and YouTube) and shows that they all display a scale-free leadership structure. To reproduce this feature, we propose an adaptive network model driven by social recommending. Artificial agent-based simulations of this model highlight a “good get richer” mechanism where users with broad interests and good judgments are likely to become popular leaders for the others. Simulations also indicate that the studied social recommendation mechanism can gradually improve the user experience by adapting to tastes of its users. Finally we outline implications for real online resource-sharing systems. PMID:21857891

  5. Temperatures in a runaway greenhouse on the evolving Venus Implications for water loss

    NASA Technical Reports Server (NTRS)

    Watson, A. J.; Donahue, T. M.; Kuhn, W. R.

    1984-01-01

    Some aspects of the temperature structure of a runaway greenhouse on Venus are examined using one-dimensional radiative transfer techniques. It is found that there generally is a region high in the atmosphere where condensation and cloud formation can occur, while deep in the atmosphere the gas is strongly unsaturated with respect to water vapor. The necessity of including clouds introduces considerably uncertainty into the calculation of surface temperatures. Under reasonable assumptions concerning the clouds, temperatures deep in the atmosphere are high enough to produce a plastic or even molten surface, which may significantly ease the problem of explaining the loss of oxygen.

  6. Intercalation of P atoms in Fullerene-like CP x

    NASA Astrophysics Data System (ADS)

    Gueorguiev, G. K.; Czigány, Zs.; Furlan, A.; Stafström, S.; Hultman, L.

    2011-01-01

    The energy cost for P atom intercalation and corresponding structural implications during formation of Fullerene-like Phosphorus carbide (FL-CPx) were evaluated within the framework of Density Functional Theory. Single P atom interstitial defects in FL-CPx are energetically feasible and exhibit energy cost of 0.93-1.21 eV, which is comparable to the energy cost for experimentally confirmed tetragon defects and dangling bonds in CPx. A single P atom intercalation event in FL-CPx can increase the inter-sheet distance from 3.39-3.62 Å to 5.81-7.04 Å. These theoretical results are corroborated by Selected Area Electron Diffraction characterization of FL-CPx samples.

  7. Textural variability of ordinary chondrite chondrules: Implications of their formation

    NASA Technical Reports Server (NTRS)

    Zinovieva, N. G.; Mitreikina, O. B.; Granovsky, L. B.

    1994-01-01

    Scanning electron microscopy (SEM) and microprobe examination of the Raguli H3-4, Saratov L3, and Fucbin L5-6 ordinary chondrites and the analysis of preexisted data on other meteorites have shown that the variety of textural types of chondrules depends on the chemical composition of the chondrules. The comparison of bulk-rock chemistries of the chondrules by major components demonstrates that they apparently fall, like basic-ultrabasic rock, into groups of dunitic and pyroxenitic composition. This separation is further validated by the character of zoning in chondrules of the intermediate, peridotitic type. The effect is vividly demonstrated by the 'chondrule-in-chondrule' structure.

  8. Homogeneity of gels and gel-derived glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1984-01-01

    The significance and implications of gel preparation procedures in controlling the homogeneity of multicomponent oxide gels are discussed. The role of physicochemical factors such as the structure and chemical reactivities of alkoxides, the formation of double-metal alkoxides, and the nature of solvent(s) are critically analyzed in the context of homogeneity of gels during gelation. Three procedures for preparing gels in the SiO2-B2O3-Na2O system are examined in the context of cation distribution. Light scattering results for glasses in the SiO2-B2O3-Na2O system prepared by both the gel technique and the conventional technique are examined.

  9. Rocky core solubility in Jupiter and giant exoplanets.

    PubMed

    Wilson, Hugh F; Militzer, Burkhard

    2012-03-16

    Gas giants are believed to form by the accretion of hydrogen-helium gas around an initial protocore of rock and ice. The question of whether the rocky parts of the core dissolve into the fluid H-He layers following formation has significant implications for planetary structure and evolution. Here we use ab initio calculations to study rock solubility in fluid hydrogen, choosing MgO as a representative example of planetary rocky materials, and find MgO to be highly soluble in H for temperatures in excess of approximately 10,000 K, implying the potential for significant redistribution of rocky core material in Jupiter and larger exoplanets.

  10. From Actions to Habits

    PubMed Central

    Yin, Henry H.

    2008-01-01

    Recent work on the role of overlapping cerebral networks in action selection and habit formation has important implications for alcohol addiction research. As reviewed below, (1) these networks, which all involve a group of deep-brain structures called the basal ganglia, are associated with distinct behavioral control processes, such as reward-guided Pavlovian conditional responses, goal-directed instrumental actions, and stimulus-driven habits; (2) different stages of action learning are associated with different networks, which have the ability to change (i.e., plasticity); and (3) exposure to alcohol and other addictive drugs can have profound effects on these networks by influencing the mechanisms underlying neural plasticity. PMID:23584008

  11. Disruption of 3D MCF-12A Breast Cell Cultures by Estrogens – An In Vitro Model for ER-Mediated Changes Indicative of Hormonal Carcinogenesis

    PubMed Central

    Marchese, Stephanie; Silva, Elisabete

    2012-01-01

    Introduction Estrogens regulate the proliferation of normal and neoplastic breast epithelium. Although the intracellular mechanisms of estrogens in the breast are largely understood, little is known about how they induce changes in the structure of the mammary epithelium, which are characteristic of breast cancer. In vitro three dimensional (3D) cultures of immortalised breast epithelial cells recapitulate features of the breast epithelium in vivo, including formation of growth arrested acini with hollow lumen and basement membrane. This model can also reproduce features of malignant transformation and breast cancer, such as increased cellular proliferation and filling of the lumen. However, a system where a connection between estrogen receptor (ER) activation and disruption of acini formation can be studied to elucidate the role of estrogens is still missing. Methods/Principal Findings We describe an in vitro 3D model for breast glandular structure development, using breast epithelial MCF-12A cells cultured in a reconstituted basement membrane matrix. These cells are estrogen receptor (ER)α, ERβ and G-protein coupled estrogen receptor 1 (GPER) competent, allowing the investigation of the effects of estrogens on mammary gland formation and disruption. Under normal conditions, MCF-12A cells formed organised acini, with deposition of basement membrane and hollow lumen. However, treatment with 17β-estradiol, and the exogenous estrogens bisphenol A and propylparaben resulted in deformed acini and filling of the acinar lumen. When these chemicals were combined with ER and GPER inhibitors (ICI 182,780 and G-15, respectively), the deformed acini recovered normal features, such as a spheroid shape, proliferative arrest and luminal clearing, suggesting a role for the ER and GPER in the estrogenic disruption of acinar formation. Conclusion This new model offers the opportunity to better understand the role of the ER and GPER in the morphogenesis of breast glandular structure as well as the events implicated in breast cancer initiation and progression. PMID:23056216

  12. Chemical abundances of the PRGs UGC 7576 and UGC 9796. I. Testing the formation scenario

    NASA Astrophysics Data System (ADS)

    Spavone, M.; Iodice, E.; Arnaboldi, M.; Longo, G.; Gerhard, O.

    2011-07-01

    Context. The study of both the chemical abundances of HII regions in polar ring galaxies and their implications for the evolutionary scenario of these systems has been a step forward both in tracing the formation history of the galaxy and giving hints toward the mechanisms at work during the building of a disk by cold accretion process. It is now important to establish whether such results are typical of the class of polar disk galaxies as a whole. Aims: The present work aims at checking the cold accretion of gas through a "cosmic filament" as a possible scenario for the formation of the polar structures in UGC 7576 and UGC 9796. If these form by cold accretion, we expect the HII regions abundances and metallicities to be lower than those of same-luminosity spiral disks, with values of Z ~ 1/10 Z⊙, as predicted by cosmological simulations. Methods: We used deep long-slit spectra, obtained with DOLORES@TNG in the optical wavelengths, of the brightest HII regions associated with the polar structures to derive their chemical abundances and star formation rate. We used the empirical methods, based on the intensities of easily observable lines, to derive the oxygen abundance 12 + log (O/H) of both galaxies. Such values are compared with those typical of different morphological galaxy types of comparable luminosity. Results: The average metallicity values for UGC 7576 and UGC 9796 are Z = 0.4 Z⊙ and Z = 0.1 Z⊙, respectively. Both values are lower than those measured for ordinary spirals of similar luminosity, and UGC 7576 presents no metallicity gradient along the polar structure. These data, together with other observed features available for the two PRGs in previous works, are compared with the predictions of simulations of tidal accretion, cold accretion, and merging to disentangle these scenarios.

  13. Complete tylosis formation in a latest Permian conifer stem

    PubMed Central

    Feng, Zhuo; Wang, Jun; Rößler, Ronny; Kerp, Hans; Wei, Hai-Bo

    2013-01-01

    Background and Aims Our knowledge of tylosis formation is mainly based on observations of extant plants; however, its developmental and functional significance are less well understood in fossil plants. This study, for the first time, describes a complete tylosis formation in a fossil woody conifer and discusses its ecophysiological implications. Methods The permineralized stem of Shenoxylon mirabile was collected from the upper Permian (Changhsingian) Sunjiagou Formation of Shitanjing coalfield, northern China. Samples from different portions of the stem were prepared by using the standard thin-sectioning technique and studied in transmitted light. Key Results The outgrowth of ray parenchyma cells protruded into adjacent tracheids through pits initially forming small pyriform or balloon-shaped structures, which became globular or slightly elongated when they reached their maximum size. The tracheid luminae were gradually occluded by densely spaced tyloses. The host tracheids are arranged in distinct concentric zones representing different growth phases of tylosis formation within a single growth ring. Conclusions The extensive development of tyloses from the innermost heartwood (metaxylem) tracheids to the outermost sapwood tracheids suggests that the plant was highly vulnerable and reacted strongly to environmental stress. Based on the evidence available, the tyloses were probably not produced in response to wound reaction or pathogenic infection, since evidence of wood traumatic events or fungal invasion are not recognizable. Rather, they may represent an ecophysiological response to the constant environmental stimuli. PMID:23532049

  14. Chemistry and Chemical Equilibrium Dynamics of BMAA and Its Carbamate Adducts

    PubMed Central

    Diaz-parga, Pedro

    2018-01-01

    Beta-N-methylamino-L-alanine (BMAA) has been demonstrated to contribute to the onset of the ALS/Parkinsonism-dementia complex (ALS/PDC) and is implicated in the progression of other neurodegenerative diseases. While the role of BMAA in these diseases is still debated, one of the suggested mechanisms involves the activation of excitatory glutamate receptors. In particular, the excitatory effects of BMAA are shown to be dependent on the presence of bicarbonate ions, which in turn forms carbamate adducts in physiological conditions. The formation of carbamate adducts from BMAA and bicarbonate is similar to the formation of carbamate adducts from non-proteinogenic amino acids. Structural, chemical, and biological information related to non-proteinogenic amino acids provide insight into the formation of and possible neurological action of BMAA. This article reviews the carbamate formation of BMAA in the presence of bicarbonate ions, with a particular focus on how the chemical equilibrium of BMAA carbamate adducts may affect the molecular mechanism of its function. Highlights of nuclear magnetic resonance (NMR)-based studies on the equilibrium process between free BMAA and its adducts are presented. The role of divalent metals on the equilibrium process is also explored. The formation and the equilibrium process of carbamate adducts of BMAA may answer questions on their neuroactive potency and provide strong motivation for further investigations into other toxic mechanisms. PMID:28921378

  15. Chemistry and Chemical Equilibrium Dynamics of BMAA and Its Carbamate Adducts.

    PubMed

    Diaz-Parga, Pedro; Goto, Joy J; Krishnan, V V

    2018-01-01

    Beta-N-methylamino-L-alanine (BMAA) has been demonstrated to contribute to the onset of the ALS/Parkinsonism-dementia complex (ALS/PDC) and is implicated in the progression of other neurodegenerative diseases. While the role of BMAA in these diseases is still debated, one of the suggested mechanisms involves the activation of excitatory glutamate receptors. In particular, the excitatory effects of BMAA are shown to be dependent on the presence of bicarbonate ions, which in turn forms carbamate adducts in physiological conditions. The formation of carbamate adducts from BMAA and bicarbonate is similar to the formation of carbamate adducts from non-proteinogenic amino acids. Structural, chemical, and biological information related to non-proteinogenic amino acids provide insight into the formation of and possible neurological action of BMAA. This article reviews the carbamate formation of BMAA in the presence of bicarbonate ions, with a particular focus on how the chemical equilibrium of BMAA carbamate adducts may affect the molecular mechanism of its function. Highlights of nuclear magnetic resonance (NMR)-based studies on the equilibrium process between free BMAA and its adducts are presented. The role of divalent metals on the equilibrium process is also explored. The formation and the equilibrium process of carbamate adducts of BMAA may answer questions on their neuroactive potency and provide strong motivation for further investigations into other toxic mechanisms.

  16. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-08-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.

  17. Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with divalent metal ions and the substrate ribulose 5-phosphate: implications for the catalytic mechanism.

    PubMed

    Steinbacher, Stefan; Schiffmann, Susanne; Richter, Gerald; Huber, Robert; Bacher, Adelbert; Fischer, Markus

    2003-10-24

    Skeletal rearrangements of carbohydrates are crucial for many biosynthetic pathways. In riboflavin biosynthesis ribulose 5-phosphate is converted into 3,4-dihydroxy-2-butanone 4-phosphate while its C4 atom is released as formate in a sequence of metal-dependent reactions. Here, we present the crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with the substrate ribulose 5-phosphate at a dimetal center presumably consisting of non-catalytic zinc and calcium ions at 1.7-A resolution. The carbonyl group (O2) and two out of three free hydroxyl groups (OH3 and OH4) of the substrate are metal-coordinated. We correlate previous mutational studies on this enzyme with the present structural results. Residues of the first coordination sphere involved in metal binding are indispensable for catalytic activity. Only Glu-185 of the second coordination sphere cannot be replaced without complete loss of activity. It contacts the C3 hydrogen atom directly and probably initiates enediol formation in concert with both metal ions to start the reaction sequence. Mechanistic similarities to Rubisco acting on the similar substrate ribulose 1,5-diphosphate in carbon dioxide fixation as well as other carbohydrate (reducto-) isomerases are discussed.

  18. Unfolding similarity in interphysician networks: the impact of institutional and professional homophily.

    PubMed

    Mascia, Daniele; Di Vincenzo, Fausto; Iacopino, Valentina; Fantini, Maria Pia; Cicchetti, Americo

    2015-03-10

    Modern healthcare is characterized by high complexity due to the proliferation of specialties, professional roles, and priorities within organizations. To perform clinical interventions, knowledge distributed across units, directorates and individuals needs to be integrated. Formal and/or informal mechanisms may be used to coordinate knowledge and tasks within organizations. Although the literature has recently considered the role of physicians' professional networks in the diffusion of knowledge, several concerns remain about the mechanisms through which these networks emerge within healthcare organizations. The aim of the present paper is to explore the impact of institutional and professional homophilies on the formation of interphysician professional networks. We collected data on a community of around 300 physicians working at a local health authority within the Italian National Health Service. We employed multiple regression quadratic assignment procedures to explore the extent to which institutional and professional homophilies influence the formation of interphysician networks. We found that both institutional and professional homophilies matter in explaining interphysician networks. Physicians who had similar fields of interest or belonged to the same organizational structure were more likely to establish professional relationships. In addition, professional homophily was more relevant than institutional affiliation in explaining collaborative ties. Our findings have organizational implications and provide useful information for managers who are responsible for undertaking organizational restructuring. Healthcare executives and administrators may want to consider the structure of advice networks while adopting new organizational structures.

  19. The reticulons: Guardians of the structure and function of the endoplasmic reticulum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Sano, Federica; Bernardoni, Paolo; Piacentini, Mauro, E-mail: mauro.piacentini@uniroma2.it

    2012-07-01

    The endoplasmic reticulum (ER) consists of the nuclear envelope and a peripheral network of tubules and membrane sheets. The tubules are shaped by a specific class of curvature stabilizing proteins, the reticulons and DP1; however it is still unclear how the sheets are assembled. The ER is the cellular compartment responsible for secretory and membrane protein synthesis. The reducing conditions of ER lead to the intra/inter-chain formation of new disulphide bonds into polypeptides during protein folding assessed by enzymatic or spontaneous reactions. Moreover, ER represents the main intracellular calcium storage site and it plays an important role in calcium signalingmore » that impacts many cellular processes. Accordingly, the maintenance of ER function represents an essential condition for the cell, and ER morphology constitutes an important prerogative of it. Furthermore, it is well known that ER undergoes prominent shape transitions during events such as cell division and differentiation. Thus, maintaining the correct ER structure is an essential feature for cellular physiology. Now, it is known that proper ER-associated proteins play a fundamental role in ER tubules formation. Among these ER-shaping proteins are the reticulons (RTN), which are acquiring a relevant position. In fact, beyond the structural role of reticulons, in very recent years new and deeper functional implications of these proteins are emerging in relation to their involvement in several cellular processes.« less

  20. Alfven Profile in the Lower Corona: Implications for Shock Formation

    NASA Astrophysics Data System (ADS)

    Evans, R. M.; Opher, M.; Manchester, W. B.; Velli, M.; Gombosi, T. I.

    2007-12-01

    Recent events (e.g. Tylka et al. 2005) indicate that CME-driven shocks can form at 1-3 solar radii and are responsible for the GeV/nucleon energies observed in some ground level solar energetic particle events. The formation of shocks depends crucially on the background solar wind environment, in particular on the profile of the background Alfvén speed in the corona. Significant strides have been made in the effort to develop realistic models of CME events; however, there is no consensus as to the profile of the Alfvén speed in the lower corona. Here we provide an overview of ten state-of-the-art models, which includes various methods to model magnetic field and density, as well as different strategies for accelerating the solar wind. We present the Alfvén speed profile for each model in the lower corona. We find that the "valley" and "hump" structures anticipated by Mann et al. (2003) are sometimes present, but in some models the Alfvén profiles drop off quickly. We discuss the implications of these profiles, such as whether it will allow a shock to form, dissipate, and form again (i.e. multiple shocks). Our study indicates that it is crucial to establish the Alfvén speed as a function of height before determining if shocks can form in the lower corona.

  1. Comet Impacts as a Source of Methane on Titan

    NASA Astrophysics Data System (ADS)

    Howard, Michael; Goldman, N.; Vitello, P. A.

    2006-12-01

    We model comet impacts on Titan as a possible source of atmospheric methane. That is, we study the formation of methane in comet impacts using chemical equilibrium calculations coupled with arbitrary Lagrange-Eulerian (ALE) hydrodynamics. That is, we study the chemical transformation of comet material under high pressure and temperature conditions as it impacts Titan. We assume that the comet is composed of ice, graphite, nitrogen and some hydrocarbons. For certain pressure and temperature regimes, in chemical equilibrium, a significant amount of ice and graphite can be transformed into methane. As a result, we find that a significant amount of methane can be formed in comet collisions on Titan. The methane is formed in the post-impact vapor clouds that form as the comet material expands and cools. We use molecular dynamics to construct an equation of state for the ice surface structures and the comet material. We also study kinetic processes for methane formation during the expansion and cooling phase. We discuss the implication of our results for comets as a possible source of abiotic methane on Titan and its implications on the origin of life. We also discuss the various uncertainties in our model. * This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  2. Elevated temperature triggers human respiratory syncytial virus F protein six-helix bundle formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunus, Abdul S.; Jackson, Trent P.; Crisafi, Katherine

    2010-01-20

    Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection in infants, immunocompromised patients, and the elderly. The RSV fusion (F) protein mediates fusion of the viral envelope with the target cell membrane during virus entry and is a primary target for antiviral drug and vaccine development. The F protein contains two heptad repeat regions, HR1 and HR2. Peptides corresponding to these regions form a six-helix bundle structure that is thought to play a critical role in membrane fusion. However, characterization of six-helix bundle formation in native RSV F protein has been hindered by themore » fact that a trigger for F protein conformational change has yet to be identified. Here we demonstrate that RSV F protein on the surface of infected cells undergoes a conformational change following exposure to elevated temperature, resulting in the formation of the six-helix bundle structure. We first generated and characterized six-helix bundle-specific antibodies raised against recombinant peptides modeling the RSV F protein six-helix bundle structure. We then used these antibodies as probes to monitor RSV F protein six-helix bundle formation in response to a diverse array of potential triggers of conformational changes. We found that exposure of 'membrane-anchored' RSV F protein to elevated temperature (45-55 deg. C) was sufficient to trigger six-helix bundle formation. Antibody binding to the six-helix bundle conformation was detected by both flow cytometry and cell-surface immunoprecipitation of the RSV F protein. None of the other treatments, including interaction with a number of potential receptors, resulted in significant binding by six-helix bundle-specific antibodies. We conclude that native, untriggered RSV F protein exists in a metastable state that can be converted in vitro to the more stable, fusogenic six-helix bundle conformation by an increase in thermal energy. These findings help to better define the mechanism of RSV F-mediated membrane fusion and have important implications for the identification of therapeutic strategies and vaccines targeting RSV F protein conformational changes.« less

  3. A Mechanistical Study on the Formation of Dimethyl Ether (CH3OCH3) and Ethanol (CH3CH2OH) in Methanol-containing Ices and Implications for the Chemistry of Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Bergantini, Alexandre; Góbi, Sándor; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2018-01-01

    The underlying formation mechanisms of complex organic molecules (COMs)—in particular, structural isomers—in the interstellar medium (ISM) are largely elusive. Here, we report new experimental findings on the role of methanol (CH3OH) and methane (CH4) ices in the synthesis of two C2H6O isomers upon interaction with ionizing radiation: ethanol (CH3CH2OH) and dimethyl ether (CH3OCH3). The present study reproduces the interstellar abundance ratios of both species with ethanol to dimethyl ether branching ratios of (2.33 ± 0.14):1 suggesting that methanol and methane represents the key precursor to both isomers within interstellar ices. Exploiting isotopic labeling combined with reflectron time-of-flight mass spectrometry (Re-TOF-MS) after isomer selective vacuum ultra-violet (VUV) photoionization of the neutral molecules, we also determine the formation mechanisms of both isomers via radical–radical recombination versus carbene (CH2) insertion with the former pathway being predominant. Formation routes to higher molecular weight reaction products such as ethylene glycol (HOCH2CH2OH), dimethyl peroxide (CH3OOCH3), and methoxymethanol (CH3OCH2OH) are discussed briefly as well.

  4. Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Kupiainen-Määttä, Oona; Zhang, Haijie; Li, Hao; Zhong, Jie; Kurtén, Theo; Vehkamäki, Hanna; Zhang, Shaowen; Zhang, Yunhong; Ge, Maofa; Zhang, Xiuhui; Li, Zesheng

    2018-06-01

    The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with different reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acid, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reactions using density functional theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. Under atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, and the product can further participate in the clustering process. The differences in cluster structures and properties induced by the hydration reaction lead to significant differences in cluster formation rates and pathways at relatively low temperatures.

  5. Oxidative transformation of a tunichrome model compound provides new insight into the crosslinking and defense reaction of tunichromes.

    PubMed

    Abebe, Adal; Kuang, Qun F; Evans, Jason; Robinson, William E; Sugumaran, Manickam

    2017-04-01

    Tunichromes, small oligopeptides with dehydrodopa units isolated from the blood cells of ascidians, have been implicated in the defense reactions, metal binding, wound repair, or tunic formation. Their instability and high reactivity has severely hampered the assessment of their biological role. Experiments conducted with the model compound, 1,2-dehydro-N-acetyldopamine, indicated that the instability of tunichromes is due to this basic structure. Exposure of this catecholamine derivative to even mild alkaline condition such as pH 7.5 causes rapid nonenzymatic oxidation. High performance liquid chromatography and mass spectrometry studies confirmed the production of dimeric and other oligomeric products in the reaction mixture. The nonenzymatic reaction seemed to proceed through the intermediary formation of semiquinone free radical and superoxide anion. Ultraviolet and visible spectral studies associated with the oxidation of tunichromes isolated from Ascidia nigra by tyrosinase indicated the probable formation of oligomeric tunichrome products. Attempts to monitor the polymerization reaction by mass spectrometry ended in vain. Tunichrome also exhibited instability in mild alkaline conditions generating superoxide anions. Based on these studies, a possible role for oxidative transformation of tunichrome in defense reaction, tunic formation and wound healing is proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A kinetic study of the formation of organic solids from formaldehyde: Implications for the origin of extraterrestrial organic solids in primitive Solar System objects

    NASA Astrophysics Data System (ADS)

    Kebukawa, Yoko; Cody, George D.

    2015-03-01

    Aqueous organic solid formation from formaldehyde via the formose reaction and subsequent reactions is a possible candidate for the origin of complex primitive chondritic insoluble organic matter (IOM) and refractory carbon in comets. The rate of formation of organic solids from formaldehyde was studied as a function of temperature and time, with and without ammonia, in order to derive kinetic expressions for polymer yield. The evolution in molecular structure as a function of time and temperature was studied using infrared spectroscopy. Using these kinetic expressions, the yield of organic solids is estimated for extended time and temperature ranges. For example, the half-life for organic solid formation is ∼5 days at 373 K, ∼200 days at 323 K, and ∼70 years at 273 K with ammonia, and ∼25 days at 373 K, ∼13 years at 323 K, and ∼2 × 104 years at 273 K without ammonia. These results indicate that organic solids could form during the aqueous alteration in meteorite parent bodies. If liquid water existed early in the interiors of Kuiper belt objects (KBOs), formaldehyde could convert into organic solids at temperatures close to 273 K, and possibly even below 273 K in the ammonia-water system.

  7. Theoretical study of the coordination behavior of formate and formamidoximate with dioxovanadium( v ) cation: implications for selectivity towards uranyl

    DOE PAGES

    Mehio, Nada; Johnson, J. Casey; Dai, Sheng; ...

    2015-10-28

    Poly(acrylamidoxime)-based fibers bearing random mixtures of carboxylate and amidoxime groups are the most widely utilized materials for extracting uranium from seawater. However, the competition between uranyl (UO 2 2+) and vanadium ions poses a significant challenge to the industrial mining of uranium from seawater using the current generation of adsorbents. To design more selective adsorbents, a detailed understanding of how major competing ions interact with carboxylate and amidoxime ligands is required. In this work, we employ density functional theory (DFT) and wave-function methods to investigate potential binding motifs of the dioxovanadium ion, VO 2 +, with water, formate, and formamidoximatemore » ligands. Employing higher level of theory calculations (CCSD(T)) resolve the existing controversy between the experimental results and previous DFT calculations for the structure of the hydrated VO 2 + ion. Consistent with the EXAFS data, CCSD(T) calculations predict higher stability of the distorted octahedral geometry of VO 2 +(H 2O) 4 compared to the five-coordinate complex with a single water molecule in the second hydration shell, while all seven tested DFT methods yield the reverse stability of the two conformations. Analysis of the relative stabilities of formate-VO 2 + complexes indicates that both monodentate and bidentate forms may coexist in thermodynamic equilibrium in solution, with the equilibrium balance leaning more towards the formation of monodentate species. Investigations of VO 2 + coordination with the formamidoximate anion has revealed the existence of seven possible binding motifs, four of which are within ~ 4.0 kcal/mol of each other. Calculations establish that the most stable binding motif entails the coordination of oxime oxygen and amide nitrogen atoms via a tautomeric rearrangement of amidoxime to imino hydroxylamine. Lastly, the difference in the most stable VO 2 + and UO 2 2+ binding conformation has important implications for the design of more selective UO 2 2+ ligands.« less

  8. Calcite Formation in Soft Coral Sclerites Is Determined by a Single Reactive Extracellular Protein*

    PubMed Central

    Rahman, M. Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-01-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called “calcite and aragonite seas.” Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that –OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature. PMID:21768106

  9. Rifting and reactivation of a Cretaceous structural belt at the northern margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Nanni, Ugo; Pubellier, Manuel; Chan, Lung Sang; Sewell, Roderick J.

    2017-04-01

    The Tiu Tang Lung Fault, Hong Kong Special Administrative Region - China, is located on the northern stretched continental margin of the South China Sea. Along this fault, Middle Jurassic volcanic rocks of the Tai Mo Shan Formation are tectonically juxtaposed on Lower Cretaceous sedimentary rocks of the Pat Sin Leng Formation. Both extensional detachments and compressional features are observed and various genetic strain configurations are proposed for the Tiu Tang Lung Fault with implications for understanding the dynamics of the pre-South China Sea rifting during the Cretaceous. We have identified tilted bedding planes in the continental deposits of the Pat Sin Leng Formation which can be related to Early Cretaceous syn-extensional deposition. A mid-Cretaceous penetrative top-to-the-south to top-to-the-west shear fabric is also observed and serves as an indicator of the strain pattern. This deformation is expressed by cleavages, schistosity, S/C fabrics, kink-folds, phacoids and stretched pebbles at both a macroscopic and microscopic scale. Cleavages and bedding are generally sub-parallel to the local shear orientation. The whole sedimentary pile is crosscut by Cenozoic N70 and N150 normal faults. These constraints, together with previous fission track, seismic and structural data, allow us to reinterpret the kinematics of this domain during syn-orogenic to syn-extensional periods. The observed top-to-the-south thrusting event is coeval with NE-SW strike-slip sinistral fault movement. Subsequent N-S extension can be correlated with South China Sea rifting from Eocene to Oligocene. These observations reveal a polyphase history associated with continental margin inversion which witnessed localized extension on previous compressional structures.

  10. Staying strong: gender ideologies among African-American adolescents and the implications for HIV/STI prevention.

    PubMed

    Kerrigan, Deanna; Andrinopoulos, Katherine; Johnson, Raina; Parham, Patrice; Thomas, Tracey; Ellen, Jonathan M

    2007-05-01

    This paper explores adolescents' definitions of what it means to be a man and a woman, the psycho-social context surrounding the formation of gender ideologies and their relationship to HIV/STI prevention. Semi-structured, in-depth interviews were conducted with fifty African-American adolescents living in Baltimore, Maryland. Female gender ideologies included economic independence, emotional strength and caretaking. Male gender ideologies emphasized financial responsibility, toughness and sexual prowess. Findings suggest that stronger adherence to male gender ideologies related to toughness and sexual prowess is influenced by male participants' perceived inability to fulfill their primary gender role as economic providers and the importance of gaining approval from male peers in the absence of adult male role models. Stronger adherence to female gender ideologies related to emotional strength and caretaking may be linked to a heightened desire for male intimacy and tolerance of male sexual risk behavior. Implications of the gender ideologies documented and their commonalities are discussed in terms of HIV/STI prevention.

  11. Lin28 sustains early renal progenitors and induces Wilms tumor

    PubMed Central

    Urbach, Achia; Yermalovich, Alena; Zhang, Jin; Spina, Catherine S.; Zhu, Hao; Perez-Atayde, Antonio R.; Shukrun, Rachel; Charlton, Jocelyn; Sebire, Neil; Mifsud, William; Dekel, Benjamin; Pritchard-Jones, Kathy; Daley, George Q.

    2014-01-01

    Wilms Tumor, the most common pediatric kidney cancer, evolves from the failure of terminal differentiation of the embryonic kidney. Here we show that overexpression of the heterochronic regulator Lin28 during kidney development in mice markedly expands nephrogenic progenitors by blocking their final wave of differentiation, ultimately resulting in a pathology highly reminiscent of Wilms tumor. Using lineage-specific promoters to target Lin28 to specific cell types, we observed Wilms tumor only when Lin28 is aberrantly expressed in multiple derivatives of the intermediate mesoderm, implicating the cell of origin as a multipotential renal progenitor. We show that withdrawal of Lin28 expression reverts tumorigenesis and markedly expands the numbers of glomerulus-like structures and that tumor formation is suppressed by enforced expression of Let-7 microRNA. Finally, we demonstrate overexpression of the LIN28B paralog in a significant percentage of human Wilms tumor. Our data thus implicate the Lin28/Let-7 pathway in kidney development and tumorigenesis. PMID:24732380

  12. In defense of causal-formative indicators: A minority report.

    PubMed

    Bollen, Kenneth A; Diamantopoulos, Adamantios

    2017-09-01

    Causal-formative indicators directly affect their corresponding latent variable. They run counter to the predominant view that indicators depend on latent variables and are thus often controversial. If present, such indicators have serious implications for factor analysis, reliability theory, item response theory, structural equation models, and most measurement approaches that are based on reflective or effect indicators. Psychological Methods has published a number of influential articles on causal and formative indicators as well as launching the first major backlash against them. This article examines 7 common criticisms of these indicators distilled from the literature: (a) A construct measured with "formative" indicators does not exist independently of its indicators; (b) Such indicators are causes rather than measures; (c) They imply multiple dimensions to a construct and this is a liability; (d) They are assumed to be error-free, which is unrealistic; (e) They are inherently subject to interpretational confounding; (f) They fail proportionality constraints; and (g) Their coefficients should be set in advance and not estimated. We summarize each of these criticisms and point out the flaws in the logic and evidence marshaled in their support. The most common problems are not distinguishing between what we call causal-formative and composite-formative indicators, tautological fallacies, and highlighting issues that are common to all indicators, but presenting them as special problems of causal-formative indicators. We conclude that measurement theory needs (a) to incorporate these types of indicators, and (b) to better understand their similarities to and differences from traditional indicators. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Origin of chemically distinct discs in the Auriga cosmological simulations

    NASA Astrophysics Data System (ADS)

    Grand, Robert J. J.; Bustamante, Sebastián; Gómez, Facundo A.; Kawata, Daisuke; Marinacci, Federico; Pakmor, Rüdiger; Rix, Hans-Walter; Simpson, Christine M.; Sparre, Martin; Springel, Volker

    2018-03-01

    The stellar disc of the Milky Way shows complex spatial and abundance structure that is central to understanding the key physical mechanisms responsible for shaping our Galaxy. In this study, we use six very high resolution cosmological zoom-in simulations of Milky Way-sized haloes to study the prevalence and formation of chemically distinct disc components. We find that our simulations develop a clearly bimodal distribution in the [α/Fe]-[Fe/H] plane. We find two main pathways to creating this dichotomy, which operate in different regions of the galaxies: (a) an early (z > 1) and intense high-[α/Fe] star formation phase in the inner region (R ≲ 5 kpc) induced by gas-rich mergers, followed by more quiescent low-[α/Fe] star formation; and (b) an early phase of high-[α/Fe] star formation in the outer disc followed by a shrinking of the gas disc owing to a temporarily lowered gas accretion rate, after which disc growth resumes. In process (b), a double-peaked star formation history around the time and radius of disc shrinking accentuates the dichotomy. If the early star formation phase is prolonged (rather than short and intense), chemical evolution proceeds as per process (a) in the inner region, but the dichotomy is less clear. In the outer region, the dichotomy is only evident if the first intense phase of star formation covers a large enough radial range before disc shrinking occurs; otherwise, the outer disc consists of only low-[α/Fe] sequence stars. We discuss the implication that both processes occurred in the Milky Way.

  14. Dark matter self-interactions and small scale structure

    NASA Astrophysics Data System (ADS)

    Tulin, Sean; Yu, Hai-Bo

    2018-02-01

    We review theories of dark matter (DM) beyond the collisionless paradigm, known as self-interacting dark matter (SIDM), and their observable implications for astrophysical structure in the Universe. Self-interactions are motivated, in part, due to the potential to explain long-standing (and more recent) small scale structure observations that are in tension with collisionless cold DM (CDM) predictions. Simple particle physics models for SIDM can provide a universal explanation for these observations across a wide range of mass scales spanning dwarf galaxies, low and high surface brightness spiral galaxies, and clusters of galaxies. At the same time, SIDM leaves intact the success of ΛCDM cosmology on large scales. This report covers the following topics: (1) small scale structure issues, including the core-cusp problem, the diversity problem for rotation curves, the missing satellites problem, and the too-big-to-fail problem, as well as recent progress in hydrodynamical simulations of galaxy formation; (2) N-body simulations for SIDM, including implications for density profiles, halo shapes, substructure, and the interplay between baryons and self-interactions; (3) semi-analytic Jeans-based methods that provide a complementary approach for connecting particle models with observations; (4) merging systems, such as cluster mergers (e.g., the Bullet Cluster) and minor infalls, along with recent simulation results for mergers; (5) particle physics models, including light mediator models and composite DM models; and (6) complementary probes for SIDM, including indirect and direct detection experiments, particle collider searches, and cosmological observations. We provide a summary and critical look for all current constraints on DM self-interactions and an outline for future directions.

  15. Gender, Assessment and Students' Literacy Learning: Implications for Formative Assessment

    ERIC Educational Resources Information Center

    Murphy, Patricia; Ivinson, Gabrielle

    2005-01-01

    Formative assessment is intended to develop students' capacity to learn and increase the effectiveness of teaching. However, the extent to which formative assessment can meet these aims depends on the relationship between its conception and current conceptions of learning. In recent years concern about sex group differences in achievement has led…

  16. A human in vitro model of Duchenne muscular dystrophy muscle formation and contractility.

    PubMed

    Nesmith, Alexander P; Wagner, Matthew A; Pasqualini, Francesco S; O'Connor, Blakely B; Pincus, Mark J; August, Paul R; Parker, Kevin Kit

    2016-10-10

    Tongue weakness, like all weakness in Duchenne muscular dystrophy (DMD), occurs as a result of contraction-induced muscle damage and deficient muscular repair. Although membrane fragility is known to potentiate injury in DMD, whether muscle stem cells are implicated in deficient muscular repair remains unclear. We hypothesized that DMD myoblasts are less sensitive to cues in the extracellular matrix designed to potentiate structure-function relationships of healthy muscle. To test this hypothesis, we drew inspiration from the tongue and engineered contractile human muscle tissues on thin films. On this platform, DMD myoblasts formed fewer and smaller myotubes and exhibited impaired polarization of the cell nucleus and contractile cytoskeleton when compared with healthy cells. These structural aberrations were reflected in their functional behavior, as engineered tongues from DMD myoblasts failed to achieve the same contractile strength as healthy tongue structures. These data suggest that dystrophic muscle may fail to organize with respect to extracellular cues necessary to potentiate adaptive growth and remodeling. © 2016 Nesmith et al.

  17. Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes.

    PubMed

    Grochowski, Christopher M; Gu, Shen; Yuan, Bo; Tcw, Julia; Brennand, Kristen J; Sebat, Jonathan; Malhotra, Dheeraj; McCarthy, Shane; Rudolph, Uwe; Lindstrand, Anna; Chong, Zechen; Levy, Deborah L; Lupski, James R; Carvalho, Claudia M B

    2018-04-25

    Small supernumerary marker chromosomes (sSMC) are chromosomal fragments difficult to characterize genomically. Here, we detail a proband with schizoaffective disorder and a mother with bipolar disorder with psychotic features who present with a marker chromosome that segregates with disease. We explored the architecture of this marker and investigated its temporal origin. Array comparative genomic hybridization (aCGH) analysis revealed three duplications and three triplications that spanned the short arm of chromosome 9, suggestive of a chromoanasynthesis-like event. Segregation of marker genotypes, phased using sSMC mosaicism in the mother, provided evidence that it was generated during a germline-level event in the proband's maternal grandmother. Whole-genome sequencing (WGS) was performed to resolve the structure and junctions of the chromosomal fragments, revealing further complexities. While structural variations have been previously associated with neuropsychiatric disorders and marker chromosomes, here we detail the precise architecture, human life-cycle genesis, and propose a DNA replicative/repair mechanism underlying formation. © 2018 Wiley Periodicals, Inc.

  18. Factor structure of essential social skills to be salespersons in retail market: implications for psychiatric rehabilitation.

    PubMed

    Cheung, Leo C C; Tsang, Hector W H

    2005-12-01

    This study continued the effort to apply social skills training to increase vocational outcomes of people with severe mental illness. We planned to identify factor structure of essential social skills necessary for mental health consumers who have a vocational preference to work as salesperson in retail market. Exploratory factor analysis of the results of a 26-item questionnaire survey suggested a five-factor solution: social skills when interacting with customers, problem-solving skills, knowledge and attitudes, flexibility, and skills for conflict prevention, which accounted for 65.1% of the total variance. With the factor solution, we developed a job-specific social skills training program (JSST) to help consumers who want to be salespersons. The structure and session design followed the basic format of a typical social skills training program. The way this JSST is to be used with the work-related social skills training model previously developed by the corresponding author to produce better vocational outcomes of consumers is suggested.

  19. Formation of Very Young Massive Clusters and Implications for Globular Clusters

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel

    How Very Young Massive star Clusters (VYMCs; also known as "starburst" clusters), which typically are of ≳ 104 M ⊙ and are a few Myr old, form out of Giant Molecular Clouds is still largely an open question. Increasingly detailed observations of young star clusters and star-forming molecular clouds and computational studies provide clues about their formation scenarios and the underlying physical processes involved. This chapter is focused on reviewing the decade-long studies that attempt to computationally reproduce the well-observed nearby VYMCs, such as the Orion Nebula Cluster, R136 and NGC 3603 young cluster, thereby shedding light on birth conditions of massive star clusters, in general. On this regard, focus is given on direct N-body modelling of real-sized massive star clusters, with a monolithic structure and undergoing residual gas expulsion, which have consistently reproduced the observed characteristics of several VYMCs and also of young star clusters, in general. The connection of these relatively simplified model calculations with the structural richness of dense molecular clouds and the complexity of hydrodynamic calculations of star cluster formation is presented in detail. Furthermore, the connections of such VYMCs with globular clusters, which are nearly as old as our Universe, is discussed. The chapter is concluded by addressing long-term deeply gas-embedded (at least apparently) and substructured systems like W3 Main. While most of the results are quoted from existing and up-to-date literature, in an integrated fashion, several new insights and discussions are provided.

  20. The metaphor-gestalt synergy underlying the self-organisation of perception as a semiotic process.

    PubMed

    Rail, David

    2013-04-01

    Recently the basis of concept and language formation has been redefined by the proposal that they both stem from perception and embodiment. The experiential revolution has lead to a far more integrated and dynamic understanding of perception as a semiotic system. The emergence of meaning in the perceptual process stems from the interaction between two key mechanisms. These are first, the generation of schemata through recurrent sensorimotor activity (SM) that underlies category and language formation (L). The second is the interaction between metaphor (M) and gestalt mechanisms (G) that generate invariant mappings beyond the SM domain that both conserve and diversify our understanding and meaning potential. We propose an important advance in our understanding of perception as a semiotic system through exploring the affect of self-organising to criticality where hierarchical behaviour becomes widely integrated through 1/f process and isomorphisms. Our proposal leads to several important implications. First, that SM and L form a functional isomorphism depicted as SM <=> L. We contend that SM <=> L is emergent, corresponding to the phenomenal self. Second, meaning structures the isomorphism SM <=>L through the synergy between M and G (M-G). M-G synergy is based on a combination of structuring and imagination. We contend that the interaction between M-G and SM <=> L functions as a macro-micro comutation that governs perception as semiosis. We discuss how our model relates to current research in fractal time and verb formation.

  1. Interfacial structures and energetics of the strengthening precipitate phase in creep-resistant Mg-Nd-based alloys.

    PubMed

    Choudhuri, D; Banerjee, R; Srinivasan, S G

    2017-01-17

    The extraordinary creep-resistance of Mg-Nd-based alloys can be correlated to the formation of nanoscale-platelets of β 1 -Mg 3 Nd precipitates, that grow along 〈110〉 Mg in bulk hcp-Mg and on dislocation lines. The growth kinetics of β 1 is sluggish even at high temperatures, and presumably occurs via vacancy migration. However, the rationale for the high-temperature stability of precipitate-matrix interfaces and observed growth direction is unknown, and may likely be related to the interfacial structure and excess energy. Therefore, we study two interfaces- {112} β1 /{100} Mg and {111} β1 /{110} Mg - that are commensurate with β 1 /hcp-Mg orientation relationship via first principles calculations. We find that β 1 acquires plate-like morphology to reduce small lattice strain via the formation of energetically favorable {112} β1 /{100} Mg interfaces, and predict that β 1 grows along 〈110〉 Mg on dislocation lines due to the migration of metastable {111} β1 /{110} Mg . Furthermore, electronic charge distribution of the two interfaces studied here indicated that interfacial-energy of coherent precipitates is sensitive to the population of distorted lattice sites, and their spatial extent in the vicinity of interfaces. Our results have implications for alloy design as they suggest that formation of β 1 -like precipitates in the hcp-Mg matrix will require well-bonded coherent interface along precipitate broad-faces, while simultaneously destabilizing other interfaces.

  2. Interfacial structures and energetics of the strengthening precipitate phase in creep-resistant Mg-Nd-based alloys

    PubMed Central

    Choudhuri, D.; Banerjee, R.; Srinivasan, S. G.

    2017-01-01

    The extraordinary creep-resistance of Mg-Nd-based alloys can be correlated to the formation of nanoscale-platelets of β1-Mg3Nd precipitates, that grow along 〈110〉Mg in bulk hcp-Mg and on dislocation lines. The growth kinetics of β1 is sluggish even at high temperatures, and presumably occurs via vacancy migration. However, the rationale for the high-temperature stability of precipitate-matrix interfaces and observed growth direction is unknown, and may likely be related to the interfacial structure and excess energy. Therefore, we study two interfaces– {112}β1/{100}Mg and {111}β1/{110}Mg– that are commensurate with β1/hcp-Mg orientation relationship via first principles calculations. We find that β1 acquires plate-like morphology to reduce small lattice strain via the formation of energetically favorable {112}β1/{100}Mg interfaces, and predict that β1 grows along 〈110〉Mg on dislocation lines due to the migration of metastable {111}β1/{110}Mg. Furthermore, electronic charge distribution of the two interfaces studied here indicated that interfacial-energy of coherent precipitates is sensitive to the population of distorted lattice sites, and their spatial extent in the vicinity of interfaces. Our results have implications for alloy design as they suggest that formation of β1-like precipitates in the hcp-Mg matrix will require well-bonded coherent interface along precipitate broad-faces, while simultaneously destabilizing other interfaces. PMID:28094302

  3. Facies Analysis of the Tandoǧdu Travertines, Van, Eastern Anatolia, Turkey: implications for the active tectonic deformation behind the formation and evolution of the travertines

    NASA Astrophysics Data System (ADS)

    Yesilova, Cetin; Yesilova, Pelin; Aclan, Mustafa; Gülyüz, Nilay

    2017-04-01

    In this study, stratigraphic and sedimentologic characteristics of Tandoǧdu travertines exposing at the 13 km southwest of Başkale, Van were examined. In this respect, we shed light on their formation conditions and depositional environment by determining their morphological characteristics and analyzing their facies distribution. In addition, kinematic studies were conducted by collecting structural data from the structures hosting the travertines. Tandoǧdu travertines having bed type and ridge type travertines have 5 distinct lithofacies based on the studies conducted. These are: (1) crystalline crust facies, (2) coated bubble facies, (3) paper-thin raft type facies, (4) lithoclast - breccia facies and (5) paleosoil facies. According to the examination of their morphologies and lithofacies; lithofacies were developed depending on the temperature of fluids forming the travertines. Distal from the source field of the hydrothermal fluids, paper-thin raft type facies were developed in shallow pools. Proximal to the source field of the hydrothermal fluids, crystalline crust facies and coated bubble facies were deposited. Existence of breccia facies indicates the effects of active tectonism during the formation of travertines. Hot hydrothermal pools on the ridge type travertines prove the still active tectonic activities. On-going studies aim to date growth of the travertines by U-Th dating method which will also shed some light on the tectonic scenario behind the evolution of the travertines.

  4. 3D Structure and Interaction of p24β and p24δ Golgi Dynamics Domains: Implication for p24 Complex Formation and Cargo Transport.

    PubMed

    Nagae, Masamichi; Hirata, Tetsuya; Morita-Matsumoto, Kana; Theiler, Romina; Fujita, Morihisa; Kinoshita, Taroh; Yamaguchi, Yoshiki

    2016-10-09

    The p24 family consists of four subfamilies (p24α, p24β, p24γ, and p24δ), and the proteins are thought to form hetero-oligomeric complexes for efficient transport of cargo proteins from the endoplasmic reticulum to the Golgi apparatus. The proteins possess a conserved luminal Golgi dynamics (GOLD) domain, whose functions are largely unknown. Here, we present structural and biochemical studies of p24β1 and p24δ1 GOLD domains. Use of GOLD domain-deleted mutants revealed that the GOLD domain of p24δ1 is required for proper p24 hetero-oligomeric complex formation and efficient transport of GPI-anchored proteins. The p24β1 and p24δ1 GOLD domains share a common β-sandwich fold with a characteristic intrasheet disulfide bond. The GOLD domain of p24δ1 crystallized as dimers, allowing the analysis of a homophilic interaction site. Surface plasmon resonance and solution NMR analyses revealed that p24β1 and p24δ1 GOLD domains interact weakly (K d = ~10 -4 M). Bi-protein titration provided interaction site maps. We propose that the heterophilic interaction of p24 GOLD domains contributes to the formation of the p24 hetero-oligomeric complex and to efficient cargo transport. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Longitudinal imaging of microvascular remodelling in proliferative diabetic retinopathy using adaptive optics scanning light ophthalmoscopy.

    PubMed

    Chui, Toco Yuen Ping; Pinhas, Alexander; Gan, Alexander; Razeen, Moataz; Shah, Nishit; Cheang, Eric; Liu, Chun L; Dubra, Alfredo; Rosen, Richard B

    2016-05-01

    To characterise longitudinal changes in the retinal microvasculature of type 2 diabetes mellitus (T2DM) as exemplified in a patient with proliferative diabetic retinopathy (PDR) using an adaptive optics scanning light ophthalmoscope (AOSLO). A 35-year-old T2DM patient with PDR treated with scatter pan-retinal photocoagulation at the inferior retina 1 day prior to initial AOSLO imaging along with a 24-year-old healthy control were imaged in this study. AOSLO vascular structural and perfusion maps were acquired at four visits over a 20-week period. Capillary diameter and microaneurysm area changes were measured on the AOSLO structural maps. Imaging repeatability was established using longitudinal imaging of microvasculature in the healthy control. Capillary occlusion and recanalisation, capillary dilatation, resolution of local retinal haemorrhage, capillary hairpin formation, capillary bend formation, microaneurysm formation, progression and regression were documented over time in a region 2° superior to the fovea in the PDR patient. An identical microvascular network with same capillary diameter was observed in the control subject over time. High-resolution serial AOSLO imaging enables in vivo observation of vasculopathic changes seen in diabetes mellitus. The implications of this methodology are significant, providing the opportunity for studying the dynamics of the pathological process, as well as the possibility of identifying highly sensitive and non-invasive biomarkers of end organ damage and response to treatment. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  6. Monte Carlo kinetics simulations of ice-mantle formation on interstellar grains

    NASA Astrophysics Data System (ADS)

    Garrod, Robin

    2015-08-01

    The majority of interstellar dust-grain chemical kinetics models use rate equations, or alternative population-based simulation methods, to trace the time-dependent formation of grain-surface molecules and ice mantles. Such methods are efficient, but are incapable of considering explicitly the morphologies of the dust grains, the structure of the ices formed thereon, or the influence of local surface composition on the chemistry.A new Monte Carlo chemical kinetics model, MIMICK, is presented here, whose prototype results were published recently (Garrod 2013, ApJ, 778, 158). The model calculates the strengths and positions of the potential mimima on the surface, on the fly, according to the individual pair-wise (van der Waals) bonds between surface species, allowing the structure of the ice to build up naturally as surface diffusion and chemistry occur. The prototype model considered contributions to a surface particle's potential only from contiguous (or "bonded") neighbors; the full model considers contributions from surface constituents from short to long range. Simulations are conducted on a fully 3-D user-generated dust-grain with amorphous surface characteristics. The chemical network has also been extended from the simple water system previously published, and now includes 33 chemical species and 55 reactions. This allows the major interstellar ice components to be simulated, such as water, methane, ammonia and methanol, as well as a small selection of more complex molecules, including methyl formate (HCOOCH3).The new model results indicate that the porosity of interstellar ices are dependent on multiple variables, including gas density, the dust temperature, and the relative accretion rates of key gas-phase species. The results presented also have implications for the formation of complex organic molecules on dust-grain surfaces at very low temperatures.

  7. The Differential Contributions of Conceptual Representation Format and Language Structure to Levels of Semantic Abstraction Capacity.

    PubMed

    Gainotti, Guido

    2017-06-01

    This paper reviews some controversies concerning the original and revised versions of the 'hub-and-spoke' model of conceptual representations and their implication for abstraction capacity levels. The 'hub-and-spoke' model, which is based on data gathered in patients with semantic dementia (SD), is the most authoritative model of conceptual knowledge. Patterson et al.'s (Nature Reviews Neuroscience, 8(12), 976-987, 2007) classical version of this model maintained that conceptual representations are stored in a unitary 'amodal' format in the right and left anterior temporal lobes (ATLs), because in SD the semantic disorder cuts across modalities and categories. Several authors questioned the unitary nature of these representations. They showed that the semantic impairment is 'multi-modal'only in the advanced stages of SD, when atrophy affects the ATLs bilaterally, but that impariments can be modality-specific in lateralised (early) stages of the disease. In these cases, SD mainly affects lexical-semantic knowledge when atrophy predominates on the left side and pictorial representations when atrophy prevails on the right side. Some aspects of the model (i.e. the importance of spokes, the multimodal format of representations and the graded convergence of modalities within the ATLs), which had already been outlined by Rogers et al. (Psychological Review, 111(1), 205-235, 2004) in a computational model of SD, were strengthened by these results. The relevance of these theoretical problems and of empirical data concerning the neural substrate of concrete and abstract words is discussed critically. The conclusion of the review is that the highest levels of abstraction are due more to the structuring influence of language than to the format of representations.

  8. Origin and heterogeneity of pore sizes in the Mount Simon Sandstone and Eau Claire Formation: Implications for multiphase fluid flow

    DOE PAGES

    Mozley, Peter S.; Heath, Jason E.; Dewers, Thomas A.; ...

    2016-01-01

    The Mount Simon Sandstone and Eau Claire Formation represent a principal reservoir - caprock system for wastewater disposal, geologic CO 2 storage, and compressed air energy storage (CAES) in the Midwestern United States. Of primary concern to site performance is heterogeneity in flow properties that could lead to non-ideal injectivity and distribution of injected fluids (e.g., poor sweep efficiency). Using core samples from the Dallas Center Structure, Iowa, we investigate pore structure that governs flow properties of major lithofacies of these formations. Methods include gas porosimetry and permeametry, mercury intrusion porosimetry, thin section petrography, and X-ray diffraction. The lithofacies exhibitmore » highly variable intra- and inter-informational distributions of pore throat and body sizes. Based on pore-throat size, samples fall into four distinct groups. Micropore-throat dominated samples are from the Eau Claire Formation, whereas the macropore-, mesopore-, and uniform-dominated samples are from the Mount Simon Sandstone. Complex paragenesis governs the high degree of pore and pore-throat size heterogeneity, due to an interplay of precipitation, non-uniform compaction, and later dissolution of cements. Furthermore, the cement dissolution event probably accounts for much of the current porosity in the unit. The unusually heterogeneous nature of the pore networks in the Mount Simon Sandstone indicates that there is a greater-than-normal opportunity for reservoir capillary trapping of non-wetting fluids — as quantified by CO 2 and air column heights — which should be taken into account when assessing the potential of the reservoir-caprock system for CO 2 storage and CAES.« less

  9. Chemokine GPCR Signaling Inhibits β-Catenin during Zebrafish Axis Formation

    PubMed Central

    Wu, Shu-Yu; Shin, Jimann; Sepich, Diane S.; Solnica-Krezel, Lilianna

    2012-01-01

    Embryonic axis formation in vertebrates is initiated by the establishment of the dorsal Nieuwkoop blastula organizer, marked by the nuclear accumulation of maternal β-catenin, a transcriptional effector of canonical Wnt signaling. Known regulators of axis specification include the canonical Wnt pathway components that positively or negatively affect β-catenin. An involvement of G-protein coupled receptors (GPCRs) was hypothesized from experiments implicating G proteins and intracellular calcium in axis formation, but such GPCRs have not been identified. Mobilization of intracellular Ca2+ stores generates Ca2+ transients in the superficial blastomeres of zebrafish blastulae when the nuclear accumulation of maternal β-catenin marks the formation of the Nieuwkoop organizer. Moreover, intracellular Ca2+ downstream of non-canonical Wnt ligands was proposed to inhibit β-catenin and axis formation, but mechanisms remain unclear. Here we report a novel function of Ccr7 GPCR and its chemokine ligand Ccl19.1, previously implicated in chemotaxis and other responses of dendritic cells in mammals, as negative regulators of β-catenin and axis formation in zebrafish. We show that interference with the maternally and ubiquitously expressed zebrafish Ccr7 or Ccl19.1 expands the blastula organizer and the dorsoanterior tissues at the expense of the ventroposterior ones. Conversely, Ccr7 or Ccl19.1 overexpression limits axis formation. Epistatic analyses demonstrate that Ccr7 acts downstream of Ccl19.1 ligand and upstream of β-catenin transcriptional targets. Moreover, Ccl19/Ccr7 signaling reduces the level and nuclear accumulation of maternal β-catenin and its axis-inducing activity and can also inhibit the Gsk3β -insensitive form of β-catenin. Mutational and pharmacologic experiments reveal that Ccr7 functions during axis formation as a GPCR to inhibit β-catenin, likely by promoting Ca2+ transients throughout the blastula. Our study delineates a novel negative, Gsk3β-independent control mechanism of β-catenin and implicates Ccr7 as a long-hypothesized GPCR regulating vertebrate axis formation. PMID:23055828

  10. Meiosis, unreduced gametes, and parthenogenesis: implications for engineering clonal seed formation in crops.

    PubMed

    Ronceret, Arnaud; Vielle-Calzada, Jean-Philippe

    2015-06-01

    Meiosis and unreduced gametes. Sexual flowering plants produce meiotically derived cells that give rise to the male and female haploid gametophytic phase. In the ovule, usually a single precursor (the megaspore mother cell) undergoes meiosis to form four haploid megaspores; however, numerous mutants result in the formation of unreduced gametes, sometimes showing female specificity, a phenomenon reminiscent of the initiation of gametophytic apomixis. Here, we review the developmental events that occur during female meiosis and megasporogenesis at the light of current possibilities to engineer unreduced gamete formation. We also provide an overview of the current understanding of mechanisms leading to parthenogenesis and discuss some of the conceptual implications for attempting the induction of clonal seed production in cultivated plants.

  11. CO overlayers on Ru(0001) studied by helium atom scattering: Structure, dynamics, and the influence of coadsorbed H and O

    NASA Astrophysics Data System (ADS)

    Braun, J.; Kostov, K. L.; Witte, G.; Wöll, Ch.

    1997-05-01

    Ordered phases of CO on a Ru(0001) surface have been characterized with regard to structural and dynamical properties using high resolution helium atom scattering. In the energy regime below 10 meV a vibrational mode corresponding to a frustrated translation parallel to the surface (FTx) could be identified, the energy amounts to 5.9 meV for isolated CO molecules and to 5.75 meV for the (∛×∛)R30°CO structure. The formation of the more compressed (2∛×2∛)R30°CO and (5∛×5∛)R30°CO structures is accompanied by significant changes of the low energy external vibrations, in pronounced contrast to the gradual frequency increase of the CO internal ν1-vibration. Coadsorption of hydrogen or oxygen was found to result in substantially larger FTx energies. Implications of these findings on the character of the molecule-surface interaction will be discussed, as well as the connection between the FTx-dispersion and the strength and type of the adsorbate-adsorbate interaction.

  12. Water molecules in the nucleotide binding cleft of actin: effects on subunit conformation and implications for ATP hydrolysis.

    PubMed

    Saunders, Marissa G; Voth, Gregory A

    2011-10-14

    In the monomeric actin crystal structure, the positions of a highly organized network of waters are clearly visible within the active site. However, the recently proposed models of filamentous actin (F-actin) did not extend to including these waters. Since the water network is important for ATP hydrolysis, information about water position is critical to understanding the increased rate of catalysis upon filament formation. Here, we show that waters in the active site are essential for intersubdomain rotational flexibility and that they organize the active-site structure. Including the crystal structure waters during simulation setup allows us to observe distinct changes in the active-site structure upon the flattening of the actin subunit, as proposed in the Oda model for F-actin. We identify changes in both protein position and water position relative to the phosphate tail that suggest a mechanism for accelerating the rate of nucleotide hydrolysis in F-actin by stabilizing charge on the β-phosphate and by facilitating deprotonation of catalytic water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Large-scale Density Structures in Magneto-rotational Disk Turbulence

    NASA Astrophysics Data System (ADS)

    Youdin, Andrew; Johansen, A.; Klahr, H.

    2009-01-01

    Turbulence generated by the magneto-rotational instability (MRI) is a strong candidate to drive accretion flows in disks, including sufficiently ionized regions of protoplanetary disks. The MRI is often studied in local shearing boxes, which model a small section of the disk at high resolution. I will present simulations of large, stratified shearing boxes which extend up to 10 gas scale-heights across. These simulations are a useful bridge to fully global disk simulations. We find that MRI turbulence produces large-scale, axisymmetric density perturbations . These structures are part of a zonal flow --- analogous to the banded flow in Jupiter's atmosphere --- which survives in near geostrophic balance for tens of orbits. The launching mechanism is large-scale magnetic tension generated by an inverse cascade. We demonstrate the robustness of these results by careful study of various box sizes, grid resolutions, and microscopic diffusion parameterizations. These gas structures can trap solid material (in the form of large dust or ice particles) with important implications for planet formation. Resolved disk images at mm-wavelengths (e.g. from ALMA) will verify or constrain the existence of these structures.

  14. Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse.

    PubMed

    Engert, Silvia; Burtscher, Ingo; Liao, W Perry; Dulev, Stanimir; Schotta, Gunnar; Lickert, Heiko

    2013-08-01

    Several signalling cascades are implicated in the formation and patterning of the three principal germ layers, but their precise temporal-spatial mode of action in progenitor populations remains undefined. We have used conditional gene deletion of mouse β-catenin in Sox17-positive embryonic and extra-embryonic endoderm as well as vascular endothelial progenitors to address the function of canonical Wnt signalling in cell lineage formation and patterning. Conditional mutants fail to form anterior brain structures and exhibit posterior body axis truncations, whereas initial blood vessel formation appears normal. Tetraploid rescue experiments reveal that lack of β-catenin in the anterior visceral endoderm results in defects in head organizer formation. Sox17 lineage tracing in the definitive endoderm (DE) shows a cell-autonomous requirement for β-catenin in midgut and hindgut formation. Surprisingly, wild-type posterior visceral endoderm (PVE) in midgut- and hindgut-deficient tetraploid chimera rescues the posterior body axis truncation, indicating that the PVE is important for tail organizer formation. Upon loss of β-catenin in the visceral endoderm and DE lineages, but not in the vascular endothelial lineage, Sox17 expression is not maintained, suggesting downstream regulation by canonical Wnt signalling. Strikingly, Tcf4/β-catenin transactivation complexes accumulated on Sox17 cis-regulatory elements specifically upon endoderm induction in an embryonic stem cell differentiation system. Together, these results indicate that the Wnt/β-catenin signalling pathway regulates Sox17 expression for visceral endoderm pattering and DE formation and provide the first functional evidence that the PVE is necessary for gastrula organizer gene induction and posterior axis development.

  15. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Jamy C.

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) thatmore » binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in euchromatin. Remarkably, human euchromatin and fly heterochromatin share similar features; such as repeated DNA content, intron lengths and open reading frame sizes. Human cells likely stabilize their DNA content via mechanisms and factors similar to those in Drosophila heterochromatin. Furthermore, my thesis work raises implications for H3K9me and chromatin functions in complex-DNA genome stability, repeated DNA homogenization by molecular drive, and in genome reorganization through evolution.« less

  16. Cryptoblemes: A New Discovery with Major Economic Implications and Profound Changes to the Geologic Paradigm

    NASA Technical Reports Server (NTRS)

    Windolph, J., Jr.; Sutton, J.

    1997-01-01

    Cryptoblemes are subtle impact shock signatures imprinted by cosmic debris on the crustal surfaces of lunar planetary bodes. These signatures constitute a complex cumulative overprinting of topographic, structural geophysical, and tectonic patterns that have a conspicuous radial centric multiringed symmetry. The geometry and distribution of cryptoblemes on Earth is comparable to the size and density of impact features on lunar planetary surfaces. Analysis of satellite imagery, sea-floor sonar, side-looking radar and aerial photographs of specific sites reveals new criteria for the identification and confirmation of impact-shock signatures. These criteria include joint and foliation patterns with asbestiform minerals, ribbon-quartz, spheroidal weathering, domal exfoliation, pencil shale, and shock spheres, which may originate from hydrocavitation of water-saturated sedimentary rocks. Cryptoblemes may also be associated with breccia pipes, sinkholes, buttes, mesas, and bogs, high-Rn anomalies, nodular concentrations, and earthquake epicenters. Major implications of cryptobleme identification include exploratory targeting of hydrocarbon and mineral deposits and the explanation of their origins. Analysis of known mineral deposits, structural traps and sedimentary basins show a direct correlation with cryptobleme patterns. Significant geologic paradigm shifts related to cryptoblemes include mountain building processes, structural orogenies, induced volcanism, earthquake origins, hydrocarbon diagenesis, formation mineral deposits, continental rifting, and plate movements, magnetic overprinting and local regional, and global geologic extinction and speciation patterns. Two figures provide a comparison between a multiring impact overprint in water and multiring cryptobleme in the U.S. basin range. (Additional information is contained in the original document).

  17. Effective Synthesis of Sulfate Metabolites of Chlorinated Phenols

    PubMed Central

    Lehmler, Hans-Joachim; He, Xianran; Li, Xueshu; Duffel, Michael W.; Parkin, Sean

    2013-01-01

    Chlorophenols are an important class of persistent environmental contaminants and have been implicated in a range of adverse health effects, including cancer. They are readily conjugated and excreted as the corresponding glucuronides and sulfates in the urine of humans and other species. Here we report the synthesis and characterization of a series of ten chlorophenol sulfates by sulfation of the corresponding chlorophenols with 2,2,2-trichloroethyl (TCE) chlorosulfate using N,N-dimethylaminopyridine (DMAP) as base. Deprotection of the chlorophenol diesters with zinc powder/ammonium formate yielded the respective chlorophenol sulfate ammonium salts in good yield. The molecular structure of three TCE-protected chlorophenol sulfate diesters and one chlorophenol sulfate monoester were confirmed by X-ray crystal structure analysis. The chlorophenol sulfates were stable for several months if stored at −20 °C and, thus, are useful for future toxicological, environmental and human biomonitoring studies. PMID:23906814

  18. The hazard map of ML6.6 0206 Meinong earthquake near Guanmiao and its Neotectonic implication

    NASA Astrophysics Data System (ADS)

    Chung, L. H.; Shyu, J. B. H.; Huang, M. H.; Yang, K. M.; Le Beon, M.; Lee, Y. H.; Chuang, R.; Yi, D.

    2016-12-01

    The serious damage was occurred in SW Taiwan by ML 6.6 0206 Meinong earthquake. Based on InSAR result, 10 cm oval-raised surface deformation is 15 km away from its epicenter, and two obviously N-S trend sharp phase change nearby Guanmiao area. Our field investigation shows bulling damage and surface fracture are high related with the two sharp phase change. Here, we perform the detailed shallow underground geometry by using reflection seismic data, geologic data, and field hazard investigation. This N-S trend surface deformation may be induced by local shallow folding, while the huge uplift west of Guanmiao may be related with pure shear deformation of thick clayey Gutingkeng (GTK) Formation. Our results imply that not only a moderate lower crustal earthquake can trigger active structure at shallower depth, but also those minor shallow active structures are occurred serious damage and surface deformation.

  19. Lunar and Planetary Science XXXV: Mars Geophysics

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) An Extraordinary Magnetic Field Map of Mars; 2) Mapping Weak Crustal Magnetic Fields on Mars with Electron Reflectometry; 3) Analytic Signal in the Interpretation of Mars Southern Highlands Magnetic Field; 4) Modeling of Major Martian Magnetic Anomalies: Further Evidence for Polar Reorientations During the Noachian; 5) An Improved Model of the Crustal Structure of Mars; 6) Geologic Evolution of the Martian Dichotomy and Plains Magnetization in the Ismenius Area of Mars; 7) Relaxation of the Martian Crustal Dichotomy Boundary in the Ismenius Region; 8) Localized Tharsis Loading on Mars: Testing the Membrane Surface Hypothesis; 9) Thermal Stresses and Tharsis Loading: Implications for Wrinkle Ridge Formation on Mars; 10) What Can be Learned about the Martian Lithosphere from Gravity and Topography Data? 11) A Gravity Analysis of the Subsurface Structure of the Utopia Impact Basin; 12) Mechanics of Utopia Basin on Mars; 13) Burying the 'Buried Channels' on Mars: An Alternative Explanation.

  20. Seeded Growth of Monodisperse Gold Nanorods Using Bromide-Free Surfactant Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, XC; Gao, YZ; Chen, J

    We demonstrate for the first time that monodisperse gold nanorods (NRs) with broadly tunable dimensions and longitudinal surface plasmon resonances can be synthesized using a bromide-free surfactant mixture composed of alkyltrimethylammonium chloride and sodium oleate. It is found that uniform gold NRs can be obtained even with an iodide concentration approaching 100 mu M in the growth solution. In contrast to conventional wisdom, our results provide conclusive evidence that neither bromide as the surfactant counterion nor a high concentration of bromide ions in the growth solution is essential for gold NR formation. Correlated electron microscopy study of three-dimensional structures ofmore » gold NRs reveals a previously unprecedented octagonal prismatic structure enclosed predominantly by high index {310} crystal planes. These findings should have profound implications for a comprehensive mechanistic understanding of seeded growth of anisotropic metal nanocrystals.« less

  1. Observations of the Formation, Development, and Structure of a Current Sheet in an Eruptive Solar Flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaton, Daniel B.; Darnel, Jonathan M.; Bartz, Allison E., E-mail: daniel.seaton@noaa.gov

    2017-02-01

    We present Atmospheric Imaging Assembly observations of a structure we interpret as a current sheet associated with an X4.9 flare and coronal mass ejection that occurred on 2014 February 25 in NOAA Active Region 11990. We characterize the properties of the current sheet, finding that the sheet remains on the order of a few thousand kilometers thick for much of the duration of the event and that its temperature generally ranged between 8 and 10 MK. We also note the presence of other phenomena believed to be associated with magnetic reconnection in current sheets, including supra-arcade downflows and shrinking loops.more » We estimate that the rate of reconnection during the event was M{sub A} ≈ 0.004–0.007, a value consistent with model predictions. We conclude with a discussion of the implications of this event for reconnection-based eruption models.« less

  2. Columnar shifts as symmetry-breaking degrees of freedom in molecular perovskites

    NASA Astrophysics Data System (ADS)

    Boström, Hanna L. B.; Hill, Joshua A.; Goodwin, Andrew L.

    We introduce columnar shifts---collective rigid-body translations---as a structural degree of freedom relevant to the phase behaviour of molecular perovskites ABX$_{\\textrm3}$ (X = molecular anion). Like the well-known octahedral tilts of conventional perovskites, shifts also preserve the octahedral coordination geometry of the B-site cation in molecular perovskites, and so are predisposed to influencing the low-energy dynamics and displacive phase transitions of these topical systems. We present a qualitative overview of the interplay between shift activation and crystal symmetry breaking, and introduce a generalised terminology to allow characterisation of simple shift distortions, drawing analogy to the "Glazer notation" for octahedral tilts. We apply our approach to the interpretation of a representative selection of azide and formate perovskite structures, and discuss the implications for functional exploitation of shift degrees of freedom in negative thermal expansion materials and hybrid ferroelectrics.

  3. Pi-Pi contacts are an overlooked protein feature relevant to phase separation.

    PubMed

    Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong; Forman-Kay, Julie Deborah

    2018-02-09

    Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. © 2018, Vernon et al.

  4. The Survival Motor Neuron Protein Forms Soluble Glycine Zipper Oligomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Renee; Gupta, Kushol; Ninan, Nisha S.

    2012-11-01

    The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex that functions in spliceosomal snRNP biogenesis. Loss of function mutations in the SMN gene cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Nearly half of the known SMA patient missense mutations map to the SMN YG-box, a highly conserved oligomerization domain of unknown structure that contains a (YxxG)3 motif. Here, we report that the SMN YG-box forms helical oligomers similar to the glycine zippers found in transmembrane channel proteins. A network of tyrosine-glycine packing between helices drives formation of soluble YG-box oligomers,more » providing a structural basis for understanding SMN oligomerization and for relating defects in oligomerization to the mutations found in SMA patients. These results have important implications for advancing our understanding of SMN function and glycine zipper-mediated helix-helix interactions.« less

  5. Molecular microelectrostatic view on electronic states near pentacene grain boundaries

    NASA Astrophysics Data System (ADS)

    Verlaak, Stijn; Heremans, Paul

    2007-03-01

    Grain boundaries are the most inevitable and pronounced structural defects in pentacene films. To study the effect of those structural defects on the electronic state distribution, the energy levels of a hole on molecules at and near the defect have been calculated using a submolecular self-consistent-polarization-field approach in combination with atomic charge-quadrupole interaction energy calculations. This method has been benchmarked prior to application on four idealized grain boundaries: a grain boundary void, a void with molecules squeezed in between two grains, a boundary between two grains with different crystallographic orientations, and a grain boundary void in which a permanent dipole (e.g., a water molecule) has nested. While idealized, those views highlight different aspects of real grain boundaries. Implications on macroscopic charge transport models are discussed, as well as some relation between growth conditions and the formation of the grain boundary.

  6. Modification of surface properties of solids by femtosecond LIPSS writing: comparative studies on silicon and stainless steel

    NASA Astrophysics Data System (ADS)

    Varlamova, Olga; Hoefner, Kevin; Ratzke, Markus; Reif, Juergen; Sarker, Debasish

    2017-12-01

    We investigate the implication of modified surface morphology on wettability of stainless steel (AISI 304) and silicon (100) targets covered by laser-induced periodic surface structures (LIPSS) on extended areas (10 × 10 mm2). Using multiple pulses from a Ti: Sapphire laser (790 nm/100 fs/1 kHz) at a fluence in the range of 0.35-2.1 J/cm2 on a spot of 1.13 × 10- 4 cm2, we scanned the target under the spot to cover a large area. A systematical variation of the irradiation dose by changing the scanning speed and thus dwelling time per spot results in the formation of surface patterns ranging from very regular linear structures with a lateral period of about 500-600 nm to complex patterns of 3D microstructures with several-µm feature size, hierarchically covered by nano-ripples.

  7. Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds.

    PubMed

    Delfosse, Vanessa; Dendele, Béatrice; Huet, Tiphaine; Grimaldi, Marina; Boulahtouf, Abdelhay; Gerbal-Chaloin, Sabine; Beucher, Bertrand; Roecklin, Dominique; Muller, Christina; Rahmani, Roger; Cavaillès, Vincent; Daujat-Chavanieu, Martine; Vivat, Valérie; Pascussi, Jean-Marc; Balaguer, Patrick; Bourguet, William

    2015-09-03

    Humans are chronically exposed to multiple exogenous substances, including environmental pollutants, drugs and dietary components. Many of these compounds are suspected to impact human health, and their combination in complex mixtures could exacerbate their harmful effects. Here we demonstrate that a pharmaceutical oestrogen and a persistent organochlorine pesticide, both exhibiting low efficacy when studied separately, cooperatively bind to the pregnane X receptor, leading to synergistic activation. Biophysical analysis shows that each ligand enhances the binding affinity of the other, so the binary mixture induces a substantial biological response at doses at which each chemical individually is inactive. High-resolution crystal structures reveal the structural basis for the observed cooperativity. Our results suggest that the formation of 'supramolecular ligands' within the ligand-binding pocket of nuclear receptors contributes to the synergistic toxic effect of chemical mixtures, which may have broad implications for the fields of endocrine disruption, toxicology and chemical risk assessment.

  8. Structural disorder in molecular framework materials.

    PubMed

    Cairns, Andrew B; Goodwin, Andrew L

    2013-06-21

    It is increasingly apparent that many important classes of molecular framework material exhibit a variety of interesting and useful types of structural disorder. This tutorial review summarises a number of recent efforts to understand better both the complex microscopic nature of this disorder and also how it might be implicated in useful functionalities of these materials. We draw on a number of topical examples including topologically-disordered zeolitic imidazolate frameworks (ZIFs), porous aromatic frameworks (PAFs), the phenomena of temperature-, pressure- and desorption-induced amorphisation, partial interpenetration, ferroelectric transition-metal formates, negative thermal expansion in cyanide frameworks, and the mechanics and processing of layered frameworks. We outline the various uses of pair distribution function (PDF) analysis, dielectric spectroscopy, peak-shape analysis of powder diffraction data and single-crystal diffuse scattering measurements as means of characterising disorder in these systems, and we suggest a number of opportunities for future research in the field.

  9. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.

    2014-09-07

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies.more » Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.« less

  10. Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization.

    PubMed

    Cano, David A; Murcia, Noel S; Pazour, Gregory J; Hebrok, Matthias

    2004-07-01

    Polycystic kidney disease (PKD) includes a group of disorders that are characterized by the presence of cysts in the kidney and other organs, including the pancreas. Here we show that in orpk mice, a model system for PKD that harbors a mutation in the gene that encodes the polaris protein, pancreatic defects start to occur at the end of gestation, with an initial expansion of the developing pancreatic ducts. Ductal dilation continues rapidly after birth and results in the formation of large, interconnected cysts. Expansion of pancreatic ducts is accompanied by apoptosis of neighboring acinar cells, whereas endocrine cell differentiation and islet formation appears to be unaffected. Polaris has been shown to co-localize with primary cilia, and these structures have been implicated in the formation of renal cysts. In the orpk pancreas, cilia numbers are reduced and cilia length is decreased. Expression of polycystin-2, a protein involved in PKD, is mislocalized in orpk mice. Furthermore, the cellular localization of beta-catenin, a protein involved in cell adhesion and Wnt signaling, is altered. Thus, polaris and primary cilia function are required for the maturation and maintenance of proper tissue organization in the pancreas.

  11. Arsenopyrite weathering under conditions of simulated calcareous soil.

    PubMed

    Lara, René H; Velázquez, Leticia J; Vazquez-Arenas, Jorge; Mallet, Martine; Dossot, Manuel; Labastida, Israel; Sosa-Rodríguez, Fabiola S; Espinosa-Cristóbal, León F; Escobedo-Bretado, Miguel A; Cruz, Roel

    2016-02-01

    Mining activities release arsenopyrite into calcareous soils where it undergoes weathering generating toxic compounds. The research evaluates the environmental impacts of these processes under semi-alkaline carbonated conditions. Electrochemical (cyclic voltammetry, chronoamperometry, EIS), spectroscopic (Raman, XPS), and microscopic (SEM, AFM, TEM) techniques are combined along with chemical analyses of leachates collected from simulated arsenopyrite weathering to comprehensively examine the interfacial mechanisms. Early oxidation stages enhance mineral reactivity through the formation of surface sulfur phases (e.g., S n (2-)/S(0)) with semiconductor properties, leading to oscillatory mineral reactivity. Subsequent steps entail the generation of intermediate siderite (FeCO3)-like, followed by the formation of low-compact mass sub-micro ferric oxyhydroxides (α, γ-FeOOH) with adsorbed arsenic (mainly As(III), and lower amounts of As(V)). In addition, weathering reactions can be influenced by accessible arsenic resulting in the formation of a symplesite (Fe3(AsO4)3)-like compound which is dependent on the amount of accessible arsenic in the system. It is proposed that arsenic release occurs via diffusion across secondary α, γ-FeOOH structures during arsenopyrite weathering. We suggest weathering mechanisms of arsenopyrite in calcareous soil and environmental implications based on experimental data.

  12. Protonation of a peroxodiiron(III) complex and conversion to a diiron(III/IV) intermediate: implications for proton-assisted O-O bond cleavage in nonheme diiron enzymes.

    PubMed

    Cranswick, Matthew A; Meier, Katlyn K; Shan, Xiaopeng; Stubna, Audria; Kaizer, Jószef; Mehn, Mark P; Münck, Eckard; Que, Lawrence

    2012-10-01

    Oxygenation of a diiron(II) complex, [Fe(II)(2)(μ-OH)(2)(BnBQA)(2)(NCMe)(2)](2+) [2, where BnBQA is N-benzyl-N,N-bis(2-quinolinylmethyl)amine], results in the formation of a metastable peroxodiferric intermediate, 3. The treatment of 3 with strong acid affords its conjugate acid, 4, in which the (μ-oxo)(μ-1,2-peroxo)diiron(III) core of 3 is protonated at the oxo bridge. The core structures of 3 and 4 are characterized in detail by UV-vis, Mössbauer, resonance Raman, and X-ray absorption spectroscopies. Complex 4 is shorter-lived than 3 and decays to generate in ~20% yield of a diiron(III/IV) species 5, which can be identified by electron paramagnetic resonance and Mössbauer spectroscopies. This reaction sequence demonstrates for the first time that protonation of the oxo bridge of a (μ-oxo)(μ-1,2-peroxo)diiron(III) complex leads to cleavage of the peroxo O-O bond and formation of a high-valent diiron complex, thereby mimicking the steps involved in the formation of intermediate X in the activation cycle of ribonucleotide reductase.

  13. Aggregation Pathways of Native-Like Ubiquitin Promoted by Single-Point Mutation, Metal Ion Concentration, and Dielectric Constant of the Medium.

    PubMed

    Fermani, Simona; Calvaresi, Matteo; Mangini, Vincenzo; Falini, Giuseppe; Bottoni, Andrea; Natile, Giovanni; Arnesano, Fabio

    2018-03-15

    Ubiquitin-positive protein aggregates are biomarkers of neurodegeneration, but the molecular mechanism responsible for their formation and accumulation is still unclear. Possible aggregation pathways of human ubiquitin (hUb) promoted by both intrinsic and extrinsic factors, are here investigated. By a computational analysis, two different hUb dimers are indicated as possible precursors of amyloid-like structures, but their formation is disfavored by an electrostatic repulsion involving Glu16 and other carboxylate residues present at the dimer interface. Experimental data on the E16V mutant of hUb shows that this single-point mutation, although not affecting the overall protein conformation, promotes protein aggregation. It is sufficient to shift the same mutation by only two residues (E18V) to regain the behavior of wild-type hUb. The neutralization of Glu16 negative charge by a metal ion and a decrease of the dielectric constant of the medium by addition of trifluoroethanol (TFE), also promote hUb aggregation. The outcomes of this research have important implications for the prediction of physiological parameters that favor aggregate formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Formative research to identify perceptions of e-cigarettes in college students: Implications for future health communication campaigns

    PubMed Central

    Case, Kathleen; Crook, Brittani; Lazard, Allison; Mackert, Michael

    2016-01-01

    Objective This formative study examined perceptions of e-cigarettes in college students with the goal of informing future health communication campaigns. Differences between e-cigarette users and nonusers were also examined. Participants: Thirty undergraduate students were recruited from a large southwestern public university (15 users, 15 nonusers). Methods Structured interviews were conducted and transcripts were coded for themes. Results Although users had more favorable attitudes toward e-cigarettes, both users and nonusers believed that e-cigarettes produce water vapor and reported that e-cigarettes were less harmful than conventional cigarettes. Potential health consequences and addiction concerns were the most common perceived threats for both users and nonusers. Both nonusers and users cited social stigma as a perceived disadvantage of e-cigarette use. Conclusions Ultimately, themes with particular relevance to future health communication campaigns included negative perceptions of e-cigarette users and social stigma, as well as harm perceptions and potential health consequences associated with e-cigarette use. PMID:26979833

  15. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis.

    PubMed

    Martin, Carol-Anne; Murray, Jennie E; Carroll, Paula; Leitch, Andrea; Mackenzie, Karen J; Halachev, Mihail; Fetit, Ahmed E; Keith, Charlotte; Bicknell, Louise S; Fluteau, Adeline; Gautier, Philippe; Hall, Emma A; Joss, Shelagh; Soares, Gabriela; Silva, João; Bober, Michael B; Duker, Angela; Wise, Carol A; Quigley, Alan J; Phadke, Shubha R; Wood, Andrew J; Vagnarelli, Paola; Jackson, Andrew P

    2016-10-01

    Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish "condensinopathies" as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size. © 2016 Martin et al.; Published by Cold Spring Harbor Laboratory Press.

  16. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development.

    PubMed

    Levin, J Z; Meyerowitz, E M

    1995-05-01

    We describe the role of the UNUSUAL FLORAL ORGANS (UFO) gene in Arabidopsis floral development based on a genetic and molecular characterization of the phenotypes of nine ufo alleles. UFO is required for the proper identity of the floral meristem and acts in three different aspects of the process that distinguishes flowers from shoots. UFO is involved in establishing the whorled pattern of floral organs, controlling the determinacy of the floral meristem, and activating the APETALA3 and PISTILLATA genes required for petal and stamen identity. In many respects, UFO acts in a manner similar to LEAFY, but the ufo mutant phenotype also suggests an additional role for UFO in defining boundaries within the floral primordia or controlling cell proliferation during floral organ growth. Finally, genetic interactions that prevent flower formation and lead to the generation of filamentous structures implicate UFO as a member of a new, large, and diverse class of genes in Arabidopsis necessary for flower formation.

  17. Effects of flow on insulin fibril formation at an air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2009-11-01

    The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.

  18. Filament formation associated with spirochetal infection: a comparative approach to Morgellons disease

    PubMed Central

    Middelveen, Marianne J; Stricker, Raphael B

    2011-01-01

    Bovine digital dermatitis is an emerging infectious disease that causes lameness, decreased milk production, and weight loss in livestock. Proliferative stages of bovine digital dermatitis demonstrate keratin filament formation in skin above the hooves in affected animals. The multifactorial etiology of digital dermatitis is not well understood, but spirochetes and other coinfecting microorganisms have been implicated in the pathogenesis of this veterinary illness. Morgellons disease is an emerging human dermopathy characterized by the presence of filamentous fibers of undetermined composition, both in lesions and subdermally. While the etiology of Morgellons disease is unknown, there is serological and clinical evidence linking this phenomenon to Lyme borreliosis and coinfecting tick-borne agents. Although the microscopy of Morgellons filaments has been described in the medical literature, the structure and pathogenesis of these fibers is poorly understood. In contrast, most microscopy of digital dermatitis has focused on associated pathogens and histology rather than the morphology of late-stage filamentous fibers. Clinical, laboratory, and microscopic characteristics of these two diseases are compared. PMID:22253541

  19. Filament formation associated with spirochetal infection: a comparative approach to Morgellons disease.

    PubMed

    Middelveen, Marianne J; Stricker, Raphael B

    2011-01-01

    Bovine digital dermatitis is an emerging infectious disease that causes lameness, decreased milk production, and weight loss in livestock. Proliferative stages of bovine digital dermatitis demonstrate keratin filament formation in skin above the hooves in affected animals. The multifactorial etiology of digital dermatitis is not well understood, but spirochetes and other coinfecting microorganisms have been implicated in the pathogenesis of this veterinary illness. Morgellons disease is an emerging human dermopathy characterized by the presence of filamentous fibers of undetermined composition, both in lesions and subdermally. While the etiology of Morgellons disease is unknown, there is serological and clinical evidence linking this phenomenon to Lyme borreliosis and coinfecting tick-borne agents. Although the microscopy of Morgellons filaments has been described in the medical literature, the structure and pathogenesis of these fibers is poorly understood. In contrast, most microscopy of digital dermatitis has focused on associated pathogens and histology rather than the morphology of late-stage filamentous fibers. Clinical, laboratory, and microscopic characteristics of these two diseases are compared.

  20. Social climber attachment in forming networks produces a phase transition in a measure of connectivity

    NASA Astrophysics Data System (ADS)

    Taylor, Dane; Larremore, Daniel B.

    2012-09-01

    The formation and fragmentation of networks are typically studied using percolation theory, but most previous research has been restricted to studying a phase transition in cluster size, examining the emergence of a giant component. This approach does not study the effects of evolving network structure on dynamics that occur at the nodes, such as the synchronization of oscillators and the spread of information, epidemics, and neuronal excitations. We introduce and analyze an alternative link-formation rule, called social climber (SC) attachment, that may be combined with arbitrary percolation models to produce a phase transition using the largest eigenvalue of the network adjacency matrix as the order parameter. This eigenvalue is significant in the analyses of many network-coupled dynamical systems in which it measures the quality of global coupling and is hence a natural measure of connectivity. We highlight the important self-organized properties of SC attachment and discuss implications for controlling dynamics on networks.

  1. Towards Lego Snapping; Integration of Carbon Nanotubes and Few-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Nasseri, Mohsen; Boland, Mathias; Farrokhi, M. Javad; Strachan, Douglas

    Integration of semiconducting, conducting, and insulating nanomaterials into precisely aligned complicated systems is one of the main challenges to the ultimate size scaling of electronic devices, which is a key goal in nanoscience and nanotechnology. This integration could be made more effective through controlled alignment of the crystallographic lattices of the nanoscale components. Of the vast number of materials of atomically-thin materials, two of the sp2 bonded carbon structures, graphene and carbon nanotubes, are ideal candidates for this type of application since they are built from the same backbone carbon lattice. Here we report carbon nanotube and graphene hybrid nanostructures fabricated through their catalytic synthesis and etching. The growth formations we have investigated through various high-resolution microscopy techniques provide evidence of lego-snapped interfaces between nanotubes and graphene into device-relevant orientations. We will finish with a discussion of the various size and energy regimes relevant to these lego-snapped interfaces and their implications on developing these integrated formations.

  2. The fate of solid particles in the Jovian circumplanetary disk : Implications for the formation of the Galilean satellites

    NASA Astrophysics Data System (ADS)

    Ronnet, Thomas; Mousis, Olivier; Vernazza, Pierre

    2016-10-01

    The Galilean satellites are thought to have formed within an accretion disk surrounding Jupiter at the late stages of its formation. However, the structure of the gaseous disk, as well as the size and origin of the solids that eventually formed the satellites are yet to be constrained.Here we model an evolving gaseous disk around Jupiter and investigate the fate of solid particles of different sizes submitted to aerodynamic drag, turbulent diffusion, and heated by the surrounding gas. The motion of the solid particles is integrated in the (r-z) plane, taking into account dust settling and radial drift. The evolution of their ice-to-rock ratio is tracked when they cross the snowline and start to sublimate. Sublimation is coupled to the equations of motion as it changes the radius of the particle and consequently acts on the drag force. The I/R ratio then serves as a comparison to the observed bulk compositions of Io and Europa.

  3. Formative research to identify perceptions of e-cigarettes in college students: Implications for future health communication campaigns.

    PubMed

    Case, Kathleen; Crook, Brittani; Lazard, Allison; Mackert, Michael

    2016-07-01

    This formative study examined perceptions of e-cigarettes in college students with the goal of informing future health communication campaigns. Differences between e-cigarette users and nonusers were also examined. Thirty undergraduate students were recruited from a large southwestern public university (15 users, 15 nonusers). Structured interviews were conducted and transcripts were coded for themes. Although users had more favorable attitudes toward e-cigarettes, both users and nonusers believed that e-cigarettes produce water vapor and reported that e-cigarettes were less harmful than conventional cigarettes. Potential health consequences and addiction concerns were the most common perceived threats for both users and nonusers. Both nonusers and users cited social stigma as a perceived disadvantage of e-cigarette use. Ultimately, themes with particular relevance to future health communication campaigns included negative perceptions of e-cigarette users and social stigma, as well as harm perceptions and potential health consequences associated with e-cigarette use.

  4. UV-Light Exposure of Insulin: Pharmaceutical Implications upon Covalent Insulin Dityrosine Dimerization and Disulphide Bond Photolysis

    PubMed Central

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B.

    2012-01-01

    In this work we report the effects of continuous UV-light (276 nm, ∼2.20 W.m−2) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin’s structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein structure. Structural damage includes insulin dimerization via dityrosine cross-linking or disulphide bond disruption, which affects the hormone’s structure and bioactivity. PMID:23227203

  5. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis.

    PubMed

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B

    2012-01-01

    In this work we report the effects of continuous UV-light (276 nm, ~2.20 W.m(-2)) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin's structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein structure. Structural damage includes insulin dimerization via dityrosine cross-linking or disulphide bond disruption, which affects the hormone's structure and bioactivity.

  6. Crystal structure of the adenosine A 2A receptor bound to an antagonist reveals a potential allosteric pocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phasemore » diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.« less

  7. Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili.

    PubMed Central

    Nunn, D; Bergman, S; Lory, S

    1990-01-01

    The polar pili of Pseudomonas aeruginosa are composed of monomers of the pilin structural subunits. The biogenesis of pili involves the synthesis of pilin precursor, cleavage of a six-amino-acid leader peptide, membrane translocation, and assembly of monomers into a filamentous structure extending from the bacterial surface. This report describes three novel genes necessary for the formation of pili. DNA sequences adjacent to pilA, the pilin structural gene, were cloned and mutagenized with transposon Tn5. Each of the insertions were introduced into the chromosome of P. aeruginosa PAK by gene replacement. The effect of the Tn5 insertions in the bacterial chromosome on pilus assembly was assessed by electron microscopy and sensitivity of mutants to a pilus-specific bacteriophage. The resultant mutants were also tested for synthesis and membrane localization of the pilin antigen in order to define the genes required for maturation, export, and assembly of pilin. A 4.0-kilobase-pair region of DNA adjacent to the pilin structural gene was found to be essential for formation of pili. This region was sequenced and found to contain three open reading frames coding for 62-, 38- to 45-, and 28- to 32-kilodalton proteins (pilB, pilC, and pilD, respectively). Three proteins of similar molecular weight were expressed in Escherichia coli from the 4.0-kilobase-pair fragment flanking pilA with use of a T7 promoter-polymerase expression system. The results of the analyses of the three genes and the implications for pilin assembly and maturation are discussed. Images PMID:1971619

  8. Fibrin Formation, Structure and Properties

    PubMed Central

    Weisel, John W.; Litvinov, Rustem I.

    2017-01-01

    Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin. PMID:28101869

  9. The Mass Surface Density Distribution of a High-Mass Protocluster forming from an IRDC and GMC

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Tan, Jonathan C.; Kainulainen, Jouni; Ma, Bo; Butler, Michael

    2016-01-01

    We study the probability distribution function (PDF) of mass surface densities of infrared dark cloud (IRDC) G028.36+00.07 and its surrounding giant molecular cloud (GMC). Such PDF analysis has the potential to probe the physical processes that are controlling cloud structure and star formation activity. The chosen IRDC is of particular interest since it has almost 100,000 solar masses within a radius of 8 parsecs, making it one of the most massive, dense molecular structures known and is thus a potential site for the formation of a high-mass, "super star cluster". We study mass surface densities in two ways. First, we use a combination of NIR, MIR and FIR extinction maps that are able to probe the bulk of the cloud structure that is not yet forming stars. This analysis also shows evidence for flattening of the IR extinction law as mass surface density increases, consistent with increasing grain size and/or growth of ice mantles. Second, we study the FIR and sub-mm dust continuum emission from the cloud, especially utlizing Herschel PACS and SPIRE images. We first subtract off the contribution of the foreground diffuse emission that contaminates these images. Next we examine the effects of background subtraction and choice of dust opacities on the derived mass surface density PDF. The final derived PDFs from both methods are compared, including also with other published studies of this cloud. The implications for theoretical models and simulations of cloud structure, including the role of turbulence and magnetic fields, are discussed.

  10. Correlation between bonding structure and microstructure in fullerenelike carbon nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gago, R.; Abendroth, B.; Moeller, W.

    2005-03-15

    The bonding structure of highly ordered fullerenelike (FL) carbon nitride (CN{sub x}) thin films has been assessed by x-ray absorption near-edge spectroscopy (XANES). Samples with different degrees of FL character have been analyzed to discern spectral signatures related to the FL microstructure. The XANES spectra of FL-CN{sub x} films resemble that of graphitic CN{sub x}, evidencing the sp{sup 2} hybridization of both C and N atoms. The FL structure is achieved with the promotion of N in threefold positions over pyridinelike and cyanidelike bonding environments. In addition, the relative {pi}{sup *}/{sigma}* XANES intensity ratio at the C(1s) edge is independentmore » of the FL character, while it decreases {approx}40% at the N(1s) edge with the formation of FL arrangements. This result indicates that there is no appreciable introduction of C-sp{sup 3} hybrids with the development of FL structures and, additionally, that a different spatial localization of {pi} electrons at C and N sites takes place in curved graphitic structures. The latter has implications for the elastic properties of graphene sheets and could, as such, explain the outstanding elastic properties of FL-CN{sub x}.« less

  11. FACTORS IMPLICATED IN AMPHIBIAN POPULATION DECLINES IN THE UNITED STATES

    EPA Science Inventory

    Factors adversely affecting amphibian populations in the US were evaluated using information from species accounts written in a standardized format by multiple authors (Volume 2 of this book). For each species, factors implicated by the authors (i.e., known or suspected) as affec...

  12. Postirradiation malignant fibrous histiocytoma of the lung. Demonstration of alpha 1-antitrypsin-like material in neoplastic cells.

    PubMed

    Chowdhury, L N; Swerdlow, M A; Jao, W; Kathpalia, S; Desser, R K

    1980-12-01

    A metastasizing fibrous histiocytoma arising in the lung of a patient who received radiation therapy and long-term chemotherapy for malignant lymphoma is presented. Ultrastructural studies revealed fibroblast-like and histiocyte-like cells, cells of intermediate type showing ultrastructural features of both fibroblast-like and histiocyte-like cells, primitive mesenchymal cells, multinucleate tumor cells, and xanthomatous cells. The neoplastic cells showed dilated rough endoplasmic reticula with intracisternal accumulation of electron-dense material forming lattice-like structures. Direct immunofluorescence staining of the neoplastic cells using antihuman alpha 1-antitrypsin showed specific activity, with fluorescent deposits exhibiting interlacing globular formations. These findings and their implications are discussed.

  13. Shallow moonquakes - Depth, distribution and implications as to the present state of the lunar interior

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Latham, G. V.; Dorman, H. J.; Ibrahim, A.-B. K.; Koyama, J.; Horvath, P.

    1979-01-01

    The observed seismic amplitudes of HFT (high-frequency teleseismic) events do not vary with distance as expected for surface sources, but are consistent with sources in the upper mantle of the moon. Thus, the upper mantle of the moon is the only zone where tectonic stresses deriving from differential thermal contraction and expansion of the lunar interior are presently high enough to cause moonquakes. The distribution of shallow moonquake epicenters suggests a possible correlation with impact basins, implying a lasting tectonic influence of impact basins long after their formation. The finite depths now assigned to these shallow moonquakes necessitate further revision to the seismic structural model of the lunar interior.

  14. Coronal Heating Topology: The Interplay of Current Sheets and Magnetic Field Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappazzo, A. F.; Velli, M.; Matthaeus, W. H.

    2017-07-20

    The magnetic topology and field line random walk (FLRW) properties of a nanoflare-heated and magnetically confined corona are investigated in the reduced magnetohydrodynamic regime. Field lines originating from current sheets form coherent structures, called current sheet connected (CSC) regions, which extend around them. CSC FLRW is strongly anisotropic, with preferential diffusion along the current sheets’ in-plane length. CSC FLRW properties remain similar to those of the entire ensemble but exhibit enhanced mean square displacements and separations due to the stronger magnetic field intensities in CSC regions. The implications for particle acceleration and heat transport in the solar corona and wind,more » and for solar moss formation are discussed.« less

  15. Efecto del gas nebular sobre la dinámica de un protoplaneta Joviano

    NASA Astrophysics Data System (ADS)

    Cionco, R. G.; Brunini, A.

    In order to describe a realist scenario to investigate the formation of giant planets, we analyze the physical structure of the primordial gaseous circumsolar disk, the environment where protoplanets growth. We calculate the gas drag efect onto embrios of 1 M⊕ at 5.2 AU with a new formulation of the dinamycal friction effect. We have found a strong radial migration of the protoplanet, that, in comparison whith the predictions of other formulations of gas drag is, at least, one order of magnitude larger. This result casts doubts about the possible survival of these kinds of planetary embrios. The implications for the modelling of the planetary systems are discussed.

  16. Prodomain–growth factor swapping in the structure of pro-TGF-β1

    PubMed Central

    Xu, Shutong; Dong, Xianchi; Lu, Chafen; Springer, Timothy A.

    2018-01-01

    TGF-β is synthesized as a proprotein that dimerizes in the endoplasmic reticulum. After processing in the Golgi to cleave the N-terminal prodomain from the C-terminal growth factor (GF) domain in each monomer, pro-TGF-β is secreted and stored in latent complexes. It is unclear which prodomain and GF monomer are linked before proprotein convertase cleavage and how much conformational change occurs following cleavage. We have determined a structure of pro-TGF-β1 with the proprotein convertase cleavage site mutated to mimic the structure of the TGF-β1 proprotein. Structure, mutation, and model building demonstrate that the prodomain arm domain in one monomer is linked to the GF that interacts with the arm domain in the other monomer in the dimeric structure (i.e. the prodomain arm domain and GF domain in each monomer are swapped). Swapping has important implications for the mechanism of biosynthesis in the TGF-β family and is relevant to the mechanism for preferential formation of heterodimers over homodimers for some members of the TGF-β family. Our structure, together with two previous ones, also provides insights into which regions of the prodomain–GF complex are highly structurally conserved and which are perturbed by crystal lattice contacts. PMID:29109152

  17. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments.

    PubMed

    Narayan, Priya; Krishnarjuna, Bankala; Vishwanathan, Vinaya; Jagadeesh Kumar, Dasappa; Babu, Sudhir; Ramanathan, Krishna Venkatachala; Easwaran, Kalpathy Ramaier Katchap; Nagendra, Holenarasipur Gundurao; Raghothama, Srinivasarao

    2013-07-01

    Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in Aβ (amyloid β) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal Aβ fragments, DAEFRHDSGYEV (Aβ12) and DAEFRHDSGYEVHHQK (Aβ16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with Aβ12 and Aβ16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in Aβ12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets. © 2013 John Wiley & Sons A/S.

  18. Adsorption of metal-phthalocyanine molecules onto the Si(111) surface passivated by δ doping: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.

    2016-03-01

    We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.

  19. The SEEDS of Planet Formation: Observations of Transitional Disks

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    2011-01-01

    As part of its 5-year study, the Strategic Exploration of Exoplanets and Disk Systems (SEEDS) has already observed a number of YSOs with circumstellar disks, including 13 0.5-8 Myr old A-M stars with indications that they host wide gaps or central cavities in their circumstellar disks in millimeter or far-IR observations, or from deficits in warm dust thermal emission. For 8 of the disks, the 0.15" inner working angle of HiCIAO+A0188 samples material in the millimeter or mid-IR identified cavity. In one case we report detection of a previously unrecognized wide gap. For the remaining 4 stars, the SEEDS data sample the outer disk: in 3 cases, we present the first NIR imagery of the disks. The data for the youngest sample members 1-2 Myr) closely resemble coeval primordial disks. After approximately 3 Myr, the transitional disks show a wealth of structure including spiral features, rings, divots, and in some cases, largely cleared gaps in the disks which are not seen in coeval primordial disks. Some of these structural features are predicted consequences of Jovian-mass planets having formed in the disk, while others are novel features. We discuss the implications for massive planet formation timescales and mechanisms.

  20. The SEEDS of Planet Formation: Observations of Transitional Disks

    NASA Technical Reports Server (NTRS)

    Grady, Carol

    2011-01-01

    As part of its 5-year study, the Strategic Exploration of Exoplanets and Disk Systems (SEEDS) has already observed a number of YSOs with circumstellar disks, including 13 0.5- 8 Myr old A-M stars with indications that they host wide gaps or central cavities in their circumstellar disks in millimeter or far-IR observations, or from deficits in warm dust thermal emission. For 8 of the disks, the 0.15" inner working angle of HiCIAO+A0188 samples material in the millimeter or mid-IR identified cavity. In one case we reprt detection of a previously unrecognized wide gap. For the remaining 4 stars, the SEEDS data sample the outer disk: in 3 cases, we present the first NIR imagery of the disks. The data for the youngest sample members (less than 1-2 Myr) closely resemble coeval primordial disks. After approximately 3 Myr, the transitional disks show a wealth of structure including spiral features, rings, divots, and in some cases, largely cleared gaps in the disks which are not seen in coeval primordial disks. Some of these structural features are predicted consequences of lovianmass planets having formed in the disk, while others are novel features. We discuss the implications for massive planet formation timescales and mechanisms.

  1. The effect of co-solvent addition on Li-solvation in solvate electrolytes in Li-S batteries

    NASA Astrophysics Data System (ADS)

    Lau, Kah Chun; See, Kimberly A.; Wu, Heng-Liang; Shin, Minjeong; Curtiss, Larry A.; Gewirth, Andrew A.

    Li?S batteries are a promising next-generation battery technology. Due to the formation of soluble polysulfides during cell operation, the electrolyte composition of the cell plays an active role in directing the formation and speciation of the soluble lithium polysulfides. Recently, new classes of electrolytes termed `solvates' that contain stoichiometric quantities of salt and solvent and form a liquid at room temperature have been explored due to their sparingly solvating properties with respect to polysulfides. The viscosity of the solvate electrolytes is understandably high limiting their viability, however, cosolvents that thought to be inert to the solvate structure itself, can be introduced to reduce viscosity and enhance diffusion. In this work, Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations are used to study the unique solvation structure of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether as co-solvent in solvate (MeCN)2?LiTFSI electrolyte that used in Li-S battery. The underlying design rules and implications to Li-S battery performance will be discussed. This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

  2. Mechanisms of fibrin polymerization and clinical implications

    PubMed Central

    Litvinov, Rustem I.

    2013-01-01

    Research on all stages of fibrin polymerization, using a variety of approaches including naturally occurring and recombinant variants of fibrinogen, x-ray crystallography, electron and light microscopy, and other biophysical approaches, has revealed aspects of the molecular mechanisms involved. The ordered sequence of fibrinopeptide release is essential for the knob-hole interactions that initiate oligomer formation and the subsequent formation of 2-stranded protofibrils. Calcium ions bound both strongly and weakly to fibrin(ogen) have been localized, and some aspects of their roles are beginning to be discovered. Much less is known about the mechanisms of the lateral aggregation of protofibrils and the subsequent branching to yield a 3-dimensional network, although the αC region and B:b knob-hole binding seem to enhance lateral aggregation. Much information now exists about variations in clot structure and properties because of genetic and acquired molecular variants, environmental factors, effects of various intravascular and extravascular cells, hydrodynamic flow, and some functional consequences. The mechanical and chemical stability of clots and thrombi are affected by both the structure of the fibrin network and cross-linking by plasma transglutaminase. There are important clinical consequences to all of these new findings that are relevant for the pathogenesis of diseases, prophylaxis, diagnosis, and treatment. PMID:23305734

  3. Electrohydrodynamic fibrillation governed enhanced thermal transport in dielectric colloids under a field stimulus.

    PubMed

    Dhar, Purbarun; Maganti, Lakshmi Sirisha; Harikrishnan, A R

    2018-05-30

    Electrorheological (ER) fluids are known to exhibit enhanced viscous effects under an electric field stimulus. The present article reports the hitherto unreported phenomenon of greatly enhanced thermal conductivity in such electro-active colloidal dispersions in the presence of an externally applied electric field. Typical ER fluids are synthesized employing dielectric fluids and nanoparticles and experiments are performed employing an in-house designed setup. Greatly augmented thermal conductivity under a field's influence was observed. Enhanced thermal conduction along the fibril structures under the field effect is theorized as the crux of the mechanism. The formation of fibril structures has also been experimentally verified employing microscopy. Based on classical models for ER fluids, a mathematical formalism has been developed to predict the propensity of chain formation and statistically feasible chain dynamics at given Mason numbers. Further, a thermal resistance network model is employed to computationally predict the enhanced thermal conduction across the fibrillary colloid microstructure. Good agreement between the mathematical model and the experimental observations is achieved. The domineering role of thermal conductivity over relative permittivity has been shown by proposing a modified Hashin-Shtrikman (HS) formalism. The findings have implications towards better physical understanding and design of ER fluids from both 'smart' viscoelastic as well as thermally active materials points of view.

  4. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    PubMed

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Insights into Clostridium phytofermentans biofilm formation: aggregation, microcolony development and the role of extracellular DNA.

    PubMed

    Zuroff, Trevor R; Gu, Weimin; Fore, Rachel L; Leschine, Susan B; Curtis, Wayne R

    2014-06-01

    Biofilm formation is a critical component to the lifestyle of many naturally occurring cellulose-degrading microbes. In this work, cellular aggregation and biofilm formation of Clostridium phytofermentans, a cellulolytic anaerobic bacterium, was investigated using a combination of microscopy and analytical techniques. Aggregates included thread-like linkages and a DNA/protein-rich extracellular matrix when grown on soluble cellobiose. Similar dense biofilms formed on the surface of the model cellulosic substrate Whatman no. 1 filter paper. Following initially dispersed attachment, microcolonies of ~500 µm diameter formed on the filter paper after 6 days. Enzymic treatment of both the biofilm and cellular aggregates with DNase and proteinase resulted in significant loss of rigidity, pointing to the key role of extracellular DNA and proteins in the biofilm structure. A high-throughput biofilm assay was adapted for studying potential regulators of biofilm formation. Various media manipulations were shown to greatly impact biofilm formation, including repression in the presence of glucose but not the β(1→4)-linked disaccharide cellobiose, implicating a balance of hydrolytic activity and assimilation to maintain biofilm integrity. Using the microtitre plate biofilm assay, DNase and proteinase dispersed ~60 and 30 % of mature biofilms, respectively, whilst RNase had no impact. This work suggests that Clostridium phytofermentans has evolved a DNA/protein-rich biofilm matrix complementing its cellulolytic nature. These insights add to our current understanding of natural ecosystems as well as strategies for efficient bioprocess design. © 2014 The Authors.

  6. Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin

    Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO 2(CH 2) nCO 2 -[HO 2(CH 2) nCO 2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that uponmore » formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO 4 -[HO 2(CH 2) 2CO 2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO 2(CH 2) 2CO 2 -[HO 2(CH 2) 2CO 2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.« less

  7. Interaction of Metal Oxides with Biomolecules: Implication in Astrobiology

    NASA Astrophysics Data System (ADS)

    Kamaluddin; Iqubal, Md. Asif

    2014-08-01

    Steps of chemical evolution have been designated as formation of biomonomers followed by their polymerization and then to modify in an organized structure leading to the formation of first living cell. Polymerization of biomonomers could have required some catalyst. In addition to clay, role of metal ions and metal complexes as prebiotic catalyst in the synthesis and polymerization of biomonomers cannot be ruled out. Metal oxides are important constituents of Earth crust and that of other planets. These oxides might have adsorbed organic molecules and catalyzed the condensation processes, which may have led to the formation of first living cell. Different studies were performed in order to investigate the role of metal oxides (especially oxides of iron and manganese) in chemical evolution. Iron oxides (goethite, akaganeite and hematite) as well as manganese oxides (MnO, Mn2O3, Mn3O4 and MnO2) were synthesized and their characterization was done using IR, powder XRD, FE-SEM and TEM. Role of above oxides was studied in the adsorption of ribose nucleotides, formation of nucleobases from formamide and oligomerization of amino acids. Above oxides of iron and manganese were found to have good adsorption affinity towards ribose nucleotides, high catalytic activity in the formation of several nucleobases from formamide and oligomerization of glycine and alanine. Characterization of products was performed using UV, IR, HPLC and ESI-MS techniques. Presence of hematite-water system on Mars has been suggested to be a positive indicator in the chemical evolution on Mars.

  8. Implication of the cause of differences in 3D structures of proteins with high sequence identity based on analyses of amino acid sequences and 3D structures.

    PubMed

    Matsuoka, Masanari; Sugita, Masatake; Kikuchi, Takeshi

    2014-09-18

    Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3α bundle versus a 4β + α structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem. It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation. The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed.

  9. River and Wetland Food Webs in Australia's Wet-Dry Tropics: General Principles and Implications for Management.

    NASA Astrophysics Data System (ADS)

    Douglas, M. M.; Bunn, S. E.; Davies, P. M.

    2005-05-01

    The tropical rivers of northern Australia are internationally recognised for their high ecological and cultural values. They have largely unmodified flow regimes and are comparatively free of the impacts associated with intensive land use. However, there is growing demand for agricultural development and existing pressures, such as weeds and feral animals, threaten their ecological integrity. Using the international literature to provide a conceptual framework and drawing on limited published and unpublished data on rivers in northern Australia, we have derived five general principles about food webs and related ecosystem processes that both characterise tropical rivers of northern Australia and have important implications for their management. These are: (1) Seasonal hydrology is a strong driver of ecosystem processes and food web structure; (2) Hydrological connectivity is largely intact and underpins important terrestrial-aquatic food web subsidies; (3) River and wetland food webs are strongly dependent on algal production; (4) A few common macroconsumers species have a strong influence on benthic food webs; (5) Omnivory is widespread and food chains are short. These principles have implications for the management and protection of tropical rivers and wetlands of northern Australia and provide a framework for the formation of testable hypotheses in future research programs.

  10. A model complex of a possible intermediate in the mechanism of action of peptide deformylase: first example of an (N2S)zinc(II)-formate complex.

    PubMed

    Chang, S C; Sommer, R D; Rheingold, A L; Goldberg, D P

    2001-11-21

    The synthesis and crystallographic characterization of a new (N2S)zinc-alkyl complex and (N2S)zinc-formate complex is described; the bonding mode of the formate complex has implications for the mechanism of action of the enzyme peptide deformylase.

  11. Magnetite Formation from Thermal Decomposition of Siderite: Implications for Inorganic Magnetite Formation in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Morris, RIchard V.

    2002-01-01

    A biogenic mechanism for formation of a subpopulation magnetite in Martian meteorite ALH84001 has been suggested [McKay et al., 1996; Thomas-Keprta, et al., 2000]. We are developing experimental evidence for an alternating working hypothesis, that the subpopulation was produced inorganically by the thermal decomposition of siderite [Golden et al., 2000].

  12. A model for the evolution of the Earth's mantle structure since the Early Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Zhong, Shijie; Leng, Wei; Li, Zheng-Xiang

    2010-06-01

    Seismic tomography studies indicate that the Earth's mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., superplumes) and circum-Pacific seismically fast anomalies (i.e., a globally spherical harmonic degree 2 structure). However, the cause for and time evolution of the African and Pacific superplumes and the degree 2 mantle structure remain poorly understood with two competing proposals. First, the African and Pacific superplumes have remained largely unchanged for at least the last 300 Myr and possibly much longer. Second, the African superplume is formed sometime after the formation of Pangea (i.e., at 330 Ma) and the mantle in the African hemisphere is predominated by cold downwelling structures before and during the assembly of Pangea, while the Pacific superplume has been stable for the Pangea supercontinent cycle (i.e., globally a degree 1 structure before the Pangea formation). Here, we construct a proxy model of plate motions for the African hemisphere for the last 450 Myr since the Early Paleozoic using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations. Coupled with assumed oceanic plate motions for the Pacific hemisphere, this proxy model for the plate motion history is used as time-dependent surface boundary condition in three-dimensional spherical models of thermochemical mantle convection to study the evolution of mantle structure, particularly the African mantle structure, since the Early Paleozoic. Our model calculations reproduce well the present-day mantle structure including the African and Pacific superplumes and generally support the second proposal with a dynamic cause for the superplume structure. Our results suggest that while the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of the African superplume structure can be formed before ˜230 Ma (i.e., ˜100 Myr after the assembly of Pangea). Particularly, the last 120 Myr plate motion plays an important role in generating the African superplume. Our models have implications for understanding the global-scale magmatism, tectonics, mantle dynamics, and thermal evolution history for the Earth since the Early Paleozoic.

  13. Tectonic and regional metamorphic implications of the discovery of Middle Ordovician conodonts in cover rocks east of the Green Mountain massif, Vermont

    USGS Publications Warehouse

    Ratcliffe, N.M.; Harris, A.G.; Walsh, G.J.

    1999-01-01

    Middle Ordovician (late Arenigian - early Caradocian) conodonts were recovered from a dolostone lens in carbonaceous schist 30 m below the base of the Pinney Hollow Formation in the Eastern Cover sequence near West Bridgewater, Vermont. These are the first reported fossils from the metamorphic cover sequence rocks east of the Green Mountain, Berkshire, and Housatonic massifs of western New England. The conodonts are recrystallized, coated with graphitic matter, thermally altered to a color alteration index (CAI) of at least 5, and tectonically deformed. The faunule is nearly monospecific, consisting of abundant Periodon aculeatus Hadding? and rare Protopanderodus. The preponderance of Periodon and the absence of warm, shallow-water species characteristic of the North American Midcontinent Conodont Province suggest a slope or basin depositional setting. The conodont-bearing carbonaceous schist is traceable 3 km southeast to the Plymouth area, where it had been designated the uppermost member of the Plymouth Formation, previously regarded as Early Cambrian in age. The age and structural position of the carbonaceous schist above dolostones of the Plymouth Formation but below the Pinney Hollow Formation (upper Proterozoic and Lower Cambrian?) suggest that this unit may be correlative or time transgressive with the Ira Formation, which underlies the Taconic allochthons in the Vermont Valley. Such a correlation supports the concept of placing the western limit of the root zone of the Taconic allochthons beneath the Pinney Hollow Formation. An approximate absolute age assignment for the conodont-bearing rock is between 470 and 454 Ma. This suggests that dynamothermal metamorphism during the Taconian orogeny on the east flank of the Green Mountains was younger than early Caradocian, which is in accord with the middle Caradocian age of the Ira Formation west of the Green Mountain massif.

  14. Interaction of Munc18c and syntaxin4 facilitates invadopodium formation and extracellular matrix invasion of tumor cells.

    PubMed

    Brasher, Megan I; Martynowicz, David M; Grafinger, Olivia R; Hucik, Andrea; Shanks-Skinner, Emma; Uniacke, James; Coppolino, Marc G

    2017-09-29

    Tumor cell invasion involves targeted localization of proteins required for interactions with the extracellular matrix and for proteolysis. The localization of many proteins during these cell-extracellular matrix interactions relies on membrane trafficking mediated in part by SNAREs. The SNARE protein syntaxin4 (Stx4) is involved in the formation of invasive structures called invadopodia; however, it is unclear how Stx4 function is regulated during tumor cell invasion. Munc18c is known to regulate Stx4 activity, and here we show that Munc18c is required for Stx4-mediated invadopodium formation and cell invasion. Biochemical and microscopic analyses revealed a physical association between Munc18c and Stx4, which was enhanced during invadopodium formation, and that a reduction in Munc18c expression decreases invadopodium formation. We also found that an N-terminal Stx4-derived peptide associates with Munc18c and inhibits endogenous interactions of Stx4 with synaptosome-associated protein 23 (SNAP23) and vesicle-associated membrane protein 2 (VAMP2). Furthermore, expression of the Stx4 N-terminal peptide decreased invadopodium formation and cell invasion in vitro Of note, cells expressing the Stx4 N-terminal peptide exhibited impaired trafficking of membrane type 1 matrix metalloproteinase (MT1-MMP) and EGF receptor (EGFR) to the cell surface during invadopodium formation. Our findings implicate Munc18c as a regulator of Stx4-mediated trafficking of MT1-MMP and EGFR, advancing our understanding of the role of SNARE function in the localization of proteins that drive tumor cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Paleoweathering features in the Sergi Formation (Jurassic-Cretaceous), northeastern Brazil, and implications for hydrocarbon exploration

    NASA Astrophysics Data System (ADS)

    Pierini, Cristina; Mizusaki, Ana M.; Pimentel, Nuno; Faccini, Ubiratan F.; Scherer, Claiton M. S.

    2010-03-01

    Paleoweathering in the Sergi Formation has been classified and analyzed to ascertain its origin and relationship with stratigraphic evolution. The Sergi Formation belongs to the pre-rift sequence of the Recôncavo Basin (northeastern Brazil) and comprises a complex association of eolian and fluvial sandstones and lacustrine mudstones. This formation can be subdivided into three depositional sequences bounded by regional unconformities. Four paleoweathering types, each one related to a distinct origin, have been described in the Sergi Formation: (1) textural mottling, which is distinguished by alternating rock colors as a result of the iron oxide mobilization within mineral phases that evolved under alternating oxidation (yellowish, brownish and reddish shades) and reduction (grayish or greenish hues) conditions; (2) non-textural mottling, which displays a discoloration pattern that is independent of the original rock texture; (3) carbonate concentrations, usually related to carbonate nodule formation, which display a massive internal structure that reveals their origin through continuous growth or crystallization; and (4) banded carbonates (silicified), associated with the beginning of regular surface formation due to the chemical precipitation of carbonates within lacustrine environments. Both mottling color motifs and carbonate accumulation usually represent groundwater oscillation rather than pedogenesis. Only carbonate intraclasts and banded carbonate (silicified) have their origin ascribed to pedogenesis sensu stricto, although the carbonate intraclasts do not represent soil deposits in situ, but calcretes eroded from areas close to channels, and the banded carbonates (silicified) have strong diagenetic modifications. Therefore, it is reasonable to assume that fluvial and meteoric water have controlled paleoweathering evolution as well as deposition, yet both aspects are ruled by the same mechanisms (relief, sedimentation rate and, above all, climate).

  16. Nucleus structure and dust morphology: Post-Rosetta understanding and implications

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A.; Bentley, Mark; Ciarletti, Valérie; Kofman, Woldek; Lasue, Jeremie; Mannel, Thurid; Herique, Alain

    2017-10-01

    The structure of cometary nuclei and the morphology of dust particles they eject have long been unknowns in cometary science. The combination of these two subjects, as revealed by the Rosetta mission at 67P/C-G, is currently providing an unprecedented insight about Solar System formation and early evolution.Rosetta has established that the bulk porosity of 67P/C-G nucleus is high, in the 70% to 85% range, both from the determination of its density and from permittivity measurements with CONSERT bistatic radar experiment [1-2]. CONSERT, through operations after Philae landing on 12-13 November 2014, has also allowed us to estimate that i) the porosity is likely to be higher inside the nucleus than on its subsurface, ii) a major component of the nucleus is refractory carbonaceous compounds, and iii) the small lobe is homogeneous at a scale of a few wavelengths (i.e., about 10 m), while heterogeneities in the 3-m range (similar to the rounded nodules noticed on walls of large pits) cannot be ruled out [2-4].Rosetta has also established, through its 26 months rendezvous with 67P/C-G, the aggregated structure of dust particles within a wide range of sizes in the inner cometary coma. The MIDAS atomic force microscope experiment has given us evidence (from 3D topographic images with nano- to micrometer resolution) for i) a hierarchical structure of aggregated dust particles, down to tens of nm-sized grains, ii) one extremely porous dust particle, with a fractal dimension of (1.7 ± 0.1) [5-6]. The accuracy of comparisons between cometary dust particles and interplanetary dust particles collected in the stratosphere (including CP-IDPs) could thus be improved.Such results should further refine the main processes (e.g., low velocity aggregation) that allowed the formation of comets in the early Solar System, and the implications of a possible late heavy bombardment on the interplanetary dust clouds and on telluric planets.References. 1. Pätzold et al. Nature 530 63 2016. 2. Kofman et al. Science 349 6247 2015. 3. Herique et al. MNRAS 462 S516 2016. 4. Ciarletti et al. A&A 583 A40 2015. 5. Bentley et al., Nature 537 73 2016. 6. Mannel et al., MNRAS 462 S304 2016.

  17. Empirical studies of software design: Implications for SSEs

    NASA Technical Reports Server (NTRS)

    Krasner, Herb

    1988-01-01

    Implications for Software Engineering Environments (SEEs) are presented in viewgraph format for characteristics of projects studied; significant problems and crucial problem areas in software design for large systems; layered behavioral model of software processes; implications of field study results; software project as an ecological system; results of the LIFT study; information model of design exploration; software design strategies; results of the team design study; and a list of publications.

  18. Integrins in bone metastasis formation and potential therapeutic implications.

    PubMed

    Clëzardin, P

    2009-11-01

    Integrins constitute a family of cell surface receptors that are heterodimers composed of noncovalently associated alpha and beta subunits. Integrins bind to extracellular matrix proteins and immunogobulin superfamily molecules. They exert a stringent control on cell migration, survival and proliferation. However, their expression and functions are often deregulated in cancer, and many lines of evidence implicate them as key regulators during progression from primary tumor growth to metastasis. Here, we review the role of integrins in bone metastasis formation and present evidence that the use of integrin-targeted therapeutic agents may be an efficient strategy to block tumor metastasis.

  19. Melt production in large-scale impact events: Implications and observations at terrestrial craters

    NASA Technical Reports Server (NTRS)

    Grieve, Richard A. F.; Cintala, Mark J.

    1992-01-01

    The volume of impact melt relative to the volume of the transient cavity increases with the size of the impact event. Here, we use the impact of chondrite into granite at 15, 25, and 50 km s(sup -1) to model impact-melt volumes at terrestrial craters in crystalline targets and explore the implications for terrestrial craters. Figures are presented that illustrate the relationships between melt volume and final crater diameter D(sub R) for observed terrestrial craters in crystalline targets; also included are model curves for the three different impact velocities. One implication of the increase in melt volumes with increasing crater size is that the depth of melting will also increase. This requires that shock effects occurring at the base of the cavity in simple craters and in the uplifted peaks of central structures at complex craters record progressively higher pressures with increasing crater size, up to a maximum of partial melting (approx. 45 GPa). Higher pressures cannot be recorded in the parautochthonous rocks of the cavity floor as they will be represented by impact melt, which will not remain in place. We have estimated maximum recorded pressures from a review of the literature, using such observations as planar features in quartz and feldspar, diaplectic glasses of feldspar and quartz, and partial fusion and vesiculation, as calibrated with estimates of the pressures required for their formation. Erosion complicates the picture by removing the surficial (most highly shocked) rocks in uplifted structures, thereby reducing the maximum shock pressures observed. In addition, the range of pressures that can be recorded is limited. Nevertheless, the data define a trend to higher recorded pressures with crater diameter, which is consistent with the implications of the model. A second implication is that, as the limit of melting intersects the base of the cavity, central topographic peaks will be modified in appearance and ultimately will not occur. That is, the peak will first develop a central depression, due to the flow of low-strength melted materials, when the melt volume begins to intersect the transient-cavity base.

  20. Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences.

    PubMed

    Bacolla, Albino; Tainer, John A; Vasquez, Karen M; Cooper, David N

    2016-07-08

    Gross chromosomal rearrangements (including translocations, deletions, insertions and duplications) are a hallmark of cancer genomes and often create oncogenic fusion genes. An obligate step in the generation of such gross rearrangements is the formation of DNA double-strand breaks (DSBs). Since the genomic distribution of rearrangement breakpoints is non-random, intrinsic cellular factors may predispose certain genomic regions to breakage. Notably, certain DNA sequences with the potential to fold into secondary structures [potential non-B DNA structures (PONDS); e.g. triplexes, quadruplexes, hairpin/cruciforms, Z-DNA and single-stranded looped-out structures with implications in DNA replication and transcription] can stimulate the formation of DNA DSBs. Here, we tested the postulate that these DNA sequences might be found at, or in close proximity to, rearrangement breakpoints. By analyzing the distribution of PONDS-forming sequences within ±500 bases of 19 947 translocation and 46 365 sequence-characterized deletion breakpoints in cancer genomes, we find significant association between PONDS-forming repeats and cancer breakpoints. Specifically, (AT)n, (GAA)n and (GAAA)n constitute the most frequent repeats at translocation breakpoints, whereas A-tracts occur preferentially at deletion breakpoints. Translocation breakpoints near PONDS-forming repeats also recur in different individuals and patient tumor samples. Hence, PONDS-forming sequences represent an intrinsic risk factor for genomic rearrangements in cancer genomes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization

    PubMed Central

    2016-01-01

    The need for polymers for high-end applications, coupled with the desire to mimic nature’s macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design. PMID:26795940

  2. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization.

    PubMed

    Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2016-03-14

    The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.

  3. Biochemical and Functional Characterization of the Ebola Virus VP24 Protein: Implications for a Role in Virus Assembly and Budding

    PubMed Central

    Han, Ziying; Boshra, Hani; Sunyer, J. Oriol; Zwiers, Susan H.; Paragas, Jason; Harty, Ronald N.

    2003-01-01

    The VP24 protein of Ebola virus is believed to be a secondary matrix protein and minor component of virions. In contrast, the VP40 protein of Ebola virus is the primary matrix protein and the most abundant virion component. The structure and function of VP40 have been well characterized; however, virtually nothing is known regarding the structure and function of VP24. Wild-type and mutant forms of VP24 were expressed in mammalian cells to gain a better understanding of the biochemical and functional nature of this viral protein. Results from these experiments demonstrated that (i) VP24 localizes to the plasma membrane and perinuclear region in both transfected and Ebola virus-infected cells, (ii) VP24 associates strongly with lipid membranes, (iii) VP24 does not contain N-linked sugars when expressed alone in mammalian cells, (iv) VP24 can oligomerize when expressed alone in mammalian cells, (v) progressive deletions at the N terminus of VP24 resulted in a decrease in oligomer formation and a concomitant increase in the formation of high-molecular-weight aggregates, and (vi) VP24 was present in trypsin-resistant virus like particles released into the media covering VP24-transfected cells. These data indicate that VP24 possesses structural features commonly associated with viral matrix proteins and that VP24 may have a role in virus assembly and budding. PMID:12525613

  4. Giant planets and their satellites: What are the relationships between their properties and how they formed

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.

    1991-01-01

    The following subject areas are covered: (1) the mass distribution; (2) interior models; (3) atmospheric compositions and their implications; (4) heat flows and their implications; (5) satellite systems; (6) temperatures in the solar nebula; and (7) giant planet formation.

  5. Topographic and Roughness Characteristics of the Vastitas Borealis Formation on Mars Described by Fractal Statistics

    NASA Technical Reports Server (NTRS)

    Garneau, S.; Plaut, J. J.

    2000-01-01

    The surface roughness of the Vastitas Borealis Formation on Mars was analyzed with fractal statistics. Root mean square slopes and fractal dimensions were calculated for 74 topographic profiles. Results have implications for radar scattering models.

  6. Impact of deglycosylation and thermal stress on conformational stability of a full length murine IgG2a monoclonal antibody: observations from molecular dynamics simulations.

    PubMed

    Wang, Xiaoling; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K

    2013-03-01

    With the rise of antibody based therapeutics as successful medicines, there is an emerging need to understand the fundamental antibody conformational dynamics and its implications towards stability of these medicines. Both deglycosylation and thermal stress have been shown to cause conformational destabilization and aggregation in monoclonal antibodies. Here, we study instabilities caused by deglycosylation and by elevated temperature (400 K) by performing molecular dynamic simulations on a full length murine IgG2a mAb whose crystal structure is available in the Protein Data bank. C(α)-atom root mean square deviation and backbone root mean square fluctuation calculations show that deglycosylation perturbs quaternary and tertiary structures in the C(H) 2 domains. In contrast, thermal stress pervades throughout the antibody structure and both Fabs and Fc regions are destabilized. The thermal stress applied in this study was not sufficient to cause large scale unfolding within the simulation time and most amino acid residues showed similar average solvent accessible surface area and secondary structural conformations in all trajectories. C(H) 3 domains were the most successful at resisting the conformational destabilization. The simulations helped identify aggregation prone regions, which may initiate cross-β motif formation upon deglycosylation and upon applying thermal stress. Deglycosylation leads to increased backbone fluctuations and solvent exposure of a highly conserved APR located in the edge β-strand A of the C(H) 2 domains. Aggregation upon thermal stress is most likely initiated by two APRs that overlap with the complementarity determining regions. This study has important implications for rational design of antibody based therapeutics that are resistant towards aggregation. Copyright © 2012 Wiley Periodicals, Inc.

  7. Nitrosamines and Nitramines in Amine-Based Carbon Dioxide Capture Systems: Fundamentals, Engineering Implications, and Knowledge Gaps.

    PubMed

    Yu, Kun; Mitch, William A; Dai, Ning

    2017-10-17

    Amine-based absorption is the primary contender for postcombustion CO 2 capture from fossil fuel-fired power plants. However, significant concerns have arisen regarding the formation and emission of toxic nitrosamine and nitramine byproducts from amine-based systems. This paper reviews the current knowledge regarding these byproducts in CO 2 capture systems. In the absorber, flue gas NO x drives nitrosamine and nitramine formation after its dissolution into the amine solvent. The reaction mechanisms are reviewed based on CO 2 capture literature as well as biological and atmospheric chemistry studies. In the desorber, nitrosamines are formed under high temperatures by amines reacting with nitrite (a hydrolysis product of NO x ), but they can also thermally decompose following pseudo-first order kinetics. The effects of amine structure, primarily amine order, on nitrosamine formation and the corresponding mechanisms are discussed. Washwater units, although intended to control emissions from the absorber, can contribute to additional nitrosamine formation when accumulated amines react with residual NO x . Nitramines are much less studied than nitrosamines in CO 2 capture systems. Mitigation strategies based on the reaction mechanisms in each unit of the CO 2 capture systems are reviewed. Lastly, we highlight research needs in clarifying reaction mechanisms, developing analytical methods for both liquid and gas phases, and integrating different units to quantitatively predict the accumulation and emission of nitrosamines and nitramines.

  8. Azide and acetate complexes plus two iron-depleted crystal structures of the di-iron enzyme delta9 stearoyl-acyl carrier protein desaturase. Implications for oxygen activation and catalytic intermediates.

    PubMed

    Moche, Martin; Shanklin, John; Ghoshal, Alokesh; Lindqvist, Ylva

    2003-07-04

    Delta9 stearoyl-acyl carrier protein (ACP) desaturase is a mu-oxo-bridged di-iron enzyme, which belongs to the structural class I of large helix bundle proteins and that catalyzes the NADPH and O2-dependent formation of a cis-double bond in stearoyl-ACP. The crystal structures of complexes with azide and acetate, respectively, as well as the apoand single-iron forms of Delta9 stearoyl-ACP desaturase from Ricinus communis have been determined. In the azide complex, the ligand forms a mu-1,3-bridge between the two iron ions in the active site, replacing a loosely bound water molecule. The structure of the acetate complex is similar, with acetate bridging the di-iron center in the same orientation with respect to the di-iron center. However, in this complex, the iron ligand Glu196 has changed its coordination mode from bidentate to monodentate, the first crystallographic observation of a carboxylate shift in Delta9 stearoyl-ACP desaturase. The two complexes are proposed to mimic a mu-1,2 peroxo intermediate present during catalytic turnover. There are striking structural similarities between the di-iron center in the Delta9 stearoyl-ACP desaturase-azide complex and in the reduced rubrerythrin-azide complex. This suggests that Delta9 stearoyl-ACP desaturase might catalyze the formation of water from exogenous hydrogen peroxide at a low rate. From the similarity in iron center structure, we propose that the mu-oxo-bridge in oxidized desaturase is bound to the di-iron center as in rubrerythrin and not as reported for the R2 subunit of ribonucleotide reductase and the hydroxylase subunit of methane monooxygenase. The crystal structure of the one-iron depleted desaturase species demonstrates that the affinities for the two iron ions comprising the di-iron center are not equivalent, Fe1 being the higher affinity site and Fe2 being the lower affinity site.

  9. Identification of discrete sites in Yip1A necessary for regulation of endoplasmic reticulum structure.

    PubMed

    Dykstra, Kaitlyn M; Ulengin, Idil; Delrose, Nicholas; Lee, Tina H

    2013-01-01

    The endoplasmic reticulum (ER) of specialized cells can undergo dramatic changes in structural organization, including formation of concentric whorls. We previously reported that depletion of Yip1A, an integral membrane protein conserved between yeast and mammals, caused ER whorl formation reminiscent of that seen in specialized cells. Yip1A and its yeast homologue Yip1p cycle between the ER and early Golgi, have been implicated in a number of distinct trafficking steps, and interact with a conserved set of binding partners including Yif1p/Yif1A and the Ypt1/Ypt31 Rab GTPases. Here, we carried out a mutational analysis of Yip1A to obtain insight into how it regulates ER whorl formation. Most of the Yip1A cytoplasmic domain was dispensable, whereas the transmembrane (TM) domain, especially residues within predicted TM helices 3 and 4, were sensitive to mutagenesis. Comprehensive analysis revealed two discrete functionally required determinants. One was E95 and flanking residues L92 and L96 within the cytoplasmic domain; the other was K146 and nearby residue V152 within the TM domain. Notably, the identified determinants correspond closely to two sites previously found to be essential for yeast viability (E76 and K130 in Yip1p corresponding to E95 and K146 in Yip1A, respectively). In contrast, a third site (E89) also essential for yeast viability (E70 in Yip1p) was dispensable for regulation of whorl formation. Earlier work showed that E76 (E95) was dispensable for binding Yif1p or Ypt1p/Ypt31p, whereas E70 (E89) was required. Collectively, these findings suggest that the ability of Yip1A to bind its established binding partners may be uncoupled from its ability to control ER whorl formation. In support, Yif1A knockdown did not cause ER whorl formation. Thus Yip1A may use the sites identified herein to interact with a novel binding partner to regulate ER membrane organization.

  10. Flexible Virtual Structure Consideration in Dynamic Modeling of Mobile Robots Formation

    NASA Astrophysics Data System (ADS)

    El Kamel, A. Essghaier; Beji, L.; Lerbet, J.; Abichou, A.

    2009-03-01

    In cooperative mobile robotics, we look for formation keeping and maintenance of a geometric configuration during movement. As a solution to these problems, the concept of a virtual structure is considered. Based on this idea, we have developed an efficient flexible virtual structure, describing the dynamic model of n vehicles in formation and where the whole formation is kept dependant. Notes that, for 2D and 3D space navigation, only a rigid virtual structure was proposed in the literature. Further, the problem was limited to a kinematic behavior of the structure. Hence, the flexible virtual structure in dynamic modeling of mobile robots formation presented in this paper, gives more capabilities to the formation to avoid obstacles in hostile environment while keeping formation and avoiding inter-agent collision.

  11. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  12. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  13. Thermal Implications of the Iron Rain Model for Core Formation on Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.

    2018-05-01

    The abundance of moderately siderophile elements on Vesta implies that core formation occurred by iron rain sinking through a silicate magma ocean. This requires an internal temperature of at least 1400–1475°C and very rapid accretion.

  14. Kepler Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2015-01-01

    Kepler has vastly increased our knowledge of planets and planetary systems located close to stars. The new data shows surprising results for planetary abundances, planetary spacings and the distribution of planets on a mass-radius diagram. The implications of these results for theories of planet formation will be discussed.

  15. Formation of 3D cholesterol crystals from 2D nucleation sites in lipid bilayer membranes: implications for atherosclerosis.

    PubMed

    Varsano, Neta; Fargion, Iael; Wolf, Sharon G; Leiserowitz, Leslie; Addadi, Lia

    2015-02-04

    Atherosclerosis is the major precursor of cardiovascular disease. The formation of cholesterol crystals in atherosclerotic plaques is associated with the onset of acute pathology. The cholesterol crystals induce physical injury in the plaque core, promoting cell apoptosis and triggering an increased inflammatory response. Herein we address the question of how cholesterol crystal formation occurs in atherosclerosis. We demonstrate that three-dimensional (3D) cholesterol crystals can undergo directed nucleation from bilayer membranes containing two-dimensional (2D) cholesterol crystalline domains. We studied crystal formation on supported lipid bilayers loaded with exogenous cholesterol and labeled using a monoclonal antibody that specifically recognizes ordered cholesterol arrays. Our findings show that 3D crystals are formed exclusively on the bilayer regions where there are segregated 2D cholesterol crystalline domains and that they form on the domains. This study has potentially significant implications for our understanding of the crucial step in the mechanism by which atherosclerotic lesions form.

  16. Inflammatory responses to secondary organic aerosols (SOA) generated from biogenic and anthropogenic precursors

    NASA Astrophysics Data System (ADS)

    Tuet, Wing Y.; Chen, Yunle; Fok, Shierly; Champion, Julie A.; Ng, Nga L.

    2017-09-01

    Cardiopulmonary health implications resulting from exposure to secondary organic aerosols (SOA), which comprise a significant fraction of ambient particulate matter (PM), have received increasing interest in recent years. In this study, alveolar macrophages were exposed to SOA generated from the photooxidation of biogenic and anthropogenic precursors (isoprene, α-pinene, β-caryophyllene, pentadecane, m-xylene, and naphthalene) under different formation conditions (RO2 + HO2 vs. RO2 + NO dominant, dry vs. humid). Various cellular responses were measured, including reactive oxygen and nitrogen species (ROS/RNS) production and secreted levels of cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). SOA precursor identity and formation condition affected all measured responses in a hydrocarbon-specific manner. With the exception of naphthalene SOA, cellular responses followed a trend where TNF-α levels reached a plateau with increasing IL-6 levels. ROS/RNS levels were consistent with relative levels of TNF-α and IL-6, due to their respective inflammatory and anti-inflammatory effects. Exposure to naphthalene SOA, whose aromatic-ring-containing products may trigger different cellular pathways, induced higher levels of TNF-α and ROS/RNS than suggested by the trend. Distinct cellular response patterns were identified for hydrocarbons whose photooxidation products shared similar chemical functionalities and structures, which suggests that the chemical structure (carbon chain length and functionalities) of photooxidation products may be important for determining cellular effects. A positive nonlinear correlation was also detected between ROS/RNS levels and previously measured DTT (dithiothreitol) activities for SOA samples. In the context of ambient samples collected during summer and winter in the greater Atlanta area, all laboratory-generated SOA produced similar or higher levels of ROS/RNS and DTT activities. These results suggest that the health effects of SOA are important considerations for understanding the health implications of ambient aerosols.

  17. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding.

    PubMed

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central "hubs". Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.

  18. A hydrothermal system associated with the Siljan impact structure, Sweden--implications for the search for fossil life on Mars.

    PubMed

    Hode, Tomas; von Dalwigk, Ilka; Broman, Curt

    2003-01-01

    The Siljan ring structure (368 +/- 1.1 Ma) is the largest known impact structure in Europe. It isa 65-km-wide, eroded, complex impact structure, displaying several structural units, including a central uplifted region surrounded by a ring-shaped depression. Associated with the impact crater are traces of a post-impact hydrothermal system indicated by precipitated and altered hydrothermal mineral assemblages. Precipitated hydrothermal minerals include quartz veins and breccia fillings associated with granitic rocks at the outer margin of the central uplift, and calcite, fluorite, galena, and sphalerite veins associated with Paleozoic carbonate rocks located outside the central uplift. Two-phase water/gas and oil/gas inclusions in calcite and fluorite display homogenization temperatures between 75 degrees C and 137 degrees C. With an estimated erosional unloading of approximately 1 km, the formation temperatures were probably not more than 10-15 degrees C higher. Fluid inclusion ice-melting temperatures indicate a very low salt content, reducing the probability that the mineralization was precipitated during the Caledonian Orogeny. Our findings suggest that large impacts induce low-temperature hydrothermal systems that may be habitats for thermophilic organisms. Large impact structures on Mars may therefore be suitable targets in the search for fossil thermophilic organisms.

  19. Structuralism: Its Implications for the Performance of Prose Fiction

    ERIC Educational Resources Information Center

    Hopkins, Mary Francis

    1977-01-01

    Discusses the implications of structuralism by examining "Introduction to The Structural Analysis of Narrative", a contemporary writing by Roland Barthes. Explains Barthes' terms and concepts by using Virginia Woolf's Mrs. Dalloway character for an example. (MH)

  20. Functional Mapping of the Lectin Activity Site on the β-Prism Domain of Vibrio cholerae Cytolysin

    PubMed Central

    Rai, Anand Kumar; Paul, Karan; Chattopadhyay, Kausik

    2013-01-01

    Vibrio cholerae cytolysin (VCC) is a prominent member in the family of β-barrel pore-forming toxins. It induces lysis of target eukaryotic cells by forming transmembrane oligomeric β-barrel channels. VCC also exhibits prominent lectin-like activity in interacting with β1-galactosyl-terminated glycoconjugates. Apart from the cytolysin domain, VCC harbors two lectin-like domains: the β-Trefoil and the β-Prism domains; however, precise contribution of these domains in the lectin property of VCC is not known. Also, role(s) of these lectin-like domains in the mode of action of VCC remain obscure. In the present study, we show that the β-Prism domain of VCC acts as the structural scaffold to determine the lectin activity of the protein toward β1-galactosyl-terminated glycoconjugates. Toward exploring the physiological implication of the β-Prism domain, we demonstrate that the presence of the β-Prism domain-mediated lectin activity is crucial for an efficient interaction of the toxin toward the target cells. Our results also suggest that such lectin activity may act to regulate the oligomerization ability of the membrane-bound VCC toxin. Based on the data presented here, and also consistent with the existing structural information, we propose a novel mechanism of regulation imposed by the β-Prism domain's lectin activity, implicated in the process of membrane pore formation by VCC. PMID:23209283

  1. The Onset of Channelling in a Fluidized Mud Layer

    NASA Astrophysics Data System (ADS)

    Papanicolaou, T.; Tsakiris, A. G.; Billing, B. M.

    2012-12-01

    Fluidization of a soil occurs when the drag force exerted on the soil grains by upwelling water equals the submerged weight of the soil grains, hence reducing the effective (or contact) stress between the soil grains to zero. In nature, fluidization is commonly encountered in localized portions of highly saturated mud layers found in tidal flats, estuaries and lakes, where upward flow is initiated by significant pore water pressure gradients triggered by wave or tidal action. The water propagates through the fluidized mud layer by forming channels (or vents), carrying the fluidized mud to the surface and forming mud volcano structures. The presence of these fluidization channels alters the mud layer structure with implications on its hydraulic and geotechnical properties, such as the hydraulic conductivity. Despite the importance of these channels, the conditions that lead to their formation and their effects on the mud layer structure still remain poorly documented. The present study couples experimental and theoretical methods aimed at quantifying the conditions, under which fluidization of a saturated mud layer is accompanied by the formation of channels, and assessing the effects of channeling on the mud layer structure. Fluidization and channel formation in a mud layer were reproduced in the laboratory using a carefully designed fluidization column attached to a pressurized vessel (plenum). To eliminate any effects of the material, the mud was produced from pure kaolin clay and deionized water. Local porosity measurements along the mud layer prior, during and after fluidization were conducted using an Americium-241 gamma source placed on a fully automated carriage. Different water inflow rates, q, were applied to the base of the mud layer and the plenum pressure was monitored throughout the experiment. These experiments revealed that for high q values, a single vertical channel formed and erupted at the center of the fluidization column. Instead for low q values, the experiments suggested that a channel network formed within the mud layer leading to the eruption of multiple channels on the mud layer surface. The gamma source measurements captured quantitatively the porosity increase as the channel formed. The experiments were complemented with a theoretical analysis using the two-phase, flow mass and momentum governing equations. This analysis aims to establish a relation between the applied pressure, the fluid velocity and the local porosity of mud during the formation of the channels.

  2. Vertical microbial community variability of carbonate-based cones may provide insight into ancient conical stromatolite formation

    NASA Astrophysics Data System (ADS)

    Bradley, James; Daille, Leslie; Trivedi, Christopher; Bojanowski, Caitlin; Nunn, Heather; Stamps, Blake; Johnson, Hope; Stevenson, Bradley; Berelson, Will; Corsetti, Frank; Spear, John

    2016-04-01

    Stromatolite morphogenesis is poorly understood, and the process by which microbial mats become mineralized is a primary question in microbialite formation. Ancient conical stromatolites are primarily carbonate-based whereas the few modern analogues in hot springs are either non-mineralized or mineralized by silica. A team from the 2015 International GeoBiology Course investigated carbonate-rich microbial cones from near Little Hot Creek (LHC), Long Valley Caldera, California, to investigate how conical stromatolites might form in a hot spring carbonate system. The cones rise up from a layered microbial mat on the east side of a 45° C pool with very low flow that is super-saturated with respect to CaCO3. Cone structures are 8-30 mm in height, are rigid and do not deform when removed from the pool. Morphological characterization through environmental scanning electronic microscopy revealed that the cone structure is maintained by a matrix of intertwining microbial filaments around carbonate grains. This matrix gives rise to cone-filaments that are arranged vertically or horizontally, and provides further stability to the cone. Preliminary 16S rRNA gene analysis indicated variability of community composition between different vertical levels of the cone. The cone tip had comparatively greater abundance of filamentous cyanobacteria including Leptolingbya, Phormidium and Isosphaera and fewer heterotrophs (e.g. Chloroflexi) compared to the cone bottom. This supports the hypothesis that cone formation may depend on the differential abundance of the microbial community and their potential functional roles. Metagenomic analyses of the cones revealed potential genes related to chemotaxis and motility. Specifically, a genomic bin identified as a member of the genus Isosphaera contained an hmp chemotaxis operon implicated in gliding motility in the cyanobacterium Nostoc punctiforme. Isosphaera is a Planctomycete shown to have phototactic capabilities, and may play a role in conjunction with cyanobacteria in the vertical formation of the cones. This analysis of actively growing cones indicates a complex interplay of geochemistry and microbiology that form structures which can serve as models for processes that occurred in the past and are preserved in the rock record.

  3. Diorganotin-based coordination polymers derived from sulfonate/phosphonate/phosphonocarboxylate ligands.

    PubMed

    Shankar, Ravi; Jain, Archana; Kociok-Köhn, Gabriele; Molloy, Kieran C

    2011-02-21

    The reactions of diorganotin precursors [R(2)Sn(OR(1))(OSO(2)R(1))](n) [R = R(1) = Me (1); R = Me, R(1) = Et (2)] with an equimolar amount of t-butylphosphonic acid (RT, 8-10 h) in methanol result in the formation of identical products, of composition [(Me(2)Sn)(3)(O(3)PBu(t))(2)(O(2)P(OH)Bu(t))(2)](n) (3). On the other hand, a similar reaction of 2, when carried out in dichloromethane, affords [(Me(2)Sn)(3)(O(3)PBu(t))(2)(OSO(2)Et)(2)·MeOH](n) (4). A plausible mechanism implicating the role of solvent in the formation of these compounds has been put forward. In addition, the synthesis of [(Me(2)Sn)(3)(O(3)PCH(2)CH(2)COOMe)(2)(OSO(2)Me)(2)](n) (5) and [R(2)Sn(O(2)P(OH)CH(2)CH(2)COOMe)(OSO(2)R(1))](n) [R = Et, R(1) = Me (6); R = (n)Bu, R(1) = Et (7)] has been achieved by reacting 1 and related diorganotin(alkoxy)alkanesulfonates with 3-phosphonopropionic acid in methanol. The formation of a methylpropionate functionality on the phosphorus center in these structural frameworks results from in situ esterification of the carboxylic group. X-ray crystallographic studies of 1-7 are presented. The structures of 1 and 2 represent one-dimensional (1D) coordination polymers composed of alternate [Sn-O](2) and [Sn-O-S-O](2) cyclic rings formed by μ(2)-alkoxo and sulfonate ligands, respectively. For 3-5 and 7, variable bonding modes of phosphonate and/or sulfonate ligands afford the construction of two- and three-dimensional self-assemblies that are comprised of trinuclear tin entities with an Sn(3)P(2)O(6) core as well as [Sn-O-P-O](2) and/or [Sn-O-S-O](2) rings. The formation of a 1D coordination polymer in 6 is unique in terms of repeating eight-membered cyclic rings containing Sn, O, P, and S heteroatoms. The contribution from hydrogen-bonding interactions is also found to be significant in these structures.

  4. Small graben in the southeastern ejecta blanket of the lunar Copernicus crater: Implications for recent shallow igneous intrusion on the Moon

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Huang, Qian; Zeng, Zuoxun; Xiao, Long

    2017-12-01

    Dozens of linear graben that are about 10-400 m wide and less than 1 km long are recognized in the southeastern continuous ejecta deposits of Copernicus, supporting that Copernican-aged tectonism has occurred on the Moon. Fault geometry analysis suggests that the bounding faults of the graben have formed within the ejecta deposits. The graben are exclusively located on a local high-relief area, but they are not formed by mass wasting, because the topographic slope is substantially less than the repose angle of typical lunar materials, and no other extensional structures are visible on similar high-relief areas at the continuous ejecta deposits of Copernicus. The orientations of the graben all point to the center of Copernicus, but the topography of Copernicus is little compensated after formation, suggesting that the graben were not caused by possible crustal isostatic readjustment. This graben system is one of the three examples on the Moon that were interpreted to be caused by shallow igneous intrusions in the format of laccoliths. The currently available GRAIL gravity data have a lower spatial resolution than the size of the graben, so the gravity data cannot resolve the hypothesized sub-kilometer-scale laccoliths beneath the graben. While laccolith intrusion to a depth of about 80 m is required to explain the formation of this graben system, the laccolith intrusion scenario is not consistent with the geological context of the graben. A compressional structure is visible close to the graben system, and their spatial configuration and similar preservation states are consistent with being generically related. A close examination of the other two sets of graben that were also interpreted to have no associated compressional structures actually reveals spatially-related lobate scarps and wrinkle ridges in the vicinity. Therefore, shallow igneous intrusion is not plausible or necessary to explain to formation of Copernican-aged graben on the Moon, and they are most likely formed by the late-stage global contraction of the Moon.

  5. Shockwave Interaction with a Cylindrical Structure

    NASA Astrophysics Data System (ADS)

    Mulligan, Phillip

    2017-06-01

    An increased understanding of the shockwave interaction with a cylindrical structure is the foundation for developing a method to explosively seal a pipe similar to the Deepwater Horizon accident in the Gulf of Mexico. Shockwave interactions with a cylindrical structure have been a reoccurring focus of energetics research. Some of the most notable contributions of non-destructive tests are described in ``The Effects of Nuclear Weapons'' (Glasstone, 1962). The work presented by Glasstone examines shockwave interaction from a 20-megaton bomb with a cylindrical structure. However, the data is limited to a peak overpressure of less than 25 psi, requiring several miles between the structure and the charge. The research presented in the following paper expands on the work Glasstone described by examining the shockwaves from 90, 180, and 270-gram C-4 charges interacting with a 6-inch diameter cylindrical structure positioned 52-inches from the center of the charge. The three charge weights that were tested in this research generated a peak overpressures of approximately 15, 25, and 40 psi, respectively. This research examines the peak pressure and total impulse from each charge acting on the cylindrical structure as well as the formation of vortices on the ``backside'' of the cylinder surface. This paper describes the methodology and findings of this study as well as examines the causality and implications of its results on our understanding of the shockwave interaction with a cylindrical structure.

  6. Formative Assessment and the Design of Instructional Systems.

    ERIC Educational Resources Information Center

    Sadler, D. Royce

    1989-01-01

    Discusses the nature and function of formative assessment in the development of students' expertise for evaluating the quality of their own work. Highlights include the transition from teacher-supplied feedback to learner self-monitoring; qualitative judgments; communicating standards to students; multicriterion judgments; and implications for the…

  7. Vitamin D receptor signaling and its therapeutic implications: Genome-wide and structural view.

    PubMed

    Carlberg, Carsten; Molnár, Ferdinand

    2015-05-01

    Vitamin D3 is one of the few natural compounds that has, via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and the transcription factor vitamin D receptor (VDR), a direct effect on gene regulation. For efficiently applying the therapeutic and disease-preventing potential of 1,25(OH)2D3 and its synthetic analogs, the key steps in vitamin D signaling need to be understood. These are the different types of molecular interactions with the VDR, such as (i) the complex formation of VDR with genomic DNA, (ii) the interaction of VDR with its partner transcription factors, (iii) the binding of 1,25(OH)2D3 or its synthetic analogs within the ligand-binding pocket of the VDR, and (iv) the resulting conformational change on the surface of the VDR leading to a change of the protein-protein interaction profile of the receptor with other proteins. This review will present the latest genome-wide insight into vitamin D signaling, and will discuss its therapeutic implications.

  8. Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109

    PubMed Central

    Hockla, Alexandra; Radisky, Derek C.

    2010-01-01

    Serine proteases have been implicated in many stages of cancer development, facilitating tumor cell growth, invasion, and metastasis, and naturally occurring serine protease inhibitors have shown promise as potential anticancer therapeutics. Optimal design of inhibitors as potential therapeutics requires the identification of the specific serine proteases involved in disease progression and the functional targets responsible for the tumor-promoting properties. Here, we use the HMT-3522 breast cancer progression series grown in 3D organotypic culture conditions to find that serine protease inhibitors cause morphological reversion of the malignant T4-2 cells, assessed by inhibition of proliferation and formation of acinar structures with polarization of basal markers, implicating serine protease activity in their malignant growth behavior. We identify PRSS3/mesotrypsin upregulation in T4-2 cells as compared to their nonmalignant progenitors, and show that knockdown of PRSS3 attenuates, and treatment with recombinant purified mesotrypsin enhances, the malignant growth phenotype. Using proteomic methods, we identify CD109 as the functional proteolytic target of mesotrypsin. Our study identifies a new mediator and effector of breast cancer growth and progression. PMID:20035377

  9. Autophagy: a new player in skeletal maintenance?

    PubMed

    Hocking, Lynne J; Whitehouse, Caroline; Helfrich, Miep H

    2012-07-01

    Imbalances between bone resorption and formation lie at the root of disorders such as osteoporosis, Paget's disease of bone (PDB), and osteopetrosis. Recently, genetic and functional studies have implicated proteins involved in autophagic protein degradation as important mediators of bone cell function in normal physiology and in pathology. Autophagy is the conserved process whereby aggregated proteins, intracellular pathogens, and damaged organelles are degraded and recycled. This process is important both for normal cellular quality control and in response to environmental or internal stressors, particularly in terminally-differentiated cells. Autophagic structures can also act as hubs for the spatial organization of recycling and synthetic process in secretory cells. Alterations to autophagy (reduction, hyperactivation, or impairment) are associated with a number of disorders, including neurodegenerative diseases and cancers, and are now being implicated in maintenance of skeletal homoeostasis. Here, we introduce the topic of autophagy, describe the new findings that are starting to emerge from the bone field, and consider the therapeutic potential of modifying this pathway for the treatment of age-related bone disorders. Copyright © 2012 American Society for Bone and Mineral Research.

  10. New perspectives on potential hydrogen storage materials using high pressure.

    PubMed

    Song, Yang

    2013-09-21

    In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.

  11. Micellar and Structural Stability of Nanoscale Amphiphilic Polymers: Implications for Anti-atherosclerotic Bioactivity

    PubMed Central

    Zhang, Yingyue; Li, Qi; Welsh, William J.; Moghe, Prabhas V.; Uhrich, Kathryn E.

    2016-01-01

    Atherosclerosis, a leading cause of mortality in developed countries, is characterized by the buildup of oxidized low-density lipoprotein (oxLDL) within the vascular intima, unregulated oxLDL uptake by macrophages, and ensuing formation of arterial plaque. Amphiphilic polymers (AMPs) comprised of a branched hydrophobic domain and a hydrophilic poly(ethylene glycol) (PEG) tail have shown promising anti-atherogenic effects through direct inhibition of oxLDL uptake by macrophages. In this study, five AMPs with controlled variations were evaluated for their micellar and structural stability in the presence of serum and lipase, respectively, to develop underlying structure-atheroprotective activity relations. In parallel, molecular dynamics simulations were performed to explore the AMP conformational preferences within an aqueous environment. Notably, AMPs with ether linkages between the hydrophobic arms and sugar backbones demonstrated enhanced degradation stability and storage stability, and also elicited enhanced anti-atherogenic bioactivity. Additionally, AMPs with increased hydrophobicity elicited increased atheroprotective bioactivity in the presence of serum. These studies provide key insights for designing more serum-stable polymeric micelles as prospective cardiovascular nanotherapies. PMID:26828687

  12. Transient oligomerization of the SARS-CoV N protein--implication for virus ribonucleoprotein packaging.

    PubMed

    Chang, Chung-ke; Chen, Chia-Min Michael; Chiang, Ming-hui; Hsu, Yen-lan; Huang, Tai-huang

    2013-01-01

    The nucleocapsid (N) phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV) packages the viral genome into a helical ribonucleocapsid and plays a fundamental role during viral self-assembly. The N protein consists of two structural domains interspersed between intrinsically disordered regions and dimerizes through the C-terminal structural domain (CTD). A key activity of the protein is the ability to oligomerize during capsid formation by utilizing the dimer as a building block, but the structural and mechanistic bases of this activity are not well understood. By disulfide trapping technique we measured the amount of transient oligomers of N protein mutants with strategically located cysteine residues and showed that CTD acts as a primary transient oligomerization domain in solution. The data is consistent with the helical oligomer packing model of N protein observed in crystal. A systematic study of the oligomerization behavior revealed that altering the intermolecular electrostatic repulsion through changes in solution salt concentration or phosphorylation-mimicking mutations affects oligomerization propensity. We propose a biophysical mechanism where electrostatic repulsion acts as a switch to regulate N protein oligomerization.

  13. Milestone in the NTB phase investigation and beyond: direct insight into molecular self-assembly.

    PubMed

    Ivšić, Trpimir; Vinković, Marijana; Baumeister, Ute; Mikleušević, Ana; Lesac, Andreja

    2014-12-14

    Although liquid-crystalline materials are most widely exploited for flat-panel displays, their ability to self-organize into periodically ordered nanostructures gives rise to a broad variety of additional applications. The recently discovered low-temperature nematic phase (N(TB)) with unusual characteristics generated considerable attention within the scientific community: despite the fact that the molecules from which the phase is composed are not chiral, the helicoidal structure of the phase is strongly implicated. Here we report on combined experimental, computational and spectroscopic studies of the structural aspects influencing formation of the N(TB) phase as well as on the molecular organization within the phase. In an extensive DFT study, the structure-property prerequisite was traced to a "bent-propeller" shape of the molecule. We also demonstrate the first utilization of liquid state NMR for direct analysis of intermolecular interactions within thermotropic liquid-crystalline phases, providing new insight into molecular packing that can lead towards design of novel chiral functional materials. The synergy of experimental, computational and NMR studies suggests a syn-parallel helical molecular organization within the N(TB) phase.

  14. Micellar and structural stability of nanoscale amphiphilic polymers: Implications for anti-atherosclerotic bioactivity.

    PubMed

    Zhang, Yingyue; Li, Qi; Welsh, William J; Moghe, Prabhas V; Uhrich, Kathryn E

    2016-04-01

    Atherosclerosis, a leading cause of mortality in developed countries, is characterized by the buildup of oxidized low-density lipoprotein (oxLDL) within the vascular intima, unregulated oxLDL uptake by macrophages, and ensuing formation of arterial plaque. Amphiphilic polymers (AMPs) comprised of a branched hydrophobic domain and a hydrophilic poly(ethylene glycol) (PEG) tail have shown promising anti-atherogenic effects through direct inhibition of oxLDL uptake by macrophages. In this study, five AMPs with controlled variations were evaluated for their micellar and structural stability in the presence of serum and lipase, respectively, to develop underlying structure-atheroprotective activity relations. In parallel, molecular dynamics simulations were performed to explore the AMP conformational preferences within an aqueous environment. Notably, AMPs with ether linkages between the hydrophobic arms and sugar backbones demonstrated enhanced degradation stability and storage stability, and also elicited enhanced anti-atherogenic bioactivity. Additionally, AMPs with increased hydrophobicity elicited increased atheroprotective bioactivity in the presence of serum. These studies provide key insights for designing more serum-stable polymeric micelles as prospective cardiovascular nanotherapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity.

    PubMed

    Vannier, Jean-Baptiste; Pavicic-Kaltenbrunner, Visnja; Petalcorin, Mark I R; Ding, Hao; Boulton, Simon J

    2012-05-11

    T loops and telomeric G-quadruplex (G4) DNA structures pose a potential threat to genome stability and must be dismantled to permit efficient telomere replication. Here we implicate the helicase RTEL1 in the removal of telomeric DNA secondary structures, which is essential for preventing telomere fragility and loss. In the absence of RTEL1, T loops are inappropriately resolved by the SLX4 nuclease complex, resulting in loss of the telomere as a circle. Depleting SLX4 or blocking DNA replication abolished telomere circles (TCs) and rescued telomere loss in RTEL1(-/-) cells but failed to suppress telomere fragility. Conversely, stabilization of telomeric G4-DNA or loss of BLM dramatically enhanced telomere fragility in RTEL1-deficient cells but had no impact on TC formation or telomere loss. We propose that RTEL1 performs two distinct functions at telomeres: it disassembles T loops and also counteracts telomeric G4-DNA structures, which together ensure the dynamics and stability of the telomere. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Quasiparticle energy bands and Fermi surfaces of monolayer NbSe2

    NASA Astrophysics Data System (ADS)

    Kim, Sejoong; Son, Young-Woo

    2017-10-01

    A quasiparticle band structure of a single layer 2 H -NbSe2 is reported by using first-principles G W calculation. We show that a self-energy correction increases the width of a partially occupied band and alters its Fermi surface shape when comparing those using conventional mean-field calculation methods. Owing to a broken inversion symmetry in the trigonal prismatic single layer structure, the spin-orbit interaction is included and its impact on the Fermi surface and quasiparticle energy bands are discussed. We also calculate the doping dependent static susceptibilities from the band structures obtained by the mean-field calculation as well as G W calculation with and without spin-orbit interactions. A complete tight-binding model is constructed within the three-band third nearest neighbor hoppings and is shown to reproduce our G W quasiparticle energy bands and Fermi surface very well. Considering variations of the Fermi surface shapes depending on self-energy corrections and spin-orbit interactions, we discuss the formations of charge density wave (CDW) with different dielectric environments and their implications on recent controversial experimental results on CDW transition temperatures.

  17. Signalling networks and dynamics of allosteric transitions in bacterial chaperonin GroEL: implications for iterative annealing of misfolded proteins.

    PubMed

    Thirumalai, D; Hyeon, Changbong

    2018-06-19

    Signal transmission at the molecular level in many biological complexes occurs through allosteric transitions. Allostery describes the responses of a complex to binding of ligands at sites that are spatially well separated from the binding region. We describe the structural perturbation method, based on phonon propagation in solids, which can be used to determine the signal-transmitting allostery wiring diagram (AWD) in large but finite-sized biological complexes. Application to the bacterial chaperonin GroEL-GroES complex shows that the AWD determined from structures also drives the allosteric transitions dynamically. From both a structural and dynamical perspective these transitions are largely determined by formation and rupture of salt-bridges. The molecular description of allostery in GroEL provides insights into its function, which is quantitatively described by the iterative annealing mechanism. Remarkably, in this complex molecular machine, a deep connection is established between the structures, reaction cycle during which GroEL undergoes a sequence of allosteric transitions, and function, in a self-consistent manner.This article is part of a discussion meeting issue 'Allostery and molecular machines'. © 2018 The Author(s).

  18. Diagnosis of Magnetic Structures and Intermittency in Space Plasma Turbulence using the Method of Surrogate Data

    NASA Technical Reports Server (NTRS)

    Sahraoui, Fouad; Goldstein, Melvyn

    2008-01-01

    Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to be a direct consequence of nonlinear interactions between the plasma modes, which depend strongly on phase synchronization of those modes. Despite this important role of the phases in turbulence, very limited work has been however devoted to study the phases as a potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. We present a method based on surrogate data to systematically detect coherent structures in turbulent signals. The new method has been applied successfully to magnetosheath turbulence (Sahraoui, Phys. Rev. E, 2008, in press), where the relationship between the identified phase coherence and intermittency (classically identified as non Gaussian tails of the PDFs) as well as the energy cascade has been studied. Here we review the main results obtained in that study and show further applications to small scale solar wind turbulence. Implications of the results on theoretical modelling of space turbulence (applicability of weak/wave turbulence, its validity limits and its connection to intermittency) will be discussed.

  19. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure

    PubMed Central

    North, Justin A.; Šimon, Marek; Ferdinand, Michelle B.; Shoffner, Matthew A.; Picking, Jonathan W.; Howard, Cecil J.; Mooney, Alex M.; van Noort, John; Poirier, Michael G.; Ottesen, Jennifer J.

    2014-01-01

    Nucleosomes contain ∼146 bp of DNA wrapped around a histone protein octamer that controls DNA accessibility to transcription and repair complexes. Posttranslational modification (PTM) of histone proteins regulates nucleosome function. To date, only modest changes in nucleosome structure have been directly attributed to histone PTMs. Histone residue H3(T118) is located near the nucleosome dyad and can be phosphorylated. This PTM destabilizes nucleosomes and is implicated in the regulation of transcription and repair. Here, we report gel electrophoretic mobility, sucrose gradient sedimentation, thermal disassembly, micrococcal nuclease digestion and atomic force microscopy measurements of two DNA–histone complexes that are structurally distinct from nucleosomes. We find that H3(T118ph) facilitates the formation of a nucleosome duplex with two DNA molecules wrapped around two histone octamers, and an altosome complex that contains one DNA molecule wrapped around two histone octamers. The nucleosome duplex complex forms within short ∼150 bp DNA molecules, whereas altosomes require at least ∼250 bp of DNA and form repeatedly along 3000 bp DNA molecules. These results are the first report of a histone PTM significantly altering the nucleosome structure. PMID:24561803

  20. Crystal structure of caspase recruiting domain (CARD) of apoptosis repressor with CARD (ARC) and its implication in inhibition of apoptosis

    PubMed Central

    Jang, Tae-ho; Kim, Seong Hyun; Jeong, Jae-Hee; Kim, Sunghwan; Kim, Yeun Gil; Park, Hyun Ho

    2015-01-01

    Apoptosis repressor with caspase recruiting domain (ARC) is a multifunctional inhibitor of apoptosis that is unusually over-expressed or activated in various cancers and in the state of the pulmonary hypertension. Therefore, ARC might be an optimal target for therapeutic intervention. Human ARC is composed of two distinct domains, N-terminal caspase recruiting domain (CARD) and C-terminal P/E (proline and glutamic acid) rich domain. ARC inhibits the extrinsic apoptosis pathway by interfering with DISC formation. ARC CARD directly interacts with the death domains (DDs) of Fas and FADD, as well as with the death effector domains (DEDs) of procaspase-8. Here, we report the first crystal structure of the CARD domain of ARC at a resolution of 2.4 Å. Our structure was a dimer with novel homo-dimerization interfaces that might be critical to its inhibitory function. Interestingly, ARC did not exhibit a typical death domain fold. The sixth helix (H6), which was detected at the typical death domain fold, was not detected in the structure of ARC, indicating that H6 may be dispensable for the function of the death domain superfamily. PMID:26038885

  1. δ-Conotoxins synthesized using an acid-cleavable solubility tag approach reveal key structural determinants for NaV subtype selectivity.

    PubMed

    Peigneur, Steve; Paolini-Bertrand, Marianne; Gaertner, Hubert; Biass, Daniel; Violette, Aude; Stöcklin, Reto; Favreau, Philippe; Tytgat, Jan; Hartley, Oliver

    2014-12-19

    Conotoxins are venom peptides from cone snails with multiple disulfide bridges that provide a rigid structural scaffold. Typically acting on ion channels implicated in neurotransmission, conotoxins are of interest both as tools for pharmacological studies and as potential new medicines. δ-Conotoxins act by inhibiting inactivation of voltage-gated sodium channels (Nav). Their pharmacology has not been extensively studied because their highly hydrophobic character makes them difficult targets for chemical synthesis. Here we adopted an acid-cleavable solubility tag strategy that facilitated synthesis, purification, and directed disulfide bridge formation. Using this approach we readily produced three native δ-conotoxins from Conus consors plus two rationally designed hybrid peptides. We observed striking differences in Nav subtype selectivity across this group of compounds, which differ in primary structure at only three positions: 12, 23, and 25. Our results provide new insights into the structure-activity relationships underlying the Nav subtype selectivity of δ-conotoxins. Use of the acid-cleavable solubility tag strategy should facilitate synthesis of other hydrophobic peptides with complex disulfide bridge patterns. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Elucidation of amyloid beta-protein oligomerization mechanisms: discrete molecular dynamics study.

    PubMed

    Urbanc, B; Betnel, M; Cruz, L; Bitan, G; Teplow, D B

    2010-03-31

    Oligomers of amyloid beta-protein (Abeta) play a central role in the pathology of Alzheimer's disease. Of the two predominant Abeta alloforms, Abeta(1-40) and Abeta(1-42), Abeta(1-42) is more strongly implicated in the disease. We elucidated the structural characteristics of oligomers of Abeta(1-40) and Abeta(1-42) and their Arctic mutants, [E22G]Abeta(1-40) and [E22G]Abeta(1-42). We simulated oligomer formation using discrete molecular dynamics (DMD) with a four-bead protein model, backbone hydrogen bonding, and residue-specific interactions due to effective hydropathy and charge. For all four peptides under study, we derived the characteristic oligomer size distributions that were in agreement with prior experimental findings. Unlike Abeta(1-40), Abeta(1-42) had a high propensity to form paranuclei (pentameric or hexameric) structures that could self-associate into higher-order oligomers. Neither of the Arctic mutants formed higher-order oligomers, but [E22G]Abeta(1-40) formed paranuclei with a similar propensity to that of Abeta(1-42). Whereas the best agreement with the experimental data was obtained when the charged residues were modeled as solely hydrophilic, further assembly from spherical oligomers into elongated protofibrils was induced by nonzero electrostatic interactions among the charged residues. Structural analysis revealed that the C-terminal region played a dominant role in Abeta(1-42) oligomer formation whereas Abeta(1-40) oligomerization was primarily driven by intermolecular interactions among the central hydrophobic regions. The N-terminal region A2-F4 played a prominent role in Abeta(1-40) oligomerization but did not contribute to the oligomerization of Abeta(1-42) or the Arctic mutants. The oligomer structure of both Arctic peptides resembled Abeta(1-42) more than Abeta(1-40), consistent with their potentially more toxic nature.

  3. Mapping genetic variations to three-dimensional protein structures to enhance variant interpretation: a proposed framework.

    PubMed

    Glusman, Gustavo; Rose, Peter W; Prlić, Andreas; Dougherty, Jennifer; Duarte, José M; Hoffman, Andrew S; Barton, Geoffrey J; Bendixen, Emøke; Bergquist, Timothy; Bock, Christian; Brunk, Elizabeth; Buljan, Marija; Burley, Stephen K; Cai, Binghuang; Carter, Hannah; Gao, JianJiong; Godzik, Adam; Heuer, Michael; Hicks, Michael; Hrabe, Thomas; Karchin, Rachel; Leman, Julia Koehler; Lane, Lydie; Masica, David L; Mooney, Sean D; Moult, John; Omenn, Gilbert S; Pearl, Frances; Pejaver, Vikas; Reynolds, Sheila M; Rokem, Ariel; Schwede, Torsten; Song, Sicheng; Tilgner, Hagen; Valasatava, Yana; Zhang, Yang; Deutsch, Eric W

    2017-12-18

    The translation of personal genomics to precision medicine depends on the accurate interpretation of the multitude of genetic variants observed for each individual. However, even when genetic variants are predicted to modify a protein, their functional implications may be unclear. Many diseases are caused by genetic variants affecting important protein features, such as enzyme active sites or interaction interfaces. The scientific community has catalogued millions of genetic variants in genomic databases and thousands of protein structures in the Protein Data Bank. Mapping mutations onto three-dimensional (3D) structures enables atomic-level analyses of protein positions that may be important for the stability or formation of interactions; these may explain the effect of mutations and in some cases even open a path for targeted drug development. To accelerate progress in the integration of these data types, we held a two-day Gene Variation to 3D (GVto3D) workshop to report on the latest advances and to discuss unmet needs. The overarching goal of the workshop was to address the question: what can be done together as a community to advance the integration of genetic variants and 3D protein structures that could not be done by a single investigator or laboratory? Here we describe the workshop outcomes, review the state of the field, and propose the development of a framework with which to promote progress in this arena. The framework will include a set of standard formats, common ontologies, a common application programming interface to enable interoperation of the resources, and a Tool Registry to make it easy to find and apply the tools to specific analysis problems. Interoperability will enable integration of diverse data sources and tools and collaborative development of variant effect prediction methods.

  4. Strong population structure of Schizopygopsis chengi and the origin of S. chengi baoxingensis revealed by mtDNA and microsatellite markers.

    PubMed

    Liu, Dongqi; Hou, Feixia; Liu, Qin; Zhang, Xiuyue; Yan, Taiming; Song, Zhaobin

    2015-02-01

    The Tibetan Plateau underwent dramatic geological and climatic changes, which had important implications for genetic divergence and population dynamics of freshwater fish populations. Fluctuations of the ecogeographical environment and major hydrographic formations might have promoted the formation of new subspecies or species. In order to understand the impact of plateau uplift on freshwater fish evolutionary history, we estimated the genetic diversity and population structure in two subspecies of Schizopygopsis chengi (S. c. chengi and S. c. baoxingensis) in upper Yangtze River in Tibetan Plateau area using mitochondrial DNA control region and eight microsatellite markers, which suggested that there was a close genetic relationship. S. chengi showed some significant genetic structure that did not correlate with geographic distance. Bayesian assignment tests indicated that S. chengi samples in the study could be divided into four populations: upstream population, midstream population, tributary population and S. c. baoxingensis population. S. c. chengi and S. c. baoxingensis showed significant genetic divergence. However, phylogenetic analysis, population structure analysis and historical gene flow estimation suggested that there was close genetic relationship between S. c. baoxingensis and the Dawei population which belongs to populations of S. c. chengi. The time that Dawei population suffered from a bottleneck and S. c. baoxingensis underwent population expansion was congruent with the last glacial period on the Tibetan Plateau. The results confirmed the hypothesis that the Dawei River and Baoxing River were once connected, and the Dawei and Baoxing populations originated from a single population, but were isolated into separate populations because of crustal movements and the Baoxing population evolved as S. c. baoxingensis.

  5. Characterization of novel microstructures in Al-Fe-V-Si and Al-Fe-V-Si-Y alloys processed at intermediate cooling rates

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan

    Samples of an Al-Fe-V-Si alloy with and without small Y additions were prepared by copper wedge-mold casting. Analysis of the microstructures developed at intermediate cooling rates revealed the formation of an atypical morphology of the cubic alpha-Al12(Fe/V)3Si phase (Im 3 space group with a = 1.26 nm) in the form of a microeutectic with alpha-Al that forms in relatively thick sections. This structure was determined to exhibit promising hardness and thermal stability when compared to the commercial rapidly solidified and processed Al-Fe-V-Si (RS8009) alloy. In addition, convergent beam electron diffraction (CBED) and selected area electron diffraction (SAD) were used to characterize a competing intermetallic phase, namely, a hexagonal phase identified as h-AlFeSi (P6/mmm space group with a = 2.45 nm c = 1.25 nm) with evidence of a structural relationship to the icosahedral quasicrystalline (QC) phase (it is a QC approximant) and a further relationship to the more desirable alpha-Al12(Fe/V) 3Si phase, which is also a QC approximant. The analysis confirmed the findings of earlier studies in this system, which suggested the same structural relationships using different methods. As will be shown, both phases form across a range of cooling rates and appear to have good thermal stabilities. Additions of Y to the alloy were also studied and found to cause the formation of primary YV2Al20 particles on the order of 1 microm in diameter distributed throughout the microstructure, which otherwise appeared essentially identical to that of the Y-free 8009 alloy. The implications of these results on the possible development of these structures will be discussed in some detail.

  6. Beyond Interdisciplinary Teaming: Findings and Implications of the NASSP National Middle Level Study.

    ERIC Educational Resources Information Center

    Hackmann, Donald G.; Petzko, Vicki N.; Valentine, Jerry W.; Clark, Donald C.; Nori, John R.; Lucas, Stephen E.

    2002-01-01

    Reports trends and implications of interdisciplinary teaming practices in middle schools, based on findings from a national survey. Noting that nearly 80 percent of schools currently implement teaming, challenges principals and teachers to move beyond simple formation of teams to the creation of an infrastructure that supports high-performing…

  7. Implications of Transnational Adoption Status for Adult Korean Adoptees

    ERIC Educational Resources Information Center

    Langrehr, Kimberly J.; Yoon, Eunju; Hacker, Jason; Caudill, Kathy

    2015-01-01

    This study used a consensual qualitative research method to explore the implications of transnational adoption in the lives of 12 adult Korean adoptees. From the analysis, 6 domains emerged: (a) adoption history and preadoptive memories, (b) meaning of adoption, (c) adoptive family dynamics, (d) racism, (e) identity formation, and (f) counseling…

  8. FACTORS IMPLICATED IN AMPHIBIAN POPULATION DECLINES IN THE US, AND AN EVALUATION OF THE CASE FOR INVASIVE SPECIES

    EPA Science Inventory

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from 267 species accounts written in a standardized format by multiple authors in a forthcoming book. Land use was the most frequently implicated adverse ...

  9. Information needs and behaviors of geoscience educators: A grounded theory study

    NASA Astrophysics Data System (ADS)

    Aber, Susan Ward

    2005-12-01

    Geoscience educators use a variety of resources and resource formats in their classroom teaching to facilitate student understanding of concepts and processes that define subject areas considered in the realm of geoscience. In this study of information needs and behaviors of geoscience educators, the researcher found that participants preferred visual media such as personal photographic and digital images, as well as published figures, animations, and cartoons, and that participants bypassed their academic libraries to meet these information needs. In order to investigate the role of information in developing introductory geoscience course and instruction, a grounded theory study was conducted through a qualitative paradigm with an interpretive approach and naturalistic inquiry. The theoretical and methodological framework was constructivism and sense-making. Research questions were posited on the nature of geoscience subject areas and the resources and resource formats used in conveying geoscience topics to science and non-science majors, as well as educators' preferences and concerns with curriculum and instruction. The underlying framework was to investigate the place of the academic library and librarian in the sense-making, constructivist approach of geoscience educators. A purposive sample of seven geoscience educators from four universities located in mid-western United States was identified as exemplary teachers by department chairpersons. A triangulation of data collection methods included semi-structured interviews, document reviews, and classroom observations. Data were analyzed using the constant comparative method, which included coding, categorizing, and interpreting for patterns and relationships. Contextual factors were identified and a simple model resulted showing the role of information in teaching for these participants. While participants developed lectures and demonstrations using intrapersonal knowledge and personal collections, one barrier was a lack of time and funding for converting photographic prints and slides to digital images. Findings have implications for academic librarians to provide more visual media or assistance with organizing and formatting existing outdated media formats and to create collaborative collection development through repackaging personal collections of geoscience participants to enhance teaching. Implications for library school educators include providing curriculum on information needs and behaviors from a user's perspective, subject specialty librarianship, and internal collaborative collection development to complement external collection development.

  10. Experimental simulation of marine meteorite impacts: Implications for astrobiology

    NASA Astrophysics Data System (ADS)

    Umeda, Y.; Suga, H.; Sekine, T.; Kobayashi, T.; Furukawa, Y.; Kakegawa, T.

    2016-12-01

    Early oceans on planets which had liquid water (e.g. Earth, Mars) might have contained certain amounts of organic compounds such as amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment (LHB). Therefore, it is necessary to know chemical reactions and products of amino acids in aqueous solution under shock conditions in order to elucidate the prebiotic chemistry and evolution of amino acids through marine meteorite impacts. In our study, we performed shock recovery experiments in order to simulate shock reactions of marine meteorite impacts among olivine as meteorite components and water and amino acids as oceanic components (Umeda et al., 2016). The analytical results on shocked products in the recovered sample showed (i) the formation of carbon-rich substances derived from amino acids and (ii) morphological changes of olivine to fiber and features of lumpy surfaces affected by hot water. These results suggest that marine meteorite impacts might be able to occur the formation of carbon-rich substances from amino acids and the interaction between minerals and water. Hereafter, we will conduct more detailed analyses to investigate the chemical bonding and the chemical composition of carbon-rich substances as the experimental product from amino acids by Scanning Transmission X-ray Microscopy (STXM) and to identify the morphological change of olivine by Scanning Transmission Electron Microscope (STEM). These informations such as the chemical bonding and the composition of carbon-rich substances may be useful to make the reaction and the transformation of amino acids under shock conditions clear in more detail. As a further implication, carbon-rich substances have been also found in solar system (e.g. comets, meteorites) as important materials related to origin of life, although the origin (precursors) and the formation mechanism (what kinds of reactions) of them are still unknown well. If carbon-rich substances between experimental products and extraterrestrial matters have similar features such as the structure, the chemical bonding, and valence, it may be able to give new understandings (e.g. origin, formation mechanism, and reactions) to the areas of astrobiology. The results and discussions of these analyses will be added in the presentation of this meeting.

  11. Exploring Iron Silicate Precursors of Ancient Iron Formations through Rock Record, Laboratory and Field Analogue Investigations

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Rasmussen, B.; Muhling, J.; Benzerara, K.; Jezequel, D.; Cosmidis, J.; Templeton, A. S.

    2016-12-01

    In direct contrast to today's oceans, iron-rich chemical precipitates dominate the deep marine sedimentary record > 2.3 billion years ago. The deposition of these minerals resulted in massive iron formations and indicate that the ocean was previously ferruginous and largely anoxic. To precipitate and concentrate iron in the sediments, many hypotheses have centered on the oxidation of soluble Fe(II) to solid Fe(III)-oxyhydroxides; these ideas have stimulated extensive research using iron-oxidizing bacteria to produce Fe(III)-oxides and trace metal sorption experiments on Fe(III)-oxides, leading to inferences of trace metal availability and implications for enzymatic and microbial evolution as well as pO2 levels and seawater chemistry. However, recent discoveries of disseminated iron-silicate nanoparticles in early-silicifying chert indicate that iron-silicates may have instead been the primary precipitates from these Archean ferruginous oceans (Rasmussen et al, 2015). Considering the significant paradigm shift this discovery implies for interpretations of Archean elemental cycling, redox state and potential microbial metabolisms, we investigated these iron-silicate inclusions and their implications for ancient seawater chemistry in a multi-faceted approach using spectroscopic- and diffraction-based techniques. The crystal structure, Fe oxidation state and Fe coordination environment of iron-silicate nanoparticles have been interrogated using microscale X-ray absorption spectroscopy, TEM and nanoscale scanning transmission X-ray microscopy. To further explore the chemical and potential biological controls on iron-silicate formation, we have also performed laboratory experiments to mimic Archean seawater and precipitate iron-bearing silicate minerals under abiotic conditions and in the presence of iron-oxidizing bacteria. In a complementary study, sediments from a natural Archean analogue system were sampled to determine if iron-silicate minerals form in Mexican crater lakes that are variably iron- and silica-rich. As we continue to probe the mechanism of Fe(II/III)-silicate formation, we can constrain the activity of silica, pH, and pO2 on early Earth and describe any potential influence of microbial activity on the precipitation of these phases.

  12. Formative Assessment: A Cybernetic Viewpoint

    ERIC Educational Resources Information Center

    Roos, Bertil; Hamilton, David

    2005-01-01

    This paper considers alternative assessment, feedback and cybernetics. For more than 30 years, debates about the bi-polarity of formative and summative assessment have served as surrogates for discussions about the workings of the mind, the social implications of assessment and, as important, the role of instruction in the advancement of learning.…

  13. Astrophysical Implications of the Binary Black-hole Merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; and; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}⊙ ) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc-3 yr-1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  14. Astrophysical Implications of the Binary Black Hole Merger GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  15. Studies on bacterial inclusion bodies.

    PubMed

    de Groot, Natalia S; Espargaró, Alba; Morell, Montserrat; Ventura, Salvador

    2008-08-01

    The field of protein misfolding and aggregation has become an extremely active area of research in recent years. Of particular interest is the deposition of polypeptides into inclusion bodies inside bacterial cells. One reason for this interest is that protein aggregation constitutes a major bottleneck in protein production and restricts the spectrum of protein-based drugs available for commercialization. Additionally, prokaryotic cells could provide a simple yet powerful system for studying the formation and prevention of toxic aggregates, such as those responsible for a number of degenerative diseases. Here, we review recent work that has challenged our understanding of the structure and physiology of inclusion bodies and provided us with a new view of intracellular protein deposition, which has important implications in microbiology, biomedicine and biotechnology.

  16. Trial-Based Functional Analysis Informs Treatment for Vocal Scripting.

    PubMed

    Rispoli, Mandy; Brodhead, Matthew; Wolfe, Katie; Gregori, Emily

    2018-05-01

    Research on trial-based functional analysis has primarily focused on socially maintained challenging behaviors. However, procedural modifications may be necessary to clarify ambiguous assessment results. The purposes of this study were to evaluate the utility of iterative modifications to trial-based functional analysis on the identification of putative reinforcement and subsequent treatment for vocal scripting. For all participants, modifications to the trial-based functional analysis identified a primary function of automatic reinforcement. The structure of the trial-based format led to identification of social attention as an abolishing operation for vocal scripting. A noncontingent attention treatment was evaluated using withdrawal designs for each participant. This noncontingent attention treatment resulted in near zero levels of vocal scripting for all participants. Implications for research and practice are presented.

  17. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-06-01

    We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 1012 M ⊙ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

  18. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation

    PubMed Central

    Boonrungsiman, Suwimon; Gentleman, Eileen; Carzaniga, Raffaella; Evans, Nicholas D.; McComb, David W.; Porter, Alexandra E.; Stevens, Molly M.

    2012-01-01

    Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization. PMID:22879397

  19. The Histone Deacetylase HDAC4 Regulates Long-Term Memory in Drosophila

    PubMed Central

    Fitzsimons, Helen L.; Schwartz, Silvia; Given, Fiona M.; Scott, Maxwell J.

    2013-01-01

    A growing body of research indicates that pharmacological inhibition of histone deacetylases (HDACs) correlates with enhancement of long-term memory and current research is concentrated on determining the roles that individual HDACs play in cognitive function. Here, we investigate the role of HDAC4 in long-term memory formation in Drosophila. We show that overexpression of HDAC4 in the adult mushroom body, an important structure for memory formation, resulted in a specific impairment in long-term courtship memory, but had no affect on short-term memory. Overexpression of an HDAC4 catalytic mutant also abolished LTM, suggesting a mode of action independent of catalytic activity. We found that overexpression of HDAC4 resulted in a redistribution of the transcription factor MEF2 from a relatively uniform distribution through the nucleus into punctate nuclear bodies, where it colocalized with HDAC4. As MEF2 has also been implicated in regulation of long-term memory, these data suggest that the repressive effects of HDAC4 on long-term memory may be through interaction with MEF2. In the same genetic background, we also found that RNAi-mediated knockdown of HDAC4 impairs long-term memory, therefore we demonstrate that HDAC4 is not only a repressor of long-term memory, but also modulates normal memory formation. PMID:24349558

  20. Lunar and Planetary Science XXXV: Mars: Hydrology, Drainage, and Valley Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Analysis of Orientation Dependence of Martian Gullies; 2) A Preliminary Relationship between the Depth of Martian Gullies and the Abundance of Hydrogen on Near-Surface Mars; 3) Water Indicators in Sirenum Terra and around the Argyre Impact Basin, Mars; 4) The Distribution of Gullies and Tounge-shaped Ridges and Their Role in the Degradation of Martian Craters; 5) A Critical Evaluation of Crater Lake Systems in Memnonia Quadrangle, Mars; 6) Impact-generated Hydrothermal Activity at Gusev Crater: Implications for the Spirit Mission; 7) Characterization of the Distributary Fan in Holden NE Crater using Stereo Analysis; 8) Computational Analysis of Drainage Basins on Mars: Appraising the Drainage Density; 9) Hypsometric Analyses of Martian Basins: A Comparison to Terrestrial, Lunar, and Venusian Hypsometry; 10) Morphologic Development of Harmakhis Vallis, Mars; 11) Mangala Valles, Mars: Investigations of the source of Flood Water and Early Stages of Flooding; 12) The Formation of Aromatum Chaos and the Water Discharge Rate at Ravi Vallis; 13) Inferring Hydraulics from Geomorphology for Athabasca Valles, Mars; 14) The Origin and Evolution of Dao Vallis: Formation and Modification of Martian Channels by Structural Collapse and Glaciation; 15) Snowmelt and the Formation of Valley Networks on Martian Volcanoes; 16) Extent of Floating Ice in an Ancient Echus Chasma/Kasei Valley System, Mars.

  1. Peeling the astronomical onion.

    PubMed

    Rosu-Finsen, Alexander; Marchione, Demian; Salter, Tara L; Stubbing, James W; Brown, Wendy A; McCoustra, Martin R S

    2016-11-23

    Water ice is the most abundant solid in the Universe. Understanding the formation, structure and multiplicity of physicochemical roles for water ice in the cold, dense interstellar environments in which it is predominantly observed is a crucial quest for astrochemistry as these are regions active in star and planet formation. Intuitively, we would expect the mobility of water molecules deposited or synthesised on dust grain surfaces at temperatures below 50 K to be very limited. This work delves into the thermally-activated mobility of H 2 O molecules on model interstellar grain surfaces. The energy required to initiate this process is studied by reflection-absorption infrared spectroscopy of small quantities of water on amorphous silica and highly oriented pyrolytic graphite surfaces as the surface is annealed. Strongly non-Arrhenius behaviour is observed with an activation energy of 2 kJ mol -1 on the silica surface below 25 K and 0 kJ mol -1 on both surfaces between 25 and 100 K. The astrophysical implication of these results is that on timescales shorter than that estimated for the formation of a complete monolayer of water ice on a grain, aggregation of water ice will result in a non-uniform coating of water, hence leaving bare grain surface exposed. Other molecules can thus be formed or adsorbed on this bare surface.

  2. FAS/FASL are dysregulated in chordoma and their loss-of-function impairs zebrafish notochord formation.

    PubMed

    Ferrari, Luca; Pistocchi, Anna; Libera, Laura; Boari, Nicola; Mortini, Pietro; Bellipanni, Gianfranco; Giordano, Antonio; Cotelli, Franco; Riva, Paola

    2014-07-30

    Chordoma is a rare malignant tumor that recapitulates the notochord phenotype and is thought to derive from notochord remnants not correctly regressed during development. Apoptosis is necessary for the proper notochord development in vertebrates, and the apoptotic pathway mediated by Fas and Fasl has been demonstrated to be involved in notochord cells regression. This study was conducted to investigate the expression of FAS/FASL pathway in a cohort of skull base chordomas and to analyze the role of fas/fasl homologs in zebrafish notochord formation. FAS/FASL expression was found to be dysregulated in chordoma leading to inactivation of the downstream Caspases in the samples analyzed. Both fas and fasl were specifically expressed in zebrafish notochord sorted cells. fas and fasl loss-of-function mainly resulted in larvae with notochord multi-cell-layer jumps organization, larger vacuolated notochord cells, defects in the peri-notochordal sheath structure and in vertebral mineralization. Interestingly, we observed the persistent expression of ntla and col2a1a, the zebrafish homologs of the human T gene and COL2A1 respectively, which are specifically up-regulated in chordoma. These results demonstrate for the first time the dysregulation of FAS/FASL in chordoma and their role in notochord formation in the zebrafish model, suggesting their possible implication in chordoma onset.

  3. A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis

    DOE PAGES

    Gillmor, C. Stewart; Roeder, Adrienne H. K.; Sieber, Patrick; ...

    2016-01-08

    Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two locimore » show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Lastly, our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms.« less

  4. A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillmor, C. Stewart; Roeder, Adrienne H. K.; Sieber, Patrick

    Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two locimore » show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Lastly, our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms.« less

  5. The effect of a solid surface on the segregation and melting of salt hydrates.

    PubMed

    Zhang, Yu; Anim-Danso, Emmanuel; Dhinojwala, Ali

    2014-10-22

    Considering the importance of salt and water on earth, the crystallization of salt hydrates next to solid surfaces has important implications in physical and biological sciences. Heterogeneous nucleation is driven by surface interactions, but our understanding of hydrate formation near surfaces is limited. Here, we have studied the hydrate formation of three commonly prevalent salts, MgCl2, CaCl2, and NaCl, next to a sapphire substrate using surface sensitive infrared-visible sum frequency generation (SFG) spectroscopy. SFG spectroscopy can detect the crystallization and melting of salt hydrates at the interface by observing the changes in the intensity and the location of the cocrystallized water hydroxyl peaks (3200-3600 cm(-1)). The results indicate that the surface crystal structures of these three hydrates are similar to those in the bulk. For the NaCl solution, the brine solution is segregated next to the sapphire substrate after the formation of the ice phase. In contrast, the MgCl2 and CaCl2 surface hydrate crystals are interdispersed with nanometer-size ice crystals. The nanosize ice crystals melt at much lower temperatures than bulk ice crystals. For NaCl and MgCl2 solution, the NaCl hydrates prefer to crystallize next to the sapphire substrate instead of the ice crystals and MgCl2 hydrates.

  6. Agriculturally important microbial biofilms: Present status and future prospects.

    PubMed

    Velmourougane, Kulandaivelu; Prasanna, Radha; Saxena, Anil Kumar

    2017-07-01

    Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering

    PubMed Central

    2017-01-01

    The synthesis of iron oxide nanoparticles (NPs) by thermal decomposition of iron precursors using oleic acid as surfactant has evolved to a state-of-the-art method to produce monodisperse, spherical NPs. The principles behind such monodisperse syntheses are well-known: the key is a separation between burst nucleation and growth phase, whereas the size of the population is set by the precursor-to-surfactant ratio. Here we follow the thermal decomposition of iron pentacarbonyl in the presence of oleic acid via in situ X-ray scattering. This method allows reaction kinetics and precursor states to be followed with high time resolution and statistical significance. Our investigation demonstrates that the final particle size is directly related to a phase of inorganic cluster formation that takes place between precursor decomposition and particle nucleation. The size and concentration of clusters were shown to be dependent on precursor-to-surfactant ratio and heating rate, which in turn led to differences in the onset of nucleation and concentration of nuclei after the burst nucleation phase. This first direct observation of prenucleation formation of inorganic and micellar structures in iron oxide nanoparticle synthesis by thermal decomposition likely has implications for synthesis of other NPs by similar routes. PMID:28572705

  8. Fungal prion HET-s as a model for structural complexity and self-propagation in prions.

    PubMed

    Wan, William; Stubbs, Gerald

    2014-04-08

    The highly ordered and reproducible structure of the fungal prion HET-s makes it an excellent model system for studying the inherent properties of prions, self-propagating infectious proteins that have been implicated in a number of fatal diseases. In particular, the HET-s prion-forming domain readily folds into a relatively complex two-rung β-solenoid amyloid. The faithful self-propagation of this fold involves a diverse array of inter- and intramolecular structural features. These features include a long flexible loop connecting the two rungs, buried polar residues, salt bridges, and asparagine ladders. We have used site-directed mutagenesis and X-ray fiber diffraction to probe the relative importance of these features for the formation of β-solenoid structure, as well as the cumulative effects of multiple mutations. Using fibrillization kinetics and chemical stability assays, we have determined the biophysical effects of our mutations on the assembly and stability of the prion-forming domain. We have found that a diversity of structural features provides a level of redundancy that allows robust folding and stability even in the face of significant sequence alterations and suboptimal environmental conditions. Our findings provide fundamental insights into the structural interactions necessary for self-propagation. Propagation of prion structure seems to require an obligatory level of complexity that may not be reproducible in short peptide models.

  9. Structural basis of gene regulation by the Grainyhead/CP2 transcription factor family

    PubMed Central

    Ming, Qianqian; Roske, Yvette; Schuetz, Anja; Walentin, Katharina; Ibraimi, Ibraim; Schmidt-Ott, Kai M

    2018-01-01

    Abstract Grainyhead (Grh)/CP2 transcription factors are highly conserved in multicellular organisms as key regulators of epithelial differentiation, organ development and skin barrier formation. In addition, they have been implicated as being tumor suppressors in a variety of human cancers. Despite their physiological importance, little is known about their structure and DNA binding mode. Here, we report the first structural study of mammalian Grh/CP2 factors. Crystal structures of the DNA-binding domains of grainyhead-like (Grhl) 1 and Grhl2 reveal a closely similar conformation with immunoglobulin-like core. Both share a common fold with the tumor suppressor p53, but differ in important structural features. The Grhl1 DNA-binding domain binds duplex DNA containing the consensus recognition element in a dimeric arrangement, supporting parsimonious target-sequence selection through two conserved arginine residues. We elucidate the molecular basis of a cancer-related mutation in Grhl1 involving one of these arginines, which completely abrogates DNA binding in biochemical assays and transcriptional activation of a reporter gene in a human cell line. Thus, our studies establish the structural basis of DNA target-site recognition by Grh transcription factors and reveal how tumor-associated mutations inactivate Grhl proteins. They may serve as points of departure for the structure-based development of Grh/CP2 inhibitors for therapeutic applications. PMID:29309642

  10. Strain-Dependent Edge Structures in MoS2 Layers.

    PubMed

    Tinoco, Miguel; Maduro, Luigi; Masaki, Mukai; Okunishi, Eiji; Conesa-Boj, Sonia

    2017-11-08

    Edge structures are low-dimensional defects unavoidable in layered materials of the transition metal dichalcogenides (TMD) family. Among the various types of such structures, the armchair (AC) and zigzag (ZZ) edge types are the most common. It has been predicted that the presence of intrinsic strain localized along these edges structures can have direct implications for the customization of their electronic properties. However, pinning down the relation between local structure and electronic properties at these edges is challenging. Here, we quantify the local strain field that arises at the edges of MoS 2 flakes by combining aberration-corrected transmission electron microscopy (TEM) with the geometrical-phase analysis (GPA) method. We also provide further insight on the possible effects of such edge strain on the resulting electronic behavior by means of electron energy loss spectroscopy (EELS) measurements. Our results reveal that the two-dominant edge structures, ZZ and AC, induce the formation of different amounts of localized strain fields. We also show that by varying the free edge curvature from concave to convex, compressive strain turns into tensile strain. These results pave the way toward the customization of edge structures in MoS 2 , which can be used to engineer the properties of layered materials and thus contribute to the optimization of the next generation of atomic-scale electronic devices built upon them.

  11. Geological factors affecting CO2 plume distribution

    USGS Publications Warehouse

    Frailey, S.M.; Leetaru, H.

    2009-01-01

    Understanding the lateral extent of a CO2 plume has important implications with regards to buying/leasing pore volume rights, defining the area of review for an injection permit, determining the extent of an MMV plan, and managing basin-scale sequestration from multiple injection sites. The vertical and lateral distribution of CO2 has implications with regards to estimating CO2 storage volume at a specific site and the pore pressure below the caprock. Geologic and flow characteristics such as effective permeability and porosity, capillary pressure, lateral and vertical permeability anisotropy, geologic structure, and thickness all influence and affect the plume distribution to varying degrees. Depending on the variations in these parameters one may dominate the shape and size of the plume. Additionally, these parameters do not necessarily act independently. A comparison of viscous and gravity forces will determine the degree of vertical and lateral flow. However, this is dependent on formation thickness. For example in a thick zone with injection near the base, the CO2 moves radially from the well but will slow at greater radii and vertical movement will dominate. Generally the CO2 plume will not appreciably move laterally until the caprock or a relatively low permeability interval is contacted by the CO2. Conversely, in a relatively thin zone with the injection interval over nearly the entire zone, near the wellbore the CO2 will be distributed over the entire vertical component and will move laterally much further with minimal vertical movement. Assuming no geologic structure, injecting into a thin zone or into a thick zone immediately under a caprock will result in a larger plume size. With a geologic structure such as an anticline, CO2 plume size may be restricted and injection immediately below the caprock may have less lateral plume growth because the structure will induce downward vertical movement of the CO2 until the outer edge of the plume reaches a spill point within the structure. ?? 2009 Elsevier Ltd. All rights reserved.

  12. The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function.

    PubMed

    Raven, Frank; Van der Zee, Eddy A; Meerlo, Peter; Havekes, Robbert

    2018-06-01

    Dendritic spines are the major sites of synaptic transmission in the central nervous system. Alterations in the strength of synaptic connections directly affect the neuronal communication, which is crucial for brain function as well as the processing and storage of information. Sleep and sleep loss bidirectionally alter structural plasticity, by affecting spine numbers and morphology, which ultimately can affect the functional output of the brain in terms of alertness, cognition, and mood. Experimental data from studies in rodents suggest that sleep deprivation may impact structural plasticity in different ways. One of the current views, referred to as the synaptic homeostasis hypothesis, suggests that wake promotes synaptic potentiation whereas sleep facilitates synaptic downscaling. On the other hand, several studies have now shown that sleep deprivation can reduce spine density and attenuate synaptic efficacy in the hippocampus. These data are the basis for the view that sleep promotes hippocampal structural plasticity critical for memory formation. Altogether, the impact of sleep and sleep loss may vary between regions of the brain. A better understanding of the role that sleep plays in regulating structural plasticity may ultimately lead to novel therapeutic approaches for brain disorders that are accompanied by sleep disturbances and sleep loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Isolation of an Asymmetric RNA Uncoating Intermediate for a Single-Stranded RNA Plant Virus

    PubMed Central

    Bakker, Saskia E.; Ford, Robert J.; Barker, Amy M.; Robottom, Janice; Saunders, Keith; Pearson, Arwen R.; Ranson, Neil A.; Stockley, Peter G.

    2012-01-01

    We have determined the three-dimensional structures of both native and expanded forms of turnip crinkle virus (TCV), using cryo-electron microscopy, which allows direct visualization of the encapsidated single-stranded RNA and coat protein (CP) N-terminal regions not seen in the high-resolution X-ray structure of the virion. The expanded form, which is a putative disassembly intermediate during infection, arises from a separation of the capsid-forming domains of the CP subunits. Capsid expansion leads to the formation of pores that could allow exit of the viral RNA. A subset of the CP N-terminal regions becomes proteolytically accessible in the expanded form, although the RNA remains inaccessible to nuclease. Sedimentation velocity assays suggest that the expanded state is metastable and that expansion is not fully reversible. Proteolytically cleaved CP subunits dissociate from the capsid, presumably leading to increased electrostatic repulsion within the viral RNA. Consistent with this idea, electron microscopy images show that proteolysis introduces asymmetry into the TCV capsid and allows initial extrusion of the genome from a defined site. The apparent formation of polysomes in wheat germ extracts suggests that subsequent uncoating is linked to translation. The implication is that the viral RNA and its capsid play multiple roles during primary infections, consistent with ribosome-mediated genome uncoating to avoid host antiviral activity. PMID:22306464

  14. Spatial pattern formation facilitates eradication of infectious diseases

    PubMed Central

    Eisinger, Dirk; Thulke, Hans-Hermann

    2008-01-01

    Control of animal-born diseases is a major challenge faced by applied ecologists and public health managers. To improve cost-effectiveness, the effort required to control such pathogens needs to be predicted as accurately as possible. In this context, we reviewed the anti-rabies vaccination schemes applied around the world during the past 25 years. We contrasted predictions from classic approaches based on theoretical population ecology (which governs rabies control to date) with a newly developed individual-based model. Our spatially explicit approach allowed for the reproduction of pattern formation emerging from a pathogen's spread through its host population. We suggest that a much lower management effort could eliminate the disease than that currently in operation. This is supported by empirical evidence from historic field data. Adapting control measures to the new prediction would save one-third of resources in future control programmes. The reason for the lower prediction is the spatial structure formed by spreading infections in spatially arranged host populations. It is not the result of technical differences between models. Synthesis and applications. For diseases predominantly transmitted by neighbourhood interaction, our findings suggest that the emergence of spatial structures facilitates eradication. This may have substantial implications for the cost-effectiveness of existing disease management schemes, and suggests that when planning management strategies consideration must be given to methods that reflect the spatial nature of the pathogen–host system. PMID:18784795

  15. Mechanism of unassisted ion transport across membrane bilayers

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  16. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for -1 ribosomal frameshifting stimulation

    NASA Astrophysics Data System (ADS)

    Zhong, Zhensheng; Yang, Lixia; Zhang, Haiping; Shi, Jiahao; Vandana, J. Jeya; Lam, Do Thuy Uyen Ha; Olsthoorn, René C. L.; Lu, Lanyuan; Chen, Gang

    2016-12-01

    Minus-one ribosomal frameshifting is a translational recoding mechanism widely utilized by many RNA viruses to generate accurate ratios of structural and catalytic proteins. An RNA pseudoknot structure located in the overlapping region of the gag and pro genes of Simian Retrovirus type 1 (SRV-1) stimulates frameshifting. However, the experimental characterization of SRV-1 pseudoknot (un)folding dynamics and the effect of the base triple formation is lacking. Here, we report the results of our single-molecule nanomanipulation using optical tweezers and theoretical simulation by steered molecular dynamics. Our results directly reveal that the energetic coupling between loop 2 and stem 1 via minor-groove base triple formation enhances the mechanical stability. The terminal base pair in stem 1 (directly in contact with a translating ribosome at the slippery site) also affects the mechanical stability of the pseudoknot. The -1 frameshifting efficiency is positively correlated with the cooperative one-step unfolding force and inversely correlated with the one-step mechanical unfolding rate at zero force. A significantly improved correlation was observed between -1 frameshifting efficiency and unfolding rate at forces of 15-35 pN, consistent with the fact that the ribosome is a force-generating molecular motor with helicase activity. No correlation was observed between thermal stability and -1 frameshifting efficiency.

  17. Helix formation and stability in membranes.

    PubMed

    McKay, Matthew J; Afrose, Fahmida; Koeppe, Roger E; Greathouse, Denise V

    2018-02-13

    In this article we review current understanding of basic principles for the folding of membrane proteins, focusing on the more abundant alpha-helical class. Membrane proteins, vital to many biological functions and implicated in numerous diseases, fold into their active conformations in the complex environment of the cell bilayer membrane. While many membrane proteins rely on the translocon and chaperone proteins to fold correctly, others can achieve their functional form in the absence of any translation apparatus or other aides. Nevertheless, the spontaneous folding process is not well understood at the molecular level. Recent findings suggest that helix fraying and loop formation may be important for overall structure, dynamics and regulation of function. Several types of membrane helices with ionizable amino acids change their topology with pH. Additionally we note that some peptides, including many that are rich in arginine, and a particular analogue of gramicidin, are able passively to translocate across cell membranes. The findings indicate that a final protein structure in a lipid-bilayer membrane is sequence-based, with lipids contributing to stability and regulation. While much progress has been made toward understanding the folding process for alpha-helical membrane proteins, it remains a work in progress. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation?

    PubMed

    Iborra, Francisco J

    2007-04-12

    The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin) scattered within domains rich in fast components (protein/RNA). Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.

  19. A DFT+U investigation of hydrogen adsorption on the LaFeO3(010) surface.

    PubMed

    Boateng, Isaac W; Tia, Richard; Adei, Evans; Dzade, Nelson Y; Catlow, C Richard A; de Leeuw, Nora H

    2017-03-08

    The ABO 3 perovskite lanthanum ferrite (LaFeO 3 ) is a technologically important electrode material for nickel-metal hydride batteries, energy storage and catalysis. However, the electrochemical hydrogen adsorption mechanism on LaFeO 3 surfaces remains under debate. In the present study, we have employed spin-polarized density functional theory calculations, with the Hubbard U correction (DFT+U), to unravel the adsorption mechanism of H 2 on the LaFeO 3 (010) surface. We show from our calculated adsorption energies that the preferred site for H 2 adsorption is the Fe-O bridge site, with an adsorption energy of -1.18 eV (including the zero point energy), which resulted in the formation of FeOH and FeH surface species. H 2 adsorption at the surface oxygen resulted in the formation of a water molecule, which leaves the surface to create an oxygen vacancy. The H 2 molecule is found to interact weakly with the Fe and La sites, where it is only physisorbed. The electronic structures of the surface-adsorption systems are discussed via projected density of state and Löwdin population analyses. The implications of the calculated adsorption strengths and structures are discussed in terms of the improved design of nickel-metal hydride (Ni-MH) battery prototypes based on LaFeO 3 .

  20. Influence of Aluminium and EGCG on Fibrillation and Aggregation of Human Islet Amyloid Polypeptide

    PubMed Central

    Xu, Zhi-Xue; Zhang, Qiang; Ma, Gong-Li; Chen, Cong-Heng; He, Yan-Ming; Xu, Li-Hui; Zhang, Yuan; Zhou, Guang-Rong; Li, Zhen-Hua

    2016-01-01

    The abnormal fibrillation of human islet amyloid polypeptide (hIAPP) has been implicated in the development of type II diabetes. Aluminum is known to trigger the structural transformation of many amyloid proteins and induce the formation of toxic aggregate species. The (−)-epigallocatechin gallate (EGCG) is considered capable of binding both metal ions and amyloid proteins with inhibitory effect on the fibrillation of amyloid proteins. However, the effect of Al(III)/EGCG complex on hIAPP fibrillation is unclear. In the present work, we sought to view insight into the structures and properties of Al(III) and EGCG complex by using spectroscopic experiments and quantum chemical calculations and also investigated the influence of Al(III) and EGCG on hIAPP fibrillation and aggregation as well as their combined interference on this process. Our studies demonstrated that Al(III) could promote fibrillation and aggregation of hIAPP, while EGCG could inhibit the fibrillation of hIAPP and lead to the formation of hIAPP amorphous aggregates instead of the ordered fibrils. Furthermore, we proved that the Al(III)/EGCG complex in molar ratio of 1 : 1 as Al(EGCG)(H2O)2 could inhibit the hIAPP fibrillation more effectively than EGCG alone. The results provide the invaluable reference for the new drug development to treat type II diabetes. PMID:28074190

Top