46 CFR 154.178 - Contiguous hull structure: Heating system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Heating system. 154.178... Equipment Hull Structure § 154.178 Contiguous hull structure: Heating system. The heating system for transverse and longitudinal contiguous hull structure must: (a) Be shown by a heat load calculation to have...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Parida, Pritish R.
Systems and methods for cooling include one or more computing structure, an inter-structure liquid cooling system that includes valves configured to selectively provide liquid coolant to the one or more computing structures; a heat rejection system that includes one or more heat rejection units configured to cool liquid coolant; and one or more liquid-to-liquid heat exchangers that include valves configured to selectively transfer heat from liquid coolant in the inter-structure liquid cooling system to liquid coolant in the heat rejection system. Each computing structure further includes one or more liquid-cooled servers; and an intra-structure liquid cooling system that has valvesmore » configured to selectively provide liquid coolant to the one or more liquid-cooled servers.« less
Provisioning cooling elements for chillerless data centers
Chainer, Timothy J.; Parida, Pritish R.
2016-12-13
Systems and methods for cooling include one or more computing structure, an inter-structure liquid cooling system that includes valves configured to selectively provide liquid coolant to the one or more computing structures; a heat rejection system that includes one or more heat rejection units configured to cool liquid coolant; and one or more liquid-to-liquid heat exchangers that include valves configured to selectively transfer heat from liquid coolant in the inter-structure liquid cooling system to liquid coolant in the heat rejection system. Each computing structure further includes one or more liquid-cooled servers; and an intra-structure liquid cooling system that has valves configured to selectively provide liquid coolant to the one or more liquid-cooled servers.
Provisioning cooling elements for chillerless data centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Parida, Pritish R.
Systems and methods for cooling include one or more computing structure, an inter-structure liquid cooling system that includes valves configured to selectively provide liquid coolant to the one or more computing structures; a heat rejection system that includes one or more heat rejection units configured to cool liquid coolant; and one or more liquid-to-liquid heat exchangers that include valves configured to selectively transfer heat from liquid coolant in the inter-structure liquid cooling system to liquid coolant in the heat rejection system. Each computing structure further includes one or more liquid-cooled servers; and an intra-structure liquid cooling system that has valvesmore » configured to selectively provide liquid coolant to the one or more liquid-cooled servers.« less
Carbon nanotube heat-exchange systems
Hendricks, Terry Joseph; Heben, Michael J.
2008-11-11
A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).
Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems
NASA Technical Reports Server (NTRS)
Gibson, Marc; Sanzi, James; Locci, Ivan
2013-01-01
Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.
Axial flow heat exchanger devices and methods for heat transfer using axial flow devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferredmore » across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.« less
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1981-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1980-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.
Heat exchanger device and method for heat removal or transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P
2015-03-24
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P [San Ramon, CA
2012-07-24
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P
2013-12-10
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat exchanger device and method for heat removal or transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
2015-12-08
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Structural heat pipe. [for spacecraft wall thermal insulation system
NASA Technical Reports Server (NTRS)
Ollendorf, S. (Inventor)
1974-01-01
A combined structural reinforcing element and heat transfer member is disclosed for placement between a structural wall and an outer insulation blanket. The element comprises a heat pipe, one side of which supports the outer insulation blanket, the opposite side of which is connected to the structural wall. Heat penetrating through the outer insulation blanket directly reaches the heat pipe and is drawn off, thereby reducing thermal gradients in the structural wall. The element, due to its attachment to the structural wall, further functions as a reinforcing member.
NASA Technical Reports Server (NTRS)
Khattar, Mukesh K. (Inventor)
1990-01-01
The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.
Enhanced two phase flow in heat transfer systems
Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D
2013-12-03
A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.
Development of a Conceptual Structure for Architectural Solar Energy Systems.
ERIC Educational Resources Information Center
Ringel, Robert F.
Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…
Preliminary Development of a Multifunctional Hot Structure Heat Shield
NASA Technical Reports Server (NTRS)
Walker, Sandra P.; Daryabeigi, Kamran; Samareh, Jamshid A.; Armand, Sasan C.; Perino, Scott V
2014-01-01
Development of a Multifunctional Hot Structure Heat Shield concept has initiated with the goal to provide advanced technology with significant benefits compared to the current state of the art heat shield technology. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heat shield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation has been sized for use underneath the hot structure to maintain desired internal temperatures. The approach was to develop a preliminary design to demonstrate feasibility of the concept. The preliminary results indicate that the concept has the potential to save both mass and volume with significantly less recession compared to traditional heat shield designs, and thus provide potential to enable new planetary missions.
Fusing Multiple Satellite Datasets Toward Defining and Understanding Organized Convection
NASA Astrophysics Data System (ADS)
Elsaesser, G.; Del Genio, A. D.
2017-12-01
How do we differentiate unorganized from organized convection? We might think of organized convection as being long lasting (at least longer than the lifetime of any individual cumulus cell), clustered at larger spatial scales (>100 km), and responsible for substantial rainfall accumulation. Organized convection is sustained on such scales due to the arrangement of moist/dry and buoyant/non-buoyant mesoscale circulations. The nature of these circulations is tied to system diabatic heating profiles; in particular, the 2nd baroclinic (top-heavy), stratiform heating mode is thought to be important for organized convection maintenance/propagation. We investigate the extent to which these characteristics are jointly found in propagating convective systems. Lifecycle information comes from hi-res IR data. Diabatic heating profiles, convective fractions and rainfall are provided by GPM retrievals mapped to convective system tracks. Moisture is provided by AIRS/AMSU and passive microwave retrievals. Instead of compositing heating profile information along a system track, where information is smoothed out, we sort system heating profile structures according to their "top heaviness" and then analyze PDFs of system rainfall, system sizes, durations, convective/stratiform ratios, etc. as a function of diabatic heating structure. Perhaps contrary to expectation, we find only small differences in PDFs of rainfall rates, system sizes, and system duration for different heating profile structures. If organization is defined according to heating structures, then one possible interpretation of these results is that organization is independent of system size, duration, and many times, even lifecycle stage. Is it possible that most systems "hobble" along and exhibit varying degrees of organization, dependent on local environment moisture/buoyancy variations, unlike the archetypical MCS paradigm? This presentation will also discuss the questions posed above within the context of parameterizing organized convection in the GISS GCM. GCMs must make/sustain the right heating profile at the right time, which requires observations-based understanding of such distinctions. Such knowledge is important for simulating and understanding the deep convective contribution to cloud feedback in a changing climate.
Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel
Anton, Donald L.; Lemkey, Franklin D.
1988-01-01
A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.
Passive cooling system for nuclear reactor containment structure
Gou, Perng-Fei; Wade, Gentry E.
1989-01-01
A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.
Integral Radiator and Storage Tank
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Miller, John R.; Jakupca, Ian; Sargi,Scott
2007-01-01
A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0.85. The composite wrap remained tightly bound to the surface of the tank throughout the testing in thermal vacuum conditions.
Natural circulating passive cooling system for nuclear reactor containment structure
Gou, Perng-Fei; Wade, Gentry E.
1990-01-01
A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.
Developing a Procedure for Segmenting Meshed Heat Networks of Heat Supply Systems without Outflows
NASA Astrophysics Data System (ADS)
Tokarev, V. V.
2018-06-01
The heat supply systems of cities have, as a rule, a ring structure with the possibility of redistributing the flows. Despite the fact that a ring structure is more reliable than a radial one, the operators of heat networks prefer to use them in normal modes according to the scheme without overflows of the heat carrier between the heat mains. With such a scheme, it is easier to adjust the networks and to detect and locate faults in them. The article proposes a formulation of the heat network segmenting problem. The problem is set in terms of optimization with the heat supply system's excessive hydraulic power used as the optimization criterion. The heat supply system computer model has a hierarchically interconnected multilevel structure. Since iterative calculations are only carried out for the level of trunk heat networks, decomposing the entire system into levels allows the dimensionality of the solved subproblems to be reduced by an order of magnitude. An attempt to solve the problem by fully enumerating possible segmentation versions does not seem to be feasible for systems of really existing sizes. The article suggests a procedure for searching rational segmentation of heat supply networks with limiting the search to versions of dividing the system into segments near the flow convergence nodes with subsequent refining of the solution. The refinement is performed in two stages according to the total excess hydraulic power criterion. At the first stage, the loads are redistributed among the sources. After that, the heat networks are divided into independent fragments, and the possibility of increasing the excess hydraulic power in the obtained fragments is checked by shifting the division places inside a fragment. The proposed procedure has been approbated taking as an example a municipal heat supply system involving six heat mains fed from a common source, 24 loops within the feeding mains plane, and more than 5000 consumers. Application of the proposed segmentation procedure made it possible to find a version with required hydraulic power in the heat supply system on 3% less than the one found using the simultaneous segmentation method.
Flightweight radiantly and actively cooled panel: Thermal and structural performance
NASA Technical Reports Server (NTRS)
Shore, C. P.; Nowak, R. J.; Kelly, H. N.
1982-01-01
A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft2-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel.
Emergency heat removal system for a nuclear reactor
Dunckel, Thomas L.
1976-01-01
A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.
Safe Affordable Fission Engine-(SAFE-) 100a Heat Exchanger Thermal and Structural Analysis
NASA Technical Reports Server (NTRS)
Steeve, B. E.
2005-01-01
A potential fission power system for in-space missions is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, a heat exchanger (HX) transfers the heat of the reactor core to the Brayton gas. The Safe Affordable Fission Engine- (SAFE-) 100a is a test program designed to thermally and hydraulically simulate a 95 Btu/s prototypic heat pipe-cooled reactor using electrical resistance heaters on the ground. This Technical Memorandum documents the thermal and structural assessment of the HX used in the SAFE-100a program.
NASA Astrophysics Data System (ADS)
Gao, Xin; Chen, Min; Snyder, G. Jeffrey; Andreasen, Søren Juhl; Kær, Søren Knudsen
2013-07-01
To better manage the magnitude and direction of the heat flux in an exchanger-based methanol evaporator of a fuel cell system, thermoelectric (TE) modules can be deployed as TE heat flux regulators (TERs). The performance of the TE-integrated evaporator is strongly influenced by its heat exchange structure. The structure transfers the fuel cell exhaust heat to the evaporation chamber to evaporate the methanol, where TE modules are installed in between to facilitate the heat regulation. In this work, firstly, a numerical study is conducted to determine the working currents and working modes of the TERs under the system working condition fluctuations and during the system cold start. A three-dimensional evaporator model is generated in ANSYS FLUENT® by combining a compact TE model with various heat exchange structure geometries. The compact TE model can dramatically improve the computational efficiency, and uses a different material property acquisition method based on module manufacturers' datasheets. Secondly, a simulation study is carried out on the novel evaporator to minimize its thermal resistance and to assess the evaporator pressure drop. The factors studied include the type of fins in the heat exchange structure, the thickness of the fins, the axial conduction penalty, etc. Results show that the TE-integrated evaporator can work more efficiently and smoothly during both load fluctuations and system cold start, offering superior performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.
An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and alsomore » cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.« less
NASA Astrophysics Data System (ADS)
Jurčišinová, E.; Jurčišin, M.
2018-05-01
We investigate in detail the process of formation of the multipeak low-temperature structure in the behavior of the specific heat capacity in frustrated magnetic systems in the framework of the exactly solvable antiferromagnetic spin-1 /2 Ising model with the multisite interaction in the presence of the external magnetic field on the kagome-like Husimi lattice. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. It is shown that the multipeak structure in the behavior of the specific heat capacity is related to the formation of the multilevel hierarchical ordering in the system of all ground states of the model. Direct relation between the maximal number of peaks in the specific heat capacity behavior and the number of independent interactions in studied frustrated magnetic system is identified. The mechanism of the formation of the multipeak structure in the specific heat capacity is described and studied in detail, and it is generalized to frustrated magnetic systems with arbitrary numbers of independent interactions.
Computational Aspects of Heat Transfer in Structures
NASA Technical Reports Server (NTRS)
Adelman, H. M. (Compiler)
1982-01-01
Techniques for the computation of heat transfer and associated phenomena in complex structures are examined with an emphasis on reentry flight vehicle structures. Analysis methods, computer programs, thermal analysis of large space structures and high speed vehicles, and the impact of computer systems are addressed.
Multidisciplinary System Reliability Analysis
NASA Technical Reports Server (NTRS)
Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)
2001-01-01
The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.
Multi-Disciplinary System Reliability Analysis
NASA Technical Reports Server (NTRS)
Mahadevan, Sankaran; Han, Song
1997-01-01
The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.
Exhaust heated hydrogen and oxygen producing catalytic converter for combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, E.T.
1977-07-26
A steam generator is provided in operative association with a source of water and the exhaust system of a combustion engine including an air induction system provided with primary fuel inlet structure and supplemental fuel inlet structure. The steam generator derives its heat for converting water into steam from the exhaust system of the combustion engine and the steam generator includes a steam outlet communicated with and opening into one end of an elongated tubular housing disposed in good heat transfer relation with the exhaust system of the combustion engine and having a gas outlet at its other end communicatedmore » with the supplemental fuel inlet of the induction system. The tubular housing has iron filings disposed therein and is in such heat transfer relation with the exhaust system of the combustion engine so as to elevate the temperature of steam passing therethrough and to heat the iron filings to the extent that passage of the heated steam over the heated filings will result in hydrogen and oxygen gas being produced in the tubular housing for subsequent passage to the supplemental fuel inlet of the combustion engine induction system.« less
Effect of working fluids on thermal performance of closed loop pulsating heat pipe
NASA Astrophysics Data System (ADS)
Kolková, Zuzana; Malcho, Milan
2014-08-01
Improving the performance of electrical components needs higher heat removal from these systems. One of the solutions available is to use a sealed heat pipe with a throbbing filling, where development meets the current requirements for intensification of heat removal and elimination of moving parts cooling systems. Heat pipes operate using phase change working fluid, and it is evaporation and condensation. They have a meandering shape and are characterized by high intensity of heat transfer, high durability and reliability. Advantage of these tubes is that it is not necessary to create the internal capillary structure for transporting liquid and they need any pump to the working fluid circulation. They have a simple structure, low cost, high performance, and they can be used for various structural applications. The choice of working fluid volume and performance affects thermal performance. Distilled water, ethanol and acetone were used in the performance ranges 0-80%.
Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system
Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E
2015-11-10
Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system
Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E
2015-05-12
Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
NASA Technical Reports Server (NTRS)
Cooper, Kenneth (Inventor); Chou, Yuag-Shan (Inventor)
2017-01-01
Systems and methods are provided for designing and fabricating contact-free support structures for overhang geometries of parts fabricated using electron beam additive manufacturing. One or more layers of un-melted metallic powder are disposed in an elongate gap between an upper horizontal surface of the support structure and a lower surface of the overhang geometry. The powder conducts heat from the overhang geometry to the support structure. The support structure acts as a heat sink to enhance heat transfer and reduce the temperature and severe thermal gradients due to poor thermal conductivity of metallic powders underneath the overhang. Because the support structure is not connected to the part, the support structure can be removed freely without any post-processing step.
Structural Mineral Physics at Extreme Conditions
NASA Astrophysics Data System (ADS)
Chariton, S.; Dubrovinsky, L. S.; Dubrovinskaia, N.
2017-12-01
Laser heating techniques in diamond anvil cells (DACs) cover a wide pressure-temperature range - above 300 GPa and up to 5000 K. Recent advantages in on-line laser heating techniques resulted in a significant improvement of reliability of in situ X-ray powder diffraction studies in laser-heated DACs, which have become routine at a number of synchrotron facilities including specialized beam-lines at the 3rd generation synchrotrons. However, until recently, existing DAC laser-heating systems could not be used for structural X-ray diffraction studies aimed at structural refinements, i.e. measuring of the diffraction intensities, and not only at determining of lattice parameters. The reason is that in existing DAC laser-heating facilities the laser beam enters the cell at a fixed angle, and a partial rotation of the DAC, as required in monochromatic structural X-ray diffraction experiments, results in a loss of the target crystal and may be even dangerous if the powerful laser light starts to scatter in arbitrary directions by the diamond anvils. In order to overcome this problem we have develop a portable laser heating system and implement it at different diffraction beam lines. We demonstrate the application of this system for simultaneous high-pressure and high-temperature powder and single crystal diffraction studies using examples of studies of chemical and phase relations in the Fe-O system, transition metals carbonates, and silicate perovskites.
Phononic heat transport in nanomechanical structures: steady-state and pumping
NASA Astrophysics Data System (ADS)
Sena-Junior, Marcone I.; Lima, Leandro R. F.; Lewenkopf, Caio H.
2017-10-01
We study the heat transport due to phonons in nanomechanical structures using a phase space representation of non-equilibrium Green’s functions. This representation accounts for the atomic degrees of freedom making it particularly suited for the description of small (molecular) junctions systems. We rigorously show that for the steady state limit our formalism correctly recovers the heuristic Landauer-like heat conductance for a quantum coherent molecular system coupled to thermal reservoirs. We find general expressions for the non-stationary heat current due to an external periodic drive. In both cases we discuss the quantum thermodynamic properties of the systems. We apply our formalism to the case of a diatomic molecular junction.
NASA Technical Reports Server (NTRS)
Chang, C. I.
1989-01-01
An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.
Aerothermal performance and structural integrity of a Rene 41 thermal protection system at Mach 6.6
NASA Technical Reports Server (NTRS)
Deveikis, W. D.; Miserentino, R.; Weinstein, I.; Shideler, J. L.
1975-01-01
A flightweight panel based on a metallic thermal-protection-system concept for hypersonic and reentry vehicles was subjected repeatedly to thermal cycling by quartz-lamp radiant heating using a thermal history representative of a reentry heat pulse and to aerodynamic heating at heating rates required to sustain a surface temperature of 1089 K (1960 R). The panel consisted of a corrugated heat shield and support members of 0.05-cm (0.02-in.) thick Rene 41 of riveted construction and 5.08-cm (2-in.) thick silica fibrous insulation packages covered by Rene 41 foil and inconel screening. All tests were conducted in the Langley 8-foot high-temperature structures tunnel with the heat shield corrugations alined in the stream direction. The panel sustained 5.33 hr of intermittent radiant heating and 6.5 min of intermittent aerodynamic heating of up to 1-min duration for differential pressures up to 6.2 kPa (0.9 psi) with no apparent degradation of thermal or structural integrity, as indicated by temperature distributions and results from load deflection tests and vibration surveys of natural frequencies.
Method of fabricating composite structures
NASA Technical Reports Server (NTRS)
Sigur, W. A. (Inventor)
1990-01-01
A method of fabricating structures formed from composite materials by positioning the structure about a high coefficient of thermal expansion material, wrapping a graphite fiber overwrap about the structure, and thereafter heating the assembly to expand the high coefficient of thermal expansion material to forcibly compress the composite structure against the restraint provided by the graphite overwrap. The high coefficient of thermal expansion material is disposed about a mandrel with a release system therebetween, and with a release system between the material having the high coefficient of thermal expansion and the composite material, and between the graphite fibers and the composite structure. The heating may occur by inducing heat into the assembly by a magnetic field created by coils disposed about the assembly through which alternating current flows. The method permits structures to be formed without the use of an autoclave.
Method of fabricating composite structures
NASA Technical Reports Server (NTRS)
Sigur, Wanda A. (Inventor)
1992-01-01
A method of fabricating structures formed from composite materials by positioning the structure about a high coefficient of thermal expansion material, wrapping a graphite fiber overwrap about the structure, and thereafter heating the assembly to expand the high coefficient of thermal expansion material to forcibly compress the composite structure against the restraint provided by the graphite overwrap. The high coefficient of thermal expansion material is disposed about a mandrel with a release system therebetween, and with a release system between the material having the high coefficient of thermal expansion and the composite material, and between the graphite fibers and the composite structure. The heating may occur by inducing heat into the assembly by a magnetic field created by coils disposed about the assembly through which alternating current flows. The method permits structures to be formed without the use of an autoclave.
LIGHTWEIGHT GREEN ROOF SYSTEMS
Applying a Lightweight Green Roof System to a building can achieve in managing storm water runoff, decreasing heat gain, yielding energy savings, and mitigating the heat island effect. Currently, Most green roof systems are considerably heavy and require structural reinforceme...
Solar hot water space heating system. Technical progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Dam, T
1979-08-13
A retrofit solar heating system was installed on Madison Hall at Jordan College, Cedar Springs, Michigan. The system provides heating and domestic water preheating for a campus dormitory. Freeze protection is provided by a draindown system. The building and solar system, construction progress, and design changes are described. Included in appendices are: condensate trap design, structural analysis, pictures of installation, operating instructions, maintenance instructions, and as-built drawings. (MHR)
Heat transport system, method and material
Musinski, Donald L.
1987-01-01
A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.
Local Thermometry of Neutral Modes on the Quantum Hall Edge
NASA Astrophysics Data System (ADS)
Hart, Sean; Venkatachalam, Vivek; Pfeiffer, Loren; West, Ken; Yacoby, Amir
2012-02-01
A system of electrons in two dimensions and strong magnetic fields can be tuned to create a gapped 2D system with one dimensional channels along the edge. Interactions among these edge modes can lead to independent transport of charge and heat, even in opposite directions. Measuring the chirality and transport properties of these charge and heat modes can reveal otherwise hidden structure in the edge. Here, we heat the outer edge of such a quantum Hall system using a quantum point contact. By placing quantum dots upstream and downstream along the edge of the heater, we can measure both the chemical potential and temperature of that edge to study charge and heat transport, respectively. We find that charge is transported exclusively downstream, but heat can be transported upstream when the edge has additional structure related to fractional quantum Hall physics.
High performance felt-metal-wick heat pipe for solar receivers
NASA Astrophysics Data System (ADS)
Andraka, Charles E.; Moss, Timothy A.; Baturkin, Volodymyr; Zaripov, Vladlen; Nishchyk, Oleksandr
2016-05-01
Sodium heat pipes have been identified as a potentially effective heat transport approach for CSP systems that require near-isothermal input to power cycles or storage, such as dish Stirling and highly recuperated reheat-cycle supercritical CO2 turbines. Heat pipes offer high heat flux capabilities, leading to small receivers, as well as low exergetic losses through isothermal coupling with the engine. Sandia developed a felt metal wick approach in the 1990's, and demonstrated very high performance1. However, multiple durability issues arose, primarily the structural collapse of the wick at temperature over short time periods. NTUU developed several methods of improving robustness of the wick2, but the resulting wick had limited performance capabilities. For application to CSP systems, the wick structures must retain high heat pipe performance with robustness for long term operation. In this paper we present our findings in developing an optimal balance between performance and ruggedness, including operation of a laboratory-scale heat pipe for over 5500 hours so far. Application of heat pipes to dish-Stirling systems has been shown to increase performance as much as 20%3, and application to supercritical CO2 systems has been proposed.
Evaporation on/in Capillary Structures of High Heat Flux Two-Phase Devices
NASA Technical Reports Server (NTRS)
Faghri, Amir; Khrustalev, Dmitry
1996-01-01
Two-phase devices (heat pipes, capillary pumped loops, loop heat pipes, and evaporators) have become recognized as key elements in thermal control systems of space platforms. Capillary and porous structures are necessary and widely used in these devices, especially in high heat flux and zero-g applications, to provide fluid transport and enhanced heat transfer during vaporization and condensation. However, some unexpected critical phenomena, such as dryout in long heat pipe evaporators and high thermal resistance of loop heat pipe evaporators with high heat fluxes, are possible and have been encountered in the use of two-phase devices in the low gravity environment. Therefore, a detailed fundamental investigation is proposed to better understand the fluid behavior in capillary-porous structures during vaporization at high heat fluxes. The present paper addresses some theoretical aspects of this investigation.
Method and apparatus for preloading a joint by remotely operable means
NASA Technical Reports Server (NTRS)
Kahn, Jon B. (Inventor)
1993-01-01
The invention is a method and apparatus for joining structures, an active structure and a passive structure, and imposing a tensile pre-load on the joint by a remotely operable mechanism comprising a heat contractible joining element. The method and apparatus include mounting on the structure, a probe shaft of material which is transformable from an expanded length to a contracted length when heated to a specific temperature range. The shaft is provided with a probe head which is receivable in a receptacle opening formed in the passive structure, when the active structure is moved into engagement therewith by an appropriate manipulator mechanism. A latching system mounted on the structure adjacent to the receptacle opening captures the probe head, when the probe head is inserted a predetermined amount. A heating coil on the shaft is energizable by remote control for heating the shaft to a temperature range which transforms the shaft to its contracted length, whereby a latching shoulder thereof engages latching elements of the latching system and imposes a tensile preload on the structural joint. Provision is also made for manually adjusting the probe head on the shaft to allow for manual detachment of the structures or manual preloading of the structural joint.
Method and apparatus for preloading a joint by remotely operable means
NASA Technical Reports Server (NTRS)
Shelton, Robert O. (Inventor)
1992-01-01
The invention is a method and apparatus for joining structures, an active structure and a passive structure, and imposing a tensile pre-load on the joint by a remotely operable mechanism comprising a heat contractible joining element. The method and apparatus include mounting on the structure, a probe shaft of material which is transformable from an expanded length to a contracted length when heated to a specific temperature range. The shaft is provided with a probe head which is receivable in a receptacle opening formed in the passive structure, when the active structure is moved into engagement therewith by an appropriate manipulator mechanism. A latching system mounted on the structure adjacent to the receptacle opening captures the probe head, when the probe head is inserted a predetermined amount. A heating coil on the shaft is energizable by remote control for heating the shaft to a temperature range which transforms the shaft to its contracted length, whereby a latching shoulder thereof engages latching elements of the latching system and imposes a tensile preload on the structural joint. Provision is also made for manually adjusting the probe head on the shaft to allow for manual detachment of the structures or manual preloading of the structural joint.
Space shuttle heat pipe thermal control systems
NASA Technical Reports Server (NTRS)
Alario, J.
1973-01-01
Heat pipe (HP) thermal control systems designed for possible space shuttle applications were built and tested under this program. They are: (1) a HP augmented cold rail, (2) a HP/phase change material (PCM) modular heat sink and (3) a HP radiating panel for compartment temperature control. The HP augmented cold rail is similar to a standard two-passage fluid cold rail except that it contains an integral, centrally located HP throughout its length. The central HP core helps to increase the local power density capability by spreading concentrated heat inputs over the entire rail. The HP/PCM modular heat sink system consists of a diode HP connected in series to a standard HP that has a PCM canister attached to its mid-section. It is designed to connect a heat source to a structural heat sink during normal operation, and to automatically decouple from it and sink to the PCM whenever structural temperatures are too high. The HP radiating panel is designed to conductively couple the panel feeder HPs directly to a fluid line that serves as a source of waste heat. It is a simple strap-on type of system that requires no internal or external line modifications to distribute the heat to a large radiating area.
NASA Technical Reports Server (NTRS)
Taylor, A. H.; Jackson, L. R.; Weinstein, I.
1977-01-01
Three thermal protection systems proposed for a hypersonic research airplane were subjected to high heating rates in the Langley 8 foot, high temperature structures tunnel. Metallic heat sink (Lockalloy), reusable surface insulation, and insulator-ablator materials were each tested under similar conditions. The specimens were tested for a 10 second exposure on the windward side of an elevon deflected 30 deg. The metallic heat sink panel exhibited no damage; whereas the reusable surface insulation tiles were debonded from the panel and the insulator-ablator panel eroded through its thickness, thus exposing the aluminum structure to the Mach 7 environment.
Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari
2009-01-01
The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.
Heat transport system, method and material
Musinski, D.L.
1987-04-28
A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.
Guo, Z.; Zweibaum, N.; Shao, M.; ...
2016-04-19
The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Z.; Zweibaum, N.; Shao, M.
The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less
Cipolla, Thomas M [Katonah, NY; Colgan, Evan George [Chestnut Ridge, NY; Coteus, Paul W [Yorktown Heights, NY; Hall, Shawn Anthony [Pleasantville, NY; Tian, Shurong [Mount Kisco, NY
2011-12-20
A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.
Membrane-lined foundations for liquid thermal storage
NASA Astrophysics Data System (ADS)
Bourne, R. C.
1981-06-01
The membrane lined storage (MLS) container which is a spinoff of vinyl-lined swimming pool and waterbed technologies was developed. The state of development of MLS was evaluated and concepts for MLS structural and heat transfer systems were improved. Preferred structural supports were identified and designed for 1500 gal MLS containers for basement, crawl space, and slab-on-grade foundation types. Techniques are developed to provide space heating via forced air through a finned storage jacket for the two preferred structural enclosure designs. Cost effectiveness of the direct air heating technique is evaluated. Alternate free convection domestic water preheaters and a preferred heat exchanger material is selected. Collector and space heat inlet/outlet designs, design concepts for auxiliary heat input to MLS from resistance electric, combustion, and heat pump sources are developed.
Heat removal from bipolar transistor by loop heat pipe with nickel and copper porous structures.
Nemec, Patrik; Smitka, Martin; Malcho, Milan
2014-01-01
Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made.
Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures
Smitka, Martin; Malcho, Milan
2014-01-01
Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622
Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)
NASA Technical Reports Server (NTRS)
Johnson, Wesley L.; Valenzuela, Juan G.; Feller, Jerr; Plachta, Dave
2014-01-01
The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing both thermally and structurally were performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.
Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)
NASA Technical Reports Server (NTRS)
Johnson, Wesley L.; Valenzuela, Juan G.; Feller, Jeffrey R.; Plachta, David W.
2014-01-01
The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing, both thermal and structural was performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.
Materials and structures for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Tenney, Darrel R.; Lisagor, W. Barry; Dixon, Sidney C.
1988-01-01
Hypersonic vehicles are envisioned to require, in addition to carbon-carbon and ceramic-matrix composities for leading edges heated to above 2000 F, such 600 to 1800 F operating temperature materials as advanced Ti alloys, nickel aluminides, and metal-matrix composited; These possess the necessary low density and high strength and stiffness. The primary design drivers are maximum vehicle heating rate, total heat load, flight envelope, propulsion system type, mission life requirements and liquid hydrogen containment systems. Attention is presently given to aspects of these materials and structures requiring more intensive development.
NASA Astrophysics Data System (ADS)
Kothari, Rushabh M.
Multifunctional structures are a new trend in the aerospace industry for the next generation structural design. Many future structures are expected to be something in addition to a load bearing structure. The design and analysis of multifunctional structures combining structural, electrical and thermal functionalities are presented here. The sandwich beam is considered as a starting point for the load bearing structure and then it is modified with a cavity to embed avionics and thermal controls. The embedded avionics inside the load bearing structure would allow weight reduction of the aerospace vehicle due to elimination of separate electronics housing, interconnects, cables etc. The cavity reduces strength of the structure so various reinforcements methods are evaluated. The result of various reinforcements and their effectiveness are presented. The current generation of electronics produce massive amount of heat. In the case of embedded electronics, the excessive heat presents a major challenge to the structural and heat transfer engineers. The embedded nature of electronics prevents the use of the classical heat dissipative methods such as fans and high velocity air flows, etc. The integrated thermal control of the electronics has been designed using passive heat transfer device and highly optimized particulate composite thermal interface material (TIM). The TIMs are used to fill the air gaps and reduce contact resistance between two surfaces, such as electronics and heat dissipators. The efficiency of TIM directly affects the overall heat transfer ability of the integrated thermal control system. The effect of the particles at micron and nano scales are studied for the particulate composite TIM. The thermal boundary resistance study for the particulate composite TIM with nano silica particles is presented in this thesis. The FEA analysis is used to model thermal boundary resistance and compared with the theoretical micromechanics model. The heat pipes are chosen as a part of passive heat transfer device due to their durability and excellent thermal conductivities. The multifunctional system consisting of all above components is modeled for unmanned aerial vehicle (UAV) at subsonic air speeds to demonstrate the validity of the design.
Thermostructural applications of heat pipes
NASA Technical Reports Server (NTRS)
Peeples, M. E.; Reeder, J. C.; Sontag, K. E.
1979-01-01
The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.
Investigation of Vapor Cooling Enhancements for Applications on Large Cryogenic Systems
NASA Technical Reports Server (NTRS)
Ameen, Lauren; Zoeckler, Joseph
2017-01-01
The need to demonstrate and evaluate the effectiveness of heat interception methods for use on a relevant cryogenic propulsion stage at a system level has been identified. Evolvable Cryogenics (eCryo) Structural Heat Intercept, Insulation and Vibration Evaluation Rig (SHIIVER) will be designed with vehicle specific geometries (SLS Exploration Upper Stage (EUS) as guidance) and will be subjected to simulated space environments. One method of reducing structure-born heat leak being investigated utilizes vapor-based heat interception. Vapor-based heat interception could potentially reduce heat leak into liquid hydrogen propulsion tanks, increasing potential mission length or payload capability. Due to the high number of unknowns associated with the heat transfer mechanism and integration of vapor-based heat interception on a realistic large-scale skirt design, a sub-scale investigation was developed. The sub-project effort is known as the Small-scale Laboratory Investigation of Cooling Enhancements (SLICE). The SLICE aims to study, design, and test sub-scale multiple attachments and flow configuration concepts for vapor-based heat interception of structural skirts. SLICE will focus on understanding the efficiency of the heat transfer mechanism to the boil-off hydrogen vapor by varying the fluid network designs and configurations. Various analyses were completed in MATLAB, Excel VBA, and COMSOL Multiphysics to understand the optimum flow pattern for heat transfer and fluid dynamics. Results from these analyses were used to design and fabricate test article subsections of a large forward skirt with vapor cooling applied. The SLICE testing is currently being performed to collect thermal mechanical performance data on multiple skirt heat removal designs while varying inlet vapor conditions necessary to intercept a specified amount of heat for a given system. Initial results suggest that applying vapor-cooling provides a 50 heat reduction in conductive heat transmission along the skirt to the tank. The information obtained by SLICE will be used by the SHIIVER engineering team to design and implement vapor-based heat removal technology into the SHIIVER forward skirt hardware design.
[Effect of heat treatment on the structure of a Cu-Zn-Al-Ni system dental alloy].
Guastaldi, A C; Adorno, A T; Beatrice, C R; Mondelli, J; Ishikiriama, A; Lacefield, W
1990-01-01
This article characterizes the structural phases present in the copper-based metallic alloy system "Cu-Zn-Al-Ni" developed for dental use, and relates those phases to other properties. The characterization was obtained after casting (using the lost wax process), and after heat treatment. In order to obtain better corrosion resistance by changing the microstructure, the castings were submitted to 30, 45 and 60 minutes of heat treatment at the following temperatures: 750 degrees C, 800 degrees C, and 850 degrees C. The various phases were analyzed using X-ray diffraction and scanning electron microscopy (SEM). The results after heat treatment showed a phase (probably Cu3Al), that could be responsible for the improvement in the alloy's resistance to corrosion as compared to the as-cast structure.
Improving urban district heating systems and assessing the efficiency of the energy usage therein
NASA Astrophysics Data System (ADS)
Orlov, M. E.; Sharapov, V. I.
2017-11-01
The report describes issues in connection with improving urban district heating systems from combined heat power plants (CHPs), to propose the ways for improving the reliability and the efficiency of the energy usage (often referred to as “energy efficiency”) in such systems. The main direction of such urban district heating systems improvement suggests transition to combined heating systems that include structural elements of both centralized and decentralized systems. Such systems provide the basic part of thermal power via highly efficient methods for extracting thermal power plants turbines steam, while peak loads are covered by decentralized peak thermal power sources to be mounted at consumers’ locations, with the peak sources being also reserve thermal power sources. The methodology was developed for assessing energy efficiency of the combined district heating systems, implemented as a computer software product capable of comparatively calculating saving on reference fuel for the system.
Thermal response of Space Shuttle wing during reentry heating
NASA Technical Reports Server (NTRS)
Gong, L.; Ko, W. L.; Quinn, R. D.
1984-01-01
A structural performance and resizing (SPAR) finite element thermal analysis computer program was used in the heat transfer analysis of the space shuttle orbiter that was subjected to reentry aerodynamic heatings. One wing segment of the right wing (WS 240) and the whole left wing were selected for the thermal analysis. Results showed that the predicted thermal protection system (TPS) temperatures were in good agreement with the space transportation system, trajectory 5 (STS-5) flight-measured temperatures. In addition, calculated aluminum structural temperatures were in fairly good agreement with the flight data up to the point of touchdown. Results also showed that the internal free convection had a considerable effect on the change of structural temperatures after touchdown.
Multi-zone cooling/warming garment
NASA Technical Reports Server (NTRS)
Leon, Gloria R. (Inventor); Koscheyev, Victor S. (Inventor); Dancisak, Michael J. (Inventor)
2006-01-01
A thermodynamically efficient garment for cooling and/or heating a human body. The thermodynamic efficiency is provided in part by targeting the heat exchange capabilities of the garment to specific areas and/or structures of the human body. The heat exchange garment includes heat exchange zones and one or more non-heat exchange zones, where the heat exchange zones are configured to correspond to one or more high density tissue areas of the human body when the garment is worn. A system including the garment can be used to exchange heat with the adjacent HD tissue areas under the control of a feedback control system. Sensed physiological parameters received by the feedback control system can be used to adjust the characteristics of heat exchange fluid moving within the heat exchange garment.
Using laser radiation for the formation of capillary structure in flat ceramic heat pipes
NASA Astrophysics Data System (ADS)
Nikolaenko, Yu. E.; Rotner, S. M.
2012-12-01
The possibility of using laser radiation with a wavelength of 1.064 μm for the formation of a capillary structure in the evaporation zone of flat ceramic heat pipes has been experimentally confirmed. Using a technological regime with established parameters, a capillary structure was formed in AlN and Al2O3 ceramic plates with a thickness of 1-2 mm and lateral dimensions of 48 × 60 and 100 × 100 mm, which ensured absorption of heat-transfer fluids (distilled water, ethyl alcohol, acetone) to a height of 100 mm against gravity forces. The thermal resistance of flat ceramic heat pipes with this capillary structure reaches 0.07°C/W, which is quite acceptable for their use as heat sinks in systems of thermal regime control for electronic components and as heat exchange plates for large-size thermoelectric conversion units.
Design and evaluation of active cooling systems for Mach 6 cruise vehicle wings
NASA Technical Reports Server (NTRS)
Mcconarty, W. A.; Anthony, F. M.
1971-01-01
Active cooling systems, which included transpiration, film, and convective cooling concepts, are examined. Coolants included hydrogen, helium, air, and water. Heat shields, radiation barriers, and thermal insulation are considered to reduce heat flow to the cooling systems. Wing sweep angles are varied from 0 deg to 75 deg and wing leading edge radii of 0.05 inch and 2.0 inches are examined. Structural temperatures are varied to allow comparison of aluminum alloy, titanium alloy, and superalloy structural materials. Cooled wing concepts are compared among themselves, and with the uncooled concept on the basis of structural weight, cooling system weight, and coolant weight.
Grover Cleveland School, Boston, Massachusetts. Refurbishment and Status Report.
ERIC Educational Resources Information Center
General Electric Co., Philadelphia, PA.
The solar heating system is a retrofit installation on the roof of the Grover Cleveland Middle School in Boston. The system includes 4,600 square feet of flat plate collectors, a 2,000 gallon solar energy storage tank, plus the required structural steel, piping, insulation, pumps, heat exchangers, and controls to heat the air supplied by two…
New type of heating system for clothes dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoh, K.; Itoh, C.
1995-12-01
The basic technology to improve serviceability and reliability of the electric clothes dryer relies on the heater and heat exchanger. This paper describes the status of stress analysis and the evaluation of reliability for semiconductors consisting of BaTiO{sub 3} for disk-type heat exchangers/heaters with honeycomb openings. If the authors could keep the Curie temperature of the semiconductor lower than the ignition temperature of clothing during the drying cycle, installation of two legally limited thermostats would no longer be required and reliability of the control system could be further improved due to its simplified structure. The heater can be made moremore » compact by designing a honeycomb-type heater/heat exchangers but the structural requirements for the heat exchanger and the heater would conflict. An approximate solution to heater/heat exchanger stress is being sought as a thermal stress issue for an equivalent solid compound disc.« less
Space-based Solar Power: Possible Defense Applications and Opportunities for NRL Contributions
2009-10-23
missions. At the spacecraft system level, a two-phase system can be used to transfer heat from a heat source (such as solar collectors and power...The solar arrays’ position allows them to radiate waste heat from both faces, as in conventional spacecraft practice. Both the antenna structure...Brayton cycle engine heated by a point-focus solar concentrator. NRL worked with NASA Glenn Research Center in developing means to integrate their
Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches
NASA Astrophysics Data System (ADS)
Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo
This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.
Experiments Demonstrate Geothermal Heating Process
ERIC Educational Resources Information Center
Roman, Harry T.
2012-01-01
When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…
NASA Technical Reports Server (NTRS)
Baer, J. W.; Black, W. E.
1974-01-01
The thermal protection system (TPS), designed for incorporation with space shuttle orbiter systems, consists of one primary heat shield thermally and structurally isolated from the test fixture by eight peripheral guard panels, all encompassing an area of approximately 12 sq ft. TPS components include tee-stiffened Cb 752/R-512E heat shields, bi-metallic support posts, panel retainers, and high temperature insulation blankets. The vehicle primary structure was simulated by a titanium skin, frames, and stiffeners. Test procedures, manufacturing processes, and methods of analysis are fully documented. For Vol. 1, see N72-30948; for Vol. 2, see N74-15660.
Thermoelectric System Absorbing Waste Heat from a Steel Ladle
NASA Astrophysics Data System (ADS)
Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.
2018-06-01
China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.
Thermoelectric System Absorbing Waste Heat from a Steel Ladle
NASA Astrophysics Data System (ADS)
Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.
2018-01-01
China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.
Heating and Cooling System Design for a Modern Transportable Container
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Jason E.
Sandia National Laboratories (SNL) has been tasked with the design of a modern transportable container (MTC) for use in high reliability transportation environments. The container is required to transport cargo capable of generating its own heat and operate under the United States’ climatic extremes. In response to these requirements, active heating and cooling is necessary to maintain a controlled environment inside the container. The following thesis project documents the design of an active heating, active cooling, and combined active heating and cooling system (now referred to as active heating and cooling systems) through computational thermal analyses, scoping of commercial systemmore » options, and mechanical integration with the container’s structure.« less
Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system
NASA Astrophysics Data System (ADS)
Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang
2017-02-01
A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.
Data Analysis for Ocean Thermal Energy Conversion (otec)
1979-11-01
the OTEC system consisted of copper heater cylinders which were press fitted to the outside of the heat exchanger tubes. Voltage to the heaters was...INFORMATION The Heat Exchanger Heating task was sponsored by the Department of Energy under Interagency Agreement ET-78-I-O1-3218, Task Number 13218, Work...Panama City, Florida. Test site characterization, cleaning systems, and the physical structure of the OTEC system are discussed briefly. Data sampling
Intra-Sensor Variability Study of two BLS 900 Scintillometers
NASA Astrophysics Data System (ADS)
Thiem, Christina; Mauder, Matthias; Chwala, Christian; Bernhardt, Matthias; Kunstmann, Harald; Schulz, Karsten
2017-04-01
The latent heat flux is an important validation parameter for satellite measurements and a wide variety of hydrological and meteorological numerical models. Scintillometers can provide references for such validations due to their ability to spatially integrate turbulent fluxes. Large-aperture near-infrared scintillometers are capable of determining spatial averages of the structure parameter of temperature and the sensible heat flux over path lengths up to 5 km. One way to derive both sensible and latent heat flux is to use a combined optical and microwave scintillometer system. With only an optical scintillometer and additional measurements of ground heat flux and net radiation, the latent heat flux can be calculated from the residual of the energy balance. Studies have shown, however, that in certain cases measurements from the same types of scintillometers differ due to minute differences in construction. In order to prove the robustness of the measurements of two near-infrared scintillometers for future studies, we compared their observations and validated them by comparison to the sensible heat flux derived from an eddy covariance system. In this study two boundary layer scintillometers (BLS; BLS900, Scintec, Rottenburg, Germany) were installed in a central European valley as part of the TERENO preAlpine observatory during the years 2013 and 2015. An independent measurement of the sensible and latent heat flux was obtained from a permanent eddy covariance system installed in the vicinity of the scintillometer path. The structure parameter of the refractive index and average sensible heat fluxes of both BLS units were compared with each other. In general, the BLS structure parameters correlated very well and the high correlation between the BLS-derived sensible heat fluxes and the eddy covariance-derived sensible heat fluxes encouraged further application of these scintillometers in separate experiments.
NASA Astrophysics Data System (ADS)
Huang, Jie; Li, Piao; Yao, Weixing
2018-05-01
A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.
NASA Technical Reports Server (NTRS)
Ernst, D. M.
1981-01-01
The critical evaluation and subsequent redesign of the power conversion subsystem of the spacecraft are covered. As part of that evaluation and redesign, prototype heat pipe components for the heat rejection system were designed fabricated and tested. Based on the results of these tests in conjunction with changing mission requirements and changing energy conversion devices, new system designs were investigated. The initial evaluation and redesign was based on state-of-the-art fabrication and assembly techniques for high temperature liquid metal heat pipes and energy conversion devices. The hardware evaluation demonstrated the validity of several complicated heat pipe geometries and wick structures, including an annular-to-circular transition, bends in the heat pipe, long heat pipe condensers and arterial wicks. Additionally, a heat pipe computer model was developed which describes the end point temperature profile of long radiator heat pipes to within several degrees celsius.
Thermal Excitation System for Shearography (TESS)
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.; Bullock, Michael W.
1996-01-01
One of the most convenient and effective methods of stressing a part or structure for shearographic evaluation is thermal excitation. This technique involves heating the part, often convectively with a heat gun, and then monitoring with a shearography device the deformation during cooling. For a composite specimen, unbonds, delaminations, inclusions, or matrix cracking will deform during cooling differently than other more structurally sound regions and thus will appear as anomalies in the deformation field. However, one of the difficulties that cause this inspection to be dependent on the operator experience is the conventional heating process. Fanning the part with a heat gun by hand introduces a wide range of variability from person to person and from one inspection to the next. The goal of this research effort was to conduct research in the methods of thermal excitation for shearography inspection. A computerized heating system was developed for inspection of 0.61 m (24 in.) square panels. The Thermal Excitation System for Shearography (TESS) provides radiant heating with continuous digital measurement of the surface temperature profile to ensure repeatability. The TESS device functions as an accessory to any electronic shearography device.
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Einaudi, Franco (Technical Monitor)
2000-01-01
The Tropical Rainfall Measuring Mission (TRMM) as a part of NASA's Earth System Enterprise is the first mission dedicated to measuring tropical rainfall through microwave and visible sensors, and includes the first spaceborne rain radar. Tropical rainfall comprises two-thirds of global rainfall. It is also the primary distributor of heat through the atmosphere's circulation. It is this circulation that defines Earth's weather and climate. Understanding rainfall and its variability is crucial to understanding and predicting global climate change. Weather and climate models need an accurate assessment of the latent heating released as tropical rainfall occurs. Currently, cloud model-based algorithms are used to derive latent heating based on rainfall structure. Ultimately, these algorithms can be applied to actual data from TRMM. This study investigates key underlying assumptions used in developing the latent heating algorithms. For example, the standard algorithm is highly dependent on a system's rainfall amount and structure. It also depends on an a priori database of model-derived latent heating profiles based on the aforementioned rainfall characteristics. Unanswered questions remain concerning the sensitivity of latent heating profiles to environmental conditions (both thermodynamic and kinematic), regionality, and seasonality. This study investigates and quantifies such sensitivities and seeks to determine the optimal latent heating profile database based on the results. Ultimately, the study seeks to produce an optimized latent heating algorithm based not only on rainfall structure but also hydrometeor profiles.
Lightweight Phase-Change Material For Solar Power
NASA Technical Reports Server (NTRS)
Stark, Philip
1993-01-01
Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.
Solidification Based Grain Refinement in Steels
2009-07-24
pearlite (See Figure 1). No evidence of the as-cast austenite dendrite structure was observed. The gating system for this sample resides at the thermal...possible nucleating compounds. 3) Extend grain refinement theory and solidification knowledge through experimental data. 4) Determine structure ...refine the structure of a casting through heat treatment. The energy required for grain refining via thermomechanical processes or heat treatment
Heat flux from magmatic hydrothermal systems related to availability of fluid recharge
Harvey, M. C.; Rowland, J.V.; Chiodini, G.; Rissmann, C.F.; Bloomberg, S.; Hernandez, P.A.; Mazot, A.; Viveiros, F.; Werner, Cynthia A.
2015-01-01
Magmatic hydrothermal systems are of increasing interest as a renewable energy source. Surface heat flux indicates system resource potential, and can be inferred from soil CO2 flux measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 flux surveys worldwide to compare heat flux from a variety of magma-hydrothermal areas. We infer that availability of water to recharge magmatic hydrothermal systems is correlated with heat flux. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and heat flux interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system heat output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 flux as a resource evaluation tool.
Measuring and analyzing thermal deformations of the primary reflector of the Tianma radio telescope
NASA Astrophysics Data System (ADS)
Dong, Jian; Fu, Li; Liu, Qinghui; Shen, Zhiqiang
2018-06-01
The primary reflector of the Tianma Radio Telescope (TMRT) distorts due to the varying thermal conditions, which dramatically reduces the aperture efficiency of Q-band observations. To evaluate and overcome the thermal effects, a thermal deformations measurement system has been established based on the extended Out-of-Focus holography (e-OOF). The thermal deformations can be measured in approximately 20 min with an illumination-weighted surface root mean square (RMS) accuracy of approximately 50 μm. We have measured the thermal deformations when the backup and front structure were heated by the sun respectively, and used the active surface system to correct the thermal deformations immediately to confirm the measurements. The thermal deformations when the backup structure is heated are larger than those when the front structure is heated. The values of half power beam width (HPBW) are related to the illumination-weighted surface RMS, and can be used to check the thermal deformations. When the backup structure is heated, the aperture efficiencies can remain above 90% of the maximum efficiency at 40 GHz for approximately two hours after one adjustment. While the front structure is heated, the aperture efficiencies can remain above 90% of the maximum efficiency at 40 GHz, and above 95% after one adjustment in approximately three hours.
Industrial-scale spray layer-by-layer assembly for production of biomimetic photonic systems.
Krogman, K C; Cohen, R E; Hammond, P T; Rubner, M F; Wang, B N
2013-12-01
Layer-by-layer assembly is a powerful and flexible thin film process that has successfully reproduced biomimetic photonic systems such as structural colour. While most of the seminal work has been carried out using slow and ultimately unscalable immersion assembly, recent developments using spray layer-by-layer assembly provide a platform for addressing challenges to scale-up and manufacturability. A series of manufacturing systems has been developed to increase production throughput by orders of magnitude, making commercialized structural colour possible. Inspired by biomimetic photonic structures we developed and demonstrated a heat management system that relies on constructive reflection of near infrared radiation to bring about dramatic reductions in heat content.
NASA Astrophysics Data System (ADS)
Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi
2015-01-01
Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to choose the heat source first and then design the most appropriate structure for the source by applying analytical methods. This report describes how to design a prototype of a thermoelectric power generator using the analytical approach and the results of performance evaluation tests carried out in the field.
NASA Astrophysics Data System (ADS)
Coso, Dusan
The first part of the dissertation presents a study that implements micro and nano scale engineered surfaces for enhancement of evaporation and boiling phase change heat transfer in both capillary wick structures and pool boiling systems. Capillary wicking surfaces are integral components of heat pipes and vapor chamber thermal spreaders often used for thermal management of microelectronic devices. In addition, pool boiling systems can be encountered in immersion cooling systems which are becoming more commonly investigated for thermal management applications of microelectronic devices and even data centers. The latent heat associated with the change of state from liquid to vapor, and the small temperature differences required to drive this process yield great heat transfer characteristics. Additionally, since no external energy is required to drive the phase change process, these systems are great for portable devices and favorable for reduction of cost and energy consumption over alternate thermal management technologies. Most state of the art capillary wicks used in these devices are typically constructed from sintered copper media. These porous structures yield high surface areas of thin liquid film where evaporation occurs, thus promoting phase change heat transfer. However, thermal interfaces at particle point contacts formed during the sintering process and complex liquid/vapor flow within these wick structures yield high thermal and liquid flow resistances and limit the maximum heat flux they can dissipate. In capillary wicks the maximum heat flux is typically governed by the capillary or boiling limits and engineering surfaces that delay these limitations and yield structures with large surface areas of thin liquid film where phase change heat transfer is promoted is highly desired. In this study, biporous media consisting of microscale pin fins separated by microchannels are examined as candidate structures for the evaporator wick of a vapor chamber heat pipe. Smaller pores are used to generate high capillary suction, while larger microchannels are used to alleviate flow resistance. The heat transfer coefficient is found to depend on the area coverage of a liquid film with thickness on the order of a few microns near the meniscus of the triple phase contact line. We manipulate the area coverage and film thickness by varying the surface area-to-volume ratio through the use of microstructuring. In some samples, a transition from evaporative heat transfer to nucleate boiling is observed. While it is difficult to identify when the transition occurs, one can identify regimes where evaporation dominates over nucleate boiling and vice versa. Heat fluxes of 277.0 (+/- 9.7) W/cm2 can be dissipated by wicks with heaters of area 1 cm2, while heat fluxes up to 733.1 (+/- 103.4) W/cm2 can be dissipated by wicks with smaller heaters intended to simulate local hot-spots. In pool boiling systems that are encountered in immersion cooling applications, the heat transfer coefficient (HTC) is governed by the bubble nucleation site density and the agitation in the liquid/vapor flow these bubbles produce when they detach from the surface. The nucleation site density and release rate is usually determined by the surface morphology. Another important parameter in pool boiling systems is the maximum heat flux (CHF) that can safely be dissipated. In practice, this quantity is about two orders of magnitude smaller than limitations suggested by kinetic theory. For essentially infinite, smooth, well wetted surfaces, hydrodynamic instability theories capturing liquid/vapor interactions away from the heated surface have been successful in predicting CHF. On finite micro and nano structured surfaces where applying the hydrodynamic theory formulation is not easily justified, other effects may contribute to phase change heat transfer characteristics. Here, we also present a pool boiling study on biporous microstructured surfaces used in capillary wick experiments. Structures are manipulated by reduction of pore size to determine if increased capillary pressure can enhance rewetting from heater edges and delay CHF. A comparative study between the two experimental systems indicates that while the capillary limitation is significant in capillary wick experiments, for these well wetted microstructured surfaces used in pool boiling systems the hydrodynamic limitation defined based on heater size causes the occurrence of CHF. Other hierarchical nanowire surfaces containing periodic microscale cavities are investigated as well and are seen to yield a ˜2.4 fold increase in heat transfer coefficient characteristics while not compromising CHF compared to surfaces where cavities are not present. These studies indicate pathways for enhancement of heat transfer coefficient via implementing hierarchical structures, while no clear method in increasing CHF is determined for finite size surfaces of various morphologies. In the second part of this dissertation, solar energy storage is sought in 'phase change' of photochromic molecular systems: the storage of solar energy in the chemical bonds of photosensitive molecules (a photochemical reaction) and subsequent recovery of the energy in a back reaction in the form of heat, reversibly. These molecular systems are interesting alternatives to photovoltaic and solar thermal technologies which cannot satisfy the needs of load leveling, or for portable municipal heating applications. Typically made of organic compounds, these molecules have become known for rapid decomposition, short energy storage time scales and poor energy storing efficiencies. Thus, they have been abandoned as practical solar energy storage systems in the past several decades. On the other hand, organometallic molecular systems have not been extensively probed for these applications. Recent research has indicated that organometallic (fulvalene)diruthenium FvRu2 has demonstrated excellent energy storage characteristic and durability. Here, we report on a full cycle molecular solar thermal (MOST) microfluidic system based on a bis(1,1-dimethyltridecyl) substituted derivative of FvRu2 that allows for long term solar energy storage (110 J/g), and "on demand" energy release upon exposure to a catalyst. The microfluidic systems developed here are excellent for photoconversion characterization and scrutinizing potential catalysts and can be extended to studying many other molecular systems. The objective of the work presented here is to demonstrate that "on demand" solar energy storage and release in MOST systems is viable and motivate future research on other photochromic organometallic systems.
Active cooling from the sixties to NASP
NASA Technical Reports Server (NTRS)
Kelly, H. Neale; Blosser, Max L.
1992-01-01
Vehicles, such as the X-15 or National Aero-Space Plane, traveling at hypersonic speeds through the earth's atmosphere experience aerodynamic heating. The heating can be severe enough that a thermal protection system is required to limit the temperature of the vehicle structure. Although several categories of thermal protection systems are mentioned briefly, the majority of this paper describes convectively cooled structures for large areas. Convective cooling is a method of limiting structural temperatures by circulating a coolant through the vehicle structure. Efforts to develop convectively cooled structures during the past 30 years--from early engine structures, which were intended to be tested on the X-15, to structural--are described. Many of the lessons learned from these research efforts are presented.
Brayton cycle heat exchanger and duct assembly (HXDA, preliminary design and technology tests
NASA Technical Reports Server (NTRS)
Coombs, M. G.; Morse, C. J.; Graves, R. F.; Gibson, J. C.
1972-01-01
A preliminary design of the heat exchanger and duct assembly (HXDA) for a 60 kwe, closed loop, Brayton cycle space power system is presented. This system is weight optimized within the constraints imposed by the defined structural and operational requirements. Also presented are the results of several small scale tests, directed to obtaining specific design data and/or the resolution of a design approach for long life Brayton cycle heat exchanger systems.
Surfaces for high heat dissipation with no Leidenfrost limit
NASA Astrophysics Data System (ADS)
Sajadi, Seyed Mohammad; Irajizad, Peyman; Kashyap, Varun; Farokhnia, Nazanin; Ghasemi, Hadi
2017-07-01
Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m-2 K-1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.
NASA Technical Reports Server (NTRS)
Wurster, K. E.
1981-01-01
This study examines the impact of turbulent heating on thermal protection system (TPS) mass for advanced winged entry vehicles. Four basic systems are considered: insulative, metallic hot structures, metallic standoff, and hybrid systems. TPS sizings are performed using entry trajectories tailored specifically to the characteristics of each TPS concept under consideration. Comparisons are made between systems previously sized under the assumption of all laminar heating and those sized using a baseline estimate of transition and turbulent heating. The relative effect of different transition criteria on TPS mass requirements is also examined. Also investigated are entry trajectories tailored to alleviate turbulent heating. Results indicate the significant impact of turbulent heating on TPS mass and demonstrate the importance of both accurate transition criteria and entry trajectory tailoring.
Low Thermal Loss Cryogenic Transfer Line with Magnetic Suspension
NASA Astrophysics Data System (ADS)
Shu, Quan-Sheng; Cheng, Guangfeng; Yu, Kun; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.
2004-06-01
An energy efficient, cost effective cryogenic distribution system (up to several miles) is crucial for spaceport and in-space cryogenic systems. The conduction heat loss from the supports that connect the cold inner lines to the warm support structure is ultimately the most serious heat leak after thermal radiation has been minimized. The use of magnetic levitation by permanent magnets and high temperature superconductors provides support without mechanical contact and thus, the conduction part of the heat leak can be reduced to zero. A stop structure is carefully designed to hold the center tube when the system is warm. The novel design will provide the potential of extending many missions by saving cryogens, or reducing the overall launch mass.
On the application of Chimera/unstructured hybrid grids for conjugate heat transfer
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing
1995-01-01
A hybrid grid system that combines the Chimera overset grid scheme and an unstructured grid method is developed to study fluid flow and heat transfer problems. With the proposed method, the solid structural region, in which only the heat conduction is considered, can be easily represented using an unstructured grid method. As for the fluid flow region external to the solid material, the Chimera overset grid scheme has been shown to be very flexible and efficient in resolving complex configurations. The numerical analyses require the flow field solution and material thermal response to be obtained simultaneously. A continuous transfer of temperature and heat flux is specified at the interface, which connects the solid structure and the fluid flow as an integral system. Numerical results are compared with analytical and experimental data for a flat plate and a C3X cooled turbine cascade. A simplified drum-disk system is also simulated to show the effectiveness of this hybrid grid system.
Green roof soil system affected by soil structural changes: A project initiation
NASA Astrophysics Data System (ADS)
Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal
2014-05-01
Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.
NASA Astrophysics Data System (ADS)
Astaf'ev, V. V.; Kurochkin, A. R.; Yablonskikh, T. I.; Brodova, I. G.; Popel', P. S.
2017-11-01
Centrifugal casting into a massive slot chill mold was used to prepare two series of specimens of alloys of the Al - Cu system, containing from 10 to 32.2 at.% Cu. The first series was fabricated without a homogenizing heat treatment of the melt, while the second series was fabricated with heating of the melt to 1400°C. Both kinds of specimens were cast at the same temperature in order to provide for the same cooling rate of about 104 K/sec. The structures, phase compositions and microhardnesses of the structural components are compared. It is established that the homogenizing heat treatment changes the kinetics of crystallization and, hence, the proportion of phases in the alloy structure and the copper content in them.
NASA Astrophysics Data System (ADS)
Liu, Tongjun; Wang, Tongcai; Luan, Weiling; Cao, Qimin
2017-05-01
Waste heat recovery through thermoelectric generators is a promising way to improve energy conversion efficiency. This paper proposes a type of heat pipe assisted thermoelectric generator (HP-TEG) system. The expandable evaporator and condenser surface of the heat pipe facilitates the intensive assembly of thermoelectric (TE) modules to compose a compact device. Compared with a conventional layer structure thermoelectric generator, this system is feasible for the installment of more TE couples, thus increasing power output. To investigate the performance of the HP-TEG and the optimal number of TE couples, a theoretical model was presented and verified by experiment results. Further theoretical analysis results showed the performance of the HP-TEG could be further improved by optimizing the parameters, including the inlet air temperature, the thermal resistance of the heating section, and thermal resistance of the cooling structure. Moreover, applying a proper number of TE couples is important to acquire the best power output performance.
Heat exchanger for coal gasification process
Blasiole, George A.
1984-06-19
This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.
Fluid absorption solar energy receiver
NASA Technical Reports Server (NTRS)
Bair, Edward J.
1993-01-01
A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.
Three-stage sorption type cryogenic refrigeration systems and methods employing heat regeneration
NASA Technical Reports Server (NTRS)
Bard, Steven (Inventor); Jones, Jack A. (Inventor)
1992-01-01
A three-stage sorption type cryogenic refrigeration system, each stage containing a fluid having a respectively different boiling point, is presented. Each stage includes a compressor in which a respective fluid is heated to be placed in a high pressure gaseous state. The compressor for that fluid which is heated to the highest temperature is enclosed by the other two compressors to permit heat to be transferred from the inner compressor to the surrounding compressors. The system may include two sets of compressors, each having the structure described above, with the interior compressors of the two sets coupled together to permit selective heat transfer therebetween, resulting in more efficient utilization of input power.
Investigation on an ammonia supply system for flue gas denitrification of low-speed marine diesel
Yuan, Han; Zhao, Jian; Mei, Ning
2017-01-01
Low-speed marine diesel flue gas denitrification is in great demand in the ship transport industry. This research proposes an ammonia supply system which can be used for flue gas denitrification of low-speed marine diesel. In this proposed ammonia supply system, ammonium bicarbonate is selected as the ammonia carrier to produce ammonia and carbon dioxide by thermal decomposition. The diesel engine exhaust heat is used as the heating source for ammonium bicarbonate decomposition and ammonia gas desorption. As the ammonium bicarbonate decomposition is critical to the proper operation of this system, effects have been observed to reveal the performance of the thermal decomposition chamber in this paper. A visualization experiment for determination of the single-tube heat transfer coefficient and simulation of flow and heat transfer in two structures is conducted; the decomposition of ammonium bicarbonate is simulated by ASPEN PLUS. The results show that the single-tube heat transfer coefficient is 1052 W m2 °C−1; the thermal decomposition chamber fork-type structure gets a higher heat transfer compared with the row-type. With regard to the simulation of ammonium bicarbonate thermal decomposition, the ammonia production is significantly affected by the reaction temperature and the mass flow rate of the ammonium bicarbonate input. PMID:29308269
Investigation on an ammonia supply system for flue gas denitrification of low-speed marine diesel
NASA Astrophysics Data System (ADS)
Huang, Xiankun; Yuan, Han; Zhao, Jian; Mei, Ning
2017-12-01
Low-speed marine diesel flue gas denitrification is in great demand in the ship transport industry. This research proposes an ammonia supply system which can be used for flue gas denitrification of low-speed marine diesel. In this proposed ammonia supply system, ammonium bicarbonate is selected as the ammonia carrier to produce ammonia and carbon dioxide by thermal decomposition. The diesel engine exhaust heat is used as the heating source for ammonium bicarbonate decomposition and ammonia gas desorption. As the ammonium bicarbonate decomposition is critical to the proper operation of this system, effects have been observed to reveal the performance of the thermal decomposition chamber in this paper. A visualization experiment for determination of the single-tube heat transfer coefficient and simulation of flow and heat transfer in two structures is conducted; the decomposition of ammonium bicarbonate is simulated by ASPEN PLUS. The results show that the single-tube heat transfer coefficient is 1052 W m2 °C-1; the thermal decomposition chamber fork-type structure gets a higher heat transfer compared with the row-type. With regard to the simulation of ammonium bicarbonate thermal decomposition, the ammonia production is significantly affected by the reaction temperature and the mass flow rate of the ammonium bicarbonate input.
SAFSIM theory manual: A computer program for the engineering simulation of flow systems
NASA Astrophysics Data System (ADS)
Dobranich, Dean
1993-12-01
SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.
How-to-Do-It: Countercurrent Heat Exchange in Vertebrate Limbs.
ERIC Educational Resources Information Center
Franklin, George B.; Plakke, Ronald K.
1988-01-01
Describes principals of physics that are manifested in simple biological systems of heat conservation structures. Outlines materials needed, data collection, analysis, and discussion questions for construction and operation of two models, one that is a countercurrent heat exchange model and one that is not. (RT)
Active cooling from the sixties to NASP
NASA Technical Reports Server (NTRS)
Kelly, H. Neale; Blosser, Max L.
1994-01-01
Vehicles, such as the X-15 or the National Aerospace Plane (NASP), traveling at hypersonic speeds through the earth's atmosphere experience aerodynamic heating. The heating can be severe enough that a thermal protection system is required to limit the temperature of the vehicle structure. Although several categories of thermal protection systems are mentioned briefly, the majority of the present paper describes convectively cooled structures for large areas. Convective cooling is a method of limiting structural temperatures by circulating a coolant through the vehicle structure. Efforts to develop convectively cooled structures during the past 30 years, from early engine structures which were intended to be tested on the X-15 to structural panels fabricated and tested under the NASP program, are described. Many of the lessons learned from these research efforts are presented.
Study of structural active cooling and heat sink systems for space shuttle
NASA Technical Reports Server (NTRS)
1972-01-01
This technology investigation was conducted to evaluate the feasibility of a number of thermal protection systems (TPS) concepts which are alternate candidates to the space shuttle baseline TPS. Four independent tasks were performed. Task 1 consisted of an in-depth evaluation of active structural cooling of the space shuttle orbiter. In Task 2, heat sink concepts for the booster were studied to identify and postulate solutions for design problems unique to heat sink TPS. Task 3 consisted of a feasibility demonstration test of a phase change material (PCM) incorporated into a reusable surface insulation (RSI) thermal protection system for the shuttle orbiter. In Task 4 the feasibility of heat pipes for stagnation region cooling was studied for the booster and the orbiter. Designs were developed for the orbiter leading edge and used in trade studies of leading edge concepts. At the time this program was initiated, a 2-stage fully reusable shuttle system was envisioned; therefore, the majority of the tasks were focused on the fully reusable system environments. Subsequently, a number of alternate shuttle system approaches, with potential for reduced shuttle system development funding requirements, were proposed. Where practicable, appropriate shifts in emphasis and task scoping were made to reflect these changes.
Active thermal control system evolution
NASA Technical Reports Server (NTRS)
Petete, Patricia A.; Ames, Brian E.
1991-01-01
The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.
Energy Savings by Treating Buildings as Systems
NASA Astrophysics Data System (ADS)
Harvey, L. D. Danny
2008-09-01
This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.
Performance of a Haynes 188 metallic standoff thermal protection system at Mach 7
NASA Technical Reports Server (NTRS)
Avery, D. E.
1981-01-01
A flight weight, metallic thermal protection system (TPS) model applicable to reentry and hypersonic vehicles was subjected to multiple cycles of both radiant and aerothermal heating to evaluate its aerothermal performance and structural integrity. The TPS was designed for a maximum operating temperature of 1255 K and featured a shingled, corrugation stiffened corrugated skin heat shield of Haynes 188, a cobalt base alloy. The model was subjected to 3 radiant preheat/aerothermal tests for a total of 67 seconds and to 15 radiant heating tests for a total of 85.9 minutes at 1255 K. The TPS limited the primary structure to temperatures below 430 K in all tests. No catastrophic failures occurred in the heat shields, supports, or insulation system. The TPS continued to function even after exposure to a differential temperature 4 times the design value produced thermal buckles in the outer skin. The shingled thermal expansion joint effectively allowed for thermal expansion of the heat shield without allowing any appreciable hot gas flow into the model cavity, even though the overlap gap between shields increased after several thermal cycles.
Preliminary design of a radiator shading device for a lunar outpost
NASA Technical Reports Server (NTRS)
Barron, Carlos; Castro, Norma I.; Phillips, Brian
1991-01-01
The National Aeronautics and Space Administration is designing a thermal control system for an outpost to be placed permanently on the Moon. One of the functions of the thermal control system is to reject waste heat, which can be accomplished through a radiator. At the lunar equator and during the lunar midday, an unshaded radiator absorbs more heat than it rejects. This problem can be solved by using a shading device to reduce radiation incident on the radiator. The design team was asked to develop concepts for reducing the radiation incident on the radiator and for deploying the radiator and shade system for a 10 kW and a 25 kW heat rejection system. The design team was also asked to develop the best concepts into preliminary design. From the several alternatives developed by the design team, the best one was selected using a decision matrix. Preliminary design of the best concept include support structure, stress analyses, and thermal performance. In addition, the team developed ideas for removing lunar dust from the shading device. The final design solution consisted of a winged radiator shading system with a rail support structure and a scissors mechanism for deployment. The total radiator area required was calculated to be 389 sq m for the 10 kW heat rejection system and 973 sq m for the 25 kW heat rejection system.
The Experimental Breeder Reactor II seismic probabilistic risk assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roglans, J; Hill, D J
1994-02-01
The Experimental Breeder Reactor II (EBR-II) is a US Department of Energy (DOE) Category A research reactor located at Argonne National Laboratory (ANL)-West in Idaho. EBR-II is a 62.5 MW-thermal Liquid Metal Reactor (LMR) that started operation in 1964 and it is currently being used as a testbed in the Integral Fast Reactor (IFR) Program. ANL has completed a Level 1 Probabilistic Risk Assessment (PRA) for EBR-II. The Level 1 PRA for internal events and most external events was completed in June 1991. The seismic PRA for EBR-H has recently been completed. The EBR-II reactor building contains the reactor, themore » primary system, and the decay heat removal systems. The reactor vessel, which contains the core, and the primary system, consisting of two primary pumps and an intermediate heat exchanger, are immersed in the sodium-filled primary tank, which is suspended by six hangers from a beam support structure. Three systems or functions in EBR-II were identified as the most significant from the standpoint of risk of seismic-induced fuel damage: (1) the reactor shutdown system, (2) the structural integrity of the passive decay heat removal systems, and (3) the integrity of major structures, like the primary tank containing the reactor that could threaten both the reactivity control and decay heat removal functions. As part of the seismic PRA, efforts were concentrated in studying these three functions or systems. The passive safety response of EBR-II reactor -- both passive reactivity shutdown and passive decay heat removal, demonstrated in a series of tests in 1986 -- was explicitly accounted for in the seismic PRA as it had been included in the internal events assessment.« less
Rapid induction bonding of composites, plastics, and metals
NASA Technical Reports Server (NTRS)
Buckley, John D.; Fox, Robert L.
1991-01-01
The Toroid Bonding Gun is and induction heating device. It is a self contained, portable, low powered induction welding system developed for bonding or joining plastic, ceramic, or metallic parts. Structures can be bonded in a factory or in a the field. This type of equipment allows for applying heat directly to the bond lines and/or to the adhesives without heating the entire structure, supports, and fixtures of a bonding assembly. The induction heating gun originally developed for use in the fabrication of space Gangs of bonders are now used to rapidly join composite sheet and structural components. Other NASA-developed applications of this bonding technique include the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials.
NASA Astrophysics Data System (ADS)
Biryuk, V. V.; Tsapkova, A. B.; Larin, E. A.; Livshiz, M. Y.; Sheludko, L. P.
2018-01-01
A set of mathematical models for calculating the reliability indexes of structurally complex multifunctional combined installations in heat and power supply systems was developed. Reliability of energy supply is considered as required condition for the creation and operation of heat and power supply systems. The optimal value of the power supply system coefficient F is based on an economic assessment of the consumers’ loss caused by the under-supply of electric power and additional system expences for the creation and operation of an emergency capacity reserve. Rationing of RI of the industrial heat supply is based on the use of concept of technological margin of safety of technological processes. The definition of rationed RI values of heat supply of communal consumers is based on the air temperature level iside the heated premises. The complex allows solving a number of practical tasks for providing reliability of heat supply for consumers. A probabilistic model is developed for calculating the reliability indexes of combined multipurpose heat and power plants in heat-and-power supply systems. The complex of models and calculation programs can be used to solve a wide range of specific tasks of optimization of schemes and parameters of combined heat and power plants and systems, as well as determining the efficiency of various redundance methods to ensure specified reliability of power supply.
Structural active cooling applications for the Space Shuttle.
NASA Technical Reports Server (NTRS)
Masek, R. V.; Niblock, G. A.; Huneidi, F.
1972-01-01
Analytic and experimental studies have been conducted to evaluate a number of active cooling approaches to structural thermal protection for the Space Shuttle. The primary emphasis was directed toward the thermal protection system. Trade study results are presented for various heat shield material and TPS arrangements. Both metallic and reusable surface insulation (RSI) concepts were considered. Active systems heat sinks consisted of hydrogen, phase change materials, and expendable water. If consideration is given only to controlling the surface temperature, passive TPS was found to provide the most efficient system. Use of active cooling which incorporates some interior temperature control made the thermally less efficient RSI system more attractive.
NASA Technical Reports Server (NTRS)
Black, W. E.
1973-01-01
Initially a trade study was conducted of seven heat shield configurations. These were evaluated for structural reliability, fabricability, weight, inspectability, and refurbishability. Two concepts, a tee-stiffened and an open corrugation, were selected as offering the most potential for system success. Fourteen subsize heat shields of a full scale section were fabricated from C-129Y and Cb-752 and silicide coated with R-512E. These subsize panels were subjected to a simulated flight profile representing temperature, local surface pressures, and applied pressure differential loads. All corrugated panels of both alloys sustained 100 cycles without structural or coating failure. All Cb-752/R-512E panels performed well with one panel being successfully repaired after 66 cycles and completing 100 cycles. As a result of this evaluating the Cb-752/R-512E system was selected for hardware application during the subsequent phases. In addition, the tee-stiffened configuration was selected for further development and application in Phase III. This selection was based on an overall assessment of relative weight, cost, and structural performance of the tee-stiffened and open corrugation TPS.
Peng, Quanhui; Khan, Nazir A; Wang, Zhisheng; Yu, Peiqiang
2014-01-01
The objectives of the present study were to investigate the nutritive value of camelina seeds (Camelina sativa L. Crantz) in ruminant nutrition and to use molecular spectroscopy as a novel technique to quantify the heat-induced changes in protein molecular structures in relation to protein digestive behavior in the rumen and intestine of dairy cattle. In this study, camelina seeds were used as a model for feed protein. The seeds were kept as raw (control) or heated in an autoclave (moist heating) or in an air-draft oven (dry heating) at 120°C for 60 min. The parameters evaluated were (1) chemical profiles, (2) Cornell Net Protein and Carbohydrate System protein subfractions, (3) nutrient digestibilities and estimated energy values, (4) in situ rumen degradation and intestinal digestibility, and (5) protein molecular structures. Compared with raw seeds, moist heating markedly decreased (52.73 to 20.41%) the content of soluble protein and increased (2.00 to 9.01%) the content of neutral detergent insoluble protein in total crude protein (CP). Subsequently, the rapidly degradable Cornell Net Protein and Carbohydrate System CP fraction markedly decreased (45.06 to 16.69% CP), with a concomitant increase in the intermediately degradable (45.28 to 74.02% CP) and slowly degradable (1.13 to 8.02% CP) fractions, demonstrating a decrease in overall protein degradability in the rumen. The in situ rumen incubation study revealed that moist heating decreased (75.45 to 57.92%) rumen-degradable protein and increased (43.90 to 82.95%) intestinal digestibility of rumen-undegradable protein. The molecular spectroscopy study revealed that moist heating increased the amide I-to-amide II ratio and decreased α-helix and α-helix-to-β-sheet ratio. In contrast, dry heating did not significantly change CP solubility, rumen degradability, intestinal digestibility, and protein molecular structures compared with the raw seeds. Our results indicated that, compared with dry heating, moist heating markedly changed protein chemical profiles, protein subfractions, rumen protein degradability, and intestinal digestibility, which were associated with changes in protein molecular structures (amide I-to-amid II ratio and α-helix-to-β-sheet ratio). Moist heating improved the nutritive value and utilization of protein in camelina seeds compared with dry heating. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology
Su, Xin; Ye, Qing; Fu, Jianfeng
2018-01-01
A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting. PMID:29551957
Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology.
Chen, Fengchen; Su, Xin; Ye, Qing; Fu, Jianfeng
2018-01-01
A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting.
Integrated Thermal Protection Systems and Heat Resistant Structures
NASA Technical Reports Server (NTRS)
Pichon, Thierry; Lacoste, Marc; Glass, David E.
2006-01-01
In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.
Field evaluation and assessment of thermal energy storage for residential space heating
NASA Astrophysics Data System (ADS)
Hersh, H. N.
1982-02-01
A data base was developed based on two heating seasons and 45 test and 30 control homes in Maine and Vermont. Based on first analysis of monitored temperatures and electrical energy used for space heating, fuel bills and reports of users and utilities, the technical performance of TES ceramic and hydronic systems is deemed to be technically satisfactory and there is a high degree of customer acceptance and positive attitudes towards TES. Analysis of house data shows a high degree of variability in electric heat energy demand for a given degree-day. An analysis is underway to investigate relative differences in the efficiency of electricity utilization of storage and direct heating devices. The much higher price of storge systems relative to direct systems is an impediment to market penetration. A changing picture of rate structures may encourage direct systems at the expense of storage systems.
NASA Astrophysics Data System (ADS)
Simanovskii, Ilya B.; Viviani, Antonio; Dubois, Frank
2018-06-01
An influence of a spatial temperature modulation of the interfacial heat release/consumption on nonlinear convective flows in the 47v2 silicone oil - water system, is studied. Rigid heat-insulated lateral walls, corresponding to the case of closed cavities, have been considered. Transitions between the flows with different spatial structures, have been investigated. It is shown that the spatial modulation can change the sequence of bifurcations and lead to the appearance of specific steady and oscillatory flows in the system.
NASA Technical Reports Server (NTRS)
Avery, D. E.
1984-01-01
A flight-weight, metallic thermal protection system (TPS) model applicable to Earth-entry and hypersonic-cruise vehicles was subjected to multiple cycles of both radiant and aerothermal heating in order to evaluate its aerothermal performance, structural integrity, and damage tolerance. The TPS was designed for a maximum operating temperature of 2060 R and featured a shingled, corrugation-stiffened corrugated-skin heat shield of Rene 41, a nickel-base alloy. The model was subjected to 10 radiant heating tests and to 3 radiant preheat/aerothermal tests. Under radiant-heating conditions with a maximum surface temperature of 2050 R, the TPS performed as designed and limited the primary structure away from the support ribs to temperatures below 780 R. During the first attempt at aerothermal exposure, a failure in the panel-holder test fixture severely damaged the model. However, two radiant preheat/aerothermal tests were made with the damaged model to test its damage tolerance. During these tests, the damaged area did not enlarge; however, the rapidly increasing structural temperature measuring during these tests indicates that had the damaged area been exposed to aerodynamic heating for the entire trajectory, an aluminum burn-through would have occurred.
NASA Astrophysics Data System (ADS)
Wu, Hong; Li, Peng; Li, Yulong
2016-02-01
This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.
Integrative energy-systems design: System structure from thermodynamic optimization
NASA Astrophysics Data System (ADS)
Ordonez, Juan Carlos
This thesis deals with the application of thermodynamic optimization to find optimal structure and operation conditions of energy systems. Chapter 1 outlines the thermodynamic optimization of a combined power and refrigeration system subject to constraints. It is shown that the thermodynamic optimum is reached by distributing optimally the heat exchanger inventory. Chapter 2 considers the maximization of power extraction from a hot stream in the presence of phase change. It shows that when the receiving (cold) stream boils in a counterflow heat exchanger, the thermodynamic optimization consists of locating the optimal capacity rate of the cold stream. Chapter 3 shows that the main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. Chapter 4 addresses two basic issues in the thermodynamic optimization of environmental control systems (ECS) for aircraft: realistic limits for the minimal power requirement, and design features that facilitate operation at minimal power consumption. Several models of the ECS-Cabin interaction are considered and it is shown that in all the models the temperature of the air stream that the ECS delivers to the cabin can be optimized for operation at minimal power. In chapter 5 it is shown that the sizes (weights) of heat and fluid flow systems that function on board vehicles such as aircraft can be derived from the maximization of overall (system level) performance. Chapter 6 develops analytically the optimal sizes (hydraulic diameters) of parallel channels that penetrate and cool a volume with uniformly distributed internal heat generation and Chapter 7 shows analytically and numerically how an originally uniform flow structure transforms itself into a nonuniform one when the objective is to minimize global flow losses. It is shown that flow maldistribution and the abandonment of symmetry are necessary for the development of flow structures with minimal resistance. In the second part of the chapter, the flow medium is continuous and permeated by Darcy flow. As flow systems become smaller and more compact, the flow systems themselves become "designed porous media".
In situ SAXS study on cationic and non-ionic surfactant liquid crystals using synchrotron radiation.
Fritscher, C; Hüsing, N; Bernstorff, S; Brandhuber, D; Koch, T; Seidler, S; Lichtenegger, H C
2005-11-01
In situ synchrotron small-angle X-ray scattering was used to investigate various surfactant/water systems with hexagonal and lamellar structures regarding their structural behaviour upon heating and cooling. Measurements of the non-ionic surfactant Triton X-45 (polyethylene glycol 4-tert-octylphenyl ether) at different surfactant concentrations show an alignment of the lamellar liquid-crystalline structure close to the wall of the glass capillaries and also a decrease in d-spacing following subsequent heating/cooling cycles. Additionally, samples were subjected to a weak magnetic field (0.3-0.7 T) during heating and cooling, but no influence of the magnetic field was observed.
NASA Astrophysics Data System (ADS)
Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.
2008-02-01
Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.
Retro Rocket Motor Self-Penetrating Scheme for Heat Shield Exhaust Ports
NASA Technical Reports Server (NTRS)
Marrese-Reading, Colleen; St.Vaughn, Josh; Zell, Peter; Hamm, Ken; Corliss, Jim; Gayle, Steve; Pain, Rob; Rooney, Dan; Ramos, Amadi; Lewis, Doug;
2009-01-01
A preliminary scheme was developed for base-mounted solid-propellant retro rocket motors to self-penetrate the Orion Crew Module heat shield for configurations with the heat shield retained during landings on Earth. In this system the motors propel impactors into structural push plates, which in turn push through the heat shield ablator material. The push plates are sized such that the remaining port in the ablator material is large enough to provide adequate flow area for the motor exhaust plume. The push plate thickness is sized to assure structural integrity behind the ablative thermal protection material. The concept feasibility was demonstrated and the performance was characterized using a gas gun to launch representative impactors into heat shield targets with push plates. The tests were conducted using targets equipped with Fiberform(R) and PICA as the heat shield ablator material layer. The PICA penetration event times were estimated to be under 30 ms from the start of motor ignition. The mass of the system (not including motors) was estimated to be less than 2.3 kg (5 lbs) per motor. The configuration and demonstrations are discussed.
NASA Astrophysics Data System (ADS)
Fatemi, Javad
2011-05-01
The thermal protection system of the EXPERT re-entry vehicle is subjected to accelerations, vibrations, acoustic and shock loads during launch and aero-heating loads and aerodynamic forces during re-entry. To fully understand the structural and thermomechanical performances of the TPS, heat transfer analysis, thermal stress analysis, and thermal buckling analysis must be performed. This requires complex three-dimensional thermal and structural models of the entire TPS including the insulation and sensors. Finite element (FE) methods are employed to assess the thermal and structural response of the TPS to the mechanical and aerothermal loads. The FE analyses results are used for the design verification and design improvement of the EXPERT thermal protection system.
Reentry Thermal Analysis of a Generic Crew Exploration Vehicle Structure
NASA Technical Reports Server (NTRS)
Ko, William L.; Gong, Leslie; Quinn, Robert D.
2007-01-01
Comparative studies were performed on the heat-shielding characteristics of honeycomb-core sandwich panels fabricated with different materials for possible use as wall panels for the proposed crew exploration vehicle. Graphite/epoxy sandwich panel was found to outperform aluminum sandwich panel under the same geometry due to superior heat-shielding qualities and lower material density. Also, representative reentry heat-transfer analysis was performed on the windward wall structures of a generic crew exploration vehicle. The Apollo low Earth orbit reentry trajectory was used to calculate the reentry heating rates. The generic crew exploration vehicle has a graphite/epoxy composite honeycomb sandwich exterior wall and an aluminum honeycomb sandwich interior wall, and is protected with the Apollo thermal protection system ablative material. In the thermal analysis computer program used, the TPS ablation effect was not yet included; however, the results from the nonablation heat-transfer analyses were used to develop a "virtual ablation" method to estimate the ablation heat loads and the thermal protection system recession thicknesses. Depending on the severity of the heating-rate time history, the virtual ablation period was found to last for 87 to 107 seconds and the ablation heat load was estimated to be in the range of 86 to 88 percent of the total heat load for the ablation time period. The thermal protection system recession thickness was estimated to be in the range of 0.08 to 0.11 inches. For the crew exploration vehicle zero-tilt and 18-degree-tilt stagnation points, thermal protection system thicknesses of h = {0.717, 0.733} inches were found to be adequate to keep the substructural composite sandwich temperature below the limit of 300 F.
Heating rate effects in simulated liquid Al2O_3
NASA Astrophysics Data System (ADS)
van Hoang, Vo
2006-01-01
The heating rate effects in simulated liquid Al{2}O{3} have been investigated by Molecular Dynamics (MD) method. Simulations were done in the basic cube under periodic boundary conditions containing 3000 ions with Born-Mayer type pair potentials. The temperature of the system was increasing linearly in time from the zero temperature as T(t)=T0 +γ t, where γ is the heating rate. The heating rate dependence of density and enthalpy of the system was found. Calculations show that static properties of the system such as the coordination number distributions and bond-angle distributions slightly depend on γ . Structure of simulated amorphous Al{2}O{3} model with the real density at the ambient pressure is in good agreement with Lamparter's experimental data. The heating rate dependence of dynamics of the system has been studied through the diffusion constant, mean-squared atomic displacement and comparison of partial radial distribution functions (PRDFs) for 10% most mobile and immobile particles with the corresponding mean ones. Finally, the evolution of diffusion constant of Al and O particles and structure of the system upon heating for the smallest heating rate was studied and presented. And we find that the temperature dependence of self-diffusion constant in the high temperature region shows a crossover to one which can be described well by a power law, D∝ (T-Tc )^γ . The critical temperature Tc is about 3500 K and the exponent γ is close to 0.941 for Al and to 0.925 for O particles. The glass phase transition temperature Tg for the Al{2}O{3} system is at anywhere around 2000 K.
LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Robinson, G. A., Jr.
1979-01-01
The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.
Thermal-Structural Evaluation of TD Ni-20Cr Thermal Protection System Panels
NASA Technical Reports Server (NTRS)
Eidinoff, H. L.; Rose, L.
1974-01-01
The results of a thermal-structural test program to verify the performance of a metallic/radiative Thermal Protection System (TPS) under reentry conditions are presented. This TPS panel is suitable for multiple reentry, high L/D space vehicles, such as the NASA space shuttle, having surface temperatures up to 1200 C (2200 F). The TPS panel tested consists of a corrugation-stiffened, beaded-skin TD Ni-20Cr metallic heat shield backed by a flexible fibrous quartz and radiative shield insulative system. Test conditions simulated the critical heating and aerodynamic pressure environments expected during 100 repeated missions of a reentry vehicle. Temperatures were measured during each reentry cycle; heat-shield flatness surveys to measure permanent set of the metallic components were made every 10 cycles. The TPS panel, in spite of localized surface failures, performed its designated function.
Unitized Regenerative Fuel Cell System Gas Storage/Radiator Development
NASA Technical Reports Server (NTRS)
Jakupca, Ian; Burke, Kenneth A.
2003-01-01
The ancillary components for Unitized Regenerative Fuel Cell (URFC) Energy Storage System are being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes. The heat pipes are coiled around each tank and covered with a thin layer of thermally conductive layer of carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different sized commercial grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. The results were incorporated into a model that simulates the performance of similar radiators using lightweight, space rated carbon composite tanks.
NASA Astrophysics Data System (ADS)
Gupta, Mohan L.; Sharma, S. R.; Sundar, A.
Heat flow values and heat generation data calculated from the concentration of heat producing radioactive elements, U, Th and K in surface rocks were analyzed. The South Indian Craton according to Drury et al., can be divided into various blocks, separated by late Proterozoic shear belts. The northern block comprises Eastern and Western Dharwar Cratons of Rogers (1986), Naqvi and Rogers (1987) and a part of the South Indian granulite terrain up to a shear system occupying the Palghat-Cauvery low lands. The geothermal data analysis clearly demonstrates that the present thermal characteristics of the above two Archaean terrains of the Indian and Australian Shields are quite similar. Their crustal thermal structures are likely to be similar also.
NASA Technical Reports Server (NTRS)
Gupta, Mohan L.; Sharma, S. R.; Sundar, A.
1988-01-01
Heat flow values and heat generation data calculated from the concentration of heat producing radioactive elements, U, Th and K in surface rocks were analyzed. The South Indian Craton according to Drury et al., can be divided into various blocks, separated by late Proterozoic shear belts. The northern block comprises Eastern and Western Dharwar Cratons of Rogers (1986), Naqvi and Rogers (1987) and a part of the South Indian granulite terrain up to a shear system occupying the Palghat-Cauvery low lands. The geothermal data analysis clearly demonstrates that the present thermal characteristics of the above two Archaean terrains of the Indian and Australian Shields are quite similar. Their crustal thermal structures are likely to be similar also.
Heat capacity reveals the physics of a frustrated spin tube.
Ivanov, Nedko B; Schnack, Jürgen; Schnalle, Roman; Richter, Johannes; Kögerler, Paul; Newton, Graham N; Cronin, Leroy; Oshima, Yugo; Nojiri, Hiroyuki
2010-07-16
We report on theoretical and experimental results concerning the low-temperature specific heat of the frustrated spin-tube material [(CuCl(2)tachH(3)Cl]Cl(2) (tach denotes 1,3,5-triaminocyclohexane). This substance turns out to be an unusually perfect spin-tube system which allows to study the physics of quasi-one-dimensional antiferromagnetic structures in rather general terms. An analysis of the specific-heat data demonstrates that at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg chain with short-range exchange interactions. On the other hand, around 2 K the composite spin structure of the chain is revealed through a Schottky-type peak in the specific heat. We argue that the dominating contribution to the peak originates from gapped magnon-type excitations related to the internal degrees of freedom of the rung spins.
Heat Capacity Reveals the Physics of a Frustrated Spin Tube
NASA Astrophysics Data System (ADS)
Ivanov, Nedko B.; Schnack, Jürgen; Schnalle, Roman; Richter, Johannes; Kögerler, Paul; Newton, Graham N.; Cronin, Leroy; Oshima, Yugo; Nojiri, Hiroyuki
2010-07-01
We report on theoretical and experimental results concerning the low-temperature specific heat of the frustrated spin-tube material [(CuCl2tachH)3Cl]Cl2 (tach denotes 1,3,5-triaminocyclohexane). This substance turns out to be an unusually perfect spin-tube system which allows to study the physics of quasi-one-dimensional antiferromagnetic structures in rather general terms. An analysis of the specific-heat data demonstrates that at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg chain with short-range exchange interactions. On the other hand, around 2 K the composite spin structure of the chain is revealed through a Schottky-type peak in the specific heat. We argue that the dominating contribution to the peak originates from gapped magnon-type excitations related to the internal degrees of freedom of the rung spins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. D. Blackwell; K. W. Wisian; M. C. Richards
2000-04-01
Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships betweenmore » structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.« less
Geophysical characteristics of the hydrothermal systems of Kilauea volcano, Hawaii
Kauahikaua, J.
1993-01-01
Clues to the overall structure of Kilauea volcano can be obtained from spatial studies of gravity, magnetic, and seismic velocity variations. The rift zones and summit are underlain by dense, magnetic, high P-wave-velocity rocks at depths of about 2 km less. The gravity and seismic velocity studies indicate that the rift structures are broad, extending farther to the north than to the south of the surface features. The magnetic data give more definition to the rift structures by allowing separation into a narrow, highly-magnetized, shallow zone and broad, flanking, magnetic lows. The patterns of gravity, magnetic variations, and seismicity document the southward migration of the upper cast rift zone. Regional, hydrologic features of Kilauea can be determined from resistivity and self-potential studies. High-level groundwater exists beneath Kilauea summit to elevations of +800 m within a triangular area bounded by the west edge of the upper southwest rift zone, the east edge of the upper east rift zone, and the Koa'c fault system. High-level groundwater is present within the east rift zone beyond the triangular summit area. Self-potential mapping shows that areas of local heat produce local fluid circulation in the unconfined aquifer (water table). The dynamics of Kilauea eruptions are responsible for both the source of heat and the fracture permeability of the hydrothermal system. Shallow seismicity and surface deformation indicate that magma is intruding and that fractures are forming beneath the rift zones and summit area. Magma supply estimates are used to calculate the rate of heat input to Kilauea's hydrothermal systems. Heat flows of 370-820 mW/m2 are calculated from deep wells within the lower east rift zone. The estimated heat input rate for Kilauea of 9 gigawatts (GW) is at least 25 times higher than the conductive heat loss as estimated from the heat flow in wells extrapolated over the area of the summit caldera and rift zones. Heat must be dissipated by another mechanism, or the heat input rate estimates are much too high. ?? 1993.
Probe Measures Fouling As In Heat Exchangers
NASA Technical Reports Server (NTRS)
Marner, Wilbur J.; Macdavid, Kenton S.
1990-01-01
Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.
Education & Collection Facility GSHP Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joplin, Jeff
The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to amore » recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient system.« less
The Structural Heat Intercept-Insulation-Vibration Evaluation Rig (SHIVER)
NASA Technical Reports Server (NTRS)
Johnson, W. L.; Zoeckler, J. G.; Best-Ameen, L. M.
2015-01-01
NASA is currently investigating methods to reduce the boil-off rate on large cryogenic upper stages. Two such methods to reduce the total heat load on existing upper stages are vapor cooling of the cryogenic tank support structure and integration of thick multilayer insulation systems to the upper stage of a launch vehicle. Previous efforts have flown a 2-layer MLI blanket and shown an improved thermal performance, and other efforts have ground-tested blankets up to 70 layers thick on tanks with diameters between 2 3 meters. However, thick multilayer insulation installation and testing in both thermal and structural modes has not been completed on a large scale tank. Similarly, multiple vapor cooled shields are common place on science payload helium dewars; however, minimal effort has gone into intercepting heat on large structural surfaces associated with rocket stages. A majority of the vapor cooling effort focuses on metallic cylinders called skirts, which are the most common structural components for launch vehicles. In order to provide test data for comparison with analytical models, a representative test tank is currently being designed to include skirt structural systems with integral vapor cooling. The tank is 4 m in diameter and 6.8 m tall to contain 5000 kg of liquid hydrogen. A multilayer insulation system will be designed to insulate the tank and structure while being installed in a representative manner that can be extended to tanks up to 10 meters in diameter. In order to prove that the insulation system and vapor cooling attachment methods are structurally sound, acoustic testing will also be performed on the system. The test tank with insulation and vapor cooled shield installed will be tested thermally in the B2 test facility at NASAs Plumbrook Station both before and after being vibration tested at Plumbrooks Space Power Facility.
NASA Astrophysics Data System (ADS)
Zhao, Ruipeng; Liu, Qing; Xia, Yudong; Tao, Bowan; Li, Yanrong
2017-12-01
We have successfully applied metal organic chemical vapor deposition (MOCVD) to synthesize biaxially textured YBa2Cu3O7-δ (YBCO) superconducting films on the templates of LaMnO3/epitaxial MgO/IBAD-MgO/solution deposition planarization (SDP) Y2O3/Hastelloy tape. The YBCO films have obtained dense and smooth surface with good structure and performance. A new self-heating method, which replaced the conventional heating-wire radiation heating method, has been used to heat the Hastelloy metal tapes by us. Compared with the heating-wire radiation heating method, the self-heating method shows higher energy efficiency and lower power consumption, which has good advantage to simplify the structure of the MOCVD system. Meanwhile, the utilization ratio of metal organic sources can be increased from 6% to 20% through adopting the new self-heating method. Then the preparation cost of the YBCO films can be also greatly reduced.
Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa
2013-09-01
Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vilella, Kenny; Deschamps, Frédéric
2018-07-01
Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate mantles. A suitable framework for modelling this heat transport is a system including bottom heating (from the core) and internal heating, for example, generated by secular cooling or by the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical properties of the system. In systems where convection is able to operate, two different regimes are possible depending on the relative amount of bottom and internal heating. For moderate internal heating rates, the system is composed of active hot upwellings and cold downwellings. For large internal heating rates, the bottom heat flux becomes negative and the system is only composed of active cold downwellings. Here, we build theoretical scaling laws for both convective regimes following the approach of Vilella & Kaminski (2017), which links the surface heat flux and the temperature jump across both the top and the bottom thermal boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate. Theoretical predictions are then verified against numerical simulations performed in 2-D and 3-D Cartesiangeometry, and covering a large range of the parameter space. Our theoretical scaling laws are more successful in predicting the thermal structure of systems with large internal heating rates than that of systems with no or moderate internal heating. The differences between moderate and large internal heating rates are interpreted as differences in the mechanisms generating thermal instabilities. We identified three mechanisms: conductive growth of the TBL, instability impacting, and TBL erosion, the last two being present only for moderate internal heating rates, in which hot plumes are generated at the bottom of the system and are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early Earth, proposing a new model for the cooling of the primordial magma ocean that reconciles geochemical observations and magma ocean dynamics.
NASA Astrophysics Data System (ADS)
Vilella, Kenny; Deschamps, Frederic
2018-04-01
Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate mantles. A suitable framework for modelling this heat transport is a system including bottom heating (from the core) and internal heating, e.g., generated by secular cooling or by the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical properties of the system. In systems where convection is able to operate, two different regimes are possible depending on the relative amount of bottom and internal heating. For moderate internal heating rates, the system is composed of active hot upwellings and cold downwellings. For large internal heating rates, the bottom heat flux becomes negative and the system is only composed of active cold downwellings. Here, we build theoretical scaling laws for both convective regimes following the approach of Vilella & Kaminski (2017), which links the surface heat flux and the temperature jump across both the top and bottom thermal boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate. Theoretical predictions are then verified against numerical simulations performed in 2D and 3D-Cartesian geometry, and covering a large range of the parameter space. Our theoretical scaling laws are more successful in predicting the thermal structure of systems with large internal heating rates than that of systems with no or moderate internal heating. The differences between moderate and large internal heating rates are interpreted as differences in the mechanisms generating thermal instabilities. We identified three mechanisms: conductive growth of the TBL, instability impacting, and TBL erosion, the last two being present only for moderate internal heating rates, in which hot plumes are generated at the bottom of the system and are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early Earth, proposing a new model for the cooling of the primordial magma ocean that reconciles geochemical observations and magma ocean dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolková, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk; Holubčík, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk
All electronic components which exhibit electrical conductor resistance, generates heat when electricity is passed (Joule - Lenz’s Law). The generated heat is necessary to take into surrounding environment. To reduce the operating temperature of electronic components are used various types of cooling in electronic devices. The released heat is removed from the outside of the device in several ways, either alone or in combination. Intensification of cooling electronic components is in the use of heat transfer through phase changes. From the structural point of view it is important to create a cooling system which would be able to drain themore » waste heat converter for each mode of operation device. Another important criterion is the reliability of the cooling, and it is appropriate to choose cooling system, which would not contain moving elements. In this article, the issue tackled by the phase change in the heat pipe.« less
NASA Astrophysics Data System (ADS)
Kolková, Zuzana; Holubčík, Michal; Malcho, Milan
2016-06-01
All electronic components which exhibit electrical conductor resistance, generates heat when electricity is passed (Joule - Lenz's Law). The generated heat is necessary to take into surrounding environment. To reduce the operating temperature of electronic components are used various types of cooling in electronic devices. The released heat is removed from the outside of the device in several ways, either alone or in combination. Intensification of cooling electronic components is in the use of heat transfer through phase changes. From the structural point of view it is important to create a cooling system which would be able to drain the waste heat converter for each mode of operation device. Another important criterion is the reliability of the cooling, and it is appropriate to choose cooling system, which would not contain moving elements. In this article, the issue tackled by the phase change in the heat pipe.
Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling
NASA Astrophysics Data System (ADS)
Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.
2017-02-01
Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.
Peng, Quanhui; Khan, Nazir A; Wang, Zhisheng; Zhang, Xuewei; Yu, Peiqiang
2014-08-20
This study evaluated the effect of thermal processing on the estimated metabolizable protein (MP) supply to dairy cattle from camelina seeds (Camelina sativa L. Crantz) and determined the relationship between heat-induced changes in protein molecular structural characteristics and the MP supply. Seeds from two camelina varieties were sampled in two consecutive years and were either kept raw or were heated in an autoclave (moist heating) or in an air-draft oven (dry heating) at 120 °C for 1 h. The MP supply to dairy cattle was modeled by three commonly used protein evaluation systems. The protein molecular structures were analyzed by Fourier transform/infrared-attenuated total reflectance molecular spectroscopy. The results showed that both the dry and moist heating increased the contents of truly absorbable rumen-undegraded protein (ARUP) and total MP and decreased the degraded protein balance (DPB). However, the moist-heated camelina seeds had a significantly higher (P < 0.05) content of ARUP and total MP and a significantly lower (P < 0.05) content of DPB than did the dry-heated camelina seeds. The regression equations showed that intensities of the protein molecular structural bands can be used to estimate the contents of ARUP, MP, and DPB with high accuracy (R(2) > 0.70). These results show that protein molecular structural characteristics can be used to rapidly assess the MP supply to dairy cattle from raw and heat-treated camelina seeds.
Three-terminal quantum-dot thermal management devices
NASA Astrophysics Data System (ADS)
Zhang, Yanchao; Zhang, Xin; Ye, Zhuolin; Lin, Guoxing; Chen, Jincan
2017-04-01
We theoretically demonstrate that the heat flows can be manipulated by designing a three-terminal quantum-dot system consisting of three Coulomb-coupled quantum dots connected to respective reservoirs. In this structure, the electron transport between the quantum dots is forbidden, but the heat transport is allowed by the Coulomb interaction to transmit heat between the reservoirs with a temperature difference. We show that such a system is capable of performing thermal management operations, such as heat flow swap, thermal switch, and heat path selector. An important thermal rectifier, i.e., a thermal diode, can be implemented separately in two different paths. The asymmetric configuration of a quantum-dot system is a necessary condition for thermal management operations in practical applications. These results should have important implications in providing the design principle for quantum-dot thermal management devices and may open up potential applications for the thermal management of quantum-dot systems at the nanoscale.
NASA Astrophysics Data System (ADS)
Vilella, K.; Deschamps, F.
2016-12-01
Recently, the New Horizons spacecraft obtained high resolution pictures of Pluto's surface, and revealed, among other surface features, a large nitrogen ice glacier. The surface of this glacier, informally named Sputnik Planum, is separated into a network of polygonal cells with a wavelength of about 30 km. Recent studies (McKinnon et al. 2016, Trowbridge et al. 2016) interpreted this network to the surface expression of thermal convection drives by the heat coming from the icy mantle and constrain the properties of the glacier, including its thickness. Here, we first show that such a bottom heated convective system is not able to produce a polygonal structure as observed on Sputnik Planum. We therefore consider an internally heated system that, for a certain range of parameters, does produce a similar surface planform, which in turn constrains the possible parameters of the glacier. Combining scaling laws, published in earlier studies with the observation of the surface planform, we establish relationships between the critical parameters of Sputnik Planum. In particular, for reasonable temperature jump across the glacier (2-10 K) and nitrogen ice viscosities (1013-5 1014 Pa.s), our calculations indicate that the glacier thickness and the surface heat flux are in the ranges 2-13 km and 0.1-10 mW.m2, respectively. The fact that only internal heating seems able to reproduce the polygonal structure found on Sputnik Planum raises the question of what physical processes produce the internal heating.
Investigation of heat-resistant layered coating of Al-Cr-Ni
NASA Astrophysics Data System (ADS)
Shmorgun, V. G.; Trykov, Y. P.; Bogdanov, A. I.; Taube, A. O.
2016-02-01
The paper shows the transformation of the structure and phase composition of the layered coating system Al-Cr-Ni, obtained by the heat treatment of multilayered composite H20N80+AD1, welded by explosion, in the time range 1-300 hours. The cyclic heat resistance of the coating at 1150 ° C is studied.
Space shuttle/food system study. Volume 2: Supporting appendices, oven study
NASA Technical Reports Server (NTRS)
1975-01-01
Calculations and data regarding the development of a galley oven for use in the space shuttle are presented. Heat flow, heat transfer, and food heating characteristics are given for various oven designs. A design approach to guarantee structural reliability is also presented, in which the oven closure, door, and basic mounting points are considered.
NASA Astrophysics Data System (ADS)
Kiefer, Michael T.; Zhong, Shiyuan; Heilman, Warren E.; Charney, Joseph J.; Bian, Xindi
2018-03-01
An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is utilized in a series of idealized numerical experiments to investigate the influence of vertical canopy structure on the atmospheric response to a stationary sensible heat flux at the ground ("fire heat flux"), broadly consistent in magnitude with the sensible heat flux from a low-intensity surface fire. Five vertical canopy structures are combined with five fire heat flux magnitudes to yield a matrix of 25 simulations. Analyses of the fire-heat-flux-perturbed u component of the wind, vertical velocity, kinetic energy, and temperature show that the spatial pattern and magnitude of the perturbations are sensitive to vertical canopy structure. Both vertical velocity and kinetic energy exhibit an increasing trend with increasing fire heat flux that is stronger for cases with some amount of overstory vegetation than cases with exclusively understory vegetation. A weaker trend in cases with exclusively understory vegetation indicates a damping of the atmospheric response to the sensible heat from a surface fire when vegetation is most concentrated near the surface. More generally, the results presented in this study suggest that canopy morphology should be considered when applying the results of a fire-atmosphere interaction study conducted in one type of forest to other forests with different canopy structures.
Takamatsu, Kuniyoshi; Hu, Rui
2014-11-27
A new, highly efficient reactor cavity cooling system (RCCS) with passive safety features without a requirement for electricity and mechanical drive is proposed for high temperature gas cooled reactors (HTGRs) and very high temperature reactors (VHTRs). The RCCS design consists of continuous closed regions; one is an ex-reactor pressure vessel (RPV) region and another is a cooling region having heat transfer area to ambient air assumed at 40 (°C). The RCCS uses a novel shape to efficiently remove the heat released from the RPV with radiation and natural convection. Employing the air as the working fluid and the ambient airmore » as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. Therefore, HTGRs and VHTRs adopting the new RCCS design can avoid core melting due to overheating the fuels. The simulation results from a commercial CFD code, STAR-CCM+, show that the temperature distribution of the RCCS is within the temperature limits of the structures, such as the maximum operating temperature of the RPV, 713.15 (K) = 440 (°C), and the heat released from the RPV could be removed safely, even during a loss of coolant accident (LOCA). Finally, when the RCCS can remove 600 (kW) of the rated nominal state even during LOCA, the safety review for building the HTTR could confirm that the temperature distribution of the HTTR is within the temperature limits of the structures to secure structures and fuels after the shutdown because the large heat capacity of the graphite core can absorb heat from the fuel in a short period. Therefore, the capacity of the new RCCS design would be sufficient for decay heat removal.« less
Structural transformations of heat treated Co-less high entropy alloys
NASA Astrophysics Data System (ADS)
Mitrica, D.; Tudor, A.; Rinaldi, A.; Soare, V.; Predescu, C.; Berbecaru, A.; Stoiciu, F.; Badilita, V.
2018-03-01
Co is considered to be one of the main ingredients in superalloys. Co is considered a critical element and its substitution is difficult due to its unique ability to form high temperature stable structures with high mechanical and corrosion/oxidation resistance. High entropy alloys (HEA) represent a relatively new concept in material design. HEA are characterised by a high number of alloying elements, in unusually high proportion. Due to their specific particularities, high entropy alloys tend to form predominant solid solution structures that develop potentially high chemical, physical and mechanical properties. Present paper is studying Co-less high entropy alloys with high potential in severe environment applications. The high entropy alloys based on Al-Cr-Fe-Mn-Ni system were prepared by induction melting and casting under protective atmosphere. The as-cast specimens were heat treated at various temperatures to determine the structure and property behaviour. Samples taken before and after heat treatment were investigated for chemical, physical, structural and mechanical characteristics. Sigma phase composition and heat treatment parameters had major influence over the resulted alloy structure and properties.
Seto, K; Kaba, H; Saito, H; Edashige, N; Kawakami, M
1983-07-01
The effects of lesions in the basal medial hypothalamus and limbic structure upon the responses of adrenocorticoids formation in adrenal slices of rabbits to daily repeated heat exposures has been investigated. (1) The adrenocortical responses to heat exposure on the 1st day were decreased by lesions in the periventricular arcuate nucleus (ARC), ventromedial hypothalamus (VMH), stria terminalis (ST) and dorsal fornix (FX). (2) There were no effects of heat exposure on the 10th day upon the adrenocorticoid formation in either the sham-lesioned rabbits or the rabbits with the lesions of ARC, VMH and ST. (3) In rabbits with the FX lesions, the adrenocorticoids formation was significantly increased by heat exposure on the 10th day. (4) These results suggested that the basal medial hypothalamus, amygdala (AMYG)-ST system and dorsal hippocampus (HPC)-FX system participated in the mechanisms of adrenocortical responses to heat exposure on the 1st day, but only the HPC-FX system played some roles in complete disappearance process of adrenocortical responses to heat exposure by repetition of exposures.
Unitized Regenerative Fuel Cell System Gas Storage-Radiator Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupta, Ian
2005-01-01
High-energy-density regenerative fuel cell systems that are used for energy storage require novel approaches to integrating components in order to preserve mass and volume. A lightweight unitized regenerative fuel cell (URFC) energy storage system concept is being developed at the NASA Glenn Research Center. This URFC system minimizes mass by using the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes, which are coiled around each tank and covered with a thin layer of thermally conductive carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different-sized commercial-grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage tank-radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. In the future, the results will be incorporated into a model that simulates the performance of similar radiators using lightweight, spacerated carbon composite tanks.
Convective structure of the planetary boundary layer of the ocean during gale
NASA Technical Reports Server (NTRS)
Melfi, S. H.; Boers, R.
1986-01-01
The structure of the Planetary Boundary Layer (PBL) was measured, using an airborne lidar, over the Atlantic Ocean during several intensive observation periods of the Genesis of Atlantic Lows Experiment (GALE). Primary emphasis is on the understanding of the convective structure within the PBL during cold air outbreaks. Cold outbreaks generally occur in between the development of coastal storms; and behind a cold front sweeping down from Canada out across the Atlantic. As the cold dry air moves over the relatively warm ocean, it is heated and moistened. The transfer of latent and sensible heat during these events accounts for most of the heat transfer between the ocean and atmosphere during winter. Moistening of the PBL during these eventsis believed to be an important factor in determining the strength of development of the storm system which follows. In general, the more PBL moisture available as latent heat the higher the probability the storm will intensify. The major mechanism for vertical mixing of heat and mositure within the PBL is cellular convection. Knowlede of the organization and structure of the convection is important for understanding the process.
NASA Astrophysics Data System (ADS)
Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.
2016-06-01
For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.
Wang, Yong; Xiao, Peng; Dai, Jingmin
2017-10-01
A new steady-state apparatus is designed and constructed for the measurement of thermal conductivity (up to 25 W/mK) on a square specimen (300 mm side) with a heating temperature range from 30 °C to 900 °C. A vacuum container, of which the pressure can reach to 1 Pa, is also built for materials which can be easily oxidized. The structure of the facility is different from that of traditional steady-state devices, especially for the design of heating plate and heat sink. To verify the temperature uniformity of the heating plate, a simulation analysis is carried out in this paper. Besides, the heating system, the heat sink, the measuring system, and the vacuum system are presented in detail. In addition, the thermal conductivities of a heat insulation tile, 304L stainless steel, n-docosane, and erythritol are measured by this apparatus. Finally, an uncertainty analysis is discussed depending on different temperatures and materials.
NASA Astrophysics Data System (ADS)
Wang, Yong; Xiao, Peng; Dai, Jingmin
2017-10-01
A new steady-state apparatus is designed and constructed for the measurement of thermal conductivity (up to 25 W/mK) on a square specimen (300 mm side) with a heating temperature range from 30 °C to 900 °C. A vacuum container, of which the pressure can reach to 1 Pa, is also built for materials which can be easily oxidized. The structure of the facility is different from that of traditional steady-state devices, especially for the design of heating plate and heat sink. To verify the temperature uniformity of the heating plate, a simulation analysis is carried out in this paper. Besides, the heating system, the heat sink, the measuring system, and the vacuum system are presented in detail. In addition, the thermal conductivities of a heat insulation tile, 304L stainless steel, n-docosane, and erythritol are measured by this apparatus. Finally, an uncertainty analysis is discussed depending on different temperatures and materials.
Thermal coupon testing of Load-Bearing Multilayer Insulation
NASA Astrophysics Data System (ADS)
Johnson, W. L.; Heckle, K. W.; Hurd, J.
2014-01-01
Advanced liquid hydrogen storage concepts being considered for long duration space travel incorporate refrigeration systems and cryocoolers to lower the heat load. Using a refrigeration loop to intercept the energy flowing through MLI to a liquid hydrogen tank at a temperature between the environment and the liquid hydrogen can lower the heat load on the propellant system by as much as 50%. However, the refrigeration loop requires structural integration into the MLI. Use of a more traditional concept of MLI underneath this refrigeration loop requires that a structural system be put in place to support the loop. Such structures, even when thermally optimized, present a relatively large parasitic heat load into the tank. Through NASA small business innovation research funding, Quest Thermal Group and Ball Aerospace have been developing a structural MLI based insulation system. These systems are designed with discrete polymeric spacers between reflective layers instead of either dacron or silk netting. The spacers (or posts) have an intrinsic structural capability that is beyond that of just supporting the internal insulation mechanical loads. This new MLI variant called Load Bearing MLI (LB-MLI) has been developed specifically for the application of supporting thermal shields within the insulation system. Test articles (coupons) of the new LB-MLI product were fabricated for thermal performance testing using liquid nitrogen at Kennedy Space Center (KSC) and using cryocooler based calorimetry at Florida State University. The test results and analysis are presented. Thermal models developed for correlation with the thermal testing results both at KSC and testing that was performed at Florida State University are also discussed.
Evaluation of capillary reinforced composites
NASA Technical Reports Server (NTRS)
Cahill, J. E.; Halase, J. F.; South, W. K.; Stoffer, L. J.
1985-01-01
Anti-icing of the inlet of jet engines is generally performed with high pressure heated air that is directed forward from the compressor through a series of pipes to various manifolds located near the structures to be anti-iced. From these manifolds, the air is directed to all flowpath surfaces that may be susceptible to ice formation. There the anti-icing function may be performed by either heat conduction or film heating. Unfortunately, the prospect of utilizing lighweight, high strength composites for inlet structures of jet engines has been frustrated by the low transverse thermal conductivity of such materials. It was the objective of this program to develop an advanced materials and design concept for anti-icing composite structures. The concept that was evaluated used capillary glass tubes embedded on the surface of a composite structure with heated air ducted through the tubes. An analytical computer program was developed to predict the anti-icing performance of such tubes and a test program was conducted to demonstrate actual performance of this system. Test data and analytical code results were in excellent agreement. Both indicate feasibility of using capillary tubes for surface heating as a means for composite engine structures to combat ice accumulation.
NASA Astrophysics Data System (ADS)
Yu, Tian; Gao, Peng; Wu, Tao; Tyson, Trevor; Lalancette, Roger
2013-03-01
Crystal structure, electric polarization and heat capacity measurements on the hexagonal multiferroic RMnO3 reveal that small R ion (Lu and lower cation size) systems are ferroelectric and possess the same space-group as YMnO3. Combined local and long range structural measurements were conducted by XAFS, PDF and single crystal and powder XRD methods. The influence of the Mn-O and R-O distribution on the electric polarization is discussed. Point charge estimates of the electrical polarization are given for comparison with the YMnO3 system. This work is supported by DOE Grant DE-FG02-07ER46402.
Interior structures and tidal heating in the TRAPPIST-1 planets
NASA Astrophysics Data System (ADS)
Barr, Amy C.; Dobos, Vera; Kiss, László L.
2018-05-01
Context. With seven planets, the TRAPPIST-1 system has among the largest number of exoplanets discovered in a single system so far. The system is of astrobiological interest, because three of its planets orbit in the habitable zone of the ultracool M dwarf. Aims: We aim to determine interior structures for each planet and estimate the temperatures of their rock mantles due to a balance between tidal heating and convective heat transport to assess their habitability. We also aim to determine the precision in mass and radius necessary to determine the planets' compositions. Methods: Assuming the planets are composed of uniform-density noncompressible materials (iron, rock, H2O), we determine possible compositional models and interior structures for each planet. We also construct a tidal heat generation model using a single uniform viscosity and rigidity based on each planet's composition. Results: The compositions for planets b, c, d, and e remain uncertain given the error bars on mass and radius. With the exception of TRAPPIST-1c, all have densities low enough to indicate the presence of significant H2O. Planets b and c experience enough heating from planetary tides to maintain magma oceans in their rock mantles; planet c may have surface eruptions of silicate magma, potentially detectable with next-generation instrumentation. Tidal heat fluxes on planets d, e, and f are twenty times higher than Earth's mean heat flow. Conclusions: Planets d and e are the most likely to be habitable. Planet d avoids the runaway greenhouse state if its albedo is ≳0.3. Determining the planet's masses within 0.1-0.5 Earth masses would confirm or rule out the presence of H2O and/or iron. Understanding the geodynamics of ice-rich planets f, g, and h requires more sophisticated modeling that can self-consistently balance heat production and transport in both rock and ice layers.
NASA Technical Reports Server (NTRS)
Bok, L. D.
1973-01-01
The development of light weight wheel and brake systems designed to meet the space shuttle type requirements was investigated. The study includes the use of carbon graphite composite and beryllium as heat sink materials and the compatibility of these heat sink materials with the other structural components of the wheel and brake.
NASA Technical Reports Server (NTRS)
Wilson, Brad; Galatzer, Yishai
2008-01-01
The Space Shuttle is protected by a Thermal Protection System (TPS) made of tens of thousands of individually shaped heat protection tile. With every flight, tiles are damaged on take-off and return to earth. After each mission, the heat tiles must be fixed or replaced depending on the level of damage. As part of the return to flight mission, the TPS requirements are more stringent, leading to a significant increase in heat tile replacements. The replacement operation requires scanning tile cavities, and in some cases the actual tiles. The 3D scan data is used to reverse engineer each tile into a precise CAD model, which in turn, is exported to a CAM system for the manufacture of the heat protection tile. Scanning is performed while other activities are going on in the shuttle processing facility. Many technicians work simultaneously on the space shuttle structure, which results in structural movements and vibrations. This paper will cover a portable, ultra-fast data acquisition approach used to scan surfaces in this unstable environment.
Solar hot water system installed at Day's Inn Motel, Savannah, Georgia
NASA Technical Reports Server (NTRS)
1980-01-01
The Solar System was designed to provide 50 percent of the total Domestic Hot Water (DHW) demand. Liquid Flat Plate Collectors (900 square feet) are used for the collector subsystem. The collector subsystem is closed loop, using 50 percent Ethylene Glycol solution antifreeze for freeze protection. The 1,000 gallon fiber glass storage tank contains two heat exchangers. One of the heat exchangers heats the storage tank with the collector solar energy. The other heat exchanger preheats the cold supply water as it passes through on the way to the Domestic Hot Water (DHW) tank heaters. Electrical energy supplements the solar energy for the DHW. The Collector Mounting System utilizes guy wires to structurally tie the collector array to the building.
Impact of thermal energy storage properties on solar dynamic space power conversion system mass
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.
1987-01-01
A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overalll system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1880 kg/cu m.
Impact of thermal energy storage properties on solar dynamic space power conversion system mass
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.
1987-01-01
A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).
Integral collector storage system with heat exchange apparatus
Rhodes, Richard O.
2004-04-20
The present invention relates to an integral solar energy collector storage systems. Generally, an integral collector storage system includes a tank system, a plurality of heat exchange tubes with at least some of the heat exchange tubes arranged within the tank system, a first glazing layer positioned over the tank system and a base plate positioned under the tank system. In one aspect of the invention, the tank system, the first glazing layer an the base plate each include protrusions and a clip is provided to hold the layers together. In another aspect of the invention, the first glazing layer and the base plate are ribbed to provide structural support. This arrangement is particularly useful when these components are formed from plastic. In yet another aspect of the invention, the tank system has a plurality of interconnected tank chambers formed from tubes. In this aspect, a supply header pipe and a fluid return header pipe are provided at a first end of the tank system. The heat exchange tubes have inlets coupled to the supply header pipe and outlets coupled to the return header pipe. With this arrangement, the heat exchange tubes may be inserted into the tank chambers from the first end of the tank system.
Liquid metal cooled nuclear reactor plant system
Hunsbedt, Anstein; Boardman, Charles E.
1993-01-01
A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.
Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application
NASA Technical Reports Server (NTRS)
Johnson, R., Jr.; Killpatrick, D. H.
1975-01-01
The design, fabrication, and testing of a full-size, full-scale TD Ni-20Cr heat shield test array in simulated mission environments is described along with the design and fabrication of two additional full-size, full-scale test arrays to be tested in flowing gas test facilities at the NASA Langley Research Center. Cost and reusability evaluations of TD Ni-20Cr heat shield systems are presented, and weight estimates of a TD Ni-20Cr heat shield system for use on a shuttle orbiter vehicle are made. Safe-line expectancy of a TD Ni-20Cr heat shield system is assessed. Non-destructive test techniques are evaluated to determine their effectiveness in quality assurance checks of TD Ni-20Cr components such as heat shields, heat shield supports, close-out panels, formed cover strips, and edge seals. Results of tests on a braze reinforced full-scale, subsize panel are included. Results show only minor structural degradation in the main TD Ni-20Cr heat shields of the test array during simulated mission test cycles.
NASA Technical Reports Server (NTRS)
1979-01-01
The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.
Analysis of integrated photovoltaic-thermal systems using solar concentrators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, M.B.
1983-01-01
An integrated photovoltaic-thermal system using solar concentrators utilizes the solar radiation spectrum in the production of electrical and thermal energy. The electrical conversion efficiency of this system decreases with increasing solar cell temperature. Since a high operating temperature is desirable to maximize the quality of thermal output of the planned integrated system, a proper choice of the operating temperature for the unit cell is of vital importance. The analysis predicts performance characteristics of the unit cell by considering the dependence of the heat generation, the heat absorption and the heat transmission on the material properties of the unit cell structure.more » An analytical model has been developed to describe the heat transport phenomena occurring in the unit cell structure. The range of applicability of the one-dimensional and the two-dimensional models, which have closed-form solutions, has been demonstrated. Parametric and design studies point out the requirements for necessary good electrical and thermal performance. A procedure utilizing functional forms of component characteristics in the form of partial coefficients of the dependent variable has been developed to design and operate the integrated system to have a desirable value of the thermal to electrical output ratio both at design and operating modes.« less
Conceptual study of hypersonic airbreathing missiles
NASA Technical Reports Server (NTRS)
Hunt, J. L.; Lawing, P. L.; Marcum, D. C.; Cubbage, J. M.
1978-01-01
The purpose of this paper is to report recent results of an in-house conceptual study to evaluate the performance potential and research needs of airbreathing hypersonic missiles. An alkylated-borane (noncryogenic) fueled, dual-mode, ramjet/scramjet propulsion system structured with a Rene 41 inlet and a carbon-carbon combustor was assumed along with a Lockalloy heat sink fuselage structure and beryllium wings and control surfaces. Performance for an air-launched baseline missile with a 961 pound staging weight containing a 100 pound payload indicated excellent long range cruise, moderate acceleration and high maneuverability potential. A sizing study indicates that Mach 6 cruise ranges of the order of 2500 nautical miles for payloads of 300 pounds can be achieved with moderate size missile carry weights (9000 lbs.). Aerodynamic heating analyses indicate that unprotected heat-sink structures with internal insulation are feasible for ranges of several hundred miles. For ranges of several thousands of miles a multiwall radiation shield (Inconel/titanium) was selected for protection of the internally insulated heat sink structure.
Metal-wool heat shields for space shuttle. [design, fabrication, and attachment to structure
NASA Technical Reports Server (NTRS)
Miller, R. C.; Clure, J. L.
1974-01-01
The packaging of metal wool for reusable thermal heat shields applied to aerodynamic and other surfaces for the space shuttle was analyzed and designed, and samples were fabricated and experimentally studied. Parametric trends were prepared for selected configurations. An all-metal thermally efficient, reliable, reusable and producible heat shield system was designed and structurally tested for use on spacecraft aerodynamic surfaces where temperatures do not exceed 810 K. Stainless steel sheet, primarily for structure and secondarily in the transverse plane for thermal expansion, was shown to accommodate thermal expansion in all directions when restrained at the edges and heated to 1360 K. Aerodynamic loads of 0.35 x 1000,000 newtons/sq meter, and higher, may be easily accepted by structures of this design. Seven all-metal thermal protection specimens, 12.7 cm square and 2.5 cm thick were fabricated and are being experimentally evaluated at simulated shuttle entry conditions in an arc jet facility.
Collection of low-grade waste heat for enhanced energy harvesting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming
Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device withmore » optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.« less
NASA Technical Reports Server (NTRS)
Jenkins, J. M.
1979-01-01
A laboratory heating test simulating hypersonic heating was conducted on a heat-sink type structure to provide basic thermal stress measurements. Six NASTRAN models utilizing various combinations of bar, shear panel, membrane, and plate elements were used to develop calculated thermal stresses. Thermal stresses were also calculated using a beam model. For a given temperature distribution there was very little variation in NASTRAN calculated thermal stresses when element types were interchanged for a given grid system. Thermal stresses calculated for the beam model compared similarly to the values obtained for the NASTRAN models. Calculated thermal stresses compared generally well to laboratory measured thermal stresses. A discrepancy of signifiance occurred between the measured and predicted thermal stresses in the skin areas. A minor anomaly in the laboratory skin heating uniformity resulted in inadequate temperature input data for the structural models.
Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces
NASA Astrophysics Data System (ADS)
Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao
2018-01-01
In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.
Analysis and improvement of the cavity structure of steam receiver of 1MWe solar tower power plant
NASA Astrophysics Data System (ADS)
Yu, Qiang; Wang, Zhifeng; Zhu, Lingzhi
2017-06-01
The central receiver, which plays a dominant role in the radiation-heat conversion, is one of the most important components in the solar tower power plants. Its performance can directly affect the efficiency of the entire solar power generation system. In general, the performance of the central receiver is mainly determined by two aspects: the first is the receiver structure and arrangement of heating pipes, the other is the integral control and operation strategy. The former is the internal essence of the receiver and the latter is extrinsic. In this paper, the latter is temporarily not in the scope of the discussion. According to the previous cavity structure and arrangement of the heating pipes, it is found that there are varying degrees of deformation to the heating pipes, especially for the superheated pipes. In order to make some improvement for the cavity receiver, firstly, the most likely causes were analyzed according to the previous structure. Secondly, a possible cavity structure was proposed according to the calculation results. The results show that the performance of the receiver is better than the previous one.
NASA Astrophysics Data System (ADS)
Cretcher, C. K.
1980-11-01
The various types of solar domestic hot water systems are discussed including their advantages and disadvantages. The problems that occur in hydronic solar heating systems are reviewed with emphasis on domestic hot water applicatons. System problems in retrofitting of residential buildings are also discussed including structural and space constraints for various components and subsystems. System design parameters include various collector sizing methods, collector orientation, storage capacity and heat loss from pipes and tanks. The installation costs are broken down by components and subsystems. The approach used for utility economic impact analysis is reviewed. The simulation is described, and the results of the economic impact analysis are given. A summary assessment is included.
NASA Astrophysics Data System (ADS)
Statsenko, Elena; Ostrovaia, Anastasia; Pigurin, Andrey
2018-03-01
This article considers the influence of the building's tallness and the presence of mounting grooved lines on the parameters of heat transfer in the gap of a hinged ventilated facade. A numerical description of the processes occurring in a heat-gravitational flow is given. The average velocity and temperature of the heat-gravitational flow of a structure with open and sealed rusts are determined with unchanged geometric parameters of the gap. The dependence of the parameters influencing the thermomechanical characteristics of the enclosing structure is derived depending on the internal parameters of the system. Physical modeling of real multistory structures is performed by projecting actual parameters onto a reduced laboratory model (scaling).
NASA Astrophysics Data System (ADS)
Chen, Tsing-Chang; Weng, Shu-Ping; Schubert, Siegfried
1999-07-01
Using the NASA/GEOS reanalysis data for 1980-95, the austral-summer stationary eddies in the tropical-subtropical Southern Hemisphere are examined in two wave regimes: long and short wave (wave 1 and waves 2-6, respectively). The basic structure of the Bolivian high-Nordeste low (BH-NL) system is formed by a short-wave train across South America but modulated by the long-wave regime. The short-wave train exhibits a monsoonlike vertical phase reversal in the midtroposphere and a quarter-wave phase shift relative to the divergent circulation. As inferred from (a) the spatial relationship between the streamfunction and velocity potential and (b) the structure of the divergent circulation, the short-wave train forming the BH-NL system is maintained by South American local heating and remote African heating, while the long-wave regime is maintained by western tropical Pacific heating.The maintenance of the stationary waves in the two wave regimes is further illustrated by a simple diagnostic scheme that includes the velocity-potential maintenance equation (which links velocity potential and diabatic heating) and the streamfunction budget (which is the inverse Laplacian transform of the vorticity equation). Some simple relationships between streamfunction and velocity potential for both wave regimes are established to substantiate the links between diabatic heating and streamfunction; of particular interest is a Sverdrup balance in the short-wave regime. This simplified vorticity equation explains the vertical structure of the short-wave train associated with the BH-NL system and its spatial relationship with the divergent circulation.Based upon the diagnostic analysis of its maintenance a simple forced barotropic model is adopted to simulate the BH-NL system with idealized forcings, which imitates the real 200-mb divergence centers over South America, Africa, and the tropical Pacific. Numerical simulations demonstrate that the formation of the BH-NL system is affected not only by the African remote forcing, but also by the tropical Pacific forcing.
Theoretical study of orbital ordering induced structural phase transition in iron pnictides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, Sushree Sangita, E-mail: sushree@iopb.res.in; Rout, G. C., E-mail: gcr@iopb.res.in; Panda, S. K., E-mail: skp@iopb.res.in
2016-05-06
We attribute the structural phase transition (SPT) in the parent compounds of the iron pnictides to orbital ordering. Due to anisotropy of the d{sub xz} and d{sub yz} orbitals in the xy plane, orbital ordering makes the orthorhombic structure more favorable and thus inducing the SPT. We consider a one band model Hamiltonian consisting of first and second-nearest-neighbor hopping of the electrons. We introduce Jahn-Tellar (JT) distortion in the system arising due to the orbital ordering present in this system. We calculate the electron Green’s function by using Zuvareb’s Green’s function technique and hence calculate an expression for the temperaturemore » dependent lattice strain which is computed numerically and self-consistently. The temperature dependent electron specific heat is calculated by minimizing the free energy of the system. The lattice strain is studied by varying the JT coupling and elastic constant of the system. The structural anomaly is studied through the electron occupation number and the specific heat by varying the physical parameters like JT coupling, lattice constant, chemical potential and hopping integrals of the system.« less
Modeling and Simulations on the Intramural Thermoelectric Generator of Lower-Re-fluid
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Zheng, Ding; Chen, Yushan
The thermoelectric conversion with lower Renault number (Re) fluid, such as waste heat from industry boiler, and engine's circled cooling water, which can be designed as intramural generator structure. In this research, a thermoelectric project analysis model and the description of an intensified system are presented, its generator with the aligned or staggered platoon structure has strengthened heat-transfer property, and the heat convection coefficient ratio has increased times than plain tube; For the fluid kinetic energy's loss is influenced by the whirlpool, the pressure difference is several hundred Pa level which changes along with geometric parameters of transform components; what's more, heat transfer area increase distinctly under the same generator volume, which has built the foundation for the enhancement output electric power.
An integrated algorithm for hypersonic fluid-thermal-structural numerical simulation
NASA Astrophysics Data System (ADS)
Li, Jia-Wei; Wang, Jiang-Feng
2018-05-01
In this paper, a fluid-structural-thermal integrated method is presented based on finite volume method. A unified integral equations system is developed as the control equations for physical process of aero-heating and structural heat transfer. The whole physical field is discretized by using an up-wind finite volume method. To demonstrate its capability, the numerical simulation of Mach 6.47 flow over stainless steel cylinder shows a good agreement with measured values, and this method dynamically simulates the objective physical processes. Thus, the integrated algorithm proves to be efficient and reliable.
Phase relations in the system Fe-Si determined in an internally-resistive heated DAC
NASA Astrophysics Data System (ADS)
Komabayashi, T.; Antonangeli, D.; Morard, G.; Sinmyo, R.; Mezouar, N.
2015-12-01
It is believed that the iron-rich Earth's core contains some amounts of light elements on the basis of the density deficit of 7 % compared to pure iron. The identification of the kinds and amounts of the light elements in the core places constraints on the origin, formation, and evolution of the Earth because dissolution of light elements into an iron-rich core should place important constraints on the thermodynamic conditions (pressure (P), temperature (T), and oxygen fugacity) of the equilibration between liquid silicate and liquid iron during the core formation. Among potential light elements, silicon has been attracting attentions because it is abundant in the mantle, partitioned into both solid and liquid irons, and very sensitive to the oxygen fugacity. An important phase relation in iron alloy is a transition between the face-centred cubic (FCC) structure and hexagonal close-packed (HCP) structure. This boundary is a key to infer the stable structure in the inner core and is used to derive thermodynamic properties of the phases (Komabayashi, 2014). In the Fe-Si system, previous reports were based on experiments in laser-heated diamond anvil cells (DAC), which might have included large termperature uncertainties. We have revisited this boundary in the system Fe-Si using an internally resistive-heated DAC combined with synchrotron X-ray diffraction at the beamline ID27, ESRF. The internally-heated DAC (Komabayashi et al., 2009; 2012) provides much more stable heating than the laser-heated DAC and much higher temperature than externally resistive-heated DAC, which enables us to place tight constraints on the P-T locations of the boundaries. Also because the minimum measurable temperature is as low as 1000 K due to the stable electric heating, the internal heating is able to examine the low temperature phase stability which was not studied by the previous studies. We will report the P-T locations of the boundaries and evaluate the effect of Si on the phase relation of Earth's core materials. References Komabayashi, J. Geophys. Res., 119, 2014; Komabayashi et al., Earth Planet. Sci. Lett. 282, 2009; Komabayashi et al., Phys. Chem. Mineral 39, 2012.
Structural and magnetic transitions in spinel FeM n 2 O 4 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nepal, Roshan; Zhang, Qiang; Dai, Samuel
Materials that form the spinel structure are known to exhibit geometric frustration, which can lead to magnetic frustration as well. Through magnetization and neutron diffraction measurements, we find that FeMn 2O 4 undergoes one structural and two magnetic transitions. The structural transition occurs at T s ~595K from cubic at high temperatures to tetragonal at low temperatures. Here, two magnetic transitions are ferrimagnetic at T FI–1 ~373K and T FI–2 ~50K, respectively. Further investigation of the specific heat, thermal conductivity, and Seebeck coefficient confirms both magnetic transitions. Of particular interest is that there is a significant magnetic contribution to themore » low-temperature specific heat and thermal conductivity, providing a unique system to study heat transport by magnetic excitations.« less
Structural and magnetic transitions in spinel FeM n 2 O 4 single crystals
Nepal, Roshan; Zhang, Qiang; Dai, Samuel; ...
2018-01-11
Materials that form the spinel structure are known to exhibit geometric frustration, which can lead to magnetic frustration as well. Through magnetization and neutron diffraction measurements, we find that FeMn 2O 4 undergoes one structural and two magnetic transitions. The structural transition occurs at T s ~595K from cubic at high temperatures to tetragonal at low temperatures. Here, two magnetic transitions are ferrimagnetic at T FI–1 ~373K and T FI–2 ~50K, respectively. Further investigation of the specific heat, thermal conductivity, and Seebeck coefficient confirms both magnetic transitions. Of particular interest is that there is a significant magnetic contribution to themore » low-temperature specific heat and thermal conductivity, providing a unique system to study heat transport by magnetic excitations.« less
Passively Adaptive Inflatable Structure for the Shooting Star Experiment
NASA Technical Reports Server (NTRS)
Tinker, Michael L..
1998-01-01
An inflatable structural system is described for the Shooting Star Experiment that is a technology demonstrator flight for solar thermal propulsion. The inflatable structure is a pressurized assembly used in orbit to support a fresnel lens for focusing sunlight into a thermal storage engine. When the engine temperature reaches a preset level, the propellant is injected into the storage engine, absorbs heat from a heat exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is an adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Further, the polyimide film material used for construction of the inflatable is highly nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. A series of tests is described for characterizing the structure in response to various operating conditions.
Investigation of Conjugate Heat Transfer in Turbine Blades and Vanes
NASA Technical Reports Server (NTRS)
Kassab, A. J.; Kapat, J. S.
2001-01-01
We report on work carried out to develop a 3-D coupled Finite Volume/BEM-based temperature forward/flux back (TFFB) coupling algorithm to solve the conjugate heat transfer (CHT) which arises naturally in analysis of systems exposed to a convective environment. Here, heat conduction within a structure is coupled to heat transfer to the external fluid which is convecting heat into or out of the solid structure. There are two basic approaches to solving coupled fluid structural systems. The first is a direct coupling where the solution of the different fields is solved simultaneously in one large set of equations. The second approach is a loose coupling strategy where each set of field equations is solved to provide boundary conditions for the other. The equations are solved in turn until an iterated convergence criterion is met at the fluid-solid interface. The loose coupling strategy is particularly attractive when coupling auxiliary field equations to computational fluid dynamics codes. We adopt the latter method in which the BEM is used to solve heat conduction inside a structure which is exposed to a convective field which in turn is resolved by solving the NASA Glenn compressible Navier-Stokes finite volume code Glenn-HT. The BEM code features constant and bi-linear discontinuous elements and an ILU-preconditioned GMRES iterative solver for the resulting non-symmetric algebraic set arising in the conduction solution. Interface of flux and temperature is enforced at the solid/fluid interface, and a radial-basis function scheme is used to interpolated information between the CFD and BEM surface grids. Additionally, relaxation is implemented in passing the fluxes from the conduction solution to the fluid solution. Results from a simple test example are reported.
NASA Technical Reports Server (NTRS)
1975-01-01
A heating array is described for testing full-scale sections of the leading edge and lower fuselage surfaces of the shuttle. The heating array was designed to provide a tool for development and acceptance testing of leading edge segments and large flat sections of the main body thermal protection system. The array was designed using a variable length module concept to meet test requirements using interchangeable components from one test configuration in another configuration. Heat generating modules and heat absorbing modules were employed to achieve the thermal gradient around the leading edge. A support was developed to hold the modules to form an envelope around a variety of leading edges; to supply coolant to each module; the support structure and to hold the modules in the flat surface heater configuration. An optical pyrometer system mounted within the array was designed to monitor specimen surface temperatures without altering the test article's surface.
A Technique for Transient Thermal Testing of Thick Structures
NASA Technical Reports Server (NTRS)
Horn, Thomas J.; Richards, W. Lance; Gong, Leslie
1997-01-01
A new open-loop heat flux control technique has been developed to conduct transient thermal testing of thick, thermally-conductive aerospace structures. This technique uses calibration of the radiant heater system power level as a function of heat flux, predicted aerodynamic heat flux, and the properties of an instrumented test article. An iterative process was used to generate open-loop heater power profiles prior to each transient thermal test. Differences between the measured and predicted surface temperatures were used to refine the heater power level command profiles through the iteration process. This iteration process has reduced the effects of environmental and test system design factors, which are normally compensated for by closed-loop temperature control, to acceptable levels. The final revised heater power profiles resulted in measured temperature time histories which deviated less than 25 F from the predicted surface temperatures.
NASA Astrophysics Data System (ADS)
Andrzejczyk, Rafał; Muszyński, Tomasz
2016-12-01
The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.
Configurational Heat Capacity of Na- and Ca-bearing Aluminosilicate Melts
NASA Astrophysics Data System (ADS)
Webb, S. L.
2006-12-01
The Na2O-Al2O3-SiO2 and CaO-Al2O3-SiO2 systems are used as analogs for the more complex natural magmatic systems of the Earth in studies of the physical properties, structure and flow mechanisms of silicate melts. Although the description of flow in binary alkali-silicate melts is clear; that for multi-oxide compositions quickly becomes very complex. The addition of aluminium to melts creates the need for a charge-balancing cation for the tetrahedrally co-ordinated Al3+. With the presence of both mono- and di-valent ions there are questions about which atom is preferred as the charge balancer and which will create non-bridging oxygens. This study addresses the structure of peraluminous and peralkaline/metaluminous Na2O-CaO-Al2O3-SiO2 melts and the change in structure with composition via determination of their shear viscosity and heat capacity. Viscosity has been determined using the micropenetration technique and the heat capacity and configurational heat capacity have been determined by differential scanning calorimetry. While the viscosity of these melts indicates structural changes at the condition where there are no longer enough Na+ or Ca2+ to charge balance all of the Al3+ in tetrahedral co-ordination, it is the heat capacity data which provides more information about the energy required for flow to occur in the melts as the structure changes due to changing composition. The configurational heat capacity can be determined from the difference between the liquid (cpl) and the glass (cpg) heat capacity at the glass transition temperature. To a first approximation cpg can be calculated from a linear summation of the cps of the oxide components. Similarly, if there are no anomalous changes in melt structure upon heating through Tg, the cpl will be a linear sum of the contributions of the component oxides. Configurational entropy Sconf(Tg) has been calculated from the viscosity data using the Adam-Gibbs equation for viscosity as a function of configurational entropy and temperature. In addition to the change in structure implied from changes in the trends of the viscosity and heat capacity data when there are no longer enough charge balancers for all of the Al3+ in tetrahedral co-ordination, there also appears to be a change in structure at the composition where there are no longer enough Ca2+ in the melt that each Al3+ tetrahedron has its own charge balancer that is the composition at which pairs of Al3+ tetrahedra must share a Ca2+ as charge balancer.
Evaluation of active cooling systems for a Mach 6 hypersonic transport airframe, part 2
NASA Technical Reports Server (NTRS)
Helenbrook, R. G.; Mcconarty, W. A.; Anthony, F. M.
1971-01-01
Transpiration and convective cooling concepts are examined for the fuselage and tail surface of a Mach 6 hypersonic transport aircraft. Hydrogen, helium, and water are considered as coolants. Heat shields and radiation barriers are examined to reduce heat flow to the cooled structures. The weight and insulation requirements for the cryogenic fuel tanks are examined so that realistic totals can be estimated for the complete fuselage and tail. Structural temperatures are varied to allow comparison of aluminum alloy, titanium alloy, and superalloy contruction materials. The results of the study are combined with results obtained on the wing structure, obtained in a previous study, to estimate weights for the complete airframe. The concepts are compared among themselves, and with the uncooled concept on the basis of structural weight, cooling system weight, and coolant weight.
Collaborative Analysis Tool for Thermal Protection Systems for Single Stage to Orbit Launch Vehicles
NASA Technical Reports Server (NTRS)
Alexander, Reginald Andrew; Stanley, Thomas Troy
1999-01-01
Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system and in the case of SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA); the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately determine insulation masses for a vehicle such as the one described above, the aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thickness that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to reduce the TPS mass.
Code of Federal Regulations, 2013 CFR
2013-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Code of Federal Regulations, 2014 CFR
2014-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Code of Federal Regulations, 2010 CFR
2010-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Code of Federal Regulations, 2012 CFR
2012-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Code of Federal Regulations, 2011 CFR
2011-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Pneumatic Proboscis Heat-Flow Probe
NASA Technical Reports Server (NTRS)
Zacny, Kris; Hedlund, Magnus; Mumm, Eric; Shasho, Jeffrey; Chu, Philip; Kumar, Nishant
2013-01-01
Heat flow is a fundamental property of a planet, and provides significant constraints on the abundance of radiogenic isotopes, the thermal evolution and differentiation history, and the mechanical properties of the lithosphere. Heat-flow measurements are also essential in achieving at least four of the goals set out by the National Research Council for future lunar exploration. The heat-flow probe therefore directly addresses the goal of the Lunar Geophysical Network, which is to understand the interior structure and composition of the Moon. A key challenge for heat flow measurement is to install thermal sensors to the depths approximately equal to 3 m that are not influenced by the diurnal, annual, and longer-term fluctuations of the surface thermal environment. In addition, once deployed, the heat flow probe should cause little disturbance to the thermal regime of the surrounding regolith. A heat-flow probe system was developed that has two novel features: (1) it utilizes a pneumatic (gas) approach, excavates a hole by lofting the lunar soil out of the hole, and (2) deploys the heat flow probe, which utilizes a coiled up tape as a thermal probe to reach greater than 3-meter depth. The system is a game-changer for small lunar landers as it exhibits extremely low mass, volume, and simple deployment. The pneumatic system takes advantage of the helium gas used for pressurizing liquid propellant of the lander. Normally, helium is vented once the lander is on the surface, but it can be utilized for powering pneumatic systems. Should sufficient helium not be available, a simple gas delivery system may be taken specifically for the heat flow probe. Either way, the pneumatic heat flow probe system would be much lighter than other systems that entirely rely on the electrical power of the lander.
NASA Technical Reports Server (NTRS)
McCloud, Peter L.
2010-01-01
Thermal Protection System (TPS) Cavity Heating is predicted using Computational Fluid Dynamics (CFD) on unstructured grids for both simplified cavities and actual cavity geometries. Validation was performed using comparisons to wind tunnel experimental results and CFD predictions using structured grids. Full-scale predictions were made for simplified and actual geometry configurations on the Space Shuttle Orbiter in a mission support timeframe.
NASA Astrophysics Data System (ADS)
Dziadek, R.; Ferraccioli, F.; Gohl, K.; Spiegel, C.; Kaul, N. E.
2017-12-01
The West Antarctic Rift System is one of the least understood rift systems on earth, but displays a unique coupled relationship between tectonic processes and ice sheet dynamics. Geothermal heat flux (GHF) is a poorly constrained parameter in Antarctica and suspected to affect basal conditions of ice sheets, i.e., basal melting and subglacial hydrology. Thermomechanical models demonstrate the influential boundary condition of geothermal heat flux for (paleo) ice sheet stability. Young, continental rift systems are regions with significantly elevated geothermal heat flux (GHF), because the transient thermal perturbation to the lithosphere caused by rifting requires 100 Ma to reach long-term thermal equilibrium. We discuss airborne, high-resolution magnetic anomaly data from the Amundsen Sea Sector, to provide additional insight into deeper crustal structures related to the West Antarctic Rift System in the Amundsen/Bellingshausen sector. With the depth-to-the-bottom of the magnetic source (DBMS) estimates we reveal spatial changes at the bottom of the igneous crust and the thickness of the magnetic layer, which can be further incorporated into tectonic interpretations. The DBMS also marks an important temperature transition zone of approximately 580°C and therefore serves as a boundary condition for our numerical FEM thermal models in 2D and 3D.
Finite-element reentry heat-transfer analysis of space shuttle Orbiter
NASA Technical Reports Server (NTRS)
Ko, William L.; Quinn, Robert D.; Gong, Leslie
1986-01-01
A structural performance and resizing (SPAR) finite-element thermal analysis computer program was used in the heat-transfer analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. Three wing cross sections and one midfuselage cross section were selected for the thermal analysis. The predicted thermal protection system temperatures were found to agree well with flight-measured temperatures. The calculated aluminum structural temperatures also agreed reasonably well with the flight data from reentry to touchdown. The effects of internal radiation and of internal convection were found to be significant. The SPAR finite-element solutions agreed reasonably well with those obtained from the conventional finite-difference method.
Zheng, Zhaoliang; Chang, Zhuo; Xu, Guang-Kui; McBride, Fiona; Ho, Alexandra; Zhuola, Zhuola; Michailidis, Marios; Li, Wei; Raval, Rasmita; Akhtar, Riaz; Shchukin, Dmitry
2017-01-24
The performance of solar-thermal conversion systems can be improved by incorporation of nanocarbon-stabilized microencapsulated phase change materials (MPCMs). The geometry of MPCMs in the microcapsules plays an important role for improving their heating efficiency and reliability. Yet few efforts have been made to critically examine the formation mechanism of different geometries and their effect on MPCMs-shell interaction. Herein, through changing the cooling rate of original emulsions, we acquire MPCMs within the nanocarbon microcapsules with a hollow structure of MPCMs (h-MPCMs) or solid PCM core particles (s-MPCMs). X-ray photoelectron spectroscopy and atomic force microscopy reveals that the capsule shell of the h-MPCMs is enriched with nanocarbons and has a greater MPCMs-shell interaction compared to s-MPCMs. This results in the h-MPCMs being more stable and having greater heat diffusivity within and above the phase transition range than the s-MPCMs do. The geometry-dependent heating efficiency and system stability may have important and general implications for the fundamental understanding of microencapsulation and wider breadth of heating generating systems.
NASA Astrophysics Data System (ADS)
Pagkoura, Chrysoula; Karagiannakis, George; Halevas, Eleftherios; Konstandopoulos, Athanasios G.
2016-05-01
Over the last years, several research groups have focused on developing efficient thermochemical heat storage (THS) systems, in-principle capable of being coupled with next generation high temperature Concentrated Solar Power plants. Among systems studied, the Co3O4/CoO redox system is a promising candidate. Currently, research efforts extend beyond basic level identification of promising materials to more application-oriented approaches aiming at validation of THS performance at pilot scale reactors. The present work focuses on the investigation of cobalt oxide based honeycomb structures as candidate reactors/heat exchangers to be employed for such purposes. In the evaluation conducted and presented here, cobalt oxide-based structures with different composition and geometrical characteristics were subjected to redox cycles in the temperature window between 800 and 1000°C under air flow. Basic aspects related to redox performance of each system are briefly discussed but the main focus lies on the evaluation of the segments structural stability after multi-cyclic operation. The latter is based on macroscopic visual observation and also supplemented by pre- (i.e. fresh samples) and post-characterization (i.e. after long term exposure) of extruded honeycombs via combined mercury porosimetry and SEM analysis.
Startup thaw concept for the SP-100 space reactor power system
NASA Technical Reports Server (NTRS)
Kirpich, A.; Das, A.; Choe, H.; Mcnamara, E.; Switick, D.; Bhandari, P.
1990-01-01
A thaw concept for a space reactor power system which employs lithium as a circulant for both the heat-transport and the heat-rejection fluid loops is presented. An exemplary thermal analysis for a 100-kWe (i.e., SP-100) system is performed. It is shown that the design of the thaw system requires a thorough knowledge of the various physical states of the circulant throughout the system, both spatially and temporally, and that the design has to provide adequate margins for the system to avoid a structural or thermally induced damage.
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)
1992-01-01
The present conference discusses such space nuclear power (SNP) issues as current design trends for SDI applications, ultrahigh heat-flux systems with curved surface subcooled nucleate boiling, design and manufacturing alternatives for low cost production of SNPs, a lightweight radioisotope heater for the Galileo mission, compatible materials for uranium fluoride-based gas core SNPs, Johnson noise thermometry for SNPs, and uranium nitride/rhenium compatibility studies for the SP-100 SNP. Also discussed are system issues in antimatter energy conversion, the thermal design of a heat source for a Brayton cycle radioisotope power system, structural and thermal analyses of an isotope heat source, a novel plant protection strategy for transient reactors, and beryllium toxicity.
Optimal design of the first stage of the plate-fin heat exchanger for the EAST cryogenic system
NASA Astrophysics Data System (ADS)
Qingfeng, JIANG; Zhigang, ZHU; Qiyong, ZHANG; Ming, ZHUANG; Xiaofei, LU
2018-03-01
The size of the heat exchanger is an important factor determining the dimensions of the cold box in helium cryogenic systems. In this paper, a counter-flow multi-stream plate-fin heat exchanger is optimized by means of a spatial interpolation method coupled with a hybrid genetic algorithm. Compared with empirical correlations, this spatial interpolation algorithm based on a kriging model can be adopted to more precisely predict the Colburn heat transfer factors and Fanning friction factors of offset-strip fins. Moreover, strict computational fluid dynamics simulations can be carried out to predict the heat transfer and friction performance in the absence of reliable experimental data. Within the constraints of heat exchange requirements, maximum allowable pressure drop, existing manufacturing techniques and structural strength, a mathematical model of an optimized design with discrete and continuous variables based on a hybrid genetic algorithm is established in order to minimize the volume. The results show that for the first-stage heat exchanger in the EAST refrigerator, the structural size could be decreased from the original 2.200 × 0.600 × 0.627 (m3) to the optimized 1.854 × 0.420 × 0.340 (m3), with a large reduction in volume. The current work demonstrates that the proposed method could be a useful tool to achieve optimization in an actual engineering project during the practical design process.
Reparable, high-density microelectronic module provides effective heat sink
NASA Technical Reports Server (NTRS)
Carlson, K. J.; Maytone, F. F.
1967-01-01
Reparable modular system is used for packaging microelectronic flat packs and miniature discrete components. This three-dimensional compartmented structure incorporates etched phosphor bronze sheets and frames with etched wire conductors. It provides an effective heat sink for electric power dissipation in the absence of convective cooling means.
Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE
Xie, Shaocheng; Hume, Timothy; Jakob, Christian; ...
2010-01-01
This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence andmore » horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.« less
Sharp Refractory Composite Leading Edges on Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Walker, Sandra P.; Sullivan, Brian J.
2003-01-01
On-going research of advanced sharp refractory composite leading edges for use on hypersonic air-breathing vehicles is presented in this paper. Intense magnitudes of heating and of heating gradients on the leading edge lead to thermal stresses that challenge the survivability of current material systems. A fundamental understanding of the problem is needed to further design development. Methodology for furthering the technology along with the use of advanced fiber architectures to improve the thermal-structural response is explored in the current work. Thermal and structural finite element analyses are conducted for several advanced fiber architectures of interest. A tailored thermal shock parameter for sharp orthotropic leading edges is identified for evaluating composite material systems. The use of the tailored thermal shock parameter has the potential to eliminate the need for detailed thermal-structural finite element analyses for initial screening of material systems being considered for a leading edge component.
Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.
Wei, Shao-Wen; Liu, Yu-Xiao
2015-09-11
Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boriskina, Svetlana; Kraemer, Daniel; McEnaney, Kenneth
Solar power conversion system. The system includes a cavity formed within an enclosure having highly specularly reflecting in the IR spectrum inside walls, the enclosure having an opening to receive solar radiation. An absorber is positioned within the cavity for receiving the solar radiation resulting in heating of the absorber structure. In a preferred embodiment, the system further contains an energy conversion and storage devices thermally-linked to the absorber by heat conduction, convection, far-field or near-field thermal radiation.
Hydrogen desorption using honeycomb finned heat exchangers integrated in adsorbent storage systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corgnale, Claudio; Hardy, Bruce; Chahine, Richard
One of the main technical hurdles associated with adsorbent based hydrogen storage systems is relative to their ability to discharge hydrogen effectively, as dictated by fuel cell requirements. In this study, a new honeycomb finned heat exchanger concept was examined to evaluate its potential as a heat transfer system for hydrogen desorption. A bench scale 0.5 L vessel was equipped with the proposed heat exchanger, filled with MOF-5® adsorbent material. The heating power, required to desorb hydrogen, was provided by a 100 W electric heater placed in the center of the honeycomb structure. Two desorption tests, at room temperature andmore » under cryogenic temperatures, were carried out to evaluate the hydrogen desorption performance of the proposed system under different operating conditions. The bench scale vessel performance was verified from both an experimental and a modeling point of view, demonstrating the ability to desorb about 45% of the adsorbed hydrogen in reduced time and applying low heating power. Further modeling analyses were also carried out showing the potential of the proposed system to reach high hydrogen discharging rates at cryogenic temperature conditions and operating pressures between 100 bar and 5 bar. The proposed adsorption system also demonstrated to be able to discharge all the available hydrogen in less than 500 s operating at cryogenic conditions and with a nominal heating power of 100 W.« less
Hydrogen desorption using honeycomb finned heat exchangers integrated in adsorbent storage systems
Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; ...
2018-03-01
One of the main technical hurdles associated with adsorbent based hydrogen storage systems is relative to their ability to discharge hydrogen effectively, as dictated by fuel cell requirements. In this study, a new honeycomb finned heat exchanger concept was examined to evaluate its potential as a heat transfer system for hydrogen desorption. A bench scale 0.5 L vessel was equipped with the proposed heat exchanger, filled with MOF-5® adsorbent material. The heating power, required to desorb hydrogen, was provided by a 100 W electric heater placed in the center of the honeycomb structure. Two desorption tests, at room temperature andmore » under cryogenic temperatures, were carried out to evaluate the hydrogen desorption performance of the proposed system under different operating conditions. The bench scale vessel performance was verified from both an experimental and a modeling point of view, demonstrating the ability to desorb about 45% of the adsorbed hydrogen in reduced time and applying low heating power. Further modeling analyses were also carried out showing the potential of the proposed system to reach high hydrogen discharging rates at cryogenic temperature conditions and operating pressures between 100 bar and 5 bar. The proposed adsorption system also demonstrated to be able to discharge all the available hydrogen in less than 500 s operating at cryogenic conditions and with a nominal heating power of 100 W.« less
NASA Astrophysics Data System (ADS)
Štefan, R.; Procházka, J.; Novák, J.; Fládr, J.; Wald, F.; Kohoutková, A.; Scheinherrová, L.; Čáchová, M.
2017-09-01
In the paper, a gas-fired radiant heater system for testing of structural elements and materials at elevated temperatures is described. The applicability of the system is illustrated on an example of the heat transfer experiment on a hybrid fibre reinforced concrete-steel composite column specimen. The results obtained during the test are closely analysed by common data visualization techniques. The experiment is simulated by a mathematical model of heat transfer, assuming the material data of the concrete determined by in-house measurements. The measured and calculated data are compared and discussed.
Mihalik, Ágoston; Csermely, Peter
2011-01-01
Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a ‘stratus-cumulus’ type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes. PMID:22022244
NASA Technical Reports Server (NTRS)
1980-01-01
Avco has drawn upon its heat shield experience to develop a number of widely-accepted commercial fire protection materials. Originating from NASA's space shuttle thermal protection system, one such material is Chartek 59 fireproofing, an intumescent epoxy coating specifically designed for outdoor use by industrial facilities dealing with highly flammable products such as oil refineries and chemical plants. The coating is applied usually by spray gun to exterior structural steel conduits, pipes and valves, offshore platforms and liquefied petroleum gas tanks. Fireproofing provides two types of protection: ablation or dissipation of heat by burn-off and "intumescence" or swelling; the coating swells to about five times its original size, forming a protective blanket of char which retards transfer of heat to the metal structure preventing loss of structural strength and possible collapse which would compound the fire fighting problem.
Structural and heat-flow implications of infrared anomalies at Mt. Hood, Oregon
Friedman, Jules D.; Frank, David
1977-01-01
Surface thermal features occur in an area of 9700 m2 at Mt. Hood, on the basis of an aerial line-scan survey made April 26, 1973. The distribution of the thermal areas below the summit of Mt. Hood, shown on planimetrically corrected maps at 1:12,000, suggests structural control by a fracture system and brecciated zone peripheral to a hornblende-dacite plug dome (Crater Rock), and by a concentric fracture system that may have been associated with development of the present crater. The extent and inferred temperature of the thermal areas permits a preliminary estimate of a heat discharge of 10 megawatts, by analogy with similar fumarole and thermal fields of Mt. Baker, Washington. This figure includes a heat loss of 4 megawatts (MW) via conduction, diffusion, evaporation, and radiation to the atmosphere, and a somewhat less certain loss of 6MW via fumarolic mass transfer of vapor and advective heat loss from runoff and ice melt. The first part of the estimate is based on two-point models for differential radiant exitance and differential flux via conduction, diffusion, evaporation, and radiation from heat balance of the ground surface. Alternate methods for estimating volcanogenic geothermal flux that assume a quasi-steady state heat flow also yield estimates in the 5-11 MW range. Heat loss equivalent to cooling of the dacite plug dome is judged to be insufficient to account for the heat flux at the fumarole fields.
NASA Technical Reports Server (NTRS)
Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)
2001-01-01
A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects of the engine and associated subsystems, and will include independent variation of both steady slate heat-exchanger temperature prior to thrust operation and nitrogen inlet pressure (flow rate) during thrust operation. Although the Shooting Star engines were designed as thermal-storage engines to accommodate mission parameters, they are fully capable of operating as scalable, direct-gain engines. Tests are conducted in both operational modes. Engine thrust and propellant flow rate will be measured and thereby I(sub sp). The objective of these tests is to investigate the effectiveness of the solar engine as a heat exchanger and a rocket. Of particular interest is the effectiveness of the support structure as a thermal insulator, the integrity of both the insulation system and the insulation containment system, the overall temperature distribution throughout the engine module, and the thermal power required to sustain steady state fluid temperatures at various flow rates.
NASA Technical Reports Server (NTRS)
Sharpe, E. L.; Jackson, L. R.
1975-01-01
A model which consisted of a hot structure and a nonintegral tank protected by a carbon dioxide frost thermal protection system was tested under the following conditions: (1) room temperature loading and (2) heating and loading corresponding to the Mach 8 flight of an air-breathing launch vehicle. In the simulated flight tests, liquid nitrogen inside the tank was withdrawn at the rate fuel would be consumed. Prior to each simulated flight test, carbon dioxide was cryodeposited in the insulation surrounding the tank; during the tests, subliming CO2 frost absorbed heat and provided a purge gas for the space between the tank and the structure. A method of flame spraying the joints between panels with a nickel-aluminum material was developed to prevent excessive leakage of the purge gas through the outer structure. The tests indicated that the hot structure (with a joint repaired by riveting), the nonintegral tank and suspension system, and the carbon dioxide frost thermal protection system provide a workable concept with predictable performance.
Characterization and Evaluation of a Mass Efficient Heat Storage Device.
NASA Technical Reports Server (NTRS)
Splinter, Scott C.; Blosser, Max L.; Gifford, Andrew R.
2007-01-01
The heat sponge is a device for mass-efficient storage of heat. It was developed to be incorporated in the substructure of a reentry or hypersonic vehicle to reduce thermal protection system requirements. The heat sponge consists of a liquid-vapor mixture contained within a number of miniature pressure vessels that can be embedded within a variety of different types of structures. As temperature is increased, pressure in the miniature pressure vessels also increases so that heat absorbed through vaporization of the liquid is spread over a relatively large temperature range. Using water as a working fluid, the heat storage capacity of the liquid-vapor mixture is many times higher than that of typical structural materials and is well above that of common phase change materials over the temperature range of 660oR to 1160oR. Prototype heat sponges were fabricated and characterized. These heat sponges consisted of 1.0 inch diameter hollow stainless steel spheres with a wall thickness of 0.020 inches which had varying percentages of their interior volumes filled with water. An apparatus to measure the heat stored in these prototype heat sponges was designed, fabricated, and verified. The heat storage capacity calculated from measured temperature histories is compared to numerical predictions.
NASA Astrophysics Data System (ADS)
Mahdavi, Mahboobe
Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material through the secondary heat pipes. During the discharging process, secondary heat pipes serve as evaporators and transfer the stored energy to the heat engine. (Abstract shortened by ProQuest.).
BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool
NASA Astrophysics Data System (ADS)
Schulte, Daniel O.; Bastian, Welsch; Wolfram, Rühaak; Kristian, Bär; Ingo, Sass
2017-04-01
Arrays of borehole heat exchangers are an increasingly popular source for renewable energy. Furthermore, they can serve as borehole thermal energy storage (BTES) systems for seasonally fluctuating heat sources like solar thermal energy or district heating grids. The high temperature level of these heat sources prohibits the use of the shallow subsurface for environmental reasons. Therefore, deeper reservoirs have to be accessed instead. The increased depth of the systems results in high investment costs and has hindered the implementation of this technology until now. Therefore, research of medium deep BTES systems relies on numerical simulation models. Current simulation tools cannot - or only to some extent - describe key features like partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We give an update on the development of BASIMO: a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport in a dual-continuum approach. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. Thereby, partly insulated boreholes can be considered in the model. Furthermore, BASIMO can be used to improve the design of BTES systems: the tool allows for automated parameter variations and is readily coupled to other code like mathematical optimization algorithms. Optimization can be used to determine the required minimum system size or to increase the system performance.
Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces
NASA Astrophysics Data System (ADS)
Sun, Chao; Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef
2017-11-01
In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchet-like roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the Large Scale Circulation Roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. This work is financially supported by the Natural Science Foundation of China under Grant No. 11672156, the Dutch Foundation for Fundamental Research on Matter (FOM), the Dutch Technology Foundation (STW) and a VIDI Grant.
NASA Technical Reports Server (NTRS)
Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.
2013-01-01
Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better suited for the cooling of semiconductor devices.
Garbuz, D G; Evgen’ev, M B
2017-01-01
Heat shock genes are the most evolutionarily ancient among the systems responsible for adaptation of organisms to a harsh environment. The encoded proteins (heat shock proteins, Hsps) represent the most important factors of adaptation to adverse environmental conditions. They serve as molecular chaperones, providing protein folding and preventing aggregation of damaged cellular proteins. Structural analysis of the heat shock genes in individuals from both phylogenetically close and very distant taxa made it possible to reveal the basic trends of the heat shock gene organization in the context of adaptation to extreme conditions. Using different model objects and nonmodel species from natural populations, it was demonstrated that modulation of the Hsps expression during adaptation to different environmental conditions could be achieved by changing the number and structural organization of heat shock genes in the genome, as well as the structure of their promoters. It was demonstrated that thermotolerant species were usually characterized by elevated levels of Hsps under normal temperature or by the increase in the synthesis of these proteins in response to heat shock. Analysis of the heat shock genes in phylogenetically distant organisms is of great interest because, on one hand, it contributes to the understanding of the molecular mechanisms of evolution of adaptogenes and, on the other hand, sheds the light on the role of different Hsps families in the development of thermotolerance and the resistance to other stress factors.
Compact thermoelectric converter systems technology
NASA Technical Reports Server (NTRS)
1973-01-01
A schematic of the developed tubular thermoelectric module is shown. It consists of alternate washers of n- and p-type lead telluride, separated by thin natural mica washers. Electrical continuity within the circuit is accomplished by cylindrical conductor rings located at the I.D. and O.D. of the lead telluride washers. The conductor rings are also separated by the same mica which separate the lead telluride washers. The result is a radially serpentine current path along the length of the module. The circuit is isolated from the structural claddings by thin sleeves of boron nitride. Circuit containment and heat transfer surfaces are provided by the inner and outer cladding, heat being transferred from a heat source at the inner clad, conducted radially outward through the lead telluride to the outer clad where the waste heat is removed by a heat rejection system.
NASA Astrophysics Data System (ADS)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
NASA Astrophysics Data System (ADS)
Akhmetova, I. G.; Chichirova, N. D.
2017-11-01
Currently the actual problem is a precise definition of the normative and actual heat loss. Existing methods - experimental, on metering devices, on the basis of mathematical modeling methods are not without drawbacks. Heat losses establishing during the heat carrier transport has an impact on the tariff structure of heat supply organizations. This quantity determination also promotes proper choice of main and auxiliary equipment power, temperature chart of heat supply networks, as well as the heating system structure choice with the decentralization. Calculation of actual heat loss and their comparison with standard values justifies the performance of works on improvement of the heat networks with the replacement of piping or its insulation. To determine the cause of discrepancies between normative and actual heat losses thermal tests on the magnitude of the actual heat losses in the 124 sections of heat networks in Kazan. As were carried out the result mathematical model of the regulatory definition of heat losses is developed and tested. This model differ from differs the existing according the piping insulation type. The application of this factor will bring the value of calculative normative losses heat energy to their actual value. It is of great importance for enterprises operating distribution networks and because of the conditions of their configuration and extensions do not have the technical ability to produce thermal testing.
Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel
NASA Technical Reports Server (NTRS)
Jones, R. A.; Braswell, D. O.; Richie, C. B.
1975-01-01
A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.
Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2015-01-01
Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop optimized operational schema.
Ohta, Haruhiko; Ohno, Toshiyuki; Hioki, Fumiaki; Shinmoto, Yasuhisa
2004-11-01
A two-phase flow loop is a promising method for application to thermal management systems for large-scale space platforms handling large amounts of energy. Boiling heat transfer reduces the size and weight of cold plates. The transportation of latent heat reduces the mass flow rate of working fluid and pump power. To develop compact heat exchangers for the removal of waste heat from electronic devices with high heat generation density, experiments on a method to increase the critical heat flux for a narrow heated channel between parallel heated and unheated plates were conducted. Fine grooves are machined on the heating surface in a transverse direction to the flow and liquid is supplied underneath flattened bubbles by the capillary pressure difference from auxiliary liquid channels separated by porous metal plates from the main heated channel. The critical heat flux values for the present heated channel structure are more than twice those for a flat surface at gap sizes 2 mm and 0.7 mm. The validity of the present structure with auxiliary liquid channels is confirmed by experiments in which the liquid supply to the grooves is interrupted. The increment in the critical heat flux compared to those for a flat surface takes a maximum value at a certain flow rate of liquid supply to the heated channel. The increment is expected to become larger when the length of the heated channel is increased and/or the gravity level is reduced.
Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira
2015-12-01
The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1979-01-01
Tests, test results, examination and evaluation by Underwriters Laboratory, Inc., of a single family solar heating and hot water system consisting of collector, storage, control, transport, and data acquisition are presented. The structural characteristics of the solar flat plate collectors were evaluated according to snow and wind loads indicated in various building codes to determine their suitability for use both Michigan and Pennsylvania where prototype systems were installed. The flame spread classification of the thermal insulation is discussed and the fire tests conducted on components are described. The operation and dielectrics withstand tests of the energy transport module indicate the module is capable of rated air delivery. Tests of the control panel indicate the relay coil temperatures exceed the temperature limits allowed for the insulating materials involved.
Porous Foam Based Wick Structures for Loop Heat Pipes
NASA Technical Reports Server (NTRS)
Silk, Eric A.
2012-01-01
As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.
Numerical method of carbon-based material ablation effects on aero-heating for half-sphere
NASA Astrophysics Data System (ADS)
Wang, Jiang-Feng; Li, Jia-Wei; Zhao, Fa-Ming; Fan, Xiao-Feng
2018-05-01
A numerical method of aerodynamic heating with material thermal ablation effects for hypersonic half-sphere is presented. A surface material ablation model is provided to analyze the ablation effects on aero-thermal properties and structural heat conduction for thermal protection system (TPS) of hypersonic vehicles. To demonstrate its capability, applications for thermal analysis of hypersonic vehicles using carbonaceous ceramic ablators are performed and discussed. The numerical results show the high efficiency and validation of the method developed in thermal characteristics analysis of hypersonic aerodynamic heating.
Wu, Luling; Wang, Yang; James, Tony D; Jia, Nengqin; Huang, Chusen
2018-05-29
Heat stroke is a lethal condition which can cause dysfunction in the central nervous system, multi-organ damage and even death. However, there is still limited knowledge of the detailed mechanism about the roles of lysosomes in heat stroke due to lack of effective tools. Herein, we introduce our previously developed hemicyanine with a large D-π-A structure as the key fluorophore to develop a new fluorescent probe (CPY) for ratiometric mapping of lysosomal pH changes in live cells under a heat shock stimulus.
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11) Plumbing systems. (12) Ventilating systems and air conditioning systems. (13) Power plants. (14) Electric wiring. (15) Lighting fixtures (or replacement). (16) Sprinkler systems. (f) Settling or subsidence. (g...
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11) Plumbing systems. (12) Ventilating systems and air conditioning systems. (13) Power plants. (14) Electric wiring. (15) Lighting fixtures (or replacement). (16) Sprinkler systems. (f) Settling or subsidence. (g...
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11) Plumbing systems. (12) Ventilating systems and air conditioning systems. (13) Power plants. (14) Electric wiring. (15) Lighting fixtures (or replacement). (16) Sprinkler systems. (f) Settling or subsidence. (g...
Molecular dynamics simulation of melting of 2D glassy monatomic system
NASA Astrophysics Data System (ADS)
Nhu Tranh, Duong Thi; Van Hoang, Vo; Thu Hanh, Tran Thi
2018-01-01
The melting of two-dimensional (2D) glassy monatomic systems is studied using the molecular dynamics simulation with Lennard-Jones-Gauss interaction potential. The temperature dependence of various structural and dynamical properties of the systems during heating is analyzed and discussed via the radial distribution functions, the coordination number distributions, the ring statistics, the mobility of atoms and their clustering. Atomic mechanism of melting is also analyzed via tendency to increase mobility and breaking clusters of atoms upon heating. We found that melting of a 2D glass does not follow any theory of the melting of 2D crystals proposed in the past. The melting exhibits a homogeneous nature, i.e. liquid-like atoms occur homogeneously throughout the system and melting proceeds further leading to the formation of an entire liquid phase. In addition, we found a defined transition temperature region in which structural and dynamical properties of systems strongly change with increasing temperature.
NASA Technical Reports Server (NTRS)
Stone, J. E.
1975-01-01
The effects of fuselage cross section and structural arrangement on the performance of actively cooled hypersonic cruise vehicles are investigated. An active cooling system which maintains the aircraft's entire surface area at temperatures below 394 K at Mach 6 is developed along with a hydrogen fuel tankage thermal protection system. Thermodynamic characteristics of the actively cooled thermal protection systems established are summarized. Design heat loads and coolant flowrate requirements are defined for each major structural section and for the total system. Cooling system weights are summarized at the major component level. Conclusions and recommendations are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doiron, K.; Yu, P; McKinnon, J
2009-01-01
The objectives of this study were to reveal protein structures of feed tissues affected by heat processing at a cellular level, using the synchrotron-based Fourier transform infrared microspectroscopy as a novel approach, and quantify protein structure in relation to protein digestive kinetics and nutritive value in the rumen and intestine in dairy cattle. The parameters assessed included (1) protein structure a-helix to e-sheet ratio; (2) protein subfractions profiles; (3) protein degradation kinetics and effective degradability; (4) predicted nutrient supply using the intestinally absorbed protein supply (DVE)/degraded protein balance (OEB) system for dairy cattle. In this study, Vimy flaxseed protein wasmore » used as a model feed protein and was autoclave-heated at 120C for 20, 40, and 60 min in treatments T1, T2, and T3, respectively. The results showed that using the synchrotron-based Fourier transform infrared microspectroscopy revealed and identified the heat-induced protein structure changes. Heating at 120C for 40 and 60 min increased the protein structure a-helix to e-sheet ratio. There were linear effects of heating time on the ratio. The heating also changed chemical profiles, which showed soluble CP decreased upon heating with concomitant increases in nonprotein nitrogen, neutral, and acid detergent insoluble nitrogen. The protein subfractions with the greatest changes were PB1, which showed a dramatic reduction, and PB2, which showed a dramatic increase, demonstrating a decrease in overall protein degradability. In situ results showed a reduction in rumen-degradable protein and in rumen-degradable dry matter without differences between the treatments. Intestinal digestibility, determined using a 3-step in vitro procedure, showed no changes to rumen undegradable protein. Modeling results showed that heating increased total intestinally absorbable protein (feed DVE value) and decreased degraded protein balance (feed OEB value), but there were no differences between the treatments. There was a linear effect of heating time on the DVE and a cubic effect on the OEB value. Our results showed that heating changed chemical profiles, protein structure a-helix to e-sheet ratio, and protein subfractions; decreased rumen-degradable protein and rumen-degradable dry matter; and increased potential nutrient supply to dairy cattle. The protein structure a-helix to e-sheet ratio had a significant positive correlation with total intestinally absorbed protein supply and negative correlation with degraded protein balance.« less
High temperature alkali corrosion of ceramics in coal gas: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.
1994-12-31
There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and highmore » efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.« less
NASA Astrophysics Data System (ADS)
Bottoni, Mario; Fabretti, Giuseppe
2001-03-01
The definition of the thermal dynamics of a structure-work of cultural interest is important both from the microclimatic point of view and from the structural one. Elastic and plastic deformations, due to phenomena of heat exchange, influence, in a significant way, the mechanical behavior of the structure. Dealing with objects exposed to open air, one of the main sources of heat radiation is, obviously, the sun. Consequently, it is significant to evaluate the importance that solar radiation has in the global heating dynamics of the structure. Therefore, while studying the system Marcus Aurelius- Capitolium square, it was decided to support the investigations in situ (carried out by using thermovision and thermocouples) with the realization, on computer, of a system that could define the theoretical relationship existing between solar dynamics and the bronze monument. Correlation between information deduced from such a model and data obtained in situ, gave useful results and constituted a significant instrument for the analysis of the concrete thermal model of the investigated structure. The opportunity to deepen and improve such an experience arose when the Soprintendenza per i Beni Architettonici ed Ambientali di Firenze e Pistoia asked for a contribution to the studies and investigations aimed to define the thermal model of the Dome of Santa Maria del Fiore.
Small Spacecraft Active Thermal Control: Micro-Vascular Composites Enable Small Satellite Cooling
NASA Technical Reports Server (NTRS)
Ghosh, Alexander
2016-01-01
The Small Spacecraft Integrated Power System with Active Thermal Control project endeavors to achieve active thermal control for small spacecraft in a practical and lightweight structure by circulating a coolant through embedded micro-vascular channels in deployable composite panels. Typically, small spacecraft rely on small body mounted passive radiators to discard heat. This limits cooling capacity and leads to the necessity to design for limited mission operations. These restrictions severely limit the ability of the system to dissipate large amounts of heat from radios, propulsion systems, etc. An actively pumped cooling system combined with a large deployable radiator brings two key advantages over the state of the art for small spacecraft: capacity and flexibility. The use of a large deployable radiator increases the surface area of the spacecraft and allows the radiation surface to be pointed in a direction allowing the most cooling, drastically increasing cooling capacity. With active coolant circulation, throttling of the coolant flow can enable high heat transfer rates during periods of increased heat load, or isolate the radiator during periods of low heat dissipation.
Thompson, C.; Beringer, J.; Chapin, F. S.; McGuire, A.D.
2004-01-01
Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.
Characterization of Radial Curved Fin Heat Sink under Natural and Forced Convection
NASA Astrophysics Data System (ADS)
Khadke, Rishikesh; Bhole, Kiran
2018-02-01
Heat exchangers are important structures widely used in power plants, food industries, refrigeration, and air conditioners and now widely used in computing systems. Finned type of heat sink is widely used in computing systems. The main aim of the design of the heat sink is to maintain the optimum temperature level. To achieve this goal so many geometrical configurations are implemented. This paper presents a characterization of radially curved fin heat sink under natural and forced convection. Forced convection is studied for the optimization of temperature for better efficiency. The different alternatives in geometry are considered in characterization are heat intensity, the height of the fin and speed of the fan. By recognizing these alternatives the heat sink is characterized by the heat flux usually generated in high-end PCs. The temperature drop characteristics across height and radial direction are presented for the constant heat input and air flow in the heat sink. The effect of dimensionless elevation height (0 ≤ Z* ≤ 1) and Elenbaas Number (0.4 ≤ El ≤ 2.8) of the heat sink were investigated for study of the Nusselt number. Based on experimental characterization, process plan has been developed for the selection of the similar heat sinks for desired output (heat dissipation and temperature distribution).
Novel Material Systems and Methodologies for Transient Thermal Management
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J.
2014-01-01
Development of multifunctional and thermally switchable systems to address reduced mass and components, and tailored for both structural and transient thermal applications. Active, passive, and novel combinations of the two functional approaches are being developed along two lines of research investigation: switchable systems and transient heat spreading. The approach is to build in thermal functionality to structural elements to lay the foundation for a revolution in the way high energy space systems are designed.
Thermodynamics of relation-based systems with applications in econophysics, sociophysics, and music
NASA Astrophysics Data System (ADS)
Gündüz, Güngör
2012-10-01
A methodology was developed to analyze relation-based systems evolving in time by using the fundamental concepts of thermodynamics. The behavior of such systems can be tracked from the scattering matrix which is actually a network of directed vectors (or pathways) connecting subsequent values, which characterize an event, such as the index values in stock markets. A system behaves in a rigid (elastic) way to an external effect and resists permanent deformation, or it behaves in a viscous (or soft) way and deforms in an irreversible way. It was shown in the past that a formula derived using the slope of paths gives a measure about the extent of viscoelastic behavior of relation-based systems Gündüz (2009) [5] Gündüz and Gündüz (2010) [6]. In this research the ‘work’ associated with ‘elastic’ component, and ‘heat’ associated with ‘viscous’ component were discussed and elaborated. In a simple two subsequent pathway system in a scattering diagram the first vector represents ‘the cause’ and the second ‘the effect’. By using work and heat energy relations that involve force and also storage and loss modulus terms, respectively, one can calculate the energy involved in relation-based systems. The modulus values can be found from the parallel and vertical components of the second vector with respect to the first vector. Once work-like and heat-like terms were determined the internal energy is also easily found from their summation. The parallel and vertical components can also be used to calculate the magnitude of torque and torque energy in the system. Three cases, (i) the behavior of the NASDAQ-100 index, (ii) a social revolt, and (iii) the structure of a melody were analyzed for their ‘work-like’, ‘heat-like’, and ‘torque-like’ energies in the course of their evolution. NASDAQ-100 exhibits highly dissipative behavior, and its work terms are very small but heat terms are of large magnitude. Its internal energy highly fluctuates in time. In the social revolt studied work and heat terms are of comparable magnitude. The melody depicts highly organized structure, and usually has larger work terms than heat terms, but at some intervals heat terms burst out and attain very large magnitudes. Torque terms reach high values when the system is recovering from a minimum value.
NASA Astrophysics Data System (ADS)
Fukuoka, Shuhei; Yamashita, Satoshi; Nakazawa, Yasuhiro; Yamamoto, Takashi; Fujiwara, Hideki; Shirahata, Takashi; Takahashi, Kazuko
2016-06-01
The results are presented for systematic heat capacity measurements of π-d interacting systems of κ -(BETS) 2Fe Br4 and κ -(BETS) 2FeC l4 [BETS = bis(ethylenedithio)tetraselenafulvalene] performed under in-plane magnetic fields. We observed sharp thermal anomalies at 2.47 K for κ -(BETS) 2FeB r4 and at 0.47 K for κ -(BETS) 2FeC l4 at 0 T that are associated with antiferromagnetic transitions of the 3 d electrons in the anion layers. From analyses of the magnetic heat capacity data, we indicate that the two compounds show unconventional thermodynamic behaviors inherent in the π-d interacting layered system. In the case of κ -(BETS) 2FeB r4 , a small hump structure was observed in the magnetic heat capacity below the transition temperature when a magnetic field was applied parallel to the a axis. In the case of κ -(BETS) 2FeC l4 , a similar hump structure was observed at 0 T that remained in the data with magnetic fields applied parallel to the a axis. We demonstrate that the temperature dependencies of the magnetic heat capacities scale well by normalizing the temperatures with dominant one-dimensional direct interactions (Jdd/kB) of each compound. The field dependencies of the transition temperatures and the hump structures are elucidated in one simple magnetic field vs temperature (H -T ) phase diagram. These results indicate that the thermodynamic features of both κ-type BETS salts are essentially equivalent, and the observed hump structures are derived from the one-dimensional Jdd interaction characters, which are still influential for magnetic features even in the long-range magnetic ordered states.
NASA Technical Reports Server (NTRS)
Ameen, Lauren; Hervol, David; Waters, Deborah
2017-01-01
For large in-space cryogenic upper stages, substantial axial heat removal from a forward skirt by vapor-based heat interception may not be achieved by simple attachment methods unless sufficient thermal conductance from the skirt to the cooling fluid can be achieved. Preferable methods would allow for the addition of the cooling system to existing structure with minimal impact on the structure. Otherwise, significant modification to the basic structural design andor novel and complex attachment mechanisms with high effective thermal conductance are likely to be required. The approach being pursued by evolvable Cryogenics (eCryo) is to increase the thermal performance of a relatively simple attachment system by applying metallic or other thermally conductive material coatings to the mating surface area of the fluid channel where it is attached the skirt wall. The expectation of candidate materials is that the dramatic increase in conductivity of pure metals at temperatures close to liquid hydrogen vapor temperature will compensate for the reduced actual contact area typical of mechanical joints. Basic contact conductance data at low temperatures for candidate interface materials is required to enable the test approach. A test rig was designed at NASA Glenn Research Center to provide thermal contact resistance testing between small sample coupons coated with conductive material via electron beam evaporation, a low-temperature option that will not affect physical properties of base materials. Average coating thicknesses were 10 k. The test fixture was designed to mount directly to a cryocooler cold head within a vacuum test chamber. The purpose of this test was to determine qualitative contact conductance between various test samples. Results from this effort will be implemented in a sub-scale vapor-based heat interception test, where the applicability for increased heat removal on large structural skirts will be considered.
Standardized Methods for Electronic Shearography
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.
1997-01-01
Research was conducted in development of operating procedures and standard methods to evaluate fiber reinforced composite materials, bonded or sprayed insulation, coatings, and laminated structures with MSFC electronic shearography systems. Optimal operating procedures were developed for the Pratt and Whitney Electronic Holography/Shearography Inspection System (EH/SIS) operating in shearography mode, as well as the Laser Technology, Inc. (LTI) SC-4000 and Ettemeyer SHS-94 ISTRA shearography systems. Operating practices for exciting the components being inspected were studied, including optimal methods for transient heating with heat lamps and other methods as appropriate to enhance inspection capability.
Effects of Disinfection on Legionella spp., Eukarya, and Biofilms in a Hot Water System
Moletta-Denat, Marina; Frère, Jacques; Onillon, Séverine; Trouilhé, Marie-Cécile; Robine, Enric
2012-01-01
Legionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics of Legionella and eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenic Legionella species remained after the heat shock and chemical treatments (Legionella pneumophila and Legionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebae sp., Vannella sp., and Hartmanella vermiformis) and after the first heat shock treatment, but only H. vermiformis remained. However, another protozoan affiliated with Alveolata, which is known as a host cell for Legionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effective Legionella disinfection may be dependent on the elimination of these important microbial components. We suggest that eradicating Legionella in hot water networks requires better study of bacterial and eukaryal species associated with Legionella in biofilms. PMID:22820326
NASA Astrophysics Data System (ADS)
Zhou, M.; Berchem, J.; Walker, R. J.; El-Alaoui, M.; Goldstein, M. L.; Lapenta, G.; Deng, X.; Li, J.; Le Contel, O.; Graham, D. B.; Lavraud, B.; Paterson, W. R.; Giles, B. L.; Burch, J. L.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.; Zhao, C.; Ergun, R. E.; Lindqvist, P.-A.; Marklund, G.
2018-03-01
We report Magnetospheric Multiscale (MMS) observations of a reconnecting current sheet in the presence of a weak density asymmetry with large guide field at the dayside magnetopause. An ion diffusion region (IDR) was detected associated with this current sheet. Parallel current dominated over the perpendicular current in the IDR, as found in previous studies of component reconnection. Electrons were preferentially heated parallel to the magnetic field within the IDR. The heating was manifested as a flattop distribution below 400 eV. Two types of electromagnetic electron whistler waves were observed within the regions where electrons were heated. One type of whistler wave was associated with nonlinear structures in E|| with amplitudes up to 20 mV/m. The other type was not associated with any structures in E||. Poynting fluxes of these two types of whistler waves were directed away from the X-line. We suggest that the nonlinear evolution of the oblique whistler waves gave rise to the solitary structures in E||. There was a perpendicular super-Alfvénic outflow jet that was carried by magnetized electrons. Intense electrostatic lower hybrid drift waves were localized in the current sheet center and were probably driven by the super-Alfvénic electron jet, the velocity of which was approximately equal to the diamagnetic drift of demagnetized ions. Our observations suggest that the guide field significantly modified the structures (Hall electromagnetic fields and current system) and wave properties in the IDR.
Electroless-plating technique for fabricating thin-wall convective heat-transfer models
NASA Technical Reports Server (NTRS)
Avery, D. E.; Ballard, G. K.; Wilson, M. L.
1984-01-01
A technique for fabricating uniform thin-wall metallic heat-transfer models and which simulates a Shuttle thermal protection system tile is described. Two 6- by 6- by 2.5-in. tiles were fabricated to obtain local heat transfer rates. The fabrication process is not limited to any particular geometry and results in a seamless thin-wall heat-transfer model which uses a one-wire thermocouple to obtain local cold-wall heat-transfer rates. The tile is relatively fragile because of the brittle nature of the material and the structural weakness of the flat-sided configuration; however, a method was developed and used for repairing a cracked tile.
A historical perspective of the YF-12A thermal loads and structures program
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.; Quinn, Robert D.
1996-01-01
Around 1970, the Y-F-12A loads and structures efforts focused on numerous technological issues that needed defining with regard to aircraft that incorporate hot structures in the design. Laboratory structural heating test technology with infrared systems was largely created during this program. The program demonstrated the ability to duplicate the complex flight temperatures of an advanced supersonic airplane in a ground-based laboratory. The ability to heat and load an advanced operational aircraft in a laboratory at high temperatures and return it to flight status without adverse effects was demonstrated. The technology associated with measuring loads with strain gages on a hot structure was demonstrated with a thermal calibration concept. The results demonstrated that the thermal stresses were significant although the airplane was designed to reduce thermal stresses. Considerable modeling detail was required to predict the heat transfer and the corresponding structural characteristics. The overall YF-12A research effort was particularly productive, and a great deal of flight, laboratory, test and computational data were produced and cross-correlated.
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; ...
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Crowley, Christopher J.
2005-01-01
A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.
NASA Technical Reports Server (NTRS)
Shideler, J. L.; Swegle, A. R.; Fields, R. A.
1982-01-01
The status of the structural development of an integral cryogenic-tankage/hot-fuselage concept for future space transportation systems is reviewed. The concept comprises a honeycomb sandwich structure that serves the combined functions of containing the cryogenic fuel, supporting the vehicle loads, and protecting the spacecraft from entry heating. The inner face sheet is exposed to cryogenic temperature of -423 F during boost; the outer face sheet, which is slotted to reduce thermal stress, is exposed to a maximum temperature of 1400 F during a high-altitude gliding entry. Attention is given to the development of a fabrication process for a Rene 41 honeycomb sandwich panel with a core density of less than 1 percent that is consistent with desirable heat treatment processes for high strength.
NASA Technical Reports Server (NTRS)
Shideler, J. J.; Swegle, A. R.; Fields, R. A.
1982-01-01
The status of the structural development of an integral cryogenic-tankage/hot-fuselage concept for future space transportation systems (STS) is discussed. The concept consists of a honeycomb sandwich structure which serves the combined functions of containment of cryogenic fuel, support of vehicle loads, and thermal protection from an entry heating environment. The inner face sheet is exposed to a cryogenic (LH2) temperature of -423 F during boost; and the outer face sheet, which is slotted to reduce thermal stress, is exposed to a maximum temperature of 1400 F during a high altitude, gliding entry. A fabrication process for a Rene' 41 honeycomb sandwich panel with a core density less than 1 percent was developed which is consistent with desirable heat treatment processes for high strength.
NASA Astrophysics Data System (ADS)
Butuzov, V. A.; Amerkhanov, R. A.; Grigorash, O. V.
2018-05-01
Solar and geothermal energy systems are shown to have received the widest use among all kinds of renewable sources of energy for heat supply purposes around the world. The power capacities and amounts of thermal energy generated by solar and geothermal heat supply systems around the world are presented by way of comparison. The thermal power capacity of solar heat supply systems installed around the world as of 2015 totaled 268.1 GW, and the thermal energy generated by them amounted to 225 TW h/year. The thermal power capacity of geothermal heat supply systems installed around the world totaled 70.3 GW, and the thermal energy generated by them amounted to 163 TW h/year. Information on the geothermal heat supply systems in the leading countries around the world based on the data reported at the World Geothermal Congress held in 2015 is presented. It is shown that China, with the installed thermal power capacities of its geothermal heat supply stations totaling 17.87 GW and the amount of thermal energy generated per annum equal to 48.435 TW h/year, is the world's leader in this respect. The structures of geothermal heat supply systems by the kinds of heat consumption used around the world are presented. The systems equipped with geothermal heat pumps accounted for 70.95% in the total installed capacity and for 55.3% in the total amount of generated heat. For systems that do not use heat pumps, those serving for pools account for the largest share amounting to 44.74% in installed capacity and to 45.43% in generated heat. A total of 2218 geothermal wells with the total length equal to 9534 km (with 38.7% of them for heat supply purposes) were drilled in 42 countries in the period from 2010 to 2014. In Russia, geothermal heat supply systems are in operation mainly in Dagestan, in Krasnodar krai, and in Kamchatka. The majority of these systems have been made without breaking the stream after the well outlet. A cyclic control arrangement is also used. The combined geothermal and solar heat supply system with an installed thermal power capacity of 5 MW that is in operation in the Rozovyi settlement, Krasnodar krai, is described. In the summer time, the solar installation with a capacity of 115 kW is used for supplying hot water to residential houses and for restoring the geothermal well pore pressure. The basic process circuit and characteristics of the geothermal heat supply system with the installed thermal power capacity of 8.7 MW operating in the Khankala settlement, the city of Groznyi, are given. The specific feature of this system is that the spent geothermal heat carrier is reinjected into a specially drilled inclined well. Advanced geothermal heat supply technologies involving reinjection of the spent geothermal heat carrier, combination with binary power units, use of heat pumps for recovering the spent heat carrier, and protection of equipment from corrosion and deposits are proposed.
Conceptual design of free-piston Stirling conversion system for solar power units
NASA Astrophysics Data System (ADS)
Loktionov, Iu. V.
A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.
Lee, Kwang-il; Lee, Jung-soo; Lee, Keun-soo; Jung, Hong-hee; Ahn, Chan-min; Kim, Young-sik; Shim, Young-bock; Jang, Ju-woong
2015-12-01
Sequentially chemical-treated bovine bone was not only evaluated by mechanical and chemical analyses but also implanted into the gluteal muscles of rats for 12 weeks to investigate potential local pathological effects and systemic toxicities. The test (chemical treated bone) and control (heat treated bone) materials were compared using scanning electron microscope (SEM), x-ray diffraction pattern, inductively coupled plasma analysis, and bending strength test. In the SEM images, the micro-porous structure of heat-treated bone was changed to sintered ceramic-like structure. The structure of bone mineral from test and control materials was analyzed as100% hydroxyapatite. The ratio of calcium (Ca) to potassium (P), the main inorganic elements, was same even though the Ca and P percentages of the control material was relatively higher than the test material. No death or critical symptoms arose from implantation of the test (chemical treated bone) and control (physiological saline) materials during 12 weeks. The implanted sites were macroscopically examined, with all the groups showing non-irritant results. Our results indicate that chemical processed bovine bone has a better mechanical property than the heat treated bone and the implantation of this material does not produce systemic or pathological toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.
Waste heat recovery on multiple low-speed reciprocating engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhew, R.E.
1982-09-01
With rising fuel costs, energy conservation has taken on added significance. Installation of Waste Heat Recovery Units (WHRU) on gas turbines is one method used in the past to reduce gas plant fuel consumption. More recently, waste heat recovery on multiple reciprocating compressor engines has also been identified as having energy conservation potential. This paper reviews the development and implementation of a Waste Heat Recovery Unit (WHRU) for multiple low speed engines at the Katy Gas Plant. WHRU's for these engines should be differentiated from high speed engines and gas turbines in that low speed engines produce low frequency, highmore » amplitude pulsating exhaust. The design of a waste heat system must take this potentially destructive pulsation into account. At Katy, the pulsation forces were measured at high amplitude frequencies and then used to design structural stiffness into the various components of the WHRU to minimize vibration and improve system reliability.« less
High efficiency tantalum-based ceramic composite structures
NASA Technical Reports Server (NTRS)
Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor); DiFiore, Robert R. (Inventor); Katvala, Victor W. (Inventor)
2010-01-01
Tantalum-based ceramics are suitable for use in thermal protection systems. These composite structures have high efficiency surfaces (low catalytic efficiency and high emittance), thereby reducing heat flux to a spacecraft during planetary re-entry. These ceramics contain tantalum disilicide, molybdenum disilicide and borosilicate glass. The components are milled, along with a processing aid, then applied to a surface of a porous substrate, such as a fibrous silica or carbon substrate. Following application, the coating is then sintered on the substrate. The composite structure is substantially impervious to hot gas penetration and capable of surviving high heat fluxes at temperatures approaching 3000.degree. F. and above.
Testing the Shuttle heat-protection armor
NASA Technical Reports Server (NTRS)
Strouhal, G.; Tillian, D. J.
1976-01-01
The article deals with the thermal protection system (TPS) designed to keep Space Shuttle structures at 350 F ratings over a wide range of temperatures encountered in orbit, but also during prelaunch, launch, deorbit and re-entry, landing and turnaround. The structure, function, fabrication, and bonding of various types of reusable surface insulation and composite materials are described. Test programs are developed for insulation, seals, and adhesion bonds; leak tests and acoustic fatigue tests are mentioned. Test facilities include arc jets, radiant heaters, furnaces, and heated tunnels. The certification tests to demonstrate TPS reusability, structural integrity, thermal performance, and endurance will include full-scale assembly tests and initial orbital flight tests.
Design Development Analyses in Support of a Heatpipe-Brayton Cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Steeve, Brian E.; Kapernick, Richard J.
2004-01-01
One of the power systems under consideration for nuclear electric propulsion or as a planetary surface power source is a heatpipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heatpipes to the Brayton gas via a heat exchanger attached to the heatpipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center: An important consideration throughout the design development of the heat exchanger w its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration.
NASA Technical Reports Server (NTRS)
Marble, Elizabeth
1996-01-01
Hypersonic spacecraft reentering the earth's atmosphere encounter extreme heat due to atmospheric friction. Thermal Protection System (TPS) materials shield the craft from this searing heat, which can reach temperatures of 2900 F. Various thermophysical and optical properties of TPS materials are tested at the Johnson Space Center Atmospheric Reentry Materials and Structures Evaluation Facility, which has the capability to simulate critical environmental conditions associated with entry into the earth's atmosphere. Emissivity is an optical property that determines how well a material will reradiate incident heat back into the atmosphere upon reentry, thus protecting the spacecraft from the intense frictional heat. This report describes a method of measuring TPS emissivities using the SR5000 Scanning Spectroradiometer, and includes system characteristics, sample data, and operational procedures developed for arc-jet applications.
30 CFR 250.1629 - Additional production and fuel gas system requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operating range. (2) Engine exhaust. You must equip engine exhausts to comply with the insulation and... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed...
Design Development Analyses in Support of a Heatpipe-Brayton Cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Steeve, Brian; VanDyke, Melissa; Majumdar, Alok; Nguyen, Dalton; Corley, Melissa; Guffee, Ray M.; Kapernick, Richard J.
2003-01-01
One of the power systems under consideration for nuclear electric propulsion or as a planetary surface power source is a heatpipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heatpipes to the Brayton gas via a heat exchanger attached to the heatpipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at Marshall Space Flight Center. A companion paper, "Mechanical Design and Fabrication of a SAFE-100 Heat Exchanger for use in NASA s Advanced Propulsion Thermal-hydraulic Simulator", presents the fabrication issues and prototyping studies that, together with these analyses, led to the development of this heat exchanger. An important consideration throughout the design development of the heat exchanger was its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration.
A Study of Phase Composition and Structure of Alloys of the Al - Mg - Si - Fe System
NASA Astrophysics Data System (ADS)
Mailybaeva, A. D.; Zolotorevskii, V. S.; Smagulov, D. U.; Islamkulov, K. M.
2017-03-01
The Thermo-Calc software is used to compute the phase transformations occurring during cooling of alloys. Polythermal and isothermal sections of the phase diagram of the Al - Mg - Si - Fe system are plotted. The phase composition and the structure of aluminum alloys in cast condition and after a heat treatment are studied experimentally.
Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer
Xiao, Rong; Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N.
2013-01-01
Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties of low contact angles and high nucleation densities for high heat transfer performance have been typically neglected. In this work, we demonstrate immersion condensation on oil-infused micro and nanostructured surfaces with heterogeneous coatings, where water droplets nucleate immersed within the oil. The combination of surface energy heterogeneity, reduced oil-water interfacial energy, and surface structuring enabled drastically increased nucleation densities while maintaining easy condensate removal and low contact angles. Accordingly, on oil-infused heterogeneous nanostructured copper oxide surfaces, we demonstrated approximately 100% increase in heat transfer coefficient compared to state-of-the-art dropwise condensation surfaces in the presence of non-condensable gases. This work offers a distinct approach utilizing surface chemistry and structuring together with liquid-infusion for enhanced condensation heat transfer. PMID:23759735
30 CFR 250.1629 - Additional production and fuel gas system requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...
30 CFR 250.1629 - Additional production and fuel gas system requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...
Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications.
Stegmaier, Thomas; Linke, Michael; Planck, Heinrich
2009-05-13
Solar thermal collectors used at present consist of rigid and heavy materials, which are the reasons for their immobility. Based on the solar function of polar bear fur and skin, new collector systems are in development, which are flexible and mobile. The developed transparent heat insulation material consists of a spacer textile based on translucent polymer fibres coated with transparent silicone rubber. For incident light of the visible spectrum the system is translucent, but impermeable for ultraviolet radiation. Owing to its structure it shows a reduced heat loss by convection. Heat loss by the emission of long-wave radiation can be prevented by a suitable low-emission coating. Suitable treatment of the silicone surface protects it against soiling. In combination with further insulation materials and flow systems, complete flexible solar collector systems are in development.
Cost analysis of new and retrofit hot-air type solar assisted heating systems
NASA Technical Reports Server (NTRS)
Stewart, R. D.; Hawkins, B. J.
1978-01-01
A detailed cost analysis/cost improvement study was performed on two Department of Energy/National Aeronautics and Space Administration operational test sites to determine actual costs and potential cost improvements of new and retrofit hot air type, solar assisted heating and hot water systems for single family sized structures. This analysis concentrated on the first cost of a system which included procurement, installation, and integration of a solar assisted heating and hot water system on a new or retrofit basis; it also provided several cost projections which can be used as inputs to payback analyses, depending upon the degree of optimism or future improvements assumed. Cost definitions were developed for five categories of cost, and preliminary estimates were developed for each. The costing methodology, approach, and results together with several candidate low cost designs are described.
Tchernev, Dimiter I.
1985-01-01
A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.
Multifunctional Carbon Foams for Aerospace Applications
NASA Technical Reports Server (NTRS)
Rogers, D. K.; Plucinski, J.
2001-01-01
Carbon foams produced by the controlled thermal decomposition of inexpensive coal extracts exhibit a combination of structural and thermal properties that make them attractive for aerospace applications. Their thermal conductivity can be tailored between 0.5 and 100 W/mK through precursor selection/modification and heat treatment conditions; thus, they can serve in either thermal protection or heat transfer systems such as heat exchangers. Because their structure is essentially a 3D random network of graphite-like members, they also can be considered low-cost, easily fabricated replacements for multi-directional structural carbon fiber preforms. Strengths of over 4000 psi in compression are common. Their density can be designed between 0.1 and 0.8 g/cc, and they can be impregnated with a variety of matrices or used, unfilled, in sandwich structures. These foams also exhibit intriguing electrochemical properties that offer potential in high-efficiency fuel cell and battery applications, mandrels and tooling for composite manufacture, ablative performance, and fire resistance. This paper presents the results of research conducted under NASA SBIR Topic 99.04.01, General Aviation Technology, supported from Langley Research Center. The potential of foam design through precursor selection, cell size and density control, density grading, and heat treatment is demonstrated.
10,000 - A reason to study granular heat convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einav, I.; Rognon, P.; Gan, Y.
2013-06-18
In sheared granular media, particle motion is characterized by vortex-like structures; here this is demonstrated experimentally for disks system undergoing indefinite deformation during simple shear, as often imposed by the rock masses hosting earthquake fault gouges. In traditional fluids it has been known for years that vortices represent a major factor of heat transfer enhancement via convective internal mixing, but in analyses of heat transfer through earthquake faults and base planes of landslides this has been continuously neglected. Can research proceed by neglecting heat convection by internal mixing? Our answer is astonishingly far from being yes.
Progress in fuel systems to meet new fuel economy and emissions standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This publication includes information describing the latest developments within the automotive industry on fuel system hardware and control strategies. Contents include: Slow heating process of a heated pintle-type gasoline fuel injector; Mixture preparation measurements; Study of fuel flow rate change in injector for methanol fueled S.I. engine; Flow and structural analysis for fuel pressure regulator performance; A new method to analyze fuel behavior in a spark ignition engine; Throttle body at engine idle -- tolerance effect on flow rate; and more.
Space vehicle integrated thermal protection/structural/meteoroid protection system, volume 1
NASA Technical Reports Server (NTRS)
Bartlett, D. H.; Zimmerman, D. K.
1973-01-01
A program was conducted to determine the merit of a combined structure/thermal meteoroid protection system for a cryogenic vehicle propulsion module. Structural concepts were evaluated to identify least weight designs. Thermal analyses determined optimum tank arrangements and insulation materials. Meteoroid penetration experiments provided data for design of protection systems. Preliminary designs were made and compared on the basis of payload capability. Thermal performance tests demonstrated heat transfer rates typical for the selected design. Meteoroid impact tests verified the protection characteristics. A mockup was made to demonstrate protection system installation. The best design found combined multilayer insulation with a truss structure vehicle body. The multilayer served as the thermal/meteoroid protection system.
Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein
Cho, Se Youn; Yun, Young Soo; Lee, Sungho; Jang, Dawon; Park, Kyu-Young; Kim, Jae Kyung; Kim, Byung Hoon; Kang, Kisuk; Kaplan, David L.; Jin, Hyoung-Joon
2015-01-01
Silk proteins are of great interest to the scientific community owing to their unique mechanical properties and interesting biological functionality. In addition, the silk proteins are not burned out following heating, rather they are transformed into a carbonaceous solid, pyroprotein; several studies have identified potential carbon precursors for state-of-the-art technologies. However, no mechanism for the carbonization of proteins has yet been reported. Here we examine the structural and chemical changes of silk proteins systematically at temperatures above the onset of thermal degradation. We find that the β-sheet structure is transformed into an sp2-hybridized carbon hexagonal structure by simple heating to 350 °C. The pseudographitic crystalline layers grew to form highly ordered graphitic structures following further heating to 2,800 °C. Our results provide a mechanism for the thermal transition of the protein and demonstrate a potential strategy for designing pyroproteins using a clean system with a catalyst-free aqueous wet process for in vivo applications. PMID:25990218
NASA Technical Reports Server (NTRS)
Eastman, G. Yale; Dussinger, Peter M.; Hartenstine, John R.
1994-01-01
Three modular heat-transfer components designed for use together or separately. Simple mechanical connections facilitate assembly of these and related heat-transfer components into cooling systems of various configurations, such as to cool laboratory equipment rearranged for different experiments. Components are clamp-on cold plate, cold plate attached to flexible heat pipe, and thermal-bus receptacle. Clamp-on cold plate moved to any convenient location for attachment of equipment cooled by it, then clamped onto thermal bus. Heat from equipment conducted through plate and into coolant. Thermal-bus receptacle integral with thermal bus. Includes part of thermal bus to which clamp-on cold plate attached, plus tapered socket into which condenser end of flexible heat pipe plugged. Thermal-bus receptacle includes heat-pipe wick structure using coolant in bus to enhance transfer of heat from cold plate.
Nonlinear Transient Thermal Analysis by the Force-Derivative Method
NASA Technical Reports Server (NTRS)
Balakrishnan, Narayani V.; Hou, Gene
1997-01-01
High-speed vehicles such as the Space Shuttle Orbiter must withstand severe aerodynamic heating during reentry through the atmosphere. The Shuttle skin and substructure are constructed primarily of aluminum, which must be protected during reentry with a thermal protection system (TPS) from being overheated beyond the allowable temperature limit, so that the structural integrity is maintained for subsequent flights. High-temperature reusable surface insulation (HRSI), a popular choice of passive insulation system, typically absorbs the incoming radiative or convective heat at its surface and then re-radiates most of it to the atmosphere while conducting the smallest amount possible to the structure by virtue of its low diffusivity. In order to ensure a successful thermal performance of the Shuttle under a prescribed reentry flight profile, a preflight reentry heating thermal analysis of the Shuttle must be done. The surface temperature profile, the transient response of the HRSI interior, and the structural temperatures are all required to evaluate the functioning of the HRSI. Transient temperature distributions which identify the regions of high temperature gradients, are also required to compute the thermal loads for a structural thermal stress analysis. Furthermore, a nonlinear analysis is necessary to account for the temperature-dependent thermal properties of the HRSI as well as to model radiation losses.
Processes of Heat Transfer in Rheologically Unstable Mixtures of Organic Origin
NASA Astrophysics Data System (ADS)
Tkachenko, S. I.; Pishenina, N. V.; Rumyantseva, T. Yu.
2014-05-01
The dependence of the coefficient of heat transfer from the heat-exchange surface to a rheologically unstable organic mixture on the thermohydrodynamic state of the mixture and its prehistory has been established. A method for multivariant investigation of the process of heat transfer in compound organic mixtures has been proposed; this method makes it possible to evaluate the character and peculiarities of change in the rheological structure of the mixture as functions of the thermohydrodynamic conditions of its treatment. The possibility of evaluating the intensity of heat transfer in a biotechnological system for production of energy carriers at the step of its designing by multivariant investigation of the heat-transfer intensity in rheologically unstable organic mixtures with account of their prehistory has been shown.
Economic analysis of wind-powered farmhouse and farm building heating systems
NASA Astrophysics Data System (ADS)
Stafford, R. W.; Greeb, F. J.; Smith, M. H.; Deschenes, C.; Weaver, N. L.
1981-01-01
The break even values of wind energy for selected farmhouses and farm buildings focusing on the effects of thermal storage on the use of WECS production were evaluated. Farmhouse structural models include three types derived from a national survey: an older, a more modern, and a passive solar structure. The eight farm building applications include: (1) poultry layers; (2) poultry brooding/layers; (3) poultry broilers; (4) poultry turkeys; (5) swine farrowing; (6) swine growing/finishing; (7) dairy; and (8) lambing. The farm buildings represent the spectrum of animal types, heating energy use, and major contributions to national agricultural economic values. All energy analyses are based on hour by hour computations which allow for growth of animals, sensible and latent heat production, and ventilation requirements.
Aircraft skin cooling system for thermal management of onboard high power electronic equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashemi, A.; Dyson, E.
1996-12-31
Integration of high-power electronic devices into existing aircraft, while minimizing the impact of additional heat load on the environmental control system of the aircraft, requires innovative approaches. One such approach is to reject heat through the aircraft skin by use of internal skin ducts with enhanced surfaces. This approach requires a system level consideration of the effect of cooling ducts, inlets and outlets on the performance of the electronic equipment and effectiveness of the heat rejection system. This paper describes the development of a system-level model to evaluate the performance of electronic equipment in an aircraft cabin and heat rejectionmore » through the skin. In this model, the outer surface of the fuselage is treated as a heat exchanger. Hot air from an equipment exhaust plenum is drawn into a series of baffled ducts within the fuselage support structure, where the heat is rejected, and then recirculated into the cabin. The cooler air form the cabin is then drawn into the electronic equipment. The aircraft air conditioning unit is also modeled to provide chilled air directly into the cabin. In addition, this paper describes a series of tests which were performed to verify the model assumptions for heat dissipation from and air flow through the equipment. The tests were performed using the actual electronic equipment in a representative cabin configuration. Results indicate very good agreement between the analytical calculations for the design point and model predictions.« less
Composite Structures Materials Testing for the Orion Crew Vehicle Heat Shield
NASA Technical Reports Server (NTRS)
Khemani, Farah N.
2011-01-01
As research is being performed for the new heat shield for the Orion capsule, National Aeronautics and Space Administration (NASA) is developing the first composite heat shield. As an intern of the Structures Branch in the Engineering Directorate (ES 2), my main task was to set up a test plan to determine the material properties of the honeycomb that will be used on the Orion Crew Module heat shield to verify that the composite is suitable for the capsule. Before conducting composite shell tests, which are performed to simulate the crush performance of the heat shield on the capsule, it is necessary to determine the compression and shear properties of the composite used on the shell. During this internship, I was responsible for developing a test plan, designing parts for the test fixtures as well as getting them fabricated for the honeycomb shear and compression testing. This involved work in Pro/Engineer as well as coordinating with Fab Express, the Building 9 Composite Shop and the Structures Test Laboratory (STL). The research and work executed for this project will be used for composite sandwich panel testing in the future as well. As a part of the Structures Branch, my main focus was to research composite structures. This involves system engineering and integration (SE&I) integration, manufacturing, and preliminary testing. The procedures for these projects that were executed during this internship included design work, conducting tests and performing analysis.
Thermal elastoplastic structural analysis of non-metallic thermal protection systems
NASA Technical Reports Server (NTRS)
Chung, T. J.; Yagawa, G.
1972-01-01
An incremental theory and numerical procedure to analyze a three-dimensional thermoelastoplastic structure subjected to high temperature, surface heat flux, and volume heat supply as well as mechanical loadings are presented. Heat conduction equations and equilibrium equations are derived by assuming a specific form of incremental free energy, entropy, stresses and heat flux together with the first and second laws of thermodynamics, von Mises yield criteria and Prandtl-Reuss flow rule. The finite element discretization using the linear isotropic three-dimensional element for the space domain and a difference operator corresponding to a linear variation of temperature within a small time increment for the time domain lead to systematic solutions of temperature distribution and displacement and stress fields. Various boundary conditions such as insulated surfaces and convection through uninsulated surface can be easily treated. To demonstrate effectiveness of the present formulation a number of example problems are presented.
Review of heat transfer problems associated with magnetically-confined fusion reactor concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, M.A.; Werner, R.W.; Carlson, G.A.
1976-04-01
Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements.more » Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated.« less
NASA Technical Reports Server (NTRS)
Kohlman, Lee W.; Ruggeri, Charles R.; Roberts, Gary D.; Handschuh, Robert Frederick
2013-01-01
Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests
NASA Technical Reports Server (NTRS)
Kohlman, Lee; Ruggeri, Charles; Roberts, Gary; Handshuh, Robert
2013-01-01
Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests.
NASA Astrophysics Data System (ADS)
Jiang, Q. F.; Zhuang, M.; Zhu, Z. G.; Y Zhang, Q.; Sheng, L. H.
2017-12-01
Counter-flow plate-fin heat exchangers are commonly utilized in cryogenic applications due to their high effectiveness and compact size. For cryogenic heat exchangers in helium liquefaction/refrigeration systems, conventional design theory is no longer applicable and they are usually sensitive to longitudinal heat conduction, heat in-leak from surroundings and variable fluid properties. Governing equations based on distributed parameter method are developed to evaluate performance deterioration caused by these effects. The numerical model could also be applied in many other recuperators with different structures and, hence, available experimental data are used to validate it. For a specific case of the multi-stream heat exchanger in the EAST helium refrigerator, quantitative effects of these heat losses are further discussed, in comparison with design results obtained by the common commercial software. The numerical model could be useful to evaluate and rate the heat exchanger performance under the actual cryogenic environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.
1980-03-01
Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and watermore » heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.« less
Study on mitigation of pulsed heat load for ITER cryogenic system
NASA Astrophysics Data System (ADS)
Peng, N.; Xiong, L. Y.; Jiang, Y. C.; Tang, J. C.; Liu, L. Q.
2015-03-01
One of the key requirements for ITER cryogenic system is the mitigation of the pulsed heat load deposited in the magnet system due to magnetic field variation and pulsed DT neutron production. As one of the control strategies, bypass valves of Toroidal Field (TF) case helium loop would be adjusted to mitigate the pulsed heat load to the LHe plant. A quasi-3D time-dependent thermal-hydraulic analysis of the TF winding packs and TF case has been performed to study the behaviors of TF magnets during the reference plasma scenario with the pulses of 400 s burn and repetition time of 1800 s. The model is based on a 1D helium flow and quasi-3D solid heat conduction model. The whole TF magnet is simulated taking into account thermal conduction between winding pack and case which are cooled separately. The heat loads are given as input information, which include AC losses in the conductor, eddy current losses in the structure, thermal radiation, thermal conduction and nuclear heating. The simulation results indicate that the temperature variation of TF magnet stays within the allowable range when the smooth control strategy is active.
heating, ventilation and air conditioning (HVAC) systems, structural insulated panels to improve products and systems. NREL building engineers estimate the combination of advanced products and design Building America program manager George James. "All of the technologies and systems used in this house
Numerical Heat Transfer Prediction for Laminar Flow in a Circular Pipe with a 90° Bend
NASA Astrophysics Data System (ADS)
Patro, Pandaba; Rout, Ani; Barik, Ashok
2018-06-01
Laminar air flow in a 90° bend has been studied numerically to investigate convective heat transfer, which is of practical relevance to electronic systems and refrigeration piping layout. CFD simulations are performed for Reynolds number in the range 200 to 1000 at different bend radius ratios (5, 10 and 20). The heat transfer characteristics are found to be enhanced in the curved pipe compared to a straight pipe, which are subjected to the same flow rate. The curvature and buoyancy effectively increase heat transfer in viscous laminar flows. The correlation between the flow structure and the heat transfer is found to be strong.
NASA Astrophysics Data System (ADS)
Tanisawa, Hidekazu; Kato, Fumiki; Koui, Kenichi; Sato, Shinji; Watanabe, Kinuyo; Takahashi, Hiroki; Murakami, Yoshinori; Sato, Hiroshi
2018-04-01
In this paper, we demonstrate a mounting technology that improves the tolerance to transient power loss by adding a heat capacity near the device. Silicon carbide (SiC) power devices can operate at high temperatures, up to 250 °C, at which silicon (Si) power devices cannot. Therefore, it is possible to allow a large temperature difference between the device and ambient air. Thus, the size of a power converter equipped with an SiC power module is reduced by simplifying the cooling system. The temperature of the power module is important not only in the steady state, but in transient loads as well. Therefore, we developed the Al-bump flip-chip mounting technology to increase heat capacity near the device. With this proposed structure, the heat capacity per device increased by 1.7% compared with the total heat capacity of the conventional structure using wire bonding. The reduction in transient thermal impedance is observed from 0.003 to 3 s, and we confirmed that the transient thermal impedance is reduced very efficiently by 15% at the maximum, compared with the conventional structure.
NASA Astrophysics Data System (ADS)
Willems, Sebastian; Esser, Burkard; Gülhan, Ali
2015-12-01
A detailed knowledge of the fluid-structure interaction in hypersonic flows is important for the design of future space transportation systems. The thermal aspect of such an interaction was investigated with the help of a generic model in the arc-heated wind tunnel L3K at the German Aerospace Center in Cologne. Flat and curved panels of the fibre-reinforced ceramics C/C-SiC with and without anti-oxidation coating where used. Several configurations with and without back plane insulation were tested at 10° and 20° angle of attack. The panel heating was measured with an infrared camera, several thermocouples and pyrometers. The experimental results show the influence of the shape as well as of radiation cooling and radiation heating. The experiments also reveal the effect of additional heating due to recombination of atomic oxygen on the surface. At certain configurations a local temperature peak moved over the panel. This thermal wave is also influenced by the silicon carbide coating. The analysis is supported by coupled fluid and structure simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, W.E.
1977-04-01
A three-phase program to develop and demonstrate the feasibility of a metallic heat shield suitable for use on Space Shuttle Orbiter class vehicles at operating surface temperatures of up to 1590 K (2400 F) is summarized. An orderly progression of configuration studies, material screening tests, and subscale structural tests was performed. Scale-up feasibility was demonstrated in the final phase when a sizable nine-panel array was fabricated and successfully tested. The full-scale tests included cyclic testing at reduced air pressure to 1590 K (2400 F) and up to 158 dB overall sound pressure level. The selected structural configuration and design techniquesmore » succesfully eliminated thermal induced failures. The thermal/structural performance of the system was repeatedly demonstrated. Practical and effective field repair methods for coated columbium alloys were demonstrated. Major uncertainties of accessibility, refurbishability, and durability were eliminated.« less
NASA Technical Reports Server (NTRS)
Black, W. E.
1977-01-01
A three-phase program to develop and demonstrate the feasibility of a metallic heat shield suitable for use on Space Shuttle Orbiter class vehicles at operating surface temperatures of up to 1590 K (2400 F) is summarized. An orderly progression of configuration studies, material screening tests, and subscale structural tests was performed. Scale-up feasibility was demonstrated in the final phase when a sizable nine-panel array was fabricated and successfully tested. The full-scale tests included cyclic testing at reduced air pressure to 1590 K (2400 F) and up to 158 dB overall sound pressure level. The selected structural configuration and design techniques succesfully eliminated thermal induced failures. The thermal/structural performance of the system was repeatedly demonstrated. Practical and effective field repair methods for coated columbium alloys were demonstrated. Major uncertainties of accessibility, refurbishability, and durability were eliminated.
Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas
NASA Astrophysics Data System (ADS)
Chu, X. X.; Zhang, M. M.; Zhang, D. X.; Xu, D.; Qian, Y.; Liu, W.
2014-01-01
In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H2 from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H2 in helium recycle gas are less than 1 ppb.
A Compendium of Brazed Microstructures For Fission Power Systems Applications
NASA Technical Reports Server (NTRS)
Locci, Ivan E.; Bowman, Cheryl L.
2012-01-01
NASA has been supporting design studies and technology development for fission-based power systems that could provide power to an outpost on the Moon, Mars, or an asteroid. Technology development efforts have included fabrication and evaluation of components used in a Stirling engine power conversion system. This investigation is part of the development of several braze joints crucial for the heat exchanger transfer path from a hot-side heat exchanger to a Stirling engine heat acceptor. Dissimilar metal joints are required to impart both mechanical strength and thermal path integrity for a heater head of interest. Preliminary design work for the heat exchanger involved joints between low carbon stainless steel to Inconel 718, where the 316L stainless steel would contain flowing liquid metal NaK while Inconel 718, a stronger alloy, would be used as structural reinforcement. This paper addressed the long-term microstructural stability of various braze alloys used to join 316L stainless steel heater head to the high conductivity oxygen-free copper acceptor to ensure the endurance of the critical metallic components of this sophisticated heat exchanger. The bonding of the 316L stainless steel heater head material to a copper heat acceptor is required to increase the heat-transfer surface area in contact with flowing He, which is the Stirling engine working fluid.
Diffusion of phonons through (along and across) the ultrathin crystalline films
NASA Astrophysics Data System (ADS)
Šetrajčić, J. P.; Jaćimovski, S. K.; Vučenović, S. M.
2017-11-01
Instead of usual approach, applying displacement-displacement Green's functions, the momentum-momentum Green's functions will be used to calculate the diffusion tensor. With this type of Green's function we have calculated and analyzed dispersion law in film-structures. A small number of phonon energy levels along the direction of boundary surfaces joint of the film are discrete-ones and in this case standing waves could occur. This is consequence of quantum size effects. These Green's functions enter into Kubo's formula defining diffusion properties of the system and possible heat transfer direction through observed structures. Calculation of the diffusion tensor for phonons in film-structure requires solving of the system of difference equations. Boundary conditions are included into mentioned system through the Hamiltonian of the film-structure. It has been shown that the diagonal elements of the diffusion tensor express discrete behavior of the dispersion law of elementary excitations. More important result is-that they are temperature independent and that their values are much higher comparing with bulk structures. This result favors better heat conduction of the film, but in direction which is perpendicular to boundary film surface. In the same time this significantly favors appearance 2D superconducting surfaces inside the ultra-thin crystal structure, which are parallel to the boundary surface.
Hydrogen plasma tests of some insulating coating systems for the nuclear rocket thrust chamber
NASA Technical Reports Server (NTRS)
Current, A. N.; Grisaffe, S. J.; Wycoff, K. C.
1972-01-01
Several plasma-sprayed and slurry-coated insulating coating systems were evaluated for structural stability in a low-pressure hot hydrogen environment at a maximum heat flux of 19.6 million watts/sq meter. The heat was provided by an electric-arc plasma generator. The coating systems consisted of a number of thin layers of metal oxides and/or metals. The materials included molybdenum, nichrome, tungsten, alumina, zirconia, and chromia. The study indicates potential usefulness in this environment for some coatings, and points up the need for improved coating application techniques.
Solid state lighting devices and methods with rotary cooling structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less
NASA Astrophysics Data System (ADS)
Du, W. P.; Li, M.; Wang, Y. F.; He, J. H.; He, J. X.
2017-11-01
To overcome the problem that the heat source temperature is limited and the lower part of the adsorption tube cannot effectively absorb the solar radiation when solar radiation as the heat source of the adsorption refrigeration system. From the perspective of enhancing the adsorption refrigeration unit tube to absorb solar radiation, thereby strengthening the heat transfer characteristic of adsorption bed, which can improve the efficiency of the refrigeration unit refrigerating capacity and system refrigeration efficiency. Solar adsorption refrigeration system based on CPC was designed and constructed in this paper. The heat and mass transfer performance of the adsorption refrigeration system were studied. The experimental results show that the temperature of the adsorption bed with parabolic concentrating structure can rise to 100°C under low irradiation condition. When the irradiation intensity is 600 w/m2 and 400 w/m2, the average temperature rising to desorption temperature reaches 0.67°C and 0.50°C, respectively. It can effectively solve the problem that the conventional adsorption bed is difficult to reach the required desorption temperature due to the low power density of the sunlight. In the experiment, the system COP were 0.166 and 0.143 when the system in the irradiance of 600 w/m2 and 400 w/m2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghasemi, Hadi; Marconnet, Amy Marie; Chen, Gang
A localized heating structure, and method of forming same, for use in solar systems includes a thermally insulating layer having interconnected pores, a density of less than about 3000 kg/m.sup.3, and a hydrophilic surface, and an expanded carbon structure adjacent to the thermally insulating layer. The expanded carbon structure has a porosity of greater than about 80% and a hydrophilic surface.
Structures and Mechanisms Design Concepts for Adaptive Deployable Entry Placement Technology
NASA Technical Reports Server (NTRS)
Yount, Bryan C.; Arnold, James O.; Gage, Peter J.; Mockelman, Jeffrey; Venkatapathy, Ethiraj
2012-01-01
System studies have shown that large deployable aerodynamic decelerators such as the Adaptive Deployable Entry and Placement Technology (ADEPT) concept can revolutionize future robotic and human exploration missions involving atmospheric entry, descent and landing by significantly reducing the maximum heating rate, total heat load, and deceleration loads experienced by the spacecraft during entry [1-3]. ADEPT and the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [4] share the approach of stowing the entry system in the shroud of the launch vehicle and deploying it to a much larger diameter prior to entry. The ADEPT concept provides a low ballistic coefficient for planetary entry by employing an umbrella-like deployable structure consisting of ribs, struts and a fabric cover that form an aerodynamic decelerator capable of undergoing hypersonic flight. The ADEPT "skin" is a 3-D woven carbon cloth that serves as a thermal protection system (TPS) and as a structural surface that transfers aerodynamic forces to the underlying ribs [5]. This paper focuses on design activities associated with integrating ADEPT components (cloth, ribs, struts and mechanisms) into a system that can function across all configurations and environments of a typical mission concept: stowed during launch, in-space deployment, entry, descent, parachute deployment and separation from the landing payload. The baseline structures and mechanisms were selected via trade studies conducted during the summer and fall of 2012. They are now being incorporated into the design of a ground test article (GTA) that will be fabricated in 2013. It will be used to evaluate retention of the stowed configuration in a launch environment, mechanism operation for release, deployment and locking, and static strength of the deployed decelerator. Of particular interest are the carbon cloth interfaces, underlying hot structure, (Advanced Carbon- Carbon ribs) and other structural components (nose cap, struts, and main body) designed to withstand the pressure and extremely high heating experienced during planetary entry.
NASA Astrophysics Data System (ADS)
Stanton, T. P.; Shaw, W. J.
2014-12-01
Since 2002, a series of 28 Autonomous Ocean Flux Buoys have been deployed in the Beaufort Sea and from the North Pole Environmental Observatory. These long-term ice-deployed instrument systems primarily measure vertical turbulent fluxes of heat, salt and momentum at a depth of 2 - 6 m below the ocean/ice interface, while concurrently measuring current profile every 2m down to approximately 40-50m depth, within the seasonal pycnocline. Additional sensors have been added to measure local ice melt rates acoustically, and finescale thermal structure from the eddy correlation flux sensor up into the ice to resolve summer near-surface heating. The AOFB buoys have typically been co-located with Ice Tethered Profilers, that measure the upper ocean T/S structure and ice mass balance instruments. Comparisons of near-surface heat fluxes, heat content and vertical structure over the last decade will be made for buoys in the Beaufort Sea and Transpolar Drift between the North Pole and Spitzbergen. The effects of enhanced basal melting from ice/albedo feedbacks can be clearly seen in the low ice concentration summer conditions found more recently in the Beaufort Sea, while there are less pronounced effects of enhanced summer surface heating in the higher ice concentrations still found in the transpolar drift.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.
2003-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.
NASA Technical Reports Server (NTRS)
Knox, James C.; Howard, David F.; Perry, Jay L.
2007-01-01
In NASA s Vision for Space Exploration, humans will once again travel beyond the confines of earth s gravity, this time to remain there for extended periods. These forays will place unprecedented demands on launch systems. They must not only blast out of earth s gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a larger crew over much longer periods. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. This paper describes efforts to improve on typical packed beds of sorbent pellets by making use of structured sorbents and alternate bed configurations to improve system efficiency and reliability. The development efforts described offer a complimentary approach combining testing of subscale systems and multiphysics computer simulations to characterize the regenerative heating substrates and evaluation of engineered structured sorbent geometries. Mass transfer, heat transfer, and fluid dynamics are included in the transient simulations.
30 CFR 250.1629 - Additional production and fuel gas system requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed in all enclosed classified areas. Gas sensors shall be installed in all inadequately ventilated... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Additional production and fuel gas system...
The HCMM system: Development and performance
NASA Technical Reports Server (NTRS)
Stuart, L. M., Jr.
1982-01-01
The structure and history of the heat capacity mapping mission program is reviewed and the spacecraft is described including engineering specifications, instrument design, data handling, and image characteristics.
A study of the vortex structures around circular cylinder mounted on vertical heated plate
NASA Astrophysics Data System (ADS)
Malah, Hamid; Chumakov, Yurii S.; Levchenya, Alexander M.
2018-05-01
In recent years, studies of natural convection boundary layer interacting with obstacles draw much of attention, because of its practical applications. Pressure gradient resulting from this interaction leads to separation of the boundary layer. The formation of vortex structure around obstacle is characteristic to any kind of convection flow. In this paper, we describe the formation of three-dimensional vortex structure for the case of natural convection flow around the circular cylinder mounted on vertical heated plate. Navier-Stokes equations were used for numerical computations. The results proved the presence of a horseshoe vortex system in the case of natural convection flow as in the forced convection flow.
Heat pipe with embedded wick structure
Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald
1998-01-01
A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.
Heat pipe with embedded wick structure
Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.
1998-06-23
A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.
Heat pipe with embedded wick structure
Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald
1999-01-01
A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.
Modeling and Simulation of A Microchannel Cooling System for Vitrification of Cells and Tissues.
Wang, Y; Zhou, X M; Jiang, C J; Yu, Y T
The microchannel heat exchange system has several advantages and can be used to enhance heat transfer for vitrification. To evaluate the microchannel cooling method and to analyze the effects of key parameters such as channel structure, flow rate and sample size. A computational flow dynamics model is applied to study the two-phase flow in microchannels and its related heat transfer process. The fluid-solid coupling problem is solved with a whole field solution method (i.e., flow profile in channels and temperature distribution in the system being simulated simultaneously). Simulation indicates that a cooling rate >10 4 C/min is easily achievable using the microchannel method with the high flow rate for a board range of sample sizes. Channel size and material used have significant impact on cooling performance. Computational flow dynamics is useful for optimizing the design and operation of the microchannel system.
Heat pipe cooling for scramjet engines
NASA Technical Reports Server (NTRS)
Silverstein, Calvin C.
1986-01-01
Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.
Latent Heating Structures Derived from TRMM
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Smith, E. A.; Adler, R.; Hou, A.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.; Olson, W.; Satoh, S.
2004-01-01
Rainfall is the fundamental variable within the Earth's hydrological cycle because it is both the main forcing term leading to variations in continental and oceanic surface water budgets. The vertical distribution of latent heat release, which is accompanied with rain, modulates large-scale meridional and zonal circulations within the tropics as well as modifying the energetic efficiency of mid-latitude weather systems. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water.This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission 0. The TRMM observatory, whose development was a joint US-Japan space endeavor, was launched in November 1997. TRMM measurements provide an accurate account of rainfall over the global tropics, information which can be .used to estimate the four-dimensional structure of latent heating across the entire tropical and sub-tropical regions. Various algorithm methodologies for estimating latent heating based on rain rate measurements from TRMM observations are described. The strengths and weaknesses of these algorithms, as well as the latent heating products generated by these algorithms, are also discussed along with validation analyses of the products. The investigation paper provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, and concludes with remarks designed to stimulate further research on latent heating retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salamon, Todd R; Vyas, Brijesh; Kota, Krishna
An apparatus and a method are provided. Use is made of a wick structure configured to receive a liquid and generate vapor in when such wick structure is heated by heat transferred from heat sources to be cooled off. A vapor channel is provided configured to receive the vapor generated and direct said vapor away from the wick structure. In some embodiments, heat conductors are used to transfer the heat from the heat sources to the liquid in the wick structure.
Theoretical studies of aluminum and aluminide alloys using CALPHAD and first-principles approach
NASA Astrophysics Data System (ADS)
Jiang, Chao
Heat-treatable aluminum alloys have been widely used in the automobile and aerospace industries as structural materials due to their light weight and high strength. To study the age-hardening process in heat-treatable aluminum alloys, the Gibbs energies of the strengthening metastable phases, e.g. theta ' and theta″, are critical. However, those data are not included in the existing thermodynamic databases for aluminum alloys due to the semi-empirical nature of the CALPHAD approach. In the present study, the thermodynamics of the Al-Cu system, the pivotal age-hardening system, is remodeled using a combined CALPHAD and first-principles approach. The formation enthalpies and vibrational formation entropies of the stable and metastable phases in the Al-Cu system are provided by first-principles calculations. Special Quasirandom Structures (SQS's) are applied to model the substitutionally random fee and bee alloys. SQS's for binary bee alloys are developed and tested in the present study. Finally, a self-consistent thermodynamic description of the Al-Cu system including the two metastable theta″ and theta' phases is obtained. During welding of heat-treatable aluminum alloys, a detrimental phenomenon called constitutional liquation, i.e. the local eutectic melting of second-phase particles in a matrix at temperatures above the eutectic temperature but below the solidus of the alloy, may occur in the heat-affected zone (HAZ). In the present study, diffusion code DICTRA coupled with realistic thermodynamic and kinetic databases is used to simulate the constitutional liquation in the model Al-Cu system. The simulated results are in quantitative agreement with experiments. The critical heating rate to avoid constitutional liquation is also determined through computer simulations. Besides the heat-treatable aluminum alloys, intermetallic compounds based on transition metal aluminides, e.g. NiAl and FeAl, are also promising candidates for the next-generation of high-temperature structural materials for aerospace applications due to their high melting temperature and good oxidation resistance. Many important properties of B2 aluminides are governed by the existences of point defects. In the present study, Special Quasirandom Structures (SQS's) are developed to model non-stoichiometric B2 compounds containing large concentrations of constitutional point defects. The SQS's are then applied to study B2 NiAl. The first-principles SQS results provide formation enthalpies, equilibrium lattice parameters and elastic constants of B2 NiAl which agree satisfactorily with the existing experimental data in the literature. It is unambiguously shown that, at T = 0K and zero pressure, Ni vacancies and antisite Ni atoms are the energetically favorable point defects in Al-rich and Ni-rich B2 NiAl, respectively. Remarkably, it is predicted that high defect concentrations can lead to structural instability of B2 NiAl, which explains well the martensitic transformation observed in this compound at high Ni concentrations.
Aeroshell for Mars Science Laboratory
NASA Technical Reports Server (NTRS)
2008-01-01
This image from July 2008 shows the aeroshell for NASA's Mars Science Laboratory while it was being worked on by spacecraft technicians at Lockheed Martin Space Systems Company near Denver. This hardware was delivered in early fall of 2008 to NASA's Jet Propulsion Laboratory, Pasadena, Calif., where the Mars Science Laboratory spacecraft is being assembled and tested. The aeroshell encapsulates the mission's rover and descent stage during the journey from Earth to Mars and shields them from the intense heat of friction with that upper atmosphere during the initial portion of descent. The aeroshell has two main parts: the backshell, which is on top in this image and during the descent, and the heat shield, on the bottom. The heat shield in this image is an engineering unit for testing. The heat shield to be used in flight will be substituted later. The heat shield has a diameter of about 15 feet. For comparison, the heat shields for NASA's Mars Exploraton Rovers Spirit and Opportunity were 8.5 feet and the heat shields for the Apollo capsules that protected astronauts returning to Earth from the moon were just under 13 feet. In addition to protecting the Mars Science Laboratory rover, the backshell provides structural support for the descent stage's parachute and sky crane, a system that will lower the rover to a soft landing on the surface of Mars. The backshell for the Mars Science Laboratory is made of an aluminum honeycomb structure sandwiched between graphite-epoxy face sheets. It is covered with a thermal protection system composed of a cork/silicone super light ablator material that originated with the Viking landers of the 1970s. This ablator material has been used on the heat shields of all NASA Mars landers in the past, but this mission is the first Mars mission using it on the backshell. The heat shield for Mars Science Laboratory's flight will use tiles made of phenolic impregnated carbon ablator. The engineering unit in this image does not have the tiles. JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.SPS structures and control: A perspective
NASA Technical Reports Server (NTRS)
Ried, R. C.
1980-01-01
The characteristics and design requirements for the structure and control systems for a solar power satellite were evaluated. A simplistic, indicative analysis on a representative configuration was developed. Representative configuration masses and dimensions are given in convenient approximate magnitudes. The significance of structure control interaction and the significance of stiffness to the minimization of dynamic energy was demonstrated. It was found that the thermal environment for the SPS was dominated by solar radiation and waste heat rejection by the antenna. A more in-depth assessment of the control system design and associated system performance is still needed, specifically the inter-relatonships between control sensors, actuators, and structural response.
Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles
NASA Astrophysics Data System (ADS)
Zhou, Chen; Wang, Zhijin; Hou, Tianjiao
2017-11-01
This research aims to develop an analytical approach to study the heat transfer problem of thermal protection systems (TPS) for hypersonic vehicles. Laplace transform and integral method are used to describe the temperature distribution through the TPS subject to aerodynamic heating during flight. Time-dependent incident heat flux is also taken into account. Two different cases with heat flux and radiation boundary conditions are studied and discussed. The results are compared with those obtained by finite element analyses and show a good agreement. Although temperature profiles of such problems can be readily accessed via numerical simulations, analytical solutions give a greater insight into the physical essence of the heat transfer problem. Furthermore, with the analytical approach, rapid thermal analyses and even thermal optimization can be achieved during the preliminary TPS design.
Developing a strategy for improving efficiency in the heating sector in central and eastern Europe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, A.S.
1995-12-31
Heating is a vital energy service in Central and Eastern Europe, but the current delivery mechanisms are riddled with problems. District heating (DH) in its present technical form and with the present management structures is an inefficient system which produces expensive heat. Customers cannot control it and react to overheating by opening windows, even in winter. DH facilities together with other forms of individual heating are responsible for air pollution, causing severe impacts on the health of urban residents. The issues relating to DH are discussed, the first World Bank activities and experiences with projects in Poland are analyzed, andmore » the cornerstones of a strategy to support future World Bank financing and the development of sound heating policies in CEE are presented.« less
Increasing the thermal conductivity of silicone based fluids using carbon nanofibers
NASA Astrophysics Data System (ADS)
Vales-Pinzon, C.; Vega-Flick, A.; Pech-May, N. W.; Alvarado-Gil, J. J.; Medina-Esquivel, R. A.; Zambrano-Arjona, M. A.; Mendez-Gamboa, J. A.
2016-11-01
Heat transfer in silicone fluids loaded with high thermal conductivity carbon nanofibers was studied using photoacoustics and thermal wave resonator cavity. It is shown that heat transport depends strongly on volume fraction of carbon nanofibers; in particular, a low loading percentage is enough to obtain significant changes in thermal conductivity. Theoretical models were used to determine how heat transfer is affected by structural formations in the composite, such as packing fraction and aspect ratio (form factor) of carbon nanofiber agglomerates in the high viscosity fluid matrix. Our results may find practical applications in systems, in which the carbon nanofibers can facilitate heat dissipation in the electronic devices.
Insert Tidal Here: Finding Stability of Galilean Satellite Interiors
NASA Astrophysics Data System (ADS)
Walker, M.; Bills, B. G.; Mitchell, J.; Rhoden, A.
2017-12-01
The tidal environment is often hypothesized as a cause of surface expression in the satellites of the outer solar system. In two notable cases, Io's volcanism is thought to be driven by tidal heating of its mantle while the shattered surface of Europa's ice shell is said to be generated by tidal stresses in that ice. Being adjacent moons of Jupiter, these satellites give us a unique opportunity to apply a single set of general coupled models at each body to predict how one model can predict the heat generation and flow, strain and stress states, and structural parameters for each body. We include the effects of interior evolution into the tidal environment in addition to an evolving orbit. We find that the interiors of Io and Europa will evolve, as a consequence of the heat transfer from interior to surface, and stable structural and heat flow conditions are found. Then as their orbits evolve, perturbed by the mutual interactions of the Laplace mean motion resonance, those conditions of structural and heat stability also change. In particular, we find that at current orbital conditions there is sufficient heat to completely melt Io models for which a convecting interior is capped by a conducting lid. This argues for the presence of a non dissipating (or barely dissipating) core below the mantle, which future Io structure models should include. For the Europa model at current orbit, we use a silicate interior under an ocean capped by a two layer ice; convecting below with a conducting surface. We find stability in heat and structure occurs when the lower ice melts and recedes until the shell is roughly 50km thick. We present a variety of plausible structures for these bodies, and track how the stability of those structures trend as the orbit (in particular the orbital eccentricity, mean motion, and obliquity) change. We show how the Love numbers, layer thicknesses, surface heat flow, and orbital parameters are all linked. For Europa, upcoming measurements from Clipper should provide the necessary constraints to tune our model for the present day. This will also allow us to use today's initial conditions so that we can predict the history of the Galilean satellite's evolution as well as the changes we expect for their future.
NASA Astrophysics Data System (ADS)
Seitz, M.; Hübner, S.; Johnson, M.
2016-05-01
Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.
NASA Technical Reports Server (NTRS)
Von Puttkamer, J.
1973-01-01
Review of some of the findings concerning solar structure, energy production, and heat transport obtained with the aid of the manned Skylab space station observatory launched on May 14, 1973. Among the topics discussed are the observation of thermonuclear fusion processes which cannot be simulated on earth, the observation of short-wave solar radiation not visible to observers on earth, and the investigation of energy-transport processes occurring in the photosphere, chromosphere, and corona. An apparent paradox is noted in that the cooler chromosphere is heating the hotter corona, seemingly in defiance of the second law of thermodynamics, thus suggesting that a nonthermal mechanism underlies the energy transport. Understanding of this nonthermal mechanism is regarded as an indispensable prerequisite for future development of plasma systems for terrestrial applications.
Shutter heating system of Antarctic bright star survey telescope
NASA Astrophysics Data System (ADS)
Chen, Jie; Dong, Shucheng; Jiang, Fengxin; Zhang, Hongfei; Wang, Jian
2016-07-01
A heat preservation system for mechanical shutter in Antarctic is introduced in the paper. The system consists of the heat preservation chamber, the host controller STM32F103C8T6 with peripheral circuit and the control algorithm. The whole design is carried out on the basis of the low temperature requirement, including the cavity structure and thermal insulation. The heat preservation chamber is used to keep the shutter warm and support the weight of the camera. Using PT100 as the temperature sensor, the signal processing circuit converts the temperature to the voltage which is then digitized by the 12 bit ADC in the STM32. The host controller transforms the voltage data into temperature, and through the tuning of the Fussy PID algorithm which controls the duty cycle of the MOSFET, the temperature control of chamber is realized. The System has been tested in the cryogenic environment for a long time, with characteristic of low temperature resistance, small volume, high accuracy of temperature control as well as remote control and detection.
Aerogel Hybrid Composite Materials: Designs and Testing for Multifunctional Applications
NASA Technical Reports Server (NTRS)
Williams, Martha K.; Fesmire, James E.
2016-01-01
This webinar will introduce the broad spectrum of aerogel composites and their diverse performance properties such as reduced heat transfer to energy storage, and expands specifically on the aerogel/fiber laminate systems and testing methodologies. The multi-functional laminate composite system, AeroFiber, and its construction is designed by varying the type of fiber (e.g. polyester, carbon, Kevlar®, Spectra® or Innegral(TradeMark) and combinations thereof), the aerogel panel type and thickness, and overall layup configuration. The combination and design of materials may be customized and tailored to achieve a range of desired properties in the resulting laminate system. Multi-functional properties include structural strength, impact resistance, reduction in heat transfer, increased fire resistance, mechanical energy absorption, and acoustic energy dampening. Applications include aerospace, aircraft, automotive, boating, building and construction, lightweight portable structures, liquefied natural gas, cryogenics, transportation and energy, sporting equipment, and military protective gear industries.
Sensor Needs for Advanced Life Support
NASA Technical Reports Server (NTRS)
Graf, John C.
2000-01-01
Sensors and feedback systems are critical to life support flight systems and life support systems research. New sensor capabilities can allow for new system architectures to be considered, and can facilitate dramatic improvements in system performance. This paper will describe three opportunities for biosensor researchers to develop sensors that will enable life support system improvements. The first opportunity relates to measuring physical, chemical, and biological parameters in the Space Station Water Processing System. Measuring pH, iodine, total organic carbon, microbiological activity, total dissolved solids, or conductivity with a safe, effective, stable, reliable microsensor could benefit the water processing system considerably. Of special interest is a sensor which can monitor biological contamination rapidly. The second opportunity relates to sensing microbiological contamination and water condensation on the surface of large inflatable structures. It is the goal of large inflatable structures used for habitation to take advantage of the large surface area of the structure and reject waste heat passively through the walls of the structure. Too much heat rejection leads to a cold spot with water condensation, and eventually microbiological contamination. A distributed sensor system that can measure temperature, humidity, and microbiological contamination across a large surface would benefit designers of large inflatable habitable structures. The third opportunity relates to sensing microbial bioreactors used for waste water processing and reuse. Microbiological bioreactors offer considerable advantages in weight and power compared to adsorption bed based systems when used for long periods of time. Managing and controlling bioreactors is greatly helped if distributed microsensors measured the biological populations continuously in many locations within the bioreactor. Nitrifying bacteria are of special interest to bioreactor designers, and any sensors that could measure the populations of these types of bacteria would help the control and operation of bioreactors. J
Structural and Trajectory Control of Variable Geometry Planetary Entry Systems
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; Kwok, Kawai; Pellegrino, Sergio
2009-01-01
The results presented in this paper apply to a generic vehicle entering a planetary atmosphere which makes use of a variable geometry change to modulate the heat, drag, and acceleration loads. Two structural concepts for implementing the cone angle variation, namely a segmented shell and a corrugated shell, are presented. A structural analysis of these proposed structural configuration shows that the stress levels are tolerable during entry. The analytic expressions of the longitudinal aerodynamic coefficients are also derived, and guidance laws that track reference heat flux, drag, and aerodynamic acceleration loads are also proposed. These guidance laws have been tested in an integrated simulation environment, and the results indicate that use of variable geometry is feasible to track specific profiles of dynamic load conditions during reentry.
Optimum load distribution between heat sources based on the Cournot model
NASA Astrophysics Data System (ADS)
Penkovskii, A. V.; Stennikov, V. A.; Khamisov, O. V.
2015-08-01
One of the widespread models of the heat supply of consumers, which is represented in the "Single buyer" format, is considered. The methodological base proposed for its description and investigation presents the use of principles of the theory of games, basic propositions of microeconomics, and models and methods of the theory of hydraulic circuits. The original mathematical model of the heat supply system operating under conditions of the "Single buyer" organizational structure provides the derivation of a solution satisfying the market Nash equilibrium. The distinctive feature of the developed mathematical model is that, along with problems solved traditionally within the bounds of bilateral relations of heat energy sources-heat consumer, it considers a network component with its inherent physicotechnical properties of the heat network and business factors connected with costs of the production and transportation of heat energy. This approach gives the possibility to determine optimum levels of load of heat energy sources. These levels provide the given heat energy demand of consumers subject to the maximum profit earning of heat energy sources and the fulfillment of conditions for formation of minimum heat network costs for a specified time. The practical realization of the search of market equilibrium is considered by the example of a heat supply system with two heat energy sources operating on integrated heat networks. The mathematical approach to the solution search is represented in the graphical form and illustrates computations based on the stepwise iteration procedure for optimization of levels of loading of heat energy sources (groping procedure by Cournot) with the corresponding computation of the heat energy price for consumers.
NASA Astrophysics Data System (ADS)
Dye, S. A.; Johnson, W. L.; Plachta, D. W.; Mills, G. L.; Buchanan, L.; Kopelove, A. B.
2014-11-01
Improvements in cryogenic propellant storage are needed to achieve reduced or Zero Boil Off of cryopropellants, critical for long duration missions. Techniques for reducing heat leak into cryotanks include using passive multi-layer insulation (MLI) and vapor cooled or actively cooled thermal shields. Large scale shields cannot be supported by tank structural supports without heat leak through the supports. Traditional MLI also cannot support shield structural loads, and separate shield support mechanisms add significant heat leak. Quest Thermal Group and Ball Aerospace, with NASA SBIR support, have developed a novel Load Bearing multi-layer insulation (LBMLI) capable of self-supporting thermal shields and providing high thermal performance. We report on the development of LBMLI, including design, modeling and analysis, structural testing via vibe and acoustic loading, calorimeter thermal testing, and Reduced Boil-Off (RBO) testing on NASA large scale cryotanks. LBMLI uses the strength of discrete polymer spacers to control interlayer spacing and support the external load of an actively cooled shield and external MLI. Structural testing at NASA Marshall was performed to beyond maximum launch profiles without failure. LBMLI coupons were thermally tested on calorimeters, with superior performance to traditional MLI on a per layer basis. Thermal and structural tests were performed with LBMLI supporting an actively cooled shield, and comparisons are made to the performance of traditional MLI and thermal shield supports. LBMLI provided a 51% reduction in heat leak per layer over a previously tested traditional MLI with tank standoffs, a 38% reduction in mass, and was advanced to TRL5. Active thermal control using LBMLI and a broad area cooled shield offers significant advantages in total system heat flux, mass and structural robustness for future Reduced Boil-Off and Zero Boil-Off cryogenic missions with durations over a few weeks.
1991-07-01
integrate -into the existing -structure and HVAC system. Costs-for a eutectic salt system are shown in Table 5 to compare with the DIS cooling systems. The... eutectic salt system is not an ice storage system, but is a phase change system that stores energy iniits heat of fusion and changes phase at 47 ’F
NASA Technical Reports Server (NTRS)
Camarda, Charles J.; Glass, David E.
1992-01-01
Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.
NASA Astrophysics Data System (ADS)
Camarda, Charles J.; Glass, David E.
1992-10-01
Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.
Mechanical Testing of Carbon Based Woven Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Pham, John; Agrawal, Parul; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj
2013-01-01
Three Dimensional Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials have been shown capable of serving a dual purpose as TPS and as structural load bearing members during entry and descent operations. In order to ensure successful structural performance, it is important to characterize the mechanical properties of these materials prior to and post exposure to entry-like heating conditions. This research focuses on the changes in load bearing capacity of woven TPS materials after being subjected to arcjet simulations of entry heating. Preliminary testing of arcjet tested materials [1] has shown a mechanical degradation. However, their residual strength is significantly more than the requirements for a mission to Venus [2]. A systematic investigation at the macro and microstructural scales is reported here to explore the potential causes of this degradation. The effects of heating on the sizing (an epoxy resin coating used to reduce friction and wear during fiber handling) are discussed as one of the possible causes for the decrease in mechanical properties. This investigation also provides valuable guidelines for margin policies for future mechanically deployable entry systems.
Flow Topology Transition via Global Bifurcation in Thermally Driven Turbulence
NASA Astrophysics Data System (ADS)
Xie, Yi-Chao; Ding, Guang-Yu; Xia, Ke-Qing
2018-05-01
We report an experimental observation of a flow topology transition via global bifurcation in a turbulent Rayleigh-Bénard convection. This transition corresponds to a spontaneous symmetry breaking with the flow becomes more turbulent. Simultaneous measurements of the large-scale flow (LSF) structure and the heat transport show that the LSF bifurcates from a high heat transport efficiency quadrupole state to a less symmetric dipole state with a lower heat transport efficiency. In the transition zone, the system switches spontaneously and stochastically between the two long-lived metastable states.
Heat Sponge: A Concept for Mass-Efficient Heat Storage
NASA Technical Reports Server (NTRS)
Splinter, Scott C.; Blosser, Max L.; Gifford, Andrew R.
2008-01-01
The heat sponge is a device for mass-efficient storage of heat. It was developed to be incorporated in the substructure of a re-entry vehicle to reduce thermal- protection-system requirements. The heat sponge consists of a liquid/vapor mixture contained within a number of miniature pressure vessels that can be embedded within a variety of different types of structures. As temperature is increased, pressure in the miniature pressure vessels also increases so that heat absorbed through vaporization of the liquid is spread over a relatively large temperature range. Using water as a working fluid, the heat-storage capacity of the liquid/vapor mixture is many times higher than that of typical structural materials and is well above that of common phase change materials over a temperature range of 200 F to 700 F. The use of pure ammonia as the working fluid provides a range of application between 432 deg R and 730 deg R, or the use of the more practical water-ammonia solution provides a range of application between 432 deg R and 1160 deg R or in between that of water and pure ammonia. Prototype heat sponges were fabricated and characterized. These heat sponges consisted of 1.0-inch-diameter, hollow, stainless-steel spheres with a wall thickness of 0.020 inches which had varying percentages of their interior volumes filled with water and a water-ammonia solution. An apparatus to measure the heat stored in these prototype heat sponges was designed, fabricated, and verified. The heat-storage capacity calculated from measured temperature histories is compared to numerical predictions.
Phase Change Material Heat Sink for an ISS Flight Experiment
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas
2015-01-01
A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.
2002-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)
2002-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.
NASA Technical Reports Server (NTRS)
Tao, W.-K.
2003-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in straitform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMXX), Brazil in 1999 (TRMM- LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.
NASA Astrophysics Data System (ADS)
Majorowicz, Jacek; Osadetz, Kirk
2008-04-01
Heat flow increases northward along Intermontane Belt in the western Canadian Cordillera, as shown by geothermal differences between Bowser and Nechako sedimentary basins, where geothermal gradients and heat flows are ˜30 mK/m and ˜90 mW/m2 compared to ˜32 mK/m and 70 -80 mW/m2, respectively. Sparse temperature profile data from these two sedimenatary basins are consistent with an isostatic model of elevation and crustal parameters, which indicate that Bowser basin heat flow should be ˜20 mW/m2 greater than Nechako basin heat flow. Paleothermometric indicators record a significant northward increasing Eocene or older erosional denudation, up to ˜7 km. None of the heat generation, tectonic reorganization at the plate margin, or erosional denudation produce thermal effects of the type or magnitude that explain the north-south heat flow differences between Nechako and Bowser basins. The more southerly Nechako basin, where heat flow is lower, has lower mean elevation, is less deeply eroded, and lies opposite the active plate margin. In contrast, Bowser basin, where heat flow is higher, has higher mean elevation, is more deeply eroded, and sits opposite a transform margin that succeeded the active margin ˜40 Ma. Differences between Bowser and Nechako basins contrast with the tectonic history and erosion impacts on thermal state. Tectonic history and eroded sedimentary thickness suggest that Bowser basin lithosphere is cooling and contracting relative to Nechako basin lithosphere. This effect has reduced Bowser basin heat flow by ˜10-20 mW/m2 since ˜40 Ma. Neither can heat generation differences explain the northerly increasing Intermontane Belt heat flow. A lack of extensional structures in the Bowser basin precludes basin and range-like extension. Therefore, another, yet an unspecified mechanism perhaps associated with the Northern Cordilleran Volcanic Province, contributes additional heat. Bowser basin’s paleogeothermal gradients were higher, ˜36 mK/m, before the Eocene and this might affect petroleum and metallogenic systems.
Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, X. X.; Zhang, D. X.; Qian, Y.
2014-01-29
In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in heliummore » recycle gas are less than 1 ppb.« less
Nuclear reactor insulation and preheat system
Wampole, Nevin C.
1978-01-01
An insulation and preheat system for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the compartment. An external surface of the compartment or enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair.
NASA Astrophysics Data System (ADS)
Jurčišinová, E.; Jurčišin, M.
2018-04-01
Anomalies of the specific heat capacity are investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the geometrically frustrated tetrahedron recursive lattice. It is shown that the Schottky-type anomaly in the behavior of the specific heat capacity is related to the existence of unique highly macroscopically degenerated single-point ground states which are formed on the borders between neighboring plateau-like ground states. It is also shown that the very existence of these single-point ground states with large residual entropies predicts the appearance of another anomaly in the behavior of the specific heat capacity for low temperatures, namely, the field-induced double-peak structure, which exists, and should be observed experimentally, along with the Schottky-type anomaly in various frustrated magnetic system.
Thermodynamic properties of the S =1 /2 twisted triangular spin tube
NASA Astrophysics Data System (ADS)
Ito, Takuya; Iino, Chihiro; Shibata, Naokazu
2018-05-01
Thermodynamic properties of the twisted three-leg spin tube under magnetic field are studied by the finite-T density-matrix renormalization group method. The specific heat, spin, and chiral susceptibilities of the infinite system are calculated for both the original and its low-energy effective models. The obtained results show that the presence of the chirality is observed as a clear peak in the specific heat at low temperature and the contribution of the chirality dominates the low-temperature part of the specific heat as the exchange coupling along the spin tube decreases. The peak structures in the specific heat, spin, and chiral susceptibilities are strongly modified near the quantum phase transition where the critical behaviors of the spin and chirality correlations change. These results confirm that the chirality plays a major role in characteristic low-energy behaviors of the frustrated spin systems.
NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility
NASA Technical Reports Server (NTRS)
Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.
System design of a 1 MW north-facing, solid particle receiver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, J.; Ho, C.
Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less
System design of a 1 MW north-facing, solid particle receiver
Christian, J.; Ho, C.
2015-05-01
Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less
NASA Technical Reports Server (NTRS)
Ellis, D. A.; Pagel, L. L.; Schaeffer, D. M.
1978-01-01
The panel assembly consisted of an external thermal protection system (metallic heat shields and insulation blankets) and an aluminum honeycomb structure. The structure was cooled to temperature 442K (300 F) by circulating a 60/40 mass solution of ethylene glycol and water through dee shaped coolant tubes nested in the honeycomb and adhesively bonded to the outer skin. Rene'41 heat shields were designed to sustain 5000 cycles of a uniform pressure of + or - 6.89kPa (+ or - 1.0 psi) and aerodynamic heating conditions equivalent to 136 kW sq m (12 Btu sq ft sec) to a 422K (300 F) surface temperature. High temperature flexible insulation blankets were encased in stainless steel foil to protect them from moisture and other potential contaminates. The aluminum actively cooled honeycomb sandwich structural panel was designed to sustain 5000 cycles of cyclic in-plane loading of + or - 210 kN/m (+ or - 1200 lbf/in.) combined with a uniform panel pressure of + or - 6.89 kPa (?1.0 psi).
NASA Astrophysics Data System (ADS)
Lara, Nadia Chantal
Use of radiofrequency (RF) electric fields coupled with nanoparticles to enhance non-invasive hyperthermia in cancer cells and tumors sparked debate over the RF heating mechanisms of nanoparticles and the role of salts in heating. Under RF field exposure at 13.56 MHz, aqueous systems including electrolyte solutions, buffers, and blood, were shown to heat according to bulk material properties, regardless of composition. This universal aqueous heating behavior extended to suspensions of nanoparticles such as gold nanoparticles, full-length and ultra-short single-walled carbon nanotubes, and water-soluble fullerene derivatives. These suspensions displayed the same RF heating properties as saline solutions of the same conductivity, indicating that these nanoparticles themselves do not contribute to RF heating by any unique mechanism; rather, they modulate bulk conductivity, which in turn affects bulk RF heating. At 13.56 MHz, peak heating for an aqueous system occurs at a conductivity of 0.06 S/m, beyond which increases in conductivity result in reduced heating rates. Biologically relevant materials, such as blood, intra- and extracellular fluids, and most human tissues, exceed this peak heating conductivity, precluding the use of conductive materials for RF heating rate enhancement. Instead, kosmotropic or water-structuring materials, including sugars, glycols, zwitterionic molecules, and a water-soluble fullerene derivative, when added to blood or phosphate buffered saline reduced the bulk conductivity of these materials and enhanced their heating rates accordingly. A dielectric heating rate model taking into account the geometry of the sample under RF exposure was used to explain the experimental RF heating behavior of aqueous solutions and semi-aqueous materials, which generated distinct RF heating curves due to differences in bulk dielectric and physical properties.
NASA Astrophysics Data System (ADS)
Harris, Robert N.; Garven, Grant; Georgen, Jennifer; McNutt, Marcia K.; Christiansen, Lizet; von Herzen, Richard P.
2000-09-01
We perform numerical simulations of buoyancy-driven, pore fluid flow in the Hawaiian archipelagic apron and underlying oceanic crust in order to determine the extent to which heat redistributed by such flow might cause conductive heat flow measurements to underrepresent the true mantle heat flux. We also seek an understanding of undulations observed in finely spaced heat flow measurements acquired north of Oahu and Maro Reef with wavelengths of 10 to 100 km and amplitudes of 2 to 7 mW m-2. We find that pore fluid flow can impart significant perturbations to seafloor heat flow from the value expected assuming a constant mantle flux. In the simplest scenario, moat-wide circulation driven by bathymetric relief associated with the volcanic edifice recharges a fluid system over the moat and discharges the geothermally heated water through the volcanic edifice. The existing heat flow data are unable to confirm the existence of such a flow regime, in that it produces prominent heat flow anomalies only on the steep flanks of the volcano where heat flow probes cannot penetrate. However, this flow system does not significantly mask the mantle flux for reasonable permeabilities and flow rates. Another numerical simulation in which the upper oceanic basement acts as a aquifer for a flow loop recharged at basement outcrops on the flexural arch and discharged within a permeable volcanic edifice is capable of almost uniformly depressing conductive heat flow across the entire moat by ˜15%. Large heat flow anomalies (>20 mW m-2) are located over the recharge and discharge zones but are beyond the area sampled by our data. Presumably finely spaced heat flow measurements over the flexural arch could test for the existence of the predicted recharge zone. We demonstrate that the prominent, shorter-wave undulations in heat flow across the Oahu and Maro Reef moats are too large to be explained solely by relief in the upper oceanic basement. More likely, shallower large-scale turbidites or debris flows also serve as aquifers within the less permeable moat sediments. With our limited information on the structural geology of the moat, permeability structure of its major geologic units, and their variations in the third dimension, we are not able to exactly match the spatial distribution of heat flow anomalies in our data, but spectral comparisons look promising.
Phase Change Material Trade Study: A Comparison Between Wax and Water for Manned Spacecraft
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Hodgson, Ed; Stephan, Ryan
2010-01-01
Phase change material heat sinks have been recognized as an important tool in optimizing thermal control systems for space exploration vehicles and habitats that must deal with widely varying thermal loads and environments. In order to better focus technology investment in this arena, NASA has supported a trade study with the objective of identifying where the best potential pay-off can be found among identified aqueous and paraffin wax phase change materials and phase change material heat sink design approaches. The study used a representative exploration mission with well understood parameters to support the trade. Additional sensitivity studies were performed to ensure the applicability of study results across varying systems and destinations. Results from the study indicate that a water ice PCM heat sink has the potential to decrease the equivalent system mass of the mission s vehicle through a combination of a smaller heat sink and a slight 5% increase in radiator size or the addition of a lightweight heat pump. An evaluation of existing and emerging PCM heat sink technologies indicates that further significant mass savings should be achievable through continued development of those technologies. The largest mass savings may be realized by managing the location of the liquid and the solid in the heat sink to eliminate the melting and freezing pressure of wax and water, respectively, while also accommodating the high structural loads expected on future manned launch vehicles.
NASA Technical Reports Server (NTRS)
Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.
2005-01-01
A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.
NASA Technical Reports Server (NTRS)
Bogan, Denis (Technical Monitor); Waite, J. Hunter
2005-01-01
The Jupiter Thermosphere General Circulation Model (JTGCM) calculates the global dynamical structure of Jupiter s thermosphere self-consistently with its global thermal structure and composition. The main heat source that drives the thermospheric flow is high-latitude Joule heating. A secondary source of heating is the auroral process of particle precipitation. Global simulations of Jovian thermospheric dynamics indicate strong neutral outflows from the auroral ovals with velocities up to approx.2 km/s and subsequent convergence and downwelling at the Jovian equator. Such circulation is shown to be an important process for transporting significant amounts of auroral energy t o equatorial latitudes and for regulating the global heat budget in a manner consistent with the high thermospheric temperatures observed by the Galileo probe. Adiabatic compression of the neutral atmosphere resulting from downward motion is an important source of equatorial heating (< 0.06 microbar). The adiabatic heating continues to dominate between 0.06 and 0.2 microbar, but with an addition of comparable heating due to horizontal advection induced by the meridional flow. Thermal conduction plays an important role in transporting heat down to lower altitudes (>0.2microbar) where it is balanced by the cooling associated with the wind transport processes. Interestingly, we find that radiative cooling caused by H3(+), CH4, and C2H2 emissions does not play a significant role in interpreting the Galileo temperature profile.
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Taylor, Mark; Dorreen, Mark
2018-02-01
In the aluminum electrolysis process, new industrial aluminum/electricity power markets demand a new cell technology to extend the cell heat balance and amperage operating window of smelters by shifting the steady states. The current work investigates the responses of lithium-modified bath system when the input/output balance is shifted in a laboratory analogue to the industrial heat balance shift. Li2CO3 is added to the cryolite-AlF3-CaF2-Al2O3 system as a bath modifier. A freeze deposit is formed on a `cold finger' dipped into the bath and investigated by X-ray diffraction analysis and electron probe X-ray microanalysis. The macro- and micro-structure of the freeze lining varies with the bath superheat (bath temperature minus bath liquidus temperature) and an open crystalline layer with entrapped liquid dominates the freeze thickness. Compared with the cryolite-AlF3-CaF2-Al2O3 bath system, the lithium-modified bath freeze is more sensitive to the heat balance shift. This freeze investigation provides primary information to understand the variation of the side ledge in an industrial cell when the lithium-modified bath system is used.
An, Jae-Yoon; Kim, Sumin; Kim, Hyun-Joong
2011-03-15
Formaldehyde was measured with a desiccator, a 20 L chamber and the FLEC method. The formaldehyde emission rate from laminate was the highest at 32 °C using the desiccator, which then decreased with time. The formaldehyde emission using the 20 L small chamber and FLEC showed a similar tendency. There was a strong correlation between the formaldehyde and total volatile organic compounds (TVOCs) with both types of floorings using the two different methods. The formaldehyde emission rate and TVOC results were higher when tested using the FLEC method than with the 20 L small chamber method. The emission rate was affected by the joint edge length in laminate flooring. Toluene, ethylbenzene and xylene were the main VOCs emitted from laminate flooring, and there were more unidentified VOCs emitted than identified VOCs. The samples heated with a floor heating system emitted more formaldehyde than those heated using an air circulation system due to the temperature difference between the bottom panel and flooring. The TVOC emission level of the samples was higher when an air circulation system was used than when a floor heating system was used due to the high ventilation rate. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stochl, Robert J.; Knoll, Richard H.
1991-06-01
The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on a 87.6 in diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.
NASA Astrophysics Data System (ADS)
Stochl, Robert J.; Knoll, Richard H.
1991-06-01
The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on an 87.6 in. diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr, respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.
NASA Astrophysics Data System (ADS)
Sinder, M.; Pelleg, J.; Meerovich, V.; Sokolovsky, V.
2018-03-01
RF heating kinetics of a nano-graphene layer/silicon substrate structure is analyzed theoretically as a function of the thickness and sheet resistance of the graphene layer, the dimensions and thermal parameters of the structure, as well as of cooling conditions and of the amplitude and frequency of the applied RF magnetic field. It is shown that two regimes of the heating can be realized. The first one is characterized by heating of the structure up to a finite temperature determined by equilibrium between the dissipated loss power caused by induced eddy-currents and the heat transfer to environment. The second regime corresponds to a fast unlimited temperature increase (heat explosion). The criterions of realization of these regimes are presented in the analytical form. Using the criterions and literature data, it is shown the possibility of the heat explosion regime for a graphene layer/silicon substrate structure at RF heating.
Optimization of a Hot Structure Aeroshell and Nose Cap for Mars Atmospheric Entry
NASA Technical Reports Server (NTRS)
Langston, Sarah L.; Lang, Christapher G.; Samareh, Jamshid A.; Daryabeigi, Kamran
2016-01-01
The National Aeronautics and Space Administration (NASA) is preparing to send humans beyond Low Earth Orbit and eventually to the surface of Mars. As part of the Evolvable Mars Campaign, different vehicle configurations are being designed and considered for delivering large payloads to the surface of Mars. Weight and packing volume are driving factors in the vehicle design, and the thermal protection system (TPS) for planetary entry is a technology area which can offer potential weight and volume savings. The feasibility and potential benefits of a ceramic matrix composite hot structure concept for different vehicle configurations are explored in this paper, including the nose cap for a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and an aeroshell for a mid lift-to-drag (Mid L/D) concept. The TPS of a planetary entry vehicle is a critical component required to survive the severe aerodynamic heating environment during atmospheric en- try. The current state-of-the-art is an ablative material to protect the vehicle from the heat load. The ablator is bonded to an underlying structure, which carries the mechanical loads associated with entry. The alternative hot structure design utilizes an advanced carbon-carbon material system on the outer surface of the vehicle, which is exposed to the severe heating and acts as a load carrying structure. The preliminary design using the hot structure concept and the ablative concept is determined for the spherical nose cap of the HIAD entry vehicle and the aeroshell of the Mid L/D entry vehicle. The results of the study indicate that the use of hot structures for both vehicle concepts leads to a feasible design with potential weight and volume savings benefits over current state-of-the-art TPS technology that could enable future missions.
Detailed modeling analysis for soot formation and radiation in microgravity gas jet diffusion flames
NASA Technical Reports Server (NTRS)
Ku, Jerry C.; Tong, LI; Greenberg, Paul S.
1995-01-01
Radiation heat transfer in combustion systems has been receiving increasing interest. In the case of hydrocarbon fuels, a significant portion of the radiation comes from soot particles, justifying the need for detailed soot formation model and radiation transfer calculations. For laminar gas jet diffusion flames, results from this project (4/1/91 8/22/95) and another NASA study show that flame shape, soot concentration, and radiation heat fluxes are substantially different under microgravity conditions. Our emphasis is on including detailed soot transport models and a detailed solution for radiation heat transfer, and on coupling them with the flame structure calculations. In this paper, we will discuss the following three specific areas: (1) Comparing two existing soot formation models, and identifying possible improvements; (2) A simple yet reasonably accurate approach to calculating total radiative properties and/or fluxes over the spectral range; and (3) Investigating the convergence of iterations between the flame structure solver and the radiation heat transfer solver.
Investigation of the heat source(s) of the Surprise Valley Geothermal System, Northern California
NASA Astrophysics Data System (ADS)
Tanner, N.; Holt, C. D.; Hawkes, S.; McClain, J. S.; Safford, L.; Mink, L. L.; Rose, C.; Zierenberg, R. A.
2016-12-01
Concerns about environmental impacts and energy security have led to an increased interest in sustainable and renewable energy resources, including geothermal systems. It is essential to know the permeability structure and possible heat source(s) of a geothermal area in order to assess the capacity and extent of the potential resource. We have undertaken geophysical surveys at the Surprise Valley Hot Springs in Cedarville, California to characterize essential parameters related to a fault-controlled geothermal system. At present, the heat source(s) for the system are unknown. Igneous bodies in the area are likely too old to have retained enough heat to supply the system, so it is probable that fracture networks provide heat from some deeper or more distributed heat sources. However, the fracture system and permeability structure remain enigmatic. The goal of our research is to identify the pathways for fluid transport within the Surprise Valley geothermal system using a combination of geophysical methods including active seismic surveys and short- and long-period magnetotelluric (MT) surveys. We have collected 14 spreads, consisting of 24 geophones each, of active-source seismic data. We used a "Betsy Gun" source at 8 to 12 locations along each spread and have collected and analyzed about 2800 shot-receiver pairs. Seismic velocities reveal shallow lake sediments, as well as velocities consistent with porous basalts. The latter, with velocities of greater than 3.0 km/s, lie along strike with known hot springs and faulted and tilted basalt outcrops outside our field area. This suggests that basalts may provide a permeable pathway through impermeable lake deposits. We conducted short-period (10Hz-60kHz) MT measurements at 33 stations. Our short-period MT models indicate shallow resistive blocks (>100Ωm) with a thin cover of more conductive sediments ( 10Ωm) at the surface. Hot springs are located in gaps between resistive blocks and are connected to deeper low resistivity zones ( 1Ωm), suggestive of a fluid pathway. In order to refine these models and extend them to greater depths, we have deployed long-period (0.002Hz-10Hz) MT instruments in three locations. The data were collected over several weeks and are currently being processed and analyzed.
Goddard Cumulus Ensemble (GCE) Model: Application for Understanding Preciptation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Einaudi, Franco (Technical Monitor)
2000-01-01
The global hydrological cycle is central to climate system interactions and the key to understanding their behavior. Rainfall and its associated precipitation processes are a key link in the hydrologic cycle. Fresh water provided by tropical rainfall and its variability can exert a large impact upon the structure of the upper ocean layer. In addition, approximately two-thirds of the global rain falls in the Tropics, while the associated latent heat release accounts for about three-fourths of the total heat energy for the Earth's atmosphere. Precipitation from convective cloud systems comprises a large portion of tropical heating and rainfall. Furthermore, the vertical distribution of convective latent-heat releases modulates large-scale tropical circulations (e.g., the 30-60-day intraseasonal oscillation), which, in turn, impacts midlatitude weather through teleconnection patterns such as those associated with El Nino. Shifts in these global circulations can result in prolonged periods of droughts and floods, thereby exerting a tremendous impact upon the biosphere and human habitation. And yet, monthly rainfall over the tropical oceans is still not known within a factor of two over large (5 degrees latitude by 5 degrees longitude) areas. Hence, the Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, can provide a more accurate measurement of rainfall as well as estimate the four-dimensional structure of diabatic heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. In addition, this information can be used for global circulation and climate models for testing and improving their parameterizations.
Development and tests on OREX vehicle thermal structure system
NASA Astrophysics Data System (ADS)
Yoshinaka, Toshinari; Morino, Yoshiki
1992-08-01
An overview of the thermal system structure development and their tests for Orbital Re-entry Experiment (OREX) vehicle, being developed as a part of H-2 Orbiting Plane (HOPE) development, is presented. The results of study on the OREX vehicle thermal structure system and concept of the system study are shown. The results of HOPE thermal structure system research were reflected to OREX in employing polyacrylonitrile tissues with conversion coating for the nose cap, Carbon-Thermal Protection System (TPS), and ceramic tile TPS for the structure. Test plans were established for material characteristics and design verifications, and flight validation for C/C (Carbon/Carbon Composite) nose cap and TPS, and gap filler, arc wind tunnel, heat insulation, and adhesion quality verification tests. Environment resistance of the C/C nose cone, C/C TPS, and ceramic tile TPS were verified and prospects of their manufacturing were obtained.
Pan, Bing; Jiang, Tianyun; Wu, Dafang
2014-11-01
In thermomechanical testing of hypersonic materials and structures, direct observation and quantitative strain measurement of the front surface of a test specimen directly exposed to severe aerodynamic heating has been considered as a very challenging task. In this work, a novel quartz infrared heating device with an observation window is designed to reproduce the transient thermal environment experienced by hypersonic vehicles. The specially designed experimental system allows the capture of test article's surface images at various temperatures using an optical system outfitted with a bandpass filter. The captured images are post-processed by digital image correlation to extract full-field thermal deformation. To verify the viability and accuracy of the established system, thermal strains of a chromiumnickel austenite stainless steel sample heated from room temperature up to 600 °C were determined. The preliminary results indicate that the air disturbance between the camera and the specimen due to heat haze induces apparent distortions in the recorded images and large errors in the measured strains, but the average values of the measured strains are accurate enough. Limitations and further improvements of the proposed technique are discussed.
Passivhaus: indoor comfort and energy dynamic analysis.
NASA Astrophysics Data System (ADS)
Guida, Antonella; Pagliuca, Antonello; Cardinale, Nicola; Rospi, Gianluca
2013-04-01
The research aims to verify the energy performance as well as the indoor comfort of an energy class A+ building, built so that the sum of the heat passive contributions of solar radiation, transmitted through the windows, and the heat generated inside the building, are adeguate to compensate for the envelope loss during the cold season. The building, located in Emilia Romagna (Italy), was built using a wooden structure, an envelope realized using a pinewood sandwich panels (transmittance U = 0.250 W/m2K) and, inside, a wool flax insulation layer and thermal window frame with low-emissivity glass (U = 0524 W/m2K). The building design and construction process has followed the guidelines set by "CasaClima". The building has been modeled in the code of dynamic calculation "Energy Plus" by the Design Builder application and divided it into homogenous thermal zones, characterized by winter indoor temperature set at 20 ° (+ / - 1 °) and summer indoor temperature set at 26 ° (+ / - 1 °). It has modeled: the envelope, as described above, the "free" heat contributions, the air conditioning system, the Mechanical Ventilation system as well as home automation solutions. The air conditioning system is an heat pump, able to guarantee an optimization of energy consumption (in fact, it uses the "free" heat offered by the external environment for conditioning indoor environment). As regards the air recirculation system, it has been used a mechanical ventilation system with internal heat cross-flow exchanger, with an efficiency equal to 50%. The domotic solutions, instead, regard a system for the control of windows external screening using reeds, adjustable as a function of incident solar radiation and a lighting management system adjusted automatically using a dimmer. A so realized building meets the requirement imposed from Italian standard UNI/TS 11300 1, UNI/TS 11300 2 and UNI/TS 11300 3. The analysis was performed according to two different configurations: in "spontaneous-state analysis" (that provides the only energy performance of the structure) and considering the "building-equipments" as a system (which provides the overall performance of the "building system"). The first analysis shows as the absence of thermal mass and the envelope super-heating prevent to incoming heat to exit, overheating the indoor environment. The analysis of the overall performance of the "building system" highlights, instead, as the thermal load is much greater during the summer than in winter; this means that, using a low inertia envelopes, the energy saved in the winter can be used to satisfy the thermal performance in the summer. This is further demonstrated by comparing the performance of indoor temperatures and the relative energy consumption of a similar building with greater thermal inertia. Further analysis involved a critical comparison between the "semisteady-state analysis" ("CasaClima" methodology) and the analysis in dynamic conditions (using "Energy Plus" software).
An Analytical Solution for Transient Thermal Response of an Insulated Structure
NASA Technical Reports Server (NTRS)
Blosser, Max L.
2012-01-01
An analytical solution was derived for the transient response of an insulated aerospace vehicle structure subjected to a simplified heat pulse. This simplified problem approximates the thermal response of a thermal protection system of an atmospheric entry vehicle. The exact analytical solution is solely a function of two non-dimensional parameters. A simpler function of these two parameters was developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Using these techniques, the maximum structural temperature rise was calculated using the analytical solutions and shown to typically agree with finite element simulations within 10 to 20 percent over the relevant range of parameters studied.
Michael T. Kiefer; Shiyuan Zhong; Warren E. Heilman; Joseph J. Charney; Xindi Bian
2018-01-01
An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is...
municipal recreation center is heated and cooled by solar energy
NASA Technical Reports Server (NTRS)
1981-01-01
Major fraction of energy requirements for community building is ksupplied by Sun. The 238 flat plate solar collectors are roof mounted on single story structure enclosing gymnasium, locker area, and health care clinic; heat exchanger transfers collected energy to 6,000 gallon storage tank. Final report chronicles project from inception to completion, documenting performance, costs, operating modes, and data acquisition system. Appendix contains manufacturers' product literature and engineering drawings.
Optoelectronic Mounting Structure
Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R. F.; Bryan, Robert P.; Carson, Richard F.; Chu, Dahwey; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reber, Cathleen A.; Reysen, Bill H.
2004-10-05
An optoelectronic mounting structure is provided that may be used in conjunction with an optical transmitter, receiver or transceiver module. The mounting structure may be a flexible printed circuit board. Thermal vias or heat pipes in the head region may transmit heat from the mounting structure to the heat spreader. The heat spreader may provide mechanical rigidity or stiffness to the heat region. In another embodiment, an electrical contact and ground plane may pass along a surface of the head region so as to provide an electrical contact path to the optoelectronic devices and limit electromagnetic interference. In yet another embodiment, a window may be formed in the head region of the mounting structure so as to provide access to the heat spreader. Optoelectronic devices may be adapted to the heat spreader in such a manner that the devices are accessible through the window in the mounting structure.
Vorberger, J; Chapman, D A
2018-01-01
We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.
NASA Astrophysics Data System (ADS)
Vorberger, J.; Chapman, D. A.
2018-01-01
We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.
Study of heat exchange in cooling systems of heat-stressed structures
NASA Astrophysics Data System (ADS)
Vikulin, A. V.; Yaroslavtsev, N. L.; Zemlyanaya, V. A.
2017-01-01
Increasing working parameters of the cycle of gas-turbine engines, complicating design of gas-turbine plants, as well as growing aerodynamic, thermal, static, and dynamic loads, necessitate the development of promising cooling systems for heat-stressed structures. This work is devoted to an experimental study of heat exchange in ducts equipped with systems of inclined and cross walls (fins). It has been found that an increase in the Reynolds number Re from 3000 to 20000 leads to a decrease in the heat exchange, which is characterized by the relative Nusselt number overline{Nu}, by 19-30% at the angle of inclination of the walls φ = 0, 40°, 50°, and 90° if the length of the walls x w is comparable to the spacing b s and by 12-15% at φ = 30° and 90° if x w ≫ b s. If cross walls are used in cooling ducts, the length of the walls x w plays the governing role; an increase in this characteristic from 1.22 × 10-3 to 3.14 × 10-3 m leads to an increase in the intensity of heat exchange by 30-40% and to a decrease in the capacity of the entire system of the walls. It has been shown that, on surfaces with wavy fins, the intensity of heat exchange is closest to that determined in the models under study. For example, values of the Colborne criterion StPr2/3 for ducts equipped with wavy fins and for the models under study differ only slightly (by 2-20% depending on the value of the angle φ). However, the difference for surfaces with short plate fins and ducts equipped with inclined walls is high (30-40%). This is due to the design features of these surfaces and to the severe effect of the inlet portion on heat exchange, since the surfaces are characterized by a higher ratio of the duct length to the hydraulic diameter L/d h at small fin thicknesses ((0.1-0.15) × 10-3 m). The experimental results can be used in developing designs of nozzle and rotor blades of high-temperature gas turbines in gas-turbine engines and plants.
Analysis of heat conduction in a drum brake system of the wheeled armored personnel carriers
NASA Astrophysics Data System (ADS)
Puncioiu, A. M.; Truta, M.; Vedinas, I.; Marinescu, M.; Vinturis, V.
2015-11-01
This paper is an integrated study performed over the Braking System of the Wheeled Armored Personnel Carriers. It mainly aims to analyze the heat transfer process which is present in almost any industrial and natural process. The vehicle drum brake systems can generate extremely high temperatures under high but short duration braking loads or under relatively light but continuous braking. For the proper conduct of the special vehicles mission in rough terrain, we are talking about, on one hand, the importance of the possibility of immobilization and retaining position and, on the other hand, during the braking process, the importance movement stability and reversibility or reversibility, to an encounter with an obstacle. Heat transfer processes influence the performance of the braking system. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of analyzed vehicle wheels. In the present work a finite element model for the temperature distribution in a brake drum is developed, by employing commercial finite element software, ANSYS. These structural and thermal FEA models will simulate entire braking event. The heat generated during braking causes distortion which modifies thermoelastic contact pressure distribution drum-shoe interface. In order to capture the effect of heat, a transient thermal analysis is performed in order to predict the temperature distribution transitional brake components. Drum brakes are checked both mechanical and thermal. These tests aim to establish their sustainability in terms of wear and the variation coefficient of friction between the friction surfaces with increasing temperature. Modeling using simulation programs led eventually to the establishment of actual thermal load of the mechanism of brake components. It was drawn the efficiency characteristic by plotting the coefficient of effectiveness relative to the coefficient of friction shoe-drum. Thus induced thermal loads determine thermo mechanical behavior of the structure of wheels. Study the transfer of heat generated during braking is useful because results can improve and validate existing theory or may lead to the development of a mathematical model to simulate the behavior of the brake system for various tactical and operational situations. Conclusions of this paper are relevant because theoretical data analysis results are validated by experimental research.
Super-Planckian Thermophotovoltaics Without Vacuum Gaps
NASA Astrophysics Data System (ADS)
Mirmoosa, M. S.; Biehs, S.-A.; Simovski, C. R.
2017-11-01
We introduce the concept of a thermophotovoltaic system whose emitter is separated from the photovoltaic cell by an intermediate thick slab of gallium arsenide. Owing to the engineered structure of the emitter (a multilayer structure of negative- and positive-ɛ layers) together with a high refractiveindex and transparency of the intermediate slab, we achieve a super-Planckian and frequency-selective spectrum of radiative heat transfer which is desirable for the efficient performance of thermophotovoltaic systems.
NASA Astrophysics Data System (ADS)
Trifonov, N. N.; Esin, S. B.; Nikolaenkova, E. K.; Sukhorukov, Yu. G.; Svyatkin, F. A.; Sintsova, T. G.; Modestov, V. S.
2017-08-01
The structures of low-pressure heaters (LPH), which are installed at nuclear power plants with the K-1000-60/1500 type turbine plants are considered. It was revealed that only the PND-3 type low-pressure heaters have the damages of the heat exchange tubes. For a short operation life, the number of the damaged heat-exchange tubes of PND-3 is approximately 50 pcs for Kalinin NPP and 100-150 pcs for Balakovo NPP. The low-pressure heaters were manufactured at AO Ural Plant of Chemical Machine-Building "Uralkhimmash," OAO Taganrog Boiler-Making Works "Krasny Kotelshchik," and Vitkovice Machinery Group, but the damage nature of the heat-exchange tubes is identical for all PND-3. The damages occur in the place of passage of the heat exchange tubes through the first, the second, and the third partitions over the lower tube plate (the first path of the turbine condensate). Hydraulic shocks can be one of the possible causes of the damage of the heat-exchange tubes of PND-3. The analysis of the average thermal and dynamic loads of the tube systems of PND-1-PND-4 revealed that PND-3 by the thermal power are loaded 1.4-1.6 times and by the dynamic effects are loaded 1.8-2.0 times more than the remaining LPHs. Another possible cause of damage can be the cascaded drain of the separate into PND-4 and then through the drainage heat exchange into PND-3. An additional factor can be the structure of the condensate drainage unit. The advanced system of the heating steam flow and pumping scheme of the separate drain using the existing drainage pumps of PND-3 for K-1000-60/1500 turbine plants for Balakovo and Kalinin NPPs were proposed. The considered decisions make it possible to reduce the flow rate of the heating steam condensate from PND-3 into PND-4 and the speed of the heating steam in the tube space of PND-3 and eliminate the occurrence of hydraulic shocks and damages of the heat exchanger tubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, J. K. R.; Alderman, O. L. G.; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
2016-07-15
An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment wasmore » integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less
Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; ...
2016-07-01
We integrated an aerodynamic levitator with carbon dioxide laser beam heating with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. Furthermore, the chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The samplemore » environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. Our system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less
Baldassarre, Maurizio; Naldi, Marina; Domenicali, Marco; Volo, Sabrina; Pietra, Marco; Dondi, Francesco; Caraceni, Paolo; Peli, Angelo
2017-09-10
Heat stress has a major impact on veal calves welfare and productivity. Prolonged exposure to warm temperature is associated with several alterations of physiologic processes and increased systemic inflammation and oxidative stress. Bovine serum albumin (BSA) is the most abundant plasma protein and, besides the regulation of osmotic pressure, carries several additional functions, including antioxidant, immunomodulatory, binding and transport activities. Such non-oncotic properties are closely related to structural integrity of the circulating molecule and may be compromised in stressful microenvironments as it occurs in heat stressed animals. Thus, in the present study we developed and validated an LC-MS analytical technique for the characterization of circulating BSA microheterogeneity in veal calves exposed to heat stress. The method was specifically tailored to the structural characteristics of the BSA molecule as well as to the complexity of the biological samples, allowing the identification of several BSA isoforms, each characterized by a specific structural defect. The mass spectrometry based approach enabled the identification of BSA isoforms with reversible and irreversible oxidation and/or glycation and the native BSA, the only isoform endowed with structural and functional integrity. We found that, in veal calves, heat stress is associated to a significant reduction of the native BSA and to a significant increment of the reversibly and irreversibly oxidized BSA. Then, by monitoring the BSA microheterogeneity over a period of moderate heat stress, we found that the native BSA as well as the glycated BSA increased significantly during the recovery period. Based on our results the analysis of the BSA microheterogeneity could represent a novel biomarker for the assessment of animal welfare during environmental stressful conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Straub, Anthony P; Elimelech, Menachem
2017-11-07
Low-grade heat energy from sources below 100 °C is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W/m 2 ) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 μm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.
NASA Technical Reports Server (NTRS)
Guillermo, P.
1975-01-01
A mathematical model of the aerothermochemical environment along the stagnation line of a planetary return spacecraft using an ablative thermal protection system was developed and solved for conditions typical of atmospheric entry from planetary missions. The model, implemented as a FORTRAN 4 computer program, was designed to predict viscous, reactive and radiative coupled shock layer structure and the resulting body heating rates. The analysis includes flow field coupling with the ablator surface, binary diffusion, coupled line and continuum radiative and equilibrium or finite rate chemistry effects. The gas model used includes thermodynamic, transport, kinetic and radiative properties of air and ablation product species, including 19 chemical species and 16 chemical reactions. Specifically, the impact of nonequilibrium chemistry effects upon stagnation line shock layer structure and body heating rates was investigated.
NASA Astrophysics Data System (ADS)
Zhang, L.
2017-12-01
Heat flow is an important constraint to study the thermal structure and evolution in modeling experiments. Based on the surface heat flow map and recent geochemistry results, a 2D transient heat conduction-advection model is used to investigate how the effects of sedimentation rate, magmatic intrusion, extension duration and rate on the surface heat flow distribution of the Okinawa Trough. Surface heat flow distribution map is interpolated based on a data set with 664 measurements in the Ryukyu trench-arc-basin system. The map shows an obviously correspondence between heat flows and tectonic zones, characterized by belts in E-W and blocks in S-N. The heat flow is extremely high and variable in the central Okinawa Trough (COT). The lowest heat values are distributed in the northwest of West Philippine Sea near the Ryukyu Trench. This phenomenon is likely related to increasing hydrothermal circulation of cold water into the upper portion of the incoming plate because of bend-faulting and little sediment coverage. Simulation results show that (1) High sedimentation rate can reduce heat flow by 30-35 % in the southern OT. (2) The sedimentation-corrected heat flow indicates that mantle upwelling occurred in the whole OT. The isotherm of 1000°C reaches to the depth of 19 km in the axil of the COT after 10 Ma. (3) The heat flow can be improved drastically by dyke intrusion along normal faults, but subsequent decreases rapidly about 15% after 0.1 Ma, which indicates the age of dyke intrusion under the Iheya area is younger than 0.5 Ma, and the depth is shallower than 2 km. Moreover, the magma fluid upward migrated along the magma conduits is required for the extremely high heat flow and its Darcy velocity can reach to 9 cm/yr. Based on the distribution of heat flow, we suggest that there is a different evolution model between the central- northern OT and the southern. The time of rifting in the NOT-COT began at 10 Ma with the mean rate of 0.4 cm/yr, while the rifting of the SOT started from 6 Ma with higher rate of 0.6 cm/yr.
Code of Federal Regulations, 2010 CFR
2010-07-01
... is no indication in the statutory language or the legislative history of any intent to provide... structures. Accordingly, servicemen checking, servicing, or repairing the plumbing, electrical, heating, air conditioning, or butane gas systems, the doors, windows, and other structural features of mobile homes to make...
Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.
Chen, Zhen; Hefferman, Gerald; Wei, Tao
2017-03-01
This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.
Kaczmarska, Karolina; Grabowska, Beata; Bobrowski, Artur; Cukrowicz, Sylwia
2018-04-24
Strength properties of the microwave cured molding sands containing binders in a form of the aqueous solution of sodium carboxymethyl starch (CMS-Na) are higher than the same molding composition cured by conventional heating. Finding the reason of this effect was the main purpose in this study. Structural changes caused by both physical curing methods of molding sands systems containing mineral matrix (silica sand) and polymer water-soluble binder (CMS-Na) were compared. It was shown, by means of the FT-IR spectroscopic studies, that the activation of the polar groups in the polymer macromolecules structure as well as silanol groups on the mineral matrix surfaces was occurred in the microwave radiation. Binding process in microwave-cured samples was an effect of formation the hydrogen bonds network between hydroxyl and/or carbonyl groups present in polymer and silanol groups present in mineral matrix. FT-IR studies of structural changes in conventional and microwave cured samples confirm that participation of hydrogen bonds is greater after microwave curing than conventional heating. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ryan, Sean Thomas
Off-grid refrigeration technologies are currently limited to either vapor-compression cycles driven by photovoltaics or solar thermal absorption cycles. Rebound Technologies has recently developed a novel off-grid refrigeration system called Sunchill(TM) for agricultural applications in humid environments in the developing world. The Sunchill(TM) refrigeration system utilizes the daily high and low temperatures to drive a 24 hour refrigeration cycle. Cooling is provided by the dissolution of an endothermic salt, sodium carbonate decahydrate. Once the salt is solvated and cooling is delivered to freshly harvest crops, the system is "recharged" in a multi-step process that relies on a solar collector, an air-gap membrane unit and a heat exchanger. The heat exchanger, which is the focus of this thesis, is required to remove 36.6 MJ of heat over a twelve hour period in order to "recharge" the system. The heat exchanger is also required to transfer heat from a fresh water stream to a cold brine solution to generate the cold water necessary to submerse and cool harvested crops. To provide a sustainable technology to the target community, the feasibility of fabricating the heat exchanger via the low cost 3-D printing method of fused filament fabrication (FFF) was examined. This thesis presents the design, development, and manufacturing considerations that were performed in support of developing a waterproof, counter-flow, 3-D printable heat exchanger. Initial geometries and performance were modeled by constructing a linear thermal resistance network with truncating temperatures of 30°C (saturated brine temperature) and 18°C (average daily low temperature). The required surface area of the heat exchanger was found to be 20.46 m2 to remove the required 36.6 MJ of heat. Iterative print tests were conducted to arrive at the wall thickness, hexagon shape, and double wall structure of the heat exchanger. A laboratory-scale heat exchanger was fabricated using a Lulzbot Taz 4 printer from acrylonitrile butadiene styrene (ABS) polymer. Performance was verified empirically for the laboratory-scale unit. A heat transfer rate of 22.8 W was obtained at a flow rate of 0.00075 kg/s. The results of this thesis demonstrate the feasibility of manufacturing low cost heat exchangers using additive manufacturing techniques.
Skylab extravehicular mobility unit thermal simulator
NASA Technical Reports Server (NTRS)
Hixon, C. W.; Phillips, M. A.
1974-01-01
The analytical methods, thermal model, and user's instructions for the Skylab Extravehicular Mobility Unit (SEMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the SEMU on the NASA-JSC Univac 1108 computer system. It accounts for conductive, convective, and radiant heat transfer as well as fluid flow and special component characterization. The program provides thermal performance predictions for a 967 node thermal model in one thirty-sixth (1/36) of mission time when operated at a calculating interval of three minutes (mission time). The program has the operational flexibility to: (1) accept card or magnetic tape data input for the thermal model describing the SEMU structure, fluid systems, crewman and component performance, (2) accept card and/or magnetic tape input of internally generated heat and heat influx from the space environment, and (3) output tabular or plotted histories of temperature, flow rates, and other parameters describing system operating modes.
Thermodynamics. [algebraic structure
NASA Technical Reports Server (NTRS)
Zeleznik, F. J.
1976-01-01
The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it as a purely mathematical concept. It also permits the construction of an entropy function from heat measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The integrability of the differential form of the first law can be examined independently of Caratheodory's theorem and his inaccessibility axiom. Criteria are established by which one can determine when an integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a realization of the first law is constructed which is suitable for all systems whether they are solids or fluids, whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not present.
A Retrieval of Tropical Latent Heating Using the 3D Structure of Precipitation Features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Fiaz; Schumacher, Courtney; Feng, Zhe
Traditionally, radar-based latent heating retrievals use rainfall to estimate the total column-integrated latent heating and then distribute that heating in the vertical using a model-based look-up table (LUT). In this study, we develop a new method that uses size characteristics of radar-observed precipitating echo (i.e., area and mean echo-top height) to estimate the vertical structure of latent heating. This technique (named the Convective-Stratiform Area [CSA] algorithm) builds on the fact that the shape and magnitude of latent heating profiles are dependent on the organization of convective systems and aims to avoid some of the pitfalls involved in retrieving accurate rainfallmore » amounts and microphysical information from radars and models. The CSA LUTs are based on a high-resolution Weather Research and Forecasting model (WRF) simulation whose domain spans much of the near-equatorial Indian Ocean. When applied to S-PolKa radar observations collected during the DYNAMO/CINDY2011/AMIE field campaign, the CSA retrieval compares well to heating profiles from a sounding-based budget analysis and improves upon a simple rain-based latent heating retrieval. The CSA LUTs also highlight the fact that convective latent heating increases in magnitude and height as cluster area and echo-top heights grow, with a notable congestus signature of cooling at mid levels. Stratiform latent heating is less dependent on echo-top height, but is strongly linked to area. Unrealistic latent heating profiles in the stratiform LUT, viz., a low-level heating spike, an elevated melting layer, and net column cooling were identified and corrected for. These issues highlight the need for improvement in model parameterizations, particularly in linking microphysical phase changes to larger mesoscale processes.« less
The influence of flow modification on air and PCM temperatures in an accumulative heat exchanger
NASA Astrophysics Data System (ADS)
Borcuch, Marcin; Musiał, Michał; Sztekler, Karol; Kalawa, Wojciech; Gumuła, Stanisław; Stefański, Sebastian
2018-06-01
The paper presents the influence of flow modification on the operation of an accumulative heat exchanger. This device can be used as a regenerator in ventilation and air supply systems. A heat exchanger uses ceresine (a mixture of paraffins) as a phase change material (PCM). The aim of this research was to determine the effect of flow modification on temperature distribution and pressure drops in the device. The introduction contains a short description of the test stand used, including the accumulative heat exchanger, the guide vanes, and the locations of measurement and control equipment. We found that additional objects limited vortex structures, increased the inside temperature, and dropped the pressure along the heat exchanger. Guidelines for further research are proposed and briefly discussed.
NASA Astrophysics Data System (ADS)
Taniguchi, Y.; Okuno, A.; Kato, M.
2010-03-01
Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the α-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular β-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation (ΔV# = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates (ΔV=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular β-sheet is unfavorable under high pressure.
Characteristic Evaluation on Cooling Performance of Thermoelectric Modules.
Seo, Sae Rom; Han, Seungwoo
2015-10-01
The aim of this work is to develop a performance evaluation system for thermoelectric cooling modules. We describe the design of such a system, composed of a vacuum chamber with a heat sink along with a metal block to measure the absorbed heat Qc. The system has a simpler structure than existing water-cooled or air-cooled systems. The temperature difference between the cold and hot sides of the thermoelectric module ΔT can be accurately measured without any effects due to convection, and the temperature equilibrium time is minimized compared to a water-cooled system. The evaluation system described here can be used to measure characteristic curves of Qc as a function of ΔT, as well as the current-voltage relations. High-performance thermoelectric systems can therefore be developed using optimal modules evaluated with this system.
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... gypsum block walls. (3) Floor joints, roof trusses (including roof boards and roofing), and framing..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11...
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... gypsum block walls. (3) Floor joints, roof trusses (including roof boards and roofing), and framing..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11...
A Novel Silicon Micromachined Integrated MCM Thermal Management System
NASA Technical Reports Server (NTRS)
Kazmierczak, M. J.; Henderson, H. T.; Gerner, F. M.
1997-01-01
"Micromachining" is a chemical means of etching three-dimensional structures, typically in single- crystalline silicon. These techniques are leading toward what is coming to be referred to as MEMS (Micro Electro Mechanical Systems), where in addition to the ordinary two-dimensional (planar) microelectronics, it is possible to build three-dimensional n-ticromotors, electrically- actuated raicrovalves, hydraulic systems and much more on the same microchip. These techniques become possible because of differential etching rates of various crystallographic planes and materials used for semiconductor n-ticrofabfication. The University of Cincinnati group in collaboration with Karl Baker at NASA Lewis were the first to form micro heat pipes in silicon by the above techniques. Current work now in progress using MEMS technology is now directed towards the development of the next generation in MCM (Multi Chip Module) packaging. Here we propose to develop a complete electronic thermal management system which will allow densifica6on in chip stacking by perhaps two orders of magnitude. Furthermore the proposed technique will allow ordinary conu-nercial integrated chips to be utilized. Basically, the new technique involves etching square holes into a silicon substrate and then inserting and bonding commercially available integrated chips into these holes. For example, over a 100 1/4 in. by 1 /4 in. integrated chips can be placed on a 4 in. by 4 in. silicon substrate to form a Multi-Chip Module (MCM). Placing these MCM's in-line within an integrated rack then allows for three-diniensional stacking. Increased miniaturization of microelectronic circuits will lead to very high local heat fluxes. A high performance thermal management system will be specifically designed to remove the generated energy. More specifically, a compact heat exchanger with milli / microchannels will be developed and tested to remove the heat through the back side of this MCM assembly for moderate and high heat flux applications, respectively. The high heat load application of particular interest in mind is the motor controller developed by Martin Marietta for Nasa to control the thruster's directional actuators on space vechicles. Work is also proposed to develop highly advanced and improved porous wick structures for use in advanced heat loops. The porous wick will be micromachined from silicon using MEMS technology, thus permitting far superior control of pore size and pore distribution (over wicks made from sintered n-ietals), which in turn is expected to led to significantly improved heat loop performance.
A CMC database for use in the next generation launch vehicles (rockets)
NASA Astrophysics Data System (ADS)
Mahanta, Kamala
1994-10-01
Ceramic matrix composites (CMC's) are being envisioned as the state-of-the-art material capable of handling the tough structural and thermal demands of advanced high temperature structures for programs such as the SSTO (Single Stage to Orbit), HSCT (High Speed Civil Transport), etc. as well as for evolution of the industrial heating systems. Particulate, whisker and continuous fiber ceramic matrix (CFCC) composites have been designed to provide fracture toughness to the advanced ceramic materials which have a high degree of wear resistance, hardness, stiffness, and heat and corrosion resistance but are notorious for their brittleness and sensitivity to microscopic flaws such as cracks, voids and impurity.
Research on Aeroheating of Hypersonic Reentry Vehicle Base Flow Fields
NASA Astrophysics Data System (ADS)
Xuguo, Qin; Yongtao, Shui; Yonghai, Wang; Gang, Chen; Qiang, Li
2017-09-01
The structure of the base flow of a hypersonic reentry vehicle and the resulting base pressure and heat transfer have been studied by numerical study. The compressible Navier-Stokes equations are solved by the finite-volume method. SST k-ω turbulence model is used, and comparisons are made with flight test. Attention was focused on assessing the effects of angle of attack and Mach number. It was found that angle of attack can significantly alter the wake flow structure and reentry vehicle base pressure and heating distributions. The results of the simulation may provide a theoretical basis for the design of the thermal protection system of hypersonic reentry vehicles.
Institutional and financial guide to geothermal district heating, serial no. 2
NASA Astrophysics Data System (ADS)
1982-03-01
General planning considerations which affect nearly every community are reviewed, and alternative operating structures which are available to communities are reviewed, including local governments, nonprofit cooperatives, private enterprises, and joint ventures. The financing options available to publicly-owned and privately-owned district heating systems are then summarized. The geothermal production and distribution activities most appropriate to each type of operating structure are reviewed, along with typical equity and debt funding sources. The tax advantages for private developers are described, as are the issues of customer contracts and service prices, and customer retrofit financing. The treatment is limited to an introductory overview.
A CMC database for use in the next generation launch vehicles (rockets)
NASA Technical Reports Server (NTRS)
Mahanta, Kamala
1994-01-01
Ceramic matrix composites (CMC's) are being envisioned as the state-of-the-art material capable of handling the tough structural and thermal demands of advanced high temperature structures for programs such as the SSTO (Single Stage to Orbit), HSCT (High Speed Civil Transport), etc. as well as for evolution of the industrial heating systems. Particulate, whisker and continuous fiber ceramic matrix (CFCC) composites have been designed to provide fracture toughness to the advanced ceramic materials which have a high degree of wear resistance, hardness, stiffness, and heat and corrosion resistance but are notorious for their brittleness and sensitivity to microscopic flaws such as cracks, voids and impurity.
NASA Technical Reports Server (NTRS)
Ganssle, Eugene Robert (Inventor); Scott, Ralph Richard (Inventor); Williams, Richard Jean (Inventor)
1978-01-01
A mounting platform for heat producing instruments operated in a narrow equilibrium temperature range comprises a grid-like structure with relatively large openings therein. The instruments are secured to and thermally coupled with the grid surface facing the instruments. Excess heat from the instruments is selectively radiated to the ambient through openings in the grid, the grid surfaces at these openings exhibiting low thermal emissivity and adsorptivity. The remainder of the grid is maintained at the equilibrium temperature and is covered with a thermal insulating blanket. Thus, the entire system including the platform and instruments is maintained substantially isothermal, whereby the instruments remain in fixed physical relationship to one another.
Possibilities of application of the swirling flows in cooling systems of laser mirrors
NASA Astrophysics Data System (ADS)
Shanin, Yu; Chernykh, A.
2018-03-01
The paper presents analytical investigations into advanced cooling systems of the laser mirrors with heat exchange intensification by methods of ordered vortex impact on a coolant flow structure. Advantages and effectiveness of the proposed cooling systems have been estimated to reduction displacement of an optical mirror surface due to a flexure.
Observations of the Winter Thermal Structure of Lake Superior
NASA Astrophysics Data System (ADS)
Titze, Daniel James
Moored thermistor strings that span the water column have been deployed at up to seven locations throughout Lake Superior from 2005 through present, producing a unique year-round record of the thermal structure of a large lake. This extensive temperature record reveals significant interannual and spatial variability in Lake Superior's winter heat content, thermocline depth, and phenology. Of particular mention is a stark contrast in thermal structure between the cold, icy winter of 2009 and the much warmer winter of 2012, during which especially strong and weak negative stratification was observed, respectively. Significant interannual and spatial variability was also observed in Lake Superior ice cover, as shown through data extracted from Ice Mapping System satellite imagery (NOAA/NESDIS 2004). When water column heat content was estimated from temperature data and analyzed in concert with lake ice-cover data, it was found that ice cover can inhibit heat flux between the lake and the atmosphere, and that spatial variability in ice cover can translate into spatial variability in end-of-winter heat content. Such variability in end-of-winter heat content is found to be preserved through the spring warming season, and is strongly correlated with variability in the timing of the onset of summer stratification, with regions that have warmer end-of-winter water columns stratifying earlier than regions with colder end-of-winter water-columns.
Study of Co0.5Zn0.5Fe2O4 nanoparticles for magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Kamzin, A. S.; Nikam, D. S.; Pawar, S. H.
2017-01-01
The structural characteristics, magnetic properties, and processes of magnetic heating in an alternating magnetic field of magnetic nanoparticles (MNPs) Co0.5Zn0.5Fe2O4 (cobalt-zinc ferrite, CZF) are studied to explore the possibilities of their application in medicine, namely, for magnetic hyperthermia treatment (the heating of particles with external alternating magnetic field). CZF magnetic nanoparticles were obtained by coprecipitation using sodium hydroxide (NaOH) as a precipitating agent. Based on the data obtained by transmission electron microscopy in the transmission geometry, it is found that CZF magnetic nanoparticles have an almost spherical shape with an average particle size of 13 nm. X-ray diffraction and Mössbauer studies showed that CZF magnetic nanoparticles are single-phase, and their structure corresponds to a cubic spinel structure. The saturation magnetization M s of CZF nanoparticles is measured at room temperature using a vibrating sample magnetometer. The possibility of heating CZF magnetic nanoparticles with an external alternating magnetic field was studied using an induction heating system. The specific absorption rate is determined by applying an external alternating magnetic field in the range of 167.5 to 335.2 Oe at a fixed frequency of 265 kHz. It is found that the maximum amount of heat (114.98 W/g) is produced at a concentration of 5 mg/L under a field of 335.2 Oe.
Communications satellite no. 2 (CS-2)
NASA Technical Reports Server (NTRS)
1982-01-01
The purpose of the Japanese CS-2 satellite is to provide national communications and industrial communications, such as special emergency and remote communications, and to contribute to the development of technology pertaining to communications satellites. Description and operating parameters of the following satellite components are presented: structure, communications system, telemetry/command system, electric power system, attitude and antenna control system, secondary propulsion system, apogee motor, framework, and heat control system.
NASA Technical Reports Server (NTRS)
Katter, L. B.; Peterson, D. J.
1978-01-01
The system identified operates from the primary arc furnace evacuation system as a heat source. Energy from the fume stream is stored as sensible energy in a solid medium (packed bed). A steam-driven turbine is arranged to generate power for peak shaving. A parametric design approach is presented since the overall system design, at optimum payback is strongly dependent upon the nature of the electric pricing structure. The scope of the project was limited to consideration of available technology so that industry-wide application could be achieved by 1985. A search of the literature, coupled with interviews with representatives of major steel producers, served as the means whereby the techniques and technologies indicated for the specific site are extrapolated to the industry as a whole and to the 1985 time frame. The conclusion of the study is that by 1985, a national yearly savings of 1.9 million barrels of oil could be realized through recovery of waste heat from primary arc furnace fume gases on an industry-wide basis. Economic studies indicate that the proposed system has a plant payback time of approximately 5 years.
Mathematical modeling of the thermal and hydrodynamic structure of the cooling reservoir
NASA Astrophysics Data System (ADS)
Saminskiy, G.; Debolskaya, E.
2012-04-01
Hydrothermal conditions of the cooling reservoir is determined by the heat and mass transfer from the water surface to the atmosphere and the processes of heat transfer directly in the water mass of the reservoir. As the capacity of power plants, the corresponding increase in the volume of heated water and the use of deep lakes and reservoirs as coolers there is a need to develop new, more accurate, and the application of existing methods for the numerical simulation. In calculating the hydrothermal regime it must take into account the effect of wind, density (buoyancy) forces, and other data of the cooling reservoir. In addition to solving practical problems it is important to know not only the magnitude of the average temperature, but also its area and depth distribution. A successful solution can be achieved through mathematical modeling of general systems of equations of transport processes and the correct formulation of the problem, based on appropriate initial data. The purpose of the work is application of software package GETM for simulating the hydrothermal regime of cooling reservoir with an estimate of three-dimensional structure of transfer processes, the effects of wind, the friction of the water surface. Three-dimensional models are rarely applied, especially for far-field problems. If such models are required, experts in the field must develop and apply them. Primary physical processes included are surface heat transfer, short-wave and long-wave radiation and penetration, convective mixing, wind and flow induced mixing, entrainment of ambient water by pumped-storage inflows, inflow density stratification as impacted by temperature and dissolved and suspended solids. The model forcing data consists of the system bathymetry developed into the model grid; the boundary condition flow and temperature; the tributary and flow and temperature; and the system meteorology. Ivankovskoe reservoir belongs to the reservoirs of valley type (Tver region, Russia). It is used as a cooling reservoir for Konakovskaya power plant. It dumps the heated water in the Moshkovichevsky bay. Thermal and hydrodynamic structure of the Moshkovichevsky Bay is particular interest as the object of direct influence of heated water discharge. To study the effect of thermal discharge into the Ivankovskoe reservoir the model of the Moshkovichevsky Bay was built, which is subject to the largest thermal pollution. Step of the calculation grid is 25 meters. For further verification of the model field investigations were conducted in August-September 2011. The modeling results satisfactorily describe the thermal and hydrodynamic structure of the Moshkovichevsky Bay.
The use of inflatable structures for re-entry of orbiting vehicles
NASA Astrophysics Data System (ADS)
Kendall, Robert T.; Maddox, Arthur R.
1990-10-01
Inflatable recovery systems offer the unique advantage that a large high-drag shape can be stored initially in a relatively small package. The resulting shapes decelerate rapidly with lower heating inputs than other types of re-entry vehicles. Recent developments have led to some light-weight materials, with little thermal protection, can withstand the heating inputs to such vehicles. As a result, inflatable recovery vehicles offer a simple, reliable and economical way to return various vehicles from orbit. This paper examines the application of this concept to a large and a small vehicle with the accompanying dynamics that might be expected. More complex systems could extend the concept to emergency personnel escape systems, payload abort and satellite recovery systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, Ryan; Marnay, Chris
The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, tomore » examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.« less
Heat-stressed structural components in combustion-engine design
NASA Technical Reports Server (NTRS)
Kraemer, Otto
1938-01-01
Heated structural parts alter their shape. Anything which hinders free heat expansion will give rise to heat stresses. Design rules are thus obtained for the heated walls themselves as well as for the adjoining parts. An important guiding principle is that of designing the heat-conducting walls as thin as possible.
Smart Materials and Structures-Smart Wing. Volumes 1, 2, 3 and 4
1998-12-01
repeatable fashion when heat is applied. Therefore, once the pre-twist is successfully applied and the tube is installed in the model, heating the...modules were operated and calibrated online by the PSI 8400 Control System. Because the transducer modules are extremely sensitive to temperature, a...again substantiates that adaptive features tend to support each other, though not necessarily in a completely linear fashion , and essentially provide a
Calculation of heat flux through a wall containing a cavity: Comparison of several models
NASA Astrophysics Data System (ADS)
Park, J. E.; Kirkpatrick, J. R.; Tunstall, J. N.; Childs, K. W.
1986-02-01
This paper describes the calculation of the heat transfer through the standard stud wall structure of a residential building. The wall cavity contains no insulation. Results from five test cases are presented. The first four represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using an improvement to the Implicit-Compressible Eulerian (ICE) algorithm of Harlow and Amsden. An algorithm is described to efficiently couple the fluid flow calculations to the radiation-conduction model for the solid portions of the system. Results indicate that conduction through still plates contributes less than 2% of the total heat transferred through a composite wall. All of the other elements (conduction through wall board, sheathing, and siding; convection from siding and wallboard to am bients; and radiation across the wall cavity) are required to accurately predict the heat transfer through a wall. Addition of a foil liner on one inner surface of the wall cavity reduces the total heat transferred by almost 50%.
Defense Infrastructure: DOD’s 2013 Facilities Corrosion Study Addressed Reporting Elements
2014-03-27
the coating system to metal structures helped prevent corrosion and provided resistance to fire . For the second element, to review a sampling of...noted, was to apply an epoxy coating system to metal structures to prevent corrosion and provide fire resistance. In 2006, DOD applied an epoxy... heat exchange Fuel distribution Plumbing Bridge Fuel storage Roof Building exterior—paint Generator Signage Compressor Hot water
Rafe, Ali; Vahedi, Elnaz; Hasan-Sarei, Azadeh Ghorbani
2016-08-01
Rice bran protein (RBP) is a valuable plant protein which has unique nutritional and hypoallergenic properties. Whey proteins have wide applications in the food industry, such as in dairy, meat and bakery products. Whey protein concentrate (WPC), RBP and their mixtures at different ratios (1:1, 1:2, 1:5 and 1:10 w/w) were heated from 20 to 90 °C at different heating rates (0.5, 1, 5 and 10 °C min(-1) ). The storage modulus (G') and gelling point (Tgel ) of WPC were higher than those of RBP, indicating the good ability of WPC to develop stiffer networks. By increasing the proportion of WPC in mixed systems, G' was increased and Tgel was reduced. Nevertheless, the elasticity of all binary mixtures was lower than that of WPC alone. Tgel and the final G' of RBP-WPC blends were increased by raising the heating rate. The RBP-WPC mixtures developed more elastic gels than RBP alone at different heating rates. RBP had a fibrillar and lentil-like structure whose fibril assembly had smaller structures than those of WPC. The gelling structure of the mixed gel of WPC-RBP was improved by adding WPC. Indeed, by adding WPC, gels tended to show syneresis and had lower water-holding capacity. Furthermore, the gel structure was produced by adding WPC to the non-gelling RBP, which is compatible with whey and can be applied as a functional food for infants and/or adults. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)
David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R
2014-12-16
Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.
NASA Astrophysics Data System (ADS)
Ho, Son H.; Rahman, Muhammad M.
2008-01-01
This paper presents a study on fluid flow and heat transfer of liquid hydrogen in a zero boil-off cryogenic storage tank in a microgravity environment. The storage tank is equipped with an active cooling system consisting of a heat pipe and a pump-nozzle unit. The pump collects cryogen at its inlet and discharges it through its nozzle onto the evaporator section of the heat pipe in order to prevent the cryogen from boiling off due to the heat leaking through the tank wall from the surroundings. A three-dimensional (3-D) finite element model is employed in a set of numerical simulations to solve for velocity and temperature fields of liquid hydrogen in steady state. Complex structures of 3-D velocity and temperature distributions determined from the model are presented. Simulations with an axisymmetric model were also performed for comparison. Parametric study results from both models predict that as the speed of the cryogenic fluid discharged from the nozzle increases, the mean or bulk cryogenic fluid speed increases linearly and the maximum temperature within the cryogenic fluid decreases.
Hooper, R. J.; Davis, C. G.; Johns, P. M.; ...
2015-06-26
Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical modelmore » for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.« less
Numerical study on the thermal management system of a liquid metal battery module
NASA Astrophysics Data System (ADS)
Guo, Zhenlin; Xu, Cheng; Li, Wei; Zhu, Fangfang; Li, Haomiao; Wang, Kangli; Cheng, Shijie; Jiang, Kai
2018-07-01
Liquid metal battery (LMB), with three-liquid-layer structure and high operating temperature (300-700 °C), is a newly emerging technology for large scale energy storage applications. A thermal management system is critical to achieve satisfied LMB performance and extend the life of batteries. In this work, an improved coupling model composing of a 3D heat-transfer model and a 1D electrochemical model is developed for the thermal analysis of a Li||Sb-Sn LMBs module (5.5 kWh). Key results including transient values, the contribution ratio of heat sources, temperature homogeneity and distribution, as well as the energy efficiency of the battery module, are presented. Based on the coupling model, the changeable-power-heating mode, sand filling material and vacuum insulation are further proposed to achieve the high energy efficiency and optimal performance of the LMBs module. Moreover, the LMBs module can achieve "self-heating" when operated at 0.2 C charge/discharge, under the vacuum insulation (0.01 W m-1 K-1 thermal conductivity, 100 mm thickness), requiring no external heating to keep the batteries at operating temperature.
Biomass universal district heating systems
NASA Astrophysics Data System (ADS)
Soltero, Victor Manuel; Rodríguez-Artacho, Salvador; Velázquez, Ramón; Chacartegui, Ricardo
2017-11-01
In mild climate regions Directive 27/2012 EU application for developing sustainable district heating networks in consolidated urban nucleus is a challenge. In Spain most of the municipalities above 5,000 inhabitants have a reliable natural gas network and individual heating systems at homes. In this work a new heating network paradigm is proposed, the biomass universal heating network in rural areas. This model involves all the economic, legal and technical aspects and interactions between the different agents of the systems: provider company, individual and collective end-users and local and regional administration. The continental region in Spain has 588 municipalities with a population above 1,500 inhabitants close to forest biomass with renewable use. In many of these cases the regulation identifies the ownership of the forest resources use. The universal heating networks are a great opportunity for energy saving of 2,000 GWh, avoiding 2.7 million tons of CO2 emissions and with a global annual savings for end users of 61.8 million of euros. The presented model is easily extrapolated to other small municipalities in Europe. The real application of the model is presented for three municipalities in different locations of Spain where Universal Heating Networks are under development. The analysis show the interest of the integrated model for the three cases with different structural agents and relationships between them. The use of sustainable forest resources, extracted and managed by local companies, strengths circular economy in the region with a potential global economic impact above 200 M€.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Panneer Selvam; Hale, Micah; Strasser, Matt
Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWh thermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 °C to 600 °C) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and testedmore » for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWh thermal. Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWht hermal. The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES capacity cost of $33.80$/kWh thermal compared with $30.04/kWhthermal for a packed-bed thermocline (PBTC) configuration and $46.11/kWh thermal for a two-tank liquid configuration.« less
The development of anti-heat stress clothing for construction workers in hot and humid weather.
Chan, Albert P C; Guo, Y P; Wong, Francis K W; Li, Y; Sun, S; Han, X
2016-04-01
The purpose of this study was to develop anti-heat stress clothing for construction workers in hot and humid weather. Following DeJonge's functional clothing design process, the design situation was explored, including clothing fabric heat/moisture transporting properties and UV protection and the aspects of clothing ergonomic design (mobility, convenience, and safety). The problem structure was derived from the results of the surveys in three local construction sites, which agreed well with the task requirements and observations. Specifications were consequently described and 30 commercially available fabrics were identified and tested. Fabric testing data and design considerations were inputted in S-smart system to predict the thermal functional performance of the clothing. A new uniform prototype was developed and evaluated. The results of all measurements suggest that the new uniform which incorporated fabrics with superior heat/moisture transporting properties and loose-fitting design could reduce the workers' heat stress and improve their comfort and work performance. Practitioner Summary: The construction workers' uniform currently used in Hong Kong during summer was unsatisfactory. Following DeJonge's functional clothing design process, an anti-heat stress uniform was developed by testing 30 fabrics and predicting clothing thermal functional performance using S-smart system. The new uniform could reduce the workers' heat stress and improve their comfort and work performance.
NASA Astrophysics Data System (ADS)
Koin, Sudibtia Titio; Triyono, Teguh; Surojo, Eko
2018-02-01
The 7075 series alloys are heat treatable wrought aluminum alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from compositional, casting and thermo-mechanical processing effects, the balance of properties is also significantly influenced by the way in which the materials are heat-treated. This paper describes the effect of flame hardening process to aluminum 7075 series on the increasing hardness, tensile strength, and evolution of microstructure. A test specimen had made by machining process and flame heating. Temperature of solution heat treatment is varied on 350 °C, 400 °C, 450 °C and 500 °C. After that process a test specimen would be quenched at nitrate-nitrite liquid during 45 minutes and artificial aging at 120°C until two days. The testing specimen consist of hardness and tensile strength according to ASTM. The result showed that specimen had precipitation on microstructure lead to an increase in aluminum properties. On the temperature 450°C solution heat treatment, the aluminum properties reached the highest value, namely, hardness of 129 HVN and tensile strength 570 MPa.
Loke, Desmond; Skelton, Jonathan M; Chong, Tow-Chong; Elliott, Stephen R
2016-12-21
One of the requirements for achieving faster CMOS electronics is to mitigate the unacceptably large chip areas required to steer heat away from or, more recently, toward the critical nodes of state-of-the-art devices. Thermal-guiding (TG) structures can efficiently direct heat by "meta-materials" engineering; however, some key aspects of the behavior of these systems are not fully understood. Here, we demonstrate control of the thermal-diffusion properties of TG structures by using nanometer-scale, CMOS-integrable, graphene-on-silica stacked materials through finite-element-methods simulations. It has been shown that it is possible to implement novel, controllable, thermally based Boolean-logic and spike-timing-dependent plasticity operations for advanced (neuromorphic) computing applications using such thermal-guide architectures.
Lightweight Magnetic Cooler With a Reversible Circulator
NASA Technical Reports Server (NTRS)
Chen, Weibo; McCormick, John
2011-01-01
A design of a highly efficient and lightweight space magnetic cooler has been developed that can continuously provide remote/distributed cooling at temperatures in the range of 2 K with a heat sink at about 15 K. The innovative design uses a cryogenic circulator that enables the cooler to operate at a high cycle frequency to achieve a large cooling capacity. The ability to provide remote/distributed cooling not only allows flexible integration with a payload and spacecraft, but also reduces the mass of the magnetic shields needed. The active magnetic regenerative refrigerator (AMRR) system is shown in the figure. This design mainly consists of two identical magnetic regenerators surrounded by their superconducting magnets and a reversible circulator. Each regenerator also has a heat exchanger at its warm end to reject the magnetization heat to the heat sink, and the two regenerators share a cold-end heat exchanger to absorb heat from a cooling target. The circulator controls the flow direction, which cycles in concert with the magnetic fields, to facilitate heat transfer. Helium enters the hot end of the demagnetized column, is cooled by the refrigerant, and passes into the cold-end heat exchanger to absorb heat. The helium then enters the cold end of the magnetized column, absorbing heat from the refrigerant, and enters the hot-end heat exchanger to reject the magnetization heat. The efficient heat transfer in the AMRR allows the system to operate at a relatively short cycle period to achieve a large cooling power. The key mechanical components in the magnetic cooler are the reversible circulator and the magnetic regenerators. The circulator uses non-contacting, self-acting gas bearings and clearance seals to achieve long life and vibration- free operation. There are no valves or mechanical wear in this circulator, so the reliability is predicted to be very high. The magnetic regenerator employs a structured bed configuration. The core consists of a stack of thin GGG disks alternating with thin polymer insulating films. The structured bed reduces flow resistance in the regenerator and therefore the pumping work by the cryogenic circulator. This magnetic cooler will enable cryogenic detectors for sensing infrared, x-ray, gamma-ray, and submillimeter radiation in future science satellites, as well as the detector systems in the Constellation-X (Con-X) and the Single Aperture Far-Infrared observatory (SAFIR). Scientific ap p - lica tions for this innovation include cooling for x-ray micro calorimeter spectrometers used for microanalysis, cryogenic particle detectors, and superconducting tunnel junction de tectors for biomolecule mass spectrometry. The cooler can be scaled to provide very large cooling capacities at very low temperatures, ideal for liquid helium and liquid hydrogen productions.
Modeling and Simulation of the ITER First Wall/Blanket Primary Heat Transfer System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ying, Alice; Popov, Emilian L
2011-01-01
ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and tomore » provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionescu-Bujor, Mihaela; Jin Xuezhou; Cacuci, Dan G.
2005-09-15
The adjoint sensitivity analysis procedure for augmented systems for application to the RELAP5/MOD3.2 code system is illustrated. Specifically, the adjoint sensitivity model corresponding to the heat structure models in RELAP5/MOD3.2 is derived and subsequently augmented to the two-fluid adjoint sensitivity model (ASM-REL/TF). The end product, called ASM-REL/TFH, comprises the complete adjoint sensitivity model for the coupled fluid dynamics/heat structure packages of the large-scale simulation code RELAP5/MOD3.2. The ASM-REL/TFH model is validated by computing sensitivities to the initial conditions for various time-dependent temperatures in the test bundle of the Quench-04 reactor safety experiment. This experiment simulates the reflooding with water ofmore » uncovered, degraded fuel rods, clad with material (Zircaloy-4) that has the same composition and size as that used in typical pressurized water reactors. The most important response for the Quench-04 experiment is the time evolution of the cladding temperature of heated fuel rods. The ASM-REL/TFH model is subsequently used to perform an illustrative sensitivity analysis of this and other time-dependent temperatures within the bundle. The results computed by using the augmented adjoint sensitivity system, ASM-REL/TFH, highlight the reliability, efficiency, and usefulness of the adjoint sensitivity analysis procedure for computing time-dependent sensitivities.« less
NASA Astrophysics Data System (ADS)
Farag, Mohammed; Sweity, Haitham; Fleckenstein, Matthias; Habibi, Saeid
2017-08-01
Real-time prediction of the battery's core temperature and terminal voltage is very crucial for an accurate battery management system. In this paper, a combined electrochemical, heat generation, and thermal model is developed for large prismatic cells. The proposed model consists of three sub-models, an electrochemical model, heat generation model, and thermal model which are coupled together in an iterative fashion through physicochemical temperature dependent parameters. The proposed parameterization cycles identify the sub-models' parameters separately by exciting the battery under isothermal and non-isothermal operating conditions. The proposed combined model structure shows accurate terminal voltage and core temperature prediction at various operating conditions while maintaining a simple mathematical structure, making it ideal for real-time BMS applications. Finally, the model is validated against both isothermal and non-isothermal drive cycles, covering a broad range of C-rates, and temperature ranges [-25 °C to 45 °C].
NASA Astrophysics Data System (ADS)
Faranda, D.; Yiou, P.; Alvarez-Castro, M. C. M.
2015-12-01
A combination of dynamical systems and statistical techniques allows for a robust assessment of the dynamical properties of the mid-latitude atmospheric circulation. Extremes at different spatial and time scales are not only associated to exceptionally intense weather structures (e.g. extra-tropical cyclones) but also to rapid changes of circulation regimes (thunderstorms, supercells) or the extreme persistence of weather structure (heat waves, cold spells). We will show how the dynamical systems theory of recurrence combined to the extreme value theory can take into account the spatial and temporal dependence structure of the mid-latitude circulation structures and provide information on the statistics of extreme events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo
Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less
Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo; ...
2018-02-23
Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less
Statistical Contact Model for Confined Molecules
NASA Astrophysics Data System (ADS)
Santamaria, Ruben; de la Paz, Antonio Alvarez; Roskop, Luke; Adamowicz, Ludwik
2016-08-01
A theory that describes in a realistic form a system of atoms under the effects of temperature and confinement is presented. The theory departs from a Lagrangian of the Zwanzig type and contains the main ingredients for describing a system of atoms immersed in a heat bath that is also formed by atoms. The equations of motion are derived according to Lagrangian mechanics. The application of statistical mechanics to describe the bulk effects greatly reduces the complexity of the equations. The resultant equations of motion are of the Langevin type with the viscosity and the temperature of the heat reservoir able to influence the trajectories of the particles. The pressure effects are introduced mechanically by using a container with an atomic structure immersed in the heat bath. The relevant variables that determine the equation of state are included in the formulation. The theory is illustrated by the derivation of the equation of state for a system with 76 atoms confined inside of a 180-atom fullerene-like cage that is immersed in fluid forming the heat bath at a temperature of 350 K and with the friction coefficient of 3.0 {ps}^{-1}. The atoms are of the type believed to form the cores of the Uranus and Neptune planets. The dynamic and the static pressures of the confined system are varied in the 3-5 KBar and 2-30 MBar ranges, respectively. The formulation can be equally used to analyze chemical reactions under specific conditions of pressure and temperature, determine the structure of clusters with their corresponding equation of state, the conditions for hydrogen storage, etc. The theory is consistent with the principles of thermodynamics and it is intrinsically ergodic, of general use, and the first of this kind.
Comparison of heat transfer coefficients of open micro-channels and plain micro-fins
NASA Astrophysics Data System (ADS)
Kaniowski, Robert; Pastuszko, Robert
2018-06-01
The paper describes results of analysis of pool boiling heat transfer on enhanced surfaces. Two types of structural surfaces were used: open microchannel surfaces consisting of a system of parallel micro-channels 0.3 mm wide, from 0.2 to 0.5 mm deep and with a pitch of 0.6 mm, and plain micro-fins 0.5 mm in height, uniformly spaced on the base surface with a spacing from 0.6 to1.5 mm. Pool boiling data at atmospheric pressure were obtained for saturated water, ethanol and FC-72. The effects of micro-channel/micro-fin dimensions on heat transfer coefficient in nucleate pool boiling were examined. Substantial enhancement of heat transfer coefficient was observed.
NASA Technical Reports Server (NTRS)
Chao, D. F. K.
1983-01-01
Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.
Brayton heat exchange unit development program
NASA Technical Reports Server (NTRS)
Morse, C. J.; Richard, C. E.; Duncan, J. D.
1971-01-01
A Brayton Heat Exchanger Unit (BHXU), consisting of a recuperator, a heat sink heat exchanger and a gas ducting system, was designed, fabricated, and tested. The design was formulated to provide a high performance unit suitable for use in a long-life Brayton-cycle powerplant. A parametric analysis and design study was performed to establish the optimum component configurations to achieve low weight and size and high reliability, while meeting the requirements of high effectiveness and low pressure drop. Layout studies and detailed mechanical and structural design were performed to obtain a flight-type packaging arrangement. Evaluation testing was conducted from which it is estimated that near-design performance can be expected with the use of He-Xe as the working fluid.
Synthesis of bulk chromium hydrides under pressure of up to 120 GPa
NASA Astrophysics Data System (ADS)
Marizy, Adrien; Geneste, Grégory; Loubeyre, Paul; Guigue, Bastien; Garbarino, Gaston
2018-05-01
Stable compounds in the Cr-H system have been synthesized through a direct reaction of chromium and hydrogen in a laser-heated diamond-anvil cell and investigated using synchrotron x-ray diffraction up to 120 GPa . The sequence of hydrides CrH, Cr2H3 , and CrH2 has been observed by increasing pressure. The known ɛ -h c p -CrH hydride is formed above 3 GPa . A Cr2H3 hydride with a C 2 /m structure appears spontaneously above 19 GPa , as a result of the filling of the tetrahedral sites of ɛ -CrH. YAG laser heating helps dissolve more hydrogen inside the h c p chromium structure to synthesize a CrH2 compound with a P n m a structure from 30 GPa on. The volume expansion per hydrogen atom in octahedral and tetrahedral sites is measured up to the 100-GPa pressure range. The formation pressures and structures of these chromium interstitial hydrides are in very good agreement with DFT calculations. However, despite multiple heating attempts up to 100 GPa , no evidence of the stability of the predicted CrH3 compound could be found.
Shuttle TPS thermal performance and analysis methodology
NASA Technical Reports Server (NTRS)
Neuenschwander, W. E.; Mcbride, D. U.; Armour, G. A.
1983-01-01
Thermal performance of the thermal protection system was approximately as predicted. The only extensive anomalies were filler bar scorching and over-predictions in the high Delta p gap heating regions of the orbiter. A technique to predict filler bar scorching has been developed that can aid in defining a solution. Improvement in high Delta p gap heating methodology is still under study. Minor anomalies were also examined for improvements in modeling techniques and prediction capabilities. These include improved definition of low Delta p gap heating, an analytical model for inner mode line convection heat transfer, better modeling of structure, and inclusion of sneak heating. The limited number of problems related to penetration items that presented themselves during orbital flight tests were resolved expeditiously, and designs were changed and proved successful within the time frame of that program.
Advances in In-Situ Inspection of Automated Fiber Placement Systems
NASA Technical Reports Server (NTRS)
Juarez, Peter D.; Cramer, K. Elliott; Seebo, Jeffrey P.
2016-01-01
The advent of Automated Fiber Placement (AFP) systems have aided the rapid manufacturing of composite aerospace structures. One of the challenges that AFP systems present is the uniformity of the deposited prepreg tape layers, which are prone to laps, gaps, overlaps and twists. The current detection modus operandi involves halting fabrication and performing a time consuming visual inspection of each tape layer. Typical AFP systems use a quartz lamp to heat the base layer to make the surface tacky as it deposits another tape layer. The idea was proposed to use the preheated base layer as a through transmission heat source and to inspect the newly added tape layer using a thermographic camera. As a preliminary study of this concept a laboratory proof of concept device was designed and constructed to simulate the through transmission heat source. Using the proof of concept device, we inspected an AFP-built uncured composite specimen with artificial manufacturing defects. This paper will discuss the results of this preliminary study and the implications involved with deploying a full-scale AFP inspection system.
Systems analysis techniques for annual cycle thermal energy storage solar systems
NASA Astrophysics Data System (ADS)
Baylin, F.
1980-07-01
Community-scale annual cycle thermal energy storage solar systems are options for building heat and cooling. A variety of approaches are feasible in modeling ACTES solar systems. The key parameter in such efforts, average collector efficiency, is examined, followed by several approaches for simple and effective modeling. Methods are also examined for modeling building loads for structures based on both conventional and passive architectural designs. Two simulation models for sizing solar heating systems with annual storage are presented. Validation is presented by comparison with the results of a study of seasonal storage systems based on SOLANSIM, an hour-by-hour simulation. These models are presently used to examine the economic trade-off between collector field area and storage capacity. Programs directed toward developing other system components such as improved tanks and solar ponds or design tools for ACTES solar systems are examined.
An Overview of Long Duration Sodium Heat Pipe Tests
NASA Astrophysics Data System (ADS)
Rosenfeld, John H.; Ernst, Donald M.; Lindemuth, James E.; Sanzi, James L.; Geng, Steven M.; Zuo, Jon
2004-02-01
High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore, Inc. has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 316L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650C to 700C for over 115,000 hours without signs of failure. A second 316L stainless steel heat pipe with a specially-designed Inconel 601 rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600C to 650C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41,000 hours at nearly 700C. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and test results are described for each of these sodium heat pipes. Lessons learned and future life test plans are also discussed.
An Overview of Long Duration Sodium Heat Pipe Tests
NASA Technical Reports Server (NTRS)
Rosenfeld, John H.; Ernst, Donald M.; Lindemuth, James E.; Sanzi, James L.; Geng, Steven M.; Zuo, Jon
2004-01-01
High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore International, Inc., has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 3l6L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650 to 700 C for over 115,000 hours without signs of failure. A second 3l6L stainless steel heat pipe with a specially-designed Inconel 60 I rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600 to 650 C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41 ,000 hours at nearly 700 0c. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700 C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability, Detailed design specifications, operating hi story, and test results are described for each of these sodium heat pipes. Lessons learned and future life test plans are also discussed.
Structural Assembly for Cold Plate Cooling
NASA Technical Reports Server (NTRS)
Zaffetti, Mark A. (Inventor); Taddey, Edmund P. (Inventor)
2014-01-01
A device including a structural member having a heat spreader and an electronic device mounted directly to a first surface of the heat spreader of the structural member. The device also includes a cold plate mounted directly to the first surface of the heat spreader of the structural member.
Electric home heating: Substitution for oil and gas
NASA Astrophysics Data System (ADS)
Burwell, C. C.; Devine, W. D., Jr.; Phung, D. L.
1982-03-01
The objective of the research is to determine the potential for substituting electricity generated with surplus coal and nuclear capacity for gas and oil used for home heating. The relative effectiveness of electric heating was determined by an analysis of the purposes of extra winter sales of electricity to the residential sector compared to a similar analysis for extra winter sales of natural gas. The price of electricity for heating is determined based on utility rate structures for selected utilities (primarily located in the north and south central portions of the country) having surplus coal and nuclear capacity throughout the decade of the 1980s. It is found that, on the average, the overall efficiency of fuel use for heating homes electrically is comparable to the use of combustion systems in the home and that electric heating is substantially less costly than direct heating with oil in regions where coal and uranium are the primary fuels used for power generation.
A heat flux modulator from carbon nanotubes.
Jiang, Shaohui; Zhang, Guang; Xia, Dan; Liu, Changhong; Fan, Shoushan
2015-08-28
For a heat flux modulator, the most difficult problem is that the main carriers named 'phonons' have little response to external fields. Of the existing studies on heat flux modulators, most were theoretical work and the materials systems for the theoretical calculations were artificial lattices. In this paper, we made a heat modulator with ultrathin buckypaper which was made of multi-layer carbon nanotube sheets overlapped together, and achieved an on/off ratio whose value was 1.41 using an pendent block in experiments without special optimizations. When the temperatures of the two sides were of appropriate values, we could even see a negative heat flux. Intuitively, the heat flux was tuned by the gap between the buckypaper and the pendent gate, and we observed that there was heat transferred to the pendent block. The structure of the modulator is similar to a CNT transistor with a contactless gate, hence this type of micromodulator will be easy to manufacture in the future.
GPM Avionics Module Heat Pipes Design and Performance Test Results
NASA Technical Reports Server (NTRS)
Ottenstein, Laura; DeChristopher, Mike
2011-01-01
The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. The GPM core satellite carries an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. The avionics module on the core satellite contains a number of electronics boxes which are cooled by a network of aluminum/ammonia heat pipes and a honeycomb radiator which contains thirteen embedded aluminum/ammonia heat pipes. All heat pipes were individually tested by the vendor (Advanced Cooling Technologies, Inc.) prior to delivery. Following delivery to NASA, the flight avionics radiator and the flight spare transport heat pipes were mounted to flight-like test structure and a system level thermal vacuum test was performed. This test, which used simulators in place of all electronics boxes, was done to verify the operation of the thermal control system as a whole. This presentation will discuss the design of the avionics module heat pipes, and then discuss performance tests results for the individual heat pipes prior to delivery and for the system level thermal vacuum test. All heat pipes met their performance requirements. However, it was found that the power was too low in some instances to start all of the smaller radiator spreader heat pipes when they were tested in a reflux configuration (which is the nominal test configuration). Although this lowered the efficiency of the radiator somewhat, it did not impact the operating temperatures of the electronics boxes.
How can we constrain the amount of heat producing elements in the interior of Mars?
NASA Astrophysics Data System (ADS)
Grott, M.; Plesa, A.; Breuer, D.
2013-12-01
The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission to be launched in 2016 will study Mars' deep interior and help improving our knowledge about the interior structure and the thermal evolution of the planet - the latter is also directly linked to its volcanic history and atmospheric evolution. Measurements planned with the two main instruments, SEIS (Seismic Experiment for Interior Structure) and HP3 (Heat Flow and Physical Properties Package) aim to constrain the main structure of the planet, i.e. core, mantle and crust as well as the rate at which the planet loses the interior heat over its surface. Since the surface heat flow depends on the amount of radiogenic heat elements (HPE) present in the interior, it offers a measurable quantity which could constrain the heat budget. Being the principal agent regulating the heat budget which in turn influences partial melting in the interior, crustal and atmospheric evolution, the heat producing elements have a major impact on the entire the present temperature thermal history of the planet. To constrain the radiogenic heat elements of the planet from the surface heat flow is possible assuming that the urey number of the planet, which describes the contribution of internal heat production to the surface heat loss, is known. We have tested this assumption by calculating the thermal evolution of the planet with fully dynamical numerical simulations and by comparing the obtained present-day urey number for a set of different models/parameters (Fig. 1). For one-plate planets like Mars, numerical models show - in contrast to models for the Earth, where plate tectonics play a major role adding more complexity to the system - that the urey ratio is mainly sensitive to two effects: the efficiency of cooling due to the temperature-dependence of the viscosity and the mean half-life time of the long lived radiogenic isotopes. The temperature-dependence of the viscosity results in the so-called thermostat effect regulating the interior temperature such that the present-day temperatures are independent of the initial temperature distribution. If the thermostat effect is efficient as we show for the assumed Martian mantle rheology, and if the system is not dominated by radioactive isotopes like Thorium with a half-life much longer than the age of the planet as in the model of [3], all numerical simulations show similar today's values for the urey number (Fig. 1). Knowing the surface heat loss from the upcoming heat flow measurements planned for the InSight mission, one can distinguish then between different radiogenic heat source models [1, 2, 3, 4]. REFERENCES [1] Wänke et al., 94; [2] Lodders & Fegley, 97; [3] Morgan & Anders, 79; [4] Treiman et al., 86 Fig. 1: a) the influence of the reference viscosity and initial upper thermal boundary layer (TBL) on the urey ratio using HPE density from [1]; b) different models for HPE density; c) the urey ratio for different HPE models and 1e22 Pa s reference viscosity.
Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter
2017-10-15
Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow velocities are low, appropriate measures for assessing thermal impacts should specifically include a quantification of heat-loads into the subsurface which result in a more diffuse thermal contamination of urban groundwater resources. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Knysh, Yu A.; Xanthopoulou, G. G.
2018-01-01
The object of the study is a catalytic combustion chamber that provides a highly efficient combustion process through the use of effects: heat recovery from combustion, microvortex heat transfer, catalytic reaction and acoustic resonance. High efficiency is provided by a complex of related technologies: technologies for combustion products heat transfer (recuperation) to initial mixture, catalytic processes technology, technology for calculating effective combustion processes based on microvortex matrices, technology for designing metamaterials structures and technology for obtaining the required topology product by laser fusion of metal powder compositions. The mesoscale level structure provides combustion process with the use of a microvortex effect with a high intensity of heat and mass transfer. High surface area (extremely high area-to-volume ratio) created due to nanoscale periodic structure and ensures catalytic reactions efficiency. Produced metamaterial is the first multiscale product of new concept which due to combination of different scale level periodic topologies provides qualitatively new set of product properties. This research is aimed at solving simultaneously two global problems of the present: ensure environmental safety of transport systems and power industry, as well as the economy and rational use of energy resources, providing humanity with energy now and in the foreseeable future.
Development of High Heat Input Welding Offshore Steel as Normalized Condition
NASA Astrophysics Data System (ADS)
Deng, Wei; Qin, Xiaomei
The heavy plate used for offshore structure is one of the important strategic products. In recent years, there is an increasing demand for heavy shipbuilding steel plate with excellent weldability in high heat input welding. During the thermal cycle, the microstructure of the heat affected zone (HAZ) of plates was damaged, and this markedly reduced toughness of HAZ. So, how to improve the toughness of HAZ has been a key subject in the fields of steel research. Oxide metallurgy is considered as an effective way to improve toughness of HAZ, because it could be used to retard grain growth by fine particles, which are stable at the high temperature.The high strength steel plate, which satisfies the low temperature specification, has been applied to offshore structure. Excellent properties of the plates and welded joints were obtained by oxide metallurgy technology, latest controlled rolling and accelerated cooling technology using Ultra-Fast Cooling (an on-line accelerated cooling system). The 355MPa-grade high strength steel plates with normalizing condition were obtained, and the steels have excellent weldability with heat input energy of 79 287kJ/cm, and the nil ductility transition (NDT) temperature was -70°C, which can satisfy the construction of offshore structure in cold regions.
Seal Technology for Hypersonic Vehicle and Propulsion: An Overview
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
2008-01-01
Hypersonic vehicles and propulsion systems pose an extraordinary challenge for structures and materials. Airframes and engines require lightweight, high-temperature materials and structural configurations that can withstand the extreme environment of hypersonic flight. Some of the challenges posed include very high temperatures, heating of the whole vehicle, steady-state and transient localized heating from shock waves, high aerodynamic loads, high fluctuating pressure loads, potential for severe flutter, vibration, and acoustic loads and erosion. Correspondingly high temperature seals are required to meet these aggressive requirements. This presentation reviews relevant seal technology for both heritage (e.g. Space Shuttle, X-15, and X-38) vehicles and presents several seal case studies aimed at providing lessons learned for future hypersonic vehicle seal development. This presentation also reviews seal technology developed for the National Aerospace Plane propulsion systems and presents several seal case studies aimed at providing lessons learned for future hypersonic propulsion seal development.
Structured thermal surface for radiative camouflage.
Li, Ying; Bai, Xue; Yang, Tianzhi; Luo, Hailu; Qiu, Cheng-Wei
2018-01-18
Thermal camouflage has been successful in the conductive regime, where thermal metamaterials embedded in a conductive system can manipulate heat conduction inside the bulk. Most reported approaches are background-dependent and not applicable to radiative heat emitted from the surface of the system. A coating with engineered emissivity is one option for radiative camouflage, but only when the background has uniform temperature. Here, we propose a strategy for radiative camouflage of external objects on a given background using a structured thermal surface. The device is non-invasive and restores arbitrary background temperature distributions on its top. For many practical candidates of the background material with similar emissivity as the device, the object can thereby be radiatively concealed without a priori knowledge of the host conductivity and temperature. We expect this strategy to meet the demands of anti-detection and thermal radiation manipulation in complex unknown environments and to inspire developments in phononic and photonic thermotronics.
Experimental evidence for the lattice instability of Bi-based superconducting systems
NASA Astrophysics Data System (ADS)
Yusheng, He; Jiong, Xiang; Hsin, Wang; Aisheng, He; Jincang, Zhang; Fanggao, Chang
1989-11-01
Ultrasonic measurements, specific heat and thermal analysis experiments, X-ray diffraction study and infrared investigation revealed that there are anomalous structural changes or lattice instabilities near 200 K in single 2212 or 2223 phase samples of Bi(Pb)-Sr-Ca-Cu-O system. Detailed study showed that anomalous changes or lattice instabilities are isothermal-like processes and have the characteristics of a structural phase transition, accompanying with increases in lattice constants. Possible mechanism for this lattice instability is discussed.
A Non Rigid Reusable Surface Insulation Concept for the Space Shuttle Thermal Protection System
NASA Technical Reports Server (NTRS)
Alexander, J. G.
1973-01-01
A reusable thermal protection system concept was developed for the space shuttle that utilizes a flexible, woven ceramic mat insulation beneath an aerodynamic skin and moisture barrier consisting of either a dense ceramic coating or a super alloy metallic foil. The resulting heat shield material has unique structural characteristics. The shear modulus of the woven mat is very low such that bending and membrane loads introduced into the underlying structural panel remain isolated from the surface skin.
Lagrangian Coherent Structures in Tropical Cyclone Intensification
2011-09-21
the system -scale circulation.20 1For reference, the connection between the moist entropy (s) and θe is s=cp ln(θe), where cp is the specific heat of...of sensible heat, moisture, and momentum between the atmosphere and the ocean . The model calcu- lations were initialized using a convectively neutral...acpd-11-1-2011 © Author(s) 2011. CC Attribution 3.0 License. Atmospheric Chemistry and Physics Discussions This discussion paper is/has been under
Minimum weight passive insulation requirements for hypersonic cruise vehicles.
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1972-01-01
Analytical solutions are derived for two representative cases of the transient heat conduction equation to determine the minimum weight requirements for passive insulation systems of hypersonic cruise vehicles. The cases discussed are the wet wall case with the interior wall temperature held to that of the boiling point of the fuel throughout the flight, and the dry wall case where the heat transferred through the insulation is absorbed by the interior structure whose temperature is allowed to rise.
Multifunctional Nanofluids with 2D Nanosheets for thermal management and tribological applications
NASA Astrophysics Data System (ADS)
Taha Tijerina, Jose Jaime
Conventional heat-transfer fluids such as water, ethylene glycol, standard oils and other lubricants are typically low-efficiency heat-transfer fluids. Thermal management plays a critical factor in many applications where these fluids can be used, such as in motors/engines, solar cells, biopharmaceuticals, fuel cells, high voltage power transmission systems, micro/nanoelectronics mechanical systems (MEMS/NEMS), and nuclear cooling among others. These insulating fluids require superb filler dispersion, high thermal conduction, and for certain applications as in electrical/electronic devices also electrical insulation. The miniaturization and high efficiency of electrical/electronic devices in these fields demand successful heat management and energy-efficient fluid-based heat-transfer systems. Recent advances in layered materials enable large scale synthesis of various two-dimensional (2D) structures. Some of these 2D materials are good choices as nanofillers in heat transfer fluids; mainly due to their inherent high thermal conductivity (TC) and high surface area available for thermal energy transport. Among various 2D-nanostructures, hexagonal boron nitride (h-BN) and graphene (G) exhibit versatile properties such as outstanding TC, excellent mechanical stability, and remarkable chemical inertness. The following research, even though investigate various conventional fluids, will focus on dielectric insulating nanofluids (mineral oil -- MO) with significant thermal performance. It is presented the plan for synthesis and characterization of stable high-thermal conductivity nanofluids using 2D-nanostructures of h-BN, which will be further incorporated at diverse filler concentrations to conventional fluids for cooling applications, without compromising its electrical insulating property. For comparison, properties of h-BN based fluids are compared with conductive fillers such as graphene; where graphene has similar crystal structure of h-BN and also has similar bulk thermal conductivity. Moreover, bot h-BN and graphene are exfoliated through the same method. In essence, this project, for the first time, unravels the behavior of the exfoliated h-BN effect on reinforced conventional fluids under the influence of atomistic scale structures (particularly, electrically insulating and lubricant/cutting fluids), thereby linking the physical, electrical and mechanical properties of these nanoscale materials. The innovative experimental approach is expected to result in de novo strategies for introducing these systems for new concepts and variables to engineer nanofluid properties suitable for very promising industrial applications.
Thermodynamic properties Ar films on the surface of a bundle of carbon nanotubes
NASA Astrophysics Data System (ADS)
Cole, Milton; Gatica, Silvina
2005-03-01
We employ canonical Monte Carlo simulations to explore the properties of an Argon film adsorbed on the external surface of a bundle of carbon nanotubes. The study is concerned primarily with three properties: specific heat, differential heat of adsorption, and Ar-Ar correlation functions. These measurable functions exhibit information about the dependence of film structure on coverage and temperature. Our results are intended to stimulate further experimental studies of this system and analogous systems involving other gases on nanotube bundles. One of the more interesting general results is that the specific heat is typically larger than might have been expected. Particularly remarkable outcome from the correlation function studies include the reduced longitudinal correlations in the groove and striped phases as T rises above 60 K. These results would be amenable to testing by diffraction experiments.
Comparative Study of Shrinkage and Non-Shrinkage Model of Food Drying
NASA Astrophysics Data System (ADS)
Shahari, N.; Jamil, N.; Rasmani, KA.
2016-08-01
A single phase heat and mass model has always been used to represent the moisture and temperature distribution during the drying of food. Several effects of the drying process, such as physical and structural changes, have been considered in order to increase understanding of the movement of water and temperature. However, the comparison between the heat and mass equation with and without structural change (in terms of shrinkage), which can affect the accuracy of the prediction model, has been little investigated. In this paper, two mathematical models to describe the heat and mass transfer in food, with and without the assumption of structural change, were analysed. The equations were solved using the finite difference method. The converted coordinate system was introduced within the numerical computations for the shrinkage model. The result shows that the temperature with shrinkage predicts a higher temperature at a specific time compared to that of the non-shrinkage model. Furthermore, the predicted moisture content decreased faster at a specific time when the shrinkage effect was included in the model.
Composite Study Of Aerosol Long-Range Transport Events From East Asia And North America
NASA Astrophysics Data System (ADS)
Jiang, X.; Waliser, D. E.; Guan, B.; Xavier, P.; Petch, J.; Klingaman, N. P.; Woolnough, S.
2011-12-01
While the Madden-Julian Oscillation (MJO) exerts pronounced influences on global climate and weather systems, current general circulation models (GCMs) exhibit rather limited capability in representing this prominent tropical variability mode. Meanwhile, the fundamental physics of the MJO are still elusive. Given the central role of the diabatic heating for prevailing MJO theories and demands for reducing the model deficiencies in simulating the MJO, a global model inter-comparison project on diabatic processes and vertical heating structure associated with the MJO has been coordinated through a joint effort by the WCRP-WWRP/THORPEX YOTC MJO Task Force and GEWEX GASS Program. In this presentation, progress of this model inter-comparison project will be reported, with main focus on climate simulations from about 27 atmosphere-only and coupled GCMs. Vertical structures of heating and diabatic processes associated with the MJO based on multi-model simulations will be presented along with their reanalysis and satellite estimate counterparts. Key processes possibly responsible for a realistic simulation of the MJO, including moisture-convection interaction, gross moist stability, ocean coupling, and surface heat flux, will be discussed.
Reflexive aerostructures: increased vehicle survivability
NASA Astrophysics Data System (ADS)
Margraf, Thomas W.; Hemmelgarn, Christopher D.; Barnell, Thomas J.; Franklin, Mark A.
2007-04-01
Aerospace systems stand to benefit significantly from the advancement of reflexive aerostructure technologies for increased vehicle survivability. Cornerstone Research Group Inc. (CRG) is developing lightweight, healable composite systems for use as primary load-bearing aircraft components. The reflexive system is comprised of piezoelectric structural health monitoring systems, localized thermal activation systems, and lightweight, healable composite structures. The reflexive system is designed to mimic the involuntary human response to damage. Upon impact, the structural health monitoring system will identify the location and magnitude of the damage, sending a signal to a discrete thermal activation control system to resistively heat the shape memory polymer (SMP) matrix composite above activation temperature, resulting in localized shape recovery and healing of the damaged areas. CRG has demonstrated SMP composites that can recover 90 percent of flexural yield stress and modulus after postfailure healing. During the development, CRG has overcome issues of discrete activation, structural health monitoring integration, and healable resin systems. This paper will address the challenges associated with development of a reflexive aerostructure, including integration of structural health monitoring, discrete healing, and healable shape memory resin systems.
A feasible thermal-cycle screening system for cryogenic semiconductor components
NASA Astrophysics Data System (ADS)
Wu, Ligang; Liu, Dafu; Huang, Yimin; Zhu, Sangen; Gong, Haimei
2005-01-01
For the limit of its lifetime, the Stirling cooler is operated on the intermittent mode in satellite in some cases. Thus such cryogenic semiconductor components as HgCdTe mid or long wavelength infrared (IR) detectors are subjected to thousands of repeated thermal cycles from below -173°C to room temperature. Therefore, a series of experiments focused on quality, performance and reliability are essential in order to satisfy the reasonable requirements. Accordingly, a feasible thermal cycle screening system is put forward. And a vast experimental data show that thermal cycle tests play the most effective role in the environment stress screen (ESS). In this paper, we introduce the system to help to study the main failure mechanisms and improve the performance of the semiconductor components. Such main failure mechanisms as solder-ball invalidation encountered commonly in the detector modules, which is due to the large thermal expansion coefficient mismatch among different materials. The thermal cycle system is based on the principle of heat exchange. We expect HgCdTe IR detectors be cooled to lower than -173°C and heated to room temperature in a few minutes. Above all, we simulate the heating and cooling system through finite element method (FEM). As a result, the computations reveal that the IR detectors can be heated and cooled at a higher rate than expected. A consequent design of the entire system is founded on the simulation. At last, we adjust the mechanical structure of heat exchange system to the adaptive state to accomplish the ESS. The thermal cycle screening system includes an autocontrol part and a test part. The autocontrol part is adopted to realize the heat exchange between IR detectors and the environment, and the test one to inspect the temperature and electrical parameters of these detectors. And at least four IR detector samples can be screened at one time.
Synthesis of complex oxides with garnet structure by spray drying of an aqueous salt solution
NASA Astrophysics Data System (ADS)
Makeenko, A. V.; Larionova, T. V.; Klimova-Korsmik, O. G.; Starykh, R. V.; Galkin, V. V.; Tolochko, O. V.
2017-04-01
The use of spray drying to obtain powders of complex oxides with a garnet structure has demonstrated. The processes occurring during heating of the synthesized oxide-salt product, leading to the formation of a material with a garnet structure, have been investigated using DTA, TGA, XPS, and XRD. It has been shown that a single-phase garnet structure of system (Y x Gd(3- x))3Al5O12 can be synthesized over the entire range of compositions.
Sensing the heat stress by Mammalian cells.
Cates, Jordan; Graham, Garrett C; Omattage, Natalie; Pavesich, Elizabeth; Setliff, Ian; Shaw, Jack; Smith, Caitlin Lee; Lipan, Ovidiu
2011-08-11
The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF), which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock element on the DNA and control the expression of the hsp70 gene. The Hsp70 proteins protect cells from thermal stress. Thermal stress causes the unfolding of proteins, perturbing thus the pathways under their control. By binding to these proteins, Hsp70 allows them to refold and prevents their aggregation. The modulation of the activity of the hsp70-promoter by the intensity of the input stress is thus critical for cell's survival. The promoter activity starts from a basal level and rapidly increases once the stress is applied, reaches a maximum level and attenuates slowely back to the basal level. This phenomenon is the hallmark of many experimental studies and of all computational network analysis. The molecular construct used as a measure of the response to thermal stress is a Hsp70-GFP fusion gene transfected in Chinese hamster ovary (CHO) cells. The time profile of the GFP protein depends on the transient activity, Transient(t), of the heat shock system. The function Transient(t) depends on hsp70 promoter activity, transcriptional regulation and the translation initiation effects elicited by the heat stress. The GFP time profile is recorded using flow cytometry measurements, a technique that allows a quantitative measurement of the fluorescence of a large number of cells (104). The GFP responses to one and two heat shocks were measured for 261 conditions of different temperatures and durations. We found that: (i) the response of the cell to two consecutive shocks (i.e., no recovery time in between shocks) depends on the order of the input shocks, that is the shocks do not commute; (ii) the responses may be classified as mild or severe, depending on the temperature level and the duration of the heat shock and (iii) the response is highly sensitive to small variations in temperature. We propose a mathematical model that maps temperature into the transient activity using experimental data that describes the time course of the response to input thermal stress. The model is built on thermotolerance without recovery time, sharp sensitivity to small variations in temperature and the existence of mild and severe classes of stress responses. The theoretical predictions are tested against experimental data using a series of double-shock inputs. The theoretical structure is represented by a sequence of three cascade processes that transform the input stress into the transient activity. The structure of the cascade is nonlinear-linear-nonlinear (NLN). The first nonlinear system (N) from the NLN structure represents the amplification of small changes in the environmental temperature; the linear system (L) represents the thermotolerance without recovery time, whereas the last system (N) represents the transition of the cell's response from a mild to a severe shock.
Thermal fatigue tests of a radiative heat shield panel for a hypersonic transport
NASA Technical Reports Server (NTRS)
Webb, Granville L.; Clark, Ronald K.; Sharpe, Ellsworth L.
1985-01-01
A pair of corrugation stiffened, beaded skin Rene 41 heat shield panels were exposed to 20,000 thermal cycles between room temperature and 1450 F to evaluate the thermal fatigue response of Rene 41 metallic heat shields for hypersonic cruise aircraft applications. At the conclusion of the tests, the panels retained substantial structural integrity; however, there were cracks and excessive wear in the vicinity of fastener holes and there was an 80-percent loss in ductility of the skin. Shrinkage of the panel which caused the cracks and wear must be considered in design of panels for Thermal Protection Systems (TPS) applications.
Home retrofitting for energy conservation and solar considerations
NASA Astrophysics Data System (ADS)
1981-10-01
A manual which explains both the key concepts behind the need for and the home energy efficiency improvement is reviewed. A comprehensive picture of how home energy use is effected by the inhabitants and by the structure itself is presented. The manual explains: looking at energy, how the heat transfer occurs between houses and humans, energy audits and how to use them, energy conservation actions to do now to reduce energy use. Schemes to reduce infiltration, how to increase insulation, and what to do with windows and doors, heating and heat distribution systems, and water heaters are included. Solar energy options are explained, as well as financing and tax credits.
Sverdlova, Nina S; Lambertz, Markus; Witzel, Ulrich; Perry, Steven F
2012-01-01
Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD) model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus) in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.
NASA Technical Reports Server (NTRS)
Plachta, David W.; Tucker, Stephen; Hoffman, David J.
1993-01-01
This paper analyzes, defines, and sizes cryogenic storage thermal control systems that meet the requirements of future NASA Mars human exploration missions. The design issues of this system include the projection of the existing Multilayer Insulation data base for cryogenic storage to much thicker (10 cm or more) insulation systems, the unknown heat leak from mechanical interfaces, and the thermal and structural performance effects of the large tank sizes required for a Mars mission. Acknowledging these unknown effects, heat loss projections are made based on extrapolation of the existing data base. The results indicate that hydrogen, methane, and oxygen are feasible propellants, and that the best suited thermal control sytems are 'thick' MLI, thermodynamic vent sytems, cryocoolers, and vacuum jackets.
Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe1-x Sb x compounds
NASA Astrophysics Data System (ADS)
Guillou, F.; Pathak, A. K.; Hackett, T. A.; Paudyal, D.; Mudryk, Y.; Pecharsky, V. K.
2017-12-01
Experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R = rare-earth, T = transition metal and X = p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions 0.65 ≤slant x ≤slant 0.9 . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions 0 ≤slant x < 0.65 lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, x ≈ 0.7 , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro-ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for x = 0.75 indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.
Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe 1–xSb x compounds
Guillou, F.; Pathak, A. K.; Hackett, T. A.; ...
2017-11-09
Here, experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R = rare-earth,more » $ T$ = transition metal and X = p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions $$0.65 \\leqslant x \\leqslant 0.9$$ . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions $$0 \\leqslant x < 0.65$$ lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, $$x \\approx 0.7$$ , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro–ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for $x = 0.75$ indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.« less
Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe 1–xSb x compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillou, F.; Pathak, A. K.; Hackett, T. A.
Here, experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R = rare-earth,more » $ T$ = transition metal and X = p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions $$0.65 \\leqslant x \\leqslant 0.9$$ . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions $$0 \\leqslant x < 0.65$$ lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, $$x \\approx 0.7$$ , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro–ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for $x = 0.75$ indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.« less
A thermo-elastoplastic model for soft rocks considering structure
NASA Astrophysics Data System (ADS)
He, Zuoyue; Zhang, Sheng; Teng, Jidong; Xiong, Yonglin
2017-11-01
In the fields of nuclear waste geological deposit, geothermy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the superloading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the superloading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase.
Fuel processing in integrated micro-structured heat-exchanger reactors
NASA Astrophysics Data System (ADS)
Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.
Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.
Study of sintering on Mg-Zn-Ca alloy system
NASA Astrophysics Data System (ADS)
Annur, Dhyah; Lestari, Franciska P.; Erryani, Aprilia; Kartika, Ika
2018-05-01
Magnesium and its alloy have gained a lot of interest to be used in biomedical application due to its biodegradable and biocompatible properties. In this study, sintering process in powder metallurgy was chosen to fabricatenonporous Mg-6Zn-1Ca (in wt%) alloy and porous Mg-6Zn-1Ca-10 Carbamide alloy. For creating porous alloy, carbamide (CO(NH2)2 was added to alloy system as the space holder to create porous structure material. Effect of the space holder addition and sintering temperature on porosity, phase formation, mechanical properties, and corrosion properties was observed. Sintering process was done in a tube furnace under Argon atmosphere in for 5 hours. The heat treatment was done in two steps; heated up at 250 °C for 4 hours to decompose spacer particle, followed by heated up at 580 °C or 630 °C for 5 hours. The porous structure of the resulted alloys was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction (XRD) analysis. Mechanical properties were examined using compression testing. From this study, increasing sintering temperature up to 630 °C reduced the mechanical properties of Mg-Zn-Ca alloy.
NASA Astrophysics Data System (ADS)
Svanidze, E.; Amon, A.; Prots, Yu.; Leithe-Jasper, A.; Grin, Yu.
2018-03-01
In the antiferromagnetic heavy-fermion compound U2Zn17 , the Sommerfeld coefficient γ can be enhanced if all Zn atoms are replaced by a combination of Cu and Al or Cu and Ga. In the former ternary phase, glassy behavior was observed, while for the latter, conflicting ground-state reports suggest material quality issues. In this work, we investigate the U2Cu17 -xGax substitutional series for 4.5 ≤x ≤9.5 . In the homogeneity range of the phase with the Th2Zn17 -type of crystal structure, all samples exhibit glassy behavior with 0.6 K ≤Tf≤1.8 K . The value of the electronic specific heat coefficient γ in this system exceeds 900 mJ/molUK2. Such a drastic effective-mass enhancement can possibly be attributed to the effects of structural disorder, since the role of electron concentration and lattice compression is likely minimal. Crystallographic disorder is also responsible for the emergence of non-Fermi-liquid behavior in these spin-glass materials, as evidenced by logarithmic divergence of magnetic susceptibility, specific heat, and electrical resistivity.