A High-Sensitivity Current Sensor Utilizing CrNi Wire and Microfiber Coils
Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou
2014-01-01
We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications. PMID:24824372
A high-sensitivity current sensor utilizing CrNi wire and microfiber coils.
Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou
2014-05-12
We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications.
Two-channel highly sensitive sensors based on 4 × 4 multimode interference couplers
NASA Astrophysics Data System (ADS)
Le, Trung-Thanh
2017-12-01
We propose a new kind of microring resonators (MRR) based on 4 × 4 multimode interference (MMI) couplers for multichannel and highly sensitive chemical and biological sensors. The proposed sensor structure has advantages of compactness and high sensitivity compared with the reported sensing structures. By using the transfer matrix method (TMM) and numerical simulations, the designs of the sensor based on silicon waveguides are optimized and demonstrated in detail. We apply our structure to detect glucose and ethanol concentrations simultaneously. A high sensitivity of 9000 nm/RIU, detection limit of 2 × 10‒4 for glucose sensing and sensitivity of 6000 nm/RIU, detection limit of 1.3 × 10‒5 for ethanol sensing are achieved.
NASA Astrophysics Data System (ADS)
Ma, Xiaoxue; Chen, Xin; Nie, Hongrui; Yang, Daquan
2018-01-01
Recently, due to its superior characteristics and simple manufacture, such as small size, low loss, high sensitivity and convenience to couple, the optical fiber sensor has become one of the most promising sensors. In order to achieve the most effective realization of light propagation by changing the structure of sensors, FOM(S •Q/λres) ,which is determined by two significant variables Q-factor and sensitivity, as a trade-off parameter should be optimized to a high value. In typical sensors, a high Q can be achieved by confining the optical field in the high refractive index dielectric region to make an interaction between analytes and evanescent field of the resonant mode. However, the ignored sensitivity is relatively low with a high Q achieved, which means that the resonant wavelength shift changes non-obviously when the refractive index increases. Meanwhile, the sensitivity also leads to a less desirable FOM. Therefore, a gradient structure, which can enhance the performance of sensors by achieving high Q and high sensitivity, has been developed by Kim et al. later. Here, by introducing parabolic-tapered structure, the light field localized overlaps strongly and sufficiently with analytes. And based on a one-dimensional photonic-crystal nanofiber air-mode cavity, a creative optical fiber sensor is proposed by combining good stability and transmission characteristics of fiber and strengths of tapered structure, realizing excellent FOM {4.7 x 105 with high Q-factors (Q{106) and high sensitivities (<700 nm/RIU).
Berengut, J C; Dzuba, V A; Flambaum, V V
2010-09-17
We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.
Coupled Aerodynamic and Structural Sensitivity Analysis of a High-Speed Civil Transport
NASA Technical Reports Server (NTRS)
Mason, B. H.; Walsh, J. L.
2001-01-01
An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite-element structural analysis and computational fluid dynamics aerodynamic analysis. In a previous study, a multi-disciplinary analysis system for a high-speed civil transport was formulated to integrate a set of existing discipline analysis codes, some of them computationally intensive, This paper is an extension of the previous study, in which the sensitivity analysis for the coupled aerodynamic and structural analysis problem is formulated and implemented. Uncoupled stress sensitivities computed with a constant load vector in a commercial finite element analysis code are compared to coupled aeroelastic sensitivities computed by finite differences. The computational expense of these sensitivity calculation methods is discussed.
Self-Assembled ZnO Nanosheet-Based Spherical Structure as Photoanode in Dye-Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Ameri, Mohsen; Raoufi, Meysam; Zamani-Meymian, M.-R.; Samavat, Feridoun; Fathollahi, M.-R.; Mohajerani, Ezeddin
2018-03-01
High surface area and enhanced light scattering of ZnO nanosheet aggregates have made them a promising active layer candidate material for fabrication of nanostructure dye-sensitized solar cells. Here, we propose a facile preparation method of such ZnO nanosheet structures, and in order to verify their applicability as photoanode material for dye-sensitized solar cells, we employ morphological, optical, structural and electrical measurements. The results reveal the high surface area available for dye molecules for enhancing adsorption, high light scattering and competitive power conversion efficiencies compared to the works in literature. Finally, the device is optimized with respect to the photoanode thickness. The favorable features shown here can extend the application of the structure to other types of sensitization-based perovskite and quantum dot solar cells.
Meng, Xiawei; Zhao, Yulong
2016-01-01
A piezoresistive pressure sensor with a beam-membrane-dual-island structure is developed for micro-pressure monitoring in the field of aviation, which requires great sensitivity and overload resistance capacity. The design, fabrication, and test of the sensor are presented in this paper. By analyzing the stress distribution of sensitive elements using the finite element method, a novel structure incorporating sensitive beams with a traditional bossed diaphragm is built up. The proposed structure proved to be advantageous in terms of high sensitivity and high overload resistance compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of surface stress and deflection based on ANSYS simulation results are performed to establish the sensor equations. Fabricated on an n-type single crystal silicon wafer, the sensor chips are wire-bonded to a printed circuit board (PCB) and packaged for experiments. The static and dynamic characteristics are tested and discussed. Experimental results show that the sensor has a sensitivity as high as 17.339 μV/V/Pa in the range of 500 Pa at room temperature, and a high overload resistance of 200 times overpressure. Due to the excellent performance, the sensor can be applied in measuring micro-pressure lower than 500 Pa. PMID:27005627
Balloon-like singlemode-tapered multimode-singlemode fiber structure for refractive index sensing
NASA Astrophysics Data System (ADS)
Yang, Biyao; Niu, Yanxiong; Yang, Bowen; Dai, Lingling; Hu, Yanhui; Yin, Yiheng; Ding, Ming
2017-10-01
A novel high sensitivity refractive index sensor based on balloon-like singlemode-tapered multimode-singlemode (STMS) fiber structure has been proposed and experimentally demonstrated. Combining the tapering and bending endows the proposed sensor with large evanescent field, resulting in high sensitivity. Experimental results show that the proposed sensor has an average sensitivity of 1104.75 nm/RIU (RI Unit) in the range of 1.33-1.41 and a maximum sensitivity of 3374.50 nm/RIU at RI of 1.41.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Di-Cheng; Pan, You-Wei; Lin, Shih-Wei
2016-04-25
We demonstrate experimentally the two-terminal magnetic sensors exhibiting an extraordinary magneto-resistance effect by using an InGaAs quantum well channel with a metal-shunting structure. A high magneto-resistance of 17.3% and a sensitivity of 488.1 Ω/T have been obtained at 1 T and room temperature with our geometrical design. The two-contact configuration and the high-mobility electron transistor-compatible epitaxy structure make the devices promising for high-sensitivity magnetic sensing integration and applications.
Highly sensitive biochemical sensor utilizing Bragg grating in submicron Si/SiO2 waveguides
NASA Astrophysics Data System (ADS)
Tripathi, Saurabh Mani; Kumar, Arun; Meunier, Jean-Pierre; Marin, Emmanuel
2009-05-01
We present a novel highly sensitive biochemical sensor based on a Bragg grating written in the cladding region of a submicron planar Si/SiO2 waveguide. Owing to the high refractive index contrast at the Si/SiO2 boundary the TM modal power is relatively high in low refractive index sensing region, leading to higher sensitivity in this configuration [1]. Waveguide parameters have been optimized to obtain maximum modal power in the sensing region (PSe) and an optimum core width corresponding to maximum sensitivity is found to exist while operating in TM mode configuration, as has been shown in Fig. 1. It has been found that operating in TM mode configuration at optimum core width the structure exhibits extremely high sensitivity, ~ 5×10-6 RIU - 1.35×10-6 RIU for the ambient refractive indices between 1.33 - 1.63. Such high sensitivities are typically attainable for Surface Plasmon Polariton (SPP) based biosensors and is much higher than any non SPP based sensors. Being free from any metallic layer or bulky prism the structure is easy to realize. Owing to its simple structure and small dimensions the proposed sensor can be integrated with planar lightwave circuits and could be used in handy lab-on-a-chip devices. The device may find application in highly sensitive biological/chemical sensing areas in civil and defense sectors where analyzing the samples at the point of need is required rather than sending it to some centralized laboratory.
Nano-textured high sensitivity ion sensitive field effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.
2016-02-07
Nano-textured gate engineered ion sensitive field effect transistors (ISFETs), suitable for high sensitivity pH sensors, have been realized. Utilizing a mask-less deep reactive ion etching results in ultra-fine poly-Si features on the gate of ISFET devices where spacing of the order of 10 nm and less is achieved. Incorporation of these nano-sized features on the gate is responsible for high sensitivities up to 400 mV/pH in contrast to conventional planar structures. The fabrication process for this transistor is inexpensive, and it is fully compatible with standard complementary metal oxide semiconductor fabrication procedure. A theoretical modeling has also been presented to predict themore » extension of the diffuse layer into the electrolyte solution for highly featured structures and to correlate this extension with the high sensitivity of the device. The observed ultra-fine features by means of scanning electron microscopy and transmission electron microscopy tools corroborate the theoretical prediction.« less
Hsieh, Chien-Kuo; Tsai, Ming-Chi; Yen, Ming-Yu; Su, Ching-Yuan; Chen, Kuei-Fu; Ma, Chen-Chi M; Chen, Fu-Rong; Tsai, Chuen-Horng
2012-03-28
We synthesized platelet graphitic-nanofibres (GNFs) directly onto FTO glass and applied this forest of platelet GNFs as a highly porous structural counter-electrode in dye-sensitized solar cells (DSSCs). We investigated the electrochemical properties of counter-electrodes made from the highly porous structural GNFs and the photoconversion performance of the cells made with these electrodes.
Sensitivity to musical structure in the human brain
McDermott, Josh H.; Norman-Haignere, Sam; Kanwisher, Nancy
2012-01-01
Evidence from brain-damaged patients suggests that regions in the temporal lobes, distinct from those engaged in lower-level auditory analysis, process the pitch and rhythmic structure in music. In contrast, neuroimaging studies targeting the representation of music structure have primarily implicated regions in the inferior frontal cortices. Combining individual-subject fMRI analyses with a scrambling method that manipulated musical structure, we provide evidence of brain regions sensitive to musical structure bilaterally in the temporal lobes, thus reconciling the neuroimaging and patient findings. We further show that these regions are sensitive to the scrambling of both pitch and rhythmic structure but are insensitive to high-level linguistic structure. Our results suggest the existence of brain regions with representations of musical structure that are distinct from high-level linguistic representations and lower-level acoustic representations. These regions provide targets for future research investigating possible neural specialization for music or its associated mental processes. PMID:23019005
Yan, Lu; Gui, Zhiguo; Wang, Guanjun; An, Yongquan; Gu, Jinyu; Zhang, Meiqin; Liu, Xinglin; Wang, Zhibin; Wang, Gao; Jia, Pinggang
2017-01-01
A high-sensitivity, low-cost, ultrathin, hollow fiber micro bubble structure was proposed; such a bubble can be used to develop a high-sensitivity strain sensor based on a Fabry–Perot interferometer (FPI). The micro bubble is fabricated at the fiber tip by splicing a glass tube to a single mode fiber (SMF) and then the glass tube is filled with gas in order to expand and form a micro bubble. The sensitivity of the strain sensor with a cavity length of about 155 μm and a bubble wall thickness of about 6 μm was measured to be up to 8.14 pm/με. PMID:28282960
Yan, Lu; Gui, Zhiguo; Wang, Guanjun; An, Yongquan; Gu, Jinyu; Zhang, Meiqin; Liu, Xinglin; Wang, Zhibin; Wang, Gao; Jia, Pinggang
2017-03-09
A high-sensitivity, low-cost, ultrathin, hollow fiber micro bubble structure was proposed; such a bubble can be used to develop a high-sensitivity strain sensor based on a Fabry-Perot interferometer (FPI). The micro bubble is fabricated at the fiber tip by splicing a glass tube to a single mode fiber (SMF) and then the glass tube is filled with gas in order to expand and form a micro bubble. The sensitivity of the strain sensor with a cavity length of about 155 μm and a bubble wall thickness of about 6 μm was measured to be up to 8.14 pm/μϵ.
NASA Astrophysics Data System (ADS)
Xu, Tingzhong; Wang, Hongyan; Xia, Yong; Zhao, Zhiming; Huang, Mimi; Wang, Jiuhong; Zhao, Libo; Zhao, Yulong; Jiang, Zhuangde
2017-12-01
A novel micro-electromechanical systems piezoresistive pressure sensor with a diagonally positioned peninsula-island structure has high sensitivity for ultralow- pressure measurement. The pressure sensor was designed with a working range of 0-500 Pa and had a high sensitivity of 0.06 mV·V-1·Pa-1. The trade-off between high sensitivity and linearity was alleviated. Moreover, the influence of the installation angle on the sensing chip output was analyzed, and an application experiment of the sensor was conducted using the built pipettor test platform. Findings indicated that the proposed pressure sensor had sufficient resolution ability and accuracy to detect the pressure variation in the pipettor chamber. Therefore, the proposed pressure sensor has strong potential for medical equipment application.
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Storaasli, Olaf O.; Qin, Jiangning; Qamar, Ramzi
1994-01-01
An automatic differentiation tool (ADIFOR) is incorporated into a finite element based structural analysis program for shape and non-shape design sensitivity analysis of structural systems. The entire analysis and sensitivity procedures are parallelized and vectorized for high performance computation. Small scale examples to verify the accuracy of the proposed program and a medium scale example to demonstrate the parallel vector performance on multiple CRAY C90 processors are included.
High sensitivity rotation sensing based on tunable asymmetrical double-ring structure
NASA Astrophysics Data System (ADS)
Gu, Hong; Liu, Xiaoqing
2017-05-01
A very high sensitivity rotation sensor comprising a tunable asymmetrical double-ring structure (TADRS) coupled by a 3 × 3 coupler is presented. The phase difference caused by the TADRS between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in one cavity is amplified about 1.85 times while attenuated 79% in another. The maximum sensitivity of the TADRS sensor is two times larger than that of a single-ring structure. An experimental system is designed to verify the theoretical results and introduce the method of demodulation. The rotation sensor based on TADRS can enhance the sensitivity of the detection of the angular velocity by more than three orders of magnitude.
High-sensitivity sucrose erbium-doped fiber ring laser sensor
NASA Astrophysics Data System (ADS)
Khaleel, Wurood Abdulkhaleq; Al-Janabi, Abdul Hadi M.
2017-02-01
We investigate a high-sensitivity sucrose sensor based on a standard erbium-doped fiber ring laser incorporating a coreless fiber (CF). A single-mode-coreless-single mode (SCS) structure with a very low insertion loss has been constructed. The SCS fiber structure performed dual function as an intracavity fiber filter and/or a sensing element. The gain medium (erbium-doped fiber) is pumped by a 975-nm wavelength fiber coupled diode laser. Laser emission around 1537 nm with -2 dBm peak output power is obtained when a CF in SCS structure has a diameter of 125 μm. The 3-dB line-width of the laser is <0.14 nm, which is beneficial to high precision sensing. The sucrose concentration varied from 0% to 60%, and the relationship between the lasing wavelength and the sucrose concentration exhibited linear behavior (R2=0.996), with sensitivity of 0.16 nm/% was obtained. To improve the measurement sensitivity, the CF is etched by hydrofluoric acid. The splice joint of etched CF with SMF is a taper, which improves its sensitivity to sucrose changes. An average sensitivity of 0.57 nm/% and a high signal-to-noise ratio of 50 dB make the proposed sensor suitable for potential applications.
High sensitivity optical fiber liquid level sensor based on a compact MMF-HCF-FBG structure
NASA Astrophysics Data System (ADS)
Zhang, Yunshan; Zhang, Weigang; Chen, Lei; Zhang, Yanxin; Wang, Song; Yan, Tieyi
2018-05-01
An ultra-high sensitivity fiber liquid level sensor based on wavelength demodulation is proposed and demonstrated. The sensor is composed of a segment of multimode fiber and a large aperture hollow-core fiber assisted by a fiber Bragg grating (FBG). Interference occurs due to core mismatching and different modes with different effective refractive indices. The experimental results show that the liquid level sensitivity of the sensor is 1.145 nm mm‑1, and the linearity is up to 0.996. The dynamic temperature compensation of the sensor can be achieved by cascading an FBG. Considering the high sensitivity and compact structure of the sensor, it can be used for real-time intelligent monitoring of tiny changes in liquid level.
High Sensitivity Refractometer Based on Reflective Smf-Small Diameter No Core Fiber Structure.
Zhou, Guorui; Wu, Qiang; Kumar, Rahul; Ng, Wai Pang; Liu, Hao; Niu, Longfei; Lalam, Nageswara; Yuan, Xiaodong; Semenova, Yuliya; Farrell, Gerald; Yuan, Jinhui; Yu, Chongxiu; Zeng, Jie; Tian, Gui Yun; Fu, Yong Qing
2017-06-16
A high sensitivity refractive index sensor based on a single mode-small diameter no core fiber structure is proposed. In this structure, a small diameter no core fiber (SDNCF) used as a sensor probe, was fusion spliced to the end face of a traditional single mode fiber (SMF) and the end face of the SDNCF was coated with a thin film of gold to provide reflective light. The influence of SDNCF diameter and length on the refractive index sensitivity of the sensor has been investigated by both simulations and experiments, where results show that the diameter of SDNCF has significant influence. However, SDNCF length has limited influence on the sensitivity. Experimental results show that a sensitivity of 327 nm/RIU (refractive index unit) has been achieved for refractive indices ranging from 1.33 to 1.38, which agrees well with the simulated results with a sensitivity of 349.5 nm/RIU at refractive indices ranging from 1.33 to 1.38.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Xuenan; Zhang Yundong; Tian He
We propose to employ the storage of light in a dynamically tuned add-drop resonator to realize an optical gyroscope of ultrahigh sensitivity and compact size. Taking the impact of the linewidth of incident light on the sensitivity into account, we investigate the effect of rotation on the propagation of a partially coherent light field in this dynamically tuned slow-light structure. It is demonstrated that the fundamental trade-off between the rotation-detection sensitivity and the linewidth will be overcome and the sensitivity-linewidth product will be enhanced by two orders of magnitude in comparison to that of the corresponding static slow-light structure. Furthermore,more » the optical gyroscope employing the storage of light in the dynamically tuned add-drop resonator can acquire ultrahigh sensitivity by extremely short fiber length without a high-performance laser source of narrow linewidth and a complex laser frequency stabilization system. Thus the proposal in this paper provides a promising and feasible scheme to realize highly sensitive and compact integrated optical gyroscopes by slow-light structures.« less
Xu, Tingzhong; Lu, Dejiang; Zhao, Libo; Jiang, Zhuangde; Wang, Hongyan; Guo, Xin; Li, Zhikang; Zhou, Xiangyang; Zhao, Yulong
2017-01-01
The influence of diaphragm bending stiffness distribution on the stress concentration characteristics of a pressure sensing chip had been analyzed and discussed systematically. According to the analysis, a novel peninsula-island-based diaphragm structure was presented and applied to two differenet diaphragm shapes as sensing chips for pressure sensors. By well-designed bending stiffness distribution of the diaphragm, the elastic potential energy induced by diaphragm deformation was concentrated above the gap position, which remarkably increased the sensitivity of the sensing chip. An optimization method and the distribution pattern of the peninsula-island based diaphragm structure were also discussed. Two kinds of sensing chips combined with the peninsula-island structures distributing along the side edge and diagonal directions of rectangular diaphragm were fabricated and analyzed. By bonding the sensing chips with anti-overload glass bases, these two sensing chips were demonstrated by testing to achieve not only high sensitivity, but also good anti-overload ability. The experimental results showed that the proposed structures had the potential to measure ultra-low absolute pressures with high sensitivity and good anti-overload ability in an atmospheric environment. PMID:28846599
NASA Astrophysics Data System (ADS)
Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.
2013-03-01
Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.
Temperature insensitive curvature sensor based on cascading photonic crystal fiber
NASA Astrophysics Data System (ADS)
Fu, Guangwei; Li, Yunpu; Fu, Xinghu; Jin, Wa; Bi, Weihong
2018-03-01
A temperature insensitive curvature sensor is proposed based on cascading photonic crystal fiber. Using the arc fusion splicing method, this sensor is fabricated by cascading together a single-mode fiber (SMF), a three layers air holes structure of photonic crystal fiber (3PCF), a five layers air holes structure of photonic crystal fiber (5PCF) and a SMF in turn. So the structure SMF-3PCF-5PCF-SMF can be obtained with a total length of 20 mm. During the process of fabrication, the splicing machine parameters and the length of each optical fiber are adjusted to obtain a high sensitivity curvature sensor. The experimental results show that the curvature sensitivity is -8.40 nm/m-1 in the curvature variation range of 0-1.09 m-1, which also show good linearity. In the range of 30-90 °C, the temperature sensitivity is only about 3.24 pm/°C, indicating that the sensor is not sensitive to temperature. The sensor not only has the advantages of easy fabricating, simple structure, high sensitivity but also can solve the problem of temperature measurement cross sensitivity, so it can be used for different areas including aerospace, large-scale bridge, architectural structure health monitoring and so on.
NASA Astrophysics Data System (ADS)
Han, Jin-Hee
2018-03-01
Recently the aspect ratio of capacitor and via hole of memory semiconductor device has been dramatically increasing in order to store more information in a limited area. A small amount of remained residues after etch process on the bottom of the high aspect ratio structure can make a critical failure in device operation. Back-scattered electrons (BSE) are mainly used for inspecting the defect located at the bottom of the high aspect ratio structure or analyzing the overlay of the multi-layer structure because these electrons have a high linearity with the direction of emission and a high kinetic energy above 50eV. However, there is a limitation on that it cannot detect ultra-thin residue material having a thickness of several nanometers because the surface sensitivity is extremely low. We studied the characteristics of BSE spectra using Monte Carlo simulations for several cases which the high aspect ratio structures have extreme microscopic residues. Based on the assumption that most of the electrons emitted without energy loss are localized on the surface, we selected the detection energy window which has a range of 20eV below the maximum energy of the BSE. This window section is named as the high-energy BSE region. As a result of comparing the detection sensitivity of the conventional and the high-energy BSE detection mode, we found that the detection sensitivity for the residuals which have 2nm thickness is improved by more than 10 times in the high-energy BSE mode. This BSE technology is a new inspection method that can greatly be improved the inspection sensitivity for the ultra-thin residual material presented in the high aspect ratio structure, and its application will be expanded.
NASA Astrophysics Data System (ADS)
Yu, Zhongliang; Zhao, Yulong; Sun, Lu; Tian, Bian; Jiang, Zhuangde
2013-01-01
The paper presents a piezoresistive absolute micro pressure sensor, which is of great benefits for altitude location. In this investigation, the design, fabrication, and test of the sensor are involved. By analyzing the stress distribution of sensitive elements using finite element method, a novel structure through the introduction of sensitive beams into traditional bossed diaphragm is built up. The proposed configuration presents its advantages in terms of high sensitivity and high overload resistance compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of surface stress and deflection based on ANSYS simulation results are performed to establish the equations about the sensor. Nonlinear optimization by MATLAB is carried out to determine the structure dimensions. The output signals in both static and dynamic environments are evaluated. Silicon bulk micromachining technology is utilized to fabricate the sensor prototype, and the fabrication process is discussed. Experimental results demonstrate the sensor features a high sensitivity of 11.098 μV/V/Pa in the operating range of 500 Pa at room temperature, and a high overload resistance of 200 times overpressure to promise its survival under atmosphere. Due to the excellent performance above, the sensor can be applied in measuring the absolute micro pressure lower than 500 Pa.
NASA Astrophysics Data System (ADS)
Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling
2017-03-01
In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.
NASA Astrophysics Data System (ADS)
Pyo, Ju-Young; Cho, Won-Ju
2018-04-01
We fabricate high-sensitivity pH sensors using single-walled carbon-nanotube (SWCNT) network thin-film transistors (TFTs). The sensing and transducer parts of the pH sensor are composed of separative extended-sensing gates (ESGs) with SnO2 ion-sensitive membranes and double-gate structure TFTs with thin SWCNT network channels of ∼1 nm and AlO x top-gate insulators formed by the solution-deposition method. To prevent thermal process-induced damages on the SWCNT channel layer due to the post-deposition annealing process and improve the electrical characteristics of the SWCNT-TFTs, microwave irradiation is applied at low temperatures. As a result, a pH sensitivity of 7.6 V/pH, far beyond the Nernst limit, is obtained owing to the capacitive coupling effect between the top- and bottom-gate insulators of the SWCNT-TFTs. Therefore, double-gate structure SWCNT-TFTs with separated ESGs are expected to be highly beneficial for high-sensitivity disposable biosensor applications.
Kim, Won-Geun; Song, Hyerin; Kim, Chuntae; Moon, Jong-Sik; Kim, Kyujung; Lee, Seung-Wuk; Oh, Jin-Woo
2016-11-15
Here, we describe a highly sensitive and selective surface plasmon resonance sensor system by utilizing self-assembly of genetically engineered M13 bacteriophage. About 2700 copies of genetically expressed peptide copies give superior selectivity and sensitivity to M13 phage-based SPR sensor. Furthermore, the sensitivity of the M13 phage-based SPR sensor was enhanced due to the aligning of receptor matrix in specific direction. Incorporation of specific binding peptide (His Pro Gln: HPQ) gives M13 bacteriophage high selectivity for the streptavidin. Our M13 phage-based SPR sensor takes advantage of simplicity of self-assembly compared with relatively complex photolithography techniques or chemical conjugations. Additionally, designed structure which is composed of functionalized M13 bacteriophage can simultaneously improve the sensitivity and selectivity of SPR sensor evidently. By taking advantages of the genetic engineering and self-assembly, we propose the simple method for fabricating novel M13 phage-based SPR sensor system which has a high sensitivity and high selectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Wei; Shi, Liqin; Hasegawa, Yuki; Katsube, Teruaki
In order to develop a high temperature (200°C˜400°C) and high sensitive NOx gas sensor, we developed a new structure of SiC-based hetero-junction device Pt/SnO2/SiC/Ni, Pt/In2O3/SiC/Ni and Pt/WO3/SiC/Ni using a laser ablation method for the preparation of both metal (Pt) electrode and metal-oxide film. It was found that Pt/In2O3/SiC/Ni sensor shows higher sensitivity to NO2 gas compared with the Pt/SnO2/SiC/Ni and Pt/WO3/SiC/Ni sensor, whereas the Pt/WO3/SiC/Ni sensor had better sensitivity to NO gas. These results suggest that selective detection of NO and NO2 gases may be obtained by choosing different metal oxide films.
Berengut, J C; Dzuba, V A; Flambaum, V V; Ong, A
2012-08-17
We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf(16+) is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf(16+) has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.
Fan, Gao-Chao; Ren, Xiao-Lin; Zhu, Cheng; Zhang, Jian-Rong; Zhu, Jun-Jie
2014-09-15
Dual co-sensitized structure of TiO2/CdS/CdSe was designed to develop a novel photoelectrochemical immunoassay for highly sensitive detection of human interleukin-6 (IL-6). To construct a sensing electrode, TiO2/CdS hybrid was prepared by successive adsorption and reaction of Cd(2+) and S(2-) ions on the surface of TiO2 and then was employed as matrix for immobilization of anti-IL-6 antibody, whereas CdSe QDs linked to IL-6 were used for signal amplification via the specific antibody-antigen immunoreaction between anti-IL-6 and IL-6-CdSe bioconjugate. Greatly enhanced sensitivity for IL-6 detection was derived from the new co-sensitization signal amplification strategy. First, the TiO2/CdS/CdSe co-sensitized structure extended the absorption range to long wavelength of white light, which adequately utilized the light energy. Second, the TiO2/CdS/CdSe co-sensitized structure possessed stepwise band-edge levels favoring ultrafast transfer of photogenerated electrons and significantly prompted the photoelectrochemical performance. Besides, the introduction of CdSe effectively prevented the recombination of photogenerated electrons in the conduction band of CdS, further causing an enhanced photocurrent. Accordingly, upon the co-sensitization strategy, a novel immunoassay based on the competitive binding of anti-IL-6 antibody with IL-6 antigen and IL-6-CdSe bioconjugate was developed, and it exhibited a wide linear range from 1.0 pg/mL to 100 ng/mL with a low detection limit of 0.38 pg/mL for IL-6 detection. The proposed co-sensitization strategy presented high sensitivity, reproducibility, specificity and stability, and also opened up a new promising platform for detection of other biomarkers. Copyright © 2014 Elsevier B.V. All rights reserved.
Sensitivity Analysis for Multidisciplinary Systems (SAMS)
2016-12-01
support both mode-based structural representations and time-dependent, nonlinear finite element structural dynamics. This interim report describes...Adaptation, & Sensitivity Toolkit • Elasticity, heat transfer, & compressible flow • Adjoint solver for sensitivity analysis • High-order finite elements ...PROGRAM ELEMENT NUMBER 62201F 6. AUTHOR(S) Richard D. Snyder 5d. PROJECT NUMBER 2401 5e. TASK NUMBER N/A 5f. WORK UNIT NUMBER Q1FS 7
NASA Astrophysics Data System (ADS)
Malmir, Narges; Fasihi, Kiazand
2017-11-01
In this work, we present a novel high-sensitive optical label-free biosensor based on a two-dimensional photonic crystal (2D PC). The suggested structure is composed of a negative refraction structure in a hexagonal lattice PC, along with a positive refraction structure which is arranged in a square lattice PC. The frequency shift of the transmission peak is measured respect to the changes of refractive indices of the studied materials (the blood plasma, water, dry air and normal air). The studied materials are filled into a W1 line-defect waveguide which is located in the PC structure with positive refraction (the microfluidic nanochannel). Our numerical simulations, which are based on finite-difference time-domain (FDTD) method, show that in the proposed structure, a sensitivity about 1100 nm/RIU and a transmission efficiency more than 75% can be achieved. With this design, to the best of our knowledge, the obtained sensitivity and the transmission efficiency are one of the highest values in the reported PC label-free biosensors.
Numerical study on refractive index sensor based on hybrid-plasmonic mode
NASA Astrophysics Data System (ADS)
Yun, Jeong-Geun; Kim, Joonsoo; Lee, Kyookeun; Lee, Yohan; Lee, Byoungho
2017-04-01
We propose a highly sensitive hybrid-plasmonic sensor based on thin-gold nanoslit arrays. The transmission characteristics of gold nanoslit arrays are analyzed as changing the thickness of gold layer. The surface plasmon polariton mode excited on the sensing medium, which is sensitive to refractive index change of the sensing medium, is strengthened by reducing the thickness of the gold layer. A design rule is suggested that steeper dispersion curve of the surface plasmon polariton mode leads to higher sensitivity. For the dispersion engineering, hybrid-plasmonic structure, which consists of thin-gold nanoslit arrays, sensing region and high refractive index dielectric space is introduced. The proposed sensor structure with period of 700 nm shows the improved sensitivity up to 1080 nm/RIU (refractive index unit), and the surface sensitivity is extremely enhanced.
NASA Astrophysics Data System (ADS)
Park, Jonghwa; Kim, Jinyoung; Hong, Jaehyung; Lee, Hochan; Lee, Youngoh; Cho, Seungse; Kim, Sung-Woo; Kim, Jae Joon; Kim, Sung Youb; Ko, Hyunhyub
2018-04-01
Electronic skins (e-skins) with high sensitivity to multidirectional mechanical stimuli are crucial for healthcare monitoring devices, robotics, and wearable sensors. In this study, we present piezoresistive e-skins with tunable force sensitivity and selectivity to multidirectional forces through the engineered microstructure geometries (i.e., dome, pyramid, and pillar). Depending on the microstructure geometry, distinct variations in contact area and localized stress distribution are observed under different mechanical forces (i.e., normal, shear, stretching, and bending), which critically affect the force sensitivity, selectivity, response/relaxation time, and mechanical stability of e-skins. Microdome structures present the best force sensitivities for normal, tensile, and bending stresses. In particular, microdome structures exhibit extremely high pressure sensitivities over broad pressure ranges (47,062 kPa-1 in the range of <1 kPa, 90,657 kPa-1 in the range of 1-10 kPa, and 30,214 kPa-1 in the range of 10-26 kPa). On the other hand, for shear stress, micropillar structures exhibit the highest sensitivity. As proof-of-concept applications in healthcare monitoring devices, we show that our e-skins can precisely monitor acoustic waves, breathing, and human artery/carotid pulse pressures. Unveiling the relationship between the microstructure geometry of e-skins and their sensing capability would provide a platform for future development of high-performance microstructured e-skins.
NASA Astrophysics Data System (ADS)
Du, Zhiyuan; Hu, Bin; Cyril, Planchon; Liu, Juan; Wang, Yongtian
2017-10-01
Local surface plasmonic resonance (LSPR) produced by metallic nano-structures is often sensitive to the refractive index of the surrounding media and can be applied for sensing. However, it often suffers from large line width caused by large plasmonic radiative damping, especially in the infrared (IR) frequencies, which reduces the sensitivity. Here we propose a hybrid structure consists of a graphene stripe and a gold gap-ring at short-IR frequencies (1-3 µm). Due to the low loss and high plasmonic confinement of graphene, LSPR line width of 6 nm is obtained. In addition, due to the strong coupling of the gold gap-ring with graphene stripe, the intensity of graphene LSPR is enhanced by 100 times. Simulation results show that the sensitivity of the sensor is ~1000 nm/RIU (refractive index unit) and the figure of merit (FoM) can reach up to 383.
Shape control of Co3O4 micro-structures for high-performance gas sensor
NASA Astrophysics Data System (ADS)
Zhou, Qu; Zeng, Wen
2018-01-01
Recently, spinel cobalt oxide (Co3O4) structure has been widely investigated due to its excellent sensitivity towards various noxious gases and good response/recovery speed at low concentration. In this work, we designed and synthesized two kinds of different Co3O4 micro-structure (cube and octahedron) with a similar size. After fabricating them into gas sensors, we found that the crystal plane structure of Co3O4 has an important effect on its gas sensing performance. Furthermore, the {111} planes of Co3O4may be more sensitive than {100} planes to various testing gases. Co3O4 octahedrons micro-structure exhibits an excellent sensitivity (about 12.6), good response/recovery speed and cycling stability (no decline even after 2 days) under 50 ppm ethanol gases at working temperature of 200 °C. As such, thisCo3O4 octahedrons micro-structure is a promising candidate for a high-performance gas sensing material.
NASA Astrophysics Data System (ADS)
Shahri, Abbas; Mousavinaseri, Mahsasadat; Naderi, Shima; Espersson, Maria
2015-04-01
Application of Artificial Neural Networks (ANNs) in many areas of engineering, in particular to geotechnical engineering problems such as site characterization has demonstrated some degree of success. The present paper aims to evaluate the feasibility of several various types of ANN models to predict the clay sensitivity of soft clays form piezocone penetration test data (CPTu). To get the aim, a research database of CPTu data of 70 test points around the Göta River near the Lilli Edet in the southwest of Sweden which is a high prone land slide area were collected and considered as input for ANNs. For training algorithms the quick propagation, conjugate gradient descent, quasi-Newton, limited memory quasi-Newton and Levenberg-Marquardt were developed tested and trained using the CPTu data to provide a comparison between the results of field investigation and ANN models to estimate the clay sensitivity. The reason of using the clay sensitivity parameter in this study is due to its relation to landslides in Sweden.A special high sensitive clay namely quick clay is considered as the main responsible for experienced landslides in Sweden which has high sensitivity and prone to slide. The training and testing program was started with 3-2-1 ANN architecture structure. By testing and trying several various architecture structures and changing the hidden layer in order to have a higher output resolution the 3-4-4-3-1 architecture structure for ANN in this study was confirmed. The tested algorithm showed that increasing the hidden layers up to 4 layers in ANN can improve the results and the 3-4-4-3-1 architecture structure ANNs for prediction of clay sensitivity represent reliable and reasonable response. The obtained results showed that the conjugate gradient descent algorithm with R2=0.897 has the best performance among the tested algorithms. Keywords: clay sensitivity, landslide, Artificial Neural Network
Le, Binh Huy; Seo, Young Jun
2018-01-25
We have developed a gold nanoparticle (AuNP)-based CTG repeat probing system displaying high quenching capability and combined it with isothermal amplification for the detection of miRNA 146a. This method of using a AuNP-based CTG repeat probing system with isothermal amplification allowed the highly sensitive (14 aM) and selective detection of miRNA 146a. A AuNP-based CTG repeat probing system having a hairpin structure and a dT F fluorophore exhibited highly efficient quenching because the CTG repeat-based stable hairpin structure imposed a close distance between the AuNP and the dT F residue. A small amount of miRNA 146a induced multiple copies of the CAG repeat sequence during rolling circle amplification; the AuNP-based CTG repeat probing system then bound to the complementary multiple-copy CAG repeat sequence, thereby inducing a structural change from a hairpin to a linear structure with amplified fluorescence. This AuNP-based CTG probing system combined with isothermal amplification could also discriminate target miRNA 146a from one- and two-base-mismatched miRNAs (ORN 1 and ORN 2, respectively). This simple AuNP-based CTG probing system, combined with isothermal amplification to induce a highly sensitive change in fluorescence, allows the detection of miRNA 146a with high sensitivity (14 aM) and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saafi, M.; Piukovics, G.; Ye, J.
2016-10-01
In this paper, we demonstrate for the first time a novel hybrid superionic long gauge sensor for structural health monitoring applications. The sensor consists of two graphene electrodes and a superionic conductor film made entirely of fly ash geopolymeric material. The sensor employs ion hopping as a conduction mechanism for high precision temperature and tensile strain sensing in structures. The design, fabrication and characterization of the sensor are presented. The temperature and strain sensing mechanisms of the sensor are also discussed. The experimental results revealed that the crystal structure of the superionic film is a 3D sodium-poly(sialate-siloxo) framework, with a room temperature ionic conductivity between 1.54 × 10-2 and 1.72 × 10-2 S m-1 and, activation energy of 0.156 eV, which supports the notion that ion hopping is the main conduction mechanism for the sensor. The sensor showed high sensitivity to both temperature and tensile strain. The sensor exhibited temperature sensitivity as high as 21.5 kΩ °C-1 and tensile strain sensitivity (i.e., gauge factor) as high as 358. The proposed sensor is relatively inexpensive and can easily be manufactured with long gauges to measure temperature and bulk strains in structures. With further development and characterization, the sensor can be retrofitted onto existing structures such as bridges, buildings, pipelines and wind turbines to monitor their structural integrity.
Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose.
Meher, Sumanta Kumar; Rao, G Ranga
2013-03-07
In the quest to enhance the selectivity and sensitivity of novel structured metal oxides for electrochemical non-enzymatic sensing of glucose, we report here a green synthesis of unique sandwich-structured CuO on a large scale under microwave mediated homogeneous precipitation conditions. The physicochemical studies carried out by XRD and BET methods show that the monoclinic CuO formed via thermal decomposition of Cu(2)(OH)(2)CO(3) possesses monomodal channel-type pores with largely improved surface area (~43 m(2) g(-1)) and pore volume (0.163 cm(3) g(-1)). The fascinating surface morphology and pore structure of CuO is formulated due to homogeneous crystallization and microwave induced self assembly during synthesis. The cyclic voltammetry and chronoamperometry studies show diffusion controlled glucose oxidation at ~0.6 V (vs. Ag/AgCl) with extremely high sensitivity of 5342.8 μA mM(-1) cm(-2) and respective detection limit and response time of ~1 μM and ~0.7 s, under a wide dynamic concentration range of glucose. The chronoamperometry measurements demonstrate that the sensitivity of CuO to glucose is unaffected by the absence of dissolved oxygen and presence of poisoning chloride ions in the reaction medium, which essentially implies high poison resistance activity of the sandwich-structured CuO. The sandwich-structured CuO also shows insignificant interference/significant selectivity to glucose, even in the presence of high concentrations of other sugars as well as reducing species. In addition, the sandwich-structured CuO shows excellent reproducibility (relative standard deviation of ~2.4% over ten identically fabricated electrodes) and outstanding long term stability (only ~1.3% loss in sensitivity over a period of one month) during non-enzymatic electrochemical sensing of glucose. The unique microstructure and suitable channel-type pore architecture provide structural stability and maximum accessible electroactive surface for unimpeded mobility of glucose as well as the product molecules, which result in the excellent sensitivity and selectivity of sandwich-structured CuO for glucose under non-enzymatic milieu.
Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao
2009-01-01
In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy.
Ultrahigh-sensitive sensing platform based on p-type dumbbell-like Co3O4 network
NASA Astrophysics Data System (ADS)
Zhou, Tingting; Zhang, Tong; Zhang, Rui; Lou, Zheng; Deng, Jianan; Wang, Lili
2017-12-01
Development of high performance room temperature sensors remains a grand challenge for high demand of practical application. Metal oxide semiconductors (MOSs) have many advantages over others due to their easy functionalization, high surface area, and low cost. However, they typically need a high work temperature during sensing process. Here, p-type sensing layer is reported, consisting of pore-rich dumbbell-like Co3O4 particles (DP-Co3O4) with intrinsic high catalytic activity. The gas sensor (GS) based DP-Co3O4 catalyst exhibits ultrahigh NH3 sensing activity along with excellent stability over other structure based NH3 GSs in room temperature work environment. In addition, the unique structure of DP-Co3O4 with pore-rich and high catalytic activity endows fast gas diffusion rate and high sensitivity at room temperature. Taken together, the findings in this work highlight the merit of integrating highly active materials in p-type materials, offering a framework to develop high-sensitivity room temperature sensing platforms.
A Label-Free Aptasensor for Ochratoxin a Detection Based on the Structure Switch of Aptamer.
Liu, Feng; Ding, Ailing; Zheng, Jiushang; Chen, Jiucun; Wang, Bin
2018-06-01
A label-free sensing platform is developed based on switching the structure of aptamer for highly sensitive and selective fluorescence detection of ochratoxin A (OTA). OTA induces the structure of aptamer, transforms into G-quadruplex and produces strong fluorescence in the presence of zinc(II)-protoporphyrin IX probe due to the specific bind to G-quadruplex. The simple method exhibits high sensitivity towards OTA with a detection limit of 0.03 nM and excellent selectivity over other mycotoxins. In addition, the successful detection of OTA in real samples represents a promising application in food safety.
High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure.
Liu, Dejun; Mallik, Arun Kumar; Yuan, Jinhui; Yu, Chongxiu; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang
2015-09-01
A high sensitivity refractive index (RI) sensor based on a tapered small core single-mode fiber (SCSMF) structure sandwiched between two traditional single-mode fibers (SMF28) is reported. The microheater brushing technique was employed to fabricate the tapered fiber structures with different waist diameters of 12.5, 15.0, and 18.8 μm. Experiments demonstrate that the fiber sensor with a waist diameter of 12.5 μm offers the best sensitivity of 19212.5 nm/RIU (RI unit) in the RI range of 1.4304 to 1.4320. All sensors fabricated in this Letter show good linearity in terms of the spectral wavelength shift versus changes in RI. Furthermore, the sensor with the best sensitivity to RI was also used to measure relative humidity (RH) without any coating materials applied to the fiber surface. Experimental results show that the spectral wavelength shift changes exponentially as the RH varies from 60% to 95%. A maximum sensitivity of 18.3 nm per relative humidity unit (RHU) was achieved in the RH range of 90.4% to 94.5% RH.
Kuo, Wen-Kai; Syu, Siang-He; Lin, Peng-Zhi; Yu, Hsin Her
2016-02-01
This paper reports on a transmitted-type dual-channel guided-mode resonance (GMR) sensor system that uses phase-shifting interferometry (PSI) to achieve tunable phase detection sensitivity. Five interference images are captured for the PSI phase calculation within ∼15 s by using a liquid crystal retarder and a USB web camera. The GMR sensor structure is formed by a nanoimprinting process, and the dual-channel sensor device structure for molding is fabricated using a 3D printer. By changing the rotation angle of the analyzer in front of the camera in the PSI system, the sensor detection sensitivity can be tuned. The proposed system may achieve high throughput as well as high sensitivity. The experimental results show that an optimal detection sensitivity of 6.82×10(-4) RIU can be achieved.
Li, Chuang; Cordovilla, Francisco; Jagdheesh, R.
2018-01-01
This paper presents a novel structural piezoresistive pressure sensor with four-grooved membrane combined with rood beam to measure low pressure. In this investigation, the design, optimization, fabrication, and measurements of the sensor are involved. By analyzing the stress distribution and deflection of sensitive elements using finite element method, a novel structure featuring high concentrated stress profile (HCSP) and locally stiffened membrane (LSM) is built. Curve fittings of the mechanical stress and deflection based on FEM simulation results are performed to establish the relationship between mechanical performance and structure dimension. A combination of FEM and curve fitting method is carried out to determine the structural dimensions. The optimized sensor chip is fabricated on a SOI wafer by traditional MEMS bulk-micromachining and anodic bonding technology. When the applied pressure is 1 psi, the sensor achieves a sensitivity of 30.9 mV/V/psi, a pressure nonlinearity of 0.21% FSS and an accuracy of 0.30%, and thereby the contradiction between sensitivity and linearity is alleviated. In terms of size, accuracy and high temperature characteristic, the proposed sensor is a proper choice for measuring pressure of less than 1 psi. PMID:29393916
NASA Astrophysics Data System (ADS)
Wiesauer, Karin; Pircher, Michael; Goetzinger, Erich; Hitzenberger, Christoph K.; Engelke, Rainer; Ahrens, Gisela; Pfeiffer, Karl; Ostrzinski, Ute; Gruetzner, Gabi; Oster, Reinhold; Stifter, David
2006-02-01
Optical coherence tomography (OCT) is a contactless and non-invasive technique nearly exclusively applied for bio-medical imaging of tissues. Besides the internal structure, additionally strains within the sample can be mapped when OCT is performed in a polarization sensitive (PS) way. In this work, we demonstrate the benefits of PS-OCT imaging for non-biological applications. We have developed the OCT technique beyond the state-of-the-art: based on transversal ultra-high resolution (UHR-)OCT, where an axial resolution below 2 μm within materials is obtained using a femtosecond laser as light source, we have modified the setup for polarization sensitive measurements (transversal UHR-PS-OCT). We perform structural analysis and strain mapping for different types of samples: for a highly strained elastomer specimen we demonstrate the necessity of UHR-imaging. Furthermore, we investigate epoxy waveguide structures, photoresist moulds for the fabrication of micro-electromechanical parts (MEMS), and the glass-fibre composite outer shell of helicopter rotor blades where cracks are present. For these examples, transversal scanning UHR-PS-OCT is shown to provide important information about the structural properties and the strain distribution within the samples.
Highly charged ion based time of flight emission microscope
Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney
2001-01-01
A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.
Wang, Ming; Zhang, Kai; Dai, Xin-Xin; Li, Yin; Guo, Jiang; Liu, Hu; Li, Gen-Hui; Tan, Yan-Jun; Zeng, Jian-Bing; Guo, Zhanhu
2017-08-10
Formation of highly conductive networks is essential for achieving flexible conductive polymer composites (CPCs) with high force sensitivity and high electrical conductivity. In this study, self-segregated structures were constructed in polydimethylsiloxane/multi-wall carbon nanotube (PDMS/MWCNT) nanocomposites, which then exhibited high piezoresistive sensitivity and low percolation threshold without sacrificing their mechanical properties. First, PDMS was cured and pulverized into 40-60 mesh-sized particles (with the size range of 250-425 μm) as an optimum self-segregated phase to improve the subsequent electrical conductivity. Then, the uncured PDMS/MWCNT base together with the curing agent was mixed with the abovementioned PDMS particles, serving as the segregated phase. Finally, the mixture was cured again to form the PDMS/MWCNT nanocomposites with self-segregated structures. The morphological evaluation indicated that MWCNTs were located in the second cured three-dimensional (3D) continuous PDMS phase, resulting in an ultralow percolation threshold of 0.003 vol% MWCNTs. The nanocomposites with self-segregated structures with 0.2 vol% MWCNTs achieved a high electrical conductivity of 0.003 S m -1 , whereas only 4.87 × 10 -10 S m -1 was achieved for the conventional samples with 0.2 vol% MWCNTs. The gauge factor GF of the self-segregated samples was 7.4-fold that of the conventional samples at 30% compression strain. Furthermore, the self-segregated samples also showed higher compression modulus and strength as compared to the conventional samples. These enhanced properties were attributed to the construction of 3D self-segregated structures, concentrated distribution of MWCNTs, and strong interfacial interaction between the segregated phase and the continuous phase with chemical bonds formed during the second curing process. These self-segregated structures provide a new insight into the fabrication of elastomers with high electrical conductivity and piezoresistive sensitivity for flexible force-sensitive materials.
Structural Glycomic Analyses at High Sensitivity: A Decade of Progress
NASA Astrophysics Data System (ADS)
Alley, William R.; Novotny, Milos V.
2013-06-01
The field of glycomics has recently advanced in response to the urgent need for structural characterization and quantification of complex carbohydrates in biologically and medically important applications. The recent success of analytical glycobiology at high sensitivity reflects numerous advances in biomolecular mass spectrometry and its instrumentation, capillary and microchip separation techniques, and microchemical manipulations of carbohydrate reactivity. The multimethodological approach appears to be necessary to gain an in-depth understanding of very complex glycomes in different biological systems.
Structural Glycomic Analyses at High Sensitivity: A Decade of Progress
Alley, William R.; Novotny, Milos V.
2014-01-01
The field of glycomics has recently advanced in response to the urgent need for structural characterization and quantification of complex carbohydrates in biologically and medically important applications. The recent success of analytical glycobiology at high sensitivity reflects numerous advances in biomolecular mass spectrometry and its instrumentation, capillary and microchip separation techniques, and microchemical manipulations of carbohydrate reactivity. The multimethodological approach appears to be necessary to gain an in-depth understanding of very complex glycomes in different biological systems. PMID:23560930
Carboxylated hyperbranched poly(glycidol)s for preparation of pH-sensitive liposomes.
Yuba, Eiji; Harada, Atsushi; Sakanishi, Yuichi; Kono, Kenji
2011-01-05
Previous reports by the authors described intracellular delivery using liposomes modified with various carboxylated poly(glycidol) derivatives. These linear polymer-modified liposomes exhibited a pH-dependent membrane fusion behavior in cellular acidic compartments. However, the effect of the backbone structure on membrane fusion activity remains unknown. Therefore, this study specifically investigated the backbone structure to obtain pH-sensitive polymers with much higher fusogenic activity and to reveal the effect of the polymer backbone structure on the interaction with the membrane. Hyperbranched poly(glycidol) (HPG) derivatives were prepared as a new type of pH-sensitive polymer and used for the modification of liposomes. The resultant HPG derivatives exhibited high hydrophobicity and intensive interaction with the membrane concomitantly with the increasing degree of polymerization (DP). Furthermore, HPG derivatives showed a stronger interaction with the membrane than the linear polymers show. Liposomes modified with HPG derivatives of high DP delivered contents into the cytosol of DC2.4 cells, a dendritic cell line, more effectively than the linear polymer-modified liposomes do. Results show that the backbone structure of pH-sensitive polymers affected their pH-sensitivity and interaction with liposomal and cellular membranes. Copyright © 2010 Elsevier B.V. All rights reserved.
[Study on Strain Detection with Si Based on Bicyclic Cascade Optical Microring Resonator].
Tang, Jun; Lei, Long-hai; Zhang, Wei; Zhang, Tian-en; Xue, Chen-yang; Zhang, Wen-dong; Liu, Jun
2016-03-01
Optical micro-ring resonator prepared on Silicon-On-Insulator (SOI) has high sensitivity, small size and low mode volume. Its high sensitivity has been widely applied to the optical information transmission and inertial navigation devices field, while it is rarely applied in the testing of Mechanics. This paper presents a cantilever stress/strain gauge with an optical microring resonator. It is proposed the using of radius change of ring waveguide for the sensing element. When external stress is put on the structure, the radius of the SOI ring waveguide will be subjected to variation, which causes the optical resonant parameters to change. This ultimately leads to a red-shift of resonant spectrum, and shows the excellent characteristics of the structure's stress/strain sensitivity. Designed a bicyclic cascade embedded optical micro-cavity structure, which was prepared by employing MEMS lithography and ICP etching process. The characteristic of stress/strain sensitivity was calculated theoretically. Two values of 0.185 pm x kPa(-1) and 18.04 pm x microstrain(-1) were obtained experimentally, which also was verified by theoretical simulations. Comparing with the single-loop micro-cavity structure, its measuring range and stress sensitivity increased by nearly 50.3%, 10.6%, respectively. This paper provides a new method to develop micro-opto-electromechanical system (MOEMS) sensors.
High-sensitivity four-layer polymer fiber-optic evanescent wave sensor.
Xin, Xin; Zhong, Nianbing; Liao, Qiang; Cen, Yanyan; Wu, Ruohua; Wang, Zhengkun
2017-05-15
We present a novel four-layer structure consisting of bottom, second, third, and surface layers in the sensing region, for a D-shaped step-index fiber-optic evanescent wave (FOEW) sensor. To reduce the background noise, the surface of the longitudinal section in the D-shaped region is coated with a light-absorbing film. We check the morphologies of the second and surface layers, examine the refractive indices (RIs) of the third and surface layers, and analyze the composition of the surface layer. We also investigate the effects of the thicknesses and RIs of the third and surface layers and the LA film on the light transmission and sensitivity of the FOEW sensors. The results highlight the very good sensitivity of the proposed FOEW sensor with a four-layer structure, which reached -0.077 (μg/l) -1 in the detection of the target antibody; the sensitivity of the novel FOEW sensor was 7.60 and 1.52 times better than that of a conventional sensor with a core-cladding structure and an FOEW sensor with a three-layer structure doped with GeO 2 . The applications of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, and biomedical and biochemical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao
2009-01-01
In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy. PMID:22573960
van Genderen, E; Clabbers, M T B; Das, P P; Stewart, A; Nederlof, I; Barentsen, K C; Portillo, Q; Pannu, N S; Nicolopoulos, S; Gruene, T; Abrahams, J P
2016-03-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼ 0.013 e(-) Å(-2) s(-1)) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014).
H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors
Liu, Ping [Denver, CO; Tracy, C Edwin [Golden, CO; Pitts, J Roland [Lakewood, CO; Lee, Se-Hee [Lakewood, CO
2011-03-22
An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.
2006-11-26
with controlled micro and nanostructure for highly selective, high sensitivity assays. The process was modeled and a procedure for fabricating SERS...small volumes with controlled micro and nanostructure for highly selective, high sensitivity assays. We proved the feasibility of the technique and...films templated by colloidal crystals. The control over the film structure allowed optimizing their performance for potential sensor applications. The
SiC-Based Schottky Diode Gas Sensors
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai
1997-01-01
Silicon carbide based Schottky diode gas sensors are being developed for high temperature applications such as emission measurements. Two different types of gas sensitive diodes will be discussed in this paper. By varying the structure of the diode, one can affect the diode stability as well as the diode sensitivity to various gases. It is concluded that the ability of SiC to operate as a high temperature semiconductor significantly enhances the versatility of the Schottky diode gas sensing structure and will potentially allow the fabrication of a SiC-based gas sensor arrays for versatile high temperature gas sensing applications.
NASA Astrophysics Data System (ADS)
Tian, Ying; Hu, Sen; Huang, Xiaojun; Yu, Zetai; Lin, Hai; Yang, Helin
2017-10-01
A low-loss and high transmission electromagnetically induced transparency like (EIT- like) structure is experimentally and numerically demonstrated in this paper. The proposed planar structure based on EIT-like metamaterial consists of two separate split-ring resonators, and its resulting transmission level can maximally reach 0.89 with significant suppression of radiation loss. According to the effective medium theory, the imaginary parts of the effective permittivity and permeability of the metamaterial are used as the evidence of low-loss. In the analysis, the simulated surface current, magnetic field distribution and coupled oscillator model reveal the principle of high transmittance EIT-effect. Furthermore, the peak of transparency frequency is highly sensitive to the variation of refractive index in the background medium. The sensor based on the proposed EIT structure can achieve a sensitivity of 1.69 GHz/RIU (refractive index unit) and a figure of merit of 11.66. Such metamaterials have potential perspectives in sensing and chiral slow light devices.
Light-Immune pH Sensor with SiC-Based Electrolyte-Insulator-Semiconductor Structure
NASA Astrophysics Data System (ADS)
Lin, Yi-Ting; Huang, Chien-Shiang; Chow, Lee; Lan, Jyun-Ming; Yang, Chia-Ming; Chang, Liann-Be; Lai, Chao-Sung
2013-12-01
An electrolyte-insulator-semiconductor (EIS) structure with high-band-gap semiconductor of silicon carbide is demonstrated as a pH sensor in this report. Two different sensing membranes, i.e., gadolinium oxide (Gd2O3) and hafnium oxide (HfO2), were investigated. The HfO2 film deposited by atomic layer deposition (ALD) at low temperature shows high pH sensing properties with a sensitivity of 52.35 mV/pH and a low signal of 4.95 mV due to light interference. The EIS structures with silicon carbide can provide better visible light immunity due to its high band gap that allows pH detection in an outdoor environment without degradation of pH sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dohoon; Lee, Jinwoo; Kim, Jungbae
2005-12-05
We fabricated a highly sensitive and fast glucose biosensor by simply immobilizing glucose oxidase in mesocellular carbon foam. Due to its unique structure, the MSU-F-C enabled high enzyme loading without serious mass transfer limitation, resulting in high catalytic efficiency. As a result, the glucose biosensor fabricated with MSU-F-C/GOx showed a high sensitivity and fast response. Given these results and the inherent electrical conductivity, we anticipate that MSU-F-C will make a useful matrix for enzyme immobilization in various biocatalytic and electrobiocatalytic applications.
Yang, Xiaojie; Lorenser, Dirk; McLaughlin, Robert A.; Kirk, Rodney W.; Edmond, Matthew; Simpson, M. Cather; Grounds, Miranda D.; Sampson, David D.
2013-01-01
We have developed an extremely miniaturized optical coherence tomography (OCT) needle probe (outer diameter 310 µm) with high sensitivity (108 dB) to enable minimally invasive imaging of cellular structure deep within skeletal muscle. Three-dimensional volumetric images were acquired from ex vivo mouse tissue, examining both healthy and pathological dystrophic muscle. Individual myofibers were visualized as striations in the images. Degradation of cellular structure in necrotic regions was seen as a loss of these striations. Tendon and connective tissue were also visualized. The observed structures were validated against co-registered hematoxylin and eosin (H&E) histology sections. These images of internal cellular structure of skeletal muscle acquired with an OCT needle probe demonstrate the potential of this technique to visualize structure at the microscopic level deep in biological tissue in situ. PMID:24466482
Yol Jeong, Seung; Jeong, Sooyeon; Won Lee, Sang; Tae Kim, Sung; Kim, Daeho; Jin Jeong, Hee; Tark Han, Joong; Baeg, Kang-Jun; Yang, Sunhye; Seok Jeong, Mun; Lee, Geon-Woong
2015-01-01
We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, “cratered” arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electrodes. Subsequent hydrazine reduction, the corrugated edge area of the graphene layers have a high electric potential compared with flat graphene films. This local accumulation of electrons interacts with a large number of gas molecules. The sensitivity of 3D-graphene sensors significantly increases in the atmosphere of NO2 gas. The intriguing structures have several advantages for straightforward fabrication on patterned substrates, high-performance graphene sensors without post-annealing process. PMID:26053892
de Carlo, Talisa E; Kokame, Gregg T; Kaneko, Kyle N; Lian, Rebecca; Lai, James C; Wee, Raymond
2018-03-20
Determine sensitivity and specificity of polypoidal choroidal vasculopathy (PCV) diagnosis with structural en face optical coherence tomography (OCT) and OCT angiography (OCTA). Retrospective review of the medical records of eyes diagnosed with PCV by indocyanine green angiography with review of diagnostic testing with structural en face OCT and OCTA by a trained reader. Structural en face OCT, cross-sectional OCT angiograms alone, and OCTA in its entirety were reviewed blinded to the findings of indocyanine green angiography and each other to determine if they could demonstrate the PCV complex. Sensitivity and specificity of PCV diagnosis was determined for each imaging technique using indocyanine green angiography as the ground truth. Sensitivity and specificity of structural en face OCT were 30.0% and 85.7%, of OCT angiograms alone were 26.8% and 96.8%, and of the entire OCTA were 43.9% and 87.1%, respectively. Sensitivity and specificity were improved for OCT angiograms and OCTA when looking at images taken within 1 month of PCV diagnosis. Sensitivity of detecting PCV was low using structural en face OCT and OCTA but specificity was high. Indocyanine green angiography remains the gold standard for PCV detection.
Effects of sensitivity to life stress on uncinate fasciculus segments in early adolescence
King, Lucy S.; Leong, Josiah K.; Colich, Natalie L.; Humphreys, Kathryn L.; Ordaz, Sarah J.; Gotlib, Ian H.
2017-01-01
Abstract Previous research suggests that exposure to early life stress (ELS) affects the structural integrity of the uncinate fasciculus (UF), a frontolimbic white matter tract that undergoes protracted development throughout adolescence. Adolescence is an important transitional period characterized by the emergence of internalizing psychopathology such as anxiety, particularly in individuals with high levels of stress sensitivity. We examined the relations among sensitivity to ELS, structural integrity of the UF, and anxiety symptoms in 104 early adolescents. We conducted structured interviews to assess exposure to ELS and obtained subjective and objective ratings of stress severity, from which we derived an index of ELS sensitivity. We also acquired diffusion MRI and conducted deterministic tractography to visualize UF trajectories and to compute measures of structural integrity from three distinct segments of the UF: frontal, insular, temporal. We found that higher sensitivity to ELS predicted both reduced fractional anisotropy in right frontal UF and higher levels of anxiety symptoms. These findings suggest that fibers in frontal UF, which are still developing throughout adolescence, are most vulnerable to the effects of heightened sensitivity to ELS, and that reduced structural integrity of frontal UF may underlie the relation between early stress and subsequent internalizing psychopathology. PMID:28460088
Bakhshaie, Jafar; Zvolensky, Michael J; Langdon, Kirsten J; Leventhal, Adam M; Smits, Jasper A J; Allan, Nicholas; Schmidt, Norman B
2016-04-01
Although anxiety sensitivity has been primarily conceptualized as a dimensional latent construct, empirical evidence suggests that it also maintains a latent class structure, reflecting low-, moderate-, and high-risk underlying classes. The present study sought to explore whether these anxiety sensitivity classes moderated the relations between the degree of pre-quit reductions in anxiety sensitivity and the severity of nicotine withdrawal symptoms and craving experienced on quit-day. Participants included 195 adult smokers (47% female; Mage=39.4) participating in a larger "anxiety sensitivity reduction-smoking cessation" intervention trial. Anxiety sensitivity class significantly moderated relations between pre-quit reduction in anxiety sensitivity and quit-day craving. Specifically, smokers within the anxiety sensitivity high-risk class, who also demonstrated lesser pre-quit reductions in anxiety sensitivity, experienced the highest levels of craving on quit-day. These findings highlight the importance of 'high-risk' classes of anxiety sensitivity to better understand the experience of craving on quit day. Copyright © 2016. Published by Elsevier Ltd.
High-sensitivity strain visualization using electroluminescence technologies
NASA Astrophysics Data System (ADS)
Xu, Jian; Jo, Hongki
2016-04-01
Visualizing mechanical strain/stress changes is an emerging area in structural health monitoring. Several ways are available for strain change visualization through the color/brightness change of the materials subjected to the mechanical stresses, for example, using mechanoluminescence (ML) materials and mechanoresponsive polymers (MRP). However, these approaches were not effectively applicable for civil engineering system yet, due to insufficient sensitivity to low-level strain of typical civil structures and limitation in measuring both static and dynamic strain. In this study, design and validation for high-sensitivity strain visualization using electroluminescence technologies are presented. A high-sensitivity Wheatstone bridge, of which bridge balance is precisely controllable circuits, is used with a gain-adjustable amplifier. The monochrome electroluminescence (EL) technology is employed to convert both static and dynamic strain change into brightness/color change of the EL materials, through either brightness change mode (BCM) or color alternation mode (CAM). A prototype has been made and calibrated in lab, the linearity between strain and brightness change has been investigated.
Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.
Xu, Shoufang; Lu, Hongzhi
2016-11-15
A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L
2016-07-01
A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Labriola, Jonathan M.; Pandhare, Akash; Jansen, Michaela; Blanton, Michael P.; Corringer, Pierre-Jean; Baenziger, John E.
2013-01-01
Although the activity of the nicotinic acetylcholine receptor (nAChR) is exquisitely sensitive to its membrane environment, the underlying mechanisms remain poorly defined. The homologous prokaryotic pentameric ligand-gated ion channel, Gloebacter ligand-gated ion channel (GLIC), represents an excellent model for probing the molecular basis of nAChR sensitivity because of its high structural homology, relative ease of expression, and amenability to crystallographic analysis. We show here that membrane-reconstituted GLIC exhibits structural and biophysical properties similar to those of the membrane-reconstituted nAChR, although GLIC is substantially more thermally stable. GLIC, however, does not possess the same exquisite lipid sensitivity. In particular, GLIC does not exhibit the same propensity to adopt an uncoupled conformation where agonist binding is uncoupled from channel gating. Structural comparisons provide insight into the chemical features that may predispose the nAChR to the formation of an uncoupled state. PMID:23463505
A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers.
Song, Xiaofeng; Wang, Zhaojie; Liu, Yongben; Wang, Ce; Li, Lijuan
2009-02-18
A facile and versatile method for the large-scale synthesis of sensitive mesoporous ZnO-SnO(2) (m-Z-S) nanofibers through a combination of surfactant-directed assembly and an electrospinning approach is reported. The morphology and the structure were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption-desorption isotherm analysis. The results showed that the diameters of fibers ranged from 100 to 150 nm with mixed structures of wurtzite (ZnO) and rutile (SnO(2)), and a mesoporous structure was observed in the m-Z-S nanofibers. The sensor performance of the prepared m-Z-S nanofibers was measured for ethanol. It is found that the mesoporous fiber film obtained exhibited excellent ethanol sensing properties, such as high sensitivity, quick response and recovery, good reproducibility, and linearity in the range 3-500 ppm.
van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.
2016-01-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375
NASA Astrophysics Data System (ADS)
Sun, Xiao-Yan; Chu, Dong-Kai; Dong, Xin-Ran; Zhou, Chu; Li, Hai-Tao; Luo-Zhi; Hu, You-Wang; Zhou, Jian-Ying; Cong-Wang; Duan, Ji-An
2016-03-01
A High sensitive refractive index (RI) sensor based on Mach-Zehnder interferometer (MZI) in a conventional single-mode optical fiber is proposed, which is fabricated by femtosecond laser transversal-scanning inscription method and chemical etching. A rectangular cavity structure is formed in part of fiber core and cladding interface. The MZI sensor shows excellent refractive index sensitivity and linearity, which exhibits an extremely high RI sensitivity of -17197 nm/RIU (refractive index unit) with the linearity of 0.9996 within the refractive index range of 1.3371-1.3407. The experimental results are consistent with theoretical analysis.
Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian
2014-01-14
The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.
NASA Astrophysics Data System (ADS)
Li, Wenhai; Bao, Xiaoyi; Chen, Liang
2014-05-01
Optical Frequency Domain Reflectometry (OFDR) with the use of polarization maintaining fiber (PMF) is capable of distinguishing strain and temperature, which is critical for successful field applications such as structural health monitoring (SHM) and smart material. Location-dependent measurement sensitivities along PMF are compensated by cross- and auto-correlations measurements of the spectra form a distributed parameter matrix. Simultaneous temperature and strain measurement accuracy of 1μstrain and 0.1°C is achieved with 2.5mm spatial resolution in over 180m range.
Determination of the structural phase and octahedral rotation angle in halide perovskites
NASA Astrophysics Data System (ADS)
dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich
2018-02-01
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.
Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu
2017-01-01
N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures' refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times.
NASA Technical Reports Server (NTRS)
Woo, R.; Habbal, S. R.
1998-01-01
Radio occultation measurements, which probe electron density over a wide dynamic range with high sensitivity and high spatial and temporal resolution reveal a solar corona permeated by a hierarchy of filamentary structures.
Shi, Jidong; Wang, Liu; Dai, Zhaohe; Zhao, Lingyu; Du, Mingde; Li, Hongbian; Fang, Ying
2018-05-30
Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human-machine interfaces because of their simple device structure and easy-readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low-cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray-coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa -1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multidisciplinary design optimization using multiobjective formulation techniques
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Pagaldipti, Narayanan S.
1995-01-01
This report addresses the development of a multidisciplinary optimization procedure using an efficient semi-analytical sensitivity analysis technique and multilevel decomposition for the design of aerospace vehicles. A semi-analytical sensitivity analysis procedure is developed for calculating computational grid sensitivities and aerodynamic design sensitivities. Accuracy and efficiency of the sensitivity analysis procedure is established through comparison of the results with those obtained using a finite difference technique. The developed sensitivity analysis technique are then used within a multidisciplinary optimization procedure for designing aerospace vehicles. The optimization problem, with the integration of aerodynamics and structures, is decomposed into two levels. Optimization is performed for improved aerodynamic performance at the first level and improved structural performance at the second level. Aerodynamic analysis is performed by solving the three-dimensional parabolized Navier Stokes equations. A nonlinear programming technique and an approximate analysis procedure are used for optimization. The proceduredeveloped is applied to design the wing of a high speed aircraft. Results obtained show significant improvements in the aircraft aerodynamic and structural performance when compared to a reference or baseline configuration. The use of the semi-analytical sensitivity technique provides significant computational savings.
Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju
2018-01-10
With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.
Romano, P Q; Conlon, S C; Smith, E C
2013-01-01
Nonlinear structural intensity (NSI) and nonlinear structural surface intensity (NSSI) based damage detection techniques were improved and extended to metal and composite airframe structures. In this study, the measurement of NSI maps at sub-harmonic frequencies was completed to provide enhanced understanding of the energy flow characteristics associated with the damage induced contact acoustic nonlinearity mechanism. Important results include NSI source localization visualization at ultra-subharmonic (nf/2) frequencies, and damage detection results utilizing structural surface intensity in the nonlinear domain. A detection metric relying on modulated wave spectroscopy was developed and implemented using the NSSI feature. The data fusion of the intensity formulation provided a distinct advantage, as both the single interrogation frequency NSSI and its modulated wave extension (NSSI-MW) exhibited considerably higher sensitivities to damage than using single-sensor (strain or acceleration) nonlinear detection metrics. The active intensity based techniques were also extended to composite materials, and results show both NSSI and NSSI-MW can be used to detect damage in the bond line of an integrally stiffened composite plate structure with high sensitivity. Initial damage detection measurements made on an OH-58 tailboom (Penn State Applied Research Laboratory, State College, PA) indicate the techniques can be transitioned to complex airframe structures achieving high detection sensitivities with minimal sensors and actuators.
Ha, Minjeong; Lim, Seongdong; Cho, Soowon; Lee, Youngoh; Na, Sangyun; Baig, Chunggi; Ko, Hyunhyub
2018-04-24
The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 μW/cm 2 ), pressure (0.55 V/kPa), and bending (∼0.1 V/°) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics.
Electrolyte-free Amperometric Immunosensor using a Dendritic Nanotip†
Kim, Jong-Hoon; Hiraiwa, Morgan; Lee, Hyun-Boo; Lee, Kyong-Hoon; Cangelosi, Gerard A.; Chung, Jae-Hyun
2013-01-01
Electric detection using a nanocomponent may lead to platforms for rapid and simple biosensing. Sensors composed of nanotips or nanodots have been described for highly sensitive amperometry enabled by confined geometry. However, both fabrication and use of nanostructured sensors remain challenging. This paper describes a dendritic nanotip used as an amperometric biosensor for highly sensitive detection of target bacteria. A dendritic nanotip is structured by Si nanowires coated with single-walled carbon nanotubes (SWCNTs) for generation of a high electric field. For reliable measurement using the dendritic structure, Si nanowires were uniformly fabricated by ultraviolet (UV) lithography and etching. The dendritic structure effectively increased the electric current density near the terminal end of the nanotip according to numerical computation. The electrical characteristics of a dendritic nanotip with additional protein layers was studied by cyclic voltammetry and I–V measurement in deionized (DI) water. When the target bacteria dielectrophoretically captured onto a nanotip were bound with fluorescence antibodies, the electric current through DI water decreased. Measurement results were consistent with fluorescence- and electron microscopy. The sensitivity of the amperometry was 10 cfu/sample volume (103 cfu/mL), which was equivalent to the more laborious fluorescence measurement method. The simple configuration of a dendritic nanotip can potentially offer an electrolyte-free detection platform for sensitive and rapid biosensors. PMID:23585927
Electrolyte-free Amperometric Immunosensor using a Dendritic Nanotip.
Kim, Jong-Hoon; Hiraiwa, Morgan; Lee, Hyun-Boo; Lee, Kyong-Hoon; Cangelosi, Gerard A; Chung, Jae-Hyun
2013-01-01
Electric detection using a nanocomponent may lead to platforms for rapid and simple biosensing. Sensors composed of nanotips or nanodots have been described for highly sensitive amperometry enabled by confined geometry. However, both fabrication and use of nanostructured sensors remain challenging. This paper describes a dendritic nanotip used as an amperometric biosensor for highly sensitive detection of target bacteria. A dendritic nanotip is structured by Si nanowires coated with single-walled carbon nanotubes (SWCNTs) for generation of a high electric field. For reliable measurement using the dendritic structure, Si nanowires were uniformly fabricated by ultraviolet (UV) lithography and etching. The dendritic structure effectively increased the electric current density near the terminal end of the nanotip according to numerical computation. The electrical characteristics of a dendritic nanotip with additional protein layers was studied by cyclic voltammetry and I-V measurement in deionized (DI) water. When the target bacteria dielectrophoretically captured onto a nanotip were bound with fluorescence antibodies, the electric current through DI water decreased. Measurement results were consistent with fluorescence- and electron microscopy. The sensitivity of the amperometry was 10 cfu/sample volume (10 3 cfu/mL), which was equivalent to the more laborious fluorescence measurement method. The simple configuration of a dendritic nanotip can potentially offer an electrolyte-free detection platform for sensitive and rapid biosensors.
NASA Astrophysics Data System (ADS)
Bravo, Mikel; Angulo-Vinuesa, Xabier; Martin-Lopez, Sonia; Lopez-Amo, Manuel; Gonzalez-Herraez, Miguel
2013-05-01
High-Q resonators have been widely used for sensing purposes. High Q factors normally lead to sharp spectral peaks which accordingly provide a strong sensitivity in spectral interrogation methods. In this work we employ a low-Q ring resonator to develop a high sensitivity sub-micrometric resolution displacement sensor. We use the slow-light effects occurring close to the critical coupling regime to achieve high sensitivity in the device. By tuning the losses in the cavity close to the critical coupling, extremely high group delay variations can be achieved, which in turn introduce strong enhancements of the absorption of the structure. We first validate the concept using an Optical Vector Analyzer (OVA) and then we propose a simple functional scheme for achieving a low-cost interrogation of this kind of sensors.
Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations
NASA Technical Reports Server (NTRS)
Wang, Li; Diskin, Boris; Biedron, Robert T.; Nielsen, Eric J.; Bauchau, Olivier A.
2017-01-01
A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. An unstructured sensitivity-enabled Navier-Stokes solver, FUN3D, and a nonlinear flexible multibody dynamics solver, DYMORE, are coupled to predict the aerodynamic loads and structural responses of helicopter rotor blades. A discretely-consistent adjoint-based sensitivity analysis available in FUN3D provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute DYMORE structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Numerical results verify accuracy of the FUN3D/DYMORE system by conducting simulations for a benchmark rotorcraft test model and comparing solutions with established analyses and experimental data. Complex-variable implementation of sensitivity analysis of DYMORE and the coupled FUN3D/DYMORE system is verified by comparing with real-valued analysis and sensitivities. Correctness of adjoint formulations for FUN3D/DYMORE interfaces is verified by comparing adjoint-based and complex-variable sensitivities. Finally, sensitivities of the lift and drag functions obtained by complex-variable FUN3D/DYMORE simulations are compared with sensitivities computed by the multidisciplinary sensitivity analysis, which couples adjoint-based flow and grid sensitivities of FUN3D and FUN3D/DYMORE interfaces with complex-variable sensitivities of DYMORE structural responses.
Jia, Kun; Bijeon, Jean Louis; Adam, Pierre Michel; Ionescu, Rodica Elena
2013-02-21
A commercial TEM grid was used as a mask for the creation of extremely well-organized gold micro-/nano-structures on a glass substrate via a high temperature annealing process at 500 °C. The structured substrate was (bio)functionalized and used for the high throughput LSPR immunosensing of different concentrations of a model protein named bovine serum albumin.
NASA Astrophysics Data System (ADS)
Liu, Zhi-bo; Yin, Bin; Liang, Xiao; Bai, Yunlong; Tan, Zhongwei; Liu, Shuo; Li, Yang; Liu, Yan; Jian, Shuisheng
2014-06-01
This paper experimentally demonstrated a singlemode-coreless-singlemode (SCS) fiber structure-based fiber ring cavity laser for strain and temperature measurement. The basis of the sensing system is the multimodal interference occurs in coreless fiber, and the transmission spectrum is sensitive to the ambient perturbation. In this sensing system, the SCS fiber structure not only acts as the sensing head of the sensor but also the band-pass filter of the ring laser. Blue shift with strain sensitivity of ˜ -2 pm/μɛ ranging from 0 to 730 μɛ and red shift with temperature sensitivity of ˜ 11 pm/°C ranging from 5 to 75 °C have been achieved. Experimental results also show the proposal has great potential in using long-distance operation. The fiber ring laser sensing system has a optical signal to noise ratio (OSNR) more than 50 and 3 dB bandwidth less than 0.05 nm. The result shows that the coreless fiber has no improvement of the temperature and axial strain sensitivity. However, compared to the common singlemode-multimode-singlemode fiber structure sensors, the laser sensing system has the additional advantages of high OSNR, high intensity and narrow 3 dB bandwidth, and thus improves the accuracy.
Imaging of dental material by polarization-sensitive optical coherence tomography
NASA Astrophysics Data System (ADS)
Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.
1999-05-01
Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.
NASA Astrophysics Data System (ADS)
Li, Chuang; Cordovilla, Francisco; Ocaña, José L.
2018-01-01
This paper presents a novel structural piezoresistive pressure sensor with a four-beams-bossed-membrane (FBBM) structure that consisted of four short beams and a central mass to measure micro-pressure. The proposed structure can alleviate the contradiction between sensitivity and linearity to realize the micro measurement with high accuracy. In this study, the design, fabrication and test of the sensor are involved. By utilizing the finite element analysis (FEA) to analyze the stress distribution of sensitive elements and subsequently deducing the relationships between structural dimensions and mechanical performance, the optimization process makes the sensor achieve a higher sensitivity and a lower pressure nonlinearity. Based on the deduced equations, a series of optimized FBBM structure dimensions are ultimately determined. The designed sensor is fabricated on a silicon wafer by using traditional MEMS bulk-micromachining and anodic bonding technology. Experimental results show that the sensor achieves the sensitivity of 4.65 mV/V/kPa and pressure nonlinearity of 0.25% FSS in the operating range of 0-5 kPa at room temperature, indicating that this novel structure sensor can be applied in measuring the absolute micro pressure lower than 5 kPa.
Allan, Nicholas P.; Raines, Amanda M.; Capron, Daniel W.; Norr, Aaron M.; Zvolensky, Michael J.; Schmidt, Norman B.
2014-01-01
Anxiety sensitivity (AS), a multidimensional construct, has been implicated in the development and maintenance of anxiety and related disorders. Recent evidence suggests that AS is a dimensional-categorical construct within individuals. Factor mixture modeling was conducted in a sample of 579 adult smokers (M age = 36.87 years, SD = 13.47) to examine the underlying structure. Participants completed the Anxiety Sensitivity Index-3 and were also given a Structured Clinical Interview for DSM-IV-TR. Three classes of individuals emerged, a high AS (5.2% of the sample), a moderate AS (19.0%), and a normative AS class (75.8%). A cut-score of 23 to identify high AS individuals, and a cut-score of 17 to identify moderate-to-high AS individuals were supported in this study. In addition, the odds of having a concurrent anxiety disorder (controlling for other Axis I disorders) were the highest in the high AS class and the lowest in the normative AS class. PMID:25128664
Sun, Qi-Jun; Zhuang, Jiaqing; Venkatesh, Shishir; Zhou, Ye; Han, Su-Ting; Wu, Wei; Kong, Ka-Wai; Li, Wen-Jung; Chen, Xianfeng; Li, Robert K Y; Roy, Vellaisamy A L
2018-01-31
Piezoresistive microsensors are considered to be essential components of the future wearable electronic devices. However, the expensive cost, complex fabrication technology, poor stability, and low yield have limited their developments for practical applications. Here, we present a cost-effective, relatively simple, and high-yield fabrication approach to construct highly sensitive and ultrastable piezoresistive sensors using a bioinspired hierarchically structured graphite/polydimethylsiloxane composite as the active layer. In this fabrication, a commercially available sandpaper is employed as the mold to develop the hierarchical structure. Our devices exhibit fascinating performance including an ultrahigh sensitivity (64.3 kPa -1 ), fast response time (<8 ms), low limit of detection of 0.9 Pa, long-term durability (>100 000 cycles), and high ambient stability (>1 year). The applications of these devices in sensing radial artery pulses, acoustic vibrations, and human body motion are demonstrated, exhibiting their enormous potential use in real-time healthcare monitoring and robotic tactile sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genderen, E. van; Clabbers, M. T. B.; Center for Cellular Imaging and NanoAnalytics
A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at roommore » temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)« less
Multidisciplinary optimization of controlled space structures with global sensitivity equations
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.
1991-01-01
A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
dos Reis, Roberto; Yang, Hao; Ophus, Colin
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less
Zhong, Nianbing; Zhao, Mingfu; Zhong, Lianchao; Liao, Qiang; Zhu, Xun; Luo, Binbin; Li, Yishan
2016-11-15
In this paper, we present a high-sensitivity polymer fiber-optic evanescent wave (FOEW) sensor with a three-layer structure that includes bottom, inter-, and surface layers in the sensing region. The bottom layer and inter-layer are POFs composed of standard cladding and the core of the plastic optical fiber, and the surface layer is made of dilute Canada balsam in xylene doped with GeO2. We examine the morphology of the doped GeO2, the refractive index and composition of the surface layer and the surface luminous properties of the sensing region. We investigate the effects of the content and morphology of the GeO2 particles on the sensitivity of the FOEW sensors by using glucose solutions. In addition, we examine the response of sensors incubated with staphylococcal protein A plus mouse IgG isotype to goat anti-mouse IgG solutions. Results indicate very good sensitivity of the three-layer FOEW sensor, which showed a 3.91-fold improvement in the detection of the target antibody relative to a conventional sensor with a core-cladding structure, and the novel sensor showed a lower limit of detection of 0.2ng/l and a response time around 320s. The application of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, biomedical and biochemical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhou, Wen-Yi; Li, Shan-Shan; Song, Jie-Yao; Jiang, Min; Jiang, Tian-Jia; Liu, Jin-Yun; Liu, Jin-Huai; Huang, Xing-Jiu
2018-04-03
Mutual interference is a severe issue that occurs during the electrochemical detection of heavy metal ions. This limitation presents a notable drawback for its high sensitivity to specific targets. Here, we present a high electrochemical sensitivity of ∼237.1 μA cm -2 μM -1 toward copper(II) [Cu(II)] based on oxygen-deficient titanium dioxide (TiO 2- x ) nanosheets. We fully demonstrated an atomic-level relationship between electrochemical behaviors and the key factors, including the high-energy (001) facet percentage, oxygen vacancy concentration, surface -OH content, and charge carrier density, is fully demonstrated. These four factors were quantified using Raman, electron spin resonance, X-ray photoelectron spectroscopy spectra, and Mott-Schottky plots. In the mutual interference investigation, we selected cadmium(II) [Cd(II)] as the target ion because of the significant difference in its stripping potential (∼700 mV). The results show that the Cd(II) can enhance the sensitivity of TiO 2- x nanosheets toward Cu(II), exhibiting an electron-induced mutual interference effect, as demonstrated by X-ray absorption fine structure spectra.
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-06-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm-30 μm, dual-taper length is 1 mm and taper distance is 4 cm-6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333-1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10(-5) RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.
Zhu, Shaoyin; Li, Minjie; Sheng, Lan; Chen, Peng; Zhang, Yumo; Zhang, Sean Xiao-An
2012-12-07
A spirooxazine derivative 2-nitro-5a-(2-(4-dimethylaminophenyl)-ethylene)-6,6-dimethyl-5a,6-dihydro-12H-indolo[2,1-b][1,3]benzooxazine (P1) was explored as a sensitive cyanide probe. Different from conventional spiropyrans, P1 avoided locating the 3H-indolium cation and the 4-nitrophenolate anion in the same conjugated structure, which enhanced the positive charge of 3H-indolium cation so that the sensitivity and reaction speed were improved highly. UV-visible difference spectroscopy using P1 detection solution as a timely reference improved the measurement accuracy, prevented the error caused by the inherent absorption change of P1 solution with time. This enabled the "positive-negative alternative absorption peaks" in difference spectrum to be used as a finger-print to distinguish whether the spectral change was caused by cyanide. Benefiting from the special design of the molecular structure and the strategy of difference spectroscopy, P1 showed high selectivity and sensitivity for CN(-). A detection limit of 0.4 μM and a rate constant of 1.1 s(-1) were achieved.
Liu, Richard T; Burke, Taylor A; Abramson, Lyn Y; Alloy, Lauren B
2017-11-04
Behavioral Approach System (BAS) sensitivity has been implicated in the development of a variety of different psychiatric disorders. Prominent among these in the empirical literature are bipolar spectrum disorders (BSDs). Given that adolescence represents a critical developmental stage of risk for the onset of BSDs, it is important to clarify the latent structure of BAS sensitivity in this period of development. A statistical approach especially well-suited for delineating the latent structure of BAS sensitivity is taxometric analysis, which is designed to evaluate whether the latent structure of a construct is taxonic (i.e., categorical) or dimensional (i.e., continuous) in nature. The current study applied three mathematically non-redundant taxometric procedures (i.e., MAMBAC, MAXEIG, and L-Mode) to a large community sample of adolescents (n = 12,494) who completed two separate measures of BAS sensitivity: the BIS/BAS Scales Carver and White (Journal of Personality and Social Psychology, 67, 319-333. 1994) and the Sensitivity to Reward and Sensitivity to Punishment Questionnaire (Torrubia et al. Personality and Individual Differences, 31, 837-862. 2001). Given the significant developmental changes in reward sensitivity that occur across adolescence, the current investigation aimed to provide a fine-grained evaluation of the data by performing taxometric analyses at an age-by-age level (14-19 years; n for each age ≥ 883). Results derived from taxometric procedures, across all ages tested, were highly consistent, providing strong evidence that BAS sensitivity is best conceptualized as dimensional in nature. Thus, the findings suggest that BAS-related vulnerability to BSDs exists along a continuum of severity, with no natural cut-point qualitatively differentiating high- and low-risk adolescents. Clinical and research implications for the assessment of BSD-related vulnerability are discussed.
Examining the Latent Structure of Anxiety Sensitivity in Adolescents using Factor Mixture Modeling
Allan, Nicholas P.; MacPherson, Laura; Young, Kevin C.; Lejuez, Carl W.; Schmidt, Norman B.
2014-01-01
Anxiety sensitivity has been implicated as an important risk factor, generalizable to most anxiety disorders. In adults, factor mixture modeling has been used to demonstrate that anxiety sensitivity is best conceptualized as categorical between individuals. That is, whereas most adults appear to possess normative levels of anxiety sensitivity, a small subset of the population appears to possess abnormally high levels of anxiety sensitivity. Further, those in the high anxiety sensitivity group are at increased risk of having high levels of anxiety and of having an anxiety disorder. This study was designed to determine whether these findings extend to adolescents. Factor mixture modeling was used to examine the best fitting model of anxiety sensitivity in a sample of 277 adolescents (M age = 11.0, SD = .81). Consistent with research in adults, the best fitting model consisted of two classes, one containing adolescents with high levels of anxiety sensitivity (n = 25), and another containing adolescents with normative levels of anxiety sensitivity (n = 252). Examination of anxiety sensitivity subscales revealed that the social concerns subscale was not important for classification of individuals. Convergent and discriminant validity of anxiety sensitivity classes were found in that membership in the high anxiety sensitivity class was associated with higher mean levels of anxiety symptoms, controlling for depression and externalizing problems, and was not associated with higher mean levels of depression or externalizing symptoms controlling for anxiety problems. PMID:24749756
Thomas, Joseph Palathinkal; Srivastava, Saurabh; Zhao, Liyan; Abd-Ellah, Marwa; McGillivray, Donald; Kang, Jung Soo; Rahman, Md Anisur; Moghimi, Nafiseh; Heinig, Nina F; Leung, Kam Tong
2015-04-15
Hybrid solar cells made of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) and appropriate amounts of a cosolvent and a fluorosurfactant on planar n-type silicon substrates showed a photoconversion efficiency (PCE) of above 13%. These cells also exhibited stable, reproducible, and high external quantum efficiency (EQE) that was not sensitive to light-bias intensity (LBI). In contrast, solar cells made of pristine PSS showed low PCE and high EQE only under certain measurement conditions. The EQE was found to degrade with increasing LBI. Here we report that the LBI-sensitive variation of EQE of the low-PCE cells is related to a reversible structural transformation from a quinoid to a benzoid structure of PEDOT.
Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure
Hemsing, E.; Garcia, B.; Huang, Z.; ...
2017-06-19
Here, we analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG) transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG) and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by themore » microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.« less
NASA Astrophysics Data System (ADS)
Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy
2017-06-01
Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.
Determination of the structural phase and octahedral rotation angle in halide perovskites
dos Reis, Roberto; Yang, Hao; Ophus, Colin; ...
2018-02-12
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less
Optical fiber pressure sensor based on fiber Bragg grating
NASA Astrophysics Data System (ADS)
Song, Dongcao
In oil field, it is important to measure the high pressure and temperature for down-hole oil exploration and well-logging, the available traditional electronic sensor is challenged due to the harsh, flammable environment. Recently, applications based on fiber Bragg grating (FBG) sensor in the oil industry have become a popular research because of its distinguishing advantages such as electrically passive operation, immunity to electromagnetic interference, high resolution, insensitivity to optical power fluctuation etc. This thesis is divided into two main sections. In the first section, the design of high pressure sensor based on FBG is described. Several sensing elements based on FBG for high pressure measurements have been proposed, for example bulk-modulus or free elastic modulus. But the structure of bulk-modulus and free elastic modulus is relatively complex and not easy to fabricate. In addition, the pressure sensitivity is not high and the repeatability of the structure has not been investigated. In this thesis, a novel host material of carbon fiber laminated composite (CFLC) for high pressure sensing is proposed. The mechanical characteristics including principal moduli in three directions and the shape repeatability are investigated. Because of it's Young's modulus in one direction and anisotropic characteristics, the pressure sensor made by CFLC has excellent sensitivity. This said structure can be used in very high pressure measurement due to carbon fiber composite's excellent shape repetition even under high pressure. The experimental results show high pressure sensitivity of 0.101nm/MPa and high pressure measurement up to 70MPa. A pressure sensor based on CFLC and FBG with temperature compensation has been designed. In the second section, the design of low pressure sensor based on FBG is demonstrated. Due to the trade off between measurement range and sensitivity, a sensor for lower pressure range needs more sensitivity. A novel material of carbon fiber ribbon-wound composite cylindrical shell is proposed. The mechanical characteristics are analyzed. Due to the smaller longitudinal Young's modulus of this novel material, the sensitivity is improved to 0.452nm/MPa and the measurement range can reach 8MPa. The experimental results indicated excellent repeatability of the material and a good linearity between Bragg wavelength shift and the applied pressure. The sensor has the potential to find many industrial low pressure applications.
Highly sensitive rotation sensing based on orthogonal fiber-optic structures
NASA Astrophysics Data System (ADS)
Yang, Yi; Wang, Zi-nan; Xu, Lian-yu; Wang, Cui-yun; Jia, Lei; Yu, Xiao-qi; Shao, Shan; Li, Zheng-bin
2011-08-01
In traditional fiber-optic gyroscopes (FOG), the polarization state of counter propagating waves is critically controlled, and only the mode polarized along one particular direction survives. This is important for a traditional single mode fiber gyroscope as the requirement of reciprocity. However, there are some fatal defects such as low accuracy and poor bias stability in traditional structures. In this paper, based on the idea of polarization multiplexing, a double-polarization structure is put forward and experimentally studied. In highly birefringent fibers or standard single mode fibers with induced anisotropy, two orthogonal polarization modes can be used at the same time. Therefore, in polarization maintaining fibers (PMF), each pair of counter propagating beams preserve reciprocity within their own polarization state. Two series of sensing results are gotten in the fast and slow axes in PMF. The two sensing results have their own systematic drifts and the correlation of random noise in them is approximately zero. So, beams in fast and slow axes work as two independent and orthogonal gyroscopes. In this way, amount of information is doubled, providing opportunity to eliminate noise and improve sensitivity. Theoretically, this double-polarization structure can achieve a sensitivity of 10-18 deg/h. Computer simulation demonstrates that random noise and systematic drifts are largely reduced in this novel structure. In experiment, a forty-hour stability test targeting the earth's rotation velocity is carried out. Experiment result shows that the orthogonal fiber-optic structure has two big advantages compared with traditional ones. Firstly, the structure gets true value without any bias correction in any axis and even time-varying bias does not affect the acquisition of true value. The unbiasedness makes the structure very attractive when sudden disturbances or temperature drifts existing in working environment. Secondly, the structure lowers bias for more than two orders and enhances bias stability for an order higher (compared with single axis result), achieving a bias stability of 0.01 deg/h. The evidences from all aspects convincingly show that the orthogonal fiber-optic structure is robust against environmental disturbance and material defects, achieving high stability and sensitivity.
Pachankis, John E.; Hatzenbuehler, Mark L.; Starks, Tyrel J.
2018-01-01
Stigma occurs at both individual and structural levels, but existing research tends to examine the effect of individual and structural forms of stigma in isolation, rather than considering potential synergistic effects. To address this gap, our study examined whether stigma at the individual level, namely gay-related rejection sensitivity, interacts with structural stigma to predict substance use among young sexual minority men. Sexual minority (n = 119) participants completed online measures of our constructs (e.g., rejection sensitivity). Participants currently resided across a broad array of geographic areas (i.e., 24 U.S. states), and had attended high school in 28 states, allowing us to capture sufficient variance in current and past forms of structural stigma, defined as (1) a lack of state-level policies providing equal opportunities for heterosexual and sexual minority individuals and (2) negative state-aggregated attitudes toward sexual minorities. To measure daily substance use, we utilized a daily diary approach, whereby all participants were asked to indicate whether they used tobacco or alcohol on nine consecutive days. Results indicated that structural stigma interacted with rejection sensitivity to predict tobacco and alcohol use, and that this relationship depended on the developmental timing of exposure to structural stigma. In contrast, rejection sensitivity did not mediate the relationship between structural stigma and substance use. These results suggest that psychological predispositions, such as rejection sensitivity, interact with features of the social environment, such as structural stigma, to predict important health behaviors among young sexual minority men. These results add to a growing body of research documenting the multiple levels through which stigma interacts to produce negative health outcomes among sexual minority individuals. PMID:24507912
Binfeng, Yun; Guohua, Hu; Ruohu, Zhang; Yiping, Cui
2014-11-17
A nanometric and high sensitive refractive index sensor based on the metal-insulator-metal plasmonic Bragg grating is proposed. The wavelength encoded sensing characteristics of the refractive index sensor were investigated by analyzing its transmission spectrum. The numerical results show that a good linear relationship between the Bragg wavelength and the refractive index of the sensing material can be obtained, which is in accordance with the analytical results very well. A high refractive index sensitivity of 1,488 nm/RIU around Bragg resonance wavelength of 1,550 nm was obtained. Besides, the simulation results show that the sensitivity is depended on the Bragg resonance wavelength and the longer the Bragg resonance wavelength, the higher sensitivity can be obtained. Furthermore, the figure of merit of the refractive index sensor can be greatly increased by introducing a nano-cavity in the proposed plasmonic Bragg grating structure. This work pave the way for high sensitive nanometric refractive index sensor design and application.
Sensitivity Enhancement of FBG-Based Strain Sensor.
Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian
2018-05-17
A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.
Sensitivity Enhancement of FBG-Based Strain Sensor
Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Mao, Jian
2018-01-01
A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments. PMID:29772826
Thiha, Aung; Ibrahim, Fatimah; Muniandy, Shalini; Dinshaw, Ignatius Julian; Teh, Swe Jyan; Thong, Kwai Lin; Leo, Bey Fen; Madou, Marc
2018-06-01
Nanowire sensors offer great potential as highly sensitive electrochemical and electronic biosensors because of their small size, high aspect ratios, and electronic properties. Nevertheless, the available methods to fabricate carbon nanowires in a controlled manner remain limited to expensive techniques. This paper presents a simple fabrication technique for sub-100 nm suspended carbon nanowire sensors by integrating electrospinning and photolithography techniques. Carbon Microelectromechanical Systems (C-MEMS) fabrication techniques allow fabrication of high aspect ratio carbon structures by patterning photoresist polymers into desired shapes and subsequent carbonization of resultant structures by pyrolysis. In our sensor platform, suspended nanowires were deposited by electrospinning while photolithography was used to fabricate support structures. We have achieved suspended carbon nanowires with sub-100 nm diameters in this study. The sensor platform was then integrated with a microfluidic chip to form a lab-on-chip device for label-free chemiresistive biosensing. We have investigated this nanoelectronics label-free biosensor's performance towards bacterial sensing by functionalization with Salmonella-specific aptamer probes. The device was tested with varying concentrations of Salmonella Typhimurium to evaluate sensitivity and various other bacteria to investigate specificity. The results showed that the sensor is highly specific and sensitive in detection of Salmonella with a detection limit of 10 CFU mL -1 . Moreover, this proposed chemiresistive assay has a reduced turnaround time of 5 min and sample volume requirement of 5 µL which are much less than reported in the literature. Copyright © 2018 Elsevier B.V. All rights reserved.
Graphene-bimetal plasmonic platform for ultra-sensitive biosensing
NASA Astrophysics Data System (ADS)
Tong, Jinguang; Jiang, Li; Chen, Huifang; Wang, Yiqin; Yong, Ken-Tye; Forsberg, Erik; He, Sailing
2018-03-01
A graphene-bimetal plasmonic platform for surface plasmon resonance biosensing with ultra-high sensitivity was proposed and optimized. In this hybrid configuration, graphene nanosheets was employed to effectively absorb the excitation light and serve as biomolecular recognition elements for increased adsorption of analytes. Coating of an additional Au film prevents oxidation of the Ag substrate during manufacturing process and enhances the sensitivity at the same time. Thus, a bimetal Au-Ag substrate enables improved sensing performance and promotes stability of this plasmonic sensor. In this work we optimized the number of graphene layers as well as the thickness of the Au film and the Ag substrate based on the phase-interrogation sensitivity. We found an optimized configuration consisting of 6 layers of graphene coated on a bimetal surface consisting of a 5 nm Au film and a 30 nm Ag film. The calculation results showed the configuration could achieve a phase sensitivity as high as 1 . 71 × 106 deg/RIU, which was more than 2 orders of magnitude higher than that of bimetal structure and graphene-silver structure. Due to this enhanced sensing performance, the graphene-bimetal plasmonic platform proposed in this paper is potential for ultra-sensitive plasmonic sensing.
NASA Astrophysics Data System (ADS)
Chu, Genbai; Yang, Zuhua; Xi, Tao; Xin, Jianting; Zhao, Yongqiang; He, Weihua; Shui, Min; Gu, Yuqiu; Xiong, Ying; Xu, Tao
2018-04-01
Understanding the structural, geometrical, and chemical changes that occur after an electronic excitation is essential to elucidate the inherent mechanism of nitro explosives. Herein, relaxed structures of typical nitro explosives in the lowest singlet excited state are investigated using time-dependent density functional theory. During the excitation process, the nitro group is activated and relaxes via geometrical change. The five explosives RDX, HMX, CL-20, PETN, and LLM-105 exhibit similar relaxed structures, and the impact sensitivity is related to their excitation energy. High-sensitivity δ-HMX has a lower excitation energy for relaxed structure than β-HMX. This study offers novel insight into energetic materials.
Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.
Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira
2018-02-16
High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.
Stretchable Platinum Network-Based Transparent Electrodes for Highly Sensitive Wearable Electronics.
Wang, Yuting; Cheng, Jing; Xing, Yan; Shahid, Muhammad; Nishijima, Hiroki; Pan, Wei
2017-07-01
A platinum network-based transparent electrode has been fabricated by electrospinning. The unique nanobelt structured electrode demonstrates low sheet resistance (about 16 Ω sq -1 ) and high transparency of 80% and excellent flexibility. One of the most interesting demonstrations of this Pt nanobelt electrode is its excellent reversibly resilient characteristic. The electric conductivity of the flexible Pt electrode can recover to its initial value after 160% extending and this performance is repeatable and stable. The good linear relationship between the resistance and strain of the unique structured Pt electrode makes it possible to assemble a wearable high sensitive strain sensor. Present reported Pt nanobelt electrode also reveals potential applications in electrode for flexible fuel cells and highly transparent ultraviolet (UV) sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spanoudaki, V C; Lau, F W Y; Vandenbroucke, A; Levin, C S
2010-11-01
This study aims to address design considerations of a high resolution, high sensitivity positron emission tomography scanner dedicated to breast imaging. The methodology uses a detailed Monte Carlo model of the system structures to obtain a quantitative evaluation of several performance parameters. Special focus was given to the effect of dense mechanical structures designed to provide mechanical robustness and thermal regulation to the minuscule and temperature sensitive detectors. For the energies of interest around the photopeak (450-700 keV energy window), the simulation results predict a 6.5% reduction in the single photon detection efficiency and a 12.5% reduction in the coincidence photon detection efficiency in the case that the mechanical structures are interspersed between the detectors. However for lower energies, a substantial increase in the number of detected events (approximately 14% and 7% for singles at a 100-200 keV energy window and coincidences at a lower energy threshold of 100 keV, respectively) was observed with the presence of these structures due to backscatter. The number of photon events that involve multiple interactions in various crystal elements is also affected by the presence of the structures. For photon events involving multiple interactions among various crystal elements, the coincidence photon sensitivity is reduced by as much as 20% for a point source at the center of the field of view. There is no observable effect on the intrinsic and the reconstructed spatial resolution and spatial resolution uniformity. Mechanical structures can have a considerable effect on system sensitivity, especially for systems processing multi-interaction photon events. This effect, however, does not impact the spatial resolution. Various mechanical structure designs are currently under evaluation in order to achieve optimum trade-off between temperature stability, accurate detector positioning, and minimum influence on system performance.
Spanoudaki, V. C.; Lau, F. W. Y.; Vandenbroucke, A.; Levin, C. S.
2010-01-01
Purpose: This study aims to address design considerations of a high resolution, high sensitivity positron emission tomography scanner dedicated to breast imaging. Methods: The methodology uses a detailed Monte Carlo model of the system structures to obtain a quantitative evaluation of several performance parameters. Special focus was given to the effect of dense mechanical structures designed to provide mechanical robustness and thermal regulation to the minuscule and temperature sensitive detectors. Results: For the energies of interest around the photopeak (450–700 keV energy window), the simulation results predict a 6.5% reduction in the single photon detection efficiency and a 12.5% reduction in the coincidence photon detection efficiency in the case that the mechanical structures are interspersed between the detectors. However for lower energies, a substantial increase in the number of detected events (approximately 14% and 7% for singles at a 100–200 keV energy window and coincidences at a lower energy threshold of 100 keV, respectively) was observed with the presence of these structures due to backscatter. The number of photon events that involve multiple interactions in various crystal elements is also affected by the presence of the structures. For photon events involving multiple interactions among various crystal elements, the coincidence photon sensitivity is reduced by as much as 20% for a point source at the center of the field of view. There is no observable effect on the intrinsic and the reconstructed spatial resolution and spatial resolution uniformity. Conclusions: Mechanical structures can have a considerable effect on system sensitivity, especially for systems processing multi-interaction photon events. This effect, however, does not impact the spatial resolution. Various mechanical structure designs are currently under evaluation in order to achieve optimum trade-off between temperature stability, accurate detector positioning, and minimum influence on system performance. PMID:21158296
Oxytocin conditions trait-based rule adherence
De Dreu, Carsten K.W.
2017-01-01
Abstract Rules, whether in the form of norms, taboos or laws, regulate and coordinate human life. Some rules, however, are arbitrary and adhering to them can be personally costly. Rigidly sticking to such rules can be considered maladaptive. Here, we test whether, at the neurobiological level, (mal)adaptive rule adherence is reduced by oxytocin—a hypothalamic neuropeptide that biases the biobehavioural approach-avoidance system. Participants (N = 139) self-administered oxytocin or placebo intranasally, and reported their need for structure and approach-avoidance sensitivity. Next, participants made binary decisions and were given an arbitrary rule that demanded to forgo financial benefits. Under oxytocin, participants violated the rule more often, especially when they had high need for structure and high approach sensitivity. Possibly, oxytocin dampens the need for a highly structured environment and enables individuals to flexibly trade-off internal desires against external restrictions. Implications for the treatment of clinical disorders marked by maladaptive rule adherence are discussed. PMID:27664999
NASA Astrophysics Data System (ADS)
Shi, Min; Li, Shuguang; Chen, Hailiang
2018-06-01
A high-sensitivity temperature sensor based on photonic crystal fiber Sagnac interferometer is proposed and studied. All holes of the PCF are filled with ethanol with capillarity. The cladding air holes are uniform arrangements. The two air holes around the core are removed to form new core modes with high birefringence. The sensitivities of the temperature can be up to -8.7657 and 16.8142 nm/°C when temperature rises from 45 to 75 °C and the fiber length is 5.05 cm. And when temperature rises from 10 to 45 °C, the sensitivity can reach -7.848 and 16.655 nm/°C with fiber length 2.11 cm. The performance of the selective-filled and the fully-filled PCF with temperature from 45 to 75 °C and fiber length 5.05 cm are analyzed and compared. The fully filling can better achieve PCF's sensing performance. The simple structure and high sensitivities make the temperature sensor easy to achieve. The temperature sensor with high sensitivities and good linearity has great application value for environmental temperature detecting.
Curvature measurement with photonic crystal fiber based Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Deng, Ming; Tang, Chang-Ping; Zhu, Tao; Rao, Yun-Jiang
2011-05-01
A PCF-based MZI with regular and high-contrast fringe pattern is fabricated by splicing a section of PCF in between two SMFs with a commercial available fusion splicer. Its resonant wavelength is sensitive to external bending with a sensitivity of 3.046nm/m but independent on temperature. To that end, we also propose another kind of bending sensor with higher sensitivity of 5.129nm/m. This device is constructed by combining an LPG and an MZI with zero offset at the second splice. It is anticipated that the high sensitive structures will find applications in robot arms and artificial limbs.
A cell-surface-anchored ratiometric i-motif sensor for extracellular pH detection.
Ying, Le; Xie, Nuli; Yang, Yanjing; Yang, Xiaohai; Zhou, Qifeng; Yin, Bincheng; Huang, Jin; Wang, Kemin
2016-06-14
A FRET-based sensor is anchored on the cell surface through streptavidin-biotin interactions. Due to the excellent properties of the pH-sensitive i-motif structure, the sensor can detect extracellular pH with high sensitivity and excellent reversibility.
Single photon detector with high polarization sensitivity.
Guo, Qi; Li, Hao; You, LiXing; Zhang, WeiJun; Zhang, Lu; Wang, Zhen; Xie, XiaoMing; Qi, Ming
2015-04-15
Polarization is one of the key parameters of light. Most optical detectors are intensity detectors that are insensitive to the polarization of light. A superconducting nanowire single photon detector (SNSPD) is naturally sensitive to polarization due to its nanowire structure. Previous studies focused on producing a polarization-insensitive SNSPD. In this study, by adjusting the width and pitch of the nanowire, we systematically investigate the preparation of an SNSPD with high polarization sensitivity. Subsequently, an SNSPD with a system detection efficiency of 12% and a polarization extinction ratio of 22 was successfully prepared.
Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring
Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F.; Park, Jong Woong; Mechitov, Kirill
2018-01-01
Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications. PMID:29342102
Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring.
Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F; Park, Jong Woong; Mechitov, Kirill
2018-01-17
Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications.
Analytical Glycobiology at High Sensitivity: Current Approaches and Directions
Novotny, Milos V.; Alley, William R.; Mann, Benjamin F.
2013-01-01
This review summarizes the analytical advances made during the last several years in the structural and quantitative determinations of glycoproteins in complex biological mixtures. The main analytical techniques used in the fields of glycomics and glycoproteomics involve different modes of mass spectrometry and their combinations with capillary separation methods such as microcolumn liquid chromatography and capillary electrophoresis. The needs for high-sensitivity measurements have been emphasized in the oligosaccharide profiling used in the field of biomarker discovery through MALDI mass spectrometry. High-sensitivity profiling of both glycans and glycopeptides from biological fluids and tissue extracts has been aided significantly through lectin preconcentration and the uses of affinity chromatography. PMID:22945852
Manipulating explosive sensitivity through structural modifications in a nitrate ester system
NASA Astrophysics Data System (ADS)
Manner, Virginia
2017-06-01
Understanding how condensed phase effects influence sensitivity is essential for developing next generation insensitive high explosives. However, the ability to predictably manipulate explosive sensitivity remains an elusive goal. Explosive sensitivity has been suggested to be governed by multiple factors, from intramolecular effects such as bond dissociation energy, oxygen balance, and the electrostatic potential of reactive functional groups, to larger scale effects, such as crystal structure and hot spot formation. We have developed derivatives of the explosive pentaerythritol tetranitrate (PETN) and examined them experimentally and theoretically, in order to better understand which properties influence sensitivity. With this molecular framework, we can evaluate how small changes to the structure of the molecule influence qualities such as oxygen balance, heat of formation, heat capacity, compressibility, crystal packing, and hydrogen bonding, through techniques such as differential scanning calorimetry, x-ray crystallography, and atomistic simulation. We have also used small-scale sensitivity testing as an initial tool to screen for large and consistent differences in handling sensitivity. We will discuss the many factors that contribute to sensitivity in this series of systematically-modified molecules as well as in existing well-studied explosive systems, such as triaminotrinitrobenzene (TATB) and nitroglycerin (NG). In collaboration with: Thomas Myers, Marc Cawkwell, Edward Kober, Bryce Tappan, Geoffrey Brown, Mary Sandstrom, LOS ALAMOS NATL LAB.
An Investigation of the Dynamic Response of a Seismically Stable Platform
1982-08-01
PAD. The controls on the -9system are of two types. A low frequency tilt control, with a 10 arc second sensitivity, 2-axis tiltmeter as sensor ...Inertial Sensors Structural Analysis Holloman AFB, NiM. Support to this effort includes structural analyses toward active servo frequency band. This report...controlled to maintain a null position of a sensitive height sensor . The 6-degree-of- freedom high frequency controls are based on seismometers as sensors
Examining the latent structure of anxiety sensitivity in adolescents using factor mixture modeling.
Allan, Nicholas P; MacPherson, Laura; Young, Kevin C; Lejuez, Carl W; Schmidt, Norman B
2014-09-01
Anxiety sensitivity has been implicated as an important risk factor, generalizable to most anxiety disorders. In adults, factor mixture modeling has been used to demonstrate that anxiety sensitivity is best conceptualized as categorical between individuals. That is, whereas most adults appear to possess normative levels of anxiety sensitivity, a small subset of the population appears to possess abnormally high levels of anxiety sensitivity. Further, those in the high anxiety sensitivity group are at increased risk of having high levels of anxiety and of having an anxiety disorder. This study was designed to determine whether these findings extend to adolescents. Factor mixture modeling was used to examine the best fitting model of anxiety sensitivity in a sample of 277 adolescents (M age = 11.0 years, SD = 0.81). Consistent with research in adults, the best fitting model consisted of 2 classes, 1 containing adolescents with high levels of anxiety sensitivity (n = 25) and another containing adolescents with normative levels of anxiety sensitivity (n = 252). Examination of anxiety sensitivity subscales revealed that the social concerns subscale was not important for classification of individuals. Convergent and discriminant validity of anxiety sensitivity classes were found in that membership in the high anxiety sensitivity class was associated with higher mean levels of anxiety symptoms, controlling for depression and externalizing problems, and was not associated with higher mean levels of depression or externalizing symptoms controlling for anxiety problems. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Christensen, Anders S.; Linnet, Troels E.; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H.
2013-01-01
We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3 JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding. PMID:24391900
Sensitivity Analysis for Coupled Aero-structural Systems
NASA Technical Reports Server (NTRS)
Giunta, Anthony A.
1999-01-01
A novel method has been developed for calculating gradients of aerodynamic force and moment coefficients for an aeroelastic aircraft model. This method uses the Global Sensitivity Equations (GSE) to account for the aero-structural coupling, and a reduced-order modal analysis approach to condense the coupling bandwidth between the aerodynamic and structural models. Parallel computing is applied to reduce the computational expense of the numerous high fidelity aerodynamic analyses needed for the coupled aero-structural system. Good agreement is obtained between aerodynamic force and moment gradients computed with the GSE/modal analysis approach and the same quantities computed using brute-force, computationally expensive, finite difference approximations. A comparison between the computational expense of the GSE/modal analysis method and a pure finite difference approach is presented. These results show that the GSE/modal analysis approach is the more computationally efficient technique if sensitivity analysis is to be performed for two or more aircraft design parameters.
NASA Astrophysics Data System (ADS)
Fu, Han; Liu, Hong; Shen, Wenzhong
2014-11-01
Fabricating functional compounds on substrates with complicated morphology has been an important topic in material science and technology, which remains a challenging issue to simultaneously achieve a high growth rate for a complex nanostructure with simple controlling factors. Here, we present a novel simple and successive method based on chemical reactions in an open reaction system manipulated by an electric field. A uniform CdS/TiO2 composite tubular structure has been fabricated in highly ordered TiO2 nanotube arrays in a very short time period (~90 s) under room temperature (RT). The content of CdS in the resultant and its crystalline structure was tuned by the form and magnitude of external voltage. The as-formed structure has shown a quite broad and bulk-like light absorption spectrum with the absorption of photon energy even below that of the bulk CdS. The as-fabricated-sensitized solar cell based on this composite structure has achieved an efficiency of 1.43% without any chemical doping or co-sensitizing, 210% higher than quantum dot-sensitized solar cell (QDSSC) under a similar condition. Hopefully, this method can also easily grow nanostructures based on a wide range of compound materials for energy science and electronic technologies, especially for fast-deploying devices.
Rablen, Paul R; McLarney, Brett D; Karlow, Brandon J; Schneider, Jean E
2014-02-07
High-level electronic structure calculations, including a continuum treatment of solvent, are employed to elucidate and quantify the effects of alkyl halide structure on the barriers of SN2 and E2 reactions. In cases where such comparisons are available, the results of these calculations show close agreement with solution experimental data. Structural factors investigated include α- and β-methylation, adjacency to unsaturated functionality (allyl, benzyl, propargyl, α to carbonyl), ring size, and α-halogenation and cyanation. While the influence of these factors on SN2 reactivity is mostly well-known, the present study attempts to provide a broad comparison of both SN2 and E2 reactivity across many cases using a single methodology, so as to quantify relative reactivity trends. Despite the fact that most organic chemistry textbooks say far more about how structure affects SN2 reactions than about how it affects E2 reactions, the latter are just as sensitive to structural variation as are the former. This sensitivity of E2 reactions to structure is often underappreciated.
Sensitive sub-Doppler nonlinear spectroscopy for hyperfine-structure analysis using simple atomizers
NASA Astrophysics Data System (ADS)
Mickadeit, Fritz K.; Kemp, Helen; Schafer, Julia; Tong, William M.
1998-05-01
Laser wave-mixing spectroscopy is presented as a sub-Doppler method that offers not only high spectral resolution, but also excellent detection sensitivity. It offers spectral resolution suitable for hyperfine structure analysis and isotope ratio measurements. In a non-planar backward- scattering four-wave mixing optical configuration, two of the three input beams counter propagate and the Doppler broadening is minimized, and hence, spectral resolution is enhanced. Since the signal is a coherent beam, optical collection is efficient and signal detection is convenient. This simple multi-photon nonlinear laser method offers un usually sensitive detection limits that are suitable for trace-concentration isotope analysis using a few different types of simple analytical atomizers. Reliable measurement of hyperfine structures allows effective determination of isotope ratios for chemical analysis.
NASA Astrophysics Data System (ADS)
Pyo, Ju-Young; Cho, Won-Ju
2017-03-01
In this paper, we propose a high-performance separative extended gate ion-sensitive field-effect transistor (SEGISFET) that consists of a tin dioxide (SnO2) SEG sensing part and a double-gate structure amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) with tantalum pentoxide/silicon dioxide (Ta2O5/SiO2)-engineered top-gate oxide. To increase sensitivity, we maximized the capacitive coupling ratio by applying high-k dielectric at the top-gate oxide layer. As an engineered top-gate oxide, a stack of 25 nm-thick Ta2O5 and 10 nm-thick SiO2 layers was found to simultaneously satisfy a small equivalent oxide thickness (˜17.14 nm), a low leakage current, and a stable interfacial property. The threshold-voltage instability, which is a fundamental issue in a-IGZO TFTs, was improved by low-temperature post-deposition annealing (˜87 °C) using microwave irradiation. The double-gate structure a-IGZO TFTs with engineered top-gate oxide exhibited high mobility, small subthreshold swing, high drive current, and larger on/off current ratio. The a-IGZO SEGISFETs with a dual-gate sensing mode showed a pH sensitivity of 649.04 mV pH-1, which is far beyond the Nernst limit. The non-ideal behavior of ISFETs, hysteresis, and drift effect also improved. These results show that the double-gate structure a-IGZO TFTs with engineered top-gate oxide can be a good candidate for cheap and disposable SEGISFET sensors.
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-01-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability. PMID:27258281
Yu, Borong; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Shaofei; Yang, Liangbao
2018-04-03
A sodium chloride crystal-driven spontaneous 'hot spot' structure was demonstrated as a SERS-active platform, to get reproducible SERS signals, and eliminate the need for mapping large areas, in comparison with solution phase testing. During the process of solvent evaporation, the crystals produced induced silver aggregates to assemble around themselves. The micro-scale crystals can also act as a template to obtain an optical position, such that the assembled hot area is conveniently located during SERS measurements. More importantly, the chloride ions added in colloids can also replace the citrate and on the surface of the silver sol, and further decrease the background interference. High quality SERS spectra from heroin, methamphetamine (MAMP), and cocaine have been obtained on the crystal-driven hot spot structure with high sensitivity and credible reproducibility. This approach can not only bring the nanoparticles to form plasmonic hot spots in a controlled way, and thus provide high sensitivity, but also potentially be explored as an active substrate for label-free detection of other illicit drugs or additives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria
2016-08-15
Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP 2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL -) with a distinct second site is required for high PIP 2sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP 2sensitivity, even in the absence of PL -. Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP 2(2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domainmore » (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL -binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP 2site and explaining the positive allostery between PL -binding and PIP 2sensitivity.« less
Allan, Nicholas P; Raines, Amanda M; Capron, Daniel W; Norr, Aaron M; Zvolensky, Michael J; Schmidt, Norman B
2014-10-01
Anxiety sensitivity (AS), a multidimensional construct, has been implicated in the development and maintenance of anxiety and related disorders. Recent evidence suggests that AS is a dimensional-categorical construct within individuals. Factor mixture modeling was conducted in a sample of 579 adult smokers (M age=36.87 years, SD=13.47) to examine the underlying structure. Participants completed the Anxiety Sensitivity Index-3 and were also given a Structured Clinical Interview for DSM-IV-TR. Three classes of individuals emerged, a high AS (5.2% of the sample), a moderate AS (19.0%), and a normative AS class (75.8%). A cut-score of 23 to identify high AS individuals, and a cut-score of 17 to identify moderate-to-high AS individuals were supported in this study. In addition, the odds of having a concurrent anxiety disorder (controlling for other Axis I disorders) were the highest in the high AS class and the lowest in the normative AS class. Copyright © 2014 Elsevier Ltd. All rights reserved.
Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.
Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria; Heyman, Sarah; Stary-Weinzinger, Anna; Yuan, Peng; Nichols, Colin G
2016-09-01
Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL(-)) with a distinct second site is required for high PIP2 sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP2 sensitivity, even in the absence of PL(-) Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP2 (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL(-) binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP2 site and explaining the positive allostery between PL(-) binding and PIP2 sensitivity. © 2016 Lee et al.
G Protein-Coupled Receptor Rhodopsin: A Prospectus
Filipek, Sławomir; Stenkamp, Ronald E.; Teller, David C.; Palczewski, Krzysztof
2006-01-01
Rhodopsin is a retinal photoreceptor protein of bipartite structure consisting of the transmembrane protein opsin and a light-sensitive chromophore 11-cis-retinal, linked to opsin via a protonated Schiff base. Studies on rhodopsin have unveiled many structural and functional features that are common to a large and pharmacologically important group of proteins from the G protein-coupled receptor (GPCR) superfamily, of which rhodopsin is the best-studied member. In this work, we focus on structural features of rhodopsin as revealed by many biochemical and structural investigations. In particular, the high-resolution structure of bovine rhodopsin provides a template for understanding how GPCRs work. We describe the sensitivity and complexity of rhodopsin that lead to its important role in vision. PMID:12471166
Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion
NASA Astrophysics Data System (ADS)
Cercato, Michele
2018-04-01
The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.
Behavioral Dimensions in One-Year-Olds and Dimensional Stability in Infancy.
ERIC Educational Resources Information Center
Hagekull, Berit; And Others
1980-01-01
The dimensional structure of infants' behavioral repertoire was shown to be highly stable over 3 to 15 months of age. Factor analysis of parent questionnaire data produced seven factors named Intensity/Activity, Regularity, Approach-Withdrawal, Sensory Sensitivity, Attentiveness, Manageability and Sensitivity to New Food. An eighth factor,…
NASA Astrophysics Data System (ADS)
Peng, Zhaozhuang; Wang, Li; Yan, Huanhuan
2016-11-01
Application of high temperature fiber sensing system is very extensive. It can be mainly used in high temperature test aerospace, such as, materials, chemicals, and energy. In recent years, various on-line optical fiber interferometric sensors based on modular interference of single-mode-multimode-single-mode(SMS) fiber have been largely explored in high temperature fiber sensor. In this paper we use the special fiber of a polyimide coating, its sensor head is composed of a section of multimode fiber spliced in the middle of Single-mode fiber. When the light is launched into the multimode fiber(MMF) through the lead-in single-mode fiber(SMF), the core mode and cladding modes are excited and propagate in the MMF respectively. Then, at the MMF-SMF spliced point, the excited cladding modes coupled back into the core of lead-out SMF interfere with SMF core mode. And the wavelength of the interference dip would shift differently with the variation of the temperature. By this mean, we can achieve the measurement of temperature. The experimental results also show that the fiber sensor based on SMS structure has a highly temperature sensitivity. From 30° to 300°, with the temperature increasing, the interference dip slightly shifts toward longer wavelength and the temperature sensitivity coefficient is 0.0115nm/°. With high sensitivity, simple structure, immunity to electromagnetic interferences and a good linearity of the experimental results, the structure has an excellent application prospect in engineering field.
Tipikin, D. S.; Earle, K. A.; Freed, J. H.
2010-01-01
The sensitivity of a high frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter wave transmission line optical axis. We quantify the performance of this device with nitroxide spin-label spectra in both a lossy aqueous solution and a low loss solid state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems in particular are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high frequency ESR to the study of biological systems at physiological conditions, for example. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in signal to noise at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples. PMID:20458356
Multidisciplinary Analysis and Optimal Design: As Easy as it Sounds?
NASA Technical Reports Server (NTRS)
Moore, Greg; Chainyk, Mike; Schiermeier, John
2004-01-01
The viewgraph presentation examines optimal design for precision, large aperture structures. Discussion focuses on aspects of design optimization, code architecture and current capabilities, and planned activities and collaborative area suggestions. The discussion of design optimization examines design sensitivity analysis; practical considerations; and new analytical environments including finite element-based capability for high-fidelity multidisciplinary analysis, design sensitivity, and optimization. The discussion of code architecture and current capabilities includes basic thermal and structural elements, nonlinear heat transfer solutions and process, and optical modes generation.
Design and analysis of a silicon-based antiresonant reflecting optical waveguide chemical sensor
NASA Astrophysics Data System (ADS)
Remley, Kate A.; Weisshaar, Andreas
1996-08-01
The design of a silicon-based antiresonant reflecting optical waveguide (ARROW) chemical sensor is presented, and its theoretical performance is compared with that of a conventional structure. The use of an ARROW structure permits incorporation of a thick guiding region for efficient coupling to a single-mode fiber. A high-index overlay is added to fine tune the sensitivity of the ARROW chemical sensor. The sensitivity of the sensor is presented, and design trade-offs are discussed.
A novel fiber optic geophone with high sensitivity for geo-acoustic detection
NASA Astrophysics Data System (ADS)
Zhang, Zhenhui; Yang, Huayong; Xiong, Shuidong; Luo, Hong; Cao, Chunyan; Ma, Shuqing
2014-12-01
A novel interferometric fiber optic geophone is introduced in this paper. This geophone is mainly used for geo-acoustic signal detection. The geophone use one of the three orthogonal components of mandrel type push-pull structure in mechanically and single-mode fiber optic Michelson interferometer structure with Faraday Rotation Mirror (FRM) elements in optically. The resonance frequency of the geophone is larger than 1000Hz. The acceleration sensitivity is as high as 56.6 dB (0dB re 1rad/g) with a slight sensitivity fluctuation of +/-0. 2dB within the frequency band from 20Hz to 200Hz. The geo-acoustic signals generated by underwater blasting are detected successfully. All the channels show good uniformity in the detected wave shape and the amplitudes exhibit very slight differences. The geo-acoustic signal excitated by the engine of surface vehicles was also detected successfully.
Lee, Jaehong; Shin, Sera; Lee, Sanggeun; Song, Jaekang; Kang, Subin; Han, Heetak; Kim, SeulGee; Kim, Seunghoe; Seo, Jungmok; Kim, DaeEun; Lee, Taeyoon
2018-05-22
Highly stretchable fiber strain sensors are one of the most important components for various applications in wearable electronics, electronic textiles, and biomedical electronics. Herein, we present a facile approach for fabricating highly stretchable and sensitive fiber strain sensors by embedding Ag nanoparticles into a stretchable fiber with a multifilament structure. The multifilament structure and Ag-rich shells of the fiber strain sensor enable the sensor to simultaneously achieve both a high sensitivity and largely wide sensing range despite its simple fabrication process and components. The fiber strain sensor simultaneously exhibits ultrahigh gauge factors (∼9.3 × 10 5 and ∼659 in the first stretching and subsequent stretching, respectively), a very broad strain-sensing range (450 and 200% for the first and subsequent stretching, respectively), and high durability for more than 10 000 stretching cycles. The fiber strain sensors can also be readily integrated into a glove to control a hand robot and effectively applied to monitor the large volume expansion of a balloon and a pig bladder for an artificial bladder system, thereby demonstrating the potential of the fiber strain sensors as candidates for electronic textiles, wearable electronics, and biomedical engineering.
Tian, Liangliang; He, Gege; Cai, Yanhua; Wu, Shenping; Su, Yongyao; Yan, Hengqing; Yang, Cong; Chen, Yanling; Li, Lu
2018-02-16
Inspired by kinetics, the design of hollow hierarchical electrocatalysts through large-scale integration of building blocks is recognized as an effective approach to the achievement of superior electrocatalytic performance. In this work, a hollow, hierarchical Co 3 O 4 architecture (Co 3 O 4 HHA) was constructed using a coordinated etching and precipitation (CEP) method followed by calcination. The resulting Co 3 O 4 HHA electrode exhibited excellent electrocatalytic activity in terms of high sensitivity (839.3 μA mM -1 cm -2 ) and reliable stability in glucose detection. The high sensitivity could be attributed to the large specific surface area (SSA), ample unimpeded penetration diffusion paths and high electron transfer rate originating from the unique two-dimensional (2D) sheet-like character and hollow porous architecture. The hollow hierarchical structure also affords sufficient interspace for accommodation of volume change and structural strain, resulting in enhanced stability. The results indicate that Co 3 O 4 HHA could have potential for application in the design of non-enzymatic glucose sensors, and that the construction of hollow hierarchical architecture provides an efficient way to design highly active, stable electrocatalysts.
NASA Astrophysics Data System (ADS)
Tian, Liangliang; He, Gege; Cai, Yanhua; Wu, Shenping; Su, Yongyao; Yan, Hengqing; Yang, Cong; Chen, Yanling; Li, Lu
2018-02-01
Inspired by kinetics, the design of hollow hierarchical electrocatalysts through large-scale integration of building blocks is recognized as an effective approach to the achievement of superior electrocatalytic performance. In this work, a hollow, hierarchical Co3O4 architecture (Co3O4 HHA) was constructed using a coordinated etching and precipitation (CEP) method followed by calcination. The resulting Co3O4 HHA electrode exhibited excellent electrocatalytic activity in terms of high sensitivity (839.3 μA mM-1 cm-2) and reliable stability in glucose detection. The high sensitivity could be attributed to the large specific surface area (SSA), ample unimpeded penetration diffusion paths and high electron transfer rate originating from the unique two-dimensional (2D) sheet-like character and hollow porous architecture. The hollow hierarchical structure also affords sufficient interspace for accommodation of volume change and structural strain, resulting in enhanced stability. The results indicate that Co3O4 HHA could have potential for application in the design of non-enzymatic glucose sensors, and that the construction of hollow hierarchical architecture provides an efficient way to design highly active, stable electrocatalysts.
NASA Astrophysics Data System (ADS)
Papán, Daniel; Valašková, Veronika; Demeterová, Katarína
2016-10-01
The numerical and experimental approach in structural dynamics problems is more and more current nowadays. This approach is applied and solved in many research and developing institutions of the all the world. Vibrations effect caused by passing trains used in manufacturing facilities can affect the quality of the production activity. This effect is possible to be solved by a numerical or an experimental way. Numerical solution is not so financially and time demanding. The main aim of this article is to focus on just experimental measurement of this problem. In this paper, the case study with measurement due to cramped conditions realized in situ is presented. The case study is located close to railway. The vibration effect caused by passing trains on the high-sensitivity machinery contained in this object were observed. The structure was a high-sensitivity machine that was placed in a construction process. For the measurements, the high-sensitivity standard vibrations equipment was used. The assessments of measurements’ results were performed for the technological conditions and Slovak Standard Criteria. Both of these assessments were divided to amplitude and frequency domain. The amplitude criterion is also divided to peak particle velocity and RMS (Root Mean Square). Frequency domain assessment were realised using the frequency response curves obtained from high-sensitivity machinery manufacturer. The frequency limits are established for each axis of triaxle system. The measurement results can be predicted if the vibration have to be reduced. Measurement implemented in the production hall should obtain materials to determine the seismic loading and response of production machinery caused by technical seismicity.
Pain Sensitivity is Inversely Related to Regional Grey Matter Density in the Brain
Emerson, Nichole M.; Zeidan, Fadel; Lobanov, Oleg V.; Hadsel, Morten S.; Martucci, Katherine T.; Quevedo, Alexandre S.; Starr, Christopher J.; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C.
2014-01-01
Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity we used voxel-based morphometry (VBM) to investigate the relationship between grey matter density across the whole brain and inter-individual differences in pain sensitivity in 116 healthy volunteers (62 females, 54 males). Structural MRI and psychophysical data from 10 previous fMRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions exhibited a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. PMID:24333778
Influence of Functional Groups on the Viscosity of Organic Aerosol.
Rothfuss, Nicholas E; Petters, Markus D
2017-01-03
Organic aerosols can exist in highly viscous or glassy phase states. A viscosity database for organic compounds with atmospherically relevant functional groups is compiled and analyzed to quantify the influence of number and location of functional groups on viscosity. For weakly functionalized compounds the trend in viscosity sensitivity to functional group addition is carboxylic acid (COOH) ≈ hydroxyl (OH) > nitrate (ONO 2 ) > carbonyl (CO) ≈ ester (COO) > methylene (CH 2 ). Sensitivities to group addition increase with greater levels of prior functionalization and decreasing temperature. For carboxylic acids a sharp increase in sensitivity is likely present already at the second addition at room temperature. Ring structures increase viscosity relative to linear structures. Sensitivities are correlated with analogously derived sensitivities of vapor pressure reduction. This may be exploited in the future to predict viscosity in numerical models by piggybacking on schemes that track the evolution of organic aerosol volatility with age.
Enhanced sensitivity for optical loss measurement in planar thin-films (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yuan, Hua-Kang
2016-09-01
An organic-inorganic hybrid material benefits from processing advantages of organics and high refractive indices of inorganics. We focus on a titanium oxide hydrate system combined with common bulk polymers. In particular, we target thin-film structures of a few microns in thickness. Traditional Beer-Lambert approaches for measuring optical losses can only provide an upper limit estimate. This sensitivity is highly limited when considering the low-losses required for mid-range optical applications, on the order of 0.1 cm-1. For intensity based measurements, improving the sensitivity requires an increase in the optical path length. Instead, a new sensitive technique suitable for simple planar thin films is required. A number of systems were modelled to measure optical losses in films of 1 micron thick. The presented techniques utilise evanescent waves and total internal reflection to increase optical path length through the material. It was found that a new way of using prism coupling provides the greatest improvement in sensitivity. In keeping the requirements on the material simple, this method for measuring loss is well suited to any future developments of new materials in thin-film structures.
Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan
2017-03-22
Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.
Chen, Tao; He, Yuting; Du, Jinqiang
2018-06-01
This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.
Medium-high frequency FBG accelerometer with integrative matrix structure.
Dai, Yutang; Yin, Guanglin; Liu, Bin; Xu, Gang; Karanja, Joseph Muna
2015-04-10
To meet the requirements for medium-high frequency vibration monitoring, a new type fiber Bragg grating (FBG) accelerometer with an integrative matrix structure is proposed. Two symmetrical flexible gemels are used as elastic elements, which drive respective inertial mass moving reversely when exciting vibration exists, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, by which the influence of the structural parameters on the sensitivity and eigenfrequency is discussed. Sensitivity higher than 200 pm/g and an eigenfrequency larger than 3000 Hz can be realized separately, but both cannot be achieved simultaneously. Aiming for a broader measuring frequency range, a prototype accelerometer with an eigenfrequency near 3000 Hz is designed, and results from a shake table test are also demonstrated.
Bulk sensitive hard x-ray photoemission electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C.; Weber, N.
Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. Themore » high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.« less
NASA Astrophysics Data System (ADS)
Liang, Q.; Wu, W.; Zhang, D.; Wei, B.; Sun, W.; Wang, Y.; Ge, Y.
2015-10-01
Roughness, which can represent the trade-off between manufacturing cost and performance of mechanical components, is a critical predictor of cracks, corrosion and fatigue damage. In order to measure polished or super-finished surfaces, a novel touch probe based on three-component force sensor for characterizing and quantifying surface roughness is proposed by using silicon micromachining technology. The sensor design is based on a cross-beam structure, which ensures that the system possesses high sensitivity and low coupling. The results show that the proposed sensor possesses high sensitivity, low coupling error, and temperature compensation function. The proposed system can be used to investigate micromechanical structures with nanometer accuracy.
NASA Astrophysics Data System (ADS)
Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye
2016-03-01
Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.
Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Longfeng; Pu, Shengli, E-mail: shlpu@usst.edu.cn; Tang, Jiali
2015-05-11
A kind of magnetic field sensor using a microfiber coupler (MFC) surrounded with magnetic fluid (MF) is proposed and experimentally demonstrated. As the MFC is strongly sensitive to the surrounding refractive index (RI) and MF's RI is sensitive to magnetic field, the magnetic field sensing function of the proposed structure is realized. Interrogation of magnetic field strength is achieved by measuring the dip wavelength shift and transmission loss change of the transmission spectrum. The experimental results show that the sensitivity of the sensor is wavelength-dependent. The maximum sensitivity of 191.8 pm/Oe is achieved at wavelength of around 1537 nm in this work.more » In addition, a sensitivity of −0.037 dB/Oe is achieved by monitoring variation of the fringe visibility. These suggest the potential applications of the proposed structure in tunable all-in-fiber photonic devices such as magneto-optical modulator, filter, and sensing.« less
Read-across predictions require high quality measured data for source analogues. These data are typically retrieved from structured databases, but biomedical literature data are often untapped because current literature mining approaches are resource intensive. Our high-throughpu...
Exact Tuning of High-Q Optical Microresonators by Use of UV
NASA Technical Reports Server (NTRS)
Savchankov, Anaotliy; Maleki, Lute; Iltchenko, Vladimir; Handley, Timothy
2006-01-01
In one of several alternative approaches to the design and fabrication of a "whispering-gallery" optical microresonator of high resonance quality (high Q), the index of refraction of the resonator material and, hence, the resonance frequencies. In this approach, a microresonator structure is prepared by forming it from an ultraviolet-sensitive material. Then the structure is subjected to controlled exposure to UV light while its resonance frequencies are monitored.
NASA Astrophysics Data System (ADS)
Cheng, Junna; Zhou, Ciming; Fan, Dian; Ou, Yiwen
2017-04-01
We propose and demonstrate a miniature Fabry-Perot (F-P) interferometric sensor based on a hollow glass microsphere (HGM) for highly sensitive temperature measurement. The sensor head is fabricated by sticking a HGM on the end face of a single-mode fiber, and it consists of a short air F-P cavity between the front and the rear surfaces of the HGM. A sensor with 135.7280-μm cavity length was tested for temperature measurement from -5 °C to 50 °C. The obtained sensitivity reached up to 24.5 pm/°C and the variation rate of the HGM- F-P's cavity length was2.1 nm/°C. The advantages of compact size, easy fabrication and low cost make the sensor suitable for highly sensitive temperature sensing.
From nature to MEMS: towards the detection-limit of crickets' hair sensors
NASA Astrophysics Data System (ADS)
Dagamseh, A. M. K.
2013-05-01
Crickets use highly sensitive mechanoreceptor hairs to detect approaching spiders. The high sensitivity of these hairs enables perceiving tiny air-movements which are only just distinguishable from noise. This forms our source of inspiration to design sensitive arrays made of artificial hair sensors for flow pattern observation i.e. Flow camera. The realization of such high-sensitive hair sensor requires designs with low thermo-mechanical noise to match the detection-limit of crickets' hairs. Here we investigate the damping factor in our artificial hair-sensor using different models as it is the source of the thermo-mechanical noise in MEMS structures. The results show that the damping factor estimated in air is in the range of 10-12 N.m/rad.s-1 which translates into a 52 μm/s threshold flow velocity.
USDA-ARS?s Scientific Manuscript database
Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant. A sensitive and selective enzyme-linked immunosorbent assay (ELISA) for the detection of TBBPA was developed. Six haptens (T1-T6) mimicking different structural elements of TBBPA were synthesized and coupled to keyhole...
A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range
Tian, He; Shu, Yi; Wang, Xue-Feng; Mohammad, Mohammad Ali; Bie, Zhi; Xie, Qian-Yi; Li, Cheng; Mi, Wen-Tian; Yang, Yi; Ren, Tian-Ling
2015-01-01
Pressure sensors are a key component in electronic skin (e-skin) sensing systems. Most reported resistive pressure sensors have a high sensitivity at low pressures (<5 kPa) to enable ultra-sensitive detection. However, the sensitivity drops significantly at high pressures (>5 kPa), which is inadequate for practical applications. For example, actions like a gentle touch and object manipulation have pressures below 10 kPa, and 10–100 kPa, respectively. Maintaining a high sensitivity in a wide pressure range is in great demand. Here, a flexible, wide range and ultra-sensitive resistive pressure sensor with a foam-like structure based on laser-scribed graphene (LSG) is demonstrated. Benefitting from the large spacing between graphene layers and the unique v-shaped microstructure of the LSG, the sensitivity of the pressure sensor is as high as 0.96 kPa−1 in a wide pressure range (0 ~ 50 kPa). Considering both sensitivity and pressure sensing range, the pressure sensor developed in this work is the best among all reported pressure sensors to date. A model of the LSG pressure sensor is also established, which agrees well with the experimental results. This work indicates that laser scribed flexible graphene pressure sensors could be widely used for artificial e-skin, medical-sensing, bio-sensing and many other areas. PMID:25721159
A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor
Algorri, José Francisco; Urruchi, Virginia; Bennis, Noureddine; Sánchez-Pena, José Manuel
2014-01-01
A novel temperature sensor based on nematic liquid crystal permittivity as a sensing magnitude, is presented. This sensor consists of a specific micrometric structure that gives considerable advantages from other previous related liquid crystal (LC) sensors. The analytical study reveals that permittivity change with temperature is introduced in a hyperbolic cosine function, increasing the sensitivity term considerably. The experimental data has been obtained for ranges from −6 °C to 100 °C. Despite this, following the LC datasheet, theoretical ranges from −40 °C to 109 °C could be achieved. These results have revealed maximum sensitivities of 33 mVrms/°C for certain temperature ranges; three times more than of most silicon temperature sensors. As it was predicted by the analytical study, the micrometric size of the proposed structure produces a high output voltage. Moreover the voltage's sensitivity to temperature response can be controlled by the applied voltage. This response allows temperature measurements to be carried out without any amplification or conditioning circuitry, with very low power consumption. PMID:24721771
Safronova, Marianna S; Porsev, Sergey G; Sanner, Christian; Ye, Jun
2018-04-27
We propose a new frequency standard based on a 4f^{14}6s6p ^{3}P_{0}-4f^{13}6s^{2}5d (J=2) transition in neutral Yb. This transition has a potential for high stability and accuracy and the advantage of the highest sensitivity among atomic clocks to variation of the fine-structure constant α. We find its dimensionless α-variation enhancement factor to be K=-15, in comparison to the most sensitive current clock (Yb^{+} E3, K=-6), and it is 18 times larger than in any neutral-atomic clocks (Hg, K=0.8). Combined with the unprecedented stability of an optical lattice clock for neutral atoms, this high sensitivity opens new perspectives for searches for ultralight dark matter and for tests of theories beyond the standard model of elementary particles. Moreover, together with the well-established ^{1}S_{0}-^{3}P_{0} transition, one will have two clock transitions operating in neutral Yb, whose interleaved interrogations may further reduce systematic uncertainties of such clock-comparison experiments.
NASA Astrophysics Data System (ADS)
Safronova, Marianna S.; Porsev, Sergey G.; Sanner, Christian; Ye, Jun
2018-04-01
We propose a new frequency standard based on a 4 f146 s 6 p
Oxytocin conditions trait-based rule adherence.
Gross, Jörg; De Dreu, Carsten K W
2017-03-01
Rules, whether in the form of norms, taboos or laws, regulate and coordinate human life. Some rules, however, are arbitrary and adhering to them can be personally costly. Rigidly sticking to such rules can be considered maladaptive. Here, we test whether, at the neurobiological level, (mal)adaptive rule adherence is reduced by oxytocin-a hypothalamic neuropeptide that biases the biobehavioural approach-avoidance system. Participants (N = 139) self-administered oxytocin or placebo intranasally, and reported their need for structure and approach-avoidance sensitivity. Next, participants made binary decisions and were given an arbitrary rule that demanded to forgo financial benefits. Under oxytocin, participants violated the rule more often, especially when they had high need for structure and high approach sensitivity. Possibly, oxytocin dampens the need for a highly structured environment and enables individuals to flexibly trade-off internal desires against external restrictions. Implications for the treatment of clinical disorders marked by maladaptive rule adherence are discussed. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Zhang, Hua; Wang, Chen; Sun, Han-Lei; Fu, Gang; Chen, Shu; Zhang, Yue-Jiao; Chen, Bing-Hui; Anema, Jason R.; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun
2017-01-01
Surface molecular information acquired in situ from a catalytic process can greatly promote the rational design of highly efficient catalysts by revealing structure-activity relationships and reaction mechanisms. Raman spectroscopy can provide this rich structural information, but normal Raman is not sensitive enough to detect trace active species adsorbed on the surface of catalysts. Here we develop a general method for in situ monitoring of heterogeneous catalytic processes through shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) satellite nanocomposites (Au-core silica-shell nanocatalyst-satellite structures), which are stable and have extremely high surface Raman sensitivity. By combining operando SHINERS with density functional theory calculations, we identify the working mechanisms for CO oxidation over PtFe and Pd nanocatalysts, which are typical low- and high-temperature catalysts, respectively. Active species, such as surface oxides, superoxide/peroxide species and Pd–C/Pt–C bonds are directly observed during the reactions. We demonstrate that in situ SHINERS can provide a deep understanding of the fundamental concepts of catalysis. PMID:28537269
Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method.
Wang, Zhihui; Zhang, Ling; Liu, Jin; Jiang, Hao; Li, Chunzhong
2018-05-30
Recently, flexible pressure sensors featuring high sensitivity, broad sensing range and real-time detection have aroused great attention owing to their crucial role in the development of artificial intelligent devices and healthcare systems. Herein, highly sensitive pressure sensors based on hemisphere-microarray flexible substrates are fabricated via inversely templating honeycomb structures deriving from a facile and static breath figure process. The interlocked and subtle microstructures greatly improve the sensing characteristics and compressibility of the as-prepared pressure sensor, endowing it a sensitivity as high as 196 kPa-1 and a wide pressure sensing range (0-100 kPa), as well as other superior performance, including a lower detection limit of 0.5 Pa, fast response time (<26 ms) and high reversibility (>10 000 cycles). Based on the outstanding sensing performance, the potential capability of our pressure sensor in capturing physiological information and recognizing speech signals has been demonstrated, indicating promising application in wearable and intelligent electronics.
2014-01-01
Fabricating functional compounds on substrates with complicated morphology has been an important topic in material science and technology, which remains a challenging issue to simultaneously achieve a high growth rate for a complex nanostructure with simple controlling factors. Here, we present a novel simple and successive method based on chemical reactions in an open reaction system manipulated by an electric field. A uniform CdS/TiO2 composite tubular structure has been fabricated in highly ordered TiO2 nanotube arrays in a very short time period (~90 s) under room temperature (RT). The content of CdS in the resultant and its crystalline structure was tuned by the form and magnitude of external voltage. The as-formed structure has shown a quite broad and bulk-like light absorption spectrum with the absorption of photon energy even below that of the bulk CdS. The as-fabricated-sensitized solar cell based on this composite structure has achieved an efficiency of 1.43% without any chemical doping or co-sensitizing, 210% higher than quantum dot-sensitized solar cell (QDSSC) under a similar condition. Hopefully, this method can also easily grow nanostructures based on a wide range of compound materials for energy science and electronic technologies, especially for fast-deploying devices. PMID:25520588
Thönissen, P; Ermer, M A; Schmelzeisen, R; Gutwald, R; Metzger, M C; Bittermann, G
2015-09-01
Cone-Beam Computed Tomography (CBCT) has become widely used in dentistry and maxillofacial surgery. Accuracy, sensitivity and specificity of thin bony structures below 0.5 mm have been subject of some in vitro studies. This prospective in vivo study investigates the correlation between preoperative CBCT-imaging and intraoperative clinical examination of thin bony structures. We hereby present results from daily clinical routine. A total number of 80 sites in 64 patients has been examined to differentiate between preoperative 3D imaging and clinical measurements on cystic lesions in maxilla and mandible. Different CBCT-devices with a voxel size ranging from 0.08 mm to 0.4 mm were used. Overall-specificity found for detecting thin bony structures of the human jaw is 13.89%, overall sensitivity is 100%, positive predictive value (PPV) is 58.67% and negative predictive value (NPV) is 100%. Image quality is the key to make use of additional information CBCT provides and depends on spatial, temporal and contrast resolution. CBCT does not depict reliably thin bony structures of the jaw, even if high voxel resolution is used. In selected cases using high resolution protocols should be considered despite affecting the patient with higher doses of radiation. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Ma, Long; Wu, Guanrong; Li, Yufeng; Qin, Ping; Meng, Lingpei; Liu, Haiyan; Li, Yuyin; Diao, Aipo
2015-11-21
We constructed a reversible molecular device in the nanoscale based on a DNA three-way junction (3WJ) fueled by Hg(2+) binding and sequestration. It is highly responsive to external stimuli, which brings about optically detectable global structural changes. Such a DNA device can serve as a novel "turn-on and -off" fluorescent sensor for Hg(2+) and biothiol detection with high selectivity and sensitivity.
Optical-fiber strain sensors with asymmetric etched structures.
Vaziri, M; Chen, C L
1993-11-01
Optical-fiber strain gauges with asymmetric etched structures have been analyzed, fabricated, and tested. These sensors are very sensitive with a gauge factor as high as 170 and a flat frequency response to at least 2.7 kHz. The gauge factor depends on the asymmetry of the etched structures and the number of etched sections. To understand the physical principles involved, researchers have used structural analysis programs based on a finite-element method to analyze fibers with asymmetric etched structures under tensile stress. The results show that lateral bends are induced on the etched fibers when they are stretched axially. To relate the lateral bending to the optical attenuation, we have also employed a ray-tracing technique to investigate the dependence of the attenuation on the structural deformation. Based on the structural analysis and the ray-tracing study parameters affecting the sensitivity have been studied. These results agree with the results of experimental investigations.
Chen, Di-Ming; Tian, Jia-Yue; Wang, Zhuo-Wei; Liu, Chun-Sen; Chen, Min; Du, Miao
2017-09-26
A cage-based anionic Na(i)-organic framework with a unique Na 9 cluster-based secondary building unit and a cage-in-cage structure was constructed. The selective separation of dyes with different charges and sizes was investigated. Furthermore, the Rh6G@MOF composite could be applied as a recyclable fluorescent sensor for detecting picric acid (PA) with high sensitivity and selectivity.
NASA Astrophysics Data System (ADS)
Deng, Yan; Cao, Guangtao; Yang, Hui
2018-02-01
Actively tunable sharp asymmetric line shape and high-sensitivity sensor with high figure of merit (FOM) are analytically and numerically demonstrated in plasmonic coupled cavities. The Fano resonance, originating from the interference between different light pathways, is realized and effectively tuned in on-chip nanostructure composed of metal-dielectric-metal (MDM) waveguide and a pair of cavities. To investigate in detail the Fano line shape, the coupled cavities are taken as a composite cavity, and a dynamic theory is proposed, which agrees well with the numerical simulations. Subsequently, the sensing performances of the plasmonic structure is discussed and its detection sensitivity reaches 1.103 × 108. Moreover, the FOM of the plasmonic sensor can approach 2.33 × 104. These discoveries hold potential applications for on-chip nano-sensors in highly integrated photonic devices.
Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography.
Govyadinov, Alexander A; Mastel, Stefan; Golmar, Federico; Chuvilin, Andrey; Carney, P Scott; Hillenbrand, Rainer
2014-07-22
The increasing complexity of composite materials structured on the nanometer scale requires highly sensitive analytical tools for nanoscale chemical identification, ideally in three dimensions. While infrared near-field microscopy provides high chemical sensitivity and nanoscopic spatial resolution in two dimensions, the quantitative extraction of material properties of three-dimensionally structured samples has not been achieved yet. Here we introduce a method to perform rapid recovery of the thickness and permittivity of simple 3D structures (such as thin films and nanostructures) from near-field measurements, and provide its first experimental demonstration. This is accomplished via a novel nonlinear invertible model of the imaging process, taking advantage of the near-field data recorded at multiple harmonics of the oscillation frequency of the near-field probe. Our work enables quantitative nanoscale-resolved optical studies of thin films, coatings, and functionalization layers, as well as the structural analysis of multiphase materials, among others. It represents a major step toward the further goal of near-field nanotomography.
Method for computationally efficient design of dielectric laser accelerator structures
Hughes, Tyler; Veronis, Georgios; Wootton, Kent P.; ...
2017-06-22
Here, dielectric microstructures have generated much interest in recent years as a means of accelerating charged particles when powered by solid state lasers. The acceleration gradient (or particle energy gain per unit length) is an important figure of merit. To design structures with high acceleration gradients, we explore the adjoint variable method, a highly efficient technique used to compute the sensitivity of an objective with respect to a large number of parameters. With this formalism, the sensitivity of the acceleration gradient of a dielectric structure with respect to its entire spatial permittivity distribution is calculated by the use of onlymore » two full-field electromagnetic simulations, the original and ‘adjoint’. The adjoint simulation corresponds physically to the reciprocal situation of a point charge moving through the accelerator gap and radiating. Using this formalism, we perform numerical optimizations aimed at maximizing acceleration gradients, which generate fabricable structures of greatly improved performance in comparison to previously examined geometries.« less
Electronic and Interfacial Properties of PD/6H-SiC Schottky Diode Gas Sensors
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Bansal, Gaurav; Petit, Jeremy B.; Knight, Dak; Liu, Chung-Chiun; Wu, Qinghai
1996-01-01
Pd/SiC Schottky diodes detect hydrogen and hydrocarbons with high sensitivity. Variation of the diode temperature from 100 C to 200 C shows that the diode sensitivity to propylene is temperature dependent. Long-term heat treating at 425 C up to 140 hours is carried out to determine the effect of extended heat treating on the diode properties and gas sensitivity. The heat treating significantly affects the diode's capacitive characteristics, but the diode's current carrying characteristics are much more stable with a large response to hydrogen. Scanning Electron Microscopy and X-ray Spectrometry studies of the Pd surface after the heating show cluster formation and background regions with grain structure observed in both regions. The Pd and Si concentrations vary between grains. Auger Electron Spectroscopy depth profiles revealed that the heat treating promoted interdiffusion and reaction between the Pd and SiC dw broadened the interface region. This work shows that Pd/SiC Schottky diodes have significant potential as high temperature gas sensors, but stabilization of the structure is necessary to insure their repeatability in long-term, high temperature applications.
High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects
NASA Astrophysics Data System (ADS)
Beverini, N.; Di Virgilio, A.; Belfi, J.; Ortolan, A.; Schreiber, K. U.; Gebauer, A.; Klügel, T.
2016-06-01
The Gross Ring G is a square ring laser gyroscope, built as a monolithic Zerodur structure with 4 m length on all sides. It has demonstrated that a large ring laser provides a sensitivity high enough to measure the rotational rate of the Earth with a high precision of ΔΩE < 10-8. It is possible to show that further improvement in accuracy could allow the observation of the metric frame dragging, produced by the Earth rotating mass (Lense-Thirring effect), as predicted by General Relativity. Furthermore, it can provide a local measurement of the Earth rotational rate with a sensitivity near to that provided by the international system IERS. The GINGER project is intending to take this level of sensitivity further and to improve the accuracy and the long-term stability. A monolithic structure similar to the G ring laser is not available for GINGER. Therefore the preliminary goal is the demonstration of the feasibility of a larger gyroscope structure, where the mechanical stability is obtained through an active control of the geometry. A prototype moderate size gyroscope (GP-2) has been set up in Pisa in order to test this active control of the ring geometry, while a second structure (GINGERino) has been installed inside the Gran Sasso underground laboratory in order to investigate the properties of a deep underground laboratory in view of an installation of a future GINGER apparatus. The preliminary data on these two latter instruments are presented.
Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor
NASA Astrophysics Data System (ADS)
Zhang, Zhiguo; Shen, Chunyan; Li, Luming
2018-03-01
Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.
Theoretical Studies on Structures and Relative Stability for Polynitrohexaazaadamantanes
NASA Astrophysics Data System (ADS)
Xu, Xiao-juan; Xiao, He-ming; Wang, Gui-xiang; Ju, Xue-hai
2006-10-01
The density function theory at the B3LYP/6-31G* level was employed to study the structures, including the total energies (EZPE), the geometries, the oxygen balances (OB100), the dipole moments, of polynitro-hexaazaadamantanes (PNHAAs) and the potential candidates of high energy density compounds (HEDCs). The structural parameters of PNHAAs, such as the the maximum N—NO2 bond length (LBmax), the least N—N Mulliken population (BN—N), the least negative charge on the nitro group (QNO2) and OB100, were studied to predict their relative stability or sensitivity (the easiness for initiating a detonation, high sensitivity means low stability). It was found that the same conclusion was drawn from the four parameters. With the number of nitro groups increasing, the stabilities of these compounds decrease. OB100 failed in identifying the isomers, but the EZPE energy and the dipole moment were considered to give more reliable results for the isomers.
Nanostructured ZnO - its challenging properties and potential for device applications
NASA Astrophysics Data System (ADS)
Dimova-Malinovska, D.
2017-01-01
Nanostructured ZnO possessing interesting structural and optical properties offers challenging opportunities for innovative applications. In this lecture the review of the optical and structural properties of ZnO nanostructured layers is presented. It is shown that they have a direct impact on the parameters of devices involving ZnO. An analysis of current trends in the photovoltaic (PV) field shows that improved light harvesting and efficiency of solar cells can be obtained by implementing nanostructured ZnO layers to process advanced solar cell structures. Because of amenability to doping, high chemical stability, sensitivity to different adsorbed gases, nontoxicity and low cost ZnO attracted much attention for application as gas sensors. The sensitivity of nano-grain ZnO gas elements is comparatively high because of the grain-size effect. Application of nanostructured ZnO for gas sensors and for increasing of light harvesting in solar cells is demonstrated.
Shimada, K; Mino, T; Nakajima, M; Wakabayashi, H; Yamato, S
1994-11-04
A simple and sensitive high-performance liquid chromatographic (HPLC) method for the determination of phenothiazine (PHE) is described. PHE is converted to diphenylamine (DIP) by desulfurization with Raney nickel catalyst. DIP is highly sensitive to electrochemical detection. The calibration graph for PHE quantification after desulfurization was linear between 0.1 and 2.0 ng per injection. The detection limit (signal-to-noise ratio = 3) of PHE after desulfurization was 10 pg, which is twenty times higher than that of the parent compound PHE. The proposed desulfurization technique was applied to other PHE-related compounds. The structural confirmation of the desulfurized product of PHE was carried out by LC-MS using atmospheric pressure chemical ionization.
Zhou, Yuman; He, Jianxin; Wang, Hongbo; Qi, Kun; Nan, Nan; You, Xiaolu; Shao, Weili; Wang, Lidan; Ding, Bin; Cui, Shizhong
2017-10-11
The wearable electronic skin with high sensitivity and self-power has shown increasing prospects for applications such as human health monitoring, robotic skin, and intelligent electronic products. In this work, we introduced and demonstrated a design of highly sensitive, self-powered, and wearable electronic skin based on a pressure-sensitive nanofiber woven fabric sensor fabricated by weaving PVDF electrospun yarns of nanofibers coated with PEDOT. Particularly, the nanofiber woven fabric sensor with multi-leveled hierarchical structure, which significantly induced the change in contact area under ultra-low load, showed combined superiority of high sensitivity (18.376 kPa -1 , at ~100 Pa), wide pressure range (0.002-10 kPa), fast response time (15 ms) and better durability (7500 cycles). More importantly, an open-circuit voltage signal of the PPNWF pressure sensor was obtained through applying periodic pressure of 10 kPa, and the output open-circuit voltage exhibited a distinct switching behavior to the applied pressure, indicating the wearable nanofiber woven fabric sensor could be self-powered under an applied pressure. Furthermore, we demonstrated the potential application of this wearable nanofiber woven fabric sensor in electronic skin for health monitoring, human motion detection, and muscle tremor detection.
Effect of fibril shape on adhesive properties
NASA Astrophysics Data System (ADS)
Soto, Daniel; Hill, Ginel; Parness, Aaron; Esparza, Noé; Cutkosky, Mark; Kenny, Tom
2010-08-01
Research into the gecko's adhesive system revealed a unique architecture for adhesives using tiny hairs. By using a stiff material (β-keratin) to create a highly structured adhesive, the gecko's system demonstrates properties not seen in traditional pressure-sensitive adhesives which use a soft, unstructured planar layer. In contrast to pressure sensitive adhesives, the gecko adhesive displays frictional adhesion, in which increased shear force allows it to withstand higher normal loads. Synthetic fibrillar adhesives have been fabricated but not all demonstrate this frictional adhesion property. Here we report the dual-axis force testing of single silicone rubber pillars from synthetic adhesive arrays. We find that the shape of the adhesive pillar dictates whether frictional adhesion or pressure-sensitive behavior is observed. This work suggests that both types of behavior can be achieved with structures much larger than gecko terminal structures. It also indicates that subtle differences in the shape of these pillars can significantly influence their properties.
Pain sensitivity is inversely related to regional grey matter density in the brain.
Emerson, Nichole M; Zeidan, Fadel; Lobanov, Oleg V; Hadsel, Morten S; Martucci, Katherine T; Quevedo, Alexandre S; Starr, Christopher J; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C
2014-03-01
Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity, we used voxel-based morphometry to investigate the relationship between grey matter density across the whole brain and interindividual differences in pain sensitivity in 116 healthy volunteers (62 women, 54 men). Structural magnetic resonance imaging (MRI) and psychophysical data from 10 previous functional MRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions showed a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
A Small Range Six-Axis Accelerometer Designed with High Sensitivity DCB Elastic Element
Sun, Zhibo; Liu, Jinhao; Yu, Chunzhan; Zheng, Yili
2016-01-01
This paper describes a small range six-axis accelerometer (the measurement range of the sensor is ±g) with high sensitivity DCB (Double Cantilever Beam) elastic element. This sensor is developed based on a parallel mechanism because of the reliability. The accuracy of sensors is affected by its sensitivity characteristics. To improve the sensitivity, a DCB structure is applied as the elastic element. Through dynamic analysis, the dynamic model of the accelerometer is established using the Lagrange equation, and the mass matrix and stiffness matrix are obtained by a partial derivative calculation and a conservative congruence transformation, respectively. By simplifying the structure of the accelerometer, a model of the free vibration is achieved, and the parameters of the sensor are designed based on the model. Through stiffness analysis of the DCB structure, the deflection curve of the beam is calculated. Compared with the result obtained using a finite element analysis simulation in ANSYS Workbench, the coincidence rate of the maximum deflection is 89.0% along the x-axis, 88.3% along the y-axis and 87.5% along the z-axis. Through strain analysis of the DCB elastic element, the sensitivity of the beam is obtained. According to the experimental result, the accuracy of the theoretical analysis is found to be 90.4% along the x-axis, 74.9% along the y-axis and 78.9% along the z-axis. The measurement errors of linear accelerations ax, ay and az in the experiments are 2.6%, 0.6% and 1.31%, respectively. The experiments prove that accelerometer with DCB elastic element performs great sensitive and precision characteristics. PMID:27657089
ERIC Educational Resources Information Center
Kapur, Manu; Voiklis, John; Kinzer, Charles K.
2008-01-01
This study reports the impact of high sensitivity to early exchange in 11th-grade, CSCL triads solving well- and ill-structured problems in Newtonian Kinematics. A mixed-method analysis of the evolution of participation inequity (PI) in group discussions suggested that participation levels tended to get locked-in relatively early on in the…
Performance of terahertz metamaterials as high-sensitivity sensor
NASA Astrophysics Data System (ADS)
He, Yanan; Zhang, Bo; Shen, Jingling
2017-09-01
A high-sensitivity sensor based on the resonant transmission characteristics of terahertz (THz) metamaterials was investigated, with the proposal and fabrication of rectangular bar arrays of THz metamaterials exhibiting a period of 180 μm on a 25 μm thick flexible polyimide. Varying the size of the metamaterial structure revealed that the length of the rectangular unit modulated the resonant frequency, which was verified by both experiment and simulation. The sensing characteristics upon varying the surrounding media in the sample were tested by simulation and experiment. Changing the surrounding medium from that of air to that of alcohol or oil produced resonant frequency redshifts of 80 GHz or 150 GHz, respectively, which indicates that the sensor possessed a high sensitivity of 667 GHz per unit of refractive index. Finally, the influence of the sample substrate thickness on the sensor sensitivity was investigated by simulation. It may be a reference for future sensor design.
Fabrications and Performance of Wireless LC Pressure Sensors through LTCC Technology.
Lin, Lin; Ma, Mingsheng; Zhang, Faqiang; Liu, Feng; Liu, Zhifu; Li, Yongxiang
2018-01-25
This paper presents a kind of passive wireless pressure sensor comprised of a planar spiral inductor and a cavity parallel plate capacitor fabricated through low-temperature co-fired ceramic (LTCC) technology. The LTCC material with a low Young's modulus of ~65 GPa prepared by our laboratory was used to obtain high sensitivity. A three-step lamination process was applied to construct a high quality cavity structure without using any sacrificial materials. The effects of the thickness of the sensing membranes on the sensitivity and detection range of the pressure sensors were investigated. The sensor with a 148 μm sensing membrane showed the highest sensitivity of 3.76 kHz/kPa, and the sensor with a 432 μm sensing membrane presented a high detection limit of 2660 kPa. The tunable sensitivity and detection limit of the wireless pressure sensors can meet the requirements of different scenes.
Cox, Jonathan T.; Kronewitter, Scott R.; Shukla, Anil K.; ...
2014-09-15
Subambient pressure ionization with nanoelectrospray (SPIN) has proven to be effective in producing ions with high efficiency and transmitting them to low pressures for high sensitivity mass spectrometry (MS) analysis. Here we present evidence that not only does the SPIN source improve MS sensitivity but also allows for gentler ionization conditions. The gentleness of a conventional heated capillary electrospray ionization (ESI) source and the SPIN source was compared by the liquid chromatography mass spectrometry (LC-MS) analysis of colominic acid. Colominic acid is a mixture of sialic acid polymers of different lengths containing labile glycosidic linkages between monomer units necessitating amore » gentle ion source. By coupling the SPIN source with high resolution mass spectrometry and using advanced data processing tools, we demonstrate much extended coverage of sialic acid polymer chains as compared to using the conventional ESI source. Additionally we show that SPIN-LC-MS is effective in elucidating polymer features with high efficiency and high sensitivity previously unattainable by the conventional ESI-LC-MS methods.« less
A multi-core fiber based interferometer for high temperature sensing
NASA Astrophysics Data System (ADS)
Zhou, Song; Huang, Bo; Shu, Xuewen
2017-04-01
In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.
Xu, Xiaojie; Liu, Ming; Zhang, Zhanbin; Jia, Yueling
2014-01-01
Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors' disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted. PMID:25615738
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1993-01-01
A controls-structures interaction design method is presented. The method coordinates standard finite-element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables.
GHz low noise short wavelength infrared (SWIR) photoreceivers
NASA Astrophysics Data System (ADS)
Bai, Xiaogang; Yuan, Ping; McDonald, Paul; Boisvert, Joseph; Chang, James; Woo, Robyn; Labios, Eduardo; Sudharsanan, Rengarajan; Krainak, Michael; Yang, Guangning; Sun, Xiaoli; Lu, Wei; McIntosh, Dion; Zhou, Qiugui; Campbell, Joe
2011-06-01
Next generation LIDAR mapping systems require multiple channels of sensitive photoreceivers that operate in the wavelength region of 1.06 to 1.55 microns, with GHz bandwidth and sensitivity less than 300 fW/√Hz. Spectrolab has been developing high sensitivity photoreceivers using InAlAs impact ionization engineering (I2E) avalanche photodiodes (APDs) structures for this application. APD structures were grown using metal organic vapor epitaxy (MOVPE) and mesa devices were fabricated using these structures. We have achieved low excess noise at high gain in these APD devices; an impact ionization parameter, k, of about 0.15 has been achieved at gains >20 using InAlAs/InGaAlAs as a multiplier layer. Electrical characterization data of these devices show dark current less than 2 nA at a gain of 20 at room temperature; and capacitance of 0.4 pF for a typical 75 micron diameter APD. Photoreceivers were built by integrating I2E APDs with a low noise GHz transimpedance amplifier (TIA). The photoreceivers showed a bandwidth of 1 GHz and a noise equivalent power (NEP) of 150 fW/rt(Hz) at room temperature.
GaAs Coupled Micro Resonators with Enhanced Sensitive Mass Detection
Chopard, Tony; Lacour, Vivien; Leblois, Therese
2014-01-01
This work demonstrates the improvement of mass detection sensitivity and time response using a simple sensor structure. Indeed, complicated technological processes leading to very brittle sensing structures are often required to reach high sensitivity when we want to detect specific molecules in biological fields. These developments constitute an obstacle to the early diagnosis of diseases. An alternative is the design of coupled structures. In this study, the device is based on the piezoelectric excitation and detection of two GaAs microstructures vibrating in antisymmetric modes. GaAs is a crystal which has the advantage to be micromachined easily using typical clean room processes. Moreover, we showed its high potential in direct biofunctionalisation for use in the biological field. A specific design of the device was performed to improve the detection at low mass and an original detection method has been developed. The principle is to exploit the variation in amplitude at the initial resonance frequency which has in the vicinity of weak added mass the greatest slope. Therefore, we get a very good resolution for an infinitely weak mass: relative voltage variation of 8%/1 fg. The analysis is based on results obtained by finite element simulation. PMID:25474375
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alves, Vinicius M.; Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599; Muratov, Eugene
Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, wemore » found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R{sup 2} = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q{sup 2}{sub ext} = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin sensitization and skin permeability has been found. • Structural rules for optimizing sensitization and penetration were established.« less
NASA Astrophysics Data System (ADS)
Cheng, Tai-min; Yu, Guo-Liang; Su, Yong; Ge, Chong-Yuan; Zhang, Xin-Xin; Zhu, Lin; Li, Lin
2018-05-01
The ordered crystalline Invar alloy Fe3Pt is in a special magnetic critical state, under which the lattice dynamic stability of the system is extremely sensitive to external pressures. We studied the pressure dependence of enthalpy and magnetism of Fe3Pt in different crystalline alloys by using the first-principles projector augmented-wave method based on the density functional theory. Results show that the P4/mbm structure is the ground state structure and is more stable relative to other structures at pressures below 18.54 GPa. The total magnetic moments of L12, I4/mmm and DO22 structures decrease rapidly with pressure and oscillate near the ferromagnetic collapse critical pressure. At the pressure of 43 GPa, the ferrimagnetic property in DO22 structure becomes apparently strengthened and its volume increases rapidly. The lattice dynamics calculation for L12 structures at high pressures shows that the spontaneous magnetization of the system in ferromagnetic states induces the softening of the transverse acoustic phonon TA1 (M), and there exists a strong spontaneous volume magnetostriction at pressures below 26.95 GPa. Especially, the lattice dynamics stability is sensitive to pressure, in the pressure range between the ferromagnetic collapse critical pressure (41.9 GPa) and the magnetism completely disappearing pressure (57.25 GPa), and near the pressure of phase transition from L12 to P4/mbm structure (27.27 GPa). Moreover, the instability of magnetic structure leads to a prominent elastic modulus oscillation, and the spin polarizability of electrons near the Fermi level is very sensitive to pressures in that the pressure range. The pressure induces the stability of the phonon spectra of the system at pressures above 57.25 GPa.
Min, Jun Zhe; Nagai, Keisuke; Shi, Qing; Zhou, Wenjun; Todoroki, Kenichiro; Inoue, Koichi; Lee, Yong-Ill; Toyo'oka, Toshimasa
2016-09-23
We have developed three kinds of novel derivatization reagents (4-CEBTPP, 4-CBBTPP, 5-COTPP) with triphenylphosphine (TPP) as a basic structure carrying a permanent positive charge for resolution of the oligosaccharides in glycoprotein using high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The synthesized reagents reacted with the sialylglycosylamine of the sialylglycopeptide after treatment by PNGase F. The final derivatives were analyzed by ESI-MS and sensitively detected in the selected reaction monitoring (SRM) mode. Furthermore, the limits of detection (S/N=3) on the SRM chromatograms were at the fmol level (30fmol). Therefore, we used the limit of detection of the reagent products detected by the SRM and evaluated the utility of each reagent. Among the reagents, the positively charged 4-CEBTPP derivative's peak area was the highest; 4-CEBTPP with a positively charged structure showed about a 20 times greater sensitivity for the glycosylamine of the SGP product compared to the conventional fluorescence reagent, Fmoc-Cl. In addition, various fragment ions based on the carbohydrate units also appeared in the MS/MS spectra. Among the fragment ions, m/z 627.37 (CE=40eV) corresponding to 4-CEBTPP-GlcNAc and m/z 120.09 (CE=100eV) corresponding to 4-CEBTPP are the most important ones for identifying the oligosaccharide. 4-CEBTPP-SGA was easily identified by the selected-ion chromatogram in the product ion scan (m/z 120.09) and in the precursor ion scan (m/z 627.37) by MS/MS detection. The derivatized analytes have a high ionization efficiency and they are detected with a high sensitivity in the electrospray ionization. The novel derivatization reagent with a multi-function provided a higher sensitivity for the oligosaccharide analysis, as well as a better specificity and feasibility. Furthermore, several oligosaccharides in fetuin and ribonuclease B were successfully identified by the proposed procedure. Copyright © 2016 Elsevier B.V. All rights reserved.
Oh, Ju Hyun; Hong, Soo Yeong; Park, Heun; Jin, Sang Woo; Jeong, Yu Ra; Oh, Seung Yun; Yun, Junyeong; Lee, Hanchan; Kim, Jung Wook; Ha, Jeong Sook
2018-02-28
In this study, we demonstrate the fabrication of a highly sensitive flexible temperature sensor with a bioinspired octopus-mimicking adhesive. A resistor-type temperature sensor consisting of a composite of poly(N-isopropylacrylamide) (pNIPAM)-temperature sensitive hydrogel, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, and carbon nanotubes exhibits a very high thermal sensitivity of 2.6%·°C -1 between 25 and 40 °C so that the change in skin temperature of 0.5 °C can be accurately detected. At the same time, the polydimethylsiloxane adhesive layer of octopus-mimicking rim structure coated with pNIPAM is fabricated through the formation of a single mold by utilizing undercut phenomenon in photolithography. The fabricated sensor shows stable and reproducible detection of skin temperature under repeated attachment/detachment cycles onto skin without any skin irritation for a long time. This work suggests a high potential application of our skin-attachable temperature sensor to wearable devices for medical and health-care monitoring.
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)
2002-01-01
The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.
Feng, Yuncai; Liu, Youwen; Teng, Jinghua
2018-05-10
We propose, to the best of our knowledge, a new configuration of a biosensor based on the graphene-MoS 2 hybrid structure by adopting the lower refractive index MgF 2 prism in order to improve the sensitivity and the figure of merit (FOM). We can obtain an ultrasensitive sensor with values of sensitivity and FOM as high as 540.8°/RIU and 145/RIU, respectively, by modulating the parameters in the configuration and comparatively choosing a different absentee layer material. The proposed structure is applicable in the realization of an integrated device for the surface plasmon resonance biosensor.
Structural health monitoring of inflatable structures for MMOD impacts
NASA Astrophysics Data System (ADS)
Anees, Muhammad; Gbaguidi, Audrey; Kim, Daewon; Namilae, Sirish
2017-04-01
Inflatable structures for space habitat are highly prone to damage caused by micrometeoroid and orbital debris impacts. Although the structures are effectively shielded against these impacts through multiple layers of impact resistant materials, there is a necessity for a health monitoring system to monitor the structural integrity and damage state within the structures. Assessment of damage is critical for the safety of personnel in the space habitat, as well as predicting the repair needs and the remaining useful life of the habitat. In this paper, we propose a unique impact detection and health monitoring system based on hybrid nanocomposite sensors. The sensors are composed of two fillers, carbon nanotubes and coarse graphene platelets with an epoxy matrix material. The electrical conductivity of these flexible nanocomposite sensors is highly sensitive to strains as well as presence of any holes and damage in the structure. The sensitivity of the sensors to the presence of 3mm holes due to an event of impact is evaluated using four point probe electrical resistivity measurements. An array of these sensors when sandwiched between soft good layers in a space habitat can act as a damage detection layer for inflatable structures. An algorithm is developed to determine the event of impact, its severity and location on the sensing layer for active health monitoring.
Photonic crystal fiber-based plasmonic biosensor with external sensing approach
NASA Astrophysics Data System (ADS)
Rifat, Ahmmed A.; Hasan, Md. Rabiul; Ahmed, Rajib; Butt, Haider
2018-01-01
We propose a simple photonic crystal fiber (PCF) biosensor based on the surface plasmon resonance effect. The sensing properties are characterized using the finite element method. Chemically stable gold material is deposited on the outer surface of the PCF to realize the practical sensing approach. The performance of the modeled biosensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of structural parameters. In the sensing range of 1.33 to 1.37, maximum sensitivities of 4000 nm/RIU and 478 are achieved with the high sensor resolutions of 2.5×10-5 and 2.1×10-5 RIU using wavelength and amplitude interrogation methods, respectively. The designed biosensor will reduce fabrication complexity due to its simple and realistic hexagonal lattice structure. It is anticipated that the proposed biosensor may find possible applications for unknown biological and biochemical analyte detections with a high degree of accuracy.
Laser interrogation techniques for high-sensitivity strain sensing by fiber-Bragg-grating structures
NASA Astrophysics Data System (ADS)
Gagliardi, G.; Salza, M.; Ferraro, P.; De Natale, P.
2017-11-01
Novel interrogation methods for static and dynamic measurements of mechanical deformations by fiber Bragg-gratings (FBGs) structures are presented. The sensor-reflected radiation gives information on suffered strain, with a sensitivity dependent on the interrogation setup. Different approaches have been carried out, based on laser-frequency modulation techniques and near-IR lasers, to measure strain in single-FBG and in resonant high-reflectivity FBG arrays. In particular, for the fiber resonator, the laser frequency is actively locked to the cavity resonances by the Pound-Drever-Hall technique, thus tracking any frequency change due to deformations. The loop error and correction signals fed back to the laser are used as strain monitor. Sensitivity limits vary between 200 nɛ/√Hz in the quasi-static domain (0.5÷2 Hz), and between 1 and 4 nɛ/√Hz in the 0.4-1 kHz range for the single-FBG scheme, while strain down to 50 pɛ can be detected by using the laser-cavity-locked method.
UV Radiation–Sensitive Norin 1 Rice Contains Defective Cyclobutane Pyrimidine Dimer Photolyase
Hidema, Jun; Kumagai, Tadashi; Sutherland, Betsy M.
2000-01-01
Norin 1, a progenitor of many economically important Japanese rice strains, is highly sensitive to the damaging effects of UVB radiation (wavelengths 290 to 320 nm). Norin 1 seedlings are deficient in photorepair of cyclobutane pyrimidine dimers. However, the molecular origin of this deficiency was not known and, because rice photolyase genes have not been cloned and sequenced, could not be determined by examining photolyase structural genes or upstream regulatory elements for mutations. We therefore used a photoflash approach, which showed that the deficiency in photorepair in vivo resulted from a functionally altered photolyase. These results were confirmed by studies with extracts, which showed that the Norin 1 photolyase–dimer complex was highly thermolabile relative to the wild-type Sasanishiki photolyase. This deficiency results from a structure/function alteration of photolyase rather than of nonspecific repair, photolytic, or regulatory elements. Thus, the molecular origin of this plant DNA repair deficiency, resulting from a spontaneously occurring mutation to UV radiation sensitivity, is defective photolyase. PMID:11006332
Synthesis of Novel CuO Nanosheets and Their Non-Enzymatic Glucose Sensing Applications
Ibupoto, Zafar Hussain; Khun, Kimleang; Beni, Valerio; Liu, Xianjie; Willander, Magnus
2013-01-01
In this study, we have developed a sensitive and selective glucose sensor using novel CuO nanosheets which were grown on a gold coated glass substrate by a low temperature growth method. X-ray differaction (XRD) and scanning electron microscopy (SEM) techniques were used for the structural characterization of CuO nanostructures. CuO nanosheets are highly dense, uniform, and exhibited good crystalline array structure. X-ray photoelectron spectroscopy (XPS) technique was applied for the study of chemical composition of CuO nanosheets and the obtained information demonstrated pure phase CuO nanosheets. The novel CuO nanosheets were employed for the development of a sensitive and selective non-enzymatic glucose sensor. The measured sensitivity and a correlation coefficient are in order 5.20 × 102 μA/mMcm2 and 0.998, respectively. The proposed sensor is associated with several advantages such as low cost, simplicity, high stability, reproducibility and selectivity for the quick detection of glucose. PMID:23787727
Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications.
Ibupoto, Zafar Hussain; Khun, Kimleang; Beni, Valerio; Liu, Xianjie; Willander, Magnus
2013-06-20
In this study, we have developed a sensitive and selective glucose sensor using novel CuO nanosheets which were grown on a gold coated glass substrate by a low temperature growth method. X-ray differaction (XRD) and scanning electron microscopy (SEM) techniques were used for the structural characterization of CuO nanostructures. CuO nanosheets are highly dense, uniform, and exhibited good crystalline array structure. X-ray photoelectron spectroscopy (XPS) technique was applied for the study of chemical composition of CuO nanosheets and the obtained information demonstrated pure phase CuO nanosheets. The novel CuO nanosheets were employed for the development of a sensitive and selective non-enzymatic glucose sensor. The measured sensitivity and a correlation coefficient are in order 5.20 × 10² µA/mMcm² and 0.998, respectively. The proposed sensor is associated with several advantages such as low cost, simplicity, high stability, reproducibility and selectivity for the quick detection of glucose.
Goos-Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor
NASA Astrophysics Data System (ADS)
Tang, Tingting; Li, Chaoyang; Luo, Li; Zhang, Yanfen; Li, Jie
2016-06-01
We investigate Goos-Hänchen (GH) effect in a prism waveguide coupling structure with semiconductor metamaterial (SMM) of ZnGaO/ZnO multilayer and explore the possibility as a biosensor. The GH effect in three different waveguides and their performances as a refractive index sensor to detect glycerol concentration in water are analyzed. The SMM brings a periodic property of GH shift peaks which is not found in other waveguides. It is also verified that setting coupling layer of the prism waveguide coupling structure as sensing area is an effective method to significantly increase the sensitivity to refractive index variation. A schematic diagram for the biosensor configuration is designed, and the sensitivity distribution for different glycerol water index is given. Calculation results show that in the proposed biosensor the maximum sensitivity reaches 3.2 × 106 μm/RIU and resolution reaches 1.6 × 10-7 (around 1.33306) with high sensitive position sensitive detector.
Recent Developments in Fiber Optics Humidity Sensors.
Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R
2017-04-19
A wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution.
Recent Developments in Fiber Optics Humidity Sensors
Ascorbe, Joaquin; Corres, Jesus M.; Arregui, Francisco J.; Matias, Ignacio R.
2017-01-01
A wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution. PMID:28422074
Magnetic field sensor based on cascaded microfiber coupler with magnetic fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Lianmin; Su, Delong; Wang, Zhaofang
A kind of magnetic field sensor based on cascaded microfiber coupler with magnetic fluid is proposed and experimentally demonstrated. The magnetic fluid is utilized as the cladding of the fused regions of the cascaded microfiber coupler. As the interference valley wavelength of the sensing structure is sensitive to the ambient variation, considering the magnetic-field-dependent refractive index of magnetic fluid, the proposed structure is employed for magnetic field sensing. The effective coupling length for each coupling region of the as-fabricated cascaded microfiber coupler is 6031 μm. The achieved sensitivity is 125 pm/Oe, which is about three times larger than that of the previouslymore » similar structure based on the single microfiber coupler. Experimental results indicate that the sensing sensitivity can be easily improved by increasing the effective coupling length or cascading more microfiber couplers. The proposed magnetic field sensor is attractive due to its low cost, immunity to electromagnetic interference, as well as high sensitivity, which also has the potentials in other tunable all-fiber photonic devices, such as filter.« less
Monteiro, Liziane O F; Malachias, Ângelo; Pound-Lana, Gwenaelle; Magalhães-Paniago, Rogério; Mosqueira, Vanessa C F; Oliveira, Mônica C; de Barros, André Luís B; Leite, Elaine A
2018-05-22
A long-circulating and pH-sensitive liposome containing paclitaxel (SpHL-PTX) was recently developed by our group. Once in an acidic environment, for example, tumors, these liposomes undergo destabilization, releasing the encapsulated drug. In this way, the aim of this study was to evaluate the molecular and supramolecular interactions between the lipid bilayer and PTX in similar biological environment conditions. High-sensitivity analyses of SpHL-PTX structures were obtained by the small-angle X-ray scattering technique combined with other techniques such as dynamic light scattering, asymmetric flow field-flow fractionation, transmission electron microscopy, and high-performance liquid chromatography. The results showed that PTX incorporation in the liposomal bilayer clearly leads to changes in supramolecular organization of dioleoylphosphatidylethanolamine (DOPE) molecules, inducing the formation of more ordered structures. Changes in supramolecular organization were observed at lower pH, indicating that pH sensitivity was preserved even in the presence of fetal bovine serum proteins. Furthermore, morphological and physicochemical characterization of SpHL-PTX evidenced the formation of nanosized dispersion suitable for intravenous administration. In conclusion, a stable nanosized dispersion of PTX was obtained at pH 7.4 with suitable parameters for intravenous administration. At lower pH conditions, the pH sensitivity of the system was clearly evidenced by changes in the supramolecular organization of DOPE molecules, which is crucial for the delivery of PTX into the cytoplasm of the targeted cells. In this way, the results obtained by different techniques confirm the feasibility of SpHL as a promising tool to PTX delivery in acidic environments, such as tumors.
Ultrasensitive Magnetic Field Sensing Based on Refractive-Index-Matched Coupling.
Rao, Jie; Pu, Shengli; Yao, Tianjun; Su, Delong
2017-07-07
An ultrasensitive magnetic field sensor is proposed and investigated experimentally. The no-core fiber is fusion-spliced between two pieces of single-mode fibers and then immersed in magnetic fluid with an appropriate value of refractive index. Under the refractive-index-matched coupling condition, the guided mode becomes leaky and a coupling wavelength dip in the transmission spectrum of the structure is observed. The coupling wavelength dip is extremely sensitive to the ambient environment. The excellent sensitivity to the refractive index is measured to be 116.681 μm/RIU (refractive index unit) in the refractive index range of 1.45691-1.45926. For the as-fabricated sensors, the highest magnetic field sensing sensitivities of 6.33 and 1.83 nm/mT are achieved at low and high fields, respectively. The sensitivity is considerably enhanced compared with those of previously designed, similar structures.
NASA Astrophysics Data System (ADS)
Rasheed, Hiba S.; Ahmed, Naser M.; Matjafri, M. Z.; Al-Hardan, Naif H.; Almessiere, Munirah Abdullah; Sabah, Fayroz A.; Al-Hazeem, Nabeel Z.
2017-10-01
Metal oxide nanostructures have attracted considerable attention as pH-sensitive membranes because of their unique advantages. Specifically, the special properties of ZnO thin film, including high surface-to-volume ratio, nontoxicity, thermal stability, chemical stability, electrochemical activity, and high mechanical strength, have attracted massive interest. ZnO exhibits wide bandgap of 3.37 eV, good biocompatibility, high reactivity, robustness, and environmental stability. These unique properties explain why ZnO has the most applications among all nanostructured metal oxides based on its structure and properties. Moreover, ZnO has excellent electrical characteristics, enabling its use in accurate sensors with rapid response. ZnO nanostructures can be used in novel pH and biomedical sensing applications. However, ZnO thin film exhibits large sheet resistance and low conductivity. Increasing the conductivity or reducing the resistivity of ZnO sensing membranes is important to achieve low impedance. We propose herein a new design using a multilayer ZnO/Pd/ZnO structure as a pH-sensing membrane. Multiple layers were deposited by radio frequency (RF) sputtering for ZnO and direct current (DC) sputtering for Pd to achieve low sheet resistance. These multilayers with low sheet resistance of 15.8 Ω/sq were then successfully used to control the conductivity in extended-gate field-effect transistors (EGFETs). The resulting multilayered EGFET pH-sensor demonstrated improved sensing performance. The measured sensitivity of the pH sensor was 40 μA/pH and 52 mV/pH within the pH range from 2 to 12, rendering this structure suitable for use in various applications, including pH sensors and biosensors.
NASA Astrophysics Data System (ADS)
Ren, Baiyang
Composite materials, especially carbon fiber reinforced polymers (CFRP), have been widely used in the aircraft industry because of their high specific strength and stiffness, resistance to corrosion and good fatigue life. Due to their highly anisotropic material properties and laminated structures, joining methods like bolting and riveting are no longer appropriate for joining CFRP since they initiate defects during the assembly and severely compromise the integrity of the structure; thus new techniques for joining CFRP are highly demanded. Adhesive bonding is a promising method because it relieves stress concentration, reduces weight and provides smooth surfaces. Additionally, it is a low-cost alternative to the co-cured method which is currently used to manufacture components of aircraft fuselage. Adhesive defects, disbonds at the interface between adherend and adhesive layer, are focused on in this thesis because they can be initialized by either poor surface preparation during the manufacturing or fatigue loads during service. Aircraft need structural health monitoring (SHM) systems to increase safety and reduce loss, and adhesive bonds usually represent the hotspots of the assembled structure. There are many nondestructive evaluation (NDE) methods for bond inspection. However, these methods cannot be readily integrated into an SHM system because of the bulk size and weight of the equipment and requirement of accessibility to one side of the bonded joint. The first objective of this work is to develop instruments, actuators, sensors and a data acquisition system for SHM of bond lines using ultrasonic guided waves which are well known to be able to cover large volume of the structure and inaccessible regions. Different from widely used guided wave sensors like PZT disks, the new actuators, piezoelectric fiber composite (PFC) phased array transducers0 (PAT), can control the modal content of the excited waves and the new sensors, polyvinylidene fluoride (PVDF) arrays, which can extract modal information from the received waves. Also, the PATs and array sensors have broad frequency bandwidth and can easily excite and receive high order guided wave modes which are not possible using PZT disks. Currently, many guided wave SHM techniques employ the fundamental guided wave modes below the first cut-off frequency because of their low dispersion in this frequency range. Such a practice ignores the possibility of using higher order modes which sometimes have much better sensitivity to defects. A frequency domain finite element model is created in this work to study the behavior of the interaction between guided waves and a disbond. The sensitivities of modes are classified into three levels, namely, good sensitivity, intermediate sensitivity and no sensitivity. The novel damage indicators, wave modal amplitude and wave modal composition, are proposed to increase the sensitivity to disbonds. The effects of environmental operational conditions (EOC) are presenting great challenges to reliable SHM practice because they may influence the wave amplitude and time of flight. The use of fundamental modes shows poor sensitivity to the disbond; but the use of higher order modes shows good sensitivity. The experiments demonstrate that the new damage indicators have excellent sensitivity to disbonds even with elevated temperatures and have the capability to characterize the size of a disbond. Additionally, the detection of other types of defects like notches on aluminum plates and disbonds in adhesively bonded aluminum plate are also demonstrated using the proposed damage indicators. The use of the new damage indicators for SHM applications relies on the capability of resolving the modal content of wave signals which is enabled only by using PFC PATs and polyvinylidene fluoride (PVDF) array sensors.
NASA Astrophysics Data System (ADS)
Wang, Zixiao; Tan, Zhongwei; Xing, Rui; Liang, Linjun; Qi, Yanhui; Jian, Shuisheng
2016-10-01
A novel reflective liquid level sensor based on single-mode-offset coreless-single-mode (SOCS) fiber structure is proposed and experimentally demonstrated. Theory analyses and experimental results indicate that offset fusion can remarkably enhance the sensitivity of sensor. Ending-reflecting structure makes the sensor compact and easy to deploy. Meanwhile, we propose a laser sensing system, and the SOCS structure is used as sensing head and laser filter simultaneously. Experimental results show that laser spectra with high optical signal-to-noise ratio (-30 dB) and narrow 3-dB bandwidth (<0.15 nm) are achieved. Various liquids with different indices are used for liquid level sensing, besides, the refractive index sensitivity is also investigated. In measurement range, the sensing system presents steady laser output.
A discourse on sensitivity analysis for discretely-modeled structures
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Haftka, Raphael T.
1991-01-01
A descriptive review is presented of the most recent methods for performing sensitivity analysis of the structural behavior of discretely-modeled systems. The methods are generally but not exclusively aimed at finite element modeled structures. Topics included are: selections of finite difference step sizes; special consideration for finite difference sensitivity of iteratively-solved response problems; first and second derivatives of static structural response; sensitivity of stresses; nonlinear static response sensitivity; eigenvalue and eigenvector sensitivities for both distinct and repeated eigenvalues; and sensitivity of transient response for both linear and nonlinear structural response.
Health monitoring for subway station structure by fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Zhou, Yao; Wang, Yuan-Feng; Han, Bing; Zhou, Zhi
2008-03-01
Fiber Bragg grating (FBG) sensors hold a great deal of potential for structural monitoring because of their high sensitivity and exceptional stability for long-term monitoring. FBG sensors have been applied to sense a number of physical measurands including strain, temperature, pressure etc. These applications are based on the same principle, i.e. the measurement of Bragg wavelength shift caused by the measurands. The characters and principle of FBG sensors have been introduced in detail. The relative experiment is done. The results show that FBG sensors have high sensitivity and long-term stability. It is feasible to use the sensors to the structural health monitoring (SHM). Cement hydration produces heat, which may provoke important temperature rises in massive structures. Such a high temperature may be a factor for cracking during the cooling phase. Thus, it is important to be able to calculate and control the heat to be produced by a given concrete at the mixture-proportioning stage. Theory of heat of hydration is also introduced in this paper. FBG sensors have been applied successfully in health monitoring for Guomao subway station structure. Compared with results measured by vibrating wire sensors and computed by finite element method, the monitoring results show temperature and strains can be accurately measured by FBG sensors. It is convenient to study on heat of hydration of massive concrete and guide structural design.
NASA Astrophysics Data System (ADS)
Ballal, Reshma; Shinde, Manish; Waghadkar, Yogesh; Arbuj, Sudhir; Rane, Sunit; Chauhan, Ratna
2018-02-01
ZnO shows promising candidature as photoanode material for dye-sensitized solar cells (DSSCs) due to its high bulk electron mobility and easily tailorable geometrical structures. The objective of this study is to facilitate the development of highly porous hierarchical ZnO for enhanced power conversion efficiency in dye-sensitized solar cells (DSSC) due to its greater dye adsorption. This study investigated the influence of reaction temperatures of 120 °C (sample Z-1) and 180 °C (sample Z-2) in hydrothermal synthesis on structural, morphological and optical properties of resultant ZnO nanostructures and their performance as photoanode material in DSSCs. The synthesized beaded nanochain bundles of ZnO, with multilayered and highly ordered texture, have diameters of several micrometers. Structural and morphological analysis shows that the ZnO beaded nanochain-like architectures possess wurtzite crystalline nature. These morphological improvements (beaded nanochains) of ZnO were found to exhibit higher dye loading and conversion efficiency due to increase in the surface area while reducing charge recombination. The maximum conversion efficiency was obtained with Z-1 and Z-2 is 2.95 and 3.56% with photocurrent of 7.73 and 9.24 mA/cm2, respectively. The obtained results pertaining to the DSSC performance studies were corroborated by the impedance spectroscopy data.
NASA Astrophysics Data System (ADS)
SzelÄ g, M.; Lesiak, P.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.
2013-05-01
Results of our research on embedded highly birefringent polymer microstructured fibers are presented. A composite material sample with fibers embedded between two layers of a multi-layer composite structure is fabricated and characterized. Temperature sensitivities of the polymer fibers are measured in a free space and compared with the fibers embedded in the composite material. It appeared that highly birefringent polymer microstructured fibers exhibit a strong increase in temperature sensitivity when embedded in the composite material, which is due to the stress-induced changes in birefringence created by thermally-induced strain.
Photonic crystal fiber Fabry-Perot interferometers with high-reflectance internal mirrors
NASA Astrophysics Data System (ADS)
Fan, Rong; Hou, Yuanbin; Sun, Wei
2015-06-01
We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by reshaping the air cavity. Experimental results showed that such a device could be used as a highly sensitive strain sensor with the sensitivity of 4.5 pm/μɛ. Moreover, it offered some other outstanding advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy.
A sensitive slope: estimating landscape patterns of forest resilience in a changing climate
Jill F. Johnstone; Eliot J.B. McIntire; Eric J. Pedersen; Gregory King; Michael J.F. Pisaric
2010-01-01
Changes in Earth's environment are expected to stimulate changes in the composition and structure of ecosystems, but it is still unclear how the dynamics of these responses will play out over time. In long-lived forest systems, communities of established individuals may be resistant to respond to directional climate change, but may be highly sensitive to climate...
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
NASA Astrophysics Data System (ADS)
Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; Cho, Hsiao-Mei; Doriese, William B.; Fowler, Joseph W.; Gaffney, Kelly; Gard, Johnathon D.; Hilton, Gene C.; Kenney, Chris; Knight, Jason; Li, Dale; Marks, Ronald; Minitti, Michael P.; Morgan, Kelsey M.; O'Neil, Galen C.; Reintsema, Carl D.; Schmidt, Daniel R.; Sokaras, Dimosthenis; Swetz, Daniel S.; Ullom, Joel N.; Weng, Tsu-Chien; Williams, Christopher; Young, Betty A.; Irwin, Kent D.; Solomon, Edward I.; Nordlund, Dennis
2017-12-01
We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.
2016-01-01
This work demonstrates the feasibility of making sensitive nanometer distance measurements between Fe(III) heme centers and nitroxide spin labels in proteins using the double electron–electron resonance (DEER) pulsed EPR technique at 94 GHz. Techniques to measure accurately long distances in many classes of heme proteins using DEER are currently strongly limited by sensitivity. In this paper we demonstrate sensitivity gains of more than 30 times compared with previous lower frequency (X-band) DEER measurements on both human neuroglobin and sperm whale myoglobin. This is achieved by taking advantage of recent instrumental advances, employing wideband excitation techniques based on composite pulses and exploiting more favorable relaxation properties of low-spin Fe(III) in high magnetic fields. This gain in sensitivity potentially allows the DEER technique to be routinely used as a sensitive probe of structure and conformation in the large number of heme and many other metalloproteins. PMID:27035368
Probing molecular dynamics in solution with x-ray valence-to-core spectroscopy
NASA Astrophysics Data System (ADS)
Doumy, Gilles; March, Anne Marie; Tu, Ming-Feng; Al Haddad, Andre; Southworth, Stephen; Young, Linda; Walko, Donald; Bostedt, Christoph
2017-04-01
Hard X-ray spectroscopies are powerful tools for probing the electronic and geometric structure of molecules in complex or disordered systems and have been particularly useful for studying molecules in the solution phase. They are element specific, sensitive to the electronic structure and the local arrangements of surrounding atoms of the element being selectively probed. When combined in a pump-probe scheme with ultrafast lasers, X-ray spectroscopies can be used to track the evolution of structural changes that occur after photoexcitation. Efficient use of hard x-ray radiation coming from high brilliance synchrotrons and upcoming high repetition rate X-ray Free Electron Lasers requires MHz repetition rate lasers and data acquisition systems. High information content Valence-to-Core x-ray emission is directly sensitive to the molecular orbitals involved in photochemistry. We report on recent progress towards fully enabling this photon-hungry technique for the study of time-resolved molecular dynamics, including efficient detection and use of polychromatic x-ray micro-probe at the Advanced Photon Source. Work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.
Jason, Naveen N; Wang, Stephen J; Bhanushali, Sushrut; Cheng, Wenlong
2016-09-22
This work demonstrates a facile "paint-on" approach to fabricate highly stretchable and highly sensitive strain sensors by combining one-dimensional copper nanowire networks with two-dimensional graphite microflakes. This paint-on approach allows for the fabrication of electronic skin (e-skin) patches which can directly replicate with high fidelity the human skin surface they are on, regardless of the topological complexity. This leads to high accuracy for detecting biometric signals for applications in personalised wearable sensors. The copper nanowires contribute to high stretchability and the graphite flakes offer high sensitivity, and their hybrid coating offers the advantages of both. To understand the topological effects on the sensing performance, we utilized fractal shaped elastomeric substrates and systematically compared their stretchability and sensitivity. We could achieve a high stretchability of up to 600% and a maximum gauge factor of 3000. Our simple yet efficient paint-on approach enabled facile fine-tuning of sensitivity/stretchability simply by adjusting ratios of 1D vs. 2D materials in the hybrid coating, and the topological structural designs. This capability leads to a wide range of biomedical sensors demonstrated here, including pulse sensors, prosthetic hands, and a wireless ankle motion sensor.
High indium non-polar InGaN clusters with infrared sensitivity grown by PAMBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma
2015-03-15
Studies on the optical properties of InGaN alloy of relatively higher indium content are of potential interest to understand the effect of indium content on the optical band gap of epitaxial InGaN. We report the growth of self assembled non-polar high indium clusters of In{sub 0.55}Ga{sub 0.45}N over non-polar (11-20) a-plane In{sub 0.17}Ga{sub 0.83}N epilayer grown on a-plane (11-20)GaN/(1-102) r-plane sapphire substrate using plasma assisted molecular beam epitaxy (PAMBE). Such structures are potential candidates for high brightness LEDs emitting in longer wavelengths. The high resolution X-ray diffraction studies revealed the formation of two distinct compositions of In{sub x}Ga{sub 1−x}N alloys,more » which were further confirmed by photoluminescence studies. A possible mechanism for the formation of such structure was postulated which was supported with the results obtained by energy dispersive X-ray analysis. The structure hence grown when investigated for photo-detecting properties, showed sensitivity to both infrared and ultraviolet radiations due to the different composition of InGaN region.« less
Kepp, Kasper P
2015-10-01
Fast and accurate computation of protein stability is increasingly important for e.g. protein engineering and protein misfolding diseases, but no consensus methods exist for important proteins such as globins, and performance may depend on the type of structural input given. This paper reports benchmarking of six protein stability calculators (POPMUSIC 2.1, I-Mutant 2.0, I-Mutant 3.0, CUPSAT, SDM, and mCSM) against 134 experimental stability changes for mutations of sperm-whale myoglobin. Six different high-resolution structures were used to test structure sensitivity that may impair protein calculations. The trend accuracy of the methods decreased as I-Mutant 2.0 (R=0.64-0.65), SDM (R=0.57-0.60), POPMUSIC2.1 (R=0.54-0.57), I-Mutant 3.0 (R=0.53-0.55), mCSM (R=0.35-0.47), and CUPSAT (R=0.25-0.48). The mean signed errors increased as SDM
NASA Astrophysics Data System (ADS)
Yu, Mei; Zhang, Jindan; Li, Songmei; Meng, Yanbing; Liu, Jianhua
2016-03-01
Three-dimensional nitrogen doped holey reduced graphene oxide framework (NHGF) with hierarchical porosity structure was developed as high-performance metal-free counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). With plenty of exposed active sites, efficient electron and ion transport pathways as well as a high surface hydrophilicity, NHGF-CE exhibits good electrocatalytic performances for I- /I3- redox couple and a low charge transfer resistance (Rct). The Rct of NHGF-CE is 1.46 Ω cm2, which is much lower than that of Pt-CE (4.02 Ω cm2). The DSSC with NHGF-CE reaches a power conversion efficiency of 5.56% and a fill factor of 65.5%, while those of the DSSC with Pt-CE are only 5.45% and 62.3%, respectively. The achievement of the highly efficient 3D structure presents a potential way to fabricate low-cost and metal-free counter electrodes with excellent performance.
Highly sensitive quartz crystal microbalance based biosensor using Au dendrite structure
NASA Astrophysics Data System (ADS)
Asai, Naoto; Terasawa, Hideaki; Shimizu, Tomohiro; Shingubara, Shoso; Ito, Takeshi
2018-02-01
A Au dendrite structure was obtained by only electroplating under a suitable potential. A blanch like nanostructure was formed along the crystal orientation. In this study, we attempted to fabricate a Au dendrite structure on the electrode of a quartz crystal by electroplating to increase the specific surface area. We estimated the effective surface area by cyclic voltammetry (CV) and monitored the frequency shift induced by antigen-antibody interaction by the quartz crystal microbalance (QCM) method. The dendrite structure with the largest surface area was formed under -0.95 V for 5 min. In the measurement of the antigen-antibody interaction, the frequency shifts of 40, 80, and 110 Hz were obtained with the dendrite structured QCM chips formed at the above potential for 1, 1.5, and 2.0 min, respectively. The sensitivity was improved compared with that QCM chip having a flat surface electrode.
Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy.
Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing
2018-05-04
Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm 2 V -1 s -1 . This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.
Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy
NASA Astrophysics Data System (ADS)
Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing
2018-05-01
Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm2 V-1 s-1. This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.
Exploiting the IR: Solar and stellar spectroscopy in the IR
NASA Technical Reports Server (NTRS)
Deming, Drake
1987-01-01
Recent instrumental advances have provided the capability to perform high resolution spectroscopy, in the thermal infrared region of the solar spectrum, with high sensitivity. The 8 to 12 micron region was extensively observed using Fourier transform (FTS) and laser heterodyne techniques. The continuous opacity of the solar atmosphere, due to H(-), increases with wavelength in the infrared region longward of 1.6 microns. Consequently thermal infrared observations probe the upper photosphere, and give an insight into the dynamics and structure of this region. The most notable spectral features in the 10 micron window include pure rotation lines of OH, and emission lines due to high-n states in MgI and AlI. The high-n lines due to MgI and AlI are important to solar and stellar physics because of their very large Zeeman sensitivity. The recent development of a cryogenic grating postdispenser for the FTS has allowed low-noise solar observations of these lines in 90 seconds. Limited mapping of the lines in a sunspot penumbra was performed, and gives information of the structure of the penumbral magnetic field. Although the MgI lines were detected in red giant spectra, instrumental sensitivity is not yet sufficient to see them in stars where significant magnetic fields are expected.
Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells.
Yun, Min Ju; Cha, Seung I; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y
2016-10-06
Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells-including the preparation of fibre-type solar cells woven into textiles-face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes' surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.
Yi, Chenyi; Giordano, Fabrizio; Cevey-Ha, Ngoc-Le; Tsao, Hoi Nok; Zakeeruddin, Shaik M; Grätzel, Michael
2014-04-01
We designed and synthesized two new zinc porphyrin dyes for dye-sensitized solar cells (DSCs). Subtle molecular structural variation in the dyes significantly influenced the performance of the DSC devices. By utilizing these dyes in combination with a cobalt-based redox electrolyte using a photoanode made of mesoporous TiO2 , we achieved a power conversion efficiency (PCE) of up to 12.0 % under AM 1.5 G (100 mW cm(-2)) simulated solar light. Moreover, we obtained a high PCE of 6.4 % for solid-state dye-sensitized solar cells by using 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene as a hole-transporting material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ethanol gas sensing performance of high-dimensional fuzz metal oxide nanostructure
NASA Astrophysics Data System (ADS)
Ibano, Kenzo; Kimura, Yoshihiro; Sugahara, Tohru; Lee, Heun Tae; Ueda, Yoshio
2018-04-01
Gas sensing ability of the He plasma induced fiber-like nanostructure, so-called fuzz structure, was firstly examined. A thin Mo layer deposited on a quartz surface was irradiated by He plasma to form the fuzz structure and oxidized by annealing in a quartz furnace. Electric conductivity of the fuzz Mo oxide layer was then measured through the Au electrodes deposited on the layer. Changes in electric conductivity by C2H5OH gas flow were examined as a function of temperature from 200 to 400 °C. Improved sensitivities were observed for the specimens after a fuzz nanostructure formation. However, the sensor developed in this study showed lower sensitivities than previously reported MoO3 nano-rod sensor, further optimization of oxidation is needed to improve the sensitivity.
Factor structure and construct validity of the Anxiety Sensitivity Index among island Puerto Ricans.
Cintrón, Jennifer A; Carter, Michele M; Suchday, Sonia; Sbrocco, Tracy; Gray, James
2005-01-01
The factor structure and convergent and discriminant validity of the Anxiety Sensitivity Index (ASI) were examined among a sample of 275 island Puerto Ricans. Results from a confirmatory factor analysis (CFA) comparing our data to factor solutions commonly reported as representative of European American and Spanish populations indicated a poor fit. A subsequent exploratory factor analysis (EFA) indicated that a two-factor solution (Factor 1, Anxiety Sensitivity; Factor 2, Emotional Concerns) provided the best fit. Correlations between the ASI and anxiety measures were moderately high providing evidence of convergent validity, while correlations between the ASI and BDI were significantly lower providing evidence of discriminant validity. Scores on all measures were positively correlated with acculturation, suggesting that those who ascribe to more traditional Hispanic culture report elevated anxiety.
Three-Dimensional Sensitivity Kernels of Z/H Amplitude Ratios of Surface and Body Waves
NASA Astrophysics Data System (ADS)
Bao, X.; Shen, Y.
2017-12-01
The ellipticity of Rayleigh wave particle motion, or Z/H amplitude ratio, has received increasing attention in inversion for shallow Earth structures. Previous studies of the Z/H ratio assumed one-dimensional (1D) velocity structures beneath the receiver, ignoring the effects of three-dimensional (3D) heterogeneities on wave amplitudes. This simplification may introduce bias in the resulting models. Here we present 3D sensitivity kernels of the Z/H ratio to Vs, Vp, and density perturbations, based on finite-difference modeling of wave propagation in 3D structures and the scattering-integral method. Our full-wave approach overcomes two main issues in previous studies of Rayleigh wave ellipticity: (1) the finite-frequency effects of wave propagation in 3D Earth structures, and (2) isolation of the fundamental mode Rayleigh waves from Rayleigh wave overtones and converted Love waves. In contrast to the 1D depth sensitivity kernels in previous studies, our 3D sensitivity kernels exhibit patterns that vary with azimuths and distances to the receiver. The laterally-summed 3D sensitivity kernels and 1D depth sensitivity kernels, based on the same homogeneous reference model, are nearly identical with small differences that are attributable to the single period of the 1D kernels and a finite period range of the 3D kernels. We further verify the 3D sensitivity kernels by comparing the predictions from the kernels with the measurements from numerical simulations of wave propagation for models with various small-scale perturbations. We also calculate and verify the amplitude kernels for P waves. This study shows that both Rayleigh and body wave Z/H ratios provide vertical and lateral constraints on the structure near the receiver. With seismic arrays, the 3D kernels afford a powerful tool to use the Z/H ratios to obtain accurate and high-resolution Earth models.
Au-Pt-Au nanoraspberry structures used for mercury ion detection
NASA Astrophysics Data System (ADS)
Huang, Jiang-Hao; Huang, Shuai; Wen, Xiaoyan; Li, Min; Lu, Haifei
2017-12-01
Detection of Hg2+ with high sensitivity is of great significance in the biochemical sensing field. Quantitative of Hg2+ was realized based on the influence of Hg2+ on the UV-vis absorption performance of Au-Pt-Au core-shell nanoraspberry (APA)-rhodamine-6G (R6G) structure. First, APA sol was added into R6G indicator solution and the UV-vis absorption signal intensity of R6G was evidently promoted. The signal intensity monotonously increased as more APA sol was added. However, when HgCl2 solution was introduced, the signal intensity declined. A linear relationship between Hg2+ concentration and signal intensity at 527 nm was revealed, based on which quantitative determination of Hg2+ could be realized. Hg2+ detection sensitivity was measured to be 0.031 a.u./M with a limit of detection of 10-7 M and the response time was 20 s. A high Hg2+ detection selectivity over Cu2+, Na+, Li+, and K+ was demonstrated. Due to its simplicity and high sensitivity, the proposed method could find an extensive application prospect in the Hg2+ detection field.
Wu, Yan-Cheng; Luo, Shi-He; Cao, Liang; Jiang, Kai; Wang, Ling-Yun; Xie, Jie-Chun; Wang, Zhao-Yang
2017-07-11
A 2,6-dibenzimidazole-appended naphthalene derivative flanking with two N-alkyl chains (sensor 4) was designed and applied for highly sensitive detection of picric acid (PA) in aqueous media. Driven by the hydrophobicity of alkyl chain and π-π stacking effect of aryl, sensor 4 can undergo self-assembly to form an orderly rod-like structure in H 2 O/THF (v/v, 90/10) solution, as shown by the dynamic light scattering (DLS) and scanning electron microscopy (SEM) studies. Sensor 4 shows high selectivity and sensitivity toward PA over other nitroaromatic explosives. DFT calculations and 1 H NMR, the time-correlated single photon counting (TCSPC) experiments confirm that the quenching mechanism is due to both electron and energy transfer from the electron-rich sensor 4 to the electron-deficient PA. Sensor 4 can detect as low as 0.57 ppb PA in aqueous media and 11.46 ag cm -2 PA by contact mode. Importantly, sensor 4 exhibits low interference against common solvents, metal ions and anions. Thus, it is practically applicable for sensing PA in real environmental samples and vapor phase. Copyright © 2017 Elsevier B.V. All rights reserved.
Radar meteor orbital structure of Southern Hemisphere cometary dust streams
NASA Technical Reports Server (NTRS)
Baggaley, W. Jack; Taylor, Andrew D.
1992-01-01
The Christchurch, New Zealand meteor orbit radar (AMOR) with its high precision and sensitivity, permits studies of the orbital fine structure of cometary streams. PC generated graphics are presented of data on some Southern Hemisphere Streams. Such data can be related to the formation phase and subsequent dynamical processes of dust streams.
NASA Astrophysics Data System (ADS)
Badmos, Abdulyezir A.; Sun, Qizhen; Yan, Zhijun; Arif, Raz N.; Zhang, Junxi; Rozhin, Alex; Zhang, Lin
2016-04-01
This paper presents a highly sensitive ambient refractive index (RI) sensor based on 81° tilted fiber grating (81°-TFG) structure UV-inscribed in standard telecom fiber (62.5μm cladding radius) with carbon nanotube (CNT) overlay deposition. The sensing mechanism is based on the ability of CNT to induce change in transmitted optical power and the high sensitivity of 81°-TFG to ambient refractive index. The thin CNT film with high refractive index enhances the cladding modes of the TFG, resulting in the significant interaction between the propagating light and the surrounding medium. Consequently, the surrounding RI change will induce not only the resonant wavelength shift but also the power intensity change of the attenuation band in the transmission spectrum. Result shows that the change in transmitted optical power produces a corresponding linear reduction in intensity with increment in RI values. The sample shows high sensitivities of 207.38nm/RIU, 241.79nm/RIU at RI range 1.344-1.374 and 113.09nm/RIU, 144.40nm/RIU at RI range 1.374-1.392 (for X-pol and Y-pol respectively). It also shows power intensity sensitivity of 65.728dBm/RIU and 45.898 (for X-pol and Y-pol respectively). The low thermal sensitivity property of the 81°-TFG offers reduction in thermal cross-sensitivity and enhances specificity of the sensor.
NASA Astrophysics Data System (ADS)
Zuo, Zewen; Zhu, Kai; Ning, Lixin; Cui, Guanglei; Qu, Jun; Cheng, Ying; Wang, Junzhuan; Shi, Yi; Xu, Dongsheng; Xin, Yu
2015-01-01
Wafer-scale three-dimensional (3D) surface enhancement Raman scattering (SERS) substrates were prepared using the plasma etching and ion sputtering methods that are completely compatible with well-established silicon device technologies. The substrates are highly sensitive with excellent uniformity and reproducibility, exhibiting an enhancement factor up to 1012 with a very low relative standard deviation (RSD) around 5%. These are attributed mainly to the uniform-distributed, multiple-type high-density hot spots originating from the structural characteristics of Ag nanoparticles (NPs) decorated Si nanocone (NC) arrays. We demonstrate that the trace dimethyl phthalate (DMP) at a concentration of 10-7 M can be well detected using this SERS substrate, showing that the AgNPs-decorated SiNC arrays can serve as efficient SERS substrates for phthalate acid esters (PAEs) detection with high sensitivity.
All-optical on-chip sensor for high refractive index sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yazhao; Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft; Salemink, H. W. M., E-mail: H.Salemink@science.ru.nl
2015-01-19
A highly sensitive sensor design based on two-dimensional photonic crystal cavity is demonstrated. The geometric structure of the cavity is modified to gain a high quality factor, which enables a sensitive refractive index sensing. A group of slots with optimized parameters is created in the cavity. The existence of the slots enhances the light-matter interactions between confined photons and analytes. The interactions result in large wavelength shifts in the transmission spectra and are denoted by high sensitivities. Experiments show that a change in refractive index of Δn ∼ 0.12 between water and oil sample 1 causes a spectral shift of 23.5 nm, andmore » the spectral shift between two oil samples is 5.1 nm for Δn ∼ 0.039. These results are in good agreement with simulations, which are 21.3 and 7.39 nm for the same index changes.« less
A quantitative measure of chirality inside nucleic acid databank.
Pietropaolo, Adriana; Parrinello, Michele
2011-08-01
We show the capability of a chirality index (Pietropaolo et al., Proteins 2008;70:667-677) to investigate nucleic acid structures because of its high sensitivity to helical conformations. By analyzing selected structures of DNA and RNA, we have found that sequences rich in cytosine and guanine have a tendency to left-handed chirality, in contrast to regions rich in adenine or thymine which show strong negative, right-handed, chirality values. We also analyze RNA structures, where specific loops and hairpin motifs are characterized by a well-defined chirality value. We find that in nucleosome the chirality is exalted, whereas in ribosome it is reduced. Our results illustrate the sensitivity of this descriptor for nucleic acid conformations. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Ju, Yao; Ning, Shougui; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan
2018-07-01
We propose and demonstrate a coating-enhanced dual-microspheric structure fiber sensor that measures temperature and refractive index simultaneously. The claddings of the two microspheric structured fibers are spliced together and the ends of the fibers are coated with a layer of gold film to increase reflection, thereby forming a dual-microspheric structure sensor head. Our experimental results show that the temperature sensitivity and the refractive index can reach 65.77 pm °C‑1 and ‑19.7879 nm RIU‑1, respectively. Compared with the uncoated sensor, the refractive index sensitivity is significantly improved by the gold film. This work suggests a low-cost, high-resolution and convenient fiber-based method to achieve multifunctional sensing applications.
Recent advances and progress in photonic crystal-based gas sensors
NASA Astrophysics Data System (ADS)
Goyal, Amit Kumar; Sankar Dutta, Hemant; Pal, Suchandan
2017-05-01
This review covers the recent progress made in the photonic crystal-based sensing technology for gas sensing applications. Photonic crystal-based sensing has tremendous potential because of its obvious advantages in sensitivity, stability, miniaturisation, portability, online use, remote monitoring etc. Several 1D and 2D photonic crystal structures including photonic crystal waveguides and cavities for gas sensing applications have been discussed in this review. For each kind of photonic crystal structure, the novelty, measurement principle and their respective gas sensing properties are presented. The reported works and the corresponding results predict the possibility to realize a commercially viable miniaturized and highly sensitive photonic crystal-based optical gas sensor having flexibility in the structure of ultra-compact size with excellent sensing properties.
Johnson, Raymond H.
2007-01-01
In mountain watersheds, the increased demand for clean water resources has led to an increased need for an understanding of ground water flow in alpine settings. In Prospect Gulch, located in southwestern Colorado, understanding the ground water flow system is an important first step in addressing metal loads from acid-mine drainage and acid-rock drainage in an area with historical mining. Ground water flow modeling with sensitivity analyses are presented as a general tool to guide future field data collection, which is applicable to any ground water study, including mountain watersheds. For a series of conceptual models, the observation and sensitivity capabilities of MODFLOW-2000 are used to determine composite scaled sensitivities, dimensionless scaled sensitivities, and 1% scaled sensitivity maps of hydraulic head. These sensitivities determine the most important input parameter(s) along with the location of observation data that are most useful for future model calibration. The results are generally independent of the conceptual model and indicate recharge in a high-elevation recharge zone as the most important parameter, followed by the hydraulic conductivities in all layers and recharge in the next lower-elevation zone. The most important observation data in determining these parameters are hydraulic heads at high elevations, with a depth of less than 100 m being adequate. Evaluation of a possible geologic structure with a different hydraulic conductivity than the surrounding bedrock indicates that ground water discharge to individual stream reaches has the potential to identify some of these structures. Results of these sensitivity analyses can be used to prioritize data collection in an effort to reduce time and money spend by collecting the most relevant model calibration data.
Song, Xuefen; Sun, Tai; Yang, Jun; Yu, Leyong; Wei, Dacheng; Fang, Liang; Lu, Bin; Du, Chunlei; Wei, Dapeng
2016-07-06
Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of <2000 Ω·sq(-1) and a transmittance of >80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer.
A real-time spectrum acquisition system design based on quantum dots-quantum well detector
NASA Astrophysics Data System (ADS)
Zhang, S. H.; Guo, F. M.
2016-01-01
In this paper, we studied the structure characteristics of quantum dots-quantum well photodetector with response wavelength range from 400 nm to 1000 nm. It has the characteristics of high sensitivity, low dark current and the high conductance gain. According to the properties of the quantum dots-quantum well photodetectors, we designed a new type of capacitive transimpedence amplifier (CTIA) readout circuit structure with the advantages of adjustable gain, wide bandwidth and high driving ability. We have implemented the chip packaging between CTIA-CDS structure readout circuit and quantum dots detector and tested the readout response characteristics. According to the timing signals requirements of our readout circuit, we designed a real-time spectral data acquisition system based on FPGA and ARM. Parallel processing mode of programmable devices makes the system has high sensitivity and high transmission rate. In addition, we realized blind pixel compensation and smoothing filter algorithm processing to the real time spectrum data by using C++. Through the fluorescence spectrum measurement of carbon quantum dots and the signal acquisition system and computer software system to realize the collection of the spectrum signal processing and analysis, we verified the excellent characteristics of detector. It meets the design requirements of quantum dot spectrum acquisition system with the characteristics of short integration time, real-time and portability.
Neutral line chaos and phase space structure
NASA Technical Reports Server (NTRS)
Burkhart, Grant R.; Speiser, Theodore W.; Martin, Richard F., Jr.; Dusenbery, Paul B.
1991-01-01
Phase space structure and chaos near a neutral line are studied with numerical surface-of-section (SOS) techniques and analytic methods. Results are presented for a linear neutral line model with zero crosstail electric field. It was found that particle motion can be divided into three regimes dependening on the value of the conserved canonical momentum, Py, and the conserved Hamiltonian, h. The phase space structure, using Poincare SOS plots, is highly sensitive to bn = Bn/B0 variations, but not to h variations. It is verified that the slow motion preserves the action, Jz, as evaluated by Sonnerup (1971), when the period of the fast motion is smaller than the time scale of the slow motion. Results show that the phase space structure and particle chaos depend sensitively upon Py and bn, but are independent of h.
High-sensitivity microfluidic calorimeters for biological and chemical applications.
Lee, Wonhee; Fon, Warren; Axelrod, Blake W; Roukes, Michael L
2009-09-08
High-sensitivity microfluidic calorimeters raise the prospect of achieving high-throughput biochemical measurements with minimal sample consumption. However, it has been challenging to realize microchip-based calorimeters possessing both high sensitivity and precise sample-manipulation capabilities. Here, we report chip-based microfluidic calorimeters capable of characterizing the heat of reaction of 3.5-nL samples with 4.2-nW resolution. Our approach, based on a combination of hard- and soft-polymer microfluidics, provides both exceptional thermal response and the physical strength necessary to construct high-sensitivity calorimeters that can be scaled to automated, highly multiplexed array architectures. Polydimethylsiloxane microfluidic valves and pumps are interfaced to parylene channels and reaction chambers to automate the injection of analyte at 1 nL and below. We attained excellent thermal resolution via on-chip vacuum encapsulation, which provides unprecedented thermal isolation of the minute microfluidic reaction chambers. We demonstrate performance of these calorimeters by resolving measurements of the heat of reaction of urea hydrolysis and the enthalpy of mixing of water with methanol. The device structure can be adapted easily to enable a wide variety of other standard calorimeter operations; one example, a flow calorimeter, is described.
Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor
NASA Astrophysics Data System (ADS)
Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.
2016-10-01
A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.
Photonic crystal fiber sensing characteristics research based on alcohol asymmetry filling
NASA Astrophysics Data System (ADS)
Shi, Fu-quan; Luo, Yan; Li, Hai-tao; Peng, Bao-jin
2018-02-01
A new type of Sagnac fiber temperature sensor based on alcohol asymmetric filling photonic crystal fiber is proposed. First, the corrosion of photonic crystal fiber and the treatment of air hole collapse are carried out. Then, the asymmetric structure of photonic crystal fiber is filled with alcohol, and then the structure is connected to the Sagnac interference ring. When the temperature changes, the thermal expansion effect of filling alcohol will lead to the change of birefringence of photonic crystal fiber, so that the interference spectrum of the sensor will drift along with the change of temperature. The experimental results show that the interference red shift will occur with the increase of temperature, and the temperature sensitivity is 0.1864nm/ °C. The sensor has high sensitivity to temperature. At the same time, the structure has the advantages of high stability, anti electromagnetic interference and easy to build. It provides a new method for obtaining birefringence in ordinary photonic crystal fibers.
A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing
Zhao, Longjiang; Jiang, Lan; Wang, Sumei; Xiao, Hai; Lu, Yongfeng; Tsai, Hai-Lung
2011-01-01
During new fiber sensor development experiments, an easy-to-fabricate simple sensing structure with a trench and partially ablated fiber core is fabricated by using an 800 nm 35 fs 1 kHz laser. It is demonstrated that the structure forms a Mach-Zehnder interferometer (MZI) with the interference between the laser light passing through the air in the trench cavity and that in the remained fiber core. The fringe visibilities are all more than 25 dB. The transmission spectra vary with the femtosecond (fs) laser ablation scanning cycle. The free spectral range (FSR) decreases as the trench length increases. The MZI structure is of very high fabrication and sensing repeatability. The sensing mechanism is theoretically discussed, which is in agreement with experiments. The test sensitivity for acetone vapor is about 104 nm/RIU, and the temperature sensitivity is 51.5 pm/°C at 200 ∼ 875 °C with a step of 25 °C. PMID:22346567
Mizuguchi, Yoshikazu
2016-04-01
Recent advances in layered (Fe-based and Bi-based) chalcogenides as superconductors or functional materials are reviewed. The Fe-chalcogenide (FeCh) family are the simplest Fe-based high-Tc superconductors. The superconductivity in the FeCh family is sensitive to external or chemical pressure, and high Tc is attained when the local structure (anion height) is optimized. The Bi-chalcogenide (BiCh2) family are a new group of layered superconductors with a wide variety of stacking structures. Their physical properties are also sensitive to external or chemical pressure. Recently, we revealed that the emergence of superconductivity and the Tc in this family correlate with the in-plane chemical pressure. Since the flexibility of crystal structure and electronic states are an advantage of the BiCh2 family for designing functionalities, I briefly review recent developments in this family as not only superconductors but also other functional materials. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three-dimensional simulations of void collapse in energetic materials
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Udaykumar, H. S.
2018-03-01
The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.
NASA Astrophysics Data System (ADS)
Rahman, M. Saifur; Anower, Md. Shamim; Hasan, Md. Rabiul; Hossain, Md. Biplob; Haque, Md. Ismail
2017-08-01
We demonstrate a highly sensitive Au-MoS2-Graphene based hybrid surface plasmon resonance (SPR) biosensor for the detection of DNA hybridization. The performance parameters of the proposed sensor are investigated in terms of sensitivity, detection accuracy and quality factor at operating wavelength of 633 nm. We observed in the numerical study that sensitivity can be greatly increased by adding MoS2 layer in the middle of a Graphene-on-Au layer. It is shown that by using single layer of MoS2 in between gold and graphene layer, the proposed biosensor exhibits simultaneously high sensitivity of 87.8 deg/RIU, high detection accuracy of 1.28 and quality factor of 17.56 with gold layer thickness of 50 nm. This increased performance is due to the absorption ability and optical characteristics of graphene biomolecules and high fluorescence quenching ability of MoS2. On the basis of changing in SPR angle and minimum reflectance, the proposed sensor can sense nucleotides bonding happened between double-stranded DNA (dsDNA) helix structures. Therefore, this sensor can successfully detect the hybridization of target DNAs to the probe DNAs pre-immobilized on the Au-MoS2-Graphene hybrid with capability of distinguishing single-base mismatch.
NASA Astrophysics Data System (ADS)
Chen, Yuzhen; Xie, Fugui; Liu, Xinjun; Zhou, Yanhua
2014-07-01
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error's influence on the moving platform's pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
Yu, Huiyang; Huang, Jianqiu
2015-01-01
In this paper, a pressure sensor for low pressure detection (0.5 kPa–40 kPa) is proposed. In one structure (No. 1), the silicon membrane is partly etched to form a crossed beam on its top for stress concentration. An aluminum layer is also deposited as part of the beam. Four piezoresistors are fabricated. Two are located at the two ends of the beam. The other two are located at the membrane periphery. Four piezoresistors connect into a Wheatstone bridge. To demonstrate the stress concentrate effect of this structure, two other structures were designed and fabricated. One is a flat membrane structure (No. 2), the other is a structure with the aluminum beam, but without etched silicon (No. 3). The measurement results of these three structures show that the No.1 structure has the highest sensitivity, which is about 3.8 times that of the No. 2 structure and 2.7 times that of the No. 3 structure. They also show that the residual stress in the beam has some backside effect on the sensor performance. PMID:26371001
Highly sensitive detection using microring resonator and nanopores
NASA Astrophysics Data System (ADS)
Bougot-Robin, K.; Hoste, J. W.; Le Thomas, N.; Bienstman, P.; Edel, J. B.
2016-04-01
One of the most significant challenges facing physical and biological scientists is the accurate detection and identification of single molecules in free-solution environments. The ability to perform such sensitive and selective measurements opens new avenues for a large number of applications in biological, medical and chemical analysis, where small sample volumes and low analyte concentrations are the norm. Access to information at the single or few molecules scale is rendered possible by a fine combination of recent advances in technologies. We propose a novel detection method that combines highly sensitive label-free resonant sensing obtained with high-Q microcavities and position control in nanoscale pores (nanopores). In addition to be label-free and highly sensitive, our technique is immobilization free and does not rely on surface biochemistry to bind probes on a chip. This is a significant advantage, both in term of biology uncertainties and fewer biological preparation steps. Through combination of high-Q photonic structures with translocation through nanopore at the end of a pipette, or through a solid-state membrane, we believe significant advances can be achieved in the field of biosensing. Silicon microrings are highly advantageous in term of sensitivity, multiplexing, and microfabrication and are chosen for this study. In term of nanopores, we both consider nanopore at the end of a nanopipette, with the pore being approach from the pipette with nanoprecise mechanical control. Alternatively, solid state nanopores can be fabricated through a membrane, supporting the ring. Both configuration are discussed in this paper, in term of implementation and sensitivity.
NASA Astrophysics Data System (ADS)
Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt
2008-03-01
Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.
Wang, Liying; Du, Xiaohui; Wang, Lingyun; Xu, Zhanhao; Zhang, Chenying; Gu, Dandan
2017-03-16
In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS) stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI) wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB). In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al) on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti) getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm) is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q). The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation.
Do, Hongdo; Molania, Ramyar
2017-01-01
The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis. PMID:29097403
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun
Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; ...
2017-12-07
Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less
High doses of gamma radiation suppress allergic effect induced by food lectin
NASA Astrophysics Data System (ADS)
Vaz, Antônio F. M.; Souza, Marthyna P.; Vieira, Leucio D.; Aguiar, Jaciana S.; Silva, Teresinha G.; Medeiros, Paloma L.; Melo, Ana M. M. A.; Silva-Lucca, Rosemeire A.; Santana, Lucimeire A.; Oliva, Maria L. V.; Perez, Katia R.; Cuccovia, Iolanda M.; Coelho, Luana C. B. B.; Correia, Maria T. S.
2013-04-01
One of the most promising areas for the development of functional foods lies in the development of effective methods to reduce or eliminate food allergenicity, but few reports have summarized information concerning the progress made with food irradiation. In this study, we investigated the relationship between allergenicity and molecular structure of a food allergen after gamma irradiation and evaluate the profile of the allergic response to irradiated allergens. Cramoll, a lectin isolated from a bean and used as a food allergen, was irradiated and the possible structural changes were accompanied by spectrofluorimetry, circular dichroism and microcalorimetry. Subsequently, sensitized animals subjected to intragastric administration of non-irradiated and irradiated Cramoll were treated for 7 days. Then, body weight, leukocytes, cytokine profiles and histological parameters were also determined. Cramoll showed complete inhibition of intrinsic activity after high radiation doses. Changes in fluorescence and CD spectra with a simultaneous collapse of the tertiary structure followed by a pronounced decrease of native secondary structure were observed after irradiation. After oral challenge, sensitized mice demonstrate an association between Cramoll intake, body weight loss, eosinophilia, lymphocytic infiltrate in the gut and Eotaxin secretion. Irradiation significantly reduces, according to the dose, the effects observed by non-irradiated food allergens. We confirm that high-dose radiation may render protein food allergens innocuous by irreversibly compromising their molecular structure.
ProTSAV: A protein tertiary structure analysis and validation server.
Singh, Ankita; Kaushik, Rahul; Mishra, Avinash; Shanker, Asheesh; Jayaram, B
2016-01-01
Quality assessment of predicted model structures of proteins is as important as the protein tertiary structure prediction. A highly efficient quality assessment of predicted model structures directs further research on function. Here we present a new server ProTSAV, capable of evaluating predicted model structures based on some popular online servers and standalone tools. ProTSAV furnishes the user with a single quality score in case of individual protein structure along with a graphical representation and ranking in case of multiple protein structure assessment. The server is validated on ~64,446 protein structures including experimental structures from RCSB and predicted model structures for CASP targets and from public decoy sets. ProTSAV succeeds in predicting quality of protein structures with a specificity of 100% and a sensitivity of 98% on experimentally solved structures and achieves a specificity of 88%and a sensitivity of 91% on predicted protein structures of CASP11 targets under 2Å.The server overcomes the limitations of any single server/method and is seen to be robust in helping in quality assessment. ProTSAV is freely available at http://www.scfbio-iitd.res.in/software/proteomics/protsav.jsp. Copyright © 2015 Elsevier B.V. All rights reserved.
Highly sensitive current sensor utilizing CrNi-wire supported microfiber coils
NASA Astrophysics Data System (ADS)
Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Jin, Long; Guan, Bai-ou
2013-09-01
High current sensitivity is obtained based on a microfiber that is wrapping around a chrome-nickel (CrNi) wire. Due to the strong heating effect of the CrNi wire with the flowing electric current, the mode index and the loop length of microfiber are changed, resulting in the shift of resonant wavelength. The measured current responsivity is as high as 220.65nm/A2, which is in two or three magnitude orders than the previously-obtained ones. We study the influence of component size to the structure performance, which is useful for future applications of current sensing or tuning devices.
Densmore, A; Xu, D-X; Janz, S; Waldron, P; Mischki, T; Lopinski, G; Delâge, A; Lapointe, J; Cheben, P; Lamontagne, B; Schmid, J H
2008-03-15
We demonstrate a new silicon photonic wire waveguide evanescent field (PWEF) sensor that exploits the strong evanescent field of the transverse magnetic mode of this high-index-contrast, submicrometer-dimension waveguide. High sensitivity is achieved by using a 2 mm long double-spiral waveguide structure that fits within a compact circular area of 150 microm diameter, facilitating compatibility with commercial spotting apparatus and the fabrication of densely spaced sensor arrays. By incorporating the PWEF sensor element into a balanced waveguide Mach-Zehnder interferometer circuit, a minimum detectable mass of approximately 10 fg of streptavidin protein is demonstrated with near temperature-independent response.
Meier, Thomas; Haase, Jürgen
2014-01-01
Nuclear Magnetic Resonance (NMR) is one of the most important techniques for the study of condensed matter systems, their chemical structure, and their electronic properties. The application of high pressure enables one to synthesize new materials, but the response of known materials to high pressure is a very useful tool for studying their electronic structure and developing theories. For example, high-pressure synthesis might be at the origin of life; and understanding the behavior of small molecules under extreme pressure will tell us more about fundamental processes in our universe. It is no wonder that there has always been great interest in having NMR available at high pressures. Unfortunately, the desired pressures are often well into the Giga-Pascal (GPa) range and require special anvil cell devices where only very small, secluded volumes are available. This has restricted the use of NMR almost entirely in the past, and only recently, a new approach to high-sensitivity GPa NMR, which has a resonating micro-coil inside the sample chamber, was put forward. This approach enables us to achieve high sensitivity with experiments that bring the power of NMR to Giga-Pascal pressure condensed matter research. First applications, the detection of a topological electronic transition in ordinary aluminum metal and the closing of the pseudo-gap in high-temperature superconductivity, show the power of such an approach. Meanwhile, the range of achievable pressures was increased tremendously with a new generation of anvil cells (up to 10.1 GPa), that fit standard-bore NMR magnets. This approach might become a new, important tool for the investigation of many condensed matter systems, in chemistry, geochemistry, and in physics, since we can now watch structural changes with the eyes of a very versatile probe. PMID:25350694
Meier, Thomas; Haase, Jürgen
2014-10-10
Nuclear Magnetic Resonance (NMR) is one of the most important techniques for the study of condensed matter systems, their chemical structure, and their electronic properties. The application of high pressure enables one to synthesize new materials, but the response of known materials to high pressure is a very useful tool for studying their electronic structure and developing theories. For example, high-pressure synthesis might be at the origin of life; and understanding the behavior of small molecules under extreme pressure will tell us more about fundamental processes in our universe. It is no wonder that there has always been great interest in having NMR available at high pressures. Unfortunately, the desired pressures are often well into the Giga-Pascal (GPa) range and require special anvil cell devices where only very small, secluded volumes are available. This has restricted the use of NMR almost entirely in the past, and only recently, a new approach to high-sensitivity GPa NMR, which has a resonating micro-coil inside the sample chamber, was put forward. This approach enables us to achieve high sensitivity with experiments that bring the power of NMR to Giga-Pascal pressure condensed matter research. First applications, the detection of a topological electronic transition in ordinary aluminum metal and the closing of the pseudo-gap in high-temperature superconductivity, show the power of such an approach. Meanwhile, the range of achievable pressures was increased tremendously with a new generation of anvil cells (up to 10.1 GPa), that fit standard-bore NMR magnets. This approach might become a new, important tool for the investigation of many condensed matter systems, in chemistry, geochemistry, and in physics, since we can now watch structural changes with the eyes of a very versatile probe.
Probabilistic analysis of a materially nonlinear structure
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.; Fossum, A. F.
1990-01-01
A probabilistic finite element program is used to perform probabilistic analysis of a materially nonlinear structure. The program used in this study is NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), under development at Southwest Research Institute. The cumulative distribution function (CDF) of the radial stress of a thick-walled cylinder under internal pressure is computed and compared with the analytical solution. In addition, sensitivity factors showing the relative importance of the input random variables are calculated. Significant plasticity is present in this problem and has a pronounced effect on the probabilistic results. The random input variables are the material yield stress and internal pressure with Weibull and normal distributions, respectively. The results verify the ability of NESSUS to compute the CDF and sensitivity factors of a materially nonlinear structure. In addition, the ability of the Advanced Mean Value (AMV) procedure to assess the probabilistic behavior of structures which exhibit a highly nonlinear response is shown. Thus, the AMV procedure can be applied with confidence to other structures which exhibit nonlinear behavior.
Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives.
Bernstein, Jonathan
2018-02-28
Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.
Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives
NASA Astrophysics Data System (ADS)
Bernstein, Jonathan
2018-02-01
Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.
Shi, Jie; Xiao, Shilin; Yi, Lilin; Bi, Meihua
2012-01-01
A sensitivity-enhanced fiber-optic refractive index (RI) sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF) between two sections of single-mode fibers (SMFs). The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI). An abrupt taper (tens of micrometers long) made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity.
Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors
Feng-Chen, Siyuan; Aldalbahi, Ali; Feng, Peter Xianping
2015-01-01
We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability. PMID:26512670
Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu
2017-01-01
N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures’ refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times. PMID:28045442
Bi, Sai; Yue, Shuzhen; Wu, Qiang; Ye, Jiayan
2016-04-07
Toehold-mediated strand displacement-based nanocircuits are developed by integrating catalytic hairpin assembly (CHA) with hybridization chain reaction (HCR), which achieves self-assembly of hyperbranched DNA structures and is readily utilized as an enzyme-free amplifier for homogeneous CRET detection of microRNA with high sensitivity and selectivity.
Tian, Junlong; Pan, Feng; Xue, Ruiyang; Zhang, Wang; Fang, Xiaotian; Liu, Qinglei; Wang, Yuhua; Zhang, Zhijian; Zhang, Di
2015-05-07
A tin oxide multi-tube array (SMTA) with a parallel effect was fabricated through a simple and promising method combining chemosynthesis and biomimetic techniques; a biomimetic template was derived from the bristles on the wings of the Alpine Black Swallowtail butterfly (Papilio maackii). SnO2 tubes are hollow and porous structures with micro-pores regularly distributed on the wall. The morphology, the delicate microstructure and the crystal structure of this SMTA were characterized by super resolution digital microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The SMTA exhibits a high sensitivity to H2S gas at room temperature. It also exhibits a short response/recovery time, with an average value of 14/30 s at 5 ppm. In particular, heating is not required for the SMTA in the gas sensitivity measurement process. On the basis of these results, SMTA is proposed as a suitable new material for the design and fabrication of room-temperature H2S gas sensors.
A Potentiometric Indirect Uric Acid Sensor Based on ZnO Nanoflakes and Immobilized Uricase
Usman Ali, Syed M.; Ibupoto, Zafar Hussain; Kashif, Muhammad; Hashim, Uda; Willander, Magnus
2012-01-01
In the present work zinc oxide nanoflakes (ZnO-NF) structures with a wall thickness around 50 to 100 nm were synthesized on a gold coated glass substrate using a low temperature hydrothermal method. The enzyme uricase was electrostatically immobilized in conjunction with Nafion membrane on the surface of well oriented ZnO-NFs, resulting in a sensitive, selective, stable and reproducible uric acid sensor. The electrochemical response of the ZnO-NF-based sensor vs. a Ag/AgCl reference electrode was found to be linear over a relatively wide logarithmic concentration range (500 nM to 1.5 mM). In addition, the ZnO-NF structures demonstrate vast surface area that allow high enzyme loading which results provided a higher sensitivity. The proposed ZnO-NF array-based sensor exhibited a high sensitivity of ∼66 mV/ decade in test electrolyte solutions of uric acid, with fast response time. The sensor response was unaffected by normal concentrations of common interferents such as ascorbic acid, glucose, and urea. PMID:22736977
NASA Astrophysics Data System (ADS)
Bartell, Jason M.; Jermain, Colin L.; Aradhya, Sriharsha V.; Brangham, Jack T.; Yang, Fengyuan; Ralph, Daniel C.; Fuchs, Gregory D.
2017-04-01
We demonstrate an instrument for time-resolved magnetic imaging that is highly sensitive to the in-plane magnetization state and dynamics of thin-film bilayers of yttrium iron garnet [Y3Fe5O12(YIG )]/Pt : the time-resolved longitudinal spin Seebeck (TRLSSE) effect microscope. We detect the local in-plane magnetic orientation within the YIG by focusing a picosecond laser to generate thermally driven spin current from the YIG into the Pt by the spin Seebeck effect and then use the inverse spin Hall effect in the Pt to transduce this spin current to an output voltage. To establish the time resolution of TRLSSE, we show that pulsed optical heating of patterned YIG (20 nm )/Pt (6 nm )/Ru (2 nm ) wires generates a magnetization-dependent voltage pulse of less than 100 ps. We demonstrate TRLSSE microscopy to image both static magnetic structure and gigahertz-frequency magnetic resonance dynamics with submicron spatial resolution and a sensitivity to magnetic orientation below 0.3 °/√{H z } in ultrathin YIG.
NASA Astrophysics Data System (ADS)
Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang
2016-10-01
Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.
Liu, Meichuan; Ding, Xue; Yang, Qiwei; Wang, Yu; Zhao, Guohua; Yang, Nianjun
2017-06-05
A simple and highly sensitive photoelectrochemical (PEC) sensor towards Microcystin-LR (MC-LR), a kind of typical cyanobacterial toxin in water samples, was developed on a surface molecular imprinted TiO 2 coated multiwalled carbon nanotubes (MI-TiO 2 @CNTs) hybrid nanostructure. It was synthesized using a feasible two-step sol-gel method combining with in situ surface molecular imprinting technique (MIT). With a controllable core-shell tube casing structure, the resultant MI-TiO 2 @CNTs are enhanced greatly in visible-light driven response capacity. In comparison with the traditional TiO 2 (P25) and non-imprinted (NI-)TiO 2 @CNTs, the MI-TiO 2 @CNTs based PEC sensor showed a much higher photoelectric oxidation capacity towards MC-LR. Using this sensor, the determination of MC-LR was doable in a wide linear range from 1.0pM to 3.0nM with a high photocurrent response sensitivity. An outstanding selectivity towards MC-LR was further achieved with this sensor, proven by simultaneously monitoring 100-fold potential co-existing interferences. The superiority of the obtained MC-LR sensor in sensitivity and selectivity is mainly attributed to the high specific surface area and excellent photoelectric activity of TiO 2 @CNTs heterojunction structure, as well as the abundant active recognition sites on its functionalized molecular imprinting surface. A promising PEC analysis platform with high sensitivity and selectivity for MC-LR has thus been provided. Copyright © 2017 Elsevier B.V. All rights reserved.
Tokunaga, Takashi; Akagi, Ken-Ichi; Okamoto, Masahiko
2017-07-28
High performance liquid chromatography can be coupled with nuclear magnetic resonance (NMR) spectroscopy to give a powerful analytical method known as liquid chromatography-nuclear magnetic resonance (LC-NMR) spectroscopy, which can be used to determine the chemical structures of the components of complex mixtures. However, intrinsic limitations in the sensitivity of NMR spectroscopy have restricted the scope of this procedure, and resolving these limitations remains a critical problem for analysis. In this study, we coupled ultra-high performance liquid chromatography (UHPLC) with NMR to give a simple and versatile analytical method with higher sensitivity than conventional LC-NMR. UHPLC separation enabled the concentration of individual peaks to give a volume similar to that of the NMR flow cell, thereby maximizing the sensitivity to the theoretical upper limit. The UHPLC concentration of compound peaks present at typical impurity levels (5.0-13.1 nmol) in a mixture led to at most three-fold increase in the signal-to-noise ratio compared with LC-NMR. Furthermore, we demonstrated the use of UHPLC-NMR for obtaining structural information of a minor impurity in a reaction mixture in actual laboratory-scale development of a synthetic process. Using UHPLC-NMR, the experimental run times for chromatography and NMR were greatly reduced compared with LC-NMR. UHPLC-NMR successfully overcomes the difficulties associated with analyses of minor components in a complex mixture by LC-NMR, which are problematic even when an ultra-high field magnet and cryogenic probe are used. Copyright © 2017 Elsevier B.V. All rights reserved.
Which Photodiode to Use: A Comparison of CMOS-Compatible Structures
Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert
2010-01-01
While great advances have been made in optimizing fabrication process technologies for solid state image sensors, the need remains to be able to fabricate high quality photosensors in standard CMOS processes. The quality metrics depend on both the pixel architecture and the photosensitive structure. This paper presents a comparison of three photodiode structures in terms of spectral sensitivity, noise and dark current. The three structures are n+/p-sub, n-well/p-sub and p+/n-well/p-sub. All structures were fabricated in a 0.5 μm 3-metal, 2-poly, n-well process and shared the same pixel and readout architectures. Two pixel structures were fabricated—the standard three transistor active pixel sensor, where the output depends on the photodiode capacitance, and one incorporating an in-pixel capacitive transimpedance amplifier where the output is dependent only on a designed feedback capacitor. The n-well/p-sub diode performed best in terms of sensitivity (an improvement of 3.5 × and 1.6 × over the n+/p-sub and p+/n-well/p-sub diodes, respectively) and signal-to-noise ratio (1.5 × and 1.2 × improvement over the n+/p-sub and p+/n-well/p-sub diodes, respectively) while the p+/n-well/p-sub diode had the minimum (33% compared to other two structures) dark current for a given sensitivity. PMID:20454596
Which Photodiode to Use: A Comparison of CMOS-Compatible Structures.
Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert
2009-07-01
While great advances have been made in optimizing fabrication process technologies for solid state image sensors, the need remains to be able to fabricate high quality photosensors in standard CMOS processes. The quality metrics depend on both the pixel architecture and the photosensitive structure. This paper presents a comparison of three photodiode structures in terms of spectral sensitivity, noise and dark current. The three structures are n(+)/p-sub, n-well/p-sub and p(+)/n-well/p-sub. All structures were fabricated in a 0.5 mum 3-metal, 2-poly, n-well process and shared the same pixel and readout architectures. Two pixel structures were fabricated-the standard three transistor active pixel sensor, where the output depends on the photodiode capacitance, and one incorporating an in-pixel capacitive transimpedance amplifier where the output is dependent only on a designed feedback capacitor. The n-well/p-sub diode performed best in terms of sensitivity (an improvement of 3.5 x and 1.6 x over the n(+)/p-sub and p(+)/n-well/p-sub diodes, respectively) and signal-to-noise ratio (1.5 x and 1.2 x improvement over the n(+)/p-sub and p(+)/n-well/p-sub diodes, respectively) while the p(+)/n-well/p-sub diode had the minimum (33% compared to other two structures) dark current for a given sensitivity.
Zhang, Qinghua; Zhang, Jiaheng; Qi, Xiujuan; Shreeve, Jean'ne M
2014-11-13
Research in energetic materials is now heavily focused on the design and synthesis of novel insensitive high explosives (IHEs) for specialized applications. As an effective and time-saving tool for screening potential explosive structures, computer simulation has been widely used for the prediction of detonation properties of energetic molecules with relatively high precision. In this work, a series of new polynitrotetraoxopentaaza[3.3.3]-propellane molecules with tricyclic structures were designed. Their properties as potential high explosives including density, heats of formation, detonation properties, impact sensitivity, etc., have been extensively evaluated using volume-based thermodynamic calculations and density functional theory (DFT).These new energetic molecules exhibit high densities of >1.82 g cm(-3), in which 1 gives the highest density of 2.04 g cm(-3). Moreover, most new materials show good detonation properties and acceptable impact sensitivities, in which 5 displays much higher detonation velocity (9482 m s(-1)) and pressure (43.9 GPa) than HMX and has a h50 value of 11 cm. These results are expected to facilitate the experimental synthesis of new-generation nitramine-based high explosives.
NASA Technical Reports Server (NTRS)
Korochantsev, A. V.; Nikolaeva, O. V.
1993-01-01
The relationship between the chemical composition and the interlayer spacing (d002) of organic materials (OM's) is known for various terrestrial OM's. We improved this general trend by correlation with corresponding trend of natural solid bitumens (asphaltite-kerite-anthraxolite) up to graphite. Using the improved trend we identified bitumen analogs of carbonaceous chondrite OM's residued after HF-HCl treatment. Our laboratory experiment revealed that these analogs and, hence, structure and chemical composition of carbonaceous chondrite OM's are very sensitive to the HF-HCl treatment. So, usual extraction of OM from carbonaceous chondrites may change significantly structural and chemical composition of extracted OM.
NASA Astrophysics Data System (ADS)
He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze
2017-08-01
A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.
He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze
2017-12-01
A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.
High-sensitivity pressure sensor based on fiber Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Wu, Yue; Xu, Yao; Yang, Yuguang; Jin, Wenxing; Jiang, Youchao; Shen, Ya; Jian, Shuisheng
2017-10-01
In this paper we propose and experimentally demonstrate an optical fiber structure sensor based on a Mach-Zehnder interferometer for pressure measurement. The fiber sensor is composed of a single-mode-no-core-single-mode structure, a section of capillary pure silica tube and refractive index matching fluid (RIMF). As the pressure decreases, the sealed air in the tube expands and the liquid level of the RIMF increases, which causes a wavelength shift of the interferometer. The measurement of the pressure variation can thus be achieved by monitoring the wavelength shift. The experimental results agree well with the numerical simulation, and a maximum pressure sensitivity of 266.6 nm Mpa-1 is achieved experimentally. Furthermore, the proposed fiber sensor has the potential to obtain higher sensitivity by enlarging the length of the air cavity.
Analysis of TPA Pulsed-Laser-Induced Single-Event Latchup Sensitive-Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peng; Sternberg, Andrew L.; Kozub, John A.
Two-photon absorption (TPA) testing is employed to analyze the laser-induced latchup sensitive-volume (SV) of a specially designed test structure. This method takes into account the existence of an onset region in which the probability of triggering latchup transitions from zero to one as the laser pulse energy increases. This variability is attributed to pulse-to-pulse variability, uncertainty in measurement of the pulse energy, and variation in local carrier density and temperature. For each spatial position, the latchup probability associated with a given energy is calculated from multiple pulses. The latchup probability data are well-described by a Weibull distribution. The results showmore » that the area between p-n-p-n cell structures is more sensitive than the p+ and n+ source areas, and locations far from the well contacts are more sensitive than those near the contact region. The transition from low probability of latchup to high probability is more abrupt near the source contacts than it is for the surrounding areas.« less
Analysis of TPA Pulsed-Laser-Induced Single-Event Latchup Sensitive-Area
Wang, Peng; Sternberg, Andrew L.; Kozub, John A.; ...
2017-12-07
Two-photon absorption (TPA) testing is employed to analyze the laser-induced latchup sensitive-volume (SV) of a specially designed test structure. This method takes into account the existence of an onset region in which the probability of triggering latchup transitions from zero to one as the laser pulse energy increases. This variability is attributed to pulse-to-pulse variability, uncertainty in measurement of the pulse energy, and variation in local carrier density and temperature. For each spatial position, the latchup probability associated with a given energy is calculated from multiple pulses. The latchup probability data are well-described by a Weibull distribution. The results showmore » that the area between p-n-p-n cell structures is more sensitive than the p+ and n+ source areas, and locations far from the well contacts are more sensitive than those near the contact region. The transition from low probability of latchup to high probability is more abrupt near the source contacts than it is for the surrounding areas.« less
Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects
Fuentes-Fuentes, Miguel A.; May-Arrioja, Daniel A.; Guzman-Sepulveda, José R.; Torres-Cisneros, Miguel; Sánchez-Mondragón, José J.
2015-01-01
A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC) of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF) highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors. PMID:26512664
MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework
Spoerke, Erik D.; Small, Leo J.; Foster, Michael E.; ...
2017-03-01
Metal–organic frameworks (MOFs) are highly ordered, functionally tunable supramolecular materials with the potential to improve dye-sensitized solar cells (DSSCs). Several recent reports have indicated that photocurrent can be generated in Grätzel-type DSSC devices when MOFs are used as the sensitizer. However, the specific role(s) of the incorporated MOFs and the potential influence of residual MOF precursor species on device performance are unclear. Herein, we describe the assembly and characterization of a simplified DSSC platform in which isolated MOF crystals are used as the sensitizer in a planar device architecture. We selected a pillared porphyrin framework (PPF) as the MOF sensitizer,more » taking particular care to avoid contamination from light-absorbing MOF precursors. Photovoltaic and electrochemical characterization under simulated 1-sun and wavelength-selective illumination revealed photocurrent generation that is clearly ascribable to the PPF MOF. In conclusion, continued refinement of highly versatile MOF structure and chemistry holds promise for dramatic improvements in emerging photovoltaic technologies.« less
NASA Astrophysics Data System (ADS)
Kong, Weijing; Wan, Yuhang; Du, Kun; Zhao, Wenhui; Wang, Shuang; Zheng, Zheng
2016-11-01
The reflected intensity change of the Bloch-surface-wave (BSW) resonance influenced by the loss of a truncated onedimensional photonic crystal structure is numerically analyzed and studied in order to enhance the sensitivity of the Bloch-surface-wave-based sensors. The finite truncated one-dimensional photonic crystal structure is designed to be able to excite BSW mode for water (n=1.33) as the external medium and for p-polarized plane wave incident light. The intensity interrogation scheme which can be operated on a typical Kretschmann prism-coupling configuration by measuring the reflected intensity change of the resonance dip is investigated to optimize the sensitivity. A figure of merit (FOM) is introduced to measure the performance of the one-dimensional photonic crystal multilayer structure under the scheme. The detection sensitivities are calculated under different device parameters with a refractive index change corresponding to different solutions of glycerol in de-ionized (DI)-water. The results show that the intensity sensitivity curve varies similarly with the FOM curve and the sensitivity of the Bloch-surface-wave sensor is greatly affected by the device loss, where an optimized loss value can be got. For the low-loss BSW devices, the intensity interrogation sensing sensitivity may drop sharply from the optimal value. On the other hand, the performance of the detection scheme is less affected by the higher device loss. This observation is in accordance with BSW experimental sensing demonstrations as well. The results obtained could be useful for improving the performance of the Bloch-surface-wave sensors for the investigated sensing scheme.
Xu, Yunying; Zhou, Wenjiao; Zhou, Ming; Xiang, Yun; Yuan, Ruo; Chai, Yaqin
2015-02-15
Based on a new signal amplification strategy by the toehold strand displacement-driven cyclic assembly of G-quadruplex DNA, the development of an enzyme-free and non-label aptamer sensing approach for sensitive fluorescent detection of thrombin is described. The target thrombin associates with the corresponding aptamer of the partial dsDNA probes and liberates single stranded initiation sequences, which trigger the toehold strand displacement assembly of two G-quadruplex containing hairpin DNAs. This toehold strand displacement reaction leads to the cyclic reuse of the initiation sequences and the production of DNA assemblies with numerous G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binds to these G-quadruplex structures and generates significantly amplified fluorescent signals to achieve highly sensitive detection of thrombin down to 5 pM. Besides, this method shows high selectivity towards the target thrombin against other control proteins. The developed thrombin sensing method herein avoids the modification of the probes and the involvement of any enzyme or nanomaterial labels for signal amplification. With the successful demonstration for thrombin detection, our approach can be easily adopted to monitor other target molecules in a simple, low-cost, sensitive and selective way by choosing appropriate aptamer/ligand pairs. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ney, Michael; Abdulhalim, Ibrahim
2016-03-01
Skin cancer detection at its early stages has been the focus of a large number of experimental and theoretical studies during the past decades. Among these studies two prominent approaches presenting high potential are reflectometric sensing at the THz wavelengths region and polarimetric imaging techniques in the visible wavelengths. While THz radiation contrast agent and source of sensitivity to cancer related tissue alterations was considered to be mainly the elevated water content in the cancerous tissue, the polarimetric approach has been verified to enable cancerous tissue differentiation based on cancer induced structural alterations to the tissue. Combining THz with the polarimetric approach, which is considered in this study, is examined in order to enable higher detection sensitivity than previously pure reflectometric THz measurements. For this, a comprehensive MC simulation of radiative transfer in a complex skin tissue model fitted for the THz domain that considers the skin`s stratified structure, tissue material optical dispersion modeling, surface roughness, scatterers, and substructure organelles has been developed. Additionally, a narrow beam Mueller matrix differential analysis technique is suggested for assessing skin cancer induced changes in the polarimetric image, enabling the tissue model and MC simulation to be utilized for determining the imaging parameters resulting in maximal detection sensitivity.
Development of high-sensitivity SWIR APD receivers
NASA Astrophysics Data System (ADS)
Bai, Xiaogang; Yuan, Ping; Chang, James; Sudharsanan, Rengarajan; Krainak, Michael; Yang, Guangning; Sun, Xiaoli; Lu, Wei
2013-06-01
Emerging short wavelength infrared (SWIR) LIght Detection And Ranging (LIDAR) and long range laser rangefinder systems, require large optical aperture avalanche photodiodes (APDs) receivers with high sensitivity and high bandwidth. A large optical aperture is critical to increase the optical coupling efficiency and extend the LIDAR sensing range of the above systems. Both APD excess noise and transimpedance amplifier (TIA) noise need to be reduced in order to achieve high receiver sensitivity. The dark current and capacitance of large area APDs increase with APD aperture and thus limit the sensitivity and bandwidth of receivers. Spectrolab has been developing low excess noise InAlAs/InGaAs APDs with impact ionization engineering (I2E) designs for many years and has demonstrated APDs with optical gain over 100 utilizing multiple period I2E structures in the APD multiplier. These high gain I2E APDs have an excess noise factor less than 0.15. With an optical aperture of 200 μm, low excess noise multiple periods I2E APDs have capacitances about 1.7 pF. In addition, optical gains of InAlAs based APDs show very little temperature dependence and will enable APD photoreceivers without thermal electric cooling.
Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub
2018-04-24
Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.
Liang, Junfei; Wei, Ran; He, Shuai; Liu, Yikan; Guo, Lin; Li, Lidong
2013-03-21
Oncoprotein platelet derived growth factor-BB (PDGF-BB) is one of the most critical growth factors that regulates tumor growth and division. In this work, a highly sensitive and selective fluorescence resonance energy transfer (FRET) aptasensor for PDGF-BB detection based on the assembly of dye-labeled aptamer and graphene oxide (GO) is developed for the first time. Due to the non-covalent assembly between aptamer and GO, fluorescence quenching of the dye takes place because of FRET. In the presence of PDGF-BB, the binding between aptamer and PDGF-BB will disturb the interaction between aptamer and GO, and release the dye-labeled aptamer from the GO surface, resulting in restoration of the fluorophore fluorescence. Because of the high fluorescence quenching efficiency, unique structure, and electronic properties of GO, the GO aptasensor exhibits extraordinarily high sensitivity. We also demonstrate that two highly related molecular variants of PDGF (AA, AB) can be distinguished from PDGF-BB, which indicates the aptasensor has excellent selectivity. Such an aptasensor opens a rapid, selective and sensitive route for the detection of PDGF-BB and provides a promising strategy for other cancer-related proteins detections.
Finite-frequency sensitivity kernels for head waves
NASA Astrophysics Data System (ADS)
Zhang, Zhigang; Shen, Yang; Zhao, Li
2007-11-01
Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the `banana-doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.
Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3)
NASA Astrophysics Data System (ADS)
Liu, Sijie; Xiao, Wenbo; Zhong, Mianzeng; Pan, Longfei; Wang, Xiaoting; Deng, Hui-Xiong; Liu, Jian; Li, Jingbo; Wei, Zhongming
2018-05-01
Photodetectors with high polarization sensitivity are in great demand in advanced optical communication. Here, we demonstrate that photodetectors based on titanium trisulfide (TiS3) are extremely sensitive to polarized light (from visible to the infrared), due to its reduced in-plane structural symmetry. By density functional theory calculation, TiS3 has a direct bandgap of 1.13 eV. The highest photoresponsivity reaches 2500 A W-1. What is more, in-plane optical selection caused by strong anisotropy leads to the photoresponsivity ratio for different directions of polarization that can reach 4:1. The angle-dependent photocurrents of TiS3 clearly display strong linear dichroism. Moreover, the Raman peak at 370 cm-1 is also very sensitive to the polarization direction. The theoretical optical absorption of TiS3 is calculated by using the HSE06 hybrid functional method, in qualitative agreement with the observed experimental photoresponsivity.
Jawaher, K Rackesh; Indirajith, R; Krishnan, S; Robert, R; Pasha, S K Khadheer; Deshmukh, Kalim; Sastikumar, D; Das, S Jerome
2018-08-01
Cr2O3-SnO2 heterojunction nanocomposites were prepared via chemical precipitation method. The prepared samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra and Field Emission Electron Microscopy (FESEM). The XRD spectrum confirms the presence of both tetragonal rutile SnO2 and rhombohedral corundum Cr2O3 structure. Further investigation into the gas sensing performances of the prepared Cr2O3-SnO2 nanocomposites exhibited an enhanced sensitivity towards VOPs such as isopropanol, acetone, ethanol and formaldehyde. Especially, isopropanol vapor sensor shows excellent sensitivity at an operating temperature of 100 °C. The highest sensitivity for Cr2O3-SnO2 heterojunction nanocomposites indicate that these materials can be a good candidate for the production of high-performance isopropanol sensors.
Highly sensitive nanostructure SnO2 based gas sensor for environmental pollutants
NASA Astrophysics Data System (ADS)
Korgaokar, Sushil; Moradiya, Meet; Prajapati, Om; Thakkar, Pranav; Pala, Jay; Savaliya, Chirag; Parikh, Sachin; Markna, J. H.
2017-05-01
A major quantity of pollutants are produced from industries and vehicles in the form of gas. New approaches are needed to solve well-known environmental pollutants like CO, CO2, NO2, SOx. Therefore detection with effective gas sensors is a vital part of pollution prevention efforts. There is a need to develop fast, rapid, cost-effective, highly sensitive, low power, and non-intrusive rugged sensors that can be easily installed. In the present study, nanostructured SnO2 used as a sensitive material in the devices and synthesized using hydrothermal process. The detailed development of the fabrication of SnO2 nanostructures gas sensor is described, which shows the remarkable change in the sensing properties with varying particle size. Additionally, we have used X-ray diffraction, scanning electron microscopy (SEM) for characterization and carefully examined the relative parameters like response magnitude (sensitivity) and selectivity of SnO2 nano structures with different particle size.
Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3).
Liu, Sijie; Xiao, Wenbo; Zhong, Mianzeng; Pan, Longfei; Wang, Xiaoting; Deng, Hui-Xiong; Liu, Jian; Li, Jingbo; Wei, Zhongming
2018-05-04
Photodetectors with high polarization sensitivity are in great demand in advanced optical communication. Here, we demonstrate that photodetectors based on titanium trisulfide (TiS 3 ) are extremely sensitive to polarized light (from visible to the infrared), due to its reduced in-plane structural symmetry. By density functional theory calculation, TiS 3 has a direct bandgap of 1.13 eV. The highest photoresponsivity reaches 2500 A W -1 . What is more, in-plane optical selection caused by strong anisotropy leads to the photoresponsivity ratio for different directions of polarization that can reach 4:1. The angle-dependent photocurrents of TiS 3 clearly display strong linear dichroism. Moreover, the Raman peak at 370 cm -1 is also very sensitive to the polarization direction. The theoretical optical absorption of TiS 3 is calculated by using the HSE06 hybrid functional method, in qualitative agreement with the observed experimental photoresponsivity.
NASA Astrophysics Data System (ADS)
Newman, James Charles, III
1997-10-01
The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for several two- and three-dimensional cases. In twodimensions, an initially symmetric NACA-0012 airfoil and a high-lift multielement airfoil were examined. For the three-dimensional configurations, an initially rectangular wing with uniform NACA-0012 cross-sections was optimized; in addition, a complete Boeing 747-200 aircraft was studied. Furthermore, the current study also examines the effect of inconsistency in the order of spatial accuracy between the nonlinear fluid and linear shape sensitivity equations. The second step was to develop a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. To accomplish this, a structural analysis code was coupled with the aforementioned unstructured grid aerodynamic analysis solver. The use of an unstructured grid scheme for the aerodynamic analysis enhances the interaction compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections may be obtained. In the current work, parameters have been introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented.
Time stamping of single optical photons with 10 ns resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakaberia, Irakli; Cotlet, Mircea; Fisher-Levine, Merlin
High spatial and temporal resolution are key features for many modern applications, e.g. mass spectrometry, probing the structure of materials via neutron scattering, studying molecular structure, etc. Fast imaging also provides the capability of coincidence detection, and the further addition of sensitivity to single optical photons with the capability of timestamping them further broadens the field of potential applications. Here, photon counting is already widely used in X-ray imaging, where the high energy of the photons makes their detection easier.
Time stamping of single optical photons with 10 ns resolution
Chakaberia, Irakli; Cotlet, Mircea; Fisher-Levine, Merlin; ...
2017-05-08
High spatial and temporal resolution are key features for many modern applications, e.g. mass spectrometry, probing the structure of materials via neutron scattering, studying molecular structure, etc. Fast imaging also provides the capability of coincidence detection, and the further addition of sensitivity to single optical photons with the capability of timestamping them further broadens the field of potential applications. Here, photon counting is already widely used in X-ray imaging, where the high energy of the photons makes their detection easier.
Polarization-independent beam focusing by high-contrast grating reflectors
NASA Astrophysics Data System (ADS)
Su, Wei; Zheng, Gaige; Jiang, Liyong; Li, Xiangyin
2014-08-01
A kind of high-contrast grating (HCG) reflector for beam focusing has been proposed. We design a planar grating structure with a parabolic surface and numerical simulations using a finite different time domain (FDTD) method to verify that the structure has the capability of focusing both transverse-magnetic (TM) and transverse-electric (TE) polarized lights. Finally, we expand the design structure into a three-dimensional (3D) case. Numerical results demonstrate that the power intensities at the focal point are all greater than 8.5 dB compared with incident intensity, which means the structure has a better focusing effect. Further analysis of incident wavelength sensitivity (1.55, 1.79 and 2 μm) reveals that the proposed structure has a wide range of working wavelength.
Retinal sensitivity and choroidal thickness in high myopia.
Zaben, Ahmad; Zapata, Miguel Á; Garcia-Arumi, Jose
2015-03-01
To estimate the association between choroidal thickness in the macular area and retinal sensitivity in eyes with high myopia. This investigation was a transversal study of patients with high myopia, all of whom had their retinal sensitivity measured with macular integrity assessment microperimetry. The choroidal thicknesses in the macular area were then measured by optical coherence tomography, and statistical correlations between their functionality and the anatomical structuralism, as assessed by both types of measurements, were analyzed. Ninety-six eyes from 77 patients with high myopia were studied. The patients had a mean age ± standard deviation of 38.9 ± 13.2 years, with spherical equivalent values ranging from -6.00 diopter to -20.00 diopter (8.74 ± 2.73 diopter). The mean central choroidal thickness was 159.00 ± 50.57. The mean choroidal thickness was directly correlated with sensitivity (r = 0.306; P = 0.004) and visual acuity but indirectly correlated with the spherical equivalent values and patient age. The mean sensitivity was not significantly correlated with the macular foveal thickness (r = -0.174; P = 0.101) or with the overall macular thickness (r = 0.103; P = 0.334); furthermore, the mean sensitivity was significantly correlated with visual acuity (r = 0.431; P < 0.001) and the spherical equivalent values (r = -0.306; P = 0.003). Retinal sensitivity in highly myopic eyes is directly correlated with choroidal thickness and does not seem to be associated with retinal thickness. Thus, in patients with high myopia, accurate measurements of choroidal thickness may provide more accurate information about this pathologic condition because choroidal thickness correlates to a greater degree with the functional parameters, patient age, and spherical equivalent values.
The Best of Two Worlds: ALMA + IRAM30M Observations of the Orion Integral Shape Filament
NASA Astrophysics Data System (ADS)
Hacar Gonzalez, Alvaro
2018-01-01
We have investigated the internal gas structure of the Orion Integral Shape filament using two large-scale, 150-pointing ALMA-12m mosaics and previous IRAM30m single-dish (SD) observations. From the combination of both single-dish and interferometric data we have produced a high-dynamic range and high-sensitivity map describing the internal gas structure of this filament at scales between 2 pc and 2000 AU (Hacar et al, submitted to A&A). In a series of individual CASA reductions (w/o SD data + w/o feathering), we have investigated the impact of the different uv-coverages on both the total flux and line velocity structure of our ALMA maps. Our analysis highlights the critical role played by the zero-spacing data at the different stages of the cleaning process. The results of these ALMA+IRAM30m experiments emphasize the need of high-sensitivity SD observations for the analysis of large-scale interferometric maps. During my talk, I will discuss the implications of these experiments on the dawn of the ALMA era and in the context of the new AtLAST telescope.
NASA Astrophysics Data System (ADS)
Janicki, Łukasz; Ramírez-López, Manolo; Misiewicz, Jan; Cywiński, Grzegorz; Boćkowski, Michał; Muzioł, Grzegorz; Chèze, Caroline; Sawicka, Marta; Skierbiszewski, Czesław; Kudrawiec, Robert
2016-05-01
Ga-polar, N-polar, and nonpolar m-plane GaN UN+ structures have been examined in air and vacuum ambient by contactless electroreflectance (CER). This technique is very sensitive to the surface electric field that varies with the Fermi level position at the surface. For UN+ GaN structures [i.e., GaN (undoped)/GaN (n-type)/substrate], a homogeneous built-in electric field is expected in the undoped GaN layer that is manifested by Franz-Keldysh oscillation (FKO) in CER spectra. A clear change in FKO has been observed in CER spectra for N-polar and nonpolar m-plane structures when changing from air to vacuum ambient. This means that those surfaces are very sensitive to ambient atmosphere. In contrast to that, only a small change in FKO can be seen in the Ga-polar structure. This clearly shows that the ambient sensitivity of the Fermi level position at the GaN surface varies with the crystallographic orientation and is very high for N-polar and nonpolar m-plane surfaces. This feature of the N-polar and nonpolar m-plane surfaces can be very important for GaN-based devices grown on these crystallographic orientations and can be utilized in some of the devices, e.g., sensors.
Bloch surface wave structures for high sensitivity detection and compact waveguiding
NASA Astrophysics Data System (ADS)
Khan, Muhammad Umar; Corbett, Brian
2016-01-01
Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing.
Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua
2017-06-28
The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C 3v molecular symmetry as building units, a novel imine-linked COF, namely, TPA-COF, with a hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e., the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.
Optical critical dimension metrology for directed self-assembly assisted contact hole shrink
NASA Astrophysics Data System (ADS)
Dixit, Dhairya; Green, Avery; Hosler, Erik R.; Kamineni, Vimal; Preil, Moshe E.; Keller, Nick; Race, Joseph; Chun, Jun Sung; O'Sullivan, Michael; Khare, Prasanna; Montgomery, Warren; Diebold, Alain C.
2016-01-01
Directed self-assembly (DSA) is a potential patterning solution for future generations of integrated circuits. Its main advantages are high pattern resolution (˜10 nm), high throughput, no requirement of high-resolution mask, and compatibility with standard fab-equipment and processes. The application of Mueller matrix (MM) spectroscopic ellipsometry-based scatterometry to optically characterize DSA patterned contact hole structures fabricated with phase-separated polystyrene-b-polymethylmethacrylate (PS-b-PMMA) is described. A regression-based approach is used to calculate the guide critical dimension (CD), DSA CD, height of the PS column, thicknesses of underlying layers, and contact edge roughness of the post PMMA etch DSA contact hole sample. Scanning electron microscopy and imaging analysis is conducted as a comparative metric for scatterometry. In addition, optical model-based simulations are used to investigate MM elements' sensitivity to various DSA-based contact hole structures, predict sensitivity to dimensional changes, and its limits to characterize DSA-induced defects, such as hole placement inaccuracy, missing vias, and profile inaccuracy of the PMMA cylinder.
Majidi, Mir Reza; Ghaderi, Seyran
2017-12-01
High surface area nanoporous Cu film (NPCF) has been successfully synthesized using a hydrogen bubble dynamic template on the graphene nanosheets (GNs) modified glassy carbon electrode (GCE). The effect of different synthesis conditions such as applied potential and deposition time on the NPCF morphology was investigated. The structure and constituent of the NPCF-GNs/GCE were characterized by scanning electron microscopy (SEM), energy-dispersive x-ray (EDX), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and electrochemical methods. The study on electrocatalytic performance of the NPCF-GNs/GCE demonstrated that this electrode has excellent catalytic activity toward nitrite oxidation. The quantitative measurement of nitrite by amperometric method showed a wide concentration range (0.1-100µmolL -1 ) with a detection limit and a sensitivity of 8.87 × 10 -8 molL -1 and 3.1 AL/molcm 2 , respectively. The excellent electrochemical response and high sensitivity of the proposed electrode were attributed to the 3D structure of NPCF and the synergic effect of NPCF and GNs. Furthermore, this electrode showed some other advantages including good repeatability, high reproducibility, long-term stability and anti-interference performance toward nitrite sensing. The applicability of the proposed electrode was proved by successful determination of nitrite in real samples (tap water, river water and sausage samples). Copyright © 2017 Elsevier B.V. All rights reserved.
Perfect narrow band absorber for sensing applications.
Luo, Shiwen; Zhao, Jun; Zuo, Duluo; Wang, Xinbing
2016-05-02
We design and numerically investigate a perfect narrow band absorber based on a metal-metal-dielectric-metal structure which consists of periodic metallic nanoribbon arrays. The absorber presents an ultra narrow absorption band of 1.11 nm with a nearly perfect absorption of over 99.9% in the infrared region. For oblique incidence, the absorber shows an absorption more than 95% for a wide range of incident angles from 0 to 50°. Structure parameters to the influence of the performance are investigated. The structure shows high sensing performance with a high sensitivity of 1170 nm/RIU and a large figure of merit of 1054. The proposed structure has great potential as a biosensor.
Compton imaging tomography technique for NDE of large nonuniform structures
NASA Astrophysics Data System (ADS)
Grubsky, Victor; Romanov, Volodymyr; Patton, Ned; Jannson, Tomasz
2011-09-01
In this paper we describe a new nondestructive evaluation (NDE) technique called Compton Imaging Tomography (CIT) for reconstructing the complete three-dimensional internal structure of an object, based on the registration of multiple two-dimensional Compton-scattered x-ray images of the object. CIT provides high resolution and sensitivity with virtually any material, including lightweight structures and organics, which normally pose problems in conventional x-ray computed tomography because of low contrast. The CIT technique requires only one-sided access to the object, has no limitation on the object's size, and can be applied to high-resolution real-time in situ NDE of large aircraft/spacecraft structures and components. Theoretical and experimental results will be presented.
Highly sensitive graphene biosensor by monomolecular self-assembly of receptors on graphene surface
NASA Astrophysics Data System (ADS)
Kim, Ji Eun; No, Young Hyun; Kim, Joo Nam; Shin, Yong Seon; Kang, Won Tae; Kim, Young Rae; Kim, Kun Nyun; Kim, Yong Ho; Yu, Woo Jong
2017-05-01
Graphene has attracted a great deal of interest for applications in bio-sensing devices because of its ultra-thin structure, which enables strong electrostatic coupling with target molecules, and its excellent electrical mobility promising for ultra-fast sensing speeds. However, thickly stacked receptors on the graphene's surface interrupts electrostatic coupling between graphene and charged biomolecules, which can reduce the sensitivity of graphene biosensors. Here, we report a highly sensitive graphene biosensor by the monomolecular self-assembly of designed peptide protein receptors. The graphene channel was non-covalently functionalized using peptide protein receptors via the π-π interaction along the graphene's Bravais lattice, allowing ultra-thin monomolecular self-assembly through the graphene lattice. In thickness dependent characterization, a graphene sensor with a monomolecular receptor (thickness less than 3 nm) showed five times higher sensitivity and three times higher voltage shifts than graphene sensors with thick receptor stacks (thicknesses greater than 20 nm), which is attributed to excellent gate coupling between graphene and streptavidin via an ultrathin receptor insulator. In addition to having a fast-inherent response time (less than 0.6 s) based on fast binding speed between biotin and streptavidin, our graphene biosensor is a promising platform for highly sensitive real-time monitoring of biomolecules with high spatiotemporal resolution.
Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor
NASA Astrophysics Data System (ADS)
Madan, Jaya; Chaujar, Rishu
2016-12-01
The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.
Park, Jung Jin; Hyun, Woo Jin; Mun, Sung Cik; Park, Yong Tae; Park, O Ok
2015-03-25
Because of their outstanding electrical and mechanical properties, graphene strain sensors have attracted extensive attention for electronic applications in virtual reality, robotics, medical diagnostics, and healthcare. Although several strain sensors based on graphene have been reported, the stretchability and sensitivity of these sensors remain limited, and also there is a pressing need to develop a practical fabrication process. This paper reports the fabrication and characterization of new types of graphene strain sensors based on stretchable yarns. Highly stretchable, sensitive, and wearable sensors are realized by a layer-by-layer assembly method that is simple, low-cost, scalable, and solution-processable. Because of the yarn structures, these sensors exhibit high stretchability (up to 150%) and versatility, and can detect both large- and small-scale human motions. For this study, wearable electronics are fabricated with implanted sensors that can monitor diverse human motions, including joint movement, phonation, swallowing, and breathing.
Zhao, Hang; Bai, Jinbo
2015-05-13
The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.
Ultrasensitive sensing with three-dimensional terahertz metamaterial absorber
NASA Astrophysics Data System (ADS)
Tan, Siyu; Yan, Fengping; Wang, Wei; Zhou, Hong; Hou, Yafei
2018-05-01
Planar metasurfaces and metamaterial absorbers have shown great promise for label-free sensing applications at microwaves, optical and terahertz frequencies. The realization of high-quality-factor resonance in these structures is of significant interest to enhance the sensing sensitivities to detect minute frequency shifts. We propose and demonstrate in this manuscript an ultrasensitive terahertz metamaterial absorber sensor based on a three-dimensional split ring resonator absorber with a high quality factor of 60.09. The sensing performance of the proposed absorber sensor was systematically investigated through detailed numerical calculations and a maximum refractive index sensitivity of 34.40% RIU‑1 was obtained. Furthermore, the absorber sensor can maintain a high sensitivity for a wide range of incidence angles up to 60° under TM polarization incidence. These findings would improve the design flexibility of the absorber sensors and further open up new avenues to achieve ultrasensitive sensing in the terahertz regime.
Liu, Bing-Hong; Jiang, Yong-Xiang; Zhu, Xiao-Song; Tang, Xiao-Li; Shi, Yi-Wei
2013-12-30
A new kind of surface plasmon resonance (SPR) sensor based on silver-coated hollow fiber (HF) structure for the detection of liquids with high refractive index (RI) is presented. Liquid sensed medium with high RI is filled in the hollow core of the HF and its RI can be detected by measuring the transmission spectra of the HF SPR sensor. The designed sensors with different silver thicknesses are fabricated and the transmission spectra for filled liquids with different RI are measured to investigate the performances of the sensors. Theoretical analysis is also carried out to evaluate the performance. The simulation results agree well with the experimental results. Factors that might affect sensitivity and detection accuracy of the sensor are discussed. The highest sensitivity achieved is 6,607 nm/RIU, which is comparable to the sensitivities of the other reported fiber SPR sensors.
Development of a high-resolution cavity-beam position monitor
NASA Astrophysics Data System (ADS)
Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir
2008-06-01
We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.
Developments in Scanning Hall Probe Microscopy
NASA Astrophysics Data System (ADS)
Chouinard, Taras; Chu, Ricky; David, Nigel; Broun, David
2009-05-01
Low temperature scanning Hall probe microscopy is a sensitive means of imaging magnetic structures with high spatial resolution and magnetic flux sensitivity approaching that of a Superconducting Quantum Interference Device. We have developed a scanning Hall probe microscope with novel features, including highly reliable coarse positioning, in situ optimization of sensor-sample alignment and capacitive transducers for linear, long range positioning measurement. This has been motivated by the need to reposition accurately above fabricated nanostructures such as small superconducting rings. Details of the design and performance will be presented as well as recent progress towards time-resolved measurements with sub nanosecond resolution.
High-sensitivity silicon nanowire phototransistors
NASA Astrophysics Data System (ADS)
Tan, Siew Li; Zhao, Xingyan; Dan, Yaping
2014-08-01
Silicon nanowires (SiNWs) have emerged as a promising material for high-sensitivity photodetection in the UV, visible and near-infrared spectral ranges. In this work, we demonstrate novel planar SiNW phototransistors on silicon-oninsulator (SOI) substrate using CMOS-compatible processes. The device consists of a bipolar transistor structure with an optically-injected base region. The electronic and optical properties of the SiNW phototransistors are investigated. Preliminary simulation and experimental results show that nanowire geometry, doping densities and surface states have considerable effects on the device performance, and that a device with optimized parameters can potentially outperform conventional Si photodetectors.
Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom
NASA Astrophysics Data System (ADS)
Manning, Christopher J.
1994-10-01
The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.
Sensitivity and Specificity of Eustachian Tube Function Tests in Adults
Doyle, William J.; Swarts, J. Douglas; Banks, Julianne; Casselbrant, Margaretha L; Mandel, Ellen M; Alper, Cuneyt M.
2013-01-01
Objective Determine if Eustachian Tube (ET) function (ETF) tests can identify ears with physician-diagnosed ET dysfunction (ETD) in a mixed population at high sensitivity and specificity and define the inter-relatedness of ETF test parameters. Methods ETF was evaluated using the Forced-Response, Inflation-Deflation, Valsalva and Sniffing tests in 15 control ears of adult subjects after unilateral myringotomy (Group I) and in 23 ears of 19 adult subjects with ventilation tubes inserted for ETD (Group II). Data were analyzed using logistic regression including each parameter independently and then a step-down Discriminant Analysis including all ETF test parameters to predict group assignment. Factor Analysis operating over all parameters was used to explore relatedness. Results The Discriminant Analysis identified 4 ETF test parameters (Valsalva, ET opening pressure, dilatory efficiency and % positive pressure equilibrated) that together correctly assigned ears to Group II at a sensitivity of 95% and a specificity of 83%. Individual parameters representing the efficiency of ET opening during swallowing showed moderately accurate assignments of ears to their respective groups. Three factors captured approximately 98% of the variance among parameters, the first had negative loadings of the ETF structural parameters, the second had positive loadings of the muscle-assisted ET opening parameters and the third had negative loadings of the muscle-assisted ET opening parameters and positive loadings of the structural parameters. Discussion These results show that ETF tests can correctly assign individual ears to physician-diagnosed ETD with high sensitivity and specificity and that ETF test parameters can be grouped into structural-functional categories. PMID:23868429
NASA Astrophysics Data System (ADS)
Chrysochoidis, N. A.; Gutiérrez, E.
2015-02-01
It has been claimed that embedding piezoceramic devices as structural diagnostic systems in advanced composite structures may introduce mechanical impedance mismatches that favor the formation of intralaminar defects. This and other factors, such as cost and their high strain sensitivity, have motivated the use of thin-film piezopolymer sensors. In this paper, we examine the performance of sandwich composite panels fitted with embedded piezopolymer sensors. Our experiments examine both how such thin-film sensors perform within a structure and how the inclusion of sensor films affects structural performance. Strain-controlled tests on sandwich panels subjected to three-point bending under wide-ranging static and dynamic strains lead us to conclude that embedding thin piezopolymer films has no marked reduction on the tensile strength for a wide range of strain loading paths and magnitudes, and that the resilience of the embedded sensor is itself satisfactory, even up to the point of structural failure. Comparing baseline data obtained from standard surface-mounted sensors and foil gauges, we note that whereas it is possible to match experimental and theoretical strain sensitivities, key properties—especially the pronounced orthotropic electromechanical factor of such films—must be duly considered before an effective calibration can take place.
Liu, Yan-Jun; Cao, Wen-Tao; Ma, Ming-Guo; Wan, Pengbo
2017-08-02
Robust, stretchable, and strain-sensitive hydrogels have recently attracted immense research interest because of their potential application in wearable strain sensors. The integration of the synergistic characteristics of decent mechanical properties, reliable self-healing capability, and high sensing sensitivity for fabricating conductive, elastic, self-healing, and strain-sensitive hydrogels is still a great challenge. Inspired by the mechanically excellent and self-healing biological soft tissues with hierarchical network structures, herein, functional network hydrogels are fabricated by the interconnection between a "soft" homogeneous polymer network and a "hard" dynamic ferric (Fe 3+ ) cross-linked cellulose nanocrystals (CNCs-Fe 3+ ) network. Under stress, the dynamic CNCs-Fe 3+ coordination bonds act as sacrificial bonds to efficiently dissipate energy, while the homogeneous polymer network leads to a smooth stress-transfer, which enables the hydrogels to achieve unusual mechanical properties, such as excellent mechanical strength, robust toughness, and stretchability, as well as good self-recovery property. The hydrogels demonstrate autonomously self-healing capability in only 5 min without the need of any stimuli or healing agents, ascribing to the reorganization of CNCs and Fe 3+ via ionic coordination. Furthermore, the resulted hydrogels display tunable electromechanical behavior with sensitive, stable, and repeatable variations in resistance upon mechanical deformations. Based on the tunable electromechanical behavior, the hydrogels can act as a wearable strain sensor to monitor finger joint motions, breathing, and even the slight blood pulse. This strategy of building synergistic "soft and hard" structures is successful to integrate the decent mechanical properties, reliable self-healing capability, and high sensing sensitivity together for assembling a high-performance, flexible, and wearable strain sensor.
Liu, Lin-Yue; Wang, Ling; Jin, Peng; Liu, Jin-Liang; Zhang, Xian-Peng; Chen, Liang; Zhang, Jiang-Fu; Ouyang, Xiao-Ping; Liu, Ao; Huang, Run-Hua; Bai, Song
2017-10-13
Silicon carbide (SiC) detectors of an Ni/4H-SiC Schottky diode structure and with sensitive areas of 1-4 cm² were fabricated using high-quality lightly doped epitaxial 4H-SiC material, and were tested in the detection of alpha particles and pulsed X-rays/UV-light. A linear energy response to alpha particles ranging from 5.157 to 5.805 MeV was obtained. The detectors were proved to have a low dark current, a good energy resolution, and a high neutron/gamma discrimination for pulsed radiation, showing the advantages in charged particle detection and neutron detection in high-temperature and high-radiation environments.
Ultrahigh-Sensitivity Piezoresistive Pressure Sensors for Detection of Tiny Pressure.
Li, Hongwei; Wu, Kunjie; Xu, Zeyang; Wang, Zhongwu; Meng, Yancheng; Li, Liqiang
2018-06-20
High-sensitivity pressure sensors are crucial for the ultrasensitive touch technology and E-skin, especially at the tiny-pressure range below 100 Pa. However, it is highly challenging to substantially promote sensitivity beyond the current level at several to 200 kPa -1 and to improve the detection limit lower than 0.1 Pa, which is significant for the development of pressure sensors toward ultrasensitive and highly precise detection. Here, we develop an efficient strategy to greatly improve the sensitivity near to 2000 kPa -1 using short-channel coplanar device structure and sharp microstructure, which is systematically proposed for the first time and rationalized by the mathematic calculation and analysis. Significantly, benefiting from the ultrahigh sensitivity, the detection limit is improved to be as small as 0.075 Pa. The sensitivity and detection limit are both superior to the current levels and far surpass the function of human skin. Furthermore, the sensor shows fast response time (50 μs), excellent reproducibility and stability, and low power consumption. Remarkably, the sensor shows excellent detection capacity in the tiny-pressure range, including light-emitting diode switching with a pressure of 7 Pa, ringtone (2-20 Pa) recognition, and ultrasensitive (0.1 Pa) electronic glove. This work represents a performance and strategic progress in the field of pressure sensing.
Interpersonal sensitivity and persistent attenuated psychotic symptoms in adolescence.
Masillo, Alice; Brandizzi, M; Valmaggia, L R; Saba, R; Lo Cascio, N; Lindau, J F; Telesforo, L; Venturini, P; Montanaro, D; Di Pietro, D; D'Alema, M; Girardi, P; Fiori Nastro, P
2018-03-01
Interpersonal sensitivity defines feelings of inner-fragility in the presence of others due to the expectation of criticism or rejection. Interpersonal sensitivity was found to be related to attenuated positive psychotic symptom during the prodromal phase of psychosis. The aims of this study were to examine if high level of interpersonal sensitivity at baseline are associated with the persistence of attenuated positive psychotic symptoms and general psychopathology at 18-month follow-up. A sample of 85 help-seeking individuals (mean age = 16.6, SD = 5.05) referred an Italian early detection project, completed the interpersonal sensitivity measure and the structured interview for prodromal symptoms (SIPS) at baseline and were assessed at 18-month follow-up using the SIPS. Results showed that individuals with high level of interpersonal sensitivity at baseline reported high level of attenuated positive psychotic symptoms (i.e., unusual thought content) and general symptoms (i.e., depression, irritability and low tolerance to daily stress) at follow-up. This study suggests that being "hypersensitive" to interpersonal interactions is a psychological feature associated with attenuated positive psychotic symptoms and general symptoms, such as depression and irritability, at 18-month follow-up. Assessing and treating inner-self fragilities may be an important step of early detection program to avoid the persistence of subtle but very distressing long-terms symptoms.
USDA-ARS?s Scientific Manuscript database
The effect of homogenization alone or in combination with high temperature, short time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a two-...
Highly improved sensibility and selectivity ethanol sensor of mesoporous Fe-doped NiO nanowires
NASA Astrophysics Data System (ADS)
Li, X. Q.; Wei, J. Q.; Xu, J. C.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Hong, B.; Li, J.; Yang, Y. T.; Ge, H. L.; Wang, Xinqing
2017-12-01
In this paper, nickel oxides (NiO) and iron (Fe)-doped NiO nanowires (NWs) with the various doping content (from 1 to 9 at%) were synthesized by using SBA-15 templates with the nanocasting method. All samples were synthesized in the same conditions and exhibited the same mesoporous-structures, uniform diameter, and defects. Mesoporous-structures with high surface area created more active sites for the adsorption of oxygen on the surface of all samples, resulting in the smaller surface resistance in air. The impurity energy levels from the donor Fe-doping provided electrons to neutralize the holes of p-type Fe-doped NiO NWs, which greatly enhanced the total resistance. The comparative gas-sensing study between NiO NWs and Fe-doped NiO NWs indicated that the high-valence donor Fe-doping obviously improved the ethanol sensitivity and selectivity for Fe-doped NiO NWs. And Ni0.94Fe0.06O1.03 NWs sensor presented the highest sensitivity of 14.30 toward ethanol gas at 320 °C for the high-valence metal-doping.
NASA Astrophysics Data System (ADS)
Judson, Richard S.; Rabitz, Herschel
1987-04-01
The relationship between structure in the potential surface and classical mechanical observables is examined by means of functional sensitivity analysis. Functional sensitivities provide maps of the potential surface, highlighting those regions that play the greatest role in determining the behavior of observables. A set of differential equations for the sensitivities of the trajectory components are derived. These are then solved using a Green's function method. It is found that the sensitivities become singular at the trajectory turning points with the singularities going as η-3/2, with η being the distance from the nearest turning point. The sensitivities are zero outside of the energetically and dynamically allowed region of phase space. A second set of equations is derived from which the sensitivities of observables can be directly calculated. An adjoint Green's function technique is employed, providing an efficient method for numerically calculating these quantities. Sensitivity maps are presented for a simple collinear atom-diatom inelastic scattering problem and for two Henon-Heiles type Hamiltonians modeling intramolecular processes. It is found that the positions of the trajectory caustics in the bound state problem determine regions of the highest potential surface sensitivities. In the scattering problem (which is impulsive, so that ``sticky'' collisions did not occur), the positions of the turning points of the individual trajectory components determine the regions of high sensitivity. In both cases, these lines of singularities are superimposed on a rich background structure. Most interesting is the appearance of classical interference effects. The interference features in the sensitivity maps occur most noticeably where two or more lines of turning points cross. The important practical motivation for calculating the sensitivities derives from the fact that the potential is a function, implying that any direct attempt to understand how local potential regions affect the behavior of the observables by repeatedly and systematically altering the potential will be prohibitively expensive. The functional sensitivity method enables one to perform this analysis at a fraction of the computational labor required for the direct method.
Chen, Bin Bin; Liu, Meng Li; Zhan, Lei; Li, Chun Mei; Huang, Cheng Zhi
2018-03-20
Highly selective and sensitive detection of guanosine 3'-diphosphate-5'-diphosphate (ppGpp), namely, the stringent in plants or microorganisms responding to strict or extreme environmental conditions such as stress and starvation, which plays an important role in gene expression, rRNA and antibiotics production, regulations of virulence of bacteria, and growth of plants, faces a great challenge owing to its extreme similarity to normal nucleotides. By modifying the surface groups of a facile two-step hydrothermal route prepared carbon dots (CDs) with terbium ions (Tb 3+ ) in this contribution, a novel fluorescent probe with excellent properties such as highly physical and chemical stability, narrow emission and excitation wavelength-independent emission was prepared. The Tb 3+ ions on the surface of CDs cannot only preserve the intrinsic fluorescence (FL) of CDs but also keep its own coordination capacity with rare earth complex, and thus the clamp structure (four phosphate groups) of ppGpp can specific binding with Tb 3+ ions on the surface of CDs to produce antenna effect. Therefore, a highly selective and sensitive fluorescent ratiometry of ppGpp was developed by terbium-modified carbon dots (CDs-Tb) with the limit of detection as low as 50 nM based on the synergistic effect of antenna effect of Tb 3+ ions and specific recognition capacity of CDs. The applicability of this assay was demonstrated by CDs-Tb-based paper sensor for high distinguishing ppGpp from other nucleotides with similar structure.
NASA Astrophysics Data System (ADS)
Wang, Weiying; Dong, Xinran; Chu, Dongkai; Hu, Youwang; Sun, Xiaoyan; Duan, Ji-An
2018-05-01
A high refractive index (RI) sensor based on an in-line Mach-Zehnder mode interferometer (MZI) is proposed. The sensor was realized by splicing a 2-cm length of cladding-etched thin core fiber (TCF) between two single mode fibers (SMFs). The TCF-structured MZI exhibited good fringe visibility as high as 15 dB in air and the high RI sensitivity attained a value of 1143.89 nm/RIU at a RI of 1.447. The experimental data revealed that the MZI has high RI sensitivity after HF etching realizing 2599.66 nm/RIU. Studies were performed on the temperature characteristics of the device. It is anticipated that this high RI sensor will be deployed in new and diverse applications in the chemical and biological fields.
Second-harmonic generation microscopy of tooth
NASA Astrophysics Data System (ADS)
Kao, Fu-Jen; Wang, Yung-Shun; Huang, Mao-Kuo; Huang, Sheng-Lung; Cheng, Ping C.
2000-07-01
In this study, we have developed a high performance microscopic system to perform second-harmonic (SH)imaging on a tooth. The high sensitivity of the system allows an acquisition rate of 300 seconds/frame with a resolution at 512x512 pixels. The surface SH signal generated from the tooth is also carefully verified through micro-spectroscopy, polarization rotation, and wavelength tuning. In this way, we can ensure the authenticity of the signal. The enamel that encapsulates the dentine is known to possess highly ordered structures. The anisotrophy of the structure is revealed in the microscopic SH images of the tooth sample.
Orbiting solar observatory 8 high resolution ultraviolet spectrometer experiment
NASA Technical Reports Server (NTRS)
1980-01-01
Oscillations, physical properties of the solar atmosphere, motions in the quiet solar atmosphere, coronal holes, motions in solar active regions, solar flares, the structure of plage regions, an atlas, and aeronomy are summarized. Photometric sensitivity, scattered light, ghosts, focus and spectral resolution, wavelength drive, photometric sensitivity, and scattered light, are also summarized. Experiments are described according to spacecraft made and experiment type. Some of the most useful data reduction programs are described.
Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Niu, Donghai; Wang, Xibin; Sun, Shiqi; Jiang, Minghui; Xu, Qiang; Wang, Fei; Wu, Yuanda; Zhang, Daming
2018-04-01
A highly sensitive waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer was designed and experimentally demonstrated. The interferometer is based on the polymer/silica hybrid waveguide structure, and Norland Optical Adhesive 73 (NOA 73) was employed as the waveguide core to enhance the temperature sensitivity. The influence of the different length differences between the two interferometer arms on the sensitivity of the sensor was systemically studied. It is shown that the maximum temperature sensitivity of -431 pm °C-1 can be obtained in the range of 25 °C-75 °C, while the length difference is 92 μm. Moreover, the temperature sensitivity contributions from different core materials were also investigated experimentally. It is shown that the waveguide material and microstructure of the device have significant influences on the sensitivity of the waveguide temperature sensor.
Fabrication and Characterizations of Ethanol Sensor Based on CuO Nanoparticles.
Al-Hadeethi, Yas; Umar, Ahmad; Kumar, Rajesh; Al-Heniti, Saleh H; Raffah, Bahaaudin M
2018-04-01
In this paper, we report the synthesis, characterization and ethanol sensing applications of CuO nanoparticles. The CuO nanoparticles were prepared by a facile, low-temperature hydrothermal method and characterized in detail in terms of their structural, morphological, compositional and crystalline properties, through different characterization techniques including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) attached with energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The detailed studies revealed that the synthesized CuO nanoparticles were well-crystalline and possessed monoclinic crystal structure. The synthesized CuO nanoparticles were utilized for the fabrication of highly sensitive ethanol gas sensor. At an optimized temperature of 320 °C, high sensitivity (Ra/Rg) of 39.29 was observed for 200 ppm of ethanol gas. Additionally, very low response (τres = 14 s) and recovery (τrec = 30 s) times were observed for 100 ppm of ethanol.
NASA Astrophysics Data System (ADS)
Zhao, Fengyang; Ma, Rong; Jiang, Yongjian
2018-03-01
Titanium dioxide (TiO2) based dye-sensitized solar cells (DSSCs) often exhibit superior power conversion performance. Here we report a DSSC with novel hierarchical TiO2 composite structure (TCS) composed of anatase TiO2 micro-spheres and rutile TiO2 nanobelt framework by hydrothermal approach for high-performance. As photoanode, the TCS based DSSC shows a strong efficiency enhancement by 58% compared with Degussa TiO2 (P25)-DSSC (4.33%). The excellent performance is mainly attribute to its special multi-dimensional structures of TiO2: much active sites of 0D nanoparticle with exposed excellent {001} facet, special electronic transmission channel of 1D nanobelt, good dye adsorption capacity of 2D nanosheet and high light scattering ability of 3D micro-spheres. The novel multi-dimensional TCS materials will open up a new avenue to the electronic devices fields.
Diversity and food web structure of nematode communities under high soil salinity and alkaline pH.
Salamún, Peter; Kucanová, Eva; Brázová, Tímea; Miklisová, Dana; Renčo, Marek; Hanzelová, Vladimíra
2014-10-01
A long-term and intensive magnesium (Mg) ore processing in Slovenské Magnezitové Závody a.s. in Jelšava has resulted in a high Mg content and alkaline pH of the soil environment, noticeable mainly in the close vicinity of the smelter. Nematode communities strongly reacted to the contamination mostly by a decrease in abundance of the sensitive groups. Nematodes from c-p 1 group and bacterivores, tolerant to pollution played a significant role in establishing the dominance at all sites. With increasing distance from the pollution source, the nematode communities were more structured and complex, with an increase in proportion of sensitive c-p 4 and 5 nematodes, composed mainly of carnivores and omnivores. Various ecological indices (e.g. MI2-5, SI, H') indicated similar improvement of farther soil ecosystems.
Slow light enhanced gas sensing in photonic crystals
NASA Astrophysics Data System (ADS)
Kraeh, Christian; Martinez-Hurtado, J. L.; Popescu, Alexandru; Hedler, Harry; Finley, Jonathan J.
2018-02-01
Infrared spectroscopy allows for highly selective and highly sensitive detection of gas species and concentrations. Conventional gas spectrometers are generally large and unsuitable for on-chip applications. Long absorption path lengths are usually required and impose a challenge for miniaturization. In this work, a gas spectrometer is developed consisting of a microtube photonic crystal structure. This structure of millimetric form factors minimizes the required absorption path length due to slow light effects. The microtube photonic crystal allows for strong transmission in the mid-infrared and, due to its large void space fraction, a strong interaction between light and gas molecules. As a result, enhanced absorption of light increases the gas sensitivity of the device. Slow light enhanced gas absorption by a factor of 5.8 in is experimentally demonstrated at 5400 nm. We anticipate small form factor gas sensors on silicon to be a starting point for on-chip gas sensing architectures.
Freely Suspended Two-Dimensional Electron Gases.
NASA Astrophysics Data System (ADS)
Blick, Robert; Monzon, Franklin; Roukes, Michael; Wegscheider, Werner; Stern, Frank
1998-03-01
We present a new technique that has allowed us to build the first freely suspended two-dimensional electron gas devices from AlGaAs/GaAs/AlAs heterostructures. This technique is based upon specially MBE grown structures that include a sacrificial layer. In order to design the MBE layer sequence, the conduction band lineup for these samples was modelled numerically. The overall focus of this work is to provide a new approach for studies of the quantum mechanical properties of nanomachined structures. Our current experiments are directed toward use of these techniques for research on very high frequency nanomechanical resonators. The high mobility 2DEG system provides a unique approach to realizing wideband, extremely sensitive displacement detection, using the piezoelectric properties of GaAs to modulate a suspended nanometer-scale HEMT. This approach offers promise for sensitive displacement detectors with sub-nanometer resolution and bandwidths into the microwave range.
Anderson, Travis; Ren, Fan; Pearton, Stephen; Kang, Byoung Sam; Wang, Hung-Ta; Chang, Chih-Yang; Lin, Jenshan
2009-01-01
In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application. PMID:22408548
Analyzing Single Giant Unilamellar Vesicles With a Slotline-Based RF Nanometer Sensor
Cui, Yan; Kenworthy, Anne K.; Edidin, Michael; ...
2016-03-11
Novel techniques that enable reagent free detection and analysis of single cells are of great interest for the development of biological and medical sciences, as well as point-of-care health service technologies. Highly sensitive and broadband RF sensors are promising candidates for such a technique. In this paper, we present a highly sensitive and tunable RF sensor, which is based on interference processes and built with a 100-nm slotline structure. The highly concentrated RF fields, up to ~ 1.76×10 7 V/m, enable strong interactions between giant unilamellar vesicles (GUVs) and fields for high-sensitivity operations. We also provide two modeling approaches tomore » extract cell dielectric properties from measured scattering parameters. GUVs of different molecular compositions are synthesized and analyzed with the RF sensor at ~ 2, ~ 2.5, and ~ 2.8 GHz with an initial |S 21| min of ~ -100 dB. Corresponding GUV dielectric properties are obtained. Finally, a one-dimensional scanning of single GUV is also demonstrated.« less
Dankov, Kolyo G; Dobrikova, Anelia G; Ughy, Bettina; Bogos, Balázs; Gombos, Zoltan; Apostolova, Emilia L
2011-06-01
Pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photosynthetic oxygen evolution were used to investigate the role of the different amount and organization of light-harvesting complexes of photosystem II (LHCII) in four pea species on the susceptibility of the photosynthetic apparatus to high-light treatment. In this work we analyzed the thylakoid membrane lipid composition of the studied pea plants. A relationship between the structural organization of LHCII proteins, the amount of the main lipid classes and the sensitivity of the photosynthetic apparatus to high-light treatment was found. The results reveal that the photosynthetic apparatus, enriched in oligomeric forms of LHCII concomitant with decreased amount of anionic lipids and increased content of the monogalactosyldiacylglycerol (MGDG), is less sensitive to high light. Our data also suggest that the degree of LHCII oligomerization, as well as the lipid composition do not influence the degree of recovery of the PSII photochemistry after excess light exposure. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion.
Ryu, Seongwoo; Lee, Phillip; Chou, Jeffrey B; Xu, Ruize; Zhao, Rong; Hart, Anastasios John; Kim, Sang-Gook
2015-06-23
The increasing demand for wearable electronic devices has made the development of highly elastic strain sensors that can monitor various physical parameters an essential factor for realizing next generation electronics. Here, we report an ultrahigh stretchable and wearable device fabricated from dry-spun carbon nanotube (CNT) fibers. Stretching the highly oriented CNT fibers grown on a flexible substrate (Ecoflex) induces a constant decrease in the conductive pathways and contact areas between nanotubes depending on the stretching distance; this enables CNT fibers to behave as highly sensitive strain sensors. Owing to its unique structure and mechanism, this device can be stretched by over 900% while retaining high sensitivity, responsiveness, and durability. Furthermore, the device with biaxially oriented CNT fiber arrays shows independent cross-sensitivity, which facilitates simultaneous measurement of strains along multiple axes. We demonstrated potential applications of the proposed device, such as strain gauge, single and multiaxial detecting motion sensors. These devices can be incorporated into various motion detecting systems where their applications are limited to their strain.
Solar burst with millimetre-wave emission at high frequency only
NASA Technical Reports Server (NTRS)
Kaufmann, P.; Correia, E.; Costa, J. E. R.; Vaz, A. M. Z.; Dennis, B. R.
1985-01-01
The first high sensitivity and high time-resolution observations of a solar burst taken simultaneously at 90 GHz and at 30 GHz are presented. These identify a unique impulsive burst on May 21, 1984 with fast pulsed emission that was considerably more intense at 90 GHz than at lower frequencies. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHz structures to better than 1 s. The structure of the onset of the major 90 GHz burst coincided with the hard X-ray structure to within 128 ms. All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 s and amplitudes that were large compared with the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses.
A magnetotelluric study of the sensitivity of an area to seismoelectric signals
Balasis, G.; Bedrosian, P.A.; Eftaxias, K.
2005-01-01
During recent years, efforts at better understanding the physical properties of precursory ultra-low frequency pre-seismic electric signals (SES) have been intensified. Experiments show that SES cannot be observed at all points of the Earth's surface but only at certain so-called sensitive sites. Moreover, a sensitive site is capable of collecting SES from only a restricted number of seismic areas (selectivity effect). Tberefore the installation of a permanent station appropriate for SES collection should necessarily be preceded by a pilot study over a broad area and for a long duration. In short, a number of temporary stations are installed and, after the occurrence of several significant earthquakes (EQs) from a given seismic area, the most appropriate (if any) of these temporary stations, in the sense that they happen to collect SES, can be selected as permanent. Such a long experiment constitutes a serious disadvantage in identifying a site as SES sensitive. However, the SES sensitivity of a site should be related to the geoelectric structure of the area that hosts the site as well as the regional geoelectric structure between the station and the seismic focal area. Thus, knowledge of the local and regional geoelectric structure can dramatically reduce the time involved in identifying SES sites. hi this paper the magnetotelluric method is used to investigate the conductivity structure of an area where a permanent SES station is in operation. Although general conclusions cannot be drawn, the area surrounding an SES site near Ioannina, Greece is characterized by: (1) major faults in the vicinity; (2) highly resistive structure flanked by abrupt conductivity contrasts associated with large-scale geologic contacts, and (3) local inhomogeneities in conductivity structure. The above results are consistent with the fact that electric field amplitudes from remotely-generated signals should be appreciably stronger at such sites when compared to neighboring sites. European Geosciences Union ?? 2005 Author(s). This work is licensed under a Creative Commons License.
Magneto-photonic crystal optical sensors with sensitive covers
NASA Astrophysics Data System (ADS)
Dissanayake, Neluka; Levy, Miguel; Chakravarty, A.; Heiden, P. A.; Chen, N.; Fratello, V. J.
2011-08-01
We report on a magneto-photonic crystal on-chip optical sensor for specific analyte detection with polypyrrole and gold nano particles as modified photonic crystal waveguide cover layers. The reaction of the active sensor material with various analytes modifies the electronic structure of the sensor layer causing changes in its refractive index and a strong transduction signal. Magneto-photonic crystal enhanced polarization rotation sensitive to the nature of the cover layer detects the index modification upon analyte adsorption. A high degree of selectivity and sensitivity are observed for aqueous ammonia and methanol with polypyrrole and for thiolated-gold- with gold-nanoparticles covers.
Ethical Sensitivity in Nursing Ethical Leadership: A Content Analysis of Iranian Nurses Experiences
Esmaelzadeh, Fatemeh; Abbaszadeh, Abbas; Borhani, Fariba; Peyrovi, Hamid
2017-01-01
Background: Considering that many nursing actions affect other people’s health and life, sensitivity to ethics in nursing practice is highly important to ethical leaders as a role model. Objective: The study aims to explore ethical sensitivity in ethical nursing leaders in Iran. Method: This was a qualitative study based on the conventional content analysis in 2015. Data were collected using deep and semi-structured interviews with 20 Iranian nurses. The participants were chosen using purposive sampling. Data were analyzed using conventional content analysis. In order to increase the accuracy and integrity of the data, Lincoln and Guba's criteria were considered. Results: Fourteen sub-categories and five main categories emerged. Main categories consisted of sensitivity to care, sensitivity to errors, sensitivity to communication, sensitivity in decision making and sensitivity to ethical practice. Conclusion: Ethical sensitivity appears to be a valuable attribute for ethical nurse leaders, having an important effect on various aspects of professional practice and help the development of ethics in nursing practice. PMID:28584564
Active sites and states in the heterogeneous catalysis of carbon-hydrogen bonds.
Somorjai, Gabor A; Marsh, Anderson L
2005-04-15
C-H bond activation for several alkenes (ethylene, propylene, isobutene, cyclohexene and 1-hexene) and alkanes (methane, ethane, n-hexane, 2-methylpentane and 3-methylpentane) has been studied on the (111) crystal face of platinum as a function of temperature at low (10(-6) Torr) and high (>/=1 Torr) pressures in the absence and presence of hydrogen pressures (>/=10 Torr). Sum frequency generation (SFG) vibrational spectroscopy has been used to characterize the adsorbate structures and high pressure scanning tunnelling microscopy (HP-STM) has been used to monitor their surface mobility under reaction conditions during hydrogenation, dehydrogenation and CO poisoning. C-H bond dissociation occurs at low temperatures, approximately 250 K, for all of these molecules, although only at high pressures for the weakly bound alkanes because of their low desorption temperatures. Bond dissociation is known to be surface structure sensitive and we find that it is also accompanied by the restructuring of the metal surface. The presence of hydrogen slows down dehydrogenation and for some of the molecules it influences the molecular rearrangement, thus altering reaction selectivity. Surface mobility of adsorbates is essential to produce catalytic activity. When surface diffusion is inhibited by CO adsorption, ordered surface structures form and the reaction is poisoned. Ethylene hydrogenation is surface structure insensitive, while cyclohexene hydrogenation and dehydrogenation are structure sensitive. n-Hexane and other C6 alkanes form either upright or flat-lying molecules on the platinum surface which react to produce branched isomers or benzene, respectively.
Sun, Chunran; Wang, Muguang; Jian, Shuisheng
2017-08-21
In this paper, a novel quasi-fan Solc structure filter based on elliptical-core spun fiber for twist sensing has been experimentally investigated and theoretically analyzed. The discrete model of spun fiber has been built to analyze the transmission characteristics of proposed sensor. Both experimental and simulated results indicate that the extinction ratio of the comb spectrum based on quasi-fan Solc birefringent fiber filter varies with twist angle and agrees well with each other. Based on the intensity modulation, the proposed twist sensor exhibits a high sensitivity of 0.02219 dB/(°/m). Moreover, thanks to the invariability of the fiber birefringence and the state of polarization of the input light, the proposed twist sensor has a very low temperature and strain sensitivity, which can avoid the cross-sensitivity problem existing in most twist sensors.
Design and simulation analysis of a novel pressure sensor based on graphene film
NASA Astrophysics Data System (ADS)
Nie, M.; Xia, Y. H.; Guo, A. Q.
2018-02-01
A novel pressure sensor structure based on graphene film as the sensitive membrane was proposed in this paper, which solved the problem to measure low and minor pressure with high sensitivity. Moreover, the fabrication process was designed which can be compatible with CMOS IC fabrication technology. Finite element analysis has been used to simulate the displacement distribution of the thin movable graphene film of the designed pressure sensor under the different pressures with different dimensions. From the simulation results, the optimized structure has been obtained which can be applied in the low measurement range from 10hPa to 60hPa. The length and thickness of the graphene film could be designed as 100μm and 0.2μm, respectively. The maximum mechanical stress on the edge of the sensitive membrane was 1.84kPa, which was far below the breaking strength of the silicon nitride and graphene film.
Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis
NASA Astrophysics Data System (ADS)
Park, Sunyoung; Ishii, Miaki
2018-06-01
A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.
Chang, Shu-Wei; Kuo, Shih-Yu; Huang, Ting-Hsuan
2017-01-01
This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future. PMID:29271937
Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan
2017-12-22
This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.
NASA Astrophysics Data System (ADS)
Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.
2012-12-01
A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data shown in the database construction and by the model reinforces the need for high-resolution datasets and stresses the importance of understanding and incorporating climate change scenarios into earth system models.
Drought sensitivity changes over the last century at the North American savanna-forest boundary
NASA Astrophysics Data System (ADS)
Heilman, K.; McLachlan, J. S.
2017-12-01
Future environmental changes can affect the sensitivity of tree growth to climate. Theses changes are of particular concern at biome boundaries where tree distribution could shift as a result of changes in both drought and drought sensitivity. One such region is the North American savanna-forest boundary, where increased CO2 and droughts could alter savanna and forest ecosystem distributions in two contrasting ways: 1). More severe droughts may increase drought sensitivity, favoring open savanna ecosystems or, 2). Increases in water use efficiency resulting from higher atmospheric CO2 may decrease drought sensitivity, promoting forest expansion. This study sought to understand whether the past 100 years of climate and CO2 changes have impacted regional tree growth-climate sensitivity. To test for these climate sensitivity changes, we measured the sensitivity of Quercus spp. radial growth to Palmer Drought Severity Index (PDSI). Tree growth sensitivity to climate can vary according to many factors, including: stand structure, available moisture, and tree age. To control for these factors, we sampled tree growth-climate responses at sites in both open and closed forests, and at both low and high annual precipitation. Within each site, we compared growth responses to climate between trees established under high CO2 conditions after 1950 (high CO2 young), and tree established before 1950 under low CO2 levels (low CO2 young). At most sites, low CO2 young have a higher drought sensitivity than higher CO2 young. These changes in the sensitivity to drought are consistent with CO2 enhancement of water use efficiency. Furthermore, these differences in drought sensitivity are higher at sites with high temperature and low precipitation, suggesting that the alleviation of drought is more likely in hot and dry regions. Thus, if CO2 enhancement is indeed occurring in these systems, lower growth sensitivity to drought in hot and dry regions could favor increased forest growth. If changes in drought sensitivity scale to ecosystem level, decreased drought sensitivity may have helped promote regional forest expansion.
ToF-SIMS and Laser-SNMS Imaging of Heterogeneous Topographically Complex Polymer Systems.
Pelster, Andreas; Körsgen, Martin; Kurosawa, Takako; Morita, Hiromi; Arlinghaus, Heinrich F
2016-10-04
Heterogeneous polymer coatings, such as those used in organic electronics and medical devices, are of increasing industrial importance. In order to advance the development of these types of systems, analytical techniques are required which are able to determine the elemental and molecular spatial distributions, on a nanometer scale, with very high detection efficiency and sensitivity. The goal of this study was to investigate the suitability of laser postionization secondary neutral mass spectrometry (Laser-SNMS) with a 157 nm postionization laser beam to image structured polymer mixtures and compare the results with time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements using Bi 3 + primary ions. The results showed that Laser-SNMS is better suited than ToF-SIMS for unambiguous detection and submicrometer imaging of the wide range of polymers investigated. The data also showed that Laser-SNMS has the advantage of being much more sensitive (in general higher by more than an order of magnitude and peaking at up to 3 orders of magnitude) than ToF-SIMS while also showing superior performance on topographically complex structured insulating surfaces, due to significantly reduced field effects and a higher dynamic range as compared to ToF-SIMS. It is concluded that Laser-SNMS is a powerful complementary technique to ToF-SIMS for the analysis of heterogeneous polymers and other complex structured organic mixtures, providing submicrometer resolution and high sensitivity.
Siqueira, José R; Abouzar, Maryam H; Poghossian, Arshak; Zucolotto, Valtencir; Oliveira, Osvaldo N; Schöning, Michael J
2009-10-15
Silicon-based sensors incorporating biomolecules are advantageous for processing and possible biological recognition in a small, reliable and rugged manufactured device. In this study, we report on the functionalization of field-effect (bio-)chemical sensors with layer-by-layer (LbL) films containing single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers. A capacitive electrolyte-insulator-semiconductor (EIS) structure modified with carbon nanotubes (EIS-NT) was built, which could be used as a penicillin biosensor. From atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) images, the LbL films were shown to be highly porous due to interpenetration of SWNTs into the dendrimer layers. Capacitance-voltage (C/V) measurements pointed to a high pH sensitivity of ca. 55 mV/pH for the EIS-NT structures. The biosensing ability towards penicillin of an EIS-NT-penicillinase biosensor was also observed as the flat-band voltage shifted to lower potentials at different penicillin concentrations. A dynamic response of penicillin concentrations, ranging from 5.0 microM to 25 mM, was evaluated for an EIS-NT with the penicillinase enzyme immobilized onto the surfaces, via constant-capacitance (ConCap) measurements, achieving a sensitivity of ca. 116 mV/decade. The presence of the nanostructured PAMAM/SWNT LbL film led to sensors with higher sensitivity and better performance.
NASA Astrophysics Data System (ADS)
Downs, Peter W.; Dusterhoff, Scott R.; Sears, William A.
2013-05-01
Understanding the cumulative impact of natural and human influences on the sensitivity of channel morphodynamics, a relative measure between the drivers for change and the magnitude of channel response, requires an approach that accommodates spatial and temporal variability in the suite of primary stressors. Multiple historical data sources were assembled to provide a reach-scale analysis of the lower Santa Clara River (LSCR) in Ventura County, California, USA. Sediment supply is naturally high due to tectonic activity, earthquake-generated landslides, wildfires, and high magnitude flow events during El Niño years. Somewhat typically for the region, the catchment has been subject to four reasonably distinct land use and resource management combinations since European-American settlement. When combined with analysis of channel morphological response (quantifiable since ca. 1930), reach-scale and temporal differences in channel sensitivity become apparent. Downstream reaches have incised on average 2.4 m and become narrower by almost 50% with changes focused in a period of highly sensitive response after about 1950 followed by forced insensitivity caused by structural flood embankments and a significant grade control structure. In contrast, the middle reaches have been responsive but are morphologically resilient, and the upstream reaches show a mildly sensitive aggradational trend. Superimposing the natural and human drivers for change reveals that large scale stressors (related to ranching and irrigation) have been replaced over time by a suite of stressors operating at multiple spatial scales. Lower reaches have been sensitive primarily to 'local' scale impacts (urban growth, flood control, and aggregate mining) whereas, upstream, catchment-scale influences still prevail (including flow regulation and climate-driven sediment supply factors). These factors illustrate the complexity inherent to cumulative impact assessment in fluvial systems, provide evidence for a distinct Anthropocene fluvial response, and underpin the enormity of the challenge faced in trying to sustainably manage and restore rivers.
Highly sensitive detection of individual HEAT and ARM repeats with HHpred and COACH.
Kippert, Fred; Gerloff, Dietlind L
2009-09-24
HEAT and ARM repeats occur in a large number of eukaryotic proteins. As these repeats are often highly diverged, the prediction of HEAT or ARM domains can be challenging. Except for the most clear-cut cases, identification at the individual repeat level is indispensable, in particular for determining domain boundaries. However, methods using single sequence queries do not have the sensitivity required to deal with more divergent repeats and, when applied to proteins with known structures, in some cases failed to detect a single repeat. Testing algorithms which use multiple sequence alignments as queries, we found two of them, HHpred and COACH, to detect HEAT and ARM repeats with greatly enhanced sensitivity. Calibration against experimentally determined structures suggests the use of three score classes with increasing confidence in the prediction, and prediction thresholds for each method. When we applied a new protocol using both HHpred and COACH to these structures, it detected 82% of HEAT repeats and 90% of ARM repeats, with the minimum for a given protein of 57% for HEAT repeats and 60% for ARM repeats. Application to bona fide HEAT and ARM proteins or domains indicated that similar numbers can be expected for the full complement of HEAT/ARM proteins. A systematic screen of the Protein Data Bank for false positive hits revealed their number to be low, in particular for ARM repeats. Double false positive hits for a given protein were rare for HEAT and not at all observed for ARM repeats. In combination with fold prediction and consistency checking (multiple sequence alignments, secondary structure prediction, and position analysis), repeat prediction with the new HHpred/COACH protocol dramatically improves prediction in the twilight zone of fold prediction methods, as well as the delineation of HEAT/ARM domain boundaries. A protocol is presented for the identification of individual HEAT or ARM repeats which is straightforward to implement. It provides high sensitivity at a low false positive rate and will therefore greatly enhance the accuracy of predictions of HEAT and ARM domains.
Highly Sensitive Detection of Individual HEAT and ARM Repeats with HHpred and COACH
Kippert, Fred; Gerloff, Dietlind L.
2009-01-01
Background HEAT and ARM repeats occur in a large number of eukaryotic proteins. As these repeats are often highly diverged, the prediction of HEAT or ARM domains can be challenging. Except for the most clear-cut cases, identification at the individual repeat level is indispensable, in particular for determining domain boundaries. However, methods using single sequence queries do not have the sensitivity required to deal with more divergent repeats and, when applied to proteins with known structures, in some cases failed to detect a single repeat. Methodology and Principal Findings Testing algorithms which use multiple sequence alignments as queries, we found two of them, HHpred and COACH, to detect HEAT and ARM repeats with greatly enhanced sensitivity. Calibration against experimentally determined structures suggests the use of three score classes with increasing confidence in the prediction, and prediction thresholds for each method. When we applied a new protocol using both HHpred and COACH to these structures, it detected 82% of HEAT repeats and 90% of ARM repeats, with the minimum for a given protein of 57% for HEAT repeats and 60% for ARM repeats. Application to bona fide HEAT and ARM proteins or domains indicated that similar numbers can be expected for the full complement of HEAT/ARM proteins. A systematic screen of the Protein Data Bank for false positive hits revealed their number to be low, in particular for ARM repeats. Double false positive hits for a given protein were rare for HEAT and not at all observed for ARM repeats. In combination with fold prediction and consistency checking (multiple sequence alignments, secondary structure prediction, and position analysis), repeat prediction with the new HHpred/COACH protocol dramatically improves prediction in the twilight zone of fold prediction methods, as well as the delineation of HEAT/ARM domain boundaries. Significance A protocol is presented for the identification of individual HEAT or ARM repeats which is straightforward to implement. It provides high sensitivity at a low false positive rate and will therefore greatly enhance the accuracy of predictions of HEAT and ARM domains. PMID:19777061
Design and Characterization of a Novel Bio-inspired Hair Flow Sensor Based on Resonant Sensing
NASA Astrophysics Data System (ADS)
Guo, X.; Yang, B.; Wang, Q. H.; Lu, C. F.; Hu, D.
2018-03-01
Flow sensors inspired by the natural hair sensing mechanism have great prospect in the research of micro-autonomous system and technology (MAST) for the three-dimensional structure characteristics with high spatial and quality utilization. A novel bio-inspired hair flow sensor (BHFS) based on resonant sensing with a unique asymmetric design is presented in this paper. A hair transducer and a signal detector which is constituted of a two-stage micro-leverage mechanism and two symmetrical resonators (double ended tuning fork, DETF) are adopted to realize the high sensitivity to air flow. The sensitivity of the proposed BHFS is improved significantly than the published ones due to the high sensitivity of resonators and the higher amplification factor possessed by the two-stage micro-leverage mechanism. The standard deep dry silicon on glass (DDSOG) process is chosen to fabricate the proposed BHFS. The experiment result demonstrates that the fabricated BHFS has a mechanical sensitivity of 5.26 Hz/(m/s)2 at a resonant frequency of 22 kHz with the hair height of 6 mm.
Pan, Jin; Liu, Shiyu; Yang, Yicheng; Lu, Jiangang
2018-06-08
Resistive pressure sensors generally employ microstructures such as pores and pyramids in the active layer or on the electrodes to reduce the Young’s modulus and improve the sensitivity. However, such pressure sensors always exhibit complex fabrication process and have difficulties in controlling the uniformity of microstructures. In this paper, we demonstrated a highly sensitive resistive pressure sensor based on a composite comprising of low-polarity liquid crystal (LPLC), multi-walled carbon nanotube (MWCNT), and polydimethylsiloxane (PDMS) elastomer. The LPLC in the PDMS forms a polymer-dispersed liquid crystal (PDLC) structure which can not only reduce the Young’s modulus but also contribute to the construction of conductive paths in the active layer. By optimizing the concentration of LC in PDMS elastomer, the resistive pressure sensor shows a high sensitivity of 5.35 kPa −1 , fast response (<150 ms), and great durability. Fabrication process is also facile and the uniformity of the microstructures can be readily controlled. The pressure sensor offers great potential for applications in emerging wearable devices and electronic skins.
Ultrasensitive Biosensors Using Enhanced Fano Resonances in Capped Gold Nanoslit Arrays
Lee, Kuang-Li; Huang, Jhih-Bin; Chang, Jhih-Wei; Wu, Shu-Han; Wei, Pei-Kuen
2015-01-01
Nanostructure-based sensors are capable of sensitive and label-free detection for biomedical applications. However, plasmonic sensors capable of highly sensitive detection with high-throughput and low-cost fabrication techniques are desirable. We show that capped gold nanoslit arrays made by thermal-embossing nanoimprint method on a polymer film can produce extremely sharp asymmetric resonances for a transverse magnetic-polarized wave. An ultrasmall linewidth is formed due to the enhanced Fano coupling between the cavity resonance mode in nanoslits and surface plasmon resonance mode on periodic metallic surface. With an optimal slit length and width, the full width at half-maximum bandwidth of the Fano mode is only 3.68 nm. The wavelength sensitivity is 926 nm/RIU for 60-nm-width and 1,000-nm-period nanoslits. The figure of merit is up to 252. The obtained value is higher than the theoretically estimated upper limits of the prism-coupling SPR sensors and the previously reported record high figure-of-merit in array sensors. In addition, the structure has an ultrahigh intensity sensitivity up to 48,117%/RIU. PMID:25708955
Tang, Songsong; Gu, Yuan; Lu, Huiting; Dong, Haifeng; Zhang, Kai; Dai, Wenhao; Meng, Xiangdan; Yang, Fan; Zhang, Xueji
2018-04-03
Herein, a highly-sensitive microRNA (miRNA) detection strategy was developed by combining bio-bar-code assay (BBA) with catalytic hairpin assembly (CHA). In the proposed system, two nanoprobes of magnetic nanoparticles functionalized with DNA probes (MNPs-DNA) and gold nanoparticles with numerous barcode DNA (AuNPs-DNA) were designed. In the presence of target miRNA, the MNP-DNA and AuNP-DNA hybridized with target miRNA to form a "sandwich" structure. After "sandwich" structures were separated from the solution by the magnetic field and dehybridized by high temperature, the barcode DNA sequences were released by dissolving AuNPs. The released barcode DNA sequences triggered the toehold strand displacement assembly of two hairpin probes, leading to recycle of barcode DNA sequences and producing numerous fluorescent CHA products for miRNA detection. Under the optimal experimental conditions, the proposed two-stage amplification system could sensitively detect target miRNA ranging from 10 pM to 10 aM with a limit of detection (LOD) down to 97.9 zM. It displayed good capability to discriminate single base and three bases mismatch due to the unique sandwich structure. Notably, it presented good feasibility for selective multiplexed detection of various combinations of synthetic miRNA sequences and miRNAs extracted from different cell lysates, which were in agreement with the traditional polymerase chain reaction analysis. The two-stage amplification strategy may be significant implication in the biological detection and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Intermediate type excitons in Schottky barriers of A3B6 layer semiconductors and UV photodetectors
NASA Astrophysics Data System (ADS)
Alekperov, O. Z.; Guseinov, N. M.; Nadjafov, A. I.
2006-09-01
Photoelectric and photovoltaic spectra of Schottky barrier (SB) structures of InSe, GaSe and GaS layered semiconductors (LS) are investigated at quantum energies from the band edge excitons of corresponding materials up to 6.5eV. Spectral dependences of photoconductivity (PC) of photo resistors and barrier structures are strongly different at the quantum energies corresponding to the intermediate type excitons (ITE) observed in these semiconductors. It was suggested that high UV photoconductivity of A3B6 LS is due to existence of high mobility light carriers in the depth of the band structure. It is shown that SB of semitransparent Au-InSe is high sensitive photo detector in UV region of spectra.
On the use of the EMI for the health monitoring of bonded elements
NASA Astrophysics Data System (ADS)
Gulizzi, Vincenzo; Rizzo, Piervincenzo; Milazzo, Alberto
2014-03-01
The low weight, robustness and fatigue resistance of adhesive joints make them suitable for structural joints. A fully developed nondestructive evaluation technique however is needed to monitor and assess the quality of bonded joints. In the present paper the application of the electromechanical impedance (EMI) technique is proposed. In the EMI method a piezoelectric transducer (PZT) is attached to the structure of interest. The high sensitivity and low power consumption make the EMI method feasible for real time structural health monitoring. In this study we investigated the sensitivity of the electromechanical response of a PZT to the curing and the quality of the adhesive used for bonded joints. A PXI unit running under LabView and an auxiliary circuit were employed to measure the electric impedance of a PZT glued to an aluminum plate. The system aimed at monitoring the bond line between an aluminum strip and the plate. The conductive signature of the PZT was measured and analyzed during the curing. The experimental results show that the electromechanical impedance technique is sensitive to the curing time and variations are observed for adhesives of different quality.
hcp-Co nanowires grown on metallic foams as catalysts for the Fischer-Tropsch synthesis.
Soulantica, Katerina; Harmel, Justine; Peres, Laurent; Estrader, Marta; Berliet, Adrien; Maury, Sylvie; Fécant, Antoine; Chaudret, Bruno; Serp, Philippe
2018-06-12
The possibility to control the structural characteristics of the active phase of supported catalysts offers the opportunity to improve catalyst performance, especially in structure sensitive catalytic reactions. In parallel, heat management is of critical importance for the catalytic performance in highly endo- or exothermic reactions. The Fisher-Tropsch synthesis (FTS) is a structure sensitive exothermic reaction, which enables catalytic transformation of syngas to high quality liquid fuels. We have elaborated monolithic cobalt based heterogeneous catalysts through a wet chemistry approach that allows control over nanocrystal shape and crystallographic phase, while at the same time enables heat management. Copper and nickel foams have been employed as supports for the epitaxial growth of hcp-Co nanowires, directly from a solution containing a coordination compound of cobalt and stabilizing ligands. The Co/Cufoam catalyst has been tested for the Fischer-Tropsch synthesis in fixed bed reactor, showing stability, and significantly superior activity and selectivity towards C5+ compared to a Co/SiO2-Al2O3 reference catalyst under the same conditions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Salter, L. D.; Young, G. M., III; Munafo, P. M.
1985-01-01
The planned missions for the space shuttle dictated a unique and technology-extending rocket engine. The high specific impulse requirements in conjunction with a 55-mission lifetime, plus volume and weight constraints, produced unique structural design, manufacturing, and verification requirements. Operations from Earth to orbit produce severe dynamic environments, which couple with the extreme pressure and thermal environments associated with the high performance, creating large low cycle loads and high alternating stresses above endurance limit which result in high sensitivity to alternating stresses. Combining all of these effects resulted in the requirements for exotic materials, which are more susceptible to manufacturing problems, and the use of an all-welded structure. The challenge of integrating environments, dynamics, structures, and materials into a verified SSME structure is discussed. The verification program and developmental flight results are included. The first six shuttle flights had engine performance as predicted with no failures. The engine system has met the basic design challenges.
Conjugation in multi-tetrazole derivatives: a new design direction for energetic materials.
Sun, Shuyang; Lu, Ming
2018-06-23
Multi-tetrazole derivatives with conjugated structures were designed and investigated in this study. Using quantum chemistry methods, the crystal structures, electrostatic potentials (ESPs), multicenter bond orders, HOMO-LUMO energy gaps, and detonation properties of the derivatives were calculated. As expected, these molecules with conjugated structures showed low energies of their crystal structures, molecular layering in their crystals, high average ESPs, high multicenter bond order values, and enhanced detonation properties. The derivative 1,2-di(1H-tetrazol-5-yl)diazene (N2) was predicted to have the best density (1.87 g/cm 3 ), detonation velocity (9006 m/s), and detonation pressure (36.8 GPa) of the designed molecules, while its total crystal energy was low, suggesting that it is relatively stable. Its sensitivity was also low, as the molecular stacking that occurs in its crystal allows external forces to be dissipated into movements of crystal layers. Finally, its multicenter bond order was high, indicating a highly conjugated structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westbrook, Charles K.; Mehl, Marco; Pitz, William J.
This article uses a chemical kinetic modeling approach to study the influences of fuel molecular structure on Octane Sensitivity (OS) in Spark Ignition (SI) engines. Octane Sensitivity has the potential to identify fuels that can be used in next-generation high compression, turbocharged SI engines to avoid unwanted knocking conditions and extend the range of operating conditions that can be used in such engines. While the concept of octane numbers of different fuels has been familiar for many years, the variations of their values and their role in determining Octane Sensitivity have not been addressed previously in terms of the basicmore » structures of the fuel molecules. In particular, the importance of electron delocalization on low temperature hydrocarbon reactivity and its role in determining OS in engine fuel is described here for the first time. Finally, the role of electron delocalization on fuel reactivity and Octane Sensitivity is illustrated for a very wide range of engine fuel types, including n-alkane, 1-olefin, n-alcohol, and n-alkyl benzenes, and the unifying features of these fuels and their common trends, using existing detailed chemical kinetic reaction mechanisms that have been collected and unified to produce an overall model with unprecedented capabilities.« less
Westbrook, Charles K.; Mehl, Marco; Pitz, William J.; ...
2016-07-11
This article uses a chemical kinetic modeling approach to study the influences of fuel molecular structure on Octane Sensitivity (OS) in Spark Ignition (SI) engines. Octane Sensitivity has the potential to identify fuels that can be used in next-generation high compression, turbocharged SI engines to avoid unwanted knocking conditions and extend the range of operating conditions that can be used in such engines. While the concept of octane numbers of different fuels has been familiar for many years, the variations of their values and their role in determining Octane Sensitivity have not been addressed previously in terms of the basicmore » structures of the fuel molecules. In particular, the importance of electron delocalization on low temperature hydrocarbon reactivity and its role in determining OS in engine fuel is described here for the first time. Finally, the role of electron delocalization on fuel reactivity and Octane Sensitivity is illustrated for a very wide range of engine fuel types, including n-alkane, 1-olefin, n-alcohol, and n-alkyl benzenes, and the unifying features of these fuels and their common trends, using existing detailed chemical kinetic reaction mechanisms that have been collected and unified to produce an overall model with unprecedented capabilities.« less
Statistical learning and language acquisition
Romberg, Alexa R.; Saffran, Jenny R.
2011-01-01
Human learners, including infants, are highly sensitive to structure in their environment. Statistical learning refers to the process of extracting this structure. A major question in language acquisition in the past few decades has been the extent to which infants use statistical learning mechanisms to acquire their native language. There have been many demonstrations showing infants’ ability to extract structures in linguistic input, such as the transitional probability between adjacent elements. This paper reviews current research on how statistical learning contributes to language acquisition. Current research is extending the initial findings of infants’ sensitivity to basic statistical information in many different directions, including investigating how infants represent regularities, learn about different levels of language, and integrate information across situations. These current directions emphasize studying statistical language learning in context: within language, within the infant learner, and within the environment as a whole. PMID:21666883
Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T1 contrast ability
NASA Astrophysics Data System (ADS)
Ni, Kaiyuan; Zhao, Zhenghuan; Zhang, Zongjun; Zhou, Zijian; Yang, Li; Wang, Lirong; Ai, Hua; Gao, Jinhao
2016-02-01
High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy provides new guidance for developing various high-performance T1 contrast agents for sensitive imaging and disease diagnosis.High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy provides new guidance for developing various high-performance T1 contrast agents for sensitive imaging and disease diagnosis. Electronic supplementary information (ESI) available: Supplementary Fig. S1-S6. See DOI: 10.1039/c5nr08402d
Rotation sensitivity analysis of a two-dimensional array of coupled resonators
NASA Astrophysics Data System (ADS)
Zamani Aghaie, Kiarash; Vigneron, Pierre-Baptiste; Digonnet, Michel J. F.
2015-03-01
In this paper, we study the rotation sensitivity of a gyroscope made of a two-dimensional array of coupled resonators consisting of N columns of one-dimensional coupled resonant optical waveguides (CROWs) connected by two bus waveguides, each CROW consisting of M identical ring resonators. We show that the maximum rotation sensitivity of this structure is a strong function of the parity of the number of rows M. For an odd number of rows, and when the number of columns is small, the maximum sensitivity is high, and it is slightly lower than the maximum sensitivity of a single-ring resonator with two input/output waveguides (the case M = N = 1), which is a resonant waveguide optical gyroscope (RWOG). For an even M and small N, the maximum sensitivity is much lower than that of the RWOG. Increasing the number columns N increases the sensitivity of an even-row 2D CROW sublinearly, as N0.39, up to 30 columns. In comparison, the maximum sensitivity of an RWOG of equal area increases faster, as √N. The sensitivity of the 2D CROW therefore always lags behind that of the RWOG. For a 2×2 CROW, if the spacing between the columns L is increased sufficiently the maximum sensitivity increases linearly with L due to the presence of a composite Mach- Zehnder interferometer in the structure. However, for equal footprints this sensitivity is also not larger than that of a single-ring resonator. Regardless of the number of rows and columns and the spacing, for the same footprint and propagation loss, a 2D CROW gyroscope is not more sensitive than an RWOG.
NASA Astrophysics Data System (ADS)
Liu, Yanjun; Xu, Chunxiang; Lu, Junfeng; Zhu, Zhu; Zhu, Qiuxiang; Manohari, A. Gowri; Shi, Zengliang
2018-01-01
The porous structured zinc oxide (ZnO) microspheres decorated with silver nanoparticles (Ag NPs) have been fabricated as surface-enhanced Raman scattering (SERS) substrate for ultra-sensitive, highly reproducible and stable biological/chemical sensing of various organic molecules. The ZnO microspheres were hydrothermally synthesized without any template, and the Ag NPs decorated on microspheres via photochemical reaction in situ, which provided stable Ag/ZnO contact to achieve a sensitive SERS response. It demonstrates a higher enhancement factor (EF) of 2.44 × 1011 and a lower detection limit of 10-11 M-10-12 M. This porous SERS substrate could also be self-cleaned through a photocatalytic process and then further recycled for the detection of same or different molecules, such as phenol red (PhR), dopamine (DA) and glucose (GLU) with ultra-low concentration and it possessed a sensitive response. The excellent performances are attributed to morphology of porous microspheres, hybrid structure of semiconductor/metal and corresponding localized field enhancement of surface plasmons. Therefore, it is expected to design the recyclable ultra-sensitive SERS sensors for the detection of biological molecules and organic pollutant monitoring.
Electronic Raman Scattering as an Ultra-Sensitive Probe of Strain Effects in Semiconductors
NASA Astrophysics Data System (ADS)
Mascarenhas, Angelo; Fluegel, Brian; Beaton, Dan
Semiconductor strain engineering has become a critical feature of high-performance electronics due to the significant device performance enhancements it enables. These improvements that emerge from strain induced modifications to the electronic band structure necessitate new ultra-sensitive tools for probing strain in semiconductors. Using electronic Raman scattering, we recently showed that it is possible to measure minute amounts of strain in thin semiconductor epilayers. We applied this strain measurement technique to two different semiconductor alloy systems, using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Comparing our strain sensitivity and signal strength in AlxGa1-xAs with those obtained using the industry-standard technique of phonon Raman scattering we found a sensitivity improvement of ×200, and a signal enhancement of 4 ×103 thus obviating key constraints in semiconductor strain metrology. The sensitivity of this approach rivals that of contemporary techniques and opens up a new realm for optically probing strain effects on electronic band structure. We acknowledge the financial support of the DOE Office of Science, BES under DE-AC36-80GO28308.
Experimental determination of release fields in cut railroad car wheels
DOT National Transportation Integrated Search
1999-02-01
A new approach to the measurement of residual stresses in railroad wheels is investigated using a saw cut method of releasing stresses in the structure. High-sensitivity moire interferometry combined with Michelson interferometry provides full-field ...
Yu, Fei; Guo, Menglin; Deng, Yabin; Lu, Yin; Chen, Lin; Huang, Ping; Li, Donghui
2016-01-01
We have found that a positively charged cationic copper phthalocyanine, Alcian blue (Alcian blue 8GX), can efficiently quench the fluorescence of an oppositely charged red fluorescent phthalocyanine compound with a matched molecular structure, tetrasulfonated aluminum phthalocyanine (AlS4Pc), because of the formation of an ion pair complex (AlS4Pc-Alcian blue 8GX) that exhibits almost no fluorescence. An investigation was carried out on the fluorescence recovery of AlS4Pc-Alcian blue 8GX caused by a series of anionic surfactants containing a sulfonic group (sodium dodecylbenzenesulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfate (SDS)). The results showed that SDBS exhibited a significant response, and the highest sensitivity among the surfactants. Due to its high efficiency of fluorescence quenching and the high level of fluorescence recovery, direct observes can even be performed by the naked eye. The results revealed that the Alcian blue 8GX-AlS4Pc ion-pair complex fluorescent probe only responded to SDBS in the low-concentration range. Based on the new founding, this study proposed a novel principle and method of fluorescence enhancement to specifically measure the concentration of SDBS, thereby achieving a highly sensitive and highly specific determination of SDBS. Under the optimal conditions, the fluorescence intensity (I(f)) of the system and the concentration of SDBS in the range of 1 × 10(-7) - 1 × 10(-5) mol/dm(3) exhibited a good linear relationship. This method is highly sensitive, and the operation is simple and rapid. It had been applied for the quantitative analysis of SDBS in environmental water, while achieving satisfactory results compared with those of the standard method. This study developed a new application of the fluorescent phthalocyanine compounds used as molecular probes in analytical sciences.
Wysokińska, A.; Kondracki, S.; Iwanina, M.
2015-01-01
The present work describes experiments undertaken to evaluate the usefulness of selected physicochemical indices of semen, cell membrane integrity and sperm chromatin structure for the assessment of boar semen sensitivity to processes connected with pre-insemination procedures. The experiments were carried out on 30 boars: including 15 regarded as providers of sensitive semen and 15 regarded as providers of semen that is little sensitive to laboratory processing. The selection of boars for both groups was based on sperm morphology analyses, assuming secondary morphological change incidence in spermatozoa as the criterion. Two ejaculates were manually collected from each boar at an interval of 3 to 4 months. The following analyses were carried out for each ejaculate: sperm motility assessment, sperm pH measurement, sperm morphology assessment, sperm chromatin structure evaluation and cell membrane integrity assessment. The analyses were performed three times. Semen storage did not cause an increase in the incidence of secondary morphological changes in the group of boars considered to provide sperm of low sensitivity. On the other hand, with continued storage there was a marked increase in the incidence of spermatozoa with secondary morphological changes in the group of boars regarded as producing more sensitive semen. Ejaculates of group I boars evaluated directly after collection had an approximately 6% smaller share of spermatozoa with undamaged cell membranes than the ejaculates of boars in group II (p≤0.05). In the process of time the percentage of spermatozoa with undamaged cell membranes decreased. The sperm of group I boars was characterised with a lower sperm motility than the semen of group II boars. After 1 hour of storing diluted semen, the sperm motility of boars producing highly sensitive semen was already 4% lower (p≤0.05), and after 24 hours of storage it was 6.33% lower than that of the boars that produced semen with a low sensitivity. Factors that confirm the accuracy of insemination male selection can include a low rate of sperm motility decrease during the storage of diluted semen, low and contained incidence of secondary morphological changes in spermatozoa during semen storage and a high frequency of spermatozoa with undamaged cell membranes. PMID:26580438
Raman Optical Activity of Biological Molecules
NASA Astrophysics Data System (ADS)
Blanch, Ewan W.; Barron, Laurence D.
Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.
Fabricating Composite-Material Structures Containing SMA Ribbons
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Cano, Roberto J.; Lach, Cynthia L.
2003-01-01
An improved method of designing and fabricating laminated composite-material (matrix/fiber) structures containing embedded shape-memory-alloy (SMA) actuators has been devised. Structures made by this method have repeatable, predictable properties, and fabrication processes can readily be automated. Such structures, denoted as shape-memory-alloy hybrid composite (SMAHC) structures, have been investigated for their potential to satisfy requirements to control the shapes or thermoelastic responses of themselves or of other structures into which they might be incorporated, or to control noise and vibrations. Much of the prior work on SMAHC structures has involved the use SMA wires embedded within matrices or within sleeves through parent structures. The disadvantages of using SMA wires as the embedded actuators include (1) complexity of fabrication procedures because of the relatively large numbers of actuators usually needed; (2) sensitivity to actuator/ matrix interface flaws because voids can be of significant size, relative to wires; (3) relatively high rates of breakage of actuators during curing of matrix materials because of sensitivity to stress concentrations at mechanical restraints; and (4) difficulty of achieving desirable overall volume fractions of SMA wires when trying to optimize the integration of the wires by placing them in selected layers only.
Structural Integrity of Intelligent Materials and Structures
1998-03-01
Fortunately, one of the best biocompatible alloys in the class we are concerned with is NiTi . The main concern with regard to biocompatibility or...buildings, bridges and lifelines, and sensitive biocompatible medical instrumentation. The rebuilding and enhancement of our Nation’s...recoverable deflections. In addition, shape memory alloys are relatively lightweight, biocompatible , easy to manufacture and have a high force to weight ratio
Pure optical photoacoustic microscopy
Xie, Zhixing; Chen, Sung-Liang; Ling, Tao; Guo, L. Jay; Carson, Paul L.; Wang, Xueding
2011-01-01
The concept of pure optical photoacoustic microscopy(POPAM) was proposed based on optical rastering of a focused excitation beam and optically sensing the photoacoustic signal using a microring resonator fabricated by a nanoimprinting technique. After the refinements of the microring’s working wavelength and in the resonator structure and mold fabrication, an ultrahigh Q factor of 3.0×105 was achieved which provided high sensitivity with a noise equivalent detectable pressure(NEDP) value of 29Pa. This NEDP is much lower than the hundreds of Pascals achieved with existing optical resonant structures such as etalons, fiber gratings and dielectric multilayer interference filters available for acoustic measurement. The featured high sensitivity allowed the microring resonator to detect the weak photoacoustic signals from micro- or submicroscale objects. The inherent superbroad bandwidth of the optical microring resonator combined with an optically focused scanning beam provided POPAM with high resolution in the axial as well as both lateral directions while the axial resolution of conventional photoacoustic microscopy (PAM) suffers from the limited bandwidth of PZT detectors. Furthermore, the broadband microring resonator showed similar sensitivity to that of our most sensitive PZT detector. The current POPAM system provides a lateral resolution of 5 μm and an axial resolution of 8 μm, comparable to that achieved by optical microscopy while presenting the unique contrast of optical absorption and functional information complementing other optical modalities. The 3D structure of microvasculature, including capillary networks, and even individual red blood cells have been discerned successfully in the proof-of-concept experiments on mouse bladders ex vivo and mouse ears in vivo. The potential of approximately GHz bandwidth of the microring resonator also might allow much higher resolution than shown here in microscopy of optical absorption and acoustic propagation properties at depths in unfrozen tissue specimens or thicker tissue sections, which is not now imageable with current optical or acoustic microscopes of comparable resolution. PMID:21643156
NASA Astrophysics Data System (ADS)
Tang, Tingting
In this dissertation, we develop structured population models to examine how changes in the environmental affect population processes. In Chapter 2, we develop a general continuous time size structured model describing a susceptible-infected (SI) population coupled with the environment. This model applies to problems arising in ecology, epidemiology, and cell biology. The model consists of a system of quasilinear hyperbolic partial differential equations coupled with a system of nonlinear ordinary differential equations that represent the environment. We develop a second-order high resolution finite difference scheme to numerically solve the model. Convergence of this scheme to a weak solution with bounded total variation is proved. We numerically compare the second order high resolution scheme with a first order finite difference scheme. Higher order of convergence and high resolution property are observed in the second order finite difference scheme. In addition, we apply our model to a multi-host wildlife disease problem, questions regarding the impact of the initial population structure and transition rate within each host are numerically explored. In Chapter 3, we use a stage structured matrix model for wildlife population to study the recovery process of the population given an environmental disturbance. We focus on the time it takes for the population to recover to its pre-event level and develop general formulas to calculate the sensitivity or elasticity of the recovery time to changes in the initial population distribution, vital rates and event severity. Our results suggest that the recovery time is independent of the initial population size, but is sensitive to the initial population structure. Moreover, it is more sensitive to the reduction proportion to the vital rates of the population caused by the catastrophe event relative to the duration of impact of the event. We present the potential application of our model to the amphibian population dynamic and the recovery of a certain plant population. In addition, we explore, in details, the application of the model to the sperm whale population in Gulf of Mexico after the Deepwater Horizon oil spill. In Chapter 4, we summarize the results from Chapter 2 and Chapter 3 and explore some further avenues of our research.
A 3D Chemically Modified Graphene Hydrogel for Fast, Highly Sensitive, and Selective Gas Sensor.
Wu, Jin; Tao, Kai; Guo, Yuanyuan; Li, Zhong; Wang, Xiaotian; Luo, Zhongzhen; Feng, Shuanglong; Du, Chunlei; Chen, Di; Miao, Jianmin; Norford, Leslie K
2017-03-01
Reduced graphene oxide (RGO) has proved to be a promising candidate in high-performance gas sensing in ambient conditions. However, trace detection of different kinds of gases with simultaneously high sensitivity and selectivity is challenging. Here, a chemiresistor-type sensor based on 3D sulfonated RGO hydrogel (S-RGOH) is reported, which can detect a variety of important gases with high sensitivity, boosted selectivity, fast response, and good reversibility. The NaHSO 3 functionalized RGOH displays remarkable 118.6 and 58.9 times higher responses to NO 2 and NH 3 , respectively, compared with its unmodified RGOH counterpart. In addition, the S-RGOH sensor is highly responsive to volatile organic compounds. More importantly, the characteristic patterns on the linearly fitted response-temperature curves are employed to distinguish various gases for the first time. The temperature of the sensor is elevated rapidly by an imbedded microheater with little power consumption. The 3D S-RGOH is characterized and the sensing mechanisms are proposed. This work gains new insights into boosting the sensitivity of detecting various gases by combining chemical modification and 3D structural engineering of RGO, and improving the selectivity of gas sensing by employing temperature dependent response characteristics of RGO for different gases.
NASA Astrophysics Data System (ADS)
Reeves, Robert; Mukasyan, Alexander; Son, Steven
2011-06-01
The effect of microstructural refinement on the sensitivity of the Ni/Al (1:1 at%) system to ignition via high strain rate impacts is investigated. The tested microstructures include compacts of irregularly convoluted lamellar structures with nanometric features created through high-energy ball milling (HEBM) of micron size Ni/Al powders and compacts of nanometric Ni and Al powders. The test materials were subjected to high strain rate impacts through Asay shear experiments powered by a light gas gun. Muzzle velocities up to 1.1 km/s were used. It was found that the nanometric powder exhibited a greater sensitivity to ignition via impact than the HEBM material, despite greater thermal sensitivity of the HEBM. A previously unseen fast reaction mode where the reaction front traveled at the speed of the input stress wave was also observed in the nanometric mixtures at high muzzle energies. This fast mode is considered to be a mechanically induced thermal explosion mode dependent on the magnitude of the traveling stress wave, rather than a self-propagating detonation, since its propagation rate decreases rapidly across the sample. A similar mode is not exhibited by HEBM samples, although local, nonpropagating reaction zones occur in shear bands formed during the impact event.
NASA Astrophysics Data System (ADS)
Reeves, Robert V.; Mukasyan, Alexander S.; Son, Steven
2012-03-01
The effect of microstructural refinement on the sensitivity of the Ni/Al (1:1 mol%) system to ignition via high strain rate impacts is investigated. The tested microstructures include compacts of irregularly convoluted lamellar structures with nanometric features created through high-energy ball milling (HEBM) of micron size Ni/Al powders and compacts of nanometric Ni and Al powders. The test materials were subjected to high strain rate impacts through Asay shear experiments powered by a light gas gun. Muzzle velocities up to 1.1 km/s were used. It was found that the nanometric powder exhibited a greater sensitivity to ignition via impact than the HEBM material, despite greater thermal sensitivity of the HEBM. A previously unseen fast reaction mode where the reaction front traveled at the speed of the input stress wave was also observed in the nanometric mixtures at high muzzle energies. This fast mode is considered to be a mechanically induced thermal explosion mode dependent on the magnitude of the traveling stress wave, rather than a self-propagating detonation, since its propagation rate decreases rapidly across the sample. A similar mode is not exhibited by HEBM samples, although local, nonpropagating reaction zones shear bands formed during the impact event are observed.
Luo, Jingting; Luo, Pingxiang; Xie, Min; Du, Ke; Zhao, Bixia; Pan, Feng; Fan, Ping; Zeng, Fei; Zhang, Dongping; Zheng, Zhuanghao; Liang, Guangxing
2013-11-15
This work reports a high-performance Mn-doped ZnO multilayer structure Love mode surface acoustic wave (SAW) biosensor for the detection of blood sugar. The biosensor was functionalized via immobilizing glucose oxidase onto a pH-sensitive polymer which was attached on Mn-doped ZnO biosensor. The fabricated SAW glucose biosensor is highly sensitive, accurate and fast with good anti-interference. The sensitivity of the SAW glucose biosensor is 7.184 MHz/mM and the accuracy is 6.96 × 10(-3)mM, which is sensitive and accurate enough for glucose monitoring. A good degree of reversibility and stability of the glucose sensor is also demonstrated, which keeps a constant differential frequency shift up to 32 days. Concerning the time response to human serum, the glucose sensor shows a value of 4.6 ± 0.4 min when increasing glucose concentrations and 7.1 ± 0.6 min when decreasing, which is less than 10 min and reach the fast response requirement for medical applications. The Mn-doped ZnO Love mode SAW biosensor can be fully integrated with CMOS Si chips and developed as a portable, passive and wireless real time detection system for blood sugar monitoring in human serum. Copyright © 2013 Elsevier B.V. All rights reserved.
Cui, Yuanyuan; Yang, Fan; Cao, Xu; Yarov-Yarovoy, Vladimir
2012-01-01
The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate. PMID:22412190
Zhou, Jinjun; Huang, Haiping; Xuan, Jie; Zhang, Jianrong; Zhu, Jun-Jie
2010-10-15
A sensitive electrochemical aptasensor was successfully fabricated for the detection of adenosine triphosphate (ATP) by combining three-dimensionally ordered macroporous (3DOM) gold film and quantum dots (QDs). The 3DOM gold film was electrochemically fabricated with an inverted opal template, making the active surface area of the electrode up to 9.52 times larger than that of a classical bare flat one. 5′-thiolated ATP-binding aptamer (ABA) was first assembled onto the 3DOM gold film via sulfur–gold affinity. Then, 5′-biotinated complementary strand (BCS) was immobilized via hybridization reaction to form the DNA/DNA duplex. Since the tertiary structure of the aptamer was stabilized in the presence of target ATP, the duplex can be denatured to liberate BCS. The reaction was monitored by electrochemical stripping analysis of dissolved QDs which were bound to the residual BCS through biotin-streptavidin system. The decrease of peak current was proportional to the amount of ATP. The unique interconnected structure in 3DOM gold film along with the "built-in" preconcentration remarkably improved the sensitivity. ATP detection with high selectivity, wide linear dynamic range of 4 orders of magnitude and high sensitivity down to 0.01 nm were achieved. The results demonstrated that the novel strategy was feasible for sensitive ATP assay and provided a promising model for the detection of small molecules.
Ba, Zhaojing; Hu, Min; Zhao, Yiming; Wang, Yiqing; Wang, Jing; Zhang, Zhenxi
2018-08-31
Non-contact thermal sensors are important devices to study cellular processes and monitor temperature in vivo. Herein, a novel highly sensitive nanothermometer based on NaYF 4 :Yb,Er@ NaYF 4 @NaYF 4 :Yb,Tm@ NaYF 4 :Nd (denoted as Er@Y@Tm@Nd) was prepared by a facile solvothermal method. When excited by the near-infrared (NIR) light of 808 and 980 nm, the as-prepared Er@Y@Tm@Nd nanoparticles could emit both blue and green light, respectively, since the lanthanide cations responsible for these emissions are gathered inside this nanostructure. The green and blue light intensity ratio exhibits obvious temperature dependence in the range of the physiological temperature. Additionally, the fluorescence intensity of Er 3+ and Tm 3+ are also greatly enhanced due to the multilayer structure that implies avoiding the Er 3+ and Tm 3+ energy cross-relaxation by introduction of a NaYF 4 wall between them. The as-prepared core-shell-shell-shell structure with Er 3+ and Tm 3+ in different layers improves dozens of times of the thermal sensitivity based on the non-thermal coupling levels of the probe: the maximum values for the sensitivity are 2.95% K -1 (I Er-521 /I Tm-450 ) and 6.30% K -1 (I Tm-474 /I Er-541 ) when excited by 980 and 808 nm laser sources, respectively. These values are well above those previously reported (<0.7% K -1 ), indicating that the prepared nanostructures are temperature sensors with excellent thermal sensitivity and sensitive to NIR wavelength excitation that makes them highly preferred for thermal detection.
Kortink, Elise D; Weeda, Wouter D; Crowley, Michael J; Gunther Moor, Bregtje; van der Molen, Melle J W
2018-06-01
Monitoring social threat is essential for maintaining healthy social relationships, and recent studies suggest a neural alarm system that governs our response to social rejection. Frontal-midline theta (4-8 Hz) oscillatory power might act as a neural correlate of this system by being sensitive to unexpected social rejection. Here, we examined whether frontal-midline theta is modulated by individual differences in personality constructs sensitive to social disconnection. In addition, we examined the sensitivity of feedback-related brain potentials (i.e., the feedback-related negativity and P3) to social feedback. Sixty-five undergraduate female participants (mean age = 19.69 years) participated in the Social Judgment Paradigm, a fictitious peer-evaluation task in which participants provided expectancies about being liked/disliked by peer strangers. Thereafter, they received feedback signaling social acceptance/rejection. A community structure analysis was employed to delineate personality profiles in our data. Results provided evidence of two subgroups: one group scored high on attachment-related anxiety and fear of negative evaluation, whereas the other group scored high on attachment-related avoidance and low on fear of negative evaluation. In both groups, unexpected rejection feedback yielded a significant increase in theta power. The feedback-related negativity was sensitive to unexpected feedback, regardless of valence, and was largest for unexpected rejection feedback. The feedback-related P3 was significantly enhanced in response to expected social acceptance feedback. Together, these findings confirm the sensitivity of frontal midline theta oscillations to the processing of social threat, and suggest that this alleged neural alarm system behaves similarly in individuals that differ in personality constructs relevant to social evaluation.
Spatial noise and threshold contrasts in LCD displays
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Krupinski, Elizabeth A.; Chawla, Amarpreet S.; Fan, Jiahua; Gandhi, Kunal
2003-05-01
This paper presents the results of initial physical and psycho-physical evaluations of the noise of high resolution LCDs. 5 LCDs were involved, having 4 different pixel structures. Spatial as well as temporal noise was physically measured with the aid of a high-performance CCD camera. Human contrast sensitivity in the presence of spatial noise was determined psycho-physically using periodic stimuli (square-wave patterns) as well as aperiodic stimuli (squares). For the measurements of the human contrast sensitivity, all LCDs were calibrated to the DICOM 14 Grayscale Standard Display Function (GSDF). The results demonstrate that spatial noise is the dominant noise in all LCDs, while temporal noise is insignificant and plays only a minor part. The magnitude of spatial noise of LCDs is in the range between that of CRTs with a P104 and that of CRTs with a P45. Of particular importance with respect to LCD noise is the contribution of the pixel structure to the Noise Power Spectrum, which shows up as sharp spikes at spatial frequencies beyond the LCDs" Nyquist frequency. The paper does not offer any clues about the importance of these spikes on the human contrast sensitivity.
Shaban, Mohamed; Galaly, A R
2016-05-04
Porous Anodic Alumina (PAA) membrane was functionalized with CoFe2O4 nanoparticles and used as a substrate for the growing of very long helical-structured Carbon Nanotubes (CNTs) with a diameter less than 20 nm. The structures and morphologies of the fabricated nanostructures were characterized by field emission- scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and Raman spectroscopy. By uploading the CNTs on PAA, the characteristic Raman peaks of CNTs and PAA showed 4 and 3 times enhancement, respectively, which leads to more sensitive Surface-Enhanced Raman Spectroscopy (SERS) substrates. For comparison, PAA and CNTs/PAA arrays were used as SERS substrates for the detection of Hg(2+), Cd(2+), and Pb(2+). The proposed sensor demonstrated high sensitivity and selectivity between these heavy metal ions. CNTs/PAA sensor showed excellent selectivity toward Pb(2+) over other metal ions, where the enhancement factor is decreased from ~17 for Pb(2+) to ~12 for Hg(2+) and to ~4 for Cd(2+). Therefore, the proposed CNTs/PAA sensor can be used as a powerful tool for the determination of heavy metal ions in aqueous solutions.
Shaban, Mohamed; Galaly, A. R.
2016-01-01
Porous Anodic Alumina (PAA) membrane was functionalized with CoFe2O4 nanoparticles and used as a substrate for the growing of very long helical-structured Carbon Nanotubes (CNTs) with a diameter less than 20 nm. The structures and morphologies of the fabricated nanostructures were characterized by field emission- scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and Raman spectroscopy. By uploading the CNTs on PAA, the characteristic Raman peaks of CNTs and PAA showed 4 and 3 times enhancement, respectively, which leads to more sensitive Surface-Enhanced Raman Spectroscopy (SERS) substrates. For comparison, PAA and CNTs/PAA arrays were used as SERS substrates for the detection of Hg2+, Cd2+, and Pb2+. The proposed sensor demonstrated high sensitivity and selectivity between these heavy metal ions. CNTs/PAA sensor showed excellent selectivity toward Pb2+ over other metal ions, where the enhancement factor is decreased from ~17 for Pb2+ to ~12 for Hg2+ and to ~4 for Cd2+. Therefore, the proposed CNTs/PAA sensor can be used as a powerful tool for the determination of heavy metal ions in aqueous solutions. PMID:27143512
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Deyong; Li, Yunliang; Li, Hao
2015-05-15
Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate thatmore » this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.« less
Wang, Yonghong; Jiang, Lun; Leng, Qinggang; Wu, Yaohui; He, Xiaoxiao; Wang, Kemin
2016-03-15
In this work, we design a new simple and highly sensitive strategy for electrochemical detection of glutathione (GSH) via mercury ion (Hg(2+)) triggered hybridization chain reaction (HCR) signal amplification. It is observed that in the absence of GSH, a specific thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination can fold into hairpin structures. While in the presence of GSH, it thus can be chelated with Hg(2+), resulting in Hg(2+) released from the T-Hg(2+)-T hairpin complex which then forms into ssDNA structure to further hybridize with the surface-immobilized capture DNA probe on the gold electrode with a sticky tail left. The presence of two hairpin helper probes through HCR leads to the formation of extended dsDNA superstructure on the electrode surface, which therefore causes the intercalation of numerous electroactive species ([Ru(NH3)6](3+)) into the dsDNA grooves, followed by a significantly amplified signal output whose intensity is related to the concentration of the GSH. Taking advantage of merits of enzyme-free amplification power of the HCR, the inherent high sensitivity of the electrochemical technique, and label-free detection which utilizes an electroactive species as a signaling molecule that binds to the anionic phosphate backbone of DNA strands via electrostatic force, not only does the proposed strategy enable sensitive detection of GSH, but show high selectivity against other amino acid, making our method a simple and sensitive addition to the amplified GSH detection. Copyright © 2015 Elsevier B.V. All rights reserved.
Listou Grimen, Hanne; Diseth, Åge
2016-12-01
The aim of the present study was to examine the factor structure of a Norwegian version of the Highly Sensitive Person Scale (HSPS) and to investigate how sensory processing sensitivity (SPS) is related to personality traits of neuroticism, extraversion, and openness and to subjective health complaints (SHC) in a sample of 167 undergraduate psychology students. The results showed that the variance in a shortened version of the HSPS was best described by three separate factors: ease of excitation (EOE), aesthetic sensitivity (AES), and low sensory threshold (LST). Furthermore, the result showed than an overall SPS factor (EOE, LST, and AES combined) was predicted positively by neuroticism and openness and negatively by extraversion. With respect to SHC, the results showed that EOE and LST were positively associated with psychological health complaints. However, the personality trait of neuroticism contributed more than the SPS factors as predictor of SHC. In conclusion, the present study supported a shortened version of the HSPS and its relation to personality factors and SHC. © The Author(s) 2016.
A novel "modularized" optical sensor for pH monitoring in biological matrixes.
Liu, Xun; Zhang, Shang-Qing; Wei, Xing; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua
2018-06-30
A novel core-shell structure optical pH sensor is developed with upconversion nanoparticles (UCNPs) serving as the core and silica as the shell, followed by grafting bovineserumalbumin (BSA) as another shell via glutaraldehyde cross-linking. The obtained core-shell-shell structure is shortly termed as UCNPs@SiO 2 @BSA, and its surface provides a platform for loading various pH sensitive dyes, which are alike "modules" to make it feasible for measuring pHs within different pH ranges by simply regulating the type of dyes. Generally, a single pH sensitive dye is adopted to respond within a certain pH range. This study employs bromothymol blue (BTB) and rhodamine B (RhB) to facilitate their responses to pH variations within two ranges, i.e., pH 5.99-8.09 and pH 4.98-6.40, respectively, with detection by ratio-fluorescence protocol. The core-shell-shell structure offers superior sensitivity, which is tens of times more sensitive than those achieved by ratio-fluorescence approaches based on various nanostructures, and favorable stability is achieved in high ionic strength medium. In addition, this sensor exhibits superior photostability under continuous excitation at 980 nm. Thanks to the near infrared excitation in the core-shell-shell structure, it effectively avoids the self-fluorescence from biological samples and thus facilitates accurate sensing of pH in various biological sample matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.
Presumed fair: ironic effects of organizational diversity structures.
Kaiser, Cheryl R; Major, Brenda; Jurcevic, Ines; Dover, Tessa L; Brady, Laura M; Shapiro, Jenessa R
2013-03-01
This research tests the hypothesis that the presence (vs. absence) of organizational diversity structures causes high-status group members (Whites, men) to perceive organizations with diversity structures as procedurally fairer environments for underrepresented groups (racial minorities, women), even when it is clear that underrepresented groups have been unfairly disadvantaged within these organizations. Furthermore, this illusory sense of fairness derived from the mere presence of diversity structures causes high-status group members to legitimize the status quo by becoming less sensitive to discrimination targeted at underrepresented groups and reacting more harshly toward underrepresented group members who claim discrimination. Six experiments support these hypotheses in designs using 4 types of diversity structures (diversity policies, diversity training, diversity awards, idiosyncratically generated diversity structures from participants' own organizations) among 2 high-status groups in tests involving several types of discrimination (discriminatory promotion practices, adverse impact in hiring, wage discrimination). Implications of these experiments for organizational diversity and employment discrimination law are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved
CIP (cleaning-in-place) stability of AlGaN/GaN pH sensors.
Linkohr, St; Pletschen, W; Schwarz, S U; Anzt, J; Cimalla, V; Ambacher, O
2013-02-20
The CIP stability of pH sensitive ion-sensitive field-effect transistors based on AlGaN/GaN heterostructures was investigated. For epitaxial AlGaN/GaN films with high structural quality, CIP tests did not degrade the sensor surface and pH sensitivities of 55-58 mV/pH were achieved. Several different passivation schemes based on SiO(x), SiN(x), AlN, and nanocrystalline diamond were compared with special attention given to compatibility to standard microelectronic device technologies as well as biocompatibility of the passivation films. The CIP stability was evaluated with a main focus on the morphological stability. All stacks containing a SiO₂ or an AlN layer were etched by the NaOH solution in the CIP process. Reliable passivations withstanding the NaOH solution were provided by stacks of ICP-CVD grown and sputtered SiN(x) as well as diamond reinforced passivations. Drift levels about 0.001 pH/h and stable sensitivity over several CIP cycles were achieved for optimized sensor structures. Copyright © 2012 Elsevier B.V. All rights reserved.
Resonant optical transducers for in-situ gas detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Tiziana C.; Cole, Garrett; Goddard, Lynford
Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.
Concept Study of Optical Configurations for High-Frequency Telescope for LiteBIRD
NASA Astrophysics Data System (ADS)
Hasebe, T.; Kashima, S.; Ade, P. A. R.; Akiba, Y.; Alonso, D.; Arnold, K.; Aumont, J.; Baccigalupi, C.; Barron, D.; Basak, S.; Beckman, S.; Borrill, J.; Boulanger, F.; Bucher, M.; Calabrese, E.; Chinone, Y.; Cho, H.-M.; Cukierman, A.; Curtis, D. W.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Duband, L.; Ducout, A.; Dunkley, J.; Duval, J. M.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Fischer, J.; Fujino, T.; Funaki, T.; Fuskeland, U.; Ganga, K.; Goeckner-Wald, N.; Grain, J.; Halverson, N. W.; Hamada, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hayes, L.; Hazumi, M.; Hidehira, N.; Hill, C. A.; Hilton, G.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Inoue, M.; Inoue, Y.; Irwin, K. D.; Ishino, H.; Jeong, O.; Kanai, H.; Kaneko, D.; Katayama, N.; Kawasaki, T.; Kernasovskiy, S. A.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. L.; Kurinsky, N. A.; Kusaka, A.; Lazarian, A.; Lee, A. T.; Li, D.; Linder, E.; Maffei, B.; Mangilli, A.; Maki, M.; Matsumura, T.; Matsuura, S.; Meilhan, D.; Mima, S.; Minami, Y.; Mitsuda, K.; Montier, L.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishino, H.; Nitta, T.; Noguchi, T.; Ogawa, H.; Oguri, S.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Patanchon, G.; Pisano, G.; Rebeiz, G.; Remazeilles, M.; Richards, P. L.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Sawada, M.; Segawa, Y.; Sekimoto, Y.; Seljak, U.; Sherwin, B. D.; Shimizu, T.; Shinozaki, K.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, A.; Suzuki, J.; Tajima, O.; Takada, S.; Takaku, R.; Takakura, S.; Takatori, S.; Tanabe, D.; Taylor, E.; Thompson, K. L.; Thorne, B.; Tomaru, T.; Tomida, T.; Tomita, N.; Tristram, M.; Tucker, C.; Turin, P.; Tsujimoto, M.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Vansyngel, F.; Wehus, I. K.; Westbrook, B.; Willer, M.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, M.
2018-05-01
The high-frequency telescope for LiteBIRD is designed with refractive and reflective optics. In order to improve sensitivity, this paper suggests the new optical configurations of the HFT which have approximately 7 times larger focal planes than that of the original design. The sensitivities of both the designs are compared, and the requirement of anti-reflection (AR) coating on the lens for the refractive option is derived. We also present the simulation result of a sub-wavelength AR structure on both surfaces of silicon, which shows a band-averaged reflection of 1.1-3.2% at 101-448 GHz.
Investigation of low-loss spectra and near-edge fine structure of polymers by PEELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckmann, W.
Transmission electron microscopy has changed from a purely imaging method to an analytical method. This has been facilitated particularly by equipping electron microscopes with energy filters and with parallel electron energy loss spectrometers (PEELS). Because of their relatively high energy resolution (1 to 2 eV) they provide information not only on the elements present but also on the type of bonds between the molecular groups. Polymers are radiation sensitive and the molecular bonds change as the spectrum is being recorded. This can be observed with PEEL spectrometers that are able to record spectra with high sensitivity and in rapid succession.
Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials
NASA Astrophysics Data System (ADS)
Xu, Hui; Zhao, Mingzhuo; Chen, Zhiquan; Zheng, Mingfei; Xiong, Cuixiu; Zhang, Baihui; Li, Hongjian
2018-05-01
We theoretically investigate the sensing characteristics based on tunable Fano resonance in terahertz graphene-layered metamaterials. A Fano phenomenon comes from destructive interference in a narrow frequency range, and it can lead to a high figure of merit of ˜9786. A simple model for sensitivity is presented, and the sensitivity can reach up to 7885 nm/RIU. Besides, the Fano peak becomes more and more unobvious as symmetry breaking slowly recovers. We use an appropriate theoretical theory to explain the generation of Fano phenomena. Our proposed structure and investigation may pave the way for fundamental research of nanosensor applications and designs in highly integrated optical circuits.
High resolution eddy current microscopy
NASA Astrophysics Data System (ADS)
Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.
2001-01-01
We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.
Graphene Field Effect Transistor for Radiation Detection
NASA Technical Reports Server (NTRS)
Li, Mary J. (Inventor); Chen, Zhihong (Inventor)
2016-01-01
The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.
Tobing, Landobasa Y. M.; Tjahjana, Liliana; Zhang, Dao Hua; Zhang, Qing; Xiong, Qihua
2013-01-01
Metamaterials provide a good platform for biochemical sensing due to its strong field localization at nanoscale. In this work, we show that electric and magnetic resonant modes in split-ring-resonator (SRR) can be efficiently excited under unpolarized light illumination when the SRRs are arranged in fourfold rotationally symmetric lattice configuration. The fabrication and characterization of deep subwavelength (~λ/15) gold-based SRR structures with resonator size as small as ~ 60 nm are reported with magnetic resonances in Vis-NIR spectrum range. The feasibility for sensing is demonstrated with refractive index sensitivity as high as ~ 636 nm/RIU. PMID:23942416
Resonant optical transducers for in-situ gas detection
Bond, Tiziana C; Cole, Garrett; Goddard, Lynford
2016-06-28
Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.
Heindl, Philipp; García, Avelina Fernández; Butz, Peter; Pfaff, Eberhard; Tauscher, Bernhard
2006-03-01
Application of high pressure can be used for gentle pasteurizing of food, minimizing undesirable alterations such as vitamin losses and changes in taste and color. In addition, pressure has become a useful tool for investigating structural changes in proteins. Treatments of proteins with high pressure can reveal conformations that are not obtainable by other physical variables like temperature, since pressure favors structural transitions accompanied with smaller volumes. Here, we discuss both the potential use of high pressure to inactivate infectious TSE material and the application of this thermodynamic parameter for the investigation of prion folding. This review summarizes our findings on the effects of pressure on the structure of native infectious scrapie prions in hamster brain homogenates and on the structure of infectious prion rods isolated from diseased hamsters brains. Native prions were found to be pressure sensitive, whereas isolated prions revealed an extreme pressure-resistant structure. The discussion will be focused on the different pressure behavior of these prion isoforms, which points out differences in the protein structure that have not been taken into consideration before.
NASA Astrophysics Data System (ADS)
Koulen, Peter; Gallimore, Gary; Vincent, Ryan D.; Sabates, Nelson R.; Sabates, Felix N.
2011-06-01
Conventional perimeters are used routinely in various eye disease states to evaluate the central visual field and to quantitatively map sensitivity. However, standard automated perimetry proves difficult for retina and specifically macular disease due to the need for central and steady fixation. Advances in instrumentation have led to microperimetry, which incorporates eye tracking for placement of macular sensitivity values onto an image of the macular fundus thus enabling a precise functional and anatomical mapping of the central visual field. Functional sensitivity of the retina can be compared with the observed structural parameters that are acquired with high-resolution spectral domain optical coherence tomography and by integration of scanning laser ophthalmoscope-driven imaging. Findings of the present study generate a basis for age-matched comparison of sensitivity values in patients with macular pathology. Microperimetry registered with detailed structural data performed before and after intervention treatments provides valuable information about macular function, disease progression and treatment success. This approach also allows for the detection of disease or treatment related changes in retinal sensitivity when visual acuity is not affected and can drive the decision making process in choosing different treatment regimens and guiding visual rehabilitation. This has immediate relevance for applications in central retinal vein occlusion, central serous choroidopathy, age-related macular degeneration, familial macular dystrophy and several other forms of retina related visual disability.
Fabrication of artificial toroid nanostructures by modified β-sheet peptides.
Li, Wen; Li, Jingfang; Lee, Myongsoo
2013-09-25
Facial peptide P1 carrying repeating hydrophobic and hydrophilic residues as well as lysine terminals self-assemble into uniform toroid structures. The sensitive balance between the hydrophobic interactions and electrostatic repulsion dominates the formation of highly curved assemblies.
Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S
2014-10-01
A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.
Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.
2014-01-01
A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown. PMID:25362434
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S.
2014-10-15
A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is eithermore » surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.« less
Microelectromechanical systems (MEMS) sensors based on lead zirconate titanate (PZT) films
NASA Astrophysics Data System (ADS)
Wang, Li-Peng
2001-12-01
In this thesis, modeling, fabrication and testing of microelectromechanical systems (MEMS) accelerometers based on piezoelectric lead zirconate titanate (PZT) films are investigated. Three different types of structures, cantilever beam, trampoline, and annular diaphragm, are studied. It demonstrates the high-performance, miniaturate, mass-production-compatible, and potentially circuitry-integratable piezoelectric-type PZT MEMS devices. Theoretical models of the cantilever-beam and trampoline accelerometers are derived via structural dynamics and the constitutive equations of piezoelectricity. The time-dependent transverse vibration equations, mode shapes, resonant frequencies, and sensitivities of the accelerometers are calculated through the models. Optimization of the silicon and PZT thickness is achieved with considering the effects of the structural dynamics, the material properties, and manufacturability for different accelerometer specifications. This work is the first demonstration of the fabrication of bulk-micromachined accelerometers combining a deep-trench reactive ion etching (DRIE) release strategy and thick piezoelectric PZT films deposited using a sol-gel method. Processing challenges which are overcome included materials compatibility, metallization, processing of thick layers, double-side processing, deep-trench silicon etching, post-etch cleaning and process integration. In addition, the processed PZT films are characterized by dielectric, ferroelectric (polarization electric-field hysteresis), and piezoelectric measurements and no adverse effects are found. Dynamic frequency response and impedance resonance measurements are performed to ascertain the performance of the MEMS accelerometers. The results show high sensitivities and broad frequency ranges of the piezoelectric-type PZT MEMS accelerometers; the sensitivities range from 0.1 to 7.6 pC/g for resonant frequencies ranging from 44.3 kHz to 3.7 kHz. The sensitivities were compared to theoretical values and a reasonable agreement (˜36% difference) is obtained.
Sensitivity Analysis in Engineering
NASA Technical Reports Server (NTRS)
Adelman, Howard M. (Compiler); Haftka, Raphael T. (Compiler)
1987-01-01
The symposium proceedings presented focused primarily on sensitivity analysis of structural response. However, the first session, entitled, General and Multidisciplinary Sensitivity, focused on areas such as physics, chemistry, controls, and aerodynamics. The other four sessions were concerned with the sensitivity of structural systems modeled by finite elements. Session 2 dealt with Static Sensitivity Analysis and Applications; Session 3 with Eigenproblem Sensitivity Methods; Session 4 with Transient Sensitivity Analysis; and Session 5 with Shape Sensitivity Analysis.
Lee, Woo Seok; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Kim, Haneun; Kang, Min Su; Cho, Ki-Hyun; Sung, Yun-Mo; Oh, Soong Ju
2017-12-01
All-solution processed, high-performance wearable strain sensors are demonstrated using heterostructure nanocrystal (NC) solids. By incorporating insulating artificial atoms of CdSe quantum dot NCs into metallic artificial atoms of Au NC thin film matrix, metal-insulator heterostructures are designed. This hybrid structure results in a shift close to the percolation threshold, modifying the charge transport mechanism and enhancing sensitivity in accordance with the site percolation theory. The number of electrical pathways is also manipulated by creating nanocracks to further increase its sensitivity, inspired from the bond percolation theory. The combination of the two strategies achieves gauge factor up to 5045, the highest sensitivity recorded among NC-based strain gauges. These strain sensors show high reliability, durability, frequency stability, and negligible hysteresis. The fundamental charge transport behavior of these NC solids is investigated and the combined site and bond percolation theory is developed to illuminate the origin of their enhanced sensitivity. Finally, all NC-based and solution-processed strain gauge sensor arrays are fabricated, which effectively measure the motion of each finger joint, the pulse of heart rate, and the movement of vocal cords of human. This work provides a pathway for designing low-cost and high-performance electronic skin or wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Vaiana, G. S.; Davis, J. M.; Giacconi, R.; Krieger, A. S.; Silk, J. K.; Timothy, A. F.; Zombeck, M.
1973-01-01
Examples taken from the S-054 X-ray telescope observations made during the first Skylab mission show the hot coronal plasma tracing the configuration of the magnetic fields. The high spectral resolution and sensitivity of the instrument has enabled the following two facts to be more firmly established: (1) that the 'quiet homogeneous corona' is in fact highly structured and that the structures observed appear to be the results of dispersed active region magnetic fields; and (2) that numerous bright points are distributed randomly on the disk. Their presence at high latitudes may play a role in solar cycle models. In addition, the capability of Skylab for studying time evolution has enabled the restructuring of coronal features to be seen at times of high activity, indicating a restructuring of the coronal magnetic fields.
NASA Astrophysics Data System (ADS)
Xiao, Yaoming; Han, Gaoyi; Chang, Yunzhen; Zhou, Haihan; Li, Miaoyu; Li, Yanping
2014-12-01
High performance dual function of polyaniline (PANI) with brachyplast structure is synthesized by using a two-step cyclic voltammetry (CV) approach onto the fluorinated tin oxide (FTO) glass substrate, which acts as the sensitizer and p-type hole-transporting material (p-HTM) for the all-solid-state perovskite-sensitized solar cell (ass-PSSC) due to its π-π* transition and the localized polaron. The ass-PSSC based on the PANI delivers a photovoltaic conversion efficiency of 7.34%, and reduces from 7.34% to 6.71% after 1000 h, thereby 91.42% of the energy conversion efficiency is kept, indicating the device has a good long-term stability.
NASA Astrophysics Data System (ADS)
Tshabalala, Zamaswazi P.; Motaung, David E.; Swart, Hendrik C.
2018-04-01
The improved sensitivity and selectivity, and admirable stability are fundamental features required for the current age gas sensing devices to appease future humanity and environmental requirements. Therefore, herein, we report on the room temperature gas sensing behaviour of TiO2 nanotubes with significance response and sensitivity towards 60 ppm NO2 gas. Improved sensitivity of 29.44 ppm-1 and admirable selectivity towards NO2, among other gases ensuring adequate safety in monitoring NO2 in automobile and food industries. The improved sensitivity of TiO2 nanotubes was attributed to larger surface area provided by the hollow nanotubes resulting to improved gas adsorption and the relatively high concentration of oxygen vacancies.
NASA Technical Reports Server (NTRS)
Hou, Gene
1998-01-01
Sensitivity analysis is a technique for determining derivatives of system responses with respect to design parameters. Among many methods available for sensitivity analysis, automatic differentiation has been proven through many applications in fluid dynamics and structural mechanics to be an accurate and easy method for obtaining derivatives. Nevertheless, the method can be computational expensive and can require a high memory space. This project will apply an automatic differentiation tool, ADIFOR, to a p-version finite element code to obtain first- and second- order then-nal derivatives, respectively. The focus of the study is on the implementation process and the performance of the ADIFOR-enhanced codes for sensitivity analysis in terms of memory requirement, computational efficiency, and accuracy.
NMR in the SPINE Structural Proteomics project.
Ab, E; Atkinson, A R; Banci, L; Bertini, I; Ciofi-Baffoni, S; Brunner, K; Diercks, T; Dötsch, V; Engelke, F; Folkers, G E; Griesinger, C; Gronwald, W; Günther, U; Habeck, M; de Jong, R N; Kalbitzer, H R; Kieffer, B; Leeflang, B R; Loss, S; Luchinat, C; Marquardsen, T; Moskau, D; Neidig, K P; Nilges, M; Piccioli, M; Pierattelli, R; Rieping, W; Schippmann, T; Schwalbe, H; Travé, G; Trenner, J; Wöhnert, J; Zweckstetter, M; Kaptein, R
2006-10-01
This paper describes the developments, role and contributions of the NMR spectroscopy groups in the Structural Proteomics In Europe (SPINE) consortium. Focusing on the development of high-throughput (HTP) pipelines for NMR structure determinations of proteins, all aspects from sample preparation, data acquisition, data processing, data analysis to structure determination have been improved with respect to sensitivity, automation, speed, robustness and validation. Specific highlights are protonless (13)C-direct detection methods and inferential structure determinations (ISD). In addition to technological improvements, these methods have been applied to deliver over 60 NMR structures of proteins, among which are five that failed to crystallize. The inclusion of NMR spectroscopy in structural proteomics pipelines improves the success rate for protein structure determinations.
Lee, Robert C.; Kang, Hobin; Darling, Cynthia L.; Fried, Daniel
2014-01-01
Accurate measurement of the highly mineralized transparent surface layer that forms on caries lesions is important for diagnosis of the lesion activity because chemical intervention can slow or reverse the caries process via remineralization. Previous in-vitro and in-vivo studies have demonstrated that polarization-sensitive optical coherence tomography (PS-OCT) can nondestructively image the subsurface lesion structure and the highly mineralized transparent surface zone of caries lesions. The purpose of this study was to develop an approach to automatically process 3-dimensional PS-OCT images and to accurately assess the remineralization process in simulated enamel lesions. Artificial enamel lesions were prepared on twenty bovine enamel blocks using two models to produce varying degree of demineralization and remineralization. The thickness of the transparent surface layer and the integrated reflectivity of the subsurface lesion were measured using PS-OCT. The automated transparent surface layer detection algorithm was able to successfully detect the transparent surface layers with high sensitivity ( = 0.92) and high specificity ( = 0.97). The estimated thickness of the transparent surface layer showed a strong correlation with polarized light microscopy (PLM) measurements of all regions (R2 = 0.90). The integrated reflectivity, ΔR, and the integrated mineral loss, ΔZ, showed a moderate correlation (R2 = 0.32). This study demonstrates that PS-OCT can automatically measure the changes in artificial enamel lesion structure and severity upon exposure to remineralization solutions. PMID:25401009
High-sensitivity refractive index sensors based on fused tapered photonic crystal fiber
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Xie, Hai-yang; Yang, Chuan-qing; Qu, Yu-wei; Zhang, Shun-yang; Fu, Guang-wei; Guo, Xuan; Bi, Wei-hong
2016-05-01
In this paper, a novel liquid refractive index (RI) sensor based on fused tapered photonic crystal fiber (PCF) is proposed. It is fabricated by fusing and tapering a section of PCF which is spliced with two single-mode fibers (SMFs). Due to the fused biconical taper method, the sensor becomes longer and thinner, to make the change of the outside RI has more direct effects on the internal optical field of the PCF, which finally enhances the sensitivity of this sensor. Experimental results show that the transmission spectra of the sensor are red-shifted obviously with the increase of RI. The longer the tapered region of the sensor, the higher the sensitivity is. This sensor has the advantages of simple structure, easy fabrication, high performance and so on, so it has potential applications in RI measurement.
A High-Sensitivity Potentiometric 65-nm CMOS ISFET Sensor for Rapid E. coli Screening.
Jiang, Yu; Liu, Xu; Dang, Tran Chien; Huang, Xiwei; Feng, Hao; Zhang, Qing; Yu, Hao
2018-04-01
Foodborne bacteria, inducing outbreaks of infection or poisoning, have posed great threats to food safety. Potentiometric sensors can identify bacteria levels in food by measuring medium's pH changes. However, most of these sensors face the limitation of low sensitivity and high cost. In this paper, we developed a high-sensitivity ion-sensitive field-effect transistor sensor. It is small sized, cost-efficient, and can be massively fabricated in a standard 65-nm complementary metal-oxide-semiconductor process. A subthreshold pH-to-time-to-voltage conversion scheme was proposed to improve the sensitivity. Furthermore, design parameters, such as chemical sensing area, transistor size, and discharging time, were optimized to enhance the performance. The intrinsic sensitivity of passivation membrane was calculated as 33.2 mV/pH. It was amplified to 123.8 mV/pH with a 0.01-pH resolution, which greatly exceeded 6.3 mV/pH observed in a traditional source-follower based readout structure. The sensing system was applied to Escherichia coli (E. coli) detection with densities ranging from 14 to 140 cfu/mL. Compared to the conventional direct plate counting method (24 h), more efficient sixfold smaller screening time (4 h) was achieved to differentiate samples' E. coli levels. The demonstrated portable, time-saving, and low-cost prescreen system has great potential for food safety detection.
Rare Earth Doped High Temperature Ceramic Selective Emitters
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.
1999-01-01
As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.
Connectome sensitivity or specificity: which is more important?
Zalesky, Andrew; Fornito, Alex; Cocchi, Luca; Gollo, Leonardo L; van den Heuvel, Martijn P; Breakspear, Michael
2016-11-15
Connectomes with high sensitivity and high specificity are unattainable with current axonal fiber reconstruction methods, particularly at the macro-scale afforded by magnetic resonance imaging. Tensor-guided deterministic tractography yields sparse connectomes that are incomplete and contain false negatives (FNs), whereas probabilistic methods steered by crossing-fiber models yield dense connectomes, often with low specificity due to false positives (FPs). Densely reconstructed probabilistic connectomes are typically thresholded to improve specificity at the cost of a reduction in sensitivity. What is the optimal tradeoff between connectome sensitivity and specificity? We show empirically and theoretically that specificity is paramount. Our evaluations of the impact of FPs and FNs on empirical connectomes indicate that specificity is at least twice as important as sensitivity when estimating key properties of brain networks, including topological measures of network clustering, network efficiency and network modularity. Our asymptotic analysis of small-world networks with idealized modular structure reveals that as the number of nodes grows, specificity becomes exactly twice as important as sensitivity to the estimation of the clustering coefficient. For the estimation of network efficiency, the relative importance of specificity grows linearly with the number of nodes. The greater importance of specificity is due to FPs occurring more prevalently between network modules rather than within them. These spurious inter-modular connections have a dramatic impact on network topology. We argue that efforts to maximize the sensitivity of connectome reconstruction should be realigned with the need to map brain networks with high specificity. Copyright © 2016 Elsevier Inc. All rights reserved.
Preparation of pH-sensitive anionic liposomes designed for drug delivery system (DDS) application.
Aoki, Asami; Akaboshi, Hikaru; Ogura, Taku; Aikawa, Tatsuo; Kondo, Takeshi; Tobori, Norio; Yuasa, Makoto
2015-01-01
We prepared pH-sensitive anionic liposomes composed solely of anionic bilayer membrane components that were designed to promote efficient release of entrapped agents in response to acidic pH. The pH-sensitive anionic liposomes showed high dispersion stability at neutral pH, but the fluidity of the bilayer membrane was enhanced in an acidic environment. These liposomes were rather simple and were composed of dimyristoylphosphatidylcholine (DMPC), an anionic bilayer membrane component, and polyoxyethylene sorbitan monostearate (Tween 80). In particular, the present pH-sensitive anionic liposomes showed higher temporal stability than those of conventional DMPC/DPPC liposomes. We found that pHsensitive properties strongly depended on the molecular structure, pKa value, and amount of an incorporated anionic bilayer membrane component, such as sodium oleate (SO), dimyristoylphosphatidylserine (DMPS), or sodium β-sitosterol sulfate (SS). These results provide an opportunity to manipulate liposomal stability in a pH-dependent manner, which could lead to the formulation of a high performance drug delivery system (DDS).
A Monte Carlo study of different detector geometries for HAWC
NASA Astrophysics Data System (ADS)
Gebauer, Iris
Compared to other parts of astronomy the study of the universe at energies above 100GeV is a relatively new field. Pointed instruments presently achieve the highest sensitivities. They have detected gamma-rays from at least 10 sources, but they are only able to monitor a relatively small fraction of the sky. The detection of exciting phenomena such as Gamma-ray Bursts (GRBs) requires a highly sensitive detector capable of continuously monitoring the entire overhead sky. Such an instrument could make an unbiased study of the entire field of view. With sufficient sensitivity it could detect short transients (~ 15 minutes) and study the time structure of Active galactic nuclei (AGN) flares at energies unattainable to space-based instruments. This thesis describes the design and performance of the next generation water Cherenkov detector HAWC (High Altitude Water Cherenkov). Focussing on the performance in background-rejection and sensitivity to point sources, two possible detector geometries, different in the way the photomultipliers (PMTs) are separated from each other, are compared.
An ultra-sensitive wearable accelerometer for continuous heart and lung sound monitoring.
Hu, Yating; Xu, Yong
2012-01-01
This paper presents a chest-worn accelerometer with high sensitivity for continuous cardio-respiratory sound monitoring. The accelerometer is based on an asymmetrical gapped cantilever which is composed of a bottom mechanical layer and a top piezoelectric layer separated by a gap. This novel structure helps to increase the sensitivity by orders of magnitude compared with conventional cantilever based accelerometers. The prototype with a resonant frequency of 1100Hz and a total weight of 5 gram is designed, constructed and characterized. The size of the prototype sensor is 35mm×18mm×7.8mm (l×w×t). A built-in charge amplifier is used to amplify the output voltage of the sensor. A sensitivity of 86V/g and a noise floor of 40ng/√Hz are obtained. Preliminary tests for recording both cardiac and respiratory signals are carried out on human body and the new sensor exhibits better performance compared with a high-end electronic stethoscope.
Application research on the sensitivity of porous silicon
NASA Astrophysics Data System (ADS)
Xu, Gaobin; Xi, Ye; Chen, Xing; Ma, Yuanming
2017-09-01
Applications based on sensitive property of porous silicon (PSi) were researched. As a kind of porous material, the feasibility of PSi as a getter material was studied. Five groups of samples with different parameters were prepared. The gas-sensing property of PSi was studied by the test system and suitable parameters of PSi were also discussed. Meanwhile a novel structure of humidity sensor, using porous silicon as humidity-sensitive material, based on MEMS process has been successfully designed. The humidity-sensing properties were studied by a test system. Because of the polysilicon layer deposited upon the PSi layer, the humidity sensor can realize a quick dehumidification by itself. To extend service life and reduce the effect of the environment, a passivation layer (Si3N4) was also deposited on the surface of electrodes. The result indicated the novel humidity sensor presented high sensitivity (1.1 pF/RH%), low hysteresis, low temperature coefficient (0.5%RH/°C) and high stability.
NASA Astrophysics Data System (ADS)
Yuan, Fei; Wang, Ting-Ting; Hu, Huai-Ming; Li, Chuan-Ti; Zhou, Chun-Sheng; Wang, Xiaofang; Xue, Ganglin
2017-07-01
Using a carboxylic oligopyridine ligand, 4‧-(4-carboxyphenyl)-4,2‧:6‧,4″- terpyridine (Hcptpy), and imidazole-4,5-dicarboxylic acid (H3idc), two metal(II)-cptpy compounds formulated as [Zn2(cptpy)4]n·nH2O (1), [Zn2(cptpy)2(Hidc)(H2O)2]n·nH2O (2) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Compound 1 shows a 2D +2D →3D supramolecular framework structure generated by two-fold interpenetrating 3-connected 2D framework (2D+2D→2D) with the sql topological net and the Schläfli symbol of {44·62}. Compound 2 displays a 1D ladder chain structure. The luminescent properties of 1 and the ones immersed in various kinds of organic compounds and nitrate@DMF solutions have been investigated. Importantly, 1 shows highly selective and sensitive response to acetone and Cu2+ through luminescence quenching effects, making it a promising luminescent sensor for acetone molecule and Cu2+. Meaningwhile, compound 2 shows highly selective sensitivity for Cr2O72-.
Li, Xiuyan; Cheng, Ruojie; Shi, Huijie; Tang, Bo; Xiao, Hanshuang; Zhao, Guohua
2016-03-05
A simple and highly sensitive aptamer-based colorimetric sensor was developed for selective detection of Microcystin-LR (MC-LR). The aptamer (ABA) was employed as recognition element which could bind MC-LR with high-affinity, while gold nanoparticles (AuNPs) worked as sensing materials whose plasma resonance absorption peaks red shifted upon binding of the targets at a high concentration of sodium chloride. With the addition of MC-LR, the random coil aptamer adsorbed on Au NPs altered into regulated structure to form MC-LR-aptamer complexes and broke away from the surface of Au NPs, leading to the aggregation of AuNPs, and the color converted from red to blue due to the interparticle plasmon coupling. Results showed that our aptamer-based colorimetric sensor exhibited rapid and sensitive detection performance for MC-LR with linear range from 0.5 nM to 7.5 μM and the detection limit reached 0.37 nM. Meanwhile, the pollutants usually coexisting with MC-LR in pollutant water samples had not demonstrated disturbance for detecting of MC-LR. The mechanism was also proposed suggesting that high affinity interaction between aptamer and MC-LR significantly enhanced the sensitivity and selectivity for MC-LR detection. Besides, the established method was utilized in analyzing real water samples and splendid sensitivity and selectivity were obtained as well. Copyright © 2015 Elsevier B.V. All rights reserved.
A CMC database for use in the next generation launch vehicles (rockets)
NASA Astrophysics Data System (ADS)
Mahanta, Kamala
1994-10-01
Ceramic matrix composites (CMC's) are being envisioned as the state-of-the-art material capable of handling the tough structural and thermal demands of advanced high temperature structures for programs such as the SSTO (Single Stage to Orbit), HSCT (High Speed Civil Transport), etc. as well as for evolution of the industrial heating systems. Particulate, whisker and continuous fiber ceramic matrix (CFCC) composites have been designed to provide fracture toughness to the advanced ceramic materials which have a high degree of wear resistance, hardness, stiffness, and heat and corrosion resistance but are notorious for their brittleness and sensitivity to microscopic flaws such as cracks, voids and impurity.
A CMC database for use in the next generation launch vehicles (rockets)
NASA Technical Reports Server (NTRS)
Mahanta, Kamala
1994-01-01
Ceramic matrix composites (CMC's) are being envisioned as the state-of-the-art material capable of handling the tough structural and thermal demands of advanced high temperature structures for programs such as the SSTO (Single Stage to Orbit), HSCT (High Speed Civil Transport), etc. as well as for evolution of the industrial heating systems. Particulate, whisker and continuous fiber ceramic matrix (CFCC) composites have been designed to provide fracture toughness to the advanced ceramic materials which have a high degree of wear resistance, hardness, stiffness, and heat and corrosion resistance but are notorious for their brittleness and sensitivity to microscopic flaws such as cracks, voids and impurity.
Photoelastic colloidal gel for a high-sensitivity strain sensor.
Pan, Hui; Chen, Zhixin; Zhu, Shenmin; Jiang, Chun; Zhang, Di
2018-04-27
Nanoparticles, having the ability to self-assemble into an ordered structure in their suspensions, analogous to liquid crystals, have attracted extensive attention. Herein, we report a new type of colloidal gel with an ordered crystal structure assembled from 1D and 2D nanoparticles. The material has high elasticity and, more interestingly, it shows significant photoelasticity. Its refractive index can be tuned under external stress and exhibits an ultra-wide dynamic range (Δn) of the order of 10 -2 . Due to the large Δn, the material shows an extremely high strain sensibility of 720 nm/ε, an order of magnitude higher than the reported ones.
Photoelastic colloidal gel for a high-sensitivity strain sensor
NASA Astrophysics Data System (ADS)
Pan, Hui; Chen, Zhixin; Zhu, Shenmin; Jiang, Chun; Zhang, Di
2018-04-01
Nanoparticles, having the ability to self-assemble into an ordered structure in their suspensions, analogous to liquid crystals, have attracted extensive attention. Herein, we report a new type of colloidal gel with an ordered crystal structure assembled from 1D and 2D nanoparticles. The material has high elasticity and, more interestingly, it shows significant photoelasticity. Its refractive index can be tuned under external stress and exhibits an ultra-wide dynamic range (Δn) of the order of 10-2. Due to the large Δn, the material shows an extremely high strain sensibility of 720 nm/ɛ, an order of magnitude higher than the reported ones.
Chinese nurses' perceived barriers and facilitators of ethical sensitivity.
Huang, Fei Fei; Yang, Qing; Zhang, Jie; Khoshnood, Kaveh; Zhang, Jing Ping
2016-08-01
An overview of ethical sensitivity among Chinese registered nurses is needed to develop and optimize the education programs and interventions to cultivate and improve ethical sensitivity. The study was conducted to explore the barriers to and facilitators of ethical sensitivity among Chinese registered nurses working in hospital settings. A convergent parallel mixed-methods research design was adopted. In the cross-sectional quantitative study, the Chinese Moral Sensitivity Questionnaire-revised version was used to assess the levels of ethical sensitivity among registered nurses, and the scores were correlated with key demographics, training experiences in ethics, and workplace cultural environments (n = 306). In the qualitative study, semi-structured interviews were used to elicit the nurses' perceptions of the barriers and facilitators in nurturing ethical sensitivity (n = 15). The data were collected from February to June 2014. This study was approved by the Institutional Review Boards of Yale University and Central South University. Despite moderately high overall Chinese Moral Sensitivity Questionnaire-revised version scores, the ethical sensitivity among Chinese nurses lags in practice. Barriers to ethical sensitivity include the lack of knowledge related to ethics, lack of working experience as a nurse, the hierarchical organizational climate, and the conformist working attitude. The positive workplace cultural environments and application of ethical knowledge in practice were considered potential facilitators of ethical sensitivity. The findings of this study were compared with studies from other countries to examine the barriers and facilitators of ethical sensitivity in Chinese nurses. This mixed-methods study showed that even though the Chinese nurses have moderately high sensitivity to the ethical issues encountered in hospitals, there is still room for improvement. The barriers to and facilitators of ethical sensitivity identified here offer new and important strategies to support and enhance the nurses' sensitivity to ethical issues. © The Author(s) 2015.
Bombykol receptors in the silkworm moth and the fruit fly
Syed, Zainulabeuddin; Kopp, Artyom; Kimbrell, Deborah A.; Leal, Walter S.
2010-01-01
Male moths are endowed with odorant receptors (ORs) to detect species-specific sex pheromones with remarkable sensitivity and selectivity. We serendipitously discovered that an endogenous OR in the fruit fly, Drosophila melanogaster, is highly sensitive to the sex pheromone of the silkworm moth, bombykol. Intriguingly, the fruit fly detectors are more sensitive than the receptors of the silkworm moth, although its ecological significance is unknown. By expression in the “empty neuron” system, we identified the fruit fly bombykol-sensitive OR as DmelOR7a (= DmOR7a). The profiles of this receptor in response to bombykol in the native sensilla (ab4) or expressed in the empty neuron system (ab3 sensilla) are indistinguishable. Both WT and transgenic flies responded with high sensitivity, in a dose-dependent manner, and with rapid signal termination. In contrast, the same empty neuron expressing the moth bombykol receptor, BmorOR1, demonstrated low sensitivity and slow signal inactivation. When expressed in the trichoid sensilla T1 of the fruit fly, the neuron housing BmorOR1 responded with sensitivity comparable to that of the native trichoid sensilla in the silkworm moth. By challenging the native bombykol receptor in the fruit fly with high doses of another odorant to which the receptor responds with the highest sensitivity, we demonstrate that slow signal termination is induced by overdose of a stimulus. As opposed to the empty neuron system in the basiconic sensilla, the structural, biochemical, and/or biophysical features of the sensilla make the T1 trichoid system of the fly a better surrogate for the moth receptor. PMID:20439725
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
Deng, Junjing; Vine, David J.; Chen, Si; ...
2015-02-24
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and similar to 90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less
A bifacial quantum dot-sensitized solar cell with all-cadmium sulfide photoanode
NASA Astrophysics Data System (ADS)
Ma, Chunqing; Tang, Qunwei; Liu, Danyang; Zhao, Zhiyuan; He, Benlin; Chen, Haiyan; Yu, Liangmin
2015-02-01
Pursuit of a high power conversion efficiency and reduction of electricity-generation cost has been a persistent objective for quantum dot-sensitized solar cells (QDSSCs). We present here the fabrication of a QDSSC comprising a nanoflower-structured CdS anode, a liquid electrolyte having S2-/Sn2- redox couples, and a transparent CoSe counter electrode. Nanoflower-structured CdS anodes are prepared by a successive ionic layer adsorption and reaction (SILAR) method and subsequently hydrothermal strategy free of any surfactant or template. The CdS nanoparticles synthesized by a SILAR method act as "seed crystal" for growth of CdS nanoflowers. The average electron lifetime is markedly elevated in nanoflower-structured CdS anode in comparison with CdS nanoparticle or nanoporous CdS microsphere anode. Herein, we study the effect of synthesis method on CdS morphology and solar cell's photovoltaic performance, showing a power conversion efficiency of 1.67% and 1.17% for nanoflower-structured CdS QDSSC under front and rear irradiations, respectively.
Vuong, Nguyen Minh; Chinh, Nguyen Duc; Huy, Bui The; Lee, Yong-Ill
2016-01-01
Highly sensitive hydrogen sulfide (H2S) gas sensors were developed from CuO-decorated ZnO semiconducting hierarchical nanostructures. The ZnO hierarchical nanostructure was fabricated by an electrospinning method following hydrothermal and heat treatment. CuO decoration of ZnO hierarchical structures was carried out by a wet method. The H2S gas-sensing properties were examined at different working temperatures using various quantities of CuO as the variable. CuO decoration of the ZnO hierarchical structure was observed to promote sensitivity for H2S gas higher than 30 times at low working temperature (200 °C) compared with that in the nondecorated hierarchical structure. The sensing mechanism of the hybrid sensor structure is also discussed. The morphology and characteristics of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (PL), and electrical measurements. PMID:27231026
Byron, Meg; Hall, Lisa L; Lawrence, Jeanne B
2013-01-01
Fluorescence in situ hybridization (FISH) is not a singular technique, but a battery of powerful and versatile tools for examining the distribution of endogenous genes and RNAs in precise context with each other and in relation to specific proteins or cell structures. This unit offers the details of highly sensitive and successful protocols that were initially developed largely in our lab and honed over a number of years. Our emphasis is on analysis of nuclear RNAs and DNA to address specific biological questions about nuclear structure, pre-mRNA metabolism, or the role of noncoding RNAs; however, cytoplasmic RNA detection is also discussed. Multifaceted molecular cytological approaches bring precise resolution and sensitive multicolor detection to illuminate the organization and functional roles of endogenous genes and their RNAs within the native structure of fixed cells. Solutions to several common technical pitfalls are discussed, as are cautions regarding the judicious use of digital imaging and the rigors of analyzing and interpreting complex molecular cytological results.
Carbon nanotube-embedded advanced aerospace composites for early-stage damage sensing
NASA Astrophysics Data System (ADS)
Nataraj, Latha; Coatney, Michael; Cain, Jason; Hall, Asha
2018-03-01
Fiber reinforced polymer (FRP) composites featuring outstanding fatigue performance, high specific stiffness and strength, and low density have evolved as critical structural materials in aerospace applications. Microscale damage such as fiber breakage, matrix cracking, and delamination could occur in layered composites compromising structural integrity, emphasizing the critical need to monitor structural health. Early damage detection would lead to enhanced reliability, lifetime, and performance while minimizing maintenance time, leading to enormous scientific and technical interest in realizing physically stable, quick responding, and cost effective strain sensing materials, devices, and techniques with high sensitivity over a broad range of the practical strain spectrum. Today's most commonly used strain sensing techniques are metal foil strain gauges and optical fiber sensors. Metal foil gauges offer high stability and cost-effectiveness but can only be surface-mounted and have a low gauge factor. Optical fibers require expensive instrumentation, are mostly insensitive to cracks parallel to the fiber orientation and may lead to crack initiation as the diameter is larger than that of the reinforcement fibers. Carbon nanotubes (CNTs) have attracted much attention due to high aspect ratio and superior electrical, thermal, and mechanical properties. CNTs embedded in layered composites have improved performance. A variety of CNT architectures and configurations have shown improved piezoresistive behavior and stability for sensing applications. However, scaling up and commercialization remain serious challenges. The current study investigates a simple, cost effective and repeatable technique for highly sensitive, stable, linear and repeatable strain sensing for damage detection by integrating CNT laminates into composites.
Zhu, Shuyan; Li, Hualin; Yang, Mengsu; Pang, Stella W
2018-05-31
Three-dimensional (3D) multilayered plasmonic structures consisting of Au submicrometric squares on top of SU-8 submicrometric pillars, Au asymmetrical submicrometric structures in the middle, and Au asymmetrical submicrometric holes at the bottom were fabricated through reversal nanoimprint technology. Compared with two-dimensional and quasi-3D plasmonic structures, the 3D multilayered plasmonic structures showed higher electromagnetic field intensity, longer plasmon decay length and larger plasmon sensing area, which are desirable for highly sensitive localized surface plasmonic resonance biosensors. The sensitivity and resonance peak wavelength of the 3D multilayered plasmonic structures could be adjusted by varying the offset between the top and bottom SU-8 submicrometric pillars from 31% to 56%, and the highest sensitivity of 382 and 442 nm/refractive index unit were observed for resonance peaks at 581 and 805 nm, respectively. Live lung cancer A549 cells with a low concentration of 5×103 cells/ml and a low sample volume of 2 µl could be detected by the 3D multilayered plasmonic structures integrated in a microfluidic system. The 3D plasmonic biosensors also had the advantages of detecting DNA hybridization by capturing the complementary target DNA in the low concentration range of 10-14 to 10-7 M, and providing a large peak shift of 82 nm for capturing 10-7 M complementary target DNA without additional signal amplification. Creative Commons Attribution license.
Characteristics of strain-sensitive photonic crystal cavities in a flexible substrate.
No, You-Shin; Choi, Jae-Hyuck; Kim, Kyoung-Ho; Park, Hong-Gyu
2016-11-14
High-index semiconductor photonic crystal (PhC) cavities in a flexible substrate support strong and tunable optical resonances that can be used for highly sensitive and spatially localized detection of mechanical deformations in physical systems. Here, we report theoretical studies and fundamental understandings of resonant behavior of an optical mode excited in strain-sensitive rod-type PhC cavities consisting of high-index dielectric nanorods embedded in a low-index flexible polymer substrate. Using the three-dimensional finite-difference time-domain simulation method, we calculated two-dimensional transverse-electric-like photonic band diagrams and the three-dimensional dispersion surfaces near the first Γ-point band edge of unidirectionally strained PhCs. A broken rotational symmetry in the PhCs modifies the photonic band structures and results in the asymmetric distributions and different levels of changes in normalized frequencies near the first Γ-point band edge in the reciprocal space, which consequently reveals strain-dependent directional optical losses and selected emission patterns. The calculated electric fields, resonant wavelengths, and quality factors of the band-edge modes in the strained PhCs show an excellent agreement with the results of qualitative analysis of modified dispersion surfaces. Furthermore, polarization-resolved time-averaged Poynting vectors exhibit characteristic dipole-like emission patterns with preferentially selected linear polarizations, originating from the asymmetric band structures in the strained PhCs.
Wang, Yingcheng; Jin, Yuanhao; Xiao, Xiaoyang; Zhang, Tianfu; Yang, Haitao; Zhao, Yudan; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Li, Qunqing
2018-05-30
A flexible and transparent film assembled from the cross-nanoporous structures of Au on PET (CNS of Au@PET) is developed as a versatile and effective SERS substrate for rapid, on-site trace analysis with high sensitivity. The fabrication of the CNS of Au can be achieved on a large scale at low cost by employing an etching process with super-aligned carbon nanotubes as a mask, followed by metal deposition. A strongly enhanced Raman signal with good uniformity can be obtained, which is attributed to the excitation of "hot spots" around the metal nanogaps and sharp edges. Using the CNS of Au@PET film as a SERS platform, real-time and on-site SERS detection of the food contaminant crystal violet (CV) is achieved, with a detection limit of CV solution on a tomato skin of 10-7 M. Owing to its ability to efficiently extract trace analytes, the resulting substrate also achieves detection of 4-ATP contaminants and thiram pesticides by swabbing the skin of an apple. A SERS detection signal for 4-ATP has a relative standard deviation of less than 10%, revealing the excellent reproducibility of the substrate. The flexible, transparent and highly sensitive substrates fabricated using this simple and cost-effective strategy are promising for practical application in rapid, on-site SERS-based detection.
Progress in nanostructured photoanodes for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Liu, Xueyang; Fang, Jian; Liu, Yong; Lin, Tong
2016-09-01
Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.
He, Zhongfu; Chen, Wenjun; Liang, Binghao; Liu, Changyong; Yang, Leilei; Lu, Dongwei; Mo, Zichao; Zhu, Hai; Tang, Zikang; Gui, Xuchun
2018-04-18
Flexible pressure sensors are of great importance to be applied in artificial intelligence and wearable electronics. However, assembling a simple structure, high-performance capacitive pressure sensor, especially for monitoring the flow of liquids, is still a big challenge. Here, on the basis of a sandwich-like structure, we propose a facile capacitive pressure sensor optimized by a flexible, low-cost nylon netting, showing many merits including a high response sensitivity (0.33 kPa -1 ) in a low-pressure regime (<1 kPa), an ultralow detection limit as 3.3 Pa, excellent working stability after more than 1000 cycles, and synchronous monitoring for human pulses and clicks. More important, this sensor exhibits an ultrafast response speed (<20 ms), which enables its detection for the fast variations of a small applied pressure from the morphological changing processes of a droplet falling onto the sensor. Furthermore, a capacitive pressure sensor array is fabricated for demonstrating the ability to spatial pressure distribution. Our developed pressure sensors show great prospects in practical applications such as health monitoring, flexible tactile devices, and motion detection.
A concept for a soft gamma-ray concentrator using thin-film multilayer structures
NASA Astrophysics Data System (ADS)
Bloser, Peter F.; Shirazi, Farzane; Echt, Olof; Krzanowski, James E.; Legere, Jason S.; McConnell, Mark L.; Tsavalas, John G.; Wong, Emily N.; Aliotta, Paul H.
2016-07-01
We are investigating the use of thin-film, multilayer structures to form optics capable of concentrating soft gamma rays with energies greater than 100 keV, beyond the reach of current grazing-incidence hard X-ray mirrors. Alternating layers of low- and high-density materials (e.g., polymers and metals) will channel soft gamma-ray photons via total external reflection. A suitable arrangement of bent structures will then concentrate the incident radiation to a point. Gamma-ray optics made in this way offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments. Following initial investigations conducted at Los Alamos National Laboratory, we have constructed and tested a prototype structure using spin coating combined with magnetron sputtering. We are now investigating whether it is possible to grow such flexible multi-layer structures with the required thicknesses and smoothness more quickly by using magnetron sputter and pulsed laser deposition techniques. We present the latest results of our fabrication and gamma-ray channeling tests, and describe our modeling of the sensitivity of potential concentrator-based telescope designs. If successful, this technology offers the potential for transformational increases in sensitivity while dramatically improving the system-level performance of future high-energy astronomy missions through reduced mass and complexity.
Micromirror structured illumination microscope for high-speed in vivo drosophila brain imaging.
Masson, A; Pedrazzani, M; Benrezzak, S; Tchenio, P; Preat, T; Nutarelli, D
2014-01-27
Genetic tools and especially genetically encoded fluorescent reporters have given a special place to optical microscopy in drosophila neurobiology research. In order to monitor neural networks activity, high speed and sensitive techniques, with high spatial resolution are required. Structured illumination microscopies are wide-field approaches with optical sectioning ability. Despite the large progress made with the introduction of the HiLo principle, they did not meet the criteria of speed and/or spatial resolution for drosophila brain imaging. We report on a new implementation that took advantage of micromirror matrix technology to structure the illumination. Thus, we showed that the developed instrument exhibits a spatial resolution close to that of confocal microscopy but it can record physiological responses with a speed improved by more than an order a magnitude.
Patched bimetallic surfaces are active catalysts for ammonia decomposition.
Guo, Wei; Vlachos, Dionisios G
2015-10-07
Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.
Patched bimetallic surfaces are active catalysts for ammonia decomposition
NASA Astrophysics Data System (ADS)
Guo, Wei; Vlachos, Dionisios G.
2015-10-01
Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.
Preparation of surface enhanced Raman substrate and its characterization
NASA Astrophysics Data System (ADS)
Liu, Y.; Wang, J. Y.; Wang, J. Q.
2017-10-01
Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.
Robert A. Haack; Robert E. Acciavatti; Toby Petrice; Robert Davdison
2000-01-01
Ground beetles (Carabidae) are often used as bioindicators in land-use studies because they are (1) diverse, (2) abundant, (3) well known taxonomically, and (4) appear highly sensitive to habitat change. In 1996, we initiated a study on the Huron-Manistee National Forests in Newaygo County, Michigan, to document changes in the carabid community structure as a result of...
Zhang, Hongyan; Lv, Jie; Jia, Zhenhong
2018-01-01
We successfully demonstrate a porous silicon (PS) double Bragg mirror by electrochemical etching at room temperature as a deoxyribonucleic acid (DNA) label-free biosensor for detecting ammonia-oxidizing bacteria (AOB). Compared to various other one-dimension photonic crystal configurations of PS, the double Bragg mirror structure is quite easy to prepare and exhibits interesting optical properties. The width of high reflectivity stop band of the PS double Bragg mirror is about 761 nm with a sharp and deep resonance peak at 1328 nm in the reflectance spectrum, which gives a high sensitivity and distinguishability for sensing performance. The detection sensitivity of such a double Bragg mirror structure is illustrated through the investigation of AOB DNA hybridization in the PS pores. The redshifts of the reflectance spectra show a good linear relationship with both complete complementary and partial complementary DNA. The lowest detection limit for complete complementary DNA is 27.1 nM and the detection limit of the biosensor for partial complementary DNA is 35.0 nM, which provides the feasibility and effectiveness for the detection of AOB in a real environment. The PS double Bragg mirror structure is attractive for widespread biosensing applications and provides great potential for the development of optical applications.
Du, Yushen; Wu, Nicholas C.; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting
2016-01-01
ABSTRACT Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. PMID:27803181
Liu, Ren Chung; Marinova, Vera; Lin, Shiuan Huei; Chen, Ming-Syuan; Lin, Yi-Hsin; Hsu, Ken Yuh
2014-06-01
A near-infrared sensitive hybrid device, based on a Ru-doped BSO photorefractive substrate and polymer dispersed liquid crystal (PDLC) layer, is reported. It is found that the photoexcited charge carriers generated in the BSO:Ru substrate create an optically induced space charge field, sufficient to penetrate into the PDLC layer and to re-orient the LC molecules inside the droplets. Beam-coupling measurements at the Bragg regime are performed showing prospective amplification values and high spatial resolution. The proposed structure does not require indium tin oxide (ITO) contacts and alignment layers. Such a device allows all the processes to be controlled by light, thus opening further potential for real-time image processing at the near-infrared range.
Rapid solution of large-scale systems of equations
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1994-01-01
The analysis and design of complex aerospace structures requires the rapid solution of large systems of linear and nonlinear equations, eigenvalue extraction for buckling, vibration and flutter modes, structural optimization and design sensitivity calculation. Computers with multiple processors and vector capabilities can offer substantial computational advantages over traditional scalar computer for these analyses. These computers fall into two categories: shared memory computers and distributed memory computers. This presentation covers general-purpose, highly efficient algorithms for generation/assembly or element matrices, solution of systems of linear and nonlinear equations, eigenvalue and design sensitivity analysis and optimization. All algorithms are coded in FORTRAN for shared memory computers and many are adapted to distributed memory computers. The capability and numerical performance of these algorithms will be addressed.
Metrology of deep trench etched memory structures using 3D scatterometry
NASA Astrophysics Data System (ADS)
Reinig, Peter; Dost, Rene; Moert, Manfred; Hingst, Thomas; Mantz, Ulrich; Moffitt, Jasen; Shakya, Sushil; Raymond, Christopher J.; Littau, Mike
2005-05-01
Scatterometry is receiving considerable attention as an emerging optical metrology in the silicon industry. One area of progress in deploying these powerful measurements in process control is performing measurements on real device structures, as opposed to limiting scatterometry measurements to periodic structures, such as line-space gratings, placed in the wafer scribe. In this work we will discuss applications of 3D scatterometry to the measurement of advanced trench memory devices. This is a challenging and complex scatterometry application that requires exceptionally high-performance computational abilities. In order to represent the physical device, the relatively tall structures require a high number of slices in the rigorous coupled wave analysis (RCWA) theoretical model. This is complicated further by the presence of an amorphous silicon hard mask on the surface, which is highly sensitive to reflectance scattering and therefore needs to be modeled in detail. The overall structure is comprised of several layers, with the trenches presenting a complex bow-shape sidewall that must be measured. Finally, the double periodicity in the structures demands significantly greater computational capabilities. Our results demonstrate that angular scatterometry is sensitive to the key parameters of interest. The influence of further model parameters and parameter cross correlations have to be carefully taken into account. Profile results obtained by non-library optimization methods compare favorably with cross-section SEM images. Generating a model library suitable for process control, which is preferred for precision, presents numerical throughput challenges. Details will be discussed regarding library generation approaches and strategies for reducing the numerical overhead. Scatterometry and SEM results will be compared, leading to conclusions about the feasibility of this advanced application.
GC/HRSIR as a Complementary Technique to GC/ECNIMS
Gas chromatography/electron capture negative ion mass spectrometry (GC/ECNIMS) is a highly selective and sensitive technique for the analysis of appropriate analytes in complex matrices. Its major drawback is often the lack of fragmentation indicative of structure that can be use...
Kumeria, Tushar; Santos, Abel; Losic, Dusan
2014-01-01
Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices. PMID:25004150
Forreryd, Andy; Johansson, Henrik; Albrekt, Ann-Sofie; Lindstedt, Malin
2014-05-16
Allergic contact dermatitis (ACD) develops upon exposure to certain chemical compounds termed skin sensitizers. To reduce the occurrence of skin sensitizers, chemicals are regularly screened for their capacity to induce sensitization. The recently developed Genomic Allergen Rapid Detection (GARD) assay is an in vitro alternative to animal testing for identification of skin sensitizers, classifying chemicals by evaluating transcriptional levels of a genomic biomarker signature. During assay development and biomarker identification, genome-wide expression analysis was applied using microarrays covering approximately 30,000 transcripts. However, the microarray platform suffers from drawbacks in terms of low sample throughput, high cost per sample and time consuming protocols and is a limiting factor for adaption of GARD into a routine assay for screening of potential sensitizers. With the purpose to simplify assay procedures, improve technical parameters and increase sample throughput, we assessed the performance of three high throughput gene expression platforms--nCounter®, BioMark HD™ and OpenArray®--and correlated their performance metrics against our previously generated microarray data. We measured the levels of 30 transcripts from the GARD biomarker signature across 48 samples. Detection sensitivity, reproducibility, correlations and overall structure of gene expression measurements were compared across platforms. Gene expression data from all of the evaluated platforms could be used to classify most of the sensitizers from non-sensitizers in the GARD assay. Results also showed high data quality and acceptable reproducibility for all platforms but only medium to poor correlations of expression measurements across platforms. In addition, evaluated platforms were superior to the microarray platform in terms of cost efficiency, simplicity of protocols and sample throughput. We evaluated the performance of three non-array based platforms using a limited set of transcripts from the GARD biomarker signature. We demonstrated that it was possible to achieve acceptable discriminatory power in terms of separation between sensitizers and non-sensitizers in the GARD assay while reducing assay costs, simplify assay procedures and increase sample throughput by using an alternative platform, providing a first step towards the goal to prepare GARD for formal validation and adaption of the assay for industrial screening of potential sensitizers.
Estimation of photonic band gap in the hollow core cylindrical multilayer structure
NASA Astrophysics Data System (ADS)
Chourasia, Ritesh Kumar; Singh, Vivek
2018-04-01
The propagation characteristic of two hollow core cylindrical multilayer structures having high and low refractive index contrast of cladding regions have been studied and compared at two design wavelengths i.e. 1550 nm and 632.8 nm. With the help of transfer matrix method a relation between the incoming light wave and outgoing light wave has been developed using the boundary matching technique. In high refractive index contrast, small numbers of layers are sufficient to provide perfect band gap in both design wavelengths. The spectral position and width of band gap is highly depending on the optical path of incident light in all considered cases. For sensing application, the sensitivity of waveguide can be obtained either by monitoring the width of photonic band gap or by monitoring the spectral shift of photonic band gap. Change in the width of photonic band gap with the core refractive index is larger in high refractive index contrast of cladding materials. However, in the case of monitoring the spectral shift of band gap, the obtained sensitivity is large for low refractive index contrast of cladding materials and further it increases with increase of design wavelength.
NASA Astrophysics Data System (ADS)
Wu, Jiandong; Wei, Juan; Hogan, John D.; Chopra, Pradeep; Joshi, Apoorva; Lu, Weigang; Klein, Joshua; Boons, Geert-Jan; Lin, Cheng; Zaia, Joseph
2018-03-01
Among dissociation methods, negative electron transfer dissociation (NETD) has been proven the most useful for glycosaminoglycan (GAG) sequencing because it produces informative fragmentation, a low degree of sulfate losses, high sensitivity, and translatability to multiple instrument types. The challenge, however, is to distinguish positional sulfation. In particular, NETD has been reported to fail to differentiate 4-O- versus 6-O-sulfation in chondroitin sulfate decasaccharide. This raised the concern of whether NETD is able to differentiate the rare 3-O-sulfation from predominant 6-O-sulfation in heparan sulfate (HS) oligosaccharides. Here, we report that NETD generates highly informative spectra that differentiate sites of O-sulfation on glucosamine residues, enabling structural characterizations of synthetic HS isomers containing 3-O-sulfation. Further, lyase-resistant 3-O-sulfated tetrasaccharides from natural sources were successfully sequenced. Notably, for all of the oligosaccharides in this study, the successful sequencing is based on NETD tandem mass spectra of commonly observed deprotonated precursor ions without derivatization or metal cation adduction, simplifying the experimental workflow and data interpretation. These results demonstrate the potential of NETD as a sensitive analytical tool for detailed, high-throughput structural analysis of highly sulfated GAGs. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Dhas, C. Ravi; Christy, A. Jennifer; Venkatesh, R.; Santhoshi Monica, S. Esther; Panda, Subhendu K.; Subramanian, B.; Ravichandran, K.; Sudhagar, P.; Ezhil Raj, A. Moses
2017-12-01
CuInS2 (CIS) thin films have been synthesized onto the glass substrates for different solvent volumes (10, 30, 50 and 70 ml) by nebulizer spray technique. The effect of solvent volume on the structural, morphological, compositional, optical and electrical properties of CIS thin films has been investigated. X-ray diffraction patterns suggest that the obtained CIS films are polycrystalline with the tetragonal structure. The surface morphology of the prepared CIS films purely depends on the solvent volume. The elemental quantitative investigation and the stoichiometric ratio of the CIS thin films were verified from XPS and EDS. High absorbance with the optical band gap of 1.13 eV was obtained at the higher solvent volume. All the deposited CIS thin films exhibited p-type semiconducting behavior with the high electrical conductivity and carrier concentration. CIS thin films deposited onto the FTO substrate were used as a counter electrode (CE) in dye-sensitized solar cells. CIS CEs possessed high electrocatalytic behavior and fast electron charge transfer at the CE/electrolyte interface. The CIS CE prepared using 50 ml solvent volume generated high energy conversion efficiency of about 3.25%.
Design sensitivity analysis with Applicon IFAD using the adjoint variable method
NASA Technical Reports Server (NTRS)
Frederick, Marjorie C.; Choi, Kyung K.
1984-01-01
A numerical method is presented to implement structural design sensitivity analysis using the versatility and convenience of existing finite element structural analysis program and the theoretical foundation in structural design sensitivity analysis. Conventional design variables, such as thickness and cross-sectional areas, are considered. Structural performance functionals considered include compliance, displacement, and stress. It is shown that calculations can be carried out outside existing finite element codes, using postprocessing data only. That is, design sensitivity analysis software does not have to be imbedded in an existing finite element code. The finite element structural analysis program used in the implementation presented is IFAD. Feasibility of the method is shown through analysis of several problems, including built-up structures. Accurate design sensitivity results are obtained without the uncertainty of numerical accuracy associated with selection of a finite difference perturbation.
Reasonable Temperature Schedules for Cold or Hot Charging of Continuously Cast Steel Slabs
NASA Astrophysics Data System (ADS)
Li, Yang; Chen, Xin; Liu, Ke; Wang, Jing; Wen, Jin; Zhang, Jiaquan
2013-12-01
Some continuously cast steel slabs are sensitive to transverse fracture problems during transportation or handling away from their storage state, while some steel slabs are sensitive to surface transverse cracks during the following rolling process in a certain hot charging temperature range. It is revealed that the investigated steel slabs with high fracture tendency under room cooling condition always contain pearlite transformation delayed elements, which lead to the internal brittle bainitic structure formation, while some microalloyed steels exhibit high surface crack susceptibility to hot charging temperatures due to carbonitride precipitation. According to the calculated internal cooling rates and CCT diagrams, the slabs with high fracture tendency during cold charging should be slowly cooled after cutting to length from hot strand or charged to the reheating furnace directly above their bainite formation temperatures. Based on a thermodynamic calculation for carbonitride precipitation in austenite, the sensitive hot charging temperature range of related steels was revealed for the determination of reasonable temperature schedules.
A Novel SPM Probe with MOS Transistor and Nano Tip for Surface Electric Properties
NASA Astrophysics Data System (ADS)
Lee, Sang H.; Lim, Geunbae; Moon, Wonkyu
2007-03-01
In this paper, the novel SPM (Scanning Probe Microscope) probe with the planar MOS (Metal-Oxide-Semiconductor) transistor and the FIB (Focused Ion Beam) nano tip is fabricated for the surface electric properties. Since the MOS transistor has high working frequency, the device can overcome the speed limitation of EFM (Electrostatic Force Microscope) system. The sensitivity is also high, and no bulky device such as lock-in-amplifier is required. Moreover, the nano tip with nanometer scale tip radius is fabricated with FIB system, and the resolution can be improved. Therefore, the probe can rapidly detect small localized electric properties with high sensitivity and high resolution. The MOS transistor is fabricated with the common semiconductor process, and the nano tip is grown by the FIB system. The planar structure of the MOS transistor makes the fabrication process easier, which is the advantage on the commercial production. Various electric signals are applied using the function generator, and the measured data represent the well-established electric properties of the device. It shows the promising aspect of the local surface electric property detection with high sensitivity and high resolution.
Design of SOI wavelength filter based on multiple MMIs structures
NASA Astrophysics Data System (ADS)
Hu, Youfang; Gardes, Frédéric Y.; Jenkins, Richard M.; Finlayson, Ewan D.; Mashanovich, Goran Z.; Reed, Graham T.
2011-01-01
SOI based MMIs prove to be versatile photonic structures for optical power splitting/combining, directional coupling, wavelength multiplexing/demultiplexing, etc. Such a structure benefits from relative ease of fabrication, low sensitivity to fabrication error and low temperature dependence. Whilst the majority of previous designs and optimizations investigated single MMIs, there is significant potential to combine MMIs within a single device for the realization of improved device performance. We have designed and simulated a wavelength filter device consisting of a series of MMIs with different lengths. The bandwidth, free spectral range, and extinction ratio can be controlled by changing the MMI's width and length. We have optimized our design to achieve a -3dB bandwidth of 5nm, a free spectral range of 60nm, an extinction ratio of >30dB, and a side peak suppression ratio of >22dB. Such a device can be used for high performance coarse wavelength filtering. The whole structure can fit into a 70μm×300μm area. Temperature sensitivity of the designed structures was also investigated.
NASA Astrophysics Data System (ADS)
Bolam, S. G.; Coggan, R. C.; Eggleton, J.; Diesing, M.; Stephens, D.
2014-01-01
Demersal trawling constitutes the most significant human impact on both the structure and functioning of coastal seabed fauna. While a number of studies have assessed the impacts of trawling on faunal community structure and the degree to which different taxa are vulnerable to trawling, few have focused on how these impacts affect important ecological functions of the seabed. In this study, we use biological trait analysis (BTA) to assess the relative sensitivity of benthic macrofauna to trawling, in both the short- and long-term, and use this information to describe the spatial variation in sensitivity of secondary production for the Greater North Sea (GNS). Within the GNS, estimates of total production varied by almost three orders of magnitude, from 1.66 kJ m- 2 y- 1 to 968.9 kJ m- 2 y- 1. Large-scale patterns were observed in the proportion of secondary production derived from trawling-sensitive taxa. In the southern North Sea, total production is predominantly governed by taxa with low sensitivity to trawling, whereas production is relatively trawling-sensitive in the northern North Sea and western English Channel. In general, the more sensitive and productive regions are associated with poorly-sorted, gravelly or muddy sediments, while the less sensitive and less productive regions are associated with well-sorted, sandy substrates. These relationships between production sensitivity and environmental features are primarily due to variations in long-term recovery; total production of most assemblages is highly sensitive to the direct impacts of trawling. We discuss the implications of these findings for management 1decisions to improve the environmental sustainability of trawling.
Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm
2016-01-01
Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358
Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm
2016-05-24
Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.
Blamey, F Pax C; Hernandez-Soriano, Maria C; Cheng, Miaomiao; Tang, Caixian; Paterson, David J; Lombi, Enzo; Wang, Wei Hong; Scheckel, Kirk G; Kopittke, Peter M
2015-11-01
Plant species differ in response to high available manganese (Mn), but the mechanisms of sensitivity and tolerance are poorly understood. In solution culture, greater than or equal to 30 µm Mn decreased the growth of soybean (Glycine max), but white lupin (Lupinus albus), narrow-leafed lupin (Lupin angustifolius), and sunflower (Helianthus annuus) grew well at 100 µm Mn. Differences in species' tolerance to high Mn could not be explained simply by differences in root, stem, or leaf Mn status, being 8.6, 17.1, 6.8, and 9.5 mmol kg(-1) leaf fresh mass at 100 µm Mn. Furthermore, x-ray absorption near edge structure analyses identified the predominance of Mn(II), bound mostly to malate or citrate, in roots and stems of all four species. Rather, differences in tolerance were due to variations in Mn distribution and speciation within leaves. In Mn-sensitive soybean, in situ analysis of fresh leaves using x-ray fluorescence microscopy combined with x-ray absorption near edge structure showed high Mn in the veins, and manganite [Mn(III)] accumulated in necrotic lesions apparently through low Mn sequestration in vacuoles or other vesicles. In the two lupin species, most Mn accumulated in vacuoles as either soluble Mn(II) malate or citrate. In sunflower, Mn was sequestered as manganite at the base of nonglandular trichomes. Hence, tolerance to high Mn was ascribed to effective sinks for Mn in leaves, as Mn(II) within vacuoles or through oxidation of Mn(II) to Mn(III) in trichomes. These two mechanisms prevented Mn accumulation in the cytoplasm and apoplast, thereby ensuring tolerance to high Mn in the root environment. © 2015 American Society of Plant Biologists. All Rights Reserved.
Blamey, F. Pax C.; Hernandez-Soriano, Maria C.; Cheng, Miaomiao; Tang, Caixian; Paterson, David J.; Lombi, Enzo; Wang, Wei Hong; Scheckel, Kirk G.; Kopittke, Peter M.
2015-01-01
Plant species differ in response to high available manganese (Mn), but the mechanisms of sensitivity and tolerance are poorly understood. In solution culture, greater than or equal to 30 µm Mn decreased the growth of soybean (Glycine max), but white lupin (Lupinus albus), narrow-leafed lupin (Lupin angustifolius), and sunflower (Helianthus annuus) grew well at 100 µm Mn. Differences in species’ tolerance to high Mn could not be explained simply by differences in root, stem, or leaf Mn status, being 8.6, 17.1, 6.8, and 9.5 mmol kg–1 leaf fresh mass at 100 µm Mn. Furthermore, x-ray absorption near edge structure analyses identified the predominance of Mn(II), bound mostly to malate or citrate, in roots and stems of all four species. Rather, differences in tolerance were due to variations in Mn distribution and speciation within leaves. In Mn-sensitive soybean, in situ analysis of fresh leaves using x-ray fluorescence microscopy combined with x-ray absorption near edge structure showed high Mn in the veins, and manganite [Mn(III)] accumulated in necrotic lesions apparently through low Mn sequestration in vacuoles or other vesicles. In the two lupin species, most Mn accumulated in vacuoles as either soluble Mn(II) malate or citrate. In sunflower, Mn was sequestered as manganite at the base of nonglandular trichomes. Hence, tolerance to high Mn was ascribed to effective sinks for Mn in leaves, as Mn(II) within vacuoles or through oxidation of Mn(II) to Mn(III) in trichomes. These two mechanisms prevented Mn accumulation in the cytoplasm and apoplast, thereby ensuring tolerance to high Mn in the root environment. PMID:26395840