Global Organization of a Positive-strand RNA Virus Genome
Wu, Baodong; Grigull, Jörg; Ore, Moriam O.; Morin, Sylvie; White, K. Andrew
2013-01-01
The genomes of plus-strand RNA viruses contain many regulatory sequences and structures that direct different viral processes. The traditional view of these RNA elements are as local structures present in non-coding regions. However, this view is changing due to the discovery of regulatory elements in coding regions and functional long-range intra-genomic base pairing interactions. The ∼4.8 kb long RNA genome of the tombusvirus tomato bushy stunt virus (TBSV) contains these types of structural features, including six different functional long-distance interactions. We hypothesized that to achieve these multiple interactions this viral genome must utilize a large-scale organizational strategy and, accordingly, we sought to assess the global conformation of the entire TBSV genome. Atomic force micrographs of the genome indicated a mostly condensed structure composed of interconnected protrusions extending from a central hub. This configuration was consistent with the genomic secondary structure model generated using high-throughput selective 2′-hydroxyl acylation analysed by primer extension (i.e. SHAPE), which predicted different sized RNA domains originating from a central region. Known RNA elements were identified in both domain and inter-domain regions, and novel structural features were predicted and functionally confirmed. Interestingly, only two of the six long-range interactions known to form were present in the structural model. However, for those interactions that did not form, complementary partner sequences were positioned relatively close to each other in the structure, suggesting that the secondary structure level of viral genome structure could provide a basic scaffold for the formation of different long-range interactions. The higher-order structural model for the TBSV RNA genome provides a snapshot of the complex framework that allows multiple functional components to operate in concert within a confined context. PMID:23717202
Population-based 3D genome structure analysis reveals driving forces in spatial genome organization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjong, Harianto; Li, Wenyuan; Kalhor, Reza
Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less
Population-based 3D genome structure analysis reveals driving forces in spatial genome organization
Tjong, Harianto; Li, Wenyuan; Kalhor, Reza; ...
2016-03-07
Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less
Multi-scale structural community organisation of the human genome.
Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin
2017-04-11
Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.
From genomics to chemical genomics: new developments in KEGG
Kanehisa, Minoru; Goto, Susumu; Hattori, Masahiro; Aoki-Kinoshita, Kiyoko F.; Itoh, Masumi; Kawashima, Shuichi; Katayama, Toshiaki; Araki, Michihiro; Hirakawa, Mika
2006-01-01
The increasing amount of genomic and molecular information is the basis for understanding higher-order biological systems, such as the cell and the organism, and their interactions with the environment, as well as for medical, industrial and other practical applications. The KEGG resource () provides a reference knowledge base for linking genomes to biological systems, categorized as building blocks in the genomic space (KEGG GENES) and the chemical space (KEGG LIGAND), and wiring diagrams of interaction networks and reaction networks (KEGG PATHWAY). A fourth component, KEGG BRITE, has been formally added to the KEGG suite of databases. This reflects our attempt to computerize functional interpretations as part of the pathway reconstruction process based on the hierarchically structured knowledge about the genomic, chemical and network spaces. In accordance with the new chemical genomics initiatives, the scope of KEGG LIGAND has been significantly expanded to cover both endogenous and exogenous molecules. Specifically, RPAIR contains curated chemical structure transformation patterns extracted from known enzymatic reactions, which would enable analysis of genome-environment interactions, such as the prediction of new reactions and new enzyme genes that would degrade new environmental compounds. Additionally, drug information is now stored separately and linked to new KEGG DRUG structure maps. PMID:16381885
Producing genome structure populations with the dynamic and automated PGS software.
Hua, Nan; Tjong, Harianto; Shin, Hanjun; Gong, Ke; Zhou, Xianghong Jasmine; Alber, Frank
2018-05-01
Chromosome conformation capture technologies such as Hi-C are widely used to investigate the spatial organization of genomes. Because genome structures can vary considerably between individual cells of a population, interpreting ensemble-averaged Hi-C data can be challenging, in particular for long-range and interchromosomal interactions. We pioneered a probabilistic approach for the generation of a population of distinct diploid 3D genome structures consistent with all the chromatin-chromatin interaction probabilities from Hi-C experiments. Each structure in the population is a physical model of the genome in 3D. Analysis of these models yields new insights into the causes and the functional properties of the genome's organization in space and time. We provide a user-friendly software package, called PGS, which runs on local machines (for practice runs) and high-performance computing platforms. PGS takes a genome-wide Hi-C contact frequency matrix, along with information about genome segmentation, and produces an ensemble of 3D genome structures entirely consistent with the input. The software automatically generates an analysis report, and provides tools to extract and analyze the 3D coordinates of specific domains. Basic Linux command-line knowledge is sufficient for using this software. A typical running time of the pipeline is ∼3 d with 300 cores on a computer cluster to generate a population of 1,000 diploid genome structures at topological-associated domain (TAD)-level resolution.
CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription.
Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Zhu, Jacqueline Jufen; Szalaj, Przemyslaw; Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Tian, Simon Zhongyuan; Penrad-Mobayed, May; Sachs, Laurent M; Ruan, Xiaoan; Wei, Chia-Lin; Liu, Edison T; Wilczynski, Grzegorz M; Plewczynski, Dariusz; Li, Guoliang; Ruan, Yijun
2015-12-17
Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Hongping; Zhang Bo; Shi Peiyong
2008-11-10
Genome cyclization is essential for flavivirus replication. We used RNases to probe the structures formed by the 5'-terminal 190 nucleotides and the 3'-terminal 111 nucleotides of the West Nile virus (WNV) genomic RNA. When analyzed individually, the two RNAs adopt stem-loop structures as predicted by the thermodynamic-folding program. However, when mixed together, the two RNAs form a duplex that is mediated through base-pairings of two sets of RNA elements (5'CS/3'CSI and 5'UAR/3'UAR). Formation of the RNA duplex facilitates a conformational change that leaves the 3'-terminal nucleotides of the genome (position - 8 to - 16) to be single-stranded. Viral NS5more » binds specifically to the 5'-terminal stem-loop (SL1) of the genomic RNA. The 5'SL1 RNA structure is essential for WNV replication. The study has provided further evidence to suggest that flavivirus genome cyclization and NS5/5'SL1 RNA interaction facilitate NS5 binding to the 3' end of the genome for the initiation of viral minus-strand RNA synthesis.« less
Szałaj, Przemysław; Tang, Zhonghui; Michalski, Paul; Pietal, Michal J; Luo, Oscar J; Sadowski, Michał; Li, Xingwang; Radew, Kamen; Ruan, Yijun; Plewczynski, Dariusz
2016-12-01
ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures. © 2016 Szałaj et al.; Published by Cold Spring Harbor Laboratory Press.
In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus.
Dai, Xinghong; Li, Zhihai; Lai, Mason; Shu, Sara; Du, Yushen; Zhou, Z Hong; Sun, Ren
2017-01-05
Packaging of the genome into a protein capsid and its subsequent delivery into a host cell are two fundamental processes in the life cycle of a virus. Unlike double-stranded DNA viruses, which pump their genome into a preformed capsid, single-stranded RNA (ssRNA) viruses, such as bacteriophage MS2, co-assemble their capsid with the genome; however, the structural basis of this co-assembly is poorly understood. MS2 infects Escherichia coli via the host 'sex pilus' (F-pilus); it was the first fully sequenced organism and is a model system for studies of translational gene regulation, RNA-protein interactions, and RNA virus assembly. Its positive-sense ssRNA genome of 3,569 bases is enclosed in a capsid with one maturation protein monomer and 89 coat protein dimers arranged in a T = 3 icosahedral lattice. The maturation protein is responsible for attaching the virus to an F-pilus and delivering the viral genome into the host during infection, but how the genome is organized and delivered is not known. Here we describe the MS2 structure at 3.6 Å resolution, determined by electron-counting cryo-electron microscopy (cryoEM) and asymmetric reconstruction. We traced approximately 80% of the backbone of the viral genome, built atomic models for 16 RNA stem-loops, and identified three conserved motifs of RNA-coat protein interactions among 15 of these stem-loops with diverse sequences. The stem-loop at the 3' end of the genome interacts extensively with the maturation protein, which, with just a six-helix bundle and a six-stranded β-sheet, forms a genome-delivery apparatus and joins 89 coat protein dimers to form a capsid. This atomic description of genome-capsid interactions in a spherical ssRNA virus provides insight into genome delivery via the host sex pilus and mechanisms underlying ssRNA-capsid co-assembly, and inspires speculation about the links between nucleoprotein complexes and the origins of viruses.
Kumar, Avishek; Butler, Brandon M.; Kumar, Sudhir; Ozkan, S. Banu
2016-01-01
Summary Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. PMID:26684487
Gürsoy, Gamze; Xu, Yun; Liang, Jie
2017-07-01
Nuclear landmarks and biochemical factors play important roles in the organization of the yeast genome. The interaction pattern of budding yeast as measured from genome-wide 3C studies are largely recapitulated by model polymer genomes subject to landmark constraints. However, the origin of inter-chromosomal interactions, specific roles of individual landmarks, and the roles of biochemical factors in yeast genome organization remain unclear. Here we describe a multi-chromosome constrained self-avoiding chromatin model (mC-SAC) to gain understanding of the budding yeast genome organization. With significantly improved sampling of genome structures, both intra- and inter-chromosomal interaction patterns from genome-wide 3C studies are accurately captured in our model at higher resolution than previous studies. We show that nuclear confinement is a key determinant of the intra-chromosomal interactions, and centromere tethering is responsible for the inter-chromosomal interactions. In addition, important genomic elements such as fragile sites and tRNA genes are found to be clustered spatially, largely due to centromere tethering. We uncovered previously unknown interactions that were not captured by genome-wide 3C studies, which are found to be enriched with tRNA genes, RNAPIII and TFIIS binding. Moreover, we identified specific high-frequency genome-wide 3C interactions that are unaccounted for by polymer effects under landmark constraints. These interactions are enriched with important genes and likely play biological roles.
Stewart, H.; Bingham, R.J.; White, S. J.; Dykeman, E. C.; Zothner, C.; Tuplin, A. K.; Stockley, P. G.; Twarock, R.; Harris, M.
2016-01-01
The specific packaging of the hepatitis C virus (HCV) genome is hypothesised to be driven by Core-RNA interactions. To identify the regions of the viral genome involved in this process, we used SELEX (systematic evolution of ligands by exponential enrichment) to identify RNA aptamers which bind specifically to Core in vitro. Comparison of these aptamers to multiple HCV genomes revealed the presence of a conserved terminal loop motif within short RNA stem-loop structures. We postulated that interactions of these motifs, as well as sub-motifs which were present in HCV genomes at statistically significant levels, with the Core protein may drive virion assembly. We mutated 8 of these predicted motifs within the HCV infectious molecular clone JFH-1, thereby producing a range of mutant viruses predicted to possess altered RNA secondary structures. RNA replication and viral titre were unaltered in viruses possessing only one mutated structure. However, infectivity titres were decreased in viruses possessing a higher number of mutated regions. This work thus identified multiple novel RNA motifs which appear to contribute to genome packaging. We suggest that these structures act as cooperative packaging signals to drive specific RNA encapsidation during HCV assembly. PMID:26972799
DNA bending-induced phase transition of encapsidated genome in phage λ
Lander, Gabriel C.; Johnson, John E.; Rau, Donald C.; Potter, Clinton S.; Carragher, Bridget; Evilevitch, Alex
2013-01-01
The DNA structure in phage capsids is determined by DNA–DNA interactions and bending energy. The effects of repulsive interactions on DNA interaxial distance were previously investigated, but not the effect of DNA bending on its structure in viral capsids. By varying packaged DNA length and through addition of spermine ions, we transform the interaction energy from net repulsive to net attractive. This allowed us to isolate the effect of bending on the resulting DNA structure. We used single particle cryo-electron microscopy reconstruction analysis to determine the interstrand spacing of double-stranded DNA encapsidated in phage λ capsids. The data reveal that stress and packing defects, both resulting from DNA bending in the capsid, are able to induce a long-range phase transition in the encapsidated DNA genome from a hexagonal to a cholesteric packing structure. This structural observation suggests significant changes in genome fluidity as a result of a phase transition affecting the rates of viral DNA ejection and packaging. PMID:23449219
Switch from translation to RNA replication in a positive-stranded RNA virus
Gamarnik, Andrea V.; Andino, Raul
1998-01-01
In positive-stranded viruses, the genomic RNA serves as a template for both translation and RNA replication. Using poliovirus as a model, we examined the interaction between these two processes. We show that the RNA polymerase is unable to replicate RNA templates undergoing translation. We discovered that an RNA structure at the 5′ end of the viral genome, next to the internal ribosomal entry site, carries signals that control both viral translation and RNA synthesis. The interaction of this RNA structure with the cellular factor PCBP up-regulates viral translation, while the binding of the viral protein 3CD represses translation and promotes negative-strand RNA synthesis. We propose that the interaction of 3CD with this RNA structure controls whether the genomic RNA is used for translation or RNA replication. PMID:9694795
Kumar, Avishek; Butler, Brandon M; Kumar, Sudhir; Ozkan, S Banu
2015-12-01
Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.
2012-04-25
Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.
Wang, Xurong; Zhang, Fuxian; Su, Rui; Li, Xiaowu; Chen, Wenyuan; Chen, Qingxiu; Yang, Tao; Wang, Jiawei; Liu, Hongrong; Fang, Qin; Cheng, Lingpeng
2018-06-25
Most double-stranded RNA (dsRNA) viruses transcribe RNA plus strands within a common innermost capsid shell. This process requires coordinated efforts by RNA-dependent RNA polymerase (RdRp) together with other capsid proteins and genomic RNA. Here we report the near-atomic resolution structure of the RdRp protein VP2 in complex with its cofactor protein VP4 and genomic RNA within an aquareovirus capsid using 200-kV cryoelectron microscopy and symmetry-mismatch reconstruction. The structure of these capsid proteins enabled us to observe the elaborate nonicosahedral structure within the double-layered icosahedral capsid. Our structure shows that the RdRp complex is anchored at the inner surface of the capsid shell and interacts with genomic dsRNA and four of the five asymmetrically arranged N termini of the capsid shell proteins under the fivefold axis, implying roles for these N termini in virus assembly. The binding site of the RNA end at VP2 is different from the RNA cap binding site identified in the crystal structure of orthoreovirus RdRp λ3, although the structures of VP2 and λ3 are almost identical. A loop, which was thought to separate the RNA template and transcript, interacts with an apical domain of the capsid shell protein, suggesting a mechanism for regulating RdRp replication and transcription. A conserved nucleoside triphosphate binding site was localized in our RdRp cofactor protein VP4 structure, and interactions between the VP4 and the genomic RNA were identified.
Entering the Next Dimension: Plant Genomes in 3D.
Sotelo-Silveira, Mariana; Chávez Montes, Ricardo A; Sotelo-Silveira, Jose R; Marsch-Martínez, Nayelli; de Folter, Stefan
2018-04-24
After linear sequences of genomes and epigenomic landscape data, the 3D organization of chromatin in the nucleus is the next level to be explored. Different organisms present a general hierarchical organization, with chromosome territories at the top. Chromatin interaction maps, obtained by chromosome conformation capture (3C)-based methodologies, for eight plant species reveal commonalities, but also differences, among them and with animals. The smallest structures, found in high-resolution maps of the Arabidopsis genome, are single genes. Epigenetic marks (histone modification and DNA methylation), transcriptional activity, and chromatin interaction appear to be correlated, and whether structure is the cause or consequence of the function of interacting regions is being actively investigated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Genome-Wide Protein Interaction Screens Reveal Functional Networks Involving Sm-Like Proteins
Fromont-Racine, Micheline; Mayes, Andrew E.; Brunet-Simon, Adeline; Rain, Jean-Christophe; Colley, Alan; Dix, Ian; Decourty, Laurence; Joly, Nicolas; Ricard, Florence; Beggs, Jean D.
2000-01-01
A set of seven structurally related Sm proteins forms the core of the snRNP particles containing the spliceosomal U1, U2, U4 and U5 snRNAs. A search of the genomic sequence of Saccharomyces cerevisiae has identified a number of open reading frames that potentially encode structurally similar proteins termed Lsm (Like Sm) proteins. With the aim of analysing all possible interactions between the Lsm proteins and any protein encoded in the yeast genome, we performed exhaustive and iterative genomic two-hybrid screens, starting with the Lsm proteins as baits. Indeed, extensive interactions amongst eight Lsm proteins were found that suggest the existence of a Lsm complex or complexes. These Lsm interactions apparently involve the conserved Sm domain that also mediates interactions between the Sm proteins. The screens also reveal functionally significant interactions with splicing factors, in particular with Prp4 and Prp24, compatible with genetic studies and with the reported association of Lsm proteins with spliceosomal U6 and U4/U6 particles. In addition, interactions with proteins involved in mRNA turnover, such as Mrt1, Dcp1, Dcp2 and Xrn1, point to roles for Lsm complexes in distinct RNA metabolic processes, that are confirmed in independent functional studies. These results provide compelling evidence that two-hybrid screens yield functionally meaningful information about protein–protein interactions and can suggest functions for uncharacterized proteins, especially when they are performed on a genome-wide scale. PMID:10900456
Goswami, Sathi; Sanyal, Sulagna; Chakraborty, Payal; Das, Chandrima; Sarkar, Munna
2017-08-01
NSAIDs are the most common class of painkillers and anti-inflammatory agents. They also show other functions like chemoprevention and chemosuppression for which they act at the protein but not at the genome level since they are mostly anions at physiological pH, which prohibit their approach to the poly-anionic DNA. Complexing the drugs with bioactive metal obliterate their negative charge and allow them to bind to the DNA, thereby, opening the possibility of genome level interaction. To test this hypothesis, we present the interaction of a traditional NSAID, Piroxicam and its copper complex with core histone and chromatin. Spectroscopy, DLS, and SEM studies were applied to see the effect of the interaction on the structure of histone/chromatin. This was coupled with MTT assay, immunoblot analysis, confocal microscopy, micro array analysis and qRT-PCR. The interaction of Piroxicam and its copper complex with histone/chromatin results in structural alterations. Such structural alterations can have different biological manifestations, but to test our hypothesis, we have focused only on the accompanied modulations at the epigenomic/genomic level. The complex, showed alteration of key epigenetic signatures implicated in transcription in the global context, although Piroxicam caused no significant changes. We have correlated such alterations caused by the complex with the changes in global gene expression and validated the candidate gene expression alterations. Our results provide the proof of concept that DNA binding ability of the copper complexes of a traditional NSAID, opens up the possibility of modulations at the epigenomic/genomic level. Copyright © 2017 Elsevier B.V. All rights reserved.
Peterson, Elena S; McCue, Lee Ann; Schrimpe-Rutledge, Alexandra C; Jensen, Jeffrey L; Walker, Hyunjoo; Kobold, Markus A; Webb, Samantha R; Payne, Samuel H; Ansong, Charles; Adkins, Joshua N; Cannon, William R; Webb-Robertson, Bobbie-Jo M
2012-04-05
The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php.
2012-01-01
Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php. PMID:22480257
Stability of local secondary structure determines selectivity of viral RNA chaperones.
Bravo, Jack P K; Borodavka, Alexander; Barth, Anders; Calabrese, Antonio N; Mojzes, Peter; Cockburn, Joseph J B; Lamb, Don C; Tuma, Roman
2018-05-18
To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA-RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA-RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.
Functional RNA structures throughout the Hepatitis C Virus genome.
Adams, Rebecca L; Pirakitikulr, Nathan; Pyle, Anna Marie
2017-06-01
The single-stranded Hepatitis C Virus (HCV) genome adopts a set of elaborate RNA structures that are involved in every stage of the viral lifecycle. Recent advances in chemical probing, sequencing, and structural biology have facilitated analysis of RNA folding on a genome-wide scale, revealing novel structures and networks of interactions. These studies have underscored the active role played by RNA in every function of HCV and they open the door to new types of RNA-targeted therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.
Form and function of topologically associating genomic domains in budding yeast.
Eser, Umut; Chandler-Brown, Devon; Ay, Ferhat; Straight, Aaron F; Duan, Zhijun; Noble, William Stafford; Skotheim, Jan M
2017-04-11
The genome of metazoan cells is organized into topologically associating domains (TADs) that have similar histone modifications, transcription level, and DNA replication timing. Although similar structures appear to be conserved in fission yeast, computational modeling and analysis of high-throughput chromosome conformation capture (Hi-C) data have been used to argue that the small, highly constrained budding yeast chromosomes could not have these structures. In contrast, herein we analyze Hi-C data for budding yeast and identify 200-kb scale TADs, whose boundaries are enriched for transcriptional activity. Furthermore, these boundaries separate regions of similarly timed replication origins connecting the long-known effect of genomic context on replication timing to genome architecture. To investigate the molecular basis of TAD formation, we performed Hi-C experiments on cells depleted for the Forkhead transcription factors, Fkh1 and Fkh2, previously associated with replication timing. Forkhead factors do not regulate TAD formation, but do promote longer-range genomic interactions and control interactions between origins near the centromere. Thus, our work defines spatial organization within the budding yeast nucleus, demonstrates the conserved role of genome architecture in regulating DNA replication, and identifies a molecular mechanism specifically regulating interactions between pericentric origins.
Reconstructing spatial organizations of chromosomes through manifold learning
Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang
2018-01-01
Abstract Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data. PMID:29408992
Reconstructing spatial organizations of chromosomes through manifold learning.
Zhu, Guangxiang; Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang
2018-05-04
Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data.
Functional RNA elements in the dengue virus genome.
Gebhard, Leopoldo G; Filomatori, Claudia V; Gamarnik, Andrea V
2011-09-01
Dengue virus (DENV) genome amplification is a process that involves the viral RNA, cellular and viral proteins, and a complex architecture of cellular membranes. The viral RNA is not a passive template during this process; it plays an active role providing RNA signals that act as promoters, enhancers and/or silencers of the replication process. RNA elements that modulate RNA replication were found at the 5' and 3' UTRs and within the viral coding sequence. The promoter for DENV RNA synthesis is a large stem loop structure located at the 5' end of the genome. This structure specifically interacts with the viral polymerase NS5 and promotes RNA synthesis at the 3' end of a circularized genome. The circular conformation of the viral genome is mediated by long range RNA-RNA interactions that span thousands of nucleotides. Recent studies have provided new information about the requirement of alternative, mutually exclusive, structures in the viral RNA, highlighting the idea that the viral genome is flexible and exists in different conformations. In this article, we describe elements in the promoter SLA and other RNA signals involved in NS5 polymerase binding and activity, and provide new ideas of how dynamic secondary and tertiary structures of the viral RNA participate in the viral life cycle.
Mitochondrial inheritance in budding yeasts: towards an integrated understanding.
Solieri, Lisa
2010-11-01
Recent advances in yeast mitogenomics have significantly contributed to our understanding of the diversity of organization, structure and topology in the mitochondrial genome of budding yeasts. In parallel, new insights on mitochondrial DNA (mtDNA) inheritance in the model organism Saccharomyces cerevisiae highlighted an integrated scenario where recombination, replication and segregation of mtDNA are intricately linked to mitochondrial nucleoid (mt-nucleoid) structure and organelle sorting. In addition to this, recent discoveries of bifunctional roles of some mitochondrial proteins have interesting implications on mito-nuclear genome interactions and the relationship between mtDNA inheritance, yeast fitness and speciation. This review summarizes the current knowledge on yeast mitogenomics, mtDNA inheritance with regard to mt-nucleoid structure and organelle dynamics, and mito-nuclear genome interactions. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra
2016-05-01
A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.
GPU Accelerated Browser for Neuroimaging Genomics.
Zigon, Bob; Li, Huang; Yao, Xiaohui; Fang, Shiaofen; Hasan, Mohammad Al; Yan, Jingwen; Moore, Jason H; Saykin, Andrew J; Shen, Li
2018-04-25
Neuroimaging genomics is an emerging field that provides exciting opportunities to understand the genetic basis of brain structure and function. The unprecedented scale and complexity of the imaging and genomics data, however, have presented critical computational bottlenecks. In this work we present our initial efforts towards building an interactive visual exploratory system for mining big data in neuroimaging genomics. A GPU accelerated browsing tool for neuroimaging genomics is created that implements the ANOVA algorithm for single nucleotide polymorphism (SNP) based analysis and the VEGAS algorithm for gene-based analysis, and executes them at interactive rates. The ANOVA algorithm is 110 times faster than the 4-core OpenMP version, while the VEGAS algorithm is 375 times faster than its 4-core OpenMP counter part. This approach lays a solid foundation for researchers to address the challenges of mining large-scale imaging genomics datasets via interactive visual exploration.
Delta: a new web-based 3D genome visualization and analysis platform.
Tang, Bixia; Li, Feifei; Li, Jing; Zhao, Wenming; Zhang, Zhihua
2018-04-15
Delta is an integrative visualization and analysis platform to facilitate visually annotating and exploring the 3D physical architecture of genomes. Delta takes Hi-C or ChIA-PET contact matrix as input and predicts the topologically associating domains and chromatin loops in the genome. It then generates a physical 3D model which represents the plausible consensus 3D structure of the genome. Delta features a highly interactive visualization tool which enhances the integration of genome topology/physical structure with extensive genome annotation by juxtaposing the 3D model with diverse genomic assay outputs. Finally, by visually comparing the 3D model of the β-globin gene locus and its annotation, we speculated a plausible transitory interaction pattern in the locus. Experimental evidence was found to support this speculation by literature survey. This served as an example of intuitive hypothesis testing with the help of Delta. Delta is freely accessible from http://delta.big.ac.cn, and the source code is available at https://github.com/zhangzhwlab/delta. zhangzhihua@big.ac.cn. Supplementary data are available at Bioinformatics online.
Gherghe, Cristina; Lombo, Tania; Leonard, Christopher W.; Datta, Siddhartha A. K.; Bess, Julian W.; Gorelick, Robert J.; Rein, Alan; Weeks, Kevin M.
2010-01-01
All retroviral genomic RNAs contain a cis-acting packaging signal by which dimeric genomes are selectively packaged into nascent virions. However, it is not understood how Gag (the viral structural protein) interacts with these signals to package the genome with high selectivity. We probed the structure of murine leukemia virus RNA inside virus particles using SHAPE, a high-throughput RNA structure analysis technology. These experiments showed that NC (the nucleic acid binding domain derived from Gag) binds within the virus to the sequence UCUG-UR-UCUG. Recombinant Gag and NC proteins bound to this same RNA sequence in dimeric RNA in vitro; in all cases, interactions were strongest with the first U and final G in each UCUG element. The RNA structural context is critical: High-affinity binding requires base-paired regions flanking this motif, and two UCUG-UR-UCUG motifs are specifically exposed in the viral RNA dimer. Mutating the guanosine residues in these two motifs—only four nucleotides per genomic RNA—reduced packaging 100-fold, comparable to the level of nonspecific packaging. These results thus explain the selective packaging of dimeric RNA. This paradigm has implications for RNA recognition in general, illustrating how local context and RNA structure can create information-rich recognition signals from simple single-stranded sequence elements in large RNAs. PMID:20974908
Prediction of Ras-effector interactions using position energy matrices.
Kiel, Christina; Serrano, Luis
2007-09-01
One of the more challenging problems in biology is to determine the cellular protein interaction network. Progress has been made to predict protein-protein interactions based on structural information, assuming that structural similar proteins interact in a similar way. In a previous publication, we have determined a genome-wide Ras-effector interaction network based on homology models, with a high accuracy of predicting binding and non-binding domains. However, for a prediction on a genome-wide scale, homology modelling is a time-consuming process. Therefore, we here successfully developed a faster method using position energy matrices, where based on different Ras-effector X-ray template structures, all amino acids in the effector binding domain are sequentially mutated to all other amino acid residues and the effect on binding energy is calculated. Those pre-calculated matrices can then be used to score for binding any Ras or effector sequences. Based on position energy matrices, the sequences of putative Ras-binding domains can be scanned quickly to calculate an energy sum value. By calibrating energy sum values using quantitative experimental binding data, thresholds can be defined and thus non-binding domains can be excluded quickly. Sequences which have energy sum values above this threshold are considered to be potential binding domains, and could be further analysed using homology modelling. This prediction method could be applied to other protein families sharing conserved interaction types, in order to determine in a fast way large scale cellular protein interaction networks. Thus, it could have an important impact on future in silico structural genomics approaches, in particular with regard to increasing structural proteomics efforts, aiming to determine all possible domain folds and interaction types. All matrices are deposited in the ADAN database (http://adan-embl.ibmc.umh.es/). Supplementary data are available at Bioinformatics online.
[Genome organization and life cycle of the hepatitis c virus].
Kalinina, O V; Dmitriev, A V
2015-01-01
The review summarizes the current data about the hepatitis C viral genome and polyprotein organization. The functional role of the structural and non-structural viral proteins including their interaction with cellular regulatory proteins and cell structural elements is discussed. Specific peculiarities of the life cycle of the hepatitis C virus important for the understanding of the viral hepatitis C pathogenesis are summarized.
Interactome INSIDER: a structural interactome browser for genomic studies.
Meyer, Michael J; Beltrán, Juan Felipe; Liang, Siqi; Fragoza, Robert; Rumack, Aaron; Liang, Jin; Wei, Xiaomu; Yu, Haiyuan
2018-01-01
We present Interactome INSIDER, a tool to link genomic variant information with structural protein-protein interactomes. Underlying this tool is the application of machine learning to predict protein interaction interfaces for 185,957 protein interactions with previously unresolved interfaces in human and seven model organisms, including the entire experimentally determined human binary interactome. Predicted interfaces exhibit functional properties similar to those of known interfaces, including enrichment for disease mutations and recurrent cancer mutations. Through 2,164 de novo mutagenesis experiments, we show that mutations of predicted and known interface residues disrupt interactions at a similar rate and much more frequently than mutations outside of predicted interfaces. To spur functional genomic studies, Interactome INSIDER (http://interactomeinsider.yulab.org) enables users to identify whether variants or disease mutations are enriched in known and predicted interaction interfaces at various resolutions. Users may explore known population variants, disease mutations, and somatic cancer mutations, or they may upload their own set of mutations for this purpose.
Functions of the 3′ and 5′ genome RNA regions of members of the genus Flavivirus
Brinton, Margo A.; Basu, Mausumi
2015-01-01
The positive sense genomes of members of the genus Flavivirus in the family Flaviviridae are ~11 kb nts in length and have a 5′ type I cap but no 3′ poly A. The 5′ and 3′ terminal regions contain short conserved sequences that are proposed to be repeated remnants of an ancient sequence. However, the functions of most of these conserved sequences have not yet been determined. The terminal regions of the genome also contain multiple conserved RNA structures. Functional data for many of these structures has been obtained. Three sets of complementary 3′ and 5′ terminal region sequences, some of which are located in conserved RNA structures, interact to form a panhandle structure that is required for initiation of minus strand RNA synthesis with the 5′ terminal structure functioning as the promoter. How the switch from the terminal RNA structure base pairing to the long distance RNA-RNA interaction is triggered and regulated is not well understood but evidence suggests involvement of a cell protein binding to three sites on the 3′ terminal RNA structures and a cis-acting metastable 3′ RNA element in the 3′ terminal structure. Cell proteins may also be involved in facilitating exponential replication of nascent genomic RNA within replication vesicles at later times of infection cycle. Other conserved RNA structures and/or sequences in the 5′ and 3′ terminal regions have been proposed to regulate genome translation. Additional functions of the 5′ and 3′ terminal sequences have also been reported. PMID:25683510
Mms1 is an assistant for regulating G-quadruplex DNA structures.
Schwindt, Eike; Paeschke, Katrin
2018-06-01
The preservation of genome stability is fundamental for every cell. Genomic integrity is constantly challenged. Among those challenges are also non-canonical nucleic acid structures. In recent years, scientists became aware of the impact of G-quadruplex (G4) structures on genome stability. It has been shown that folded G4-DNA structures cause changes in the cell, such as transcriptional up/down-regulation, replication stalling, or enhanced genome instability. Multiple helicases have been identified to regulate G4 structures and by this preserve genome stability. Interestingly, although these helicases are mostly ubiquitous expressed, they show specificity for G4 regulation in certain cellular processes (e.g., DNA replication). To this date, it is not clear how this process and target specificity of helicases are achieved. Recently, Mms1, an ubiquitin ligase complex protein, was identified as a novel G4-DNA-binding protein that supports genome stability by aiding Pif1 helicase binding to these regions. In this perspective review, we discuss the question if G4-DNA interacting proteins are fundamental for helicase function and specificity at G4-DNA structures.
Rosa-Garrido, Manuel; Chapski, Douglas J.; Schmitt, Anthony D.; Kimball, Todd H.; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J.; Ren, Shuxun; Wang, Yibin; Ren, Bing
2017-01-01
Background: Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. Methods: To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload–induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Results: Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. Conclusions: These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. PMID:28802249
Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M
2017-10-24
Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.
A genome-wide 3C-method for characterizing the three-dimensional architectures of genomes.
Duan, Zhijun; Andronescu, Mirela; Schutz, Kevin; Lee, Choli; Shendure, Jay; Fields, Stanley; Noble, William S; Anthony Blau, C
2012-11-01
Accumulating evidence demonstrates that the three-dimensional (3D) organization of chromosomes within the eukaryotic nucleus reflects and influences genomic activities, including transcription, DNA replication, recombination and DNA repair. In order to uncover structure-function relationships, it is necessary first to understand the principles underlying the folding and the 3D arrangement of chromosomes. Chromosome conformation capture (3C) provides a powerful tool for detecting interactions within and between chromosomes. A high throughput derivative of 3C, chromosome conformation capture on chip (4C), executes a genome-wide interrogation of interaction partners for a given locus. We recently developed a new method, a derivative of 3C and 4C, which, similar to Hi-C, is capable of comprehensively identifying long-range chromosome interactions throughout a genome in an unbiased fashion. Hence, our method can be applied to decipher the 3D architectures of genomes. Here, we provide a detailed protocol for this method. Published by Elsevier Inc.
Cas9 versus Cas12a/Cpf1: Structure-function comparisons and implications for genome editing.
Swarts, Daan C; Jinek, Martin
2018-05-22
Cas9 and Cas12a are multidomain CRISPR-associated nucleases that can be programmed with a guide RNA to bind and cleave complementary DNA targets. The guide RNA sequence can be varied, making these effector enzymes versatile tools for genome editing and gene regulation applications. While Cas9 is currently the best-characterized and most widely used nuclease for such purposes, Cas12a (previously named Cpf1) has recently emerged as an alternative for Cas9. Cas9 and Cas12a have distinct evolutionary origins and exhibit different structural architectures, resulting in distinct molecular mechanisms. Here we compare the structural and mechanistic features that distinguish Cas9 and Cas12a, and describe how these features modulate their activity. We discuss implications for genome editing, and how they may influence the choice of Cas9 or Cas12a for specific applications. Finally, we review recent studies in which Cas12a has been utilized as a genome editing tool. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes. © 2018 Wiley Periodicals, Inc.
JNSViewer—A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures
Dong, Min; Graham, Mitchell; Yadav, Nehul
2017-01-01
Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html. PMID:28582416
Targeting RNA–Protein Interactions within the Human Immunodeficiency Virus Type 1 Lifecycle
2013-01-01
RNA–protein interactions are vital throughout the HIV-1 life cycle for the successful production of infectious virus particles. One such essential RNA–protein interaction occurs between the full-length genomic viral RNA and the major structural protein of the virus. The initial interaction is between the Gag polyprotein and the viral RNA packaging signal (psi or Ψ), a highly conserved RNA structural element within the 5′-UTR of the HIV-1 genome, which has gained attention as a potential therapeutic target. Here, we report the application of a target-based assay to identify small molecules, which modulate the interaction between Gag and Ψ. We then demonstrate that one such molecule exhibits potent inhibitory activity in a viral replication assay. The mode of binding of the lead molecules to the RNA target was characterized by 1H NMR spectroscopy. PMID:24358934
Sul, Jae Hoon; Bilow, Michael; Yang, Wen-Yun; Kostem, Emrah; Furlotte, Nick; He, Dan; Eskin, Eleazar
2016-03-01
Although genome-wide association studies (GWASs) have discovered numerous novel genetic variants associated with many complex traits and diseases, those genetic variants typically explain only a small fraction of phenotypic variance. Factors that account for phenotypic variance include environmental factors and gene-by-environment interactions (GEIs). Recently, several studies have conducted genome-wide gene-by-environment association analyses and demonstrated important roles of GEIs in complex traits. One of the main challenges in these association studies is to control effects of population structure that may cause spurious associations. Many studies have analyzed how population structure influences statistics of genetic variants and developed several statistical approaches to correct for population structure. However, the impact of population structure on GEI statistics in GWASs has not been extensively studied and nor have there been methods designed to correct for population structure on GEI statistics. In this paper, we show both analytically and empirically that population structure may cause spurious GEIs and use both simulation and two GWAS datasets to support our finding. We propose a statistical approach based on mixed models to account for population structure on GEI statistics. We find that our approach effectively controls population structure on statistics for GEIs as well as for genetic variants.
Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging
Füzik, Tibor; Píchalová, Růžena; Schur, Florian K. M.; Strohalmová, Karolína; Křížová, Ivana; Hadravová, Romana; Rumlová, Michaela; Briggs, John A. G.
2016-01-01
ABSTRACT The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle. IMPORTANCE Assembly of retrovirus particles is driven by the Gag polyprotein, which can self-assemble to form virus particles and interact with RNA to recruit the viral genome into the particles. Generally, the capsid domains of Gag contribute to essential protein-protein interactions during assembly, while the nucleocapsid domain interacts with RNA. The interactions between the nucleocapsid domain and RNA are important both for identifying the genome and for self-assembly of Gag molecules. Here, we show that a region of basic residues in the capsid protein of the betaretrovirus Mason-Pfizer monkey virus (M-PMV) contributes to interaction of Gag with nucleic acid. This interaction appears to provide a critical scaffolding function that promotes assembly of virus particles in the cytoplasm. It is also crucial for packaging the viral genome and thus for infectivity. These data indicate that, surprisingly, interactions between the capsid domain and RNA play an important role in the assembly of M-PMV. PMID:26912613
Coordinates and intervals in graph-based reference genomes.
Rand, Knut D; Grytten, Ivar; Nederbragt, Alexander J; Storvik, Geir O; Glad, Ingrid K; Sandve, Geir K
2017-05-18
It has been proposed that future reference genomes should be graph structures in order to better represent the sequence diversity present in a species. However, there is currently no standard method to represent genomic intervals, such as the positions of genes or transcription factor binding sites, on graph-based reference genomes. We formalize offset-based coordinate systems on graph-based reference genomes and introduce methods for representing intervals on these reference structures. We show the advantage of our methods by representing genes on a graph-based representation of the newest assembly of the human genome (GRCh38) and its alternative loci for regions that are highly variable. More complex reference genomes, containing alternative loci, require methods to represent genomic data on these structures. Our proposed notation for genomic intervals makes it possible to fully utilize the alternative loci of the GRCh38 assembly and potential future graph-based reference genomes. We have made a Python package for representing such intervals on offset-based coordinate systems, available at https://github.com/uio-cels/offsetbasedgraph . An interactive web-tool using this Python package to visualize genes on a graph created from GRCh38 is available at https://github.com/uio-cels/genomicgraphcoords .
Phenetic Comparison of Prokaryotic Genomes Using k-mers
Déraspe, Maxime; Raymond, Frédéric; Boisvert, Sébastien; Culley, Alexander; Roy, Paul H.; Laviolette, François; Corbeil, Jacques
2017-01-01
Abstract Bacterial genomics studies are getting more extensive and complex, requiring new ways to envision analyses. Using the Ray Surveyor software, we demonstrate that comparison of genomes based on their k-mer content allows reconstruction of phenetic trees without the need of prior data curation, such as core genome alignment of a species. We validated the methodology using simulated genomes and previously published phylogenomic studies of Streptococcus pneumoniae and Pseudomonas aeruginosa. We also investigated the relationship of specific genetic determinants with bacterial population structures. By comparing clusters from the complete genomic content of a genome population with clusters from specific functional categories of genes, we can determine how the population structures are correlated. Indeed, the strain clustering based on a subset of k-mers allows determination of its similarity with the whole genome clusters. We also applied this methodology on 42 species of bacteria to determine the correlational significance of five important bacterial genomic characteristics. For example, intrinsic resistance is more important in P. aeruginosa than in S. pneumoniae, and the former has increased correlation of its population structure with antibiotic resistance genes. The global view of the pangenome of bacteria also demonstrated the taxa-dependent interaction of population structure with antibiotic resistance, bacteriophage, plasmid, and mobile element k-mer data sets. PMID:28957508
A Probabilistic Graphical Model to Detect Chromosomal Domains
NASA Astrophysics Data System (ADS)
Heermann, Dieter; Hofmann, Andreas; Weber, Eva
To understand the nature of a cell, one needs to understand the structure of its genome. For this purpose, experimental techniques such as Hi-C detecting chromosomal contacts are used to probe the three-dimensional genomic structure. These experiments yield topological information, consistently showing a hierarchical subdivision of the genome into self-interacting domains across many organisms. Current methods for detecting these domains using the Hi-C contact matrix, i.e. a doubly-stochastic matrix, are mostly based on the assumption that the domains are distinct, thus non-overlapping. For overcoming this simplification and for being able to unravel a possible nested domain structure, we developed a probabilistic graphical model that makes no a priori assumptions on the domain structure. Within this approach, the Hi-C contact matrix is analyzed using an Ising like probabilistic graphical model whose coupling constant is proportional to each lattice point (entry in the contact matrix). The results show clear boundaries between identified domains and the background. These domain boundaries are dependent on the coupling constant, so that one matrix yields several clusters of different sizes, which show the self-interaction of the genome on different scales. This work was supported by a Grant from the International Human Frontier Science Program Organization (RGP0014/2014).
[Three-dimensional genome organization: a lesson from the Polycomb-Group proteins].
Bantignies, Frédéric
2013-01-01
As more and more genomes are being explored and annotated, important features of three-dimensional (3D) genome organization are just being uncovered. In the light of what we know about Polycomb group (PcG) proteins, we will present the latest findings on this topic. The PcG proteins are well-conserved chromatin factors that repress transcription of numerous target genes. They bind the genome at specific sites, forming chromatin domains of associated histone modifications as well as higher-order chromatin structures. These 3D chromatin structures involve the interactions between PcG-bound regulatory regions at short- and long-range distances, and may significantly contribute to PcG function. Recent high throughput "Chromosome Conformation Capture" (3C) analyses have revealed many other higher order structures along the chromatin fiber, partitioning the genomes into well demarcated topological domains. This revealed an unprecedented link between linear epigenetic domains and chromosome architecture, which might be intimately connected to genome function. © Société de Biologie, 2013.
Hart, Thomas; Dider, Shihab; Han, Weiwei; Xu, Hua; Zhao, Zhongming; Xie, Lei
2016-01-01
Metformin, a drug prescribed to treat type-2 diabetes, exhibits anti-cancer effects in a portion of patients, but the direct molecular and genetic interactions leading to this pleiotropic effect have not yet been fully explored. To repurpose metformin as a precision anti-cancer therapy, we have developed a novel structural systems pharmacology approach to elucidate metformin’s molecular basis and genetic biomarkers of action. We integrated structural proteome-scale drug target identification with network biology analysis by combining structural genomic, functional genomic, and interactomic data. Through searching the human structural proteome, we identified twenty putative metformin binding targets and their interaction models. We experimentally verified the interactions between metformin and our top-ranked kinase targets. Notably, kinases, particularly SGK1 and EGFR were identified as key molecular targets of metformin. Subsequently, we linked these putative binding targets to genes that do not directly bind to metformin but whose expressions are altered by metformin through protein-protein interactions, and identified network biomarkers of phenotypic response of metformin. The molecular targets and the key nodes in genetic networks are largely consistent with the existing experimental evidence. Their interactions can be affected by the observed cancer mutations. This study will shed new light into repurposing metformin for safe, effective, personalized therapies. PMID:26841718
Drouin, Lauren M.; Lins, Bridget; Janssen, Maria; Bennett, Antonette; Chipman, Paul; McKenna, Robert; Chen, Weijun; Muzyczka, Nicholas; Cardone, Giovanni
2016-01-01
ABSTRACT The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the βA strand region under the icosahedral 2-fold axis rather than antiparallel to the βB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. IMPORTANCE The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid-Rep interaction. Understanding this mechanism may aid in the improvement of AAV packaging efficiency, which is currently ∼1:10 (10%) genome packaged to empty capsid in vector preparations. This report identifies regions of the AAV capsid that play roles in genome packaging and that may be important for Rep recognition. It also demonstrates the need to maintain capsid stability for the success of this process. This information is important for efforts to improve AAV genome packaging and will also inform the engineering of AAV capsid variants for improved tropism, specific tissue targeting, and host antibody escape by defining amino acids that cannot be altered without detriment to infectious vector production. PMID:27440903
Zhang, Fan; Zhang, Bing; Xiang, Hua; Hu, Songnian
2009-11-01
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a widespread system that provides acquired resistance against phages in bacteria and archaea. Here we aim to genome-widely analyze the CRISPR in extreme halophilic archaea, of which the whole genome sequences are available at present time. We used bioinformatics methods including alignment, conservation analysis, GC content and RNA structure prediction to analyze the CRISPR structures of 7 haloarchaeal genomes. We identified the CRISPR structures in 5 halophilic archaea and revealed a conserved palindromic motif in the flanking regions of these CRISPR structures. In addition, we found that the repeat sequences of large CRISPR structures in halophilic archaea were greatly conserved, and two types of predicted RNA secondary structures derived from the repeat sequences were likely determined by the fourth base of the repeat sequence. Our results support the proposal that the leader sequence may function as recognition site by having palindromic structures in flanking regions, and the stem-loop secondary structure formed by repeat sequences may function in mediating the interaction between foreign genetic elements and CAS-encoded proteins.
The Divided Bacterial Genome: Structure, Function, and Evolution.
diCenzo, George C; Finan, Turlough M
2017-09-01
Approximately 10% of bacterial genomes are split between two or more large DNA fragments, a genome architecture referred to as a multipartite genome. This multipartite organization is found in many important organisms, including plant symbionts, such as the nitrogen-fixing rhizobia, and plant, animal, and human pathogens, including the genera Brucella , Vibrio , and Burkholderia . The availability of many complete bacterial genome sequences means that we can now examine on a broad scale the characteristics of the different types of DNA molecules in a genome. Recent work has begun to shed light on the unique properties of each class of replicon, the unique functional role of chromosomal and nonchromosomal DNA molecules, and how the exploitation of novel niches may have driven the evolution of the multipartite genome. The aims of this review are to (i) outline the literature regarding bacterial genomes that are divided into multiple fragments, (ii) provide a meta-analysis of completed bacterial genomes from 1,708 species as a way of reviewing the abundant information present in these genome sequences, and (iii) provide an encompassing model to explain the evolution and function of the multipartite genome structure. This review covers, among other topics, salient genome terminology; mechanisms of multipartite genome formation; the phylogenetic distribution of multipartite genomes; how each part of a genome differs with respect to genomic signatures, genetic variability, and gene functional annotation; how each DNA molecule may interact; as well as the costs and benefits of this genome structure. Copyright © 2017 American Society for Microbiology.
A Thermodynamic Model for Genome Packaging in Hepatitis B Virus.
Kim, Jehoon; Wu, Jianzhong
2015-10-20
Understanding the fundamentals of genome packaging in viral capsids is important for finding effective antiviral strategies and for utilizing benign viral particles for gene therapy. While the structure of encapsidated genomic materials has been routinely characterized with experimental techniques such as cryo-electron microscopy and x-ray diffraction, much less is known about the molecular driving forces underlying genome assembly in an intracellular environment and its in vivo interactions with the capsid proteins. Here we study the thermodynamic basis of the pregenomic RNA encapsidation in human Hepatitis B virus in vivo using a coarse-grained molecular model that captures the essential components of nonspecific intermolecular interactions. The thermodynamic model is used to examine how the electrostatic interaction between the packaged RNA and the highly charged C-terminal domains (CTD) of capsid proteins regulate the nucleocapsid formation. The theoretical model predicts optimal RNA content in Hepatitis B virus nucleocapsids with different CTD lengths in good agreement with mutagenesis measurements, confirming the predominant role of electrostatic interactions and molecular excluded-volume effects in genome packaging. We find that the amount of encapsidated RNA is not linearly correlated with the net charge of CTD tails as suggested by earlier theoretical studies. Our thermodynamic analysis of the nucleocapsid structure and stability indicates that ∼10% of the CTD residues are free from complexation with RNA, resulting in partially exposed CTD tails. The thermodynamic model also predicts the free energy of complex formation between macromolecules, which corroborates experimental results for the impact of CTD truncation on the nucleocapsid stability. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Hawkeye and AMOS: visualizing and assessing the quality of genome assemblies
Schatz, Michael C.; Phillippy, Adam M.; Sommer, Daniel D.; Delcher, Arthur L.; Puiu, Daniela; Narzisi, Giuseppe; Salzberg, Steven L.; Pop, Mihai
2013-01-01
Since its launch in 2004, the open-source AMOS project has released several innovative DNA sequence analysis applications including: Hawkeye, a visual analytics tool for inspecting the structure of genome assemblies; the Assembly Forensics and FRCurve pipelines for systematically evaluating the quality of a genome assembly; and AMOScmp, the first comparative genome assembler. These applications have been used to assemble and analyze dozens of genomes ranging in complexity from simple microbial species through mammalian genomes. Recent efforts have been focused on enhancing support for new data characteristics brought on by second- and now third-generation sequencing. This review describes the major components of AMOS in light of these challenges, with an emphasis on methods for assessing assembly quality and the visual analytics capabilities of Hawkeye. These interactive graphical aspects are essential for navigating and understanding the complexities of a genome assembly, from the overall genome structure down to individual bases. Hawkeye and AMOS are available open source at http://amos.sourceforge.net. PMID:22199379
Computational characterization of chromatin domain boundary-associated genomic elements
Hong, Seungpyo
2017-01-01
Abstract Topologically associated domains (TADs) are 3D genomic structures with high internal interactions that play important roles in genome compaction and gene regulation. Their genomic locations and their association with CCCTC-binding factor (CTCF)-binding sites and transcription start sites (TSSs) were recently reported. However, the relationship between TADs and other genomic elements has not been systematically evaluated. This was addressed in the present study, with a focus on the enrichment of these genomic elements and their ability to predict the TAD boundary region. We found that consensus CTCF-binding sites were strongly associated with TAD boundaries as well as with the transcription factors (TFs) Zinc finger protein (ZNF)143 and Yin Yang (YY)1. TAD boundary-associated genomic elements include DNase I-hypersensitive sites, H3K36 trimethylation, TSSs, RNA polymerase II, and TFs such as Specificity protein 1, ZNF274 and SIX homeobox 5. Computational modeling with these genomic elements suggests that they have distinct roles in TAD boundary formation. We propose a structural model of TAD boundaries based on these findings that provides a basis for studying the mechanism of chromatin structure formation and gene regulation. PMID:28977568
modPDZpep: a web resource for structure based analysis of human PDZ-mediated interaction networks.
Sain, Neetu; Mohanty, Debasisa
2016-09-21
PDZ domains recognize short sequence stretches usually present in C-terminal of their interaction partners. Because of the involvement of PDZ domains in many important biological processes, several attempts have been made for developing bioinformatics tools for genome-wide identification of PDZ interaction networks. Currently available tools for prediction of interaction partners of PDZ domains utilize machine learning approach. Since, they have been trained using experimental substrate specificity data for specific PDZ families, their applicability is limited to PDZ families closely related to the training set. These tools also do not allow analysis of PDZ-peptide interaction interfaces. We have used a structure based approach to develop modPDZpep, a program to predict the interaction partners of human PDZ domains and analyze structural details of PDZ interaction interfaces. modPDZpep predicts interaction partners by using structural models of PDZ-peptide complexes and evaluating binding energy scores using residue based statistical pair potentials. Since, it does not require training using experimental data on peptide binding affinity, it can predict substrates for diverse PDZ families. Because of the use of simple scoring function for binding energy, it is also fast enough for genome scale structure based analysis of PDZ interaction networks. Benchmarking using artificial as well as real negative datasets indicates good predictive power with ROC-AUC values in the range of 0.7 to 0.9 for a large number of human PDZ domains. Another novel feature of modPDZpep is its ability to map novel PDZ mediated interactions in human protein-protein interaction networks, either by utilizing available experimental phage display data or by structure based predictions. In summary, we have developed modPDZpep, a web-server for structure based analysis of human PDZ domains. It is freely available at http://www.nii.ac.in/modPDZpep.html or http://202.54.226.235/modPDZpep.html . This article was reviewed by Michael Gromiha and Zoltán Gáspári.
Palanisamy, Navaneethan; Akaberi, Dario; Lennerstrand, Johan; Lundkvist, Åke
2018-05-10
Alkhumra hemorrhagic fever virus (AHFV), a relatively new member of the Flaviviruses, was discovered in Saudi Arabia 23 years ago. AHFV is classified in the tick-borne encephalitis virus serocomplex, along with the Kyasanur forest disease virus (KFDV) and tick-borne encephalitis virus (TBEV). Currently, very little is known about the pathologies of AHFV. In this study, using the available genome information of AHFV, KFDV and TBEV, we have predicted and compared the following aspects of these viruses: evolution, nucleotide and protein compositions, recombination, codon frequency, substitution rate, N- and O-glycosylation sites, signal peptide and cleavage site, transmembrane region, secondary structure of 5' and 3' UTRs and RNA-RNA interactions. Additionally, we have modeled the 3D protease and RNA-dependent RNA polymerase structures for AHFV, KFDV and TBEV. Recombination analysis showed no evidence of recombination in the AHFV genome with that of either KFDV or TBEV, although single break point analysis showed that nucleotide position 7399 (in the NS4B) is a breakpoint location. AHFV, KFDV and TBEV are very similar in terms of codon frequency, the number of transmembrane regions, properties of the polyprotein, RNA-RNA interaction sequences, NS3 protease and NS5 polymerase structures and 5' UTR structure. Using genome sequences, we showed the similarities between these closely- related viruses on several different areas.
Ceapă, Corina Diana; Vázquez-Hernández, Melissa; Rodríguez-Luna, Stefany Daniela; Cruz Vázquez, Angélica Patricia; Jiménez Suárez, Verónica; Rodríguez-Sanoja, Romina; Alvarez-Buylla, Elena R; Sánchez, Sergio
2018-01-01
Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions.
Rodríguez-Luna, Stefany Daniela; Cruz Vázquez, Angélica Patricia; Jiménez Suárez, Verónica; Rodríguez-Sanoja, Romina; Alvarez-Buylla, Elena R.; Sánchez, Sergio
2018-01-01
Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions. PMID:29447216
Replication domains are self-interacting structural chromatin units of human chromosomes
NASA Astrophysics Data System (ADS)
Arneodo, Alain
2011-03-01
In higher eukaryotes, the absence of specific sequence motifs marking the origins of replication has been a serious hindrance to the understanding of the mechanisms that regulate the initiation and the maintenance of the replication program in different cell types. In silico analysis of nucleotide compositional skew has predicted the existence, in the germline, of replication N-domains bordered by putative replication origins and where the skew decreases rather linearly as the signature of a progressive inversion of the average fork polarity. Here, from the demonstration that the average fork polarity can be directly extracted from the derivative of replication timing profiles, we develop a wavelet-based pattern recognition methodology to delineate replication U-domains where the replication timing profile is shaped as a U and its derivative as a N. Replication U-domains are robustly found in seven cell lines as covering a significant portion (40-50%) of the human genome where the replication timing data actually displays some plasticity between cell lines. The early replication initiation zones at U-domains borders are found to be hypersensitive to DNase I cleavage, to be associated with transcriptional activity and to present a significant enrichment in insular-binding proteins CTCF, the hallmark of an open chromatin structure. A comparative analysis of genome-wide chromatin interaction (HiC) data shows that replication-U domains correspond to self-interacting structural high order chromatin units of megabase characteristic size. Taken together, these findings provide evidence that the epigenetic compartmentalization of the human genome into autonomous replication U-domains comes along with an extensive remodelling of the threedimensional chromosome architecture during development or in specific diseases. The observed cell specific conservation of the replication timing between the human and mouse genomes strongly suggests that this chromosome organization into self-interacting structural and functional units is a general feature of mammalian organisms.
Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150
Yu, Xuekui; Jih, Jonathan; Jiang, Jiansen; Zhou, Z. Hong
2017-01-01
Herpesviruses possess a genome-pressurized capsid. The 235-kilobase genome of human cytomegalovirus (HCMV) is by far the largest of any herpesvirus, yet it has been unclear how its capsid, which is similar in size to those of other herpesviruses, is stabilized. Here we report a HCMV atomic structure consisting of the herpesvirus-conserved capsid proteins MCP, Tri1, Tri2, and SCP and the HCMV-specific tegument protein pp150—totaling ~4000 molecules and 62 different conformers. MCPs manifest as a complex of insertions around a bacteriophage HK97 gp5–like domain, which gives rise to three classes of capsid floor–defining interactions; triplexes, composed of two “embracing” Tri2 conformers and a “third-wheeling” Tri1, fasten the capsid floor. HCMV-specific strategies include using hexon channels to accommodate the genome and pp150 helix bundles to secure the capsid via cysteine tetrad–to-SCP interactions. Our structure should inform rational design of countermeasures against HCMV, other herpesviruses, and even HIV/AIDS. PMID:28663444
Liu, Chang
2017-01-01
The spatial organization of the genome in the nucleus is critical for many cellular processes. It has been broadly accepted that the packing of chromatin inside the nucleus is not random, but structured at several hierarchical levels. The Hi-C method combines Chromatin Conformation Capture and high-throughput sequencing, which allows interrogating genome-wide chromatin interactions. Depending on the sequencing depth, chromatin packing patterns derived from Hi-C experiments can be viewed on a chromosomal scale or at a local genic level. Here, I describe a protocol of plant in situ Hi-C library preparation, which covers procedures starting from tissue fixation to library amplification.
Lando, David; Stevens, Tim J; Basu, Srinjan; Laue, Ernest D
2018-01-01
Single-cell chromosome conformation capture approaches are revealing the extent of cell-to-cell variability in the organization and packaging of genomes. These single-cell methods, unlike their multi-cell counterparts, allow straightforward computation of realistic chromosome conformations that may be compared and combined with other, independent, techniques to study 3D structure. Here we discuss how single-cell Hi-C and subsequent 3D genome structure determination allows comparison with data from microscopy. We then carry out a systematic evaluation of recently published single-cell Hi-C datasets to establish a computational approach for the evaluation of single-cell Hi-C protocols. We show that the calculation of genome structures provides a useful tool for assessing the quality of single-cell Hi-C data because it requires a self-consistent network of interactions, relating to the underlying 3D conformation, with few errors, as well as sufficient longer-range cis- and trans-chromosomal contacts.
Osypov, Alexander A; Krutinin, Gleb G; Krutinina, Eugenia A; Kamzolova, Svetlana G
2012-04-01
Electrostatic properties of genome DNA are important to its interactions with different proteins, in particular, related to transcription. DEPPDB - DNA Electrostatic Potential (and other Physical) Properties Database - provides information on the electrostatic and other physical properties of genome DNA combined with its sequence and annotation of biological and structural properties of genomes and their elements. Genomes are organized on taxonomical basis, supporting comparative and evolutionary studies. Currently, DEPPDB contains all completely sequenced bacterial, viral, mitochondrial, and plastids genomes according to the NCBI RefSeq, and some model eukaryotic genomes. Data for promoters, regulation sites, binding proteins, etc., are incorporated from established DBs and literature. The database is complemented by analytical tools. User sequences calculations are available. Case studies discovered electrostatics complementing DNA bending in E.coli plasmid BNT2 promoter functioning, possibly affecting host-environment metabolic switch. Transcription factors binding sites gravitate to high potential regions, confirming the electrostatics universal importance in protein-DNA interactions beyond the classical promoter-RNA polymerase recognition and regulation. Other genome elements, such as terminators, also show electrostatic peculiarities. Most intriguing are gene starts, exhibiting taxonomic correlations. The necessity of the genome electrostatic properties studies is discussed.
Dykeman, Eric C; Stockley, Peter G; Twarock, Reidun
2013-09-09
The current paradigm for assembly of single-stranded RNA viruses is based on a mechanism involving non-sequence-specific packaging of genomic RNA driven by electrostatic interactions. Recent experiments, however, provide compelling evidence for sequence specificity in this process both in vitro and in vivo. The existence of multiple RNA packaging signals (PSs) within viral genomes has been proposed, which facilitates assembly by binding coat proteins in such a way that they promote the protein-protein contacts needed to build the capsid. The binding energy from these interactions enables the confinement or compaction of the genomic RNAs. Identifying the nature of such PSs is crucial for a full understanding of assembly, which is an as yet untapped potential drug target for this important class of pathogens. Here, for two related bacterial viruses, we determine the sequences and locations of their PSs using Hamiltonian paths, a concept from graph theory, in combination with bioinformatics and structural studies. Their PSs have a common secondary structure motif but distinct consensus sequences and positions within the respective genomes. Despite these differences, the distributions of PSs in both viruses imply defined conformations for the packaged RNA genomes in contact with the protein shell in the capsid, consistent with a recent asymmetric structure determination of the MS2 virion. The PS distributions identified moreover imply a preferred, evolutionarily conserved assembly pathway with respect to the RNA sequence with potentially profound implications for other single-stranded RNA viruses known to have RNA PSs, including many animal and human pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.
Drouin, Lauren M; Lins, Bridget; Janssen, Maria; Bennett, Antonette; Chipman, Paul; McKenna, Robert; Chen, Weijun; Muzyczka, Nicholas; Cardone, Giovanni; Baker, Timothy S; Agbandje-McKenna, Mavis
2016-10-01
The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the βA strand region under the icosahedral 2-fold axis rather than antiparallel to the βB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid-Rep interaction. Understanding this mechanism may aid in the improvement of AAV packaging efficiency, which is currently ∼1:10 (10%) genome packaged to empty capsid in vector preparations. This report identifies regions of the AAV capsid that play roles in genome packaging and that may be important for Rep recognition. It also demonstrates the need to maintain capsid stability for the success of this process. This information is important for efforts to improve AAV genome packaging and will also inform the engineering of AAV capsid variants for improved tropism, specific tissue targeting, and host antibody escape by defining amino acids that cannot be altered without detriment to infectious vector production. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Divergence of Mammalian Higher Order Chromatin Structure Is Associated with Developmental Loci
Chambers, Emily V.; Bickmore, Wendy A.; Semple, Colin A.
2013-01-01
Several recent studies have examined different aspects of mammalian higher order chromatin structure – replication timing, lamina association and Hi-C inter-locus interactions — and have suggested that most of these features of genome organisation are conserved over evolution. However, the extent of evolutionary divergence in higher order structure has not been rigorously measured across the mammalian genome, and until now little has been known about the characteristics of any divergent loci present. Here, we generate a dataset combining multiple measurements of chromatin structure and organisation over many embryonic cell types for both human and mouse that, for the first time, allows a comprehensive assessment of the extent of structural divergence between mammalian genomes. Comparison of orthologous regions confirms that all measurable facets of higher order structure are conserved between human and mouse, across the vast majority of the detectably orthologous genome. This broad similarity is observed in spite of many loci possessing cell type specific structures. However, we also identify hundreds of regions (from 100 Kb to 2.7 Mb in size) showing consistent evidence of divergence between these species, constituting at least 10% of the orthologous mammalian genome and encompassing many hundreds of human and mouse genes. These regions show unusual shifts in human GC content, are unevenly distributed across both genomes, and are enriched in human subtelomeric regions. Divergent regions are also relatively enriched for genes showing divergent expression patterns between human and mouse ES cells, implying these regions cause divergent regulation. Particular divergent loci are strikingly enriched in genes implicated in vertebrate development, suggesting important roles for structural divergence in the evolution of mammalian developmental programmes. These data suggest that, though relatively rare in the mammalian genome, divergence in higher order chromatin structure has played important roles during evolution. PMID:23592965
Amendola, Mario; van Steensel, Bas
2015-05-01
In mammals, the nuclear lamina interacts with hundreds of large genomic regions, termed lamina-associated domains (LADs) that are generally in a transcriptionally repressed state. Lamins form the major structural component of the lamina and have been reported to bind DNA and chromatin. Here, we systematically evaluate whether lamins are necessary for the LAD organization in murine embryonic stem cells. Surprisingly, removal of essentially all lamins does not have any detectable effect on the genome-wide interaction pattern of chromatin with emerin, a marker of the inner nuclear membrane. This suggests that other components of the lamina mediate these interactions. © 2015 The Authors.
DNA-HMGB1 interaction: The nuclear aggregates of polyamine mediation.
Iacomino, Giuseppe; Picariello, Gianluca; Sbrana, Francesca; Raiteri, Roberto; D'Agostino, Luciano
2016-10-01
Nuclear aggregates of polyamines (NAPs) are supramolecular compounds generated by the self-assembly of protonated nuclear polyamines (spermine, spermidine and putrescine) and phosphate ions. In the presence of genomic DNA, the hierarchical process of self-structuring ultimately produces nanotube-like polymers that envelop the double helix. Because of their modular nature and their aggregation-disaggregation dynamics, NAPs confer plasticity and flexibility to DNA. Through the disposition of charges, NAPs also enable a bidirectional stream of information between the genome and interacting moieties. High mobility group (HMG) B1 is a non-histone chromosomal protein that binds to DNA and that influences multiple nuclear processes. Because genomic DNA binds to either NAPs or HMGB1 protein, we explored the ability of in vitro self-assembled NAPs (ivNAPs) to mediate the DNA-HMGB1 interaction. To this end, we structured DNA-NAPs-HMGB1 and DNA-HMGB1-NAPs ternary complexes in vitro through opportune sequential incubations. Mobility shift electrophoresis and atomic force microscopy showed that the DNA-ivNAPs-HGMB1 complex had conformational assets supposedly more suitable those of the DNA-HGMB1-ivNAPs to comply with the physiological and functional requirements of DNA. Our findings indicated that ivNAPs act as mediators of the DNA-HMGB1 interaction. Copyright © 2016 Elsevier B.V. All rights reserved.
Replication Cycle and Molecular Biology of the West Nile Virus
Brinton, Margo A.
2013-01-01
West Nile virus (WNV) is a member of the genus Flavivirus in the family Flaviviridae. Flaviviruses replicate in the cytoplasm of infected cells and modify the host cell environment. Although much has been learned about virion structure and virion-endosomal membrane fusion, the cell receptor(s) used have not been definitively identified and little is known about the early stages of the virus replication cycle. Members of the genus Flavivirus differ from members of the two other genera of the family by the lack of a genomic internal ribosomal entry sequence and the creation of invaginations in the ER membrane rather than double-membrane vesicles that are used as the sites of exponential genome synthesis. The WNV genome 3' and 5' sequences that form the long distance RNA-RNA interaction required for minus strand initiation have been identified and contact sites on the 5' RNA stem loop for NS5 have been mapped. Structures obtained for many of the viral proteins have provided information relevant to their functions. Viral nonstructural protein interactions are complex and some may occur only in infected cells. Although interactions between many cellular proteins and virus components have been identified, the functions of most of these interactions have not been delineated. PMID:24378320
Belaghzal, Houda; Dekker, Job; Gibcus, Johan H
2017-07-01
Chromosome conformation capture-based methods such as Hi-C have become mainstream techniques for the study of the 3D organization of genomes. These methods convert chromatin interactions reflecting topological chromatin structures into digital information (counts of pair-wise interactions). Here, we describe an updated protocol for Hi-C (Hi-C 2.0) that integrates recent improvements into a single protocol for efficient and high-resolution capture of chromatin interactions. This protocol combines chromatin digestion and frequently cutting enzymes to obtain kilobase (kb) resolution. It also includes steps to reduce random ligation and the generation of uninformative molecules, such as unligated ends, to improve the amount of valid intra-chromosomal read pairs. This protocol allows for obtaining information on conformational structures such as compartment and topologically associating domains, as well as high-resolution conformational features such as DNA loops. Copyright © 2017 Elsevier Inc. All rights reserved.
Deppdb--DNA electrostatic potential properties database: electrostatic properties of genome DNA.
Osypov, Alexander A; Krutinin, Gleb G; Kamzolova, Svetlana G
2010-06-01
The electrostatic properties of genome DNA influence its interactions with different proteins, in particular, the regulation of transcription by RNA-polymerases. DEPPDB--DNA Electrostatic Potential Properties Database--was developed to hold and provide all available information on the electrostatic properties of genome DNA combined with its sequence and annotation of biological and structural properties of genome elements and whole genomes. Genomes in DEPPDB are organized on a taxonomical basis. Currently, the database contains all the completely sequenced bacterial and viral genomes according to NCBI RefSeq. General properties of the genome DNA electrostatic potential profile and principles of its formation are revealed. This potential correlates with the GC content but does not correspond to it exactly and strongly depends on both the sequence arrangement and its context (flanking regions). Analysis of the promoter regions for bacterial and viral RNA polymerases revealed a correspondence between the scale of these proteins' physical properties and electrostatic profile patterns. We also discovered a direct correlation between the potential value and the binding frequency of RNA polymerase to DNA, supporting the idea of the role of electrostatics in these interactions. This matches a pronounced tendency of the promoter regions to possess higher values of the electrostatic potential.
Li, Qi; Lin, Feibi; Yang, Chen; Wang, Juanping; Lin, Yan; Shen, Mengyuan; Park, Min S.; Li, Tao; Zhao, Jindong
2018-01-01
Cyanobacterial blooms are worldwide issues of societal concern and scientific interest. Lake Taihu and Lake Dianchi, two of the largest lakes in China, have been suffering from annual Microcystis-based blooms over the past two decades. These two eutrophic lakes differ in both nutrient load and environmental parameters, where Microcystis microbiota consisting of different Microcystis morphospecies and associated bacteria (epibionts) have dominated. We conducted a comprehensive metagenomic study that analyzed species diversity, community structure, functional components, metabolic pathways and networks to investigate functional interactions among the members of six Microcystis-epibiont communities in these two lakes. Our integrated metagenomic pipeline consisted of efficient assembly, binning, annotation, and quality assurance methods that ensured high-quality genome reconstruction. This study provides a total of 68 reconstructed genomes including six complete Microcystis genomes and 28 high quality bacterial genomes of epibionts belonging to 14 distinct taxa. This metagenomic dataset constitutes the largest reference genome catalog available for genome-centric studies of the Microcystis microbiome. Epibiont community composition appears to be dynamic rather than fixed, and the functional profiles of communities were related to the environment of origin. This study demonstrates mutualistic interactions between Microcystis and epibionts at genetic and metabolic levels. Metabolic pathway reconstruction provided evidence for functional complementation in nitrogen and sulfur cycles, fatty acid catabolism, vitamin synthesis, and aromatic compound degradation among community members. Thus, bacterial social interactions within Microcystis-epibiont communities not only shape species composition, but also stabilize the communities functional profiles. These interactions appear to play an important role in environmental adaptation of Microcystis colonies. PMID:29731741
Lee, Choongho
2013-01-01
Chronic hepatitis C virus (HCV) infection is responsible for the development of liver cirrhosis and hepatocellular carcinoma. HCV core protein plays not only a structural role in the virion morphogenesis by encapsidating a virus RNA genome but also a non-structural role in HCV-induced pathogenesis by blocking innate immunity. Especially, it has been shown to regulate JAK-STAT signaling pathway through its direct interaction with Janus kinase (JAK) via its proline-rich JAK-binding motif (79PGYPWP84). However, little is known about the physiological significance of this HCV core-JAK association in the context of the virus life cycle. In order to gain an insight, a mutant HCV genome (J6/JFH1-79A82A) was constructed to express the mutant core with a defective JAK-binding motif (79AGYAWP84) using an HCV genotype 2a infectious clone (J6/JFH1). When this mutant HCV genome was introduced into hepatocarcinoma cells, it was found to be severely impaired in its ability to produce infectious viruses in spite of its robust RNA genome replication. Taken together, all these results suggest an essential requirement of HCV core-JAK protein interaction for efficient production of infectious viruses and the potential of using core-JAK blockers as a new anti-HCV therapy. PMID:24009866
Barradas-Bautista, Didier; Fernández-Recio, Juan
2017-01-01
Next-generation sequencing (NGS) technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.
2017-01-01
Next-generation sequencing (NGS) technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level. PMID:28841721
Jhunjhunwala, Suchit; van Zelm, Menno C.; Peak, Mandy M.; Cutchin, Steve; Riblet, Roy; van Dongen, Jacques J.M.; Grosveld, Frank G.; Knoch, Tobias A.; Murre, Cornelis
2009-01-01
SUMMARY The immunoglobulin heavy-chain (Igh) locus is organized into distinct regions that contain multiple variable (VH), diversity (DH), joining (JH) and constant (CH) coding elements. How the Igh locus is structured in 3D space is unknown. To probe the topography of the Igh locus, spatial distance distributions were determined between 12 genomic markers that span the entire Igh locus. Comparison of the distance distributions to computer simulations of alternative chromatin arrangements predicted that the Igh locus is organized into compartments containing clusters of loops separated by linkers. Trilateration and triple-point angle measurements indicated the mean relative 3D positions of the VH, DH, JH, and CH elements, showed compartmentalization and striking conformational changes involving VH and DH-JH elements during early B cell development. In pro-B cells, the entire repertoire of VH regions (2 Mbp) appeared to have merged and juxtaposed to the DH elements, mechanistically permitting long-range genomic interactions to occur with relatively high frequency. PMID:18423198
Making the Bend: DNA Tertiary Structure and Protein-DNA Interactions
Harteis, Sabrina; Schneider, Sabine
2014-01-01
DNA structure functions as an overlapping code to the DNA sequence. Rapid progress in understanding the role of DNA structure in gene regulation, DNA damage recognition and genome stability has been made. The three dimensional structure of both proteins and DNA plays a crucial role for their specific interaction, and proteins can recognise the chemical signature of DNA sequence (“base readout”) as well as the intrinsic DNA structure (“shape recognition”). These recognition mechanisms do not exist in isolation but, depending on the individual interaction partners, are combined to various extents. Driving force for the interaction between protein and DNA remain the unique thermodynamics of each individual DNA-protein pair. In this review we focus on the structures and conformations adopted by DNA, both influenced by and influencing the specific interaction with the corresponding protein binding partner, as well as their underlying thermodynamics. PMID:25026169
[Compartmentalization of the cell nucleus and spatial organization of the genome].
Gavrilov, A A; Razin, S V
2015-01-01
The eukaryotic cell nucleus is one of the most complex cell organelles. Despite the absence of membranes, the nuclear space is divided into numerous compartments where different processes in- volved in the genome activity take place. The most important nuclear compartments include nucleoli, nuclear speckles, PML bodies, Cajal bodies, histone locus bodies, Polycomb bodies, insulator bodies, transcription and replication factories. The structural basis for the nuclear compartmentalization is provided by genomic DNA that occupies most of the nuclear volume. Nuclear compartments, in turn, guide the chromosome folding by providing a platform for the spatial interaction of individual genomic loci. In this review, we discuss fundamental principles of higher order genome organization with a focus on chromosome territories and chromosome domains, as well as consider the structure and function of the key nuclear compartments. We show that the func- tional compartmentalization of the cell nucleus and genome spatial organization are tightly interconnected, and that this form of organization is highly dynamic and is based on stochastic processes.
Decoding the genome beyond sequencing: the new phase of genomic research.
Heng, Henry H Q; Liu, Guo; Stevens, Joshua B; Bremer, Steven W; Ye, Karen J; Abdallah, Batoul Y; Horne, Steven D; Ye, Christine J
2011-10-01
While our understanding of gene-based biology has greatly improved, it is clear that the function of the genome and most diseases cannot be fully explained by genes and other regulatory elements. Genes and the genome represent distinct levels of genetic organization with their own coding systems; Genes code parts like protein and RNA, but the genome codes the structure of genetic networks, which are defined by the whole set of genes, chromosomes and their topological interactions within a cell. Accordingly, the genetic code of DNA offers limited understanding of genome functions. In this perspective, we introduce the genome theory which calls for the departure of gene-centric genomic research. To make this transition for the next phase of genomic research, it is essential to acknowledge the importance of new genome-based biological concepts and to establish new technology platforms to decode the genome beyond sequencing. Copyright © 2011 Elsevier Inc. All rights reserved.
Peter, Isabelle S.; Davidson, Eric H.
2014-01-01
The development of multicellular organisms involves the partitioning of the organism into territories of cells of specific structure and function. The information for spatial patterning processes is directly encoded in the genome. The genome determines its own usage depending on stage and position, by means of interactions that constitute gene regulatory networks (GRNs). The GRN driving endomesoderm development in sea urchin embryos illustrates different regulatory strategies by which developmental programs are initiated, orchestrated, stabilized or excluded to define the pattern of specified territories in the developing embryo. PMID:19378258
ssbio: a Python framework for structural systems biology.
Mih, Nathan; Brunk, Elizabeth; Chen, Ke; Catoiu, Edward; Sastry, Anand; Kavvas, Erol; Monk, Jonathan M; Zhang, Zhen; Palsson, Bernhard O
2018-06-15
Working with protein structures at the genome-scale has been challenging in a variety of ways. Here, we present ssbio, a Python package that provides a framework to easily work with structural information in the context of genome-scale network reconstructions, which can contain thousands of individual proteins. The ssbio package provides an automated pipeline to construct high quality genome-scale models with protein structures (GEM-PROs), wrappers to popular third-party programs to compute associated protein properties, and methods to visualize and annotate structures directly in Jupyter notebooks, thus lowering the barrier of linking 3D structural data with established systems workflows. ssbio is implemented in Python and available to download under the MIT license at http://github.com/SBRG/ssbio. Documentation and Jupyter notebook tutorials are available at http://ssbio.readthedocs.io/en/latest/. Interactive notebooks can be launched using Binder at https://mybinder.org/v2/gh/SBRG/ssbio/master?filepath=Binder.ipynb. Supplementary data are available at Bioinformatics online.
Interactions between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly.
Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea; Burdick, Ryan C; Levine, Louis; Li, Kelvin; Rein, Alan; Pathak, Vinay K; Hu, Wei-Shau
2017-08-15
Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious viruslike particles, and the viral RNA is dispensable in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle production when Gag is expressed at levels similar to those in cells containing one provirus. However, such enhancement is diminished when Gag is overexpressed, suggesting that the effects of viral RNA can be replaced by increased Gag concentration in cells. We also showed that the specific interactions between Gag and viral RNA are required for the enhancement of particle production. Taken together, these studies are consistent with our previous hypothesis that specific dimeric viral RNA-Gag interactions are the nucleation event of infectious virion assembly, ensuring that one RNA dimer is packaged into each nascent virion. These studies shed light on the mechanism by which HIV-1 achieves efficient genome packaging during virus assembly. IMPORTANCE Retrovirus assembly is a well-choreographed event, during which many viral and cellular components come together to generate infectious virions. The viral RNA genome carries the genetic information to new host cells, providing instructions to generate new virions, and therefore is essential for virion infectivity. In this report, we show that the specific interaction of the viral RNA genome with the structural protein Gag facilitates virion assembly and particle production. These findings resolve the conundrum that HIV-1 RNA is selectively packaged into virions with high efficiency despite being dispensable for virion assembly. Understanding the mechanism used by HIV-1 to ensure genome packaging provides significant insights into viral assembly and replication. Copyright © 2017 American Society for Microbiology.
Tuncbag, Nurcan; Gursoy, Attila; Nussinov, Ruth; Keskin, Ozlem
2011-08-11
Prediction of protein-protein interactions at the structural level on the proteome scale is important because it allows prediction of protein function, helps drug discovery and takes steps toward genome-wide structural systems biology. We provide a protocol (termed PRISM, protein interactions by structural matching) for large-scale prediction of protein-protein interactions and assembly of protein complex structures. The method consists of two components: rigid-body structural comparisons of target proteins to known template protein-protein interfaces and flexible refinement using a docking energy function. The PRISM rationale follows our observation that globally different protein structures can interact via similar architectural motifs. PRISM predicts binding residues by using structural similarity and evolutionary conservation of putative binding residue 'hot spots'. Ultimately, PRISM could help to construct cellular pathways and functional, proteome-scale annotation. PRISM is implemented in Python and runs in a UNIX environment. The program accepts Protein Data Bank-formatted protein structures and is available at http://prism.ccbb.ku.edu.tr/prism_protocol/.
Structural insights into the multifunctional protein VP3 of birnaviruses.
Casañas, Arnau; Navarro, Aitor; Ferrer-Orta, Cristina; González, Dolores; Rodríguez, José F; Verdaguer, Núria
2008-01-01
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is the causative agent of one of the most harmful poultry diseases. The IBDV genome encodes five mature proteins; of these, the multifunctional protein VP3 plays an essential role in virus morphogenesis. This protein, which interacts with the structural protein VP2, with the double-stranded RNA genome, and with the virus-encoded, RNA-dependent RNA polymerase, VP1, is involved not only in the formation of the viral capsid, but also in the recruitment of VP1 into the capsid and in the encapsidation of the viral genome. Here, we report the X-ray structure of the central region of VP3, residues 92-220, consisting of two alpha-helical domains connected by a long and flexible hinge that are organized as a dimer. Unexpectedly, the overall fold of the second VP3 domain shows significant structural similarities with different transcription regulation factors.
Crystal structure of AFV3-109, a highly conserved protein from crenarchaeal viruses
Keller, Jenny; Leulliot, Nicolas; Cambillau, Christian; Campanacci, Valérie; Porciero, Stéphanie; Prangishvili, David; Forterre, Patrick; Cortez, Diego; Quevillon-Cheruel, Sophie; van Tilbeurgh, Herman
2007-01-01
The extraordinary morphologies of viruses infecting hyperthermophilic archaea clearly distinguish them from bacterial and eukaryotic viruses. Moreover, their genomes code for proteins that to a large extend have no related sequences in the extent databases. However, a small pool of genes is shared by overlapping subsets of these viruses, and the most conserved gene, exemplified by the ORF109 of the Acidianus Filamentous Virus 3, AFV3, is present on genomes of members of three viral familes, the Lipothrixviridae, Rudiviridae, and "Bicaudaviridae", as well as of the unclassified Sulfolobus Turreted Icosahedral Virus, STIV. We present here the crystal structure of the protein (Mr = 13.1 kD, 109 residues) encoded by the AFV3 ORF 109 in two different crystal forms at 1.5 and 1.3 Å resolution. The structure of AFV3-109 is a five stranded β-sheet with loops on one side and three helices on the other. It forms a dimer adopting the shape of a cradle that encompasses the best conserved regions of the sequence. No protein with a related fold could be identified except for the ortholog from STIV1, whose structure was deposited at the Protein Data Bank. We could clearly identify a well bound glycerol inside the cradle, contacting exclusively totally conserved residues. This interaction was confirmed in solution by fluorescence titration. Although the function of AFV3-109 cannot be deduced directly from its structure, structural homology with the STIV1 protein, and the size and charge distribution of the cavity suggested it could interact with nucleic acids. Fluorescence quenching titrations also showed that AFV3-109 interacts with dsDNA. Genomic sequence analysis revealed bacterial homologs of AFV3-109 as a part of a putative previously unidentified prophage sequences in some Firmicutes. PMID:17241456
Elucidating the role of transcription in shaping the 3D structure of the bacterial genome
NASA Astrophysics Data System (ADS)
Brandao, Hugo B.; Wang, Xindan; Rudner, David Z.; Mirny, Leonid
Active transcription has been linked to several genome conformation changes in bacteria, including the recruitment of chromosomal DNA to the cell membrane and formation of nucleoid clusters. Using genomic and imaging data as input into mathematical models and polymer simulations, we sought to explore the extent to which bacterial 3D genome structure could be explained by 1D transcription tracks. Using B. subtilis as a model organism, we investigated via polymer simulations the role of loop extrusion and DNA super-coiling on the formation of interaction domains and other fine-scale features that are visible in chromosome conformation capture (Hi-C) data. We then explored the role of the condensin structural maintenance of chromosome complex on the alignment of chromosomal arms. A parameter-free transcription traffic model demonstrated that mean chromosomal arm alignment can be quantitatively explained, and the effects on arm alignment in genomically rearranged strains of B. subtilis were accurately predicted. H.B. acknowledges support from the Natural Sciences and Engineering Research Council of Canada for a PGS-D fellowship.
Sztuba-Solinska, Joanna; Diaz, Larissa; Kumar, Mia R.; Kolb, Gaëlle; Wiley, Michael R.; Jozwick, Lucas; Kuhn, Jens H.; Palacios, Gustavo; Radoshitzky, Sheli R.; J. Le Grice, Stuart F.; Johnson, Reed F.
2016-01-01
Ebola virus (EBOV) is a single-stranded negative-sense RNA virus belonging to the Filoviridae family. The leader and trailer non-coding regions of the EBOV genome likely regulate its transcription, replication, and progeny genome packaging. We investigated the cis-acting RNA signals involved in RNA–RNA and RNA–protein interactions that regulate replication of eGFP-encoding EBOV minigenomic RNA and identified heat shock cognate protein family A (HSC70) member 8 (HSPA8) as an EBOV trailer-interacting host protein. Mutational analysis of the trailer HSPA8 binding motif revealed that this interaction is essential for EBOV minigenome replication. Selective 2′-hydroxyl acylation analyzed by primer extension analysis of the secondary structure of the EBOV minigenomic RNA indicates formation of a small stem-loop composed of the HSPA8 motif, a 3′ stem-loop (nucleotides 1868–1890) that is similar to a previously identified structure in the replicative intermediate (RI) RNA and a panhandle domain involving a trailer-to-leader interaction. Results of minigenome assays and an EBOV reverse genetic system rescue support a role for both the panhandle domain and HSPA8 motif 1 in virus replication. PMID:27651462
The struggle for life of the genome's selfish architects
2011-01-01
Transposable elements (TEs) were first discovered more than 50 years ago, but were totally ignored for a long time. Over the last few decades they have gradually attracted increasing interest from research scientists. Initially they were viewed as totally marginal and anecdotic, but TEs have been revealed as potentially harmful parasitic entities, ubiquitous in genomes, and finally as unavoidable actors in the diversity, structure, and evolution of the genome. Since Darwin's theory of evolution, and the progress of molecular biology, transposable elements may be the discovery that has most influenced our vision of (genome) evolution. In this review, we provide a synopsis of what is known about the complex interactions that exist between transposable elements and the host genome. Numerous examples of these interactions are provided, first from the standpoint of the genome, and then from that of the transposable elements. We also explore the evolutionary aspects of TEs in the light of post-Darwinian theories of evolution. Reviewers This article was reviewed by Jerzy Jurka, Jürgen Brosius and I. King Jordan. For complete reports, see the Reviewers' reports section. PMID:21414203
Structural insights into Rhino-Deadlock complex for germline piRNA cluster specification.
Yu, Bowen; Lin, Yu An; Parhad, Swapnil S; Jin, Zhaohui; Ma, Jinbiao; Theurkauf, William E; Zhang, Zz Zhao; Huang, Ying
2018-06-01
PIWI-interacting RNAs (piRNAs) silence transposons in germ cells to maintain genome stability and animal fertility. Rhino, a rapidly evolving heterochromatin protein 1 (HP1) family protein, binds Deadlock in a species-specific manner and so defines the piRNA-producing loci in the Drosophila genome. Here, we determine the crystal structures of Rhino-Deadlock complex in Drosophila melanogaster and simulans In both species, one Rhino binds the N-terminal helix-hairpin-helix motif of one Deadlock protein through a novel interface formed by the beta-sheet in the Rhino chromoshadow domain. Disrupting the interface leads to infertility and transposon hyperactivation in flies. Our structural and functional experiments indicate that electrostatic repulsion at the interaction interface causes cross-species incompatibility between the sibling species. By determining the molecular architecture of this piRNA-producing machinery, we discover a novel HP1-partner interacting mode that is crucial to piRNA biogenesis and transposon silencing. We thus explain the cross-species incompatibility of two sibling species at the molecular level. © 2018 The Authors.
Structural genomic variations and Parkinson's disease.
Bandrés-Ciga, Sara; Ruz, Clara; Barrero, Francisco J; Escamilla-Sevilla, Francisco; Pelegrina, Javier; Vives, Francisco; Duran, Raquel
2017-10-01
Parkinson's disease (PD) is the second most common neurodegenerative disease, whose prevalence is projected to be between 8.7 and 9.3 million by 2030. Until about 20 years ago, PD was considered to be the textbook example of a "non-genetic" disorder. Nowadays, PD is generally considered a multifactorial disorder that arises from the combination and complex interaction of genes and environmental factors. To date, a total of 7 genes including SNCA, LRRK2, PARK2, DJ-1, PINK 1, VPS35 and ATP13A2 have been seen to cause unequivocally Mendelian PD. Also, variants with incomplete penetrance in the genes LRRK2 and GBA are considered to be strong risk factors for PD worldwide. Although genetic studies have provided valuable insights into the pathogenic mechanisms underlying PD, the role of structural variation in PD has been understudied in comparison with other genomic variations. Structural genomic variations might substantially account for such genetic substrates yet to be discovered. The present review aims to provide an overview of the structural genomic variants implicated in the pathogenesis of PD.
Sequence co-evolution gives 3D contacts and structures of protein complexes
Hopf, Thomas A; Schärfe, Charlotta P I; Rodrigues, João P G L M; Green, Anna G; Kohlbacher, Oliver; Sander, Chris; Bonvin, Alexandre M J J; Marks, Debora S
2014-01-01
Protein–protein interactions are fundamental to many biological processes. Experimental screens have identified tens of thousands of interactions, and structural biology has provided detailed functional insight for select 3D protein complexes. An alternative rich source of information about protein interactions is the evolutionary sequence record. Building on earlier work, we show that analysis of correlated evolutionary sequence changes across proteins identifies residues that are close in space with sufficient accuracy to determine the three-dimensional structure of the protein complexes. We evaluate prediction performance in blinded tests on 76 complexes of known 3D structure, predict protein–protein contacts in 32 complexes of unknown structure, and demonstrate how evolutionary couplings can be used to distinguish between interacting and non-interacting protein pairs in a large complex. With the current growth of sequences, we expect that the method can be generalized to genome-wide elucidation of protein–protein interaction networks and used for interaction predictions at residue resolution. DOI: http://dx.doi.org/10.7554/eLife.03430.001 PMID:25255213
Mobile DNA and evolution in the 21st century
2010-01-01
Scientific history has had a profound effect on the theories of evolution. At the beginning of the 21st century, molecular cell biology has revealed a dense structure of information-processing networks that use the genome as an interactive read-write (RW) memory system rather than an organism blueprint. Genome sequencing has documented the importance of mobile DNA activities and major genome restructuring events at key junctures in evolution: exon shuffling, changes in cis-regulatory sites, horizontal transfer, cell fusions and whole genome doublings (WGDs). The natural genetic engineering functions that mediate genome restructuring are activated by multiple stimuli, in particular by events similar to those found in the DNA record: microbial infection and interspecific hybridization leading to the formation of allotetraploids. These molecular genetic discoveries, plus a consideration of how mobile DNA rearrangements increase the efficiency of generating functional genomic novelties, make it possible to formulate a 21st century view of interactive evolutionary processes. This view integrates contemporary knowledge of the molecular basis of genetic change, major genome events in evolution, and stimuli that activate DNA restructuring with classical cytogenetic understanding about the role of hybridization in species diversification. PMID:20226073
Govin, Jerome; Gaucher, Jonathan; Ferro, Myriam; Debernardi, Alexandra; Garin, Jerome; Khochbin, Saadi; Rousseaux, Sophie
2012-01-01
After meiosis, during the final stages of spermatogenesis, the haploid male genome undergoes major structural changes, resulting in a shift from a nucleosome-based genome organization to the sperm-specific, highly compacted nucleoprotamine structure. Recent data support the idea that region-specific programming of the haploid male genome is of high importance for the post-fertilization events and for successful embryo development. Although these events constitute a unique and essential step in reproduction, the mechanisms by which they occur have remained completely obscure and the factors involved have mostly remained uncharacterized. Here, we sought a strategy to significantly increase our understanding of proteins controlling the haploid male genome reprogramming, based on the identification of proteins in two specific pools: those with the potential to bind nucleic acids (basic proteins) and proteins capable of binding basic proteins (acidic proteins). For the identification of acidic proteins, we developed an approach involving a transition-protein (TP)-based chromatography, which has the advantage of retaining not only acidic proteins due to the charge interactions, but also potential TP-interacting factors. A second strategy, based on an in-depth bioinformatic analysis of the identified proteins, was then applied to pinpoint within the lists obtained, male germ cells expressed factors relevant to the post-meiotic genome organization. This approach reveals a functional network of DNA-packaging proteins and their putative chaperones and sheds a new light on the way the critical transitions in genome organizations could take place. This work also points to a new area of research in male infertility and sperm quality assessments.
Crystal structure of AFV1-102, a protein from the acidianus filamentous virus 1
Keller, Jenny; Leulliot, Nicolas; Collinet, Bruno; Campanacci, Valerie; Cambillau, Christian; Pranghisvilli, David; van Tilbeurgh, Herman
2009-01-01
Viruses infecting hyperthermophilic archaea have intriguing morphologies and genomic properties. The vast majority of their genes do not have homologs other than in other hyperthermophilic viruses, and the biology of these viruses is poorly understood. As part of a structural genomics project on the proteins of these viruses, we present here the structure of a 102 amino acid protein from acidianus filamentous virus 1 (AFV1-102). The structure shows that it is made of two identical motifs that have poor sequence similarity. Although no function can be proposed from structural analysis, tight binding of the gateway tag peptide in a groove between the two motifs suggests AFV1-102 is involved in protein protein interactions. PMID:19319936
Kuo, Lili; Koetzner, Cheri A; Hurst, Kelley R; Masters, Paul S
2014-04-01
The coronavirus nucleocapsid (N) protein forms a helical ribonucleoprotein with the viral positive-strand RNA genome and binds to the principal constituent of the virion envelope, the membrane (M) protein, to facilitate assembly and budding. Besides these structural roles, N protein associates with a component of the replicase-transcriptase complex, nonstructural protein 3, at a critical early stage of infection. N protein has also been proposed to participate in the replication and selective packaging of genomic RNA and the transcription and translation of subgenomic mRNA. Coronavirus N proteins contain two structurally distinct RNA-binding domains, an unusual characteristic among RNA viruses. To probe the functions of these domains in the N protein of the model coronavirus mouse hepatitis virus (MHV), we constructed mutants in which each RNA-binding domain was replaced by its counterpart from the N protein of severe acute respiratory syndrome coronavirus (SARS-CoV). Mapping of revertants of the resulting chimeric viruses provided evidence for extensive intramolecular interactions between the two RNA-binding domains. Through analysis of viral RNA that was packaged into virions we identified the second of the two RNA-binding domains as a principal determinant of MHV packaging signal recognition. As expected, the interaction of N protein with M protein was not affected in either of the chimeric viruses. Moreover, the SARS-CoV N substitutions did not alter the fidelity of leader-body junction formation during subgenomic mRNA synthesis. These results more clearly delineate the functions of N protein and establish a basis for further exploration of the mechanism of genomic RNA packaging. This work describes the interactions of the two RNA-binding domains of the nucleocapsid protein of a model coronavirus, mouse hepatitis virus. The main finding is that the second of the two domains plays an essential role in recognizing the RNA structure that allows the selective packaging of genomic RNA into assembled virions.
Lopez, Christopher R; Singh, Shivani; Hambarde, Shashank; Griffin, Wezley C; Gao, Jun; Chib, Shubeena; Yu, Yang; Ira, Grzegorz; Raney, Kevin D; Kim, Nayun
2017-06-02
G-quadruplex or G4 DNA is a non-B secondary DNA structure consisting of a stacked array of guanine-quartets that can disrupt critical cellular functions such as replication and transcription. When sequences that can adopt Non-B structures including G4 DNA are located within actively transcribed genes, the reshaping of DNA topology necessary for transcription process stimulates secondary structure-formation thereby amplifying the potential for genome instability. Using a reporter assay designed to study G4-induced recombination in the context of an actively transcribed locus in Saccharomyces cerevisiae, we tested whether co-transcriptional activator Sub1, recently identified as a G4-binding factor, contributes to genome maintenance at G4-forming sequences. Our data indicate that, upon Sub1-disruption, genome instability linked to co-transcriptionally formed G4 DNA in Top1-deficient cells is significantly augmented and that its highly conserved DNA binding domain or the human homolog PC4 is sufficient to suppress G4-associated genome instability. We also show that Sub1 interacts specifically with co-transcriptionally formed G4 DNA in vivo and that yeast cells become highly sensitivity to G4-stabilizing chemical ligands by the loss of Sub1. Finally, we demonstrate the physical and genetic interaction of Sub1 with the G4-resolving helicase Pif1, suggesting a possible mechanism by which Sub1 suppresses instability at G4 DNA. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Revealing Long-Range Interconnected Hubs in Human Chromatin Interaction Data Using Graph Theory
NASA Astrophysics Data System (ADS)
Boulos, R. E.; Arneodo, A.; Jensen, P.; Audit, B.
2013-09-01
We use graph theory to analyze chromatin interaction (Hi-C) data in the human genome. We show that a key functional feature of the genome—“master” replication origins—corresponds to DNA loci of maximal network centrality. These loci form a set of interconnected hubs both within chromosomes and between different chromosomes. Our results open the way to a fruitful use of graph theory concepts to decipher DNA structural organization in relation to genome functions such as replication and transcription. This quantitative information should prove useful to discriminate between possible polymer models of nuclear organization.
de Borba, Luana; Villordo, Sergio M; Iglesias, Nestor G; Filomatori, Claudia V; Gebhard, Leopoldo G; Gamarnik, Andrea V
2015-03-01
The dengue virus genome is a dynamic molecule that adopts different conformations in the infected cell. Here, using RNA folding predictions, chemical probing analysis, RNA binding assays, and functional studies, we identified new cis-acting elements present in the capsid coding sequence that facilitate cyclization of the viral RNA by hybridization with a sequence involved in a local dumbbell structure at the viral 3' untranslated region (UTR). The identified interaction differentially enhances viral replication in mosquito and mammalian cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Xia, Chongjing; Wang, Meinan; Yin, Chuntao; Cornejo, Omar E; Hulbert, Scot; Chen, Xianming
2018-05-24
Puccinia striiformis f. sp. tritici (Pst) causes devastating stripe (yellow) rust on wheat and P. striiformis f. sp. hordei (Psh) causes stripe rust on barley. Several Pst genomes are available, but no Psh genome is available. More genomes of Pst and Psh are needed to understand the genome evolution and molecular mechanisms of their pathogenicity. We sequenced Pst isolate 93-210 and Psh isolate 93TX-2 using PacBio and Illumina technologies, and RNA sequencing. Their genomic sequences were assembled to contigs with high continuity and showed significant structural differences. The circular mitochondria genomes of both were complete. These genomes provide high-quality resources for deciphering the genomic basis of rapid evolution and host adaptation, identifying genes for avirulence and other important traits, and studying host-pathogen interaction.
First genome sequences of Achromobacter phages reveal new members of the N4 family.
Wittmann, Johannes; Dreiseikelmann, Brigitte; Rohde, Manfred; Meier-Kolthoff, Jan P; Bunk, Boyke; Rohde, Christine
2014-01-27
Multi-resistant Achromobacter xylosoxidans has been recognized as an emerging pathogen causing nosocomially acquired infections during the last years. Phages as natural opponents could be an alternative to fight such infections. Bacteriophages against this opportunistic pathogen were isolated in a recent study. This study shows a molecular analysis of two podoviruses and reveals first insights into the genomic structure of Achromobacter phages so far. Growth curve experiments and adsorption kinetics were performed for both phages. Adsorption and propagation in cells were visualized by electron microscopy. Both phage genomes were sequenced with the PacBio RS II system based on single molecule, real-time (SMRT) technology and annotated with several bioinformatic tools. To further elucidate the evolutionary relationships between the phage genomes, a phylogenomic analysis was conducted using the genome Blast Distance Phylogeny approach (GBDP). In this study, we present the first detailed analysis of genome sequences of two Achromobacter phages so far. Phages JWAlpha and JWDelta were isolated from two different waste water treatment plants in Germany. Both phages belong to the Podoviridae and contain linear, double-stranded DNA with a length of 72329 bp and 73659 bp, respectively. 92 and 89 putative open reading frames were identified for JWAlpha and JWDelta, respectively, by bioinformatic analysis with several tools. The genomes have nearly the same organization and could be divided into different clusters for transcription, replication, host interaction, head and tail structure and lysis. Detailed annotation via protein comparisons with BLASTP revealed strong similarities to N4-like phages. Analysis of the genomes of Achromobacter phages JWAlpha and JWDelta and comparisons of different gene clusters with other phages revealed that they might be strongly related to other N4-like phages, especially of the Escherichia group. Although all these phages show a highly conserved genomic structure and partially strong similarities at the amino acid level, some differences could be identified. Those differences, e.g. the existence of specific genes for replication or host interaction in some N4-like phages, seem to be interesting targets for further examination of function and specific mechanisms, which might enlighten the mechanism of phage establishment in the host cell after infection.
Probing the Structures of Viral RNA Regulatory Elements with SHAPE and Related Methodologies
Rausch, Jason W.; Sztuba-Solinska, Joanna; Le Grice, Stuart F. J.
2018-01-01
Viral RNAs were selected by evolution to possess maximum functionality in a minimal sequence. Depending on the classification of the virus and the type of RNA in question, viral RNAs must alternately be replicated, spliced, transcribed, transported from the nucleus into the cytoplasm, translated and/or packaged into nascent virions, and in most cases, provide the sequence and structural determinants to facilitate these processes. One consequence of this compact multifunctionality is that viral RNA structures can be exquisitely complex, often involving intermolecular interactions with RNA or protein, intramolecular interactions between sequence segments separated by several thousands of nucleotides, or specialized motifs such as pseudoknots or kissing loops. The fluidity of viral RNA structure can also present a challenge when attempting to characterize it, as genomic RNAs especially are likely to sample numerous conformations at various stages of the virus life cycle. Here we review advances in chemoenzymatic structure probing that have made it possible to address such challenges with respect to cis-acting elements, full-length viral genomes and long non-coding RNAs that play a major role in regulating viral gene expression. PMID:29375504
Muntean, Cristina M; Leopold, Nicolae; Tripon, Carmen; Coste, Ana; Halmagyi, Adela
2015-06-05
In this work the surface-enhanced Raman scattering (SERS) spectra of five genomic DNAs from non-cryopreserved control tomato plants (Lycopersicon esculentum Mill. cultivars Siriana, Darsirius, Kristin, Pontica and Capriciu) respectively, have been analyzed in the wavenumber range 400-1800 cm(-1). Structural changes induced in genomic DNAs upon cryopreservation were discussed in detail for four of the above mentioned tomato cultivars. The surface-enhanced Raman vibrational modes for each of these cases, spectroscopic band assignments and structural interpretations of genomic DNAs are reported. We have found, that DNA isolated from Siriana cultivar leaf tissues suffers the weakest structural changes upon cryogenic storage of tomato shoot apices. On the contrary, genomic DNA extracted from Pontica cultivar is the most responsive system to cryopreservation process. Particularly, both C2'-endo-anti and C3'-endo-anti conformations have been detected. As a general observation, the wavenumber range 1511-1652 cm(-1), being due to dA, dG and dT residues seems to be influenced by cryopreservation process. These changes could reflect unstacking of DNA bases. However, not significant structural changes of genomic DNAs from Siriana, Darsirius and Kristin have been found upon cryopreservation process of tomato cultivars. Based on this work, specific plant DNA-ligand interactions or accurate local structure of DNA in the proximity of a metallic surface, might be further investigated using surface-enhanced Raman spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Muntean, Cristina M.; Leopold, Nicolae; Tripon, Carmen; Coste, Ana; Halmagyi, Adela
2015-06-01
In this work the surface-enhanced Raman scattering (SERS) spectra of five genomic DNAs from non-cryopreserved control tomato plants (Lycopersicon esculentum Mill. cultivars Siriana, Darsirius, Kristin, Pontica and Capriciu) respectively, have been analyzed in the wavenumber range 400-1800 cm-1. Structural changes induced in genomic DNAs upon cryopreservation were discussed in detail for four of the above mentioned tomato cultivars. The surface-enhanced Raman vibrational modes for each of these cases, spectroscopic band assignments and structural interpretations of genomic DNAs are reported. We have found, that DNA isolated from Siriana cultivar leaf tissues suffers the weakest structural changes upon cryogenic storage of tomato shoot apices. On the contrary, genomic DNA extracted from Pontica cultivar is the most responsive system to cryopreservation process. Particularly, both C2‧-endo-anti and C3'-endo-anti conformations have been detected. As a general observation, the wavenumber range 1511-1652 cm-1, being due to dA, dG and dT residues seems to be influenced by cryopreservation process. These changes could reflect unstacking of DNA bases. However, not significant structural changes of genomic DNAs from Siriana, Darsirius and Kristin have been found upon cryopreservation process of tomato cultivars. Based on this work, specific plant DNA-ligand interactions or accurate local structure of DNA in the proximity of a metallic surface, might be further investigated using surface-enhanced Raman spectroscopy.
The archetype-genome exemplar in molecular dynamics and continuum mechanics
NASA Astrophysics Data System (ADS)
Greene, M. Steven; Li, Ying; Chen, Wei; Liu, Wing Kam
2014-04-01
We argue that mechanics and physics of solids rely on a fundamental exemplar: the apparent properties of a system depend on the building blocks that comprise it. Building blocks are referred to as archetypes and apparent system properties as the system genome. Three entities are of importance: the archetype properties, the conformation of archetypes, and the properties of interactions activated by that conformation. The combination of these entities into the system genome is called assembly. To show the utility of the archetype-genome exemplar, this work presents the mathematical ingredients and computational implementation of theories in solid mechanics that are (1) molecular and (2) continuum manifestations of the assembly process. Both coarse-grained molecular dynamics (CGMD) and the archetype-blending continuum (ABC) theories are formulated then applied to polymer nanocomposites (PNCs) to demonstrate the impact the components of the assembly triplet have on a material genome. CGMD simulations demonstrate the sensitivity of nanocomposite viscosities and diffusion coefficients to polymer chain types (archetype), polymer-nanoparticle interaction potentials (interaction), and the structural configuration (conformation) of dispersed nanoparticles. ABC simulations show the contributions of bulk polymer (archetype) properties, occluded region of bound rubber (interaction) properties, and microstructural binary images (conformation) to predictions of linear damping properties, the Payne effect, and localization/size effects in the same class of PNC material. The paper is light on mathematics. Instead, the focus is on the usefulness of the archetype-genome exemplar to predict system behavior inaccessible to classical theories by transitioning mechanics away from heuristic laws to mechanism-based ones. There are two core contributions of this research: (1) presentation of a fundamental axiom—the archetype-genome exemplar—to guide theory development in computational mechanics, and (2) demonstrations of its utility in modern theoretical realms: CGMD, and generalized continuum mechanics.
Hung, Chien-Jen; Hu, Chung-Chi; Lin, Na-Sheng; Lee, Ya-Chien; Meng, Menghsiao; Tsai, Ching-Hsiu; Hsu, Yau-Heiu
2014-02-01
The interactions between viral RNAs and coat proteins (CPs) are critical for the efficient completion of infection cycles of RNA viruses. However, the specificity of the interactions between CPs and genomic or subgenomic RNAs remains poorly understood. In this study, Bamboo mosaic virus (BaMV) was used to analyse such interactions. Using reversible formaldehyde cross-linking and mass spectrometry, two regions in CP, each containing a basic amino acid (R99 and R227, respectively), were identified to bind directly to the 5' untranslated region of BaMV genomic RNA. Analyses of the alanine mutations of R99 and R227 revealed that the secondary structures of CP were not affected significantly, whereas the accumulation of BaMV genomic, but not subgenomic, RNA was severely decreased at 24 h post-inoculation in the inoculated protoplasts. In the absence of CP, the accumulation levels of genomic and subgenomic RNAs were decreased to 1.1%-1.5% and 33%-40% of that of the wild-type (wt), respectively, in inoculated leaves at 5 days post-inoculation (dpi). In contrast, in the presence of mutant CPs, the genomic RNAs remained about 1% of that of wt, whereas the subgenomic RNAs accumulated to at least 87%, suggesting that CP might increase the accumulation of subgenomic RNAs. The mutations also restricted viral movement and virion formation in Nicotiana benthamiana leaves at 5 dpi. These results demonstrate that R99 and R227 of CP play crucial roles in the accumulation, movement and virion formation of BaMV RNAs, and indicate that genomic and subgenomic RNAs interact differently with BaMV CP. © 2013 BSPP AND JOHN WILEY & SONS LTD.
A Three-Dimensional Model of the Yeast Genome
NASA Astrophysics Data System (ADS)
Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony
Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.
The mediator complex in genomic and non-genomic signaling in cancer.
Weber, Hannah; Garabedian, Michael J
2018-05-01
Mediator is a conserved, multi-subunit macromolecular machine divided structurally into head, middle, and tail modules, along with a transiently associating kinase module. Mediator functions as an integrator of transcriptional regulatory activity by interacting with DNA-bound transcription factors and with RNA polymerase II (Pol II) to both activate and repress gene expression. Mediator has been shown to affect multiple steps in transcription, including chromatin looping between enhancers and promoters, pre-initiation complex formation, transcriptional elongation, and mRNA splicing. Individual Mediator subunits participate in regulation of gene expression by the estrogen and androgen receptors and are altered in a number of endocrine cancers, including breast and prostate cancer. In addition to its role in genomic signaling, MED12 has been implicated in non-genomic signaling by interacting with and activating TGF-beta receptor 2 in the cytoplasm. Recent structural studies have revealed extensive inter-domain interactions and complex architecture of the Mediator-Pol II complex, suggesting that Mediator is capable of reorganizing its conformation and composition to fit cellular needs. We propose that alterations in Mediator subunit expression that occur in various cancers could impact the organization and function of Mediator, resulting in changes in gene expression that promote malignancy. A better understanding of the role of Mediator in cancer could reveal new approaches to the diagnosis and treatment of Mediator-dependent endocrine cancers, especially in settings of therapy resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
Tang, Huiwu; Zheng, Xingmei; Li, Chuliang; Xie, Xianrong; Chen, Yuanling; Chen, Letian; Zhao, Xiucai; Zheng, Huiqi; Zhou, Jiajian; Ye, Shan; Guo, Jingxin; Liu, Yao-Guang
2017-01-01
New gene origination is a major source of genomic innovations that confer phenotypic changes and biological diversity. Generation of new mitochondrial genes in plants may cause cytoplasmic male sterility (CMS), which can promote outcrossing and increase fitness. However, how mitochondrial genes originate and evolve in structure and function remains unclear. The rice Wild Abortive type of CMS is conferred by the mitochondrial gene WA352c (previously named WA352) and has been widely exploited in hybrid rice breeding. Here, we reconstruct the evolutionary trajectory of WA352c by the identification and analyses of 11 mitochondrial genomic recombinant structures related to WA352c in wild and cultivated rice. We deduce that these structures arose through multiple rearrangements among conserved mitochondrial sequences in the mitochondrial genome of the wild rice Oryza rufipogon, coupled with substoichiometric shifting and sequence variation. We identify two expressed but nonfunctional protogenes among these structures, and show that they could evolve into functional CMS genes via sequence variations that could relieve the self-inhibitory potential of the proteins. These sequence changes would endow the proteins the ability to interact with the nucleus-encoded mitochondrial protein COX11, resulting in premature programmed cell death in the anther tapetum and male sterility. Furthermore, we show that the sequences that encode the COX11-interaction domains in these WA352c-related genes have experienced purifying selection during evolution. We propose a model for the formation and evolution of new CMS genes via a “multi-recombination/protogene formation/functionalization” mechanism involving gradual variations in the structure, sequence, copy number, and function. PMID:27725674
Evolutionary dynamics of 3D genome architecture following polyploidization in cotton.
Wang, Maojun; Wang, Pengcheng; Lin, Min; Ye, Zhengxiu; Li, Guoliang; Tu, Lili; Shen, Chao; Li, Jianying; Yang, Qingyong; Zhang, Xianlong
2018-02-01
The formation of polyploids significantly increases the complexity of transcriptional regulation, which is expected to be reflected in sophisticated higher-order chromatin structures. However, knowledge of three-dimensional (3D) genome structure and its dynamics during polyploidization remains poor. Here, we characterize 3D genome architectures for diploid and tetraploid cotton, and find the existence of A/B compartments and topologically associated domains (TADs). By comparing each subgenome in tetraploids with its extant diploid progenitor, we find that genome allopolyploidization has contributed to the switching of A/B compartments and the reorganization of TADs in both subgenomes. We also show that the formation of TAD boundaries during polyploidization preferentially occurs in open chromatin, coinciding with the deposition of active chromatin modification. Furthermore, analysis of inter-subgenomic chromatin interactions has revealed the spatial proximity of homoeologous genes, possibly associated with their coordinated expression. This study advances our understanding of chromatin organization in plants and sheds new light on the relationship between 3D genome evolution and transcriptional regulation.
MIPS: analysis and annotation of proteins from whole genomes in 2005
Mewes, H. W.; Frishman, D.; Mayer, K. F. X.; Münsterkötter, M.; Noubibou, O.; Pagel, P.; Rattei, T.; Oesterheld, M.; Ruepp, A.; Stümpflen, V.
2006-01-01
The Munich Information Center for Protein Sequences (MIPS at the GSF), Neuherberg, Germany, provides resources related to genome information. Manually curated databases for several reference organisms are maintained. Several of these databases are described elsewhere in this and other recent NAR database issues. In a complementary effort, a comprehensive set of >400 genomes automatically annotated with the PEDANT system are maintained. The main goal of our current work on creating and maintaining genome databases is to extend gene centered information to information on interactions within a generic comprehensive framework. We have concentrated our efforts along three lines (i) the development of suitable comprehensive data structures and database technology, communication and query tools to include a wide range of different types of information enabling the representation of complex information such as functional modules or networks Genome Research Environment System, (ii) the development of databases covering computable information such as the basic evolutionary relations among all genes, namely SIMAP, the sequence similarity matrix and the CABiNet network analysis framework and (iii) the compilation and manual annotation of information related to interactions such as protein–protein interactions or other types of relations (e.g. MPCDB, MPPI, CYGD). All databases described and the detailed descriptions of our projects can be accessed through the MIPS WWW server (). PMID:16381839
MIPS: analysis and annotation of proteins from whole genomes in 2005.
Mewes, H W; Frishman, D; Mayer, K F X; Münsterkötter, M; Noubibou, O; Pagel, P; Rattei, T; Oesterheld, M; Ruepp, A; Stümpflen, V
2006-01-01
The Munich Information Center for Protein Sequences (MIPS at the GSF), Neuherberg, Germany, provides resources related to genome information. Manually curated databases for several reference organisms are maintained. Several of these databases are described elsewhere in this and other recent NAR database issues. In a complementary effort, a comprehensive set of >400 genomes automatically annotated with the PEDANT system are maintained. The main goal of our current work on creating and maintaining genome databases is to extend gene centered information to information on interactions within a generic comprehensive framework. We have concentrated our efforts along three lines (i) the development of suitable comprehensive data structures and database technology, communication and query tools to include a wide range of different types of information enabling the representation of complex information such as functional modules or networks Genome Research Environment System, (ii) the development of databases covering computable information such as the basic evolutionary relations among all genes, namely SIMAP, the sequence similarity matrix and the CABiNet network analysis framework and (iii) the compilation and manual annotation of information related to interactions such as protein-protein interactions or other types of relations (e.g. MPCDB, MPPI, CYGD). All databases described and the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.gsf.de).
Faulon, Jean-Loup; Misra, Milind; Martin, Shawn; ...
2007-11-23
Motivation: Identifying protein enzymatic or pharmacological activities are important areas of research in biology and chemistry. Biological and chemical databases are increasingly being populated with linkages between protein sequences and chemical structures. Additionally, there is now sufficient information to apply machine-learning techniques to predict interactions between chemicals and proteins at a genome scale. Current machine-learning techniques use as input either protein sequences and structures or chemical information. We propose here a method to infer protein–chemical interactions using heterogeneous input consisting of both protein sequence and chemical information. Results: Our method relies on expressing proteins and chemicals with a common cheminformaticsmore » representation. We demonstrate our approach by predicting whether proteins can catalyze reactions not present in training sets. We also predict whether a given drug can bind a target, in the absence of prior binding information for that drug and target. Lastly, such predictions cannot be made with current machine-learning techniques requiring binding information for individual reactions or individual targets.« less
Africa: continent of genome contrasts with implications for biomedical research and health.
Ramsay, Michèle
2012-08-31
The genomic architecture of African populations is poorly understood and there is considerable variation between ethno-linguistic groups. Genome-wide approaches have been extensively applied to search for genetic associations to complex traits in Europeans, but rarely in Africans. This is largely attributed to lower levels of funding, poor infrastructure and public health systems, and to the small pool of trained scientists. High levels of genetic variation and underlying population structure in Africans present significant challenges, but lower levels of linkage disequilibrium provide an opportunity for more effective localisation of causal variants. High throughput technologies, including dense genotyping arrays, genome sequencing and epigenome studies, together with plummeting costs, are making research more affordable, even for African scientists. Understanding the interactions between genome structure and environmental influences is essential to interpreting their contributions to the increase in infectious diseases and non-communicable diseases, exacerbated by adverse environments and lifestyle choices. The unique genome dynamics in African populations have an important role to play in understanding human health and susceptibility to disease. Copyright © 2012. Published by Elsevier B.V.
Genome Cyclization as Strategy for Flavivirus RNA Replication
Villordo, Sergio M.; Gamarnik, Andrea V.
2017-01-01
Long-range and local RNA-RNA contacts in viral RNA genomes result in tertiary structures that modulate the function of enhancers, promoters, and silencers during translation, RNA replication, and encapsidation. In the case of flaviviruses, the presence of inverted complementary sequences at the 5′ and 3′ ends of the genome mediate long-range RNA interactions and RNA cyclization. The circular conformation of flavivirus genomes was demonstrated to be essential for RNA amplification. New ideas about the mechanisms by which circular genomes participate in flavivirus replication have emerged in the last few years. Here, we will describe the latest information about cis-acting elements involved in flavivirus genome cyclization, RNA promoter elements required for viral polymerase recognition, and how these elements together coordinate viral RNA synthesis. PMID:18703097
Sztuba-Solinska, Joanna; Teramoto, Tadahisa; Rausch, Jason W.; Shapiro, Bruce A.; Padmanabhan, Radhakrishnan; Le Grice, Stuart F. J.
2013-01-01
The Dengue virus (DENV) genome contains multiple cis-acting elements required for translation and replication. Previous studies indicated that a 719-nt subgenomic minigenome (DENV-MINI) is an efficient template for translation and (−) strand RNA synthesis in vitro. We performed a detailed structural analysis of DENV-MINI RNA, combining chemical acylation techniques, Pb2+ ion-induced hydrolysis and site-directed mutagenesis. Our results highlight protein-independent 5′–3′ terminal interactions involving hybridization between recognized cis-acting motifs. Probing analyses identified tandem dumbbell structures (DBs) within the 3′ terminus spaced by single-stranded regions, internal loops and hairpins with embedded GNRA-like motifs. Analysis of conserved motifs and top loops (TLs) of these dumbbells, and their proposed interactions with downstream pseudoknot (PK) regions, predicted an H-type pseudoknot involving TL1 of the 5′ DB and the complementary region, PK2. As disrupting the TL1/PK2 interaction, via ‘flipping’ mutations of PK2, previously attenuated DENV replication, this pseudoknot may participate in regulation of RNA synthesis. Computer modeling implied that this motif might function as autonomous structural/regulatory element. In addition, our studies targeting elements of the 3′ DB and its complementary region PK1 indicated that communication between 5′–3′ terminal regions strongly depends on structure and sequence composition of the 5′ cyclization region. PMID:23531545
Sztuba-Solinska, Joanna; Diaz, Larissa; Kumar, Mia R; Kolb, Gaëlle; Wiley, Michael R; Jozwick, Lucas; Kuhn, Jens H; Palacios, Gustavo; Radoshitzky, Sheli R; J Le Grice, Stuart F; Johnson, Reed F
2016-11-16
Ebola virus (EBOV) is a single-stranded negative-sense RNA virus belonging to the Filoviridae family. The leader and trailer non-coding regions of the EBOV genome likely regulate its transcription, replication, and progeny genome packaging. We investigated the cis-acting RNA signals involved in RNA-RNA and RNA-protein interactions that regulate replication of eGFP-encoding EBOV minigenomic RNA and identified heat shock cognate protein family A (HSC70) member 8 (HSPA8) as an EBOV trailer-interacting host protein. Mutational analysis of the trailer HSPA8 binding motif revealed that this interaction is essential for EBOV minigenome replication. Selective 2'-hydroxyl acylation analyzed by primer extension analysis of the secondary structure of the EBOV minigenomic RNA indicates formation of a small stem-loop composed of the HSPA8 motif, a 3' stem-loop (nucleotides 1868-1890) that is similar to a previously identified structure in the replicative intermediate (RI) RNA and a panhandle domain involving a trailer-to-leader interaction. Results of minigenome assays and an EBOV reverse genetic system rescue support a role for both the panhandle domain and HSPA8 motif 1 in virus replication. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Romero-López, Cristina; Barroso-delJesus, Alicia; García-Sacristán, Ana; Briones, Carlos; Berzal-Herranz, Alfredo
2014-01-01
The hepatitis C virus (HCV) RNA genome contains multiple structurally conserved domains that make long-distance RNA–RNA contacts important in the establishment of viral infection. Microarray antisense oligonucelotide assays, improved dimethyl sulfate probing methods and 2′ acylation chemistry (selective 2’-hydroxyl acylation and primer extension, SHAPE) showed the folding of the genomic RNA 3′ end to be regulated by the internal ribosome entry site (IRES) element via direct RNA–RNA interactions. The essential cis-acting replicating element (CRE) and the 3′X-tail region adopted different 3D conformations in the presence and absence of the genomic RNA 5′ terminus. Further, the structural transition in the 3′X-tail from the replication-competent conformer (consisting of three stem-loops) to the dimerizable form (with two stem-loops), was found to depend on the presence of both the IRES and the CRE elements. Complex interplay between the IRES, the CRE and the 3′X-tail region would therefore appear to occur. The preservation of this RNA–RNA interacting network, and the maintenance of the proper balance between different contacts, may play a crucial role in the switch between different steps of the HCV cycle. PMID:24049069
Large scale genomic reorganization of topological domains at the HoxD locus.
Fabre, Pierre J; Leleu, Marion; Mormann, Benjamin H; Lopez-Delisle, Lucille; Noordermeer, Daan; Beccari, Leonardo; Duboule, Denis
2017-08-07
The transcriptional activation of HoxD genes during mammalian limb development involves dynamic interactions with two topologically associating domains (TADs) flanking the HoxD cluster. In particular, the activation of the most posterior HoxD genes in developing digits is controlled by regulatory elements located in the centromeric TAD (C-DOM) through long-range contacts. To assess the structure-function relationships underlying such interactions, we measured compaction levels and TAD discreteness using a combination of chromosome conformation capture (4C-seq) and DNA FISH. We assessed the robustness of the TAD architecture by using a series of genomic deletions and inversions that impact the integrity of this chromatin domain and that remodel long-range contacts. We report multi-partite associations between HoxD genes and up to three enhancers. We find that the loss of native chromatin topology leads to the remodeling of TAD structure following distinct parameters. Our results reveal that the recomposition of TAD architectures after large genomic re-arrangements is dependent on a boundary-selection mechanism in which CTCF mediates the gating of long-range contacts in combination with genomic distance and sequence specificity. Accordingly, the building of a recomposed TAD at this locus depends on distinct functional and constitutive parameters.
3D chromosome rendering from Hi-C data using virtual reality
NASA Astrophysics Data System (ADS)
Zhu, Yixin; Selvaraj, Siddarth; Weber, Philip; Fang, Jennifer; Schulze, Jürgen P.; Ren, Bing
2015-01-01
Most genome browsers display DNA linearly, using single-dimensional depictions that are useful to examine certain epigenetic mechanisms such as DNA methylation. However, these representations are insufficient to visualize intrachromosomal interactions and relationships between distal genome features. Relationships between DNA regions may be difficult to decipher or missed entirely if those regions are distant in one dimension but could be spatially proximal when mapped to three-dimensional space. For example, the visualization of enhancers folding over genes is only fully expressed in three-dimensional space. Thus, to accurately understand DNA behavior during gene expression, a means to model chromosomes is essential. Using coordinates generated from Hi-C interaction frequency data, we have created interactive 3D models of whole chromosome structures and its respective domains. We have also rendered information on genomic features such as genes, CTCF binding sites, and enhancers. The goal of this article is to present the procedure, findings, and conclusions of our models and renderings.
Searching RNA motifs and their intermolecular contacts with constraint networks.
Thébault, P; de Givry, S; Schiex, T; Gaspin, C
2006-09-01
Searching RNA gene occurrences in genomic sequences is a task whose importance has been renewed by the recent discovery of numerous functional RNA, often interacting with other ligands. Even if several programs exist for RNA motif search, none exists that can represent and solve the problem of searching for occurrences of RNA motifs in interaction with other molecules. We present a constraint network formulation of this problem. RNA are represented as structured motifs that can occur on more than one sequence and which are related together by possible hybridization. The implemented tool MilPat is used to search for several sRNA families in genomic sequences. Results show that MilPat allows to efficiently search for interacting motifs in large genomic sequences and offers a simple and extensible framework to solve such problems. New and known sRNA are identified as H/ACA candidates in Methanocaldococcus jannaschii. http://carlit.toulouse.inra.fr/MilPaT/MilPat.pl.
SuperDCA for genome-wide epistasis analysis.
Puranen, Santeri; Pesonen, Maiju; Pensar, Johan; Xu, Ying Ying; Lees, John A; Bentley, Stephen D; Croucher, Nicholas J; Corander, Jukka
2018-05-29
The potential for genome-wide modelling of epistasis has recently surfaced given the possibility of sequencing densely sampled populations and the emerging families of statistical interaction models. Direct coupling analysis (DCA) has previously been shown to yield valuable predictions for single protein structures, and has recently been extended to genome-wide analysis of bacteria, identifying novel interactions in the co-evolution between resistance, virulence and core genome elements. However, earlier computational DCA methods have not been scalable to enable model fitting simultaneously to 10 4 -10 5 polymorphisms, representing the amount of core genomic variation observed in analyses of many bacterial species. Here, we introduce a novel inference method (SuperDCA) that employs a new scoring principle, efficient parallelization, optimization and filtering on phylogenetic information to achieve scalability for up to 10 5 polymorphisms. Using two large population samples of Streptococcus pneumoniae, we demonstrate the ability of SuperDCA to make additional significant biological findings about this major human pathogen. We also show that our method can uncover signals of selection that are not detectable by genome-wide association analysis, even though our analysis does not require phenotypic measurements. SuperDCA, thus, holds considerable potential in building understanding about numerous organisms at a systems biological level.
Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
Pancaldi, Vera; Carrillo-de-Santa-Pau, Enrique; Javierre, Biola Maria; Juan, David; Fraser, Peter; Spivakov, Mikhail; Valencia, Alfonso; Rico, Daniel
2016-07-08
Network analysis is a powerful way of modeling chromatin interactions. Assortativity is a network property used in social sciences to identify factors affecting how people establish social ties. We propose a new approach, using chromatin assortativity, to integrate the epigenomic landscape of a specific cell type with its chromatin interaction network and thus investigate which proteins or chromatin marks mediate genomic contacts. We use high-resolution promoter capture Hi-C and Hi-Cap data as well as ChIA-PET data from mouse embryonic stem cells to investigate promoter-centered chromatin interaction networks and calculate the presence of specific epigenomic features in the chromatin fragments constituting the nodes of the network. We estimate the association of these features with the topology of four chromatin interaction networks and identify features localized in connected areas of the network. Polycomb group proteins and associated histone marks are the features with the highest chromatin assortativity in promoter-centered networks. We then ask which features distinguish contacts amongst promoters from contacts between promoters and other genomic elements. We observe higher chromatin assortativity of the actively elongating form of RNA polymerase 2 (RNAPII) compared with inactive forms only in interactions between promoters and other elements. Contacts among promoters and between promoters and other elements have different characteristic epigenomic features. We identify a possible role for the elongating form of RNAPII in mediating interactions among promoters, enhancers, and transcribed gene bodies. Our approach facilitates the study of multiple genome-wide epigenomic profiles, considering network topology and allowing the comparison of chromatin interaction networks.
Liu, Zhong-Yu; Li, Xiao-Feng; Jiang, Tao; Deng, Yong-Qiang; Zhao, Hui; Wang, Hong-Jiang; Ye, Qing; Zhu, Shun-Ya; Qiu, Yang; Zhou, Xi; Qin, E-De; Qin, Cheng-Feng
2013-06-01
cis-Acting elements in the viral genome RNA (vRNA) are essential for the translation, replication, and/or encapsidation of RNA viruses. In this study, a novel conserved cis-acting element was identified in the capsid-coding region of mosquito-borne flavivirus. The downstream of 5' cyclization sequence (5'CS) pseudoknot (DCS-PK) element has a three-stem pseudoknot structure, as demonstrated by structure prediction and biochemical analysis. Using dengue virus as a model, we show that DCS-PK enhances vRNA replication and that its function depends on its secondary structure and specific primary sequence. Mutagenesis revealed that the highly conserved stem 1 and loop 2, which are involved in potential loop-helix interactions, are crucial for DCS-PK function. A predicted loop 1-stem 3 base triple interaction is important for the structural stability and function of DCS-PK. Moreover, the function of DCS-PK depends on its position relative to the 5'CS, and the presence of DCS-PK facilitates the formation of 5'-3' RNA complexes. Taken together, our results reveal that the cis-acting element DCS-PK enhances vRNA replication by regulating genome cyclization, and DCS-PK might interplay with other cis-acting elements to form a functional vRNA cyclization domain, thus playing critical roles during the flavivirus life cycle and evolution.
Liu, Zhong-Yu; Li, Xiao-Feng; Jiang, Tao; Deng, Yong-Qiang; Zhao, Hui; Wang, Hong-Jiang; Ye, Qing; Zhu, Shun-Ya; Qiu, Yang; Zhou, Xi; Qin, E-De
2013-01-01
cis-Acting elements in the viral genome RNA (vRNA) are essential for the translation, replication, and/or encapsidation of RNA viruses. In this study, a novel conserved cis-acting element was identified in the capsid-coding region of mosquito-borne flavivirus. The downstream of 5′ cyclization sequence (5′CS) pseudoknot (DCS-PK) element has a three-stem pseudoknot structure, as demonstrated by structure prediction and biochemical analysis. Using dengue virus as a model, we show that DCS-PK enhances vRNA replication and that its function depends on its secondary structure and specific primary sequence. Mutagenesis revealed that the highly conserved stem 1 and loop 2, which are involved in potential loop-helix interactions, are crucial for DCS-PK function. A predicted loop 1-stem 3 base triple interaction is important for the structural stability and function of DCS-PK. Moreover, the function of DCS-PK depends on its position relative to the 5′CS, and the presence of DCS-PK facilitates the formation of 5′-3′ RNA complexes. Taken together, our results reveal that the cis-acting element DCS-PK enhances vRNA replication by regulating genome cyclization, and DCS-PK might interplay with other cis-acting elements to form a functional vRNA cyclization domain, thus playing critical roles during the flavivirus life cycle and evolution. PMID:23576500
Sánchez-Luque, Francisco J.; Stich, Michael; Manrubia, Susanna; Briones, Carlos; Berzal-Herranz, Alfredo
2014-01-01
The human immunodeficiency virus type-1 (HIV-1) genome contains multiple, highly conserved structural RNA domains that play key roles in essential viral processes. Interference with the function of these RNA domains either by disrupting their structures or by blocking their interaction with viral or cellular factors may seriously compromise HIV-1 viability. RNA aptamers are amongst the most promising synthetic molecules able to interact with structural domains of viral genomes. However, aptamer shortening up to their minimal active domain is usually necessary for scaling up production, what requires very time-consuming, trial-and-error approaches. Here we report on the in vitro selection of 64 nt-long specific aptamers against the complete 5′-untranslated region of HIV-1 genome, which inhibit more than 75% of HIV-1 production in a human cell line. The analysis of the selected sequences and structures allowed for the identification of a highly conserved 16 nt-long stem-loop motif containing a common 8 nt-long apical loop. Based on this result, an in silico designed 16 nt-long RNA aptamer, termed RNApt16, was synthesized, with sequence 5′-CCCCGGCAAGGAGGGG-3′. The HIV-1 inhibition efficiency of such an aptamer was close to 85%, thus constituting the shortest RNA molecule so far described that efficiently interferes with HIV-1 replication. PMID:25175101
Genome-wide diversity and selective pressure in the human rhinovirus
Kistler, Amy L; Webster, Dale R; Rouskin, Silvi; Magrini, Vince; Credle, Joel J; Schnurr, David P; Boushey, Homer A; Mardis, Elaine R; Li, Hao; DeRisi, Joseph L
2007-01-01
Background The human rhinoviruses (HRV) are one of the most common and diverse respiratory pathogens of humans. Over 100 distinct HRV serotypes are known, yet only 6 genomes are available. Due to the paucity of HRV genome sequence, little is known about the genetic diversity within HRV or the forces driving this diversity. Previous comparative genome sequence analyses indicate that recombination drives diversification in multiple genera of the picornavirus family, yet it remains unclear if this holds for HRV. Results To resolve this and gain insight into the forces driving diversification in HRV, we generated a representative set of 34 fully sequenced HRVs. Analysis of these genomes shows consistent phylogenies across the genome, conserved non-coding elements, and only limited recombination. However, spikes of genetic diversity at both the nucleotide and amino acid level are detectable within every locus of the genome. Despite this, the HRV genome as a whole is under purifying selective pressure, with islands of diversifying pressure in the VP1, VP2, and VP3 structural genes and two non-structural genes, the 3C protease and 3D polymerase. Mapping diversifying residues in these factors onto available 3-dimensional structures revealed the diversifying capsid residues partition to the external surface of the viral particle in statistically significant proximity to antigenic sites. Diversifying pressure in the pleconaril binding site is confined to a single residue known to confer drug resistance (VP1 191). In contrast, diversifying pressure in the non-structural genes is less clear, mapping both nearby and beyond characterized functional domains of these factors. Conclusion This work provides a foundation for understanding HRV genetic diversity and insight into the underlying biology driving evolution in HRV. It expands our knowledge of the genome sequence space that HRV reference serotypes occupy and how the pattern of genetic diversity across HRV genomes differs from other picornaviruses. It also reveals evidence of diversifying selective pressure in both structural genes known to interact with the host immune system and in domains of unassigned function in the non-structural 3C and 3D genes, raising the possibility that diversification of undiscovered functions in these essential factors may influence HRV fitness and evolution. PMID:17477878
RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria.
Novichkov, Pavel S; Kazakov, Alexey E; Ravcheev, Dmitry A; Leyn, Semen A; Kovaleva, Galina Y; Sutormin, Roman A; Kazanov, Marat D; Riehl, William; Arkin, Adam P; Dubchak, Inna; Rodionov, Dmitry A
2013-11-01
Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in prokaryotes is one of the critical tasks of modern genomics. Bacteria from different taxonomic groups, whose lifestyles and natural environments are substantially different, possess highly diverged transcriptional regulatory networks. The comparative genomics approaches are useful for in silico reconstruction of bacterial regulons and networks operated by both transcription factors (TFs) and RNA regulatory elements (riboswitches). RegPrecise (http://regprecise.lbl.gov) is a web resource for collection, visualization and analysis of transcriptional regulons reconstructed by comparative genomics. We significantly expanded a reference collection of manually curated regulons we introduced earlier. RegPrecise 3.0 provides access to inferred regulatory interactions organized by phylogenetic, structural and functional properties. Taxonomy-specific collections include 781 TF regulogs inferred in more than 160 genomes representing 14 taxonomic groups of Bacteria. TF-specific collections include regulogs for a selected subset of 40 TFs reconstructed across more than 30 taxonomic lineages. Novel collections of regulons operated by RNA regulatory elements (riboswitches) include near 400 regulogs inferred in 24 bacterial lineages. RegPrecise 3.0 provides four classifications of the reference regulons implemented as controlled vocabularies: 55 TF protein families; 43 RNA motif families; ~150 biological processes or metabolic pathways; and ~200 effectors or environmental signals. Genome-wide visualization of regulatory networks and metabolic pathways covered by the reference regulons are available for all studied genomes. A separate section of RegPrecise 3.0 contains draft regulatory networks in 640 genomes obtained by an conservative propagation of the reference regulons to closely related genomes. RegPrecise 3.0 gives access to the transcriptional regulons reconstructed in bacterial genomes. Analytical capabilities include exploration of: regulon content, structure and function; TF binding site motifs; conservation and variations in genome-wide regulatory networks across all taxonomic groups of Bacteria. RegPrecise 3.0 was selected as a core resource on transcriptional regulation of the Department of Energy Systems Biology Knowledgebase, an emerging software and data environment designed to enable researchers to collaboratively generate, test and share new hypotheses about gene and protein functions, perform large-scale analyses, and model interactions in microbes, plants, and their communities.
Nelson, Justin; Simpkins, Scott W; Safizadeh, Hamid; Li, Sheena C; Piotrowski, Jeff S; Hirano, Hiroyuki; Yashiroda, Yoko; Osada, Hiroyuki; Yoshida, Minoru; Boone, Charles; Myers, Chad L
2018-04-01
Chemical-genomic approaches that map interactions between small molecules and genetic perturbations offer a promising strategy for functional annotation of uncharacterized bioactive compounds. We recently developed a new high-throughput platform for mapping chemical-genetic (CG) interactions in yeast that can be scaled to screen large compound collections, and we applied this system to generate CG interaction profiles for more than 13 000 compounds. When integrated with the existing global yeast genetic interaction network, CG interaction profiles can enable mode-of-action prediction for previously uncharacterized compounds as well as discover unexpected secondary effects for known drugs. To facilitate future analysis of these valuable data, we developed a public database and web interface named MOSAIC. The website provides a convenient interface for querying compounds, bioprocesses (Gene Ontology terms) and genes for CG information including direct CG interactions, bioprocesses and gene-level target predictions. MOSAIC also provides access to chemical structure information of screened molecules, chemical-genomic profiles and the ability to search for compounds sharing structural and functional similarity. This resource will be of interest to chemical biologists for discovering new small molecule probes with specific modes-of-action as well as computational biologists interested in analysing CG interaction networks. MOSAIC is available at http://mosaic.cs.umn.edu. hisyo@riken.jp, yoshidam@riken.jp, charlie.boone@utoronto.ca or chadm@umn.edu. Supplementary data are available at Bioinformatics online.
Polymer physics predicts the effects of structural variants on chromatin architecture.
Bianco, Simona; Lupiáñez, Darío G; Chiariello, Andrea M; Annunziatella, Carlo; Kraft, Katerina; Schöpflin, Robert; Wittler, Lars; Andrey, Guillaume; Vingron, Martin; Pombo, Ana; Mundlos, Stefan; Nicodemi, Mario
2018-05-01
Structural variants (SVs) can result in changes in gene expression due to abnormal chromatin folding and cause disease. However, the prediction of such effects remains a challenge. Here we present a polymer-physics-based approach (PRISMR) to model 3D chromatin folding and to predict enhancer-promoter contacts. PRISMR predicts higher-order chromatin structure from genome-wide chromosome conformation capture (Hi-C) data. Using the EPHA4 locus as a model, the effects of pathogenic SVs are predicted in silico and compared to Hi-C data generated from mouse limb buds and patient-derived fibroblasts. PRISMR deconvolves the folding complexity of the EPHA4 locus and identifies SV-induced ectopic contacts and alterations of 3D genome organization in homozygous or heterozygous states. We show that SVs can reconfigure topologically associating domains, thereby producing extensive rewiring of regulatory interactions and causing disease by gene misexpression. PRISMR can be used to predict interactions in silico, thereby providing a tool for analyzing the disease-causing potential of SVs.
X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability
Gres, Anna T.; Kirby, Karen A.; KewalRamani, Vineet N.; ...
2015-06-04
The detailed molecular interactions between native HIV-1 capsid protein (CA) hexamers that shield the viral genome and proteins have been elusive. In this paper, we report crystal structures describing interactions between CA monomers related by sixfold symmetry within hexamers (intrahexamer) and threefold and twofold symmetry between neighboring hexamers (interhexamer). The structures describe how CA builds hexagonal lattices, the foundation of mature capsids. Lattice structure depends on an adaptable hydration layer modulating interactions among CA molecules. Disruption of this layer alters interhexamer interfaces, highlighting an inherent structural variability. A CA-targeting antiviral affects capsid stability by binding across CA molecules and subtlymore » altering interhexamer interfaces remote to the ligand-binding site. Finally, inherent structural plasticity, hydration layer rearrangement, and effector binding affect capsid stability and have functional implications for the retroviral life cycle.« less
Nutrigenomics and nutrigenetics.
Farhud, Dd; Zarif Yeganeh, M; Zarif Yeganeh, M
2010-01-01
The nutrients are able to interact with molecular mechanisms and modulate the physiological functions in the body. The Nutritional Genomics focuses on the interaction between bioactive food components and the genome, which includes Nutrigenetics and Nutrigenomics. The influence of nutrients on f genes expression is called Nutrigenomics, while the heterogeneous response of gene variants to nutrients, dietary components and developing nutraceticals is called Nutrigenetics. Genetic variation is known to affect food tolerances among human subpopulations and may also influence dietary requirements and raising the possibility of individualizing nutritional intake for optimal health and disease prevention on the basis of an individual's genome. Nutrigenomics provides a genetic understanding for how common dietary components affect the balance between health and disease by altering the expression and/or structure of an individual's genetic makeup. Nutrigenetics describes that the genetic profile have impact on the response of body to bioactive food components by influencing their absorption, metabolism, and site of action.In this way, considering different aspects of gene-nutrient interaction and designing appropriate diet for every specific genotype that optimize individual health, diagnosis and nutritional treatment of genome instability, we could prevent and control conversion of healthy phenotype to diseases.
Nutrigenomics and Nutrigenetics
Farhud, DD; Zarif Yeganeh, M; Zarif Yeganeh, M
2010-01-01
The nutrients are able to interact with molecular mechanisms and modulate the physiological functions in the body. The Nutritional Genomics focuses on the interaction between bioactive food components and the genome, which includes Nutrigenetics and Nutrigenomics. The influence of nutrients on f genes expression is called Nutrigenomics, while the heterogeneous response of gene variants to nutrients, dietary components and developing nutraceticals is called Nutrigenetics. Genetic variation is known to affect food tolerances among human subpopulations and may also influence dietary requirements and raising the possibility of individualizing nutritional intake for optimal health and disease prevention on the basis of an individual’s genome. Nutrigenomics provides a genetic understanding for how common dietary components affect the balance between health and disease by altering the expression and/or structure of an individual’s genetic makeup. Nutrigenetics describes that the genetic profile have impact on the response of body to bioactive food components by influencing their absorption, metabolism, and site of action. In this way, considering different aspects of gene–nutrient interaction and designing appropriate diet for every specific genotype that optimize individual health, diagnosis and nutritional treatment of genome instability, we could prevent and control conversion of healthy phenotype to diseases. PMID:23113033
Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.
2015-01-01
Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930
A host plant genome ( Zizania latifolia ) after a century-long endophyte infection
Guo, Longbiao; Qiu, Jie; Han, Zujing; ...
2015-06-13
In spite of the importance of host–microbe interactions in natural ecosystems, agriculture and medicine, the impact of long-term (especially decades or longer) microbial colonization on the dynamics of host genomes is not well understood. Moreover, the vegetable crop ‘Jiaobai’ with enlarged edible stems was domesticated from wild Zizania latifolia (Oryzeae) approximately 2000 years ago as a result of persistent infection by a fungal endophyte, Ustilago esculenta. Asexual propagation via infected rhizomes is the only means of Jiaobai production, and the Z. latifolia–endophyte complex has been maintained continuously for two centuries. Here, genomic analysis revealed that cultivated Z. latifolia has amore » significantly smaller repertoire of immune receptors compared with wild Z. latifolia. There are widespread gene losses/mutations and expression changes in the plant–pathogen interaction pathway in Jiaobai. Finally, these results show that continuous long-standing endophyte association can have a major effect on the evolution of the structural and transcriptomic components of the host genome.« less
NASA Astrophysics Data System (ADS)
Satpati, Suresh; Manohar, Kodavati; Acharya, Narottam; Dixit, Anshuman
2017-01-01
Genomic instability in Candida albicans is believed to play a crucial role in fungal pathogenesis. DNA polymerases contribute significantly to stability of any genome. Although Candida Genome database predicts presence of S. cerevisiae DNA polymerase orthologs; functional and structural characterizations of Candida DNA polymerases are still unexplored. DNA polymerase eta (Polη) is unique as it promotes efficient bypass of cyclobutane pyrimidine dimers. Interestingly, C. albicans is heterozygous in carrying two Polη genes and the nucleotide substitutions were found only in the ORFs. As allelic differences often result in functional differences of the encoded proteins, comparative analyses of structural models and molecular dynamic simulations were performed to characterize these orthologs of DNA Polη. Overall structures of both the ORFs remain conserved except subtle differences in the palm and PAD domains. The complementation analysis showed that both the ORFs equally suppressed UV sensitivity of yeast rad30 deletion strain. Our study has predicted two novel molecular interactions, a highly conserved molecular tetrad of salt bridges and a series of π-π interactions spanning from thumb to PAD. This study suggests these ORFs as the homologues of yeast Polη, and due to its heterogeneity in C. albicans they may play a significant role in pathogenicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parish, D.; Benach, J; Liu, G
2008-01-01
The structure of the 142-residue protein Q8ZP25 SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247-D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the 'thioredoxin-like clan'. However, protein HYAE ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE ECOLI was previously classified as a (NiFe)more » hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides.« less
Sequence and Structure Dependent DNA-DNA Interactions
NASA Astrophysics Data System (ADS)
Kopchick, Benjamin; Qiu, Xiangyun
Molecular forces between dsDNA strands are largely dominated by electrostatics and have been extensively studied. Quantitative knowledge has been accumulated on how DNA-DNA interactions are modulated by varied biological constituents such as ions, cationic ligands, and proteins. Despite its central role in biology, the sequence of DNA has not received substantial attention and ``random'' DNA sequences are typically used in biophysical studies. However, ~50% of human genome is composed of non-random-sequence DNAs, particularly repetitive sequences. Furthermore, covalent modifications of DNA such as methylation play key roles in gene functions. Such DNAs with specific sequences or modifications often take on structures other than the canonical B-form. Here we present series of quantitative measurements of the DNA-DNA forces with the osmotic stress method on different DNA sequences, from short repeats to the most frequent sequences in genome, and to modifications such as bromination and methylation. We observe peculiar behaviors that appear to be strongly correlated with the incurred structural changes. We speculate the causalities in terms of the differences in hydration shell and DNA surface structures.
Xu, Xianzhong; Pulavarti, Surya V S R K; Eletsky, Alexander; Huang, Yuanpeng Janet; Acton, Thomas B; Xiao, Rong; Everett, John K; Montelione, Gaetano T; Szyperski, Thomas
2014-12-01
High-quality solution NMR structures of three homeodomains from human proteins ALX4, ZHX1 and CASP8AP2 were solved. These domains were chosen as targets of a biomedical theme project pursued by the Northeast Structural Genomics Consortium. This project focuses on increasing the structural coverage of human proteins associated with cancer.
A DEK Domain-Containing Protein Modulates Chromatin Structure and Function in Arabidopsis[W][OPEN
Waidmann, Sascha; Kusenda, Branislav; Mayerhofer, Juliane; Mechtler, Karl; Jonak, Claudia
2014-01-01
Chromatin is a major determinant in the regulation of virtually all DNA-dependent processes. Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. The evolutionarily conserved DEK domain-containing protein is implicated in important chromatin-related processes in animals, but little is known about its DNA targets and protein interaction partners. In plants, the role of DEK has remained elusive. In this work, we identified DEK3 as a chromatin-associated protein in Arabidopsis thaliana. DEK3 specifically binds histones H3 and H4. Purification of other proteins associated with nuclear DEK3 also established DNA topoisomerase 1α and proteins of the cohesion complex as in vivo interaction partners. Genome-wide mapping of DEK3 binding sites by chromatin immunoprecipitation followed by deep sequencing revealed enrichment of DEK3 at protein-coding genes throughout the genome. Using DEK3 knockout and overexpressor lines, we show that DEK3 affects nucleosome occupancy and chromatin accessibility and modulates the expression of DEK3 target genes. Furthermore, functional levels of DEK3 are crucial for stress tolerance. Overall, data indicate that DEK3 contributes to modulation of Arabidopsis chromatin structure and function. PMID:25387881
Ensembl 2002: accommodating comparative genomics.
Clamp, M; Andrews, D; Barker, D; Bevan, P; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Hubbard, T; Kasprzyk, A; Keefe, D; Lehvaslaiho, H; Iyer, V; Melsopp, C; Mongin, E; Pettett, R; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Birney, E
2003-01-01
The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of human, mouse and other genome sequences, available as either an interactive web site or as flat files. Ensembl also integrates manually annotated gene structures from external sources where available. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. These range from sequence analysis to data storage and visualisation and installations exist around the world in both companies and at academic sites. With both human and mouse genome sequences available and more vertebrate sequences to follow, many of the recent developments in Ensembl have focusing on developing automatic comparative genome analysis and visualisation.
Bejerman, Nicolás; Giolitti, Fabián; Trucco, Verónica; de Breuil, Soledad; Dietzgen, Ralf G; Lenardon, Sergio
2016-07-01
Alfalfa dwarf disease, probably caused by synergistic interactions of mixed virus infections, is a major and emergent disease that threatens alfalfa production in Argentina. Deep sequencing of diseased alfalfa plant samples from the central region of Argentina resulted in the identification of a new virus genome resembling enamoviruses in sequence and genome structure. Phylogenetic analysis suggests that it is a new member of the genus Enamovirus, family Luteoviridae. The virus is tentatively named "alfalfa enamovirus 1" (AEV-1). The availability of the AEV-1 genome sequence will make it possible to assess the genetic variability of this virus and to construct an infectious clone to investigate its role in alfalfa dwarfism disease.
tDNA insulators and the emerging role of TFIIIC in genome organization
Van Bortle, Kevin; Corces, Victor G.
2012-01-01
Recent findings provide evidence that tDNAs function as chromatin insulators from yeast to humans. TFIIIC, a transcription factor that interacts with the B-box in tDNAs as well as thousands of ETC sites in the genome, is responsible for insulator function. Though tDNAs are capable of enhancer-blocking and barrier activities for which insulators are defined, new insights into the relationship between insulators and chromatin structure suggest that TFIIIC serves a complex role in genome organization. We review the role of tRNA genes and TFIIIC as chromatin insulators, and highlight recent findings that have broadened our understanding of insulators in genome biology. PMID:22889843
Capturing Structural Heterogeneity in Chromatin Fibers.
Ekundayo, Babatunde; Richmond, Timothy J; Schalch, Thomas
2017-10-13
Chromatin fiber organization is implicated in processes such as transcription, DNA repair and chromosome segregation, but how nucleosomes interact to form higher-order structure remains poorly understood. We solved two crystal structures of tetranucleosomes with approximately 11-bp DNA linker length at 5.8 and 6.7 Å resolution. Minimal intramolecular nucleosome-nucleosome interactions result in a fiber model resembling a flat ribbon that is compatible with a two-start helical architecture, and that exposes histone and DNA surfaces to the environment. The differences in the two structures combined with electron microscopy reveal heterogeneous structural states, and we used site-specific chemical crosslinking to assess the diversity of nucleosome-nucleosome interactions through identification of structure-sensitive crosslink sites that provide a means to characterize fibers in solution. The chromatin fiber architectures observed here provide a basis for understanding heterogeneous chromatin higher-order structures as they occur in a genomic context. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jothi, Raja; Cherukuri, Praveen F.; Tasneem, Asba; Przytycka, Teresa M.
2006-01-01
Recent advances in functional genomics have helped generate large-scale high-throughput protein interaction data. Such networks, though extremely valuable towards molecular level understanding of cells, do not provide any direct information about the regions (domains) in the proteins that mediate the interaction. Here, we performed co-evolutionary analysis of domains in interacting proteins in order to understand the degree of co-evolution of interacting and non-interacting domains. Using a combination of sequence and structural analysis, we analyzed protein–protein interactions in F1-ATPase, Sec23p/Sec24p, DNA-directed RNA polymerase and nuclear pore complexes, and found that interacting domain pair(s) for a given interaction exhibits higher level of co-evolution than the noninteracting domain pairs. Motivated by this finding, we developed a computational method to test the generality of the observed trend, and to predict large-scale domain–domain interactions. Given a protein–protein interaction, the proposed method predicts the domain pair(s) that is most likely to mediate the protein interaction. We applied this method on the yeast interactome to predict domain–domain interactions, and used known domain–domain interactions found in PDB crystal structures to validate our predictions. Our results show that the prediction accuracy of the proposed method is statistically significant. Comparison of our prediction results with those from two other methods reveals that only a fraction of predictions are shared by all the three methods, indicating that the proposed method can detect known interactions missed by other methods. We believe that the proposed method can be used with other methods to help identify previously unrecognized domain–domain interactions on a genome scale, and could potentially help reduce the search space for identifying interaction sites. PMID:16949097
SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA.
Sakuragi, Sayuri; Yokoyama, Masaru; Shioda, Tatsuo; Sato, Hironori; Sakuragi, Jun-Ichi
2016-11-11
The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5' end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization. Although the higher-order structure model of SL1 is well accepted and perhaps even undoubted lately, there could be stillroom for consideration to depict the functional SL1 structure while in vivo (in virion or cell). In this study, we performed several analyses to identify the nucleotides and/or basepairing within SL1 which are necessary for HIV-1 genome dimerization, encapsidation, recombination and infectivity. We unexpectedly found that some nucleotides that are believed to contribute the formation of the stem do not impact dimerization or infectivity. On the other hand, we found that one G-C basepair involved in stem formation may serve as an alternative dimer interactive site. We also report on our further investigation of the roles of the palindromic sequences on viral replication. Collectively, we aim to assemble a more-comprehensive functional map of SL1 on the HIV-1 viral life cycle. We discovered several possibilities for a novel structure of SL1 in HIV-1 DLS. The newly proposed structure model suggested that the hairpin loop of SL1 appeared larger, and genome dimerization process might consist of more complicated mechanism than previously understood. Further investigations would be still required to fully understand the genome packaging and dimerization of HIV.
Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice.
Dong, Qianli; Li, Ning; Li, Xiaochong; Yuan, Zan; Xie, Dejian; Wang, Xiaofei; Li, Jianing; Yu, Yanan; Wang, Jinbin; Ding, Baoxu; Zhang, Zhibin; Li, Changping; Bian, Yao; Zhang, Ai; Wu, Ying; Liu, Bao; Gong, Lei
2018-06-01
The non-random spatial packing of chromosomes in the nucleus plays a critical role in orchestrating gene expression and genome function. Here, we present a Hi-C analysis of the chromatin interaction patterns in rice (Oryza sativa L.) at hierarchical architectural levels. We confirm that rice chromosomes occupy their own territories with certain preferential inter-chromosomal associations. Moderate compartment delimitation and extensive TADs (Topologically Associated Domains) were determined to be associated with heterogeneous genomic compositions and epigenetic marks in the rice genome. We found subtle features including chromatin loops, gene loops, and off-/near-diagonal intensive interaction regions. Gene chromatin loops associated with H3K27me3 could be positively involved in gene expression. In addition to insulated enhancing effects for neighbor gene expression, the identified rice gene loops could bi-directionally (+/-) affect the expression of looped genes themselves. Finally, web-interleaved off-diagonal IHIs/KEEs (Interactive Heterochromatic Islands or KNOT ENGAGED ELEMENTs) could trap transposable elements (TEs) via the enrichment of silencing epigenetic marks. In parallel, the near-diagonal FIREs (Frequently Interacting Regions) could positively affect the expression of involved genes. Our results suggest that the chromatin packing pattern in rice is generally similar to that in Arabidopsis thaliana but with clear differences at specific structural levels. We conclude that genomic composition, epigenetic modification, and transcriptional activity could act in combination to shape global and local chromatin packing in rice. Our results confirm recent observations in rice and A. thaliana but also provide additional insights into the patterns and features of chromatin organization in higher plants. © 2018 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Log-Linear Models for Gene Association
Hu, Jianhua; Joshi, Adarsh; Johnson, Valen E.
2009-01-01
We describe a class of log-linear models for the detection of interactions in high-dimensional genomic data. This class of models leads to a Bayesian model selection algorithm that can be applied to data that have been reduced to contingency tables using ranks of observations within subjects, and discretization of these ranks within gene/network components. Many normalization issues associated with the analysis of genomic data are thereby avoided. A prior density based on Ewens’ sampling distribution is used to restrict the number of interacting components assigned high posterior probability, and the calculation of posterior model probabilities is expedited by approximations based on the likelihood ratio statistic. Simulation studies are used to evaluate the efficiency of the resulting algorithm for known interaction structures. Finally, the algorithm is validated in a microarray study for which it was possible to obtain biological confirmation of detected interactions. PMID:19655032
Using genome-wide measurements for computational prediction of SH2–peptide interactions
Wunderlich, Zeba; Mirny, Leonid A.
2009-01-01
Peptide-recognition modules (PRMs) are used throughout biology to mediate protein–protein interactions, and many PRMs are members of large protein domain families. Recent genome-wide measurements describe networks of peptide–PRM interactions. In these networks, very similar PRMs recognize distinct sets of peptides, raising the question of how peptide-recognition specificity is achieved using similar protein domains. The analysis of individual protein complex structures often gives answers that are not easily applicable to other members of the same PRM family. Bioinformatics-based approaches, one the other hand, may be difficult to interpret physically. Here we integrate structural information with a large, quantitative data set of SH2 domain–peptide interactions to study the physical origin of domain–peptide specificity. We develop an energy model, inspired by protein folding, based on interactions between the amino-acid positions in the domain and peptide. We use this model to successfully predict which SH2 domains and peptides interact and uncover the positions in each that are important for specificity. The energy model is general enough that it can be applied to other members of the SH2 family or to new peptides, and the cross-validation results suggest that these energy calculations will be useful for predicting binding interactions. It can also be adapted to study other PRM families, predict optimal peptides for a given SH2 domain, or study other biological interactions, e.g. protein–DNA interactions. PMID:19502496
Joosen, Ronny Viktor Louis; Arends, Danny; Li, Yang; Willems, Leo A.J.; Keurentjes, Joost J.B.; Ligterink, Wilco; Jansen, Ritsert C.; Hilhorst, Henk W.M.
2013-01-01
A complex phenotype such as seed germination is the result of several genetic and environmental cues and requires the concerted action of many genes. The use of well-structured recombinant inbred lines in combination with “omics” analysis can help to disentangle the genetic basis of such quantitative traits. This so-called genetical genomics approach can effectively capture both genetic and epistatic interactions. However, to understand how the environment interacts with genomic-encoded information, a better understanding of the perception and processing of environmental signals is needed. In a classical genetical genomics setup, this requires replication of the whole experiment in different environmental conditions. A novel generalized setup overcomes this limitation and includes environmental perturbation within a single experimental design. We developed a dedicated quantitative trait loci mapping procedure to implement this approach and used existing phenotypical data to demonstrate its power. In addition, we studied the genetic regulation of primary metabolism in dry and imbibed Arabidopsis (Arabidopsis thaliana) seeds. In the metabolome, many changes were observed that were under both environmental and genetic controls and their interaction. This concept offers unique reduction of experimental load with minimal compromise of statistical power and is of great potential in the field of systems genetics, which requires a broad understanding of both plasticity and dynamic regulation. PMID:23606598
Jenjaroenpun, Piroon; Chew, Chee Siang; Yong, Tai Pang; Choowongkomon, Kiattawee; Thammasorn, Wimada; Kuznetsov, Vladimir A
2015-01-01
A triplex target DNA site (TTS), a stretch of DNA that is composed of polypurines, is able to form a triple-helix (triplex) structure with triplex-forming oligonucleotides (TFOs) and is able to influence the site-specific modulation of gene expression and/or the modification of genomic DNA. The co-localization of a genomic TTS with gene regulatory signals and functional genome structures suggests that TFOs could potentially be exploited in antigene strategies for the therapy of cancers and other genetic diseases. Here, we present the TTS Mapping and Integration (TTSMI; http://ttsmi.bii.a-star.edu.sg) database, which provides a catalog of unique TTS locations in the human genome and tools for analyzing the co-localization of TTSs with genomic regulatory sequences and signals that were identified using next-generation sequencing techniques and/or predicted by computational models. TTSMI was designed as a user-friendly tool that facilitates (i) fast searching/filtering of TTSs using several search terms and criteria associated with sequence stability and specificity, (ii) interactive filtering of TTSs that co-localize with gene regulatory signals and non-B DNA structures, (iii) exploration of dynamic combinations of the biological signals of specific TTSs and (iv) visualization of a TTS simultaneously with diverse annotation tracks via the UCSC genome browser. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
GrTEdb: the first web-based database of transposable elements in cotton (Gossypium raimondii).
Xu, Zhenzhen; Liu, Jing; Ni, Wanchao; Peng, Zhen; Guo, Yue; Ye, Wuwei; Huang, Fang; Zhang, Xianggui; Xu, Peng; Guo, Qi; Shen, Xinlian; Du, Jianchang
2017-01-01
Although several diploid and tetroploid Gossypium species genomes have been sequenced, the well annotated web-based transposable elements (TEs) database is lacking. To better understand the roles of TEs in structural, functional and evolutionary dynamics of the cotton genome, a comprehensive, specific, and user-friendly web-based database, Gossypium raimondii transposable elements database (GrTEdb), was constructed. A total of 14 332 TEs were structurally annotated and clearly categorized in G. raimondii genome, and these elements have been classified into seven distinct superfamilies based on the order of protein-coding domains, structures and/or sequence similarity, including 2929 Copia-like elements, 10 368 Gypsy-like elements, 299 L1 , 12 Mutators , 435 PIF-Harbingers , 275 CACTAs and 14 Helitrons . Meanwhile, the web-based sequence browsing, searching, downloading and blast tool were implemented to help users easily and effectively to annotate the TEs or TE fragments in genomic sequences from G. raimondii and other closely related Gossypium species. GrTEdb provides resources and information related with TEs in G. raimondii , and will facilitate gene and genome analyses within or across Gossypium species, evaluating the impact of TEs on their host genomes, and investigating the potential interaction between TEs and protein-coding genes in Gossypium species. http://www.grtedb.org/. © The Author(s) 2017. Published by Oxford University Press.
Complete genome sequence of Methanospirillum hungatei type strain JF1
Gunsalus, Robert; Cook, Lauren E.; Crable, Bryan R.; ...
2016-01-06
Methanospirillum hungatei strain JF1 (DSM 864) is a methane-producing archaeon and is the type species of the genus Methanospirillum, which belongs to the family Methanospirillaceae within the order Methanomicrobiales. Its genome was selected for sequencing due to its ability to utilize hydrogen and carbon dioxide and/or formate as a sole source of energy. Ecologically, M. hungatei functions as the hydrogen- and/or formate-using partner with many species of syntrophic bacteria. Its morphology is distinct from other methanogens with the ability to form long chains of cells (up to 100 m in length), which are enclosed within a sheath-like structure, and terminalmore » cells with polar flagella. The genome of M. hungatei strain JF1 is the first completely sequenced genome of the family Methanospirillaceae, and it has a circular genome of 3,544,738 bp containing 3,239 protein coding and 68 RNA genes. Furthermore, the large genome of M. hungatei JF1 suggests the presence of unrecognized biochemical/physiological properties that likely extend to the other Methanospirillaceae and include the ability to form the unusual sheath-like structure and to successfully interact with syntrophic bacteria.« less
The Mitonuclear Dimension of Neanderthal and Denisovan Ancestry in Modern Human Genomes
Sharbrough, Joel; Havird, Justin C.; Noe, Gregory R.; Warren, Jessica M.
2017-01-01
Abstract Some human populations interbred with Neanderthals and Denisovans, resulting in substantial contributions to modern-human genomes. Therefore, it is now possible to use genomic data to investigate mechanisms that shaped historical gene flow between humans and our closest hominin relatives. More generally, in eukaryotes, mitonuclear interactions have been argued to play a disproportionate role in generating reproductive isolation. There is no evidence of mtDNA introgression into modern human populations, which means that all introgressed nuclear alleles from archaic hominins must function on a modern-human mitochondrial background. Therefore, mitonuclear interactions are also potentially relevant to hominin evolution. We performed a detailed accounting of mtDNA divergence among hominin lineages and used population-genomic data to test the hypothesis that mitonuclear incompatibilities have preferentially restricted the introgression of nuclear genes with mitochondrial functions. We found a small but significant underrepresentation of introgressed Neanderthal alleles at such nuclear loci. Structural analyses of mitochondrial enzyme complexes revealed that these effects are unlikely to be mediated by physically interacting sites in mitochondrial and nuclear gene products. We did not detect any underrepresentation of introgressed Denisovan alleles at mitochondrial-targeted loci, but this may reflect reduced power because locus-specific estimates of Denisovan introgression are more conservative. Overall, we conclude that genes involved in mitochondrial function may have been subject to distinct selection pressures during the history of introgression from archaic hominins but that mitonuclear incompatibilities have had, at most, a small role in shaping genome-wide introgression patterns, perhaps because of limited functional divergence in mtDNA and interacting nuclear genes. PMID:28854627
Muto, Memi; Kamitani, Wataru; Sakai, Mizuki; Hirano, Minato; Kobayashi, Shintaro; Kariwa, Hiroaki; Yoshii, Kentaro
2018-04-02
Tick-borne encephalitis virus (TBEV) causes severe neurological disease, but the pathogenetic mechanism is unclear. The conformational structure of the 3'-untranslated region (UTR) of TBEV is associated with its virulence. We tried to identify host proteins interacting with the 3'-UTR of TBEV. Cellular proteins of HEK293T cells were co-precipitated with biotinylated RNAs of the 3'-UTR of low- and high-virulence TBEV strains and subjected to mass spectrometry analysis. Fifteen host proteins were found to bind to the 3'-UTR of TBEV, four of which-cold shock domain containing-E1 (CSDE1), spermatid perinuclear RNA binding protein (STRBP), fragile X mental retardation protein (FMRP), and interleukin enhancer binding factor 3 (ILF3)-bound specifically to that of the low-virulence strain. An RNA immunoprecipitation and pull-down assay confirmed the interactions of the complete 3'-UTRs of TBEV genomic RNA with CSDE1, FMRP, and ILF3. Partial deletion of the stem loop (SL) 3 to SL 5 structure of the variable region of the 3'-UTR did not affect interactions with the host proteins, but the interactions were markedly suppressed by deletion of the complete SL 3, 4, and 5 structures, as in the high-virulence TBEV strain. Further analysis of the roles of host proteins in the neurologic pathogenicity of TBEV is warranted. Copyright © 2018 Elsevier B.V. All rights reserved.
The connection between BRG1, CTCF and topoisomerases at TAD boundaries.
Barutcu, A Rasim; Lian, Jane B; Stein, Janet L; Stein, Gary S; Imbalzano, Anthony N
2017-03-04
The eukaryotic genome is partitioned into topologically associating domains (TADs). Despite recent advances characterizing TADs and TAD boundaries, the organization of these structures is an important dimension of genome architecture and function that is not well understood. Recently, we demonstrated that knockdown of BRG1, an ATPase driving the chromatin remodeling activity of mammalian SWI/SNF enzymes, globally alters long-range genomic interactions and results in a reduction of TAD boundary strength. We provided evidence suggesting that this effect may be due to BRG1 affecting nucleosome occupancy around CTCF sites present at TAD boundaries. In this review, we elaborate on our findings and speculate that BRG1 may contribute to the regulation of the structural and functional properties of chromatin at TAD boundaries by affecting the function or the recruitment of CTCF and DNA topoisomerase complexes.
Aligning the unalignable: bacteriophage whole genome alignments.
Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M
2016-01-13
In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).
DNA binding by FOXP3 domain-swapped dimer suggests mechanisms of long-range chromosomal interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.; Chen, C.; Zhang, Z.
2015-01-07
FOXP3 is a lineage-specific transcription factor that is required for regulatory T cell development and function. In this study, we determined the crystal structure of the FOXP3 forkhead domain bound to DNA. The structure reveals that FOXP3 can form a stable domain-swapped dimer to bridge DNA in the absence of cofactors, suggesting that FOXP3 may play a role in long-range gene interactions. To test this hypothesis, we used circular chromosome conformation capture coupled with high throughput sequencing (4C-seq) to analyze FOXP3-dependent genomic contacts around a known FOXP3-bound locus, Ptpn22. Our studies reveal that FOXP3 induces significant changes in the chromatinmore » contacts between the Ptpn22 locus and other Foxp3-regulated genes, reflecting a mechanism by which FOXP3 reorganizes the genome architecture to coordinate the expression of its target genes. Our results suggest that FOXP3 mediates long-range chromatin interactions as part of its mechanisms to regulate specific gene expression in regulatory T cells.« less
Virion Architecture Unifies Globally Distributed Pleolipoviruses Infecting Halophilic Archaea
Pietilä, Maija K.; Atanasova, Nina S.; Manole, Violeta; Liljeroos, Lassi; Butcher, Sarah J.; Oksanen, Hanna M.
2012-01-01
Our understanding of the third domain of life, Archaea, has greatly increased since its establishment some 20 years ago. The increasing information on archaea has also brought their viruses into the limelight. Today, about 100 archaeal viruses are known, which is a low number compared to the numbers of characterized bacterial or eukaryotic viruses. Here, we have performed a comparative biological and structural study of seven pleomorphic viruses infecting extremely halophilic archaea. The pleomorphic nature of this novel virion type was established by sedimentation analysis and cryo-electron microscopy. These nonlytic viruses form virions characterized by a lipid vesicle enclosing the genome, without any nucleoproteins. The viral lipids are unselectively acquired from host cell membranes. The virions contain two to three major structural proteins, which either are embedded in the membrane or form spikes distributed randomly on the external membrane surface. Thus, the most important step during virion assembly is most likely the interaction of the membrane proteins with the genome. The interaction can be driven by single-stranded or double-stranded DNA, resulting in the virions having similar architectures but different genome types. Based on our comparative study, these viruses probably form a novel group, which we define as pleolipoviruses. PMID:22357279
An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
Carty, Mark; Zamparo, Lee; Sahin, Merve; González, Alvaro; Pelossof, Raphael; Elemento, Olivier; Leslie, Christina S.
2017-01-01
Here we present HiC-DC, a principled method to estimate the statistical significance (P values) of chromatin interactions from Hi-C experiments. HiC-DC uses hurdle negative binomial regression account for systematic sources of variation in Hi-C read counts—for example, distance-dependent random polymer ligation and GC content and mappability bias—and model zero inflation and overdispersion. Applied to high-resolution Hi-C data in a lymphoblastoid cell line, HiC-DC detects significant interactions at the sub-topologically associating domain level, identifying potential structural and regulatory interactions supported by CTCF binding sites, DNase accessibility, and/or active histone marks. CTCF-associated interactions are most strongly enriched in the middle genomic distance range (∼700 kb–1.5 Mb), while interactions involving actively marked DNase accessible elements are enriched both at short (<500 kb) and longer (>1.5 Mb) genomic distances. There is a striking enrichment of longer-range interactions connecting replication-dependent histone genes on chromosome 6, potentially representing the chromatin architecture at the histone locus body. PMID:28513628
Di Pierro, Michele; Cheng, Ryan R; Lieberman Aiden, Erez; Wolynes, Peter G; Onuchic, José N
2017-11-14
Inside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible. Copyright © 2017 the Author(s). Published by PNAS.
THGS: a web-based database of Transmembrane Helices in Genome Sequences
Fernando, S. A.; Selvarani, P.; Das, Soma; Kumar, Ch. Kiran; Mondal, Sukanta; Ramakumar, S.; Sekar, K.
2004-01-01
Transmembrane Helices in Genome Sequences (THGS) is an interactive web-based database, developed to search the transmembrane helices in the user-interested gene sequences available in the Genome Database (GDB). The proposed database has provision to search sequence motifs in transmembrane and globular proteins. In addition, the motif can be searched in the other sequence databases (Swiss-Prot and PIR) or in the macromolecular structure database, Protein Data Bank (PDB). Further, the 3D structure of the corresponding queried motif, if it is available in the solved protein structures deposited in the Protein Data Bank, can also be visualized using the widely used graphics package RASMOL. All the sequence databases used in the present work are updated frequently and hence the results produced are up to date. The database THGS is freely available via the world wide web and can be accessed at http://pranag.physics.iisc.ernet.in/thgs/ or http://144.16.71.10/thgs/. PMID:14681375
Vitamin D receptor signaling and its therapeutic implications: Genome-wide and structural view.
Carlberg, Carsten; Molnár, Ferdinand
2015-05-01
Vitamin D3 is one of the few natural compounds that has, via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and the transcription factor vitamin D receptor (VDR), a direct effect on gene regulation. For efficiently applying the therapeutic and disease-preventing potential of 1,25(OH)2D3 and its synthetic analogs, the key steps in vitamin D signaling need to be understood. These are the different types of molecular interactions with the VDR, such as (i) the complex formation of VDR with genomic DNA, (ii) the interaction of VDR with its partner transcription factors, (iii) the binding of 1,25(OH)2D3 or its synthetic analogs within the ligand-binding pocket of the VDR, and (iv) the resulting conformational change on the surface of the VDR leading to a change of the protein-protein interaction profile of the receptor with other proteins. This review will present the latest genome-wide insight into vitamin D signaling, and will discuss its therapeutic implications.
NASA Astrophysics Data System (ADS)
Orphan, V. J.; Skennerton, C.; Chadwick, G.; Haroon, F.; Tyson, G. W.; Leu, A.; Hatzenpichler, R.; Woyke, T.; Malmstrom, R.; Yu, H.; Scheller, S.
2015-12-01
Cooperative metabolic interactions between multiple groups of methanotrophic 'ANME' archaea and sulfate-reducing bacteria represent the primary sink for methane within continental margin sediments. These syntrophic associations are frequently observed as structured multi-celled consortia in methane seeps, often comprising a substantial proportion of the microbial biomass within near seafloor seep sediments. Since their discovery nearly 15 years ago, a number of distinct ANME groups and multiple sulfate-reducing bacterial partners have been described from seep environments worldwide. Attempts to reconstruct the genomes of some ANME organisms have been reported, however the ecological physiology and metabolic interactions of distinct ANME lineages and their bacterial partners remains poorly understood. Here, we used a fluorescence azide-alkyne click chemistry technique known as BONCAT combined with FAC sorting to examine patterns in microbial membership and the genomes of single, metabolically active ANME-bacterial consortia recovered from methane seep sediments. This targeted consortia-level sequencing approach revealed significant diversity in the ANME-bacterial associations in situ as well as insights into the potential syntrophic mechanisms underpinning these enigmatic methane-fueled partnerships.
Lery, Letícia M S; Bitar, Mainá; Costa, Mauricio G S; Rössle, Shaila C S; Bisch, Paulo M
2010-12-22
G. diazotrophicus and A. vinelandii are aerobic nitrogen-fixing bacteria. Although oxygen is essential for the survival of these organisms, it irreversibly inhibits nitrogenase, the complex responsible for nitrogen fixation. Both microorganisms deal with this paradox through compensatory mechanisms. In A. vinelandii a conformational protection mechanism occurs through the interaction between the nitrogenase complex and the FeSII protein. Previous studies suggested the existence of a similar system in G. diazotrophicus, but the putative protein involved was not yet described. This study intends to identify the protein coding gene in the recently sequenced genome of G. diazotrophicus and also provide detailed structural information of nitrogenase conformational protection in both organisms. Genomic analysis of G. diazotrophicus sequences revealed a protein coding ORF (Gdia0615) enclosing a conserved "fer2" domain, typical of the ferredoxin family and found in A. vinelandii FeSII. Comparative models of both FeSII and Gdia0615 disclosed a conserved beta-grasp fold. Cysteine residues that coordinate the 2[Fe-S] cluster are in conserved positions towards the metallocluster. Analysis of solvent accessible residues and electrostatic surfaces unveiled an hydrophobic dimerization interface. Dimers assembled by molecular docking presented a stable behaviour and a proper accommodation of regions possibly involved in binding of FeSII to nitrogenase throughout molecular dynamics simulations in aqueous solution. Molecular modeling of the nitrogenase complex of G. diazotrophicus was performed and models were compared to the crystal structure of A. vinelandii nitrogenase. Docking experiments of FeSII and Gdia0615 with its corresponding nitrogenase complex pointed out in both systems a putative binding site presenting shape and charge complementarities at the Fe-protein/MoFe-protein complex interface. The identification of the putative FeSII coding gene in G. diazotrophicus genome represents a large step towards the understanding of the conformational protection mechanism of nitrogenase against oxygen. In addition, this is the first study regarding the structural complementarities of FeSII-nitrogenase interactions in diazotrophic bacteria. The combination of bioinformatic tools for genome analysis, comparative protein modeling, docking calculations and molecular dynamics provided a powerful strategy for the elucidation of molecular mechanisms and structural features of FeSII-nitrogenase interaction.
Freytag, Saskia; Manitz, Juliane; Schlather, Martin; Kneib, Thomas; Amos, Christopher I.; Risch, Angela; Chang-Claude, Jenny; Heinrich, Joachim; Bickeböller, Heike
2014-01-01
Biological pathways provide rich information and biological context on the genetic causes of complex diseases. The logistic kernel machine test integrates prior knowledge on pathways in order to analyze data from genome-wide association studies (GWAS). Here, the kernel converts genomic information of two individuals to a quantitative value reflecting their genetic similarity. With the selection of the kernel one implicitly chooses a genetic effect model. Like many other pathway methods, none of the available kernels accounts for topological structure of the pathway or gene-gene interaction types. However, evidence indicates that connectivity and neighborhood of genes are crucial in the context of GWAS, because genes associated with a disease often interact. Thus, we propose a novel kernel that incorporates the topology of pathways and information on interactions. Using simulation studies, we demonstrate that the proposed method maintains the type I error correctly and can be more effective in the identification of pathways associated with a disease than non-network-based methods. We apply our approach to genome-wide association case control data on lung cancer and rheumatoid arthritis. We identify some promising new pathways associated with these diseases, which may improve our current understanding of the genetic mechanisms. PMID:24434848
Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed.
Bouchet, Anne-Sophie; Laperche, Anne; Bissuel-Belaygue, Christine; Baron, Cécile; Morice, Jérôme; Rousseau-Gueutin, Mathieu; Dheu, Jean-Eric; George, Pierre; Pinochet, Xavier; Foubert, Thomas; Maes, Olivier; Dugué, Damien; Guinot, Florent; Nesi, Nathalie
2016-09-15
Nitrogen use efficiency is an important breeding trait that can be modified to improve the sustainability of many crop species used in agriculture. Rapeseed is a major oil crop with low nitrogen use efficiency, making its production highly dependent on nitrogen input. This complex trait is suspected to be sensitive to genotype × environment interactions, especially genotype × nitrogen interactions. Therefore, phenotyping diverse rapeseed populations under a dense network of trials is a powerful approach to study nitrogen use efficiency in this crop. The present study aimed to determine the quantitative trait loci (QTL) associated with yield in winter oilseed rape and to assess the stability of these regions under contrasting nitrogen conditions for the purpose of increasing nitrogen use efficiency. Genome-wide association studies and linkage analyses were performed on two diversity sets and two doubled-haploid populations. These populations were densely genotyped, and yield-related traits were scored in a multi-environment design including seven French locations, six growing seasons (2009 to 2014) and two nitrogen nutrition levels (optimal versus limited). Very few genotype × nitrogen interactions were detected, and a large proportion of the QTL were stable across nitrogen nutrition conditions. In contrast, strong genotype × trial interactions in which most of the QTL were specific to a single trial were found. To obtain further insight into the QTL × environment interactions, genetic analyses of ecovalence were performed to identify the genomic regions contributing to the genotype × nitrogen and genotype × trial interactions. Fifty-one critical genomic regions contributing to the additive genetic control of yield-associated traits were identified, and the structural organization of these regions in the genome was investigated. Our results demonstrated that the effect of the trial was greater than the effect of nitrogen nutrition levels on seed yield-related traits under our experimental conditions. Nevertheless, critical genomic regions associated with yield that were stable across environments were identified in rapeseed.
Three Big Hands-On Noncomputer Models for the Biology Classroom.
ERIC Educational Resources Information Center
Miller, James E.
1998-01-01
Proposes models for the lichen symbiosis, genomic, and plasmid DNA and fluid mosaic membrane structure. The models operate at the classroom level with the classroom becoming the cell in a DNA exercise with students as interactive components. (DDR)
Johnson, Matthew C; Sena-Velez, Marta; Washburn, Brian K; Platt, Georgia N; Lu, Stephen; Brewer, Tess E; Lynn, Jason S; Stroupe, M Elizabeth; Jones, Kathryn M
2017-12-01
Bacteriophages of nitrogen-fixing rhizobial bacteria are revealing a wealth of novel structures, diverse enzyme combinations and genomic features. Here we report the cryo-EM structure of the phage capsid at 4.9-5.7Å-resolution, the phage particle proteome, and the genome of the Sinorhizobium meliloti-infecting Podovirus ΦM5. This is the first structure of a phage with a capsid and capsid-associated structural proteins related to those of the LUZ24-like viruses that infect Pseudomonas aeruginosa. Like many other Podoviruses, ΦM5 is a T=7 icosahedron with a smooth capsid and short, relatively featureless tail. Nonetheless, this group is phylogenetically quite distinct from Podoviruses of the well-characterized T7, P22, and epsilon 15 supergroups. Structurally, a distinct bridge of density that appears unique to ΦM5 reaches down the body of the coat protein to the extended loop that interacts with the next monomer in a hexamer, perhaps stabilizing the mature capsid. Further, the predicted tail fibers of ΦM5 are quite different from those of enteric bacteria phages, but have domains in common with other rhizophages. Genomically, ΦM5 is highly mosaic. The ΦM5 genome is 44,005bp with 357bp direct terminal repeats (DTRs) and 58 unique ORFs. Surprisingly, the capsid structural module, the tail module, the DNA-packaging terminase, the DNA replication module and the integrase each appear to be from a different lineage. One of the most unusual features of ΦM5 is its terminase whose large subunit is quite different from previously-described short-DTR-generating packaging machines and does not fit into any of the established phylogenetic groups. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Dai, Xinghong; Yu, Xuekui; Gong, Hao; Jiang, Xiaohong; Abenes, Gerrado; Liu, Hongrong; Shivakoti, Sakar; Britt, William J; Zhu, Hua; Liu, Fenyong; Zhou, Z Hong
2013-08-01
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that causes birth defects in newborns and life-threatening complications in immunocompromised individuals. Among all human herpesviruses, HCMV contains a much larger dsDNA genome within a similarly-sized capsid compared to the others, and it was proposed to require pp150, a tegument protein only found in cytomegaloviruses, to stabilize its genome-containing capsid. However, little is known about how pp150 interacts with the underlying capsid. Moreover, the smallest capsid protein (SCP), while dispensable in herpes simplex virus type 1, was shown to play essential, yet undefined, role in HCMV infection. Here, by cryo electron microscopy (cryoEM), we determine three-dimensional structures of HCMV capsid (no pp150) and virion (with pp150) at sub-nanometer resolution. Comparison of these two structures reveals that each pp150 tegument density is composed of two helix bundles connected by a long central helix. Correlation between the resolved helices and sequence-based secondary structure prediction maps the tegument density to the N-terminal half of pp150. The structures also show that SCP mediates interactions between the capsid and pp150 at the upper helix bundle of pp150. Consistent with this structural observation, ribozyme inhibition of SCP expression in HCMV-infected cells impairs the formation of DNA-containing viral particles and reduces viral yield by 10,000 fold. By cryoEM reconstruction of the resulting "SCP-deficient" viral particles, we further demonstrate that SCP is required for pp150 functionally binding to the capsid. Together, our structural and biochemical results point to a mechanism whereby SCP recruits pp150 to stabilize genome-containing capsid for the production of infectious HCMV virion.
Knibbe, Carole; Schneider, Dominique; Beslon, Guillaume
2017-01-01
Metabolic cross-feeding interactions between microbial strains are common in nature, and emerge during evolution experiments in the laboratory, even in homogeneous environments providing a single carbon source. In sympatry, when the environment is well-mixed, the reasons why emerging cross-feeding interactions may sometimes become stable and lead to monophyletic genotypic clusters occupying specific niches, named ecotypes, remain unclear. As an alternative to evolution experiments in the laboratory, we developed Evo2Sim, a multi-scale model of in silico experimental evolution, equipped with the whole tool case of experimental setups, competition assays, phylogenetic analysis, and, most importantly, allowing for evolvable ecological interactions. Digital organisms with an evolvable genome structure encoding an evolvable metabolic network evolved for tens of thousands of generations in environments mimicking the dynamics of real controlled environments, including chemostat or batch culture providing a single limiting resource. We show here that the evolution of stable cross-feeding interactions requires seasonal batch conditions. In this case, adaptive diversification events result in two stably co-existing ecotypes, with one feeding on the primary resource and the other on by-products. We show that the regularity of serial transfers is essential for the maintenance of the polymorphism, as it allows for at least two stable seasons and thus two temporal niches. A first season is externally generated by the transfer into fresh medium, while a second one is internally generated by niche construction as the provided nutrient is replaced by secreted by-products derived from bacterial growth. In chemostat conditions, even if cross-feeding interactions emerge, they are not stable on the long-term because fitter mutants eventually invade the whole population. We also show that the long-term evolution of the two stable ecotypes leads to character displacement, at the level of the metabolic network but also of the genome structure. This difference of genome structure between both ecotypes impacts the stability of the cross-feeding interaction, when the population is propagated in chemostat conditions. This study shows the crucial role played by seasonality in temporal niche partitioning and in promoting cross-feeding subgroups into stable ecotypes, a premise to sympatric speciation. PMID:28358919
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavromatis, K; Doyle, C Kuyler; Lykidis, A
2006-01-01
Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, {alpha}-proteobacterium, is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, 17 putative pseudogenes, and a substantial proportion of noncoding sequence (27%). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences and a unique serine-threonine bias associated with the potential for O glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associatedmore » with immune evasion were identified, one of which contains poly(G-C) tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Genes associated with pathogen-host interactions were identified, including a small group encoding proteins (n = 12) with tandem repeats and another group encoding proteins with eukaryote-like ankyrin domains (n = 7).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavromatis, K.; Kuyler Doyle, C.; Lykidis, A.
2005-09-01
Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, a-proteobacterium is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, and 17 putative pseudogenes, and a substantial proportion of non-coding sequence (27 percent). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences, and a unique serine-threonine bias associated with the potential for O-glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein familiesmore » associated with immune evasion were identified, one of which contains poly G:C tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Proteins associated with pathogen-host interactions were identified including a small group of proteins (12) with tandem repeats and another with eukaryotic-like ankyrin domains (7).« less
Lloyd Evans, Dyfed; Joshi, Shailesh Vinay
2017-07-01
In a genome context, sugarcane is a classic orphan crop, in that no genome and only very few genes have been assembled. We have devised a novel exome assembly methodology that has allowed us to assemble and characterize 49 genes that serve as herbicide targets, safener interacting proteins, and members of herbicide detoxification pathways within the sugarcane genome. We have structurally modelled the products of each of these genes, as well as determining allelic, genomic, and RNA-Seq based polymorphisms for each gene. This study provides the largest collection of sugarcane structures modelled to date. We demonstrate that sugarcane genes are highly polymorphic, revealing that each genotype is evolving both uniquely and independently. In addition, we present an exome assembly system for orphan crops that can be executed on commodity infrastructure, making exome assembly practical for any group. In terms of knowledge about herbicide modes of action and detoxification, we have advanced sugarcane from a crop where no information about any herbicide-associated gene was available to the situation where sugarcane is now a species with the single largest collection of known and annotated herbicide-associated genes.
CoCoNUT: an efficient system for the comparison and analysis of genomes
2008-01-01
Background Comparative genomics is the analysis and comparison of genomes from different species. This area of research is driven by the large number of sequenced genomes and heavily relies on efficient algorithms and software to perform pairwise and multiple genome comparisons. Results Most of the software tools available are tailored for one specific task. In contrast, we have developed a novel system CoCoNUT (Computational Comparative geNomics Utility Toolkit) that allows solving several different tasks in a unified framework: (1) finding regions of high similarity among multiple genomic sequences and aligning them, (2) comparing two draft or multi-chromosomal genomes, (3) locating large segmental duplications in large genomic sequences, and (4) mapping cDNA/EST to genomic sequences. Conclusion CoCoNUT is competitive with other software tools w.r.t. the quality of the results. The use of state of the art algorithms and data structures allows CoCoNUT to solve comparative genomics tasks more efficiently than previous tools. With the improved user interface (including an interactive visualization component), CoCoNUT provides a unified, versatile, and easy-to-use software tool for large scale studies in comparative genomics. PMID:19014477
1994-01-01
HSV envelopment and egress . Gross structures of the genomes of tbe buman herpesviruses . Layout of genes in the genome of HSV - 1 ........... . A... HSV - 1 capsid maturation . Seletion of recombinant vaccinia viruses Protein fusion and purification system . Generation of tbe recombinant plasmid...with purified HSV -I virions Effect of detergent treatment on the association of the UL37 protein with purified HSV - 1 vIrIons
We present the molecular landscape of pediatric acute myeloid leukemia (AML) and characterize nearly 1,000 participants in Children’s Oncology Group (COG) AML trials. The COG–National Cancer Institute (NCI) TARGET AML initiative assessed cases by whole-genome, targeted DNA, mRNA and microRNA sequencing and CpG methylation profiling. Validated DNA variants corresponded to diverse, infrequent mutations, with fewer than 40 genes mutated in >2% of cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, Vera; Carpenter, Kevin J.; Weber, Peter K.
By combining genomics and isotope imaging analysis using high-resolution secondary ion mass spectrometry (NanoSIMS), we examined the function and evolution of Bacteroidales ectosymbionts of the protistBarbulanymphafrom the hindguts of the wood-eating cockroachCryptocercus punctulatus. In particular, we investigated the structure of ectosymbiont genomes, which, in contrast to those of endosymbionts, has been little studied to date, and tested the hypothesis that these ectosymbionts fix nitrogen. Unlike with most obligate endosymbionts, genome reduction has not played a major role in the evolution of the Barbulanympha ectosymbionts. Instead, interaction with the external environment has remained important for this symbiont as genes for synthesismore » of transporters, outer membrane proteins, lipopolysaccharides, and lipoproteins have been retained. The ectosymbiont genome carried two complete operons for nitrogen fixation, a urea transporter, and a urease, indicating the availability of nitrogen as a driving force behind the symbiosis. NanoSIMS analysis ofC. punctulatushindgut symbionts exposedin vivoto 15N 2 supports the hypothesis thatBarbulanymphaectosymbionts are capable of nitrogen fixation. This genomic andin vivofunctional investigation of protist ectosymbionts highlights the diversity of evolutionary forces and trajectories that shape symbiotic interactions. The ecological and evolutionary importance of symbioses is increasingly clear, but the overall diversity of symbiotic interactions remains poorly explored. Here in this study, we investigated the evolution and nitrogen fixation capabilities of ectosymbionts attached to the protist Barbulanympha from the hindgut of the wood-eating cockroach Cryptocercus punctulatus. In addressing genome evolution of protist ectosymbionts, our data suggest that the ecological pressures influencing the evolution of extracellular symbionts clearly differ from intracellular symbionts and organelles. Using NanoSIMS analysis, we also obtained direct imaging evidence of a specific hindgut microbe playing a role in nitrogen fixation. These results demonstrate the power of combining NanoSIMS and genomics tools for investigating the biology of uncultivable microbes. This investigation paves the way for a more precise understanding of microbial interactions in the hindguts of wood-eating insects and further exploration of the diversity and ecological significance of symbiosis between microbes.« less
Tai, Vera; Carpenter, Kevin J.; Weber, Peter K.; ...
2016-05-27
By combining genomics and isotope imaging analysis using high-resolution secondary ion mass spectrometry (NanoSIMS), we examined the function and evolution of Bacteroidales ectosymbionts of the protistBarbulanymphafrom the hindguts of the wood-eating cockroachCryptocercus punctulatus. In particular, we investigated the structure of ectosymbiont genomes, which, in contrast to those of endosymbionts, has been little studied to date, and tested the hypothesis that these ectosymbionts fix nitrogen. Unlike with most obligate endosymbionts, genome reduction has not played a major role in the evolution of the Barbulanympha ectosymbionts. Instead, interaction with the external environment has remained important for this symbiont as genes for synthesismore » of transporters, outer membrane proteins, lipopolysaccharides, and lipoproteins have been retained. The ectosymbiont genome carried two complete operons for nitrogen fixation, a urea transporter, and a urease, indicating the availability of nitrogen as a driving force behind the symbiosis. NanoSIMS analysis ofC. punctulatushindgut symbionts exposedin vivoto 15N 2 supports the hypothesis thatBarbulanymphaectosymbionts are capable of nitrogen fixation. This genomic andin vivofunctional investigation of protist ectosymbionts highlights the diversity of evolutionary forces and trajectories that shape symbiotic interactions. The ecological and evolutionary importance of symbioses is increasingly clear, but the overall diversity of symbiotic interactions remains poorly explored. Here in this study, we investigated the evolution and nitrogen fixation capabilities of ectosymbionts attached to the protist Barbulanympha from the hindgut of the wood-eating cockroach Cryptocercus punctulatus. In addressing genome evolution of protist ectosymbionts, our data suggest that the ecological pressures influencing the evolution of extracellular symbionts clearly differ from intracellular symbionts and organelles. Using NanoSIMS analysis, we also obtained direct imaging evidence of a specific hindgut microbe playing a role in nitrogen fixation. These results demonstrate the power of combining NanoSIMS and genomics tools for investigating the biology of uncultivable microbes. This investigation paves the way for a more precise understanding of microbial interactions in the hindguts of wood-eating insects and further exploration of the diversity and ecological significance of symbiosis between microbes.« less
Identification and characterization of a class of MALAT1 -like genomic loci
Zhang, Bin; Mao, Yuntao S.; Diermeier, Sarah D.; ...
2017-05-23
The MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) gene encodes a noncoding RNA that is processed into a long nuclear retained transcript ( MALAT1) and a small cytoplasmic tRNA-like transcript (mascRNA). Using an RNA sequence- and structure-based covariance model, we identified more than 130 genomic loci in vertebrate genomes containing the MALAT1 3' end triple-helix structure and its immediate downstream tRNA-like structure, including 44 in the green lizard Anolis carolinensis. Structural and computational analyses revealed a co-occurrence of components of the 3' end module. MALAT1-like genes in Anolis carolinensis are highly expressed in adult testis, thus we named them testis-abundant longmore » noncoding RNAs (tancRNAs). MALAT1-like loci also produce multiple small RNA species, including PIWI-interacting RNAs (piRNAs), from the antisense strand. The 3' ends of tancRNAs serve as potential targets for the PIWI-piRNA complex. Furthermore, we have identified an evolutionarily conserved class of long noncoding RNAs (lncRNAs) with similar structural constraints, post-transcriptional processing, and subcellular localization and a distinct function in spermatocytes.« less
Identification and characterization of a class of MALAT1 -like genomic loci
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bin; Mao, Yuntao S.; Diermeier, Sarah D.
The MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) gene encodes a noncoding RNA that is processed into a long nuclear retained transcript ( MALAT1) and a small cytoplasmic tRNA-like transcript (mascRNA). Using an RNA sequence- and structure-based covariance model, we identified more than 130 genomic loci in vertebrate genomes containing the MALAT1 3' end triple-helix structure and its immediate downstream tRNA-like structure, including 44 in the green lizard Anolis carolinensis. Structural and computational analyses revealed a co-occurrence of components of the 3' end module. MALAT1-like genes in Anolis carolinensis are highly expressed in adult testis, thus we named them testis-abundant longmore » noncoding RNAs (tancRNAs). MALAT1-like loci also produce multiple small RNA species, including PIWI-interacting RNAs (piRNAs), from the antisense strand. The 3' ends of tancRNAs serve as potential targets for the PIWI-piRNA complex. Furthermore, we have identified an evolutionarily conserved class of long noncoding RNAs (lncRNAs) with similar structural constraints, post-transcriptional processing, and subcellular localization and a distinct function in spermatocytes.« less
Modelling and enhanced molecular dynamics to steer structure-based drug discovery.
Kalyaanamoorthy, Subha; Chen, Yi-Ping Phoebe
2014-05-01
The ever-increasing gap between the availabilities of the genome sequences and the crystal structures of proteins remains one of the significant challenges to the modern drug discovery efforts. The knowledge of structure-dynamics-functionalities of proteins is important in order to understand several key aspects of structure-based drug discovery, such as drug-protein interactions, drug binding and unbinding mechanisms and protein-protein interactions. This review presents a brief overview on the different state of the art computational approaches that are applied for protein structure modelling and molecular dynamics simulations of biological systems. We give an essence of how different enhanced sampling molecular dynamics approaches, together with regular molecular dynamics methods, assist in steering the structure based drug discovery processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and -Ts.
Takeshita, Daijiro; Tomita, Kozo
2010-09-07
Replication and transcription of viral RNA genomes rely on host-donated proteins. Qbeta virus infects Escherichia coli and replicates and transcribes its own genomic RNA by Qbeta replicase. Qbeta replicase requires the virus-encoded RNA-dependent RNA polymerase (beta-subunit), and the host-donated translational elongation factors EF-Tu and -Ts, as active core subunits for its RNA polymerization activity. Here, we present the crystal structure of the core Qbeta replicase, comprising the beta-subunit, EF-Tu and -Ts. The beta-subunit has a right-handed structure, and the EF-Tu:Ts binary complex maintains the structure of the catalytic core crevasse of the beta-subunit through hydrophobic interactions, between the finger and thumb domains of the beta-subunit and domain-2 of EF-Tu and the coiled-coil motif of EF-Ts, respectively. These hydrophobic interactions are required for the expression and assembly of the Qbeta replicase complex. Thus, EF-Tu and -Ts have chaperone-like functions in the maintenance of the structure of the active Qbeta replicase. Modeling of the template RNA and the growing RNA in the catalytic site of the Qbeta replicase structure also suggests that structural changes of the RNAs and EF-Tu:Ts should accompany processive RNA polymerization and that EF-Tu:Ts in the Qbeta replicase could function to modulate the RNA folding and structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rantalainen, Kimmo I.; Christensen, Peter A.; Hafren, Anders
The viral genome-linked protein (VPg) of Potato virus A (PVA) is a multifunctional protein that belongs to a class of intrinsically disordered proteins. Typically, this type of protein gains a more stable structure upon interactions or posttranslational modifications. In a membrane lipid strip overlay binding assay, PVA VPg was found to bind phosphatidylserine (PS), but not phosphatidylcholine (PC). According to circular dichroism spectroscopy, the secondary structure of PVA VPg was stabilized upon interactions with PS and phosphatidylglycerol (PG), but not with PC vesicles. It is possible that this stabilization favored the formation of alpha-helical structures. Limited tryptic digestion showed thatmore » the interaction with anionic vesicles protected certain, otherwise accessible, trypsin cleavage sites. An electron microscopy study revealed that interaction with VPg substantially increased the vesicle diameter and caused the formation of pore or plaque-like electron dense spots on the vesicle surface, which gradually led to disruption of the vesicles.« less
Condensin-driven remodelling of X chromosome topology during dosage compensation
NASA Astrophysics Data System (ADS)
Crane, Emily; Bian, Qian; McCord, Rachel Patton; Lajoie, Bryan R.; Wheeler, Bayly S.; Ralston, Edward J.; Uzawa, Satoru; Dekker, Job; Meyer, Barbara J.
2015-07-01
The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (~1 Mb) resembling mammalian topologically associating domains (TADs). TADs on X chromosomes have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X chromosomes coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X chromosomes by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using CRISPR/Cas9 greatly diminished the boundary. Thus, the DCC imposes a distinct higher-order structure onto X chromosomes while regulating gene expression chromosome-wide.
Condensin-Driven Remodeling of X-Chromosome Topology during Dosage Compensation
Crane, Emily; Bian, Qian; McCord, Rachel Patton; Lajoie, Bryan R.; Wheeler, Bayly S.; Ralston, Edward J.; Uzawa, Satoru; Dekker, Job; Meyer, Barbara J.
2015-01-01
The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure1,2. Here we perform genome-wide chromosome conformation capture analysis, FISH, and RNA-seq to obtain comprehensive 3D maps of the Caenorhabditis elegans genome and to dissect X-chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half3–7. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes5,6. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (~1 Mb) resembling mammalian Topologically Associating Domains (TADs)8,9. TADs on X have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using CRISPR/Cas9 greatly diminished the boundary. Thus, the DCC imposes a distinct higher-order structure onto X while regulating gene expression chromosome wide. PMID:26030525
Genome-culture coevolution promotes rapid divergence of killer whale ecotypes.
Foote, Andrew D; Vijay, Nagarjun; Ávila-Arcos, María C; Baird, Robin W; Durban, John W; Fumagalli, Matteo; Gibbs, Richard A; Hanson, M Bradley; Korneliussen, Thorfinn S; Martin, Michael D; Robertson, Kelly M; Sousa, Vitor C; Vieira, Filipe G; Vinař, Tomáš; Wade, Paul; Worley, Kim C; Excoffier, Laurent; Morin, Phillip A; Gilbert, M Thomas P; Wolf, Jochen B W
2016-05-31
Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level.
Genome-culture coevolution promotes rapid divergence of killer whale ecotypes
Foote, Andrew D.; Vijay, Nagarjun; Ávila-Arcos, María C.; Baird, Robin W.; Durban, John W.; Fumagalli, Matteo; Gibbs, Richard A.; Hanson, M. Bradley; Korneliussen, Thorfinn S.; Martin, Michael D.; Robertson, Kelly M.; Sousa, Vitor C.; Vieira, Filipe G.; Vinař, Tomáš; Wade, Paul; Worley, Kim C.; Excoffier, Laurent; Morin, Phillip A.; Gilbert, M. Thomas P.; Wolf, Jochen B.W.
2016-01-01
Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level. PMID:27243207
USDA-ARS?s Scientific Manuscript database
This review addresses important issues of porcine reproductive and respiratory syndrome virus (PRRSV) infection, immunity, pathogenesis and control. Worldwide PRRS is the most economically important infectious disease of pigs. We highlight the latest information on viral genome structure, pathogenic...
[Genome-scale sequence data processing and epigenetic analysis of DNA methylation].
Wang, Ting-Zhang; Shan, Gao; Xu, Jian-Hong; Xue, Qing-Zhong
2013-06-01
A new approach recently developed for detecting cytosine DNA methylation (mC) and analyzing the genome-scale DNA methylation profiling, is called BS-Seq which is based on bisulfite conversion of genomic DNA combined with next-generation sequencing. The method can not only provide an insight into the difference of genome-scale DNA methylation among different organisms, but also reveal the conservation of DNA methylation in all contexts and nucleotide preference for different genomic regions, including genes, exons, and repetitive DNA sequences. It will be helpful to under-stand the epigenetic impacts of cytosine DNA methylation on the regulation of gene expression and maintaining silence of repetitive sequences, such as transposable elements. In this paper, we introduce the preprocessing steps of DNA methylation data, by which cytosine (C) and guanine (G) in the reference sequence are transferred to thymine (T) and adenine (A), and cytosine in reads is transferred to thymine, respectively. We also comprehensively review the main content of the DNA methylation analysis on the genomic scale: (1) the cytosine methylation under the context of different sequences; (2) the distribution of genomic methylcytosine; (3) DNA methylation context and the preference for the nucleotides; (4) DNA- protein interaction sites of DNA methylation; (5) degree of methylation of cytosine in the different structural elements of genes. DNA methylation analysis technique provides a powerful tool for the epigenome study in human and other species, and genes and environment interaction, and founds the theoretical basis for further development of disease diagnostics and therapeutics in human.
Absence of genome reduction in diverse, facultative endohyphal bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltrus, David A.; Dougherty, Kevin; Arendt, Kayla R.
Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, andmore » generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.« less
Absence of genome reduction in diverse, facultative endohyphal bacteria
Baltrus, David A.; Dougherty, Kevin; Arendt, Kayla R.; ...
2017-02-28
Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, andmore » generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.« less
The Dynamic Interplay Between DNA Topoisomerases and DNA Topology.
Seol, Yeonee; Neuman, Keir C
2016-09-01
Topological properties of DNA influence its structure and biochemical interactions. Within the cell DNA topology is constantly in flux. Transcription and other essential processes including DNA replication and repair, alter the topology of the genome, while introducing additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases, is a pervasive factor that influences DNA metabolism in vivo . Building on the extensive structural and biochemical characterization over the past four decades that established the fundamental mechanistic basis of topoisomerase activity, the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases have begun to be explored. In this review we survey established and emerging DNA topology dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.
The dynamic interplay between DNA topoisomerases and DNA topology.
Seol, Yeonee; Neuman, Keir C
2016-11-01
Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.
Structure of human Cdc45 and implications for CMG helicase function
Simon, Aline C.; Sannino, Vincenzo; Costanzo, Vincenzo; Pellegrini, Luca
2016-01-01
Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication. PMID:27189187
Muley, Vijaykumar Yogesh; Ranjan, Akash
2012-01-01
Recent progress in computational methods for predicting physical and functional protein-protein interactions has provided new insights into the complexity of biological processes. Most of these methods assume that functionally interacting proteins are likely to have a shared evolutionary history. This history can be traced out for the protein pairs of a query genome by correlating different evolutionary aspects of their homologs in multiple genomes known as the reference genomes. These methods include phylogenetic profiling, gene neighborhood and co-occurrence of the orthologous protein coding genes in the same cluster or operon. These are collectively known as genomic context methods. On the other hand a method called mirrortree is based on the similarity of phylogenetic trees between two interacting proteins. Comprehensive performance analyses of these methods have been frequently reported in literature. However, very few studies provide insight into the effect of reference genome selection on detection of meaningful protein interactions. We analyzed the performance of four methods and their variants to understand the effect of reference genome selection on prediction efficacy. We used six sets of reference genomes, sampled in accordance with phylogenetic diversity and relationship between organisms from 565 bacteria. We used Escherichia coli as a model organism and the gold standard datasets of interacting proteins reported in DIP, EcoCyc and KEGG databases to compare the performance of the prediction methods. Higher performance for predicting protein-protein interactions was achievable even with 100-150 bacterial genomes out of 565 genomes. Inclusion of archaeal genomes in the reference genome set improves performance. We find that in order to obtain a good performance, it is better to sample few genomes of related genera of prokaryotes from the large number of available genomes. Moreover, such a sampling allows for selecting 50-100 genomes for comparable accuracy of predictions when computational resources are limited.
Recent Amplification of the Kangaroo Endogenous Retrovirus, KERV, Limited to the Centromere▿
Ferreri, Gianni C.; Brown, Judith D.; Obergfell, Craig; Jue, Nathaniel; Finn, Caitlin E.; O'Neill, Michael J.; O'Neill, Rachel J.
2011-01-01
Mammalian retrotransposons, transposable elements that are processed through an RNA intermediate, are categorized as short interspersed elements (SINEs), long interspersed elements (LINEs), and long terminal repeat (LTR) retroelements, which include endogenous retroviruses. The ability of transposable elements to autonomously amplify led to their initial characterization as selfish or junk DNA; however, it is now known that they may acquire specific cellular functions in a genome and are implicated in host defense mechanisms as well as in genome evolution. Interactions between classes of transposable elements may exert a markedly different and potentially more significant effect on a genome than interactions between members of a single class of transposable elements. We examined the genomic structure and evolution of the kangaroo endogenous retrovirus (KERV) in the marsupial genus Macropus. The complete proviral structure of the kangaroo endogenous retrovirus, phylogenetic relationship among relative retroviruses, and expression of this virus in both Macropus rufogriseus and M. eugenii are presented for the first time. In addition, we show the relative copy number and distribution of the kangaroo endogenous retrovirus in the Macropus genus. Our data indicate that amplification of the kangaroo endogenous retrovirus occurred in a lineage-specific fashion, is restricted to the centromeres, and is not correlated with LINE depletion. Finally, analysis of KERV long terminal repeat sequences using massively parallel sequencing indicates that the recent amplification in M. rufogriseus is likely due to duplications and concerted evolution rather than a high number of independent insertion events. PMID:21389136
Date, Tomoko; Akazawa, Daisuke; Tian, Xiao; Suzuki, Tetsuro; Kato, Takanobu; Tanaka, Yasuhito; Mizokami, Masashi; Wakita, Takaji; Toyoda, Tetsuya
2010-01-01
We have previously reported that the NS3 helicase (N3H) and NS5B-to-3′X (N5BX) regions are important for the efficient replication of hepatitis C virus (HCV) strain JFH-1 and viral production in HuH-7 cells. In the current study, we investigated the relationships between HCV genome replication, virus production, and the structure of N5BX. We found that the Q377R, A450S, S455N, R517K, and Y561F mutations in the NS5B region resulted in up-regulation of J6CF NS5B polymerase activity in vitro. However, the activation effects of these mutations on viral RNA replication and virus production with JFH-1 N3H appeared to differ. In the presence of the N3H region and 3′ untranslated region (UTR) of JFH-1, A450S, R517K, and Y561F together were sufficient to confer HCV genome replication activity and virus production ability to J6CF in cultured cells. Y561F was also involved in the kissing-loop interaction between SL3.2 in the NS5B region and SL2 in the 3′X region. We next analyzed the 3′ structure of HCV genome RNA. The shorter polyU/UC tracts of JFH-1 resulted in more efficient RNA replication than J6CF. Furthermore, 9458G in the JFH-1 variable region (VR) was responsible for RNA replication activity because of its RNA structures. In conclusion, N3H, high polymerase activity, enhanced kissing-loop interactions, and optimal viral RNA structure in the 3′UTR were required for J6CF replication in cultured cells. PMID:20442786
Deciphering the role of the Gag-Pol ribosomal frameshift signal in HIV-1 RNA genome packaging.
Nikolaitchik, Olga A; Hu, Wei-Shau
2014-04-01
A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5' untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5' end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important information on how HIV-1 regulates its genome packaging and generate infectious viruses necessary for transmission to new hosts.
Deciphering the Role of the Gag-Pol Ribosomal Frameshift Signal in HIV-1 RNA Genome Packaging
Nikolaitchik, Olga A.
2014-01-01
ABSTRACT A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5′ untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. IMPORTANCE To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5′ end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important information on how HIV-1 regulates its genome packaging and generate infectious viruses necessary for transmission to new hosts. PMID:24453371
Mechanisms and dynamics of nuclear lamina-genome interactions.
Amendola, Mario; van Steensel, Bas
2014-06-01
The nuclear lamina (NL) interacts with the genomic DNA and is thought to influence chromosome organization and gene expression. Both DNA sequences and histone modifications are important for NL tethering of the genomic DNA. These interactions are dynamic in individual cells and can change during differentiation and development. Evidence is accumulating that the NL contributes to the repression of transcription. Advances in mapping, genome-editing and microscopy techniques are increasing our understanding of the molecular mechanisms involved in NL-genome interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Deep sequencing of foot-and-mouth disease virus reveals RNA sequences involved in genome packaging.
Logan, Grace; Newman, Joseph; Wright, Caroline F; Lasecka-Dykes, Lidia; Haydon, Daniel T; Cottam, Eleanor M; Tuthill, Tobias J
2017-10-18
Non-enveloped viruses protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. Packaging and capsid assembly in RNA viruses can involve interactions between capsid proteins and secondary structures in the viral genome as exemplified by the RNA bacteriophage MS2 and as proposed for other RNA viruses of plants, animals and human. In the picornavirus family of non-enveloped RNA viruses, the requirements for genome packaging remain poorly understood. Here we show a novel and simple approach to identify predicted RNA secondary structures involved in genome packaging in the picornavirus foot-and-mouth disease virus (FMDV). By interrogating deep sequencing data generated from both packaged and unpackaged populations of RNA we have determined multiple regions of the genome with constrained variation in the packaged population. Predicted secondary structures of these regions revealed stem loops with conservation of structure and a common motif at the loop. Disruption of these features resulted in attenuation of virus growth in cell culture due to a reduction in assembly of mature virions. This study provides evidence for the involvement of predicted RNA structures in picornavirus packaging and offers a readily transferable methodology for identifying packaging requirements in many other viruses. Importance In order to transmit their genetic material to a new host, non-enveloped viruses must protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. For many non-enveloped RNA viruses the requirements for this critical part of the viral life cycle remain poorly understood. We have identified RNA sequences involved in genome packaging of the picornavirus foot-and-mouth disease virus. This virus causes an economically devastating disease of livestock affecting both the developed and developing world. The experimental methods developed to carry out this work are novel, simple and transferable to the study of packaging signals in other RNA viruses. Improved understanding of RNA packaging may lead to novel vaccine approaches or targets for antiviral drugs with broad spectrum activity. Copyright © 2017 Logan et al.
Greenwald, William W; Li, He; Smith, Erin N; Benaglio, Paola; Nariai, Naoki; Frazer, Kelly A
2017-04-07
Genomic interaction studies use next-generation sequencing (NGS) to examine the interactions between two loci on the genome, with subsequent bioinformatics analyses typically including annotation, intersection, and merging of data from multiple experiments. While many file types and analysis tools exist for storing and manipulating single locus NGS data, there is currently no file standard or analysis tool suite for manipulating and storing paired-genomic-loci: the data type resulting from "genomic interaction" studies. As genomic interaction sequencing data are becoming prevalent, a standard file format and tools for working with these data conveniently and efficiently are needed. This article details a file standard and novel software tool suite for working with paired-genomic-loci data. We present the paired-genomic-loci (PGL) file standard for genomic-interactions data, and the accompanying analysis tool suite "pgltools": a cross platform, pypy compatible python package available both as an easy-to-use UNIX package, and as a python module, for integration into pipelines of paired-genomic-loci analyses. Pgltools is a freely available, open source tool suite for manipulating paired-genomic-loci data. Source code, an in-depth manual, and a tutorial are available publicly at www.github.com/billgreenwald/pgltools , and a python module of the operations can be installed from PyPI via the PyGLtools module.
Nie, Yan; Viola, Cristina; Bieniossek, Christoph; Trowitzsch, Simon; Vijay-achandran, Lakshmi Sumitra; Chaillet, Maxime; Garzoni, Frederic; Berger, Imre
2009-01-01
We are witnessing tremendous advances in our understanding of the organization of life. Complete genomes are being deciphered with ever increasing speed and accuracy, thereby setting the stage for addressing the entire gene product repertoire of cells, towards understanding whole biological systems. Advances in bioinformatics and mass spectrometric techniques have revealed the multitude of interactions present in the proteome. Multiprotein complexes are emerging as a paramount cornerstone of biological activity, as many proteins appear to participate, stably or transiently, in large multisubunit assemblies. Analysis of the architecture of these assemblies and their manifold interactions is imperative for understanding their function at the molecular level. Structural genomics efforts have fostered the development of many technologies towards achieving the throughput required for studying system-wide single proteins and small interaction motifs at high resolution. The present shift in focus towards large multiprotein complexes, in particular in eukaryotes, now calls for a likewise concerted effort to develop and provide new technologies that are urgently required to produce in quality and quantity the plethora of multiprotein assemblies that form the complexome, and to routinely study their structure and function at the molecular level. Current efforts towards this objective are summarized and reviewed in this contribution. PMID:20514218
Piecemeal Buildup of the Genetic Code, Ribosomes, and Genomes from Primordial tRNA Building Blocks
Caetano-Anollés, Derek; Caetano-Anollés, Gustavo
2016-01-01
The origin of biomolecular machinery likely centered around an ancient and central molecule capable of interacting with emergent macromolecular complexity. tRNA is the oldest and most central nucleic acid molecule of the cell. Its co-evolutionary interactions with aminoacyl-tRNA synthetase protein enzymes define the specificities of the genetic code and those with the ribosome their accurate biosynthetic interpretation. Phylogenetic approaches that focus on molecular structure allow reconstruction of evolutionary timelines that describe the history of RNA and protein structural domains. Here we review phylogenomic analyses that reconstruct the early history of the synthetase enzymes and the ribosome, their interactions with RNA, and the inception of amino acid charging and codon specificities in tRNA that are responsible for the genetic code. We also trace the age of domains and tRNA onto ancient tRNA homologies that were recently identified in rRNA. Our findings reveal a timeline of recruitment of tRNA building blocks for the formation of a functional ribosome, which holds both the biocatalytic functions of protein biosynthesis and the ability to store genetic memory in primordial RNA genomic templates. PMID:27918435
Piecemeal Buildup of the Genetic Code, Ribosomes, and Genomes from Primordial tRNA Building Blocks.
Caetano-Anollés, Derek; Caetano-Anollés, Gustavo
2016-12-02
The origin of biomolecular machinery likely centered around an ancient and central molecule capable of interacting with emergent macromolecular complexity. tRNA is the oldest and most central nucleic acid molecule of the cell. Its co-evolutionary interactions with aminoacyl-tRNA synthetase protein enzymes define the specificities of the genetic code and those with the ribosome their accurate biosynthetic interpretation. Phylogenetic approaches that focus on molecular structure allow reconstruction of evolutionary timelines that describe the history of RNA and protein structural domains. Here we review phylogenomic analyses that reconstruct the early history of the synthetase enzymes and the ribosome, their interactions with RNA, and the inception of amino acid charging and codon specificities in tRNA that are responsible for the genetic code. We also trace the age of domains and tRNA onto ancient tRNA homologies that were recently identified in rRNA. Our findings reveal a timeline of recruitment of tRNA building blocks for the formation of a functional ribosome, which holds both the biocatalytic functions of protein biosynthesis and the ability to store genetic memory in primordial RNA genomic templates.
Mechanism of Membranous Tunnelling Nanotube Formation in Viral Genome Delivery
Peralta, Bibiana; Gil-Carton, David; Castaño-Díez, Daniel; Bertin, Aurelie; Boulogne, Claire; Oksanen, Hanna M.; Bamford, Dennis H.; Abrescia, Nicola G. A.
2013-01-01
In internal membrane-containing viruses, a lipid vesicle enclosed by the icosahedral capsid protects the genome. It has been postulated that this internal membrane is the genome delivery device of the virus. Viruses built with this architectural principle infect hosts in all three domains of cellular life. Here, using a combination of electron microscopy techniques, we investigate bacteriophage PRD1, the best understood model for such viruses, to unveil the mechanism behind the genome translocation across the cell envelope. To deliver its double-stranded DNA, the icosahedral protein-rich virus membrane transforms into a tubular structure protruding from one of the 12 vertices of the capsid. We suggest that this viral nanotube exits from the same vertex used for DNA packaging, which is biochemically distinct from the other 11. The tube crosses the capsid through an aperture corresponding to the loss of the peripentonal P3 major capsid protein trimers, penton protein P31 and membrane protein P16. The remodeling of the internal viral membrane is nucleated by changes in osmolarity and loss of capsid-membrane interactions as consequence of the de-capping of the vertices. This engages the polymerization of the tail tube, which is structured by membrane-associated proteins. We have observed that the proteo-lipidic tube in vivo can pierce the gram-negative bacterial cell envelope allowing the viral genome to be shuttled to the host cell. The internal diameter of the tube allows one double-stranded DNA chain to be translocated. We conclude that the assembly principles of the viral tunneling nanotube take advantage of proteo-lipid interactions that confer to the tail tube elastic, mechanical and functional properties employed also in other protein-membrane systems. PMID:24086111
Nourdin-Galindo, Guillermo; Sánchez, Patricio; Molina, Cristian F; Espinoza-Rojas, Daniela A; Oliver, Cristian; Ruiz, Pamela; Vargas-Chacoff, Luis; Cárcamo, Juan G; Figueroa, Jaime E; Mancilla, Marcos; Maracaja-Coutinho, Vinicius; Yañez, Alejandro J
2017-01-01
Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize P. salmonis , functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an in silico pan-genome analysis of 19 P. salmonis strains from distinct geographic locations and genogroups. Results revealed an expected open pan-genome of 3,463 genes and a core-genome of 1,732 genes. Two marked genogroups were identified, as confirmed by phylogenetic and phylogenomic relationships to the LF-89 and EM-90 reference strains, as well as by assessments of genomic structures. Different structural configurations were found for the six identified copies of the ribosomal operon in the P. salmonis genome, indicating translocation throughout the genetic material. Chromosomal divergences in genomic localization and quantity of genetic cassettes were also found for the Dot/Icm type IVB secretion system. To determine divergences between core-genomes, additional pan-genome descriptions were compiled for the so-termed LF and EM genogroups. Open pan-genomes composed of 2,924 and 2,778 genes and core-genomes composed of 2,170 and 2,228 genes were respectively found for the LF and EM genogroups. The core-genomes were functionally annotated using the Gene Ontology, KEGG, and Virulence Factor databases, revealing the presence of several shared groups of genes related to basic function of intracellular survival and bacterial pathogenesis. Additionally, the specific pan-genomes for the LF and EM genogroups were defined, resulting in the identification of 148 and 273 exclusive proteins, respectively. Notably, specific virulence factors linked to adherence, colonization, invasion factors, and endotoxins were established. The obtained data suggest that these genes could be directly associated with inter-genogroup differences in pathogenesis and host-pathogen interactions, information that could be useful in designing novel strategies for diagnosing and controlling P. salmonis infection.
Nourdin-Galindo, Guillermo; Sánchez, Patricio; Molina, Cristian F.; Espinoza-Rojas, Daniela A.; Oliver, Cristian; Ruiz, Pamela; Vargas-Chacoff, Luis; Cárcamo, Juan G.; Figueroa, Jaime E.; Mancilla, Marcos; Maracaja-Coutinho, Vinicius; Yañez, Alejandro J.
2017-01-01
Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize P. salmonis, functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an in silico pan-genome analysis of 19 P. salmonis strains from distinct geographic locations and genogroups. Results revealed an expected open pan-genome of 3,463 genes and a core-genome of 1,732 genes. Two marked genogroups were identified, as confirmed by phylogenetic and phylogenomic relationships to the LF-89 and EM-90 reference strains, as well as by assessments of genomic structures. Different structural configurations were found for the six identified copies of the ribosomal operon in the P. salmonis genome, indicating translocation throughout the genetic material. Chromosomal divergences in genomic localization and quantity of genetic cassettes were also found for the Dot/Icm type IVB secretion system. To determine divergences between core-genomes, additional pan-genome descriptions were compiled for the so-termed LF and EM genogroups. Open pan-genomes composed of 2,924 and 2,778 genes and core-genomes composed of 2,170 and 2,228 genes were respectively found for the LF and EM genogroups. The core-genomes were functionally annotated using the Gene Ontology, KEGG, and Virulence Factor databases, revealing the presence of several shared groups of genes related to basic function of intracellular survival and bacterial pathogenesis. Additionally, the specific pan-genomes for the LF and EM genogroups were defined, resulting in the identification of 148 and 273 exclusive proteins, respectively. Notably, specific virulence factors linked to adherence, colonization, invasion factors, and endotoxins were established. The obtained data suggest that these genes could be directly associated with inter-genogroup differences in pathogenesis and host-pathogen interactions, information that could be useful in designing novel strategies for diagnosing and controlling P. salmonis infection. PMID:29164068
NASA Astrophysics Data System (ADS)
Meyer, Sam; Everaers, Ralf
2015-02-01
The histone-DNA interaction in the nucleosome is a fundamental mechanism of genomic compaction and regulation, which remains largely unknown despite increasing structural knowledge of the complex. In this paper, we propose a framework for the extraction of a nanoscale histone-DNA force-field from a collection of high-resolution structures, which may be adapted to a larger class of protein-DNA complexes. We applied the procedure to a large crystallographic database extended by snapshots from molecular dynamics simulations. The comparison of the structural models first shows that, at histone-DNA contact sites, the DNA base-pairs are shifted outwards locally, consistent with locally repulsive forces exerted by the histones. The second step shows that the various force profiles of the structures under analysis derive locally from a unique, sequence-independent, quadratic repulsive force-field, while the sequence preferences are entirely due to internal DNA mechanics. We have thus obtained the first knowledge-derived nanoscale interaction potential for histone-DNA in the nucleosome. The conformations obtained by relaxation of nucleosomal DNA with high-affinity sequences in this potential accurately reproduce the experimental values of binding preferences. Finally we address the more generic binding mechanisms relevant to the 80% genomic sequences incorporated in nucleosomes, by computing the conformation of nucleosomal DNA with sequence-averaged properties. This conformation differs from those found in crystals, and the analysis suggests that repulsive histone forces are related to local stretch tension in nucleosomal DNA, mostly between adjacent contact points. This tension could play a role in the stability of the complex.
Cross- and Co-Packaging of Retroviral RNAs and Their Consequences
Ali, Lizna M.; Rizvi, Tahir A.; Mustafa, Farah
2016-01-01
Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP) particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA) among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy. PMID:27727192
Cross- and Co-Packaging of Retroviral RNAs and Their Consequences.
Ali, Lizna M; Rizvi, Tahir A; Mustafa, Farah
2016-10-11
Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP) particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA) among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy.
Structural constraints in the packaging of bluetongue virus genomic segments
Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C.
2014-01-01
The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by biochemical data analysis suggested that a conformational motif formed by interaction of the 5′ and 3′ ends of the molecule was necessary and sufficient for packaging. A similar structural signal was also identified in S8 of BTV serotype 1. Furthermore, the same conformational analysis of secondary structures for positive-sense ssRNAs was used to generate a chimeric segment that maintained the putative packaging motif but contained unrelated internal sequences. This chimeric segment was packaged successfully, confirming that the motif identified directs the correct packaging of the segment. PMID:24980574
de Castro Nunes, Renata; Orozco-Arias, Simon; Crouzillat, Dominique; Mueller, Lukas A.; Strickler, Suzy R.; Descombes, Patrick; Fournier, Coralie; Moine, Deborah; de Kochko, Alexandre; Yuyama, Priscila M.; Vanzela, André L. L.; Guyot, Romain
2018-01-01
Centromeric regions of plants are generally composed of large array of satellites from a specific lineage of Gypsy LTR-retrotransposons, called Centromeric Retrotransposons. Repeated sequences interact with a specific H3 histone, playing a crucial function on kinetochore formation. To study the structure and composition of centromeric regions in the genus Coffea, we annotated and classified Centromeric Retrotransposons sequences from the allotetraploid C. arabica genome and its two diploid ancestors: Coffea canephora and C. eugenioides. Ten distinct CRC (Centromeric Retrotransposons in Coffea) families were found. The sequence mapping and FISH experiments of CRC Reverse Transcriptase domains in C. canephora, C. eugenioides, and C. arabica clearly indicate a strong and specific targeting mainly onto proximal chromosome regions, which can be associated also with heterochromatin. PacBio genome sequence analyses of putative centromeric regions on C. arabica and C. canephora chromosomes showed an exceptional density of one family of CRC elements, and the complete absence of satellite arrays, contrasting with usual structure of plant centromeres. Altogether, our data suggest a specific centromere organization in Coffea, contrasting with other plant genomes. PMID:29497436
Hsin, Wei-Chen; Chang, Chan-Hua; Chang, Chi-You; Peng, Wei-Hao; Chien, Chung-Liang; Chang, Ming-Fu; Chang, Shin C
2018-05-24
Middle East respiratory syndrome coronavirus (MERS-CoV) consists of a positive-sense, single-stranded RNA genome and four structural proteins: the spike, envelope, membrane, and nucleocapsid protein. The assembly of the viral genome into virus particles involves viral structural proteins and is believed to be mediated through recognition of specific sequences and RNA structures of the viral genome. A culture system for the production of MERS coronavirus-like particles (MERS VLPs) was determined and established by electron microscopy and the detection of coexpressed viral structural proteins. Using the VLP system, a 258-nucleotide RNA fragment, which spans nucleotides 19,712 to 19,969 of the MERS-CoV genome (designated PS258(19712-19969) ME ), was identified to function as a packaging signal. Assembly of the RNA packaging signal into MERS VLPs is dependent on the viral nucleocapsid protein. In addition, a 45-nucleotide stable stem-loop substructure of the PS258(19712-19969) ME interacted with both the N-terminal domain and the C-terminal domain of the viral nucleocapsid protein. Furthermore, a functional SARS-CoV RNA packaging signal failed to assemble into the MERS VLPs, which indicated virus-specific assembly of the RNA genome. A MERS-oV RNA packaging signal was identified by the detection of GFP expression following an incubation of MERS VLPs carrying the heterologous mRNA GFP-PS258(19712-19969) ME with virus permissive Huh7 cells. The MERS VLP system could help us in understanding virus infection and morphogenesis.
Filichkin, S A; Bransom, K L; Goodwin, J B; Dreher, T W
2000-09-01
Five highly infectious turnip yellow mosaic virus (TYMV) genomes with sequence changes in their 3'-terminal regions that result in altered aminoacylation and eEF1A binding have been studied. These genomes were derived from cloned parental RNAs of low infectivity by sequential passaging in plants. Three of these genomes that are incapable of aminoacylation have been reported previously (J. B. Goodwin, J. M. Skuzeski, and T. W. Dreher, Virology 230:113-124, 1997). We now demonstrate by subcloning the 3' untranslated regions into wild-type TYMV RNA that the high infectivities and replication rates of these genomes compared to their progenitors are mostly due to a small number of mutations acquired in the 3' tRNA-like structure during passaging. Mutations in other parts of the genome, including the replication protein coding region, are not required for high infectivity but probably do play a role in optimizing viral amplification and spread in plants. Two other TYMV RNA variants of suboptimal infectivities, one that accepts methionine instead of the usual valine and one that interacts less tightly with eEF1A, were sequentially passaged to produce highly infectious genomes. The improved infectivities of these RNAs were not associated with increased replication in protoplasts, and no mutations were acquired in their 3' tRNA-like structures. Complete sequencing of one genome identified two mutations that result in amino acid changes in the movement protein gene, suggesting that improved infectivity may be a function of improved viral dissemination in plants. Our results show that the wild-type TYMV replication proteins are able to amplify genomes with 3' termini of variable sequence and tRNA mimicry. These and previous results have led to a model in which the binding of eEF1A to the 3' end to antagonize minus-strand initiation is a major role of the tRNA-like structure.
Osada, Naoki; Akashi, Hiroshi
2012-01-01
Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.
HC Forum®: a web site based on an international human cytogenetic database
Cohen, Olivier; Mermet, Marie-Ange; Demongeot, Jacques
2001-01-01
Familial structural rearrangements of chromosomes represent a factor of malformation risk that could vary over a large range, making genetic counseling difficult. However, they also represent a powerful tool for increasing knowledge of the genome, particularly by studying breakpoints and viable imbalances of the genome. We have developed a collaborative database that now includes data on more than 4100 families, from which we have developed a web site called HC Forum® (http://HCForum.imag.fr). It offers geneticists assistance in diagnosis and in genetic counseling by assessing the malformation risk with statistical models. For researchers, interactive interfaces exhibit the distribution of chromosomal breakpoints and of the genome regions observed at birth in trisomy or in monosomy. Dedicated tools including an interactive pedigree allow electronic submission of data, which will be anonymously shown in a forum for discussions. After validation, data are definitively registered in the database with the email of the sender, allowing direct location of biological material. Thus HC Forum® constitutes a link between diagnosis laboratories and genome research centers, and after 1 year, more than 700 users from about 40 different countries already exist. PMID:11125121
2013-01-01
Background Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. Description Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. Conclusions We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives. PMID:23889801
Epigenetics and the Biological Definition of Gene X Environment Interactions
ERIC Educational Resources Information Center
Meaney, Michael J.
2010-01-01
Variations in phenotype reflect the influence of environmental conditions during development on cellular functions, including that of the genome. The recent integration of epigenetics into developmental psychobiology illustrates the processes by which environmental conditions in early life structurally alter DNA, providing a physical basis for the…
Crystal Structures of RMI1 and RMI2, Two OB-Fold Regulatory Subunits of the BLM Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Feng; Yang, Yuting; Singh, Thiyam Ramsing
Mutations in BLM, a RecQ-like helicase, are linked to the autosomal recessive cancer-prone disorder Bloom's syndrome. BLM associates with topoisomerase (Topo) III{alpha}, RMI1, and RMI2 to form the BLM complex that is essential for genome stability. The RMI1-RMI2 heterodimer stimulates the dissolution of double Holliday junction into non-crossover recombinants mediated by BLM-Topo III{alpha} and is essential for stabilizing the BLM complex. However, the molecular basis of these functions of RMI1 and RMI2 remains unclear. Here we report the crystal structures of multiple domains of RMI1-RMI2, providing direct confirmation of the existence of three oligonucleotide/oligosaccharide binding (OB)-folds in RMI1-RMI2. Our structuralmore » and biochemical analyses revealed an unexpected insertion motif in RMI1N-OB, which is important for stimulating the dHJ dissolution. We also revealed the structural basis of the interaction between RMI1C-OB and RMI2-OB and demonstrated the functional importance of the RMI1-RMI2 interaction in genome stability maintenance.« less
Nan, Hongmei; Hutter, Carolyn M.; Lin, Yi; Jacobs, Eric J.; Ulrich, Cornelia M.; White, Emily; Baron, John A.; Berndt, Sonja I.; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Duggan, David; Figueiredo, Jane C.; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jenkins, Mark A.; Jiao, Shuo; Lindor, Noralane M.; Lemire, Mathieu; Le Marchand, Loic; Newcomb, Polly A.; Ogino, Shuji; Pflugeisen, Bethann M.; Potter, John D.; Qu, Conghui; Rosse, Stephanie A.; Rudolph, Anja; Schoen, Robert E.; Schumacher, Fredrick R.; Seminara, Daniela; Slattery, Martha L.; Thibodeau, Stephen N.; Thomas, Fridtjof; Thornquist, Mark; Warnick, Greg S.; Zanke, Brent W.; Gauderman, W. James; Peters, Ulrike; Hsu, Li; Chan, Andrew T.
2015-01-01
Importance Use of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) is associated with lower risk of colorectal cancer. Prior studies examining a potential differential relationship of aspirin and NSAIDs with colorectal cancer risk according to genetic factors have been limited to analyses of candidate genes or pathways. Objective To comprehensively identify common genetic markers that characterize individuals who may obtain differential benefit from aspirin and/or NSAID chemoprevention, we tested gene by environment (G X E) interactions between regular use of aspirin and/or NSAIDs and single nucleotide polymorphisms (SNPs) across the genome in relation to risk of colorectal cancer. Design Case-control study using the Colon Cancer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) that enrolled cases of colorectal cancer ascertained between 1976 and 2011 and matched controls. Odds ratios (ORs) of colorectal cancer and 95% confidence intervals (95% CIs) were estimated using conventional logistic regression analysis and case-only interaction analysis, after adjusting for age, sex, center, the first three principal components to account for population structure, and known colorectal cancer risk factors. For all genome-wide analyses, a two-sided p-value<5.0×10-8, which yields a genome-wide significance level of 0.05, was considered statistically significant. Setting 10 observational studies (5 case-control and 5 cohort studies) that were initiated between 1976 and 2003 across the U.S., Canada, Australia and Germany. Participants 8,634 colorectal cancer cases and 8,553 controls of European descent. Exposures Genome-wide SNP data generated from genome-wide association scans and imputation to HapMap II, as well as information on regular use of aspirin and/or NSAIDs and other colorectal cancer risk factors collected using in-person interviews and/or structured questionnaires. Main Outcomes and Measures Colorectal cancer Results Regular use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer (OR=0.69; 95% CI=0.64-0.74; P=6.2×10-28) compared to non-regular use. In the conventional logistic regression analysis, the SNP rs2965667 at chromosome 12p12.3 near the microsomal glutathione S-transferase 1 (MGST1) gene showed a genome-wide significant interaction with aspirin and/or NSAID use (P for interaction=4.6×10-9). Compared to non-regular use, regular use of aspirin and/or NSAIDs was associated with a lower risk of colorectal cancer among individuals with rs2965667-TT genotype (OR=0.66; 95% CI=0.61-0.70; P=7.7×10-33), but a higher risk among those with much less common (4%) TA or AA genotypes (OR=1.89; 95% CI=1.27-2.81; P=0.002). In case-only interaction analysis, the SNP rs16973225 at chromosome 15q25.2 near the interleukin 16 (IL16) gene showed a genome-wide significant interaction with aspirin and/or NSAID use (P for interaction=8.2×10-9). Compared to non-regular use, regular use of aspirin and/or NSAIDs was associated with a lower risk of colorectal cancer among individuals with rs16973225-AA genotype (OR=0.66; 95% CI=0.62-0.71; P=1.9×10-30), but was not associated with risk of colorectal cancer among those with less common (9%) AC or CC genotypes (OR=0.97; 95% CI=0.78-1.20; P=0.76). CONCLUSIONS AND RELEVANCE In this genome-wide investigation of G X E interactions, use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer, and the association of these medications with colorectal cancer risk differed according to genetic variation at two SNPs at chromosomes 12 and 15. Validation of these findings in additional populations may facilitate targeted colorectal cancer prevention strategies. PMID:25781442
Blanco-Pérez, Marta; Pérez-Cañamás, Miryam; Ruiz, Leticia; Hernández, Carmen
2016-01-01
Cap-independent translational enhancers (CITEs) have been identified at the 3´-terminal regions of distinct plant positive-strand RNA viruses belonging to families Tombusviridae and Luteoviridae. On the bases of their structural and/or functional requirements, at least six classes of CITEs have been defined whose distribution does not correlate with taxonomy. The so-called TED class has been relatively under-studied and its functionality only confirmed in the case of Satellite tobacco necrosis virus, a parasitic subviral agent. The 3´-untranslated region of the monopartite genome of Pelargonium line pattern virus (PLPV), the recommended type member of a tentative new genus (Pelarspovirus) in the family Tombusviridae, was predicted to contain a TED-like CITE. Similar CITEs can be anticipated in some other related viruses though none has been experimentally verified. Here, in the first place, we have performed a reassessment of the structure of the putative PLPV-TED through in silico predictions and in vitro SHAPE analysis with the full-length PLPV genome, which has indicated that the presumed TED element is larger than previously proposed. The extended conformation of the TED is strongly supported by the pattern of natural sequence variation, thus providing comparative structural evidence in support of the structural data obtained by in silico and in vitro approaches. Next, we have obtained experimental evidence demonstrating the in vivo activity of the PLPV-TED in the genomic (g) RNA, and also in the subgenomic (sg) RNA that the virus produces to express 3´-proximal genes. Besides other structural features, the results have highlighted the key role of long-distance kissing-loop interactions between the 3´-CITE and 5´-proximal hairpins for gRNA and sgRNA translation. Bioassays of CITE mutants have confirmed the importance of the identified 5´-3´ RNA communication for viral infectivity and, moreover, have underlined the strong evolutionary constraints that may operate on genome stretches with both regulatory and coding functions. PMID:27043436
Blanco-Pérez, Marta; Pérez-Cañamás, Miryam; Ruiz, Leticia; Hernández, Carmen
2016-01-01
Cap-independent translational enhancers (CITEs) have been identified at the 3´-terminal regions of distinct plant positive-strand RNA viruses belonging to families Tombusviridae and Luteoviridae. On the bases of their structural and/or functional requirements, at least six classes of CITEs have been defined whose distribution does not correlate with taxonomy. The so-called TED class has been relatively under-studied and its functionality only confirmed in the case of Satellite tobacco necrosis virus, a parasitic subviral agent. The 3´-untranslated region of the monopartite genome of Pelargonium line pattern virus (PLPV), the recommended type member of a tentative new genus (Pelarspovirus) in the family Tombusviridae, was predicted to contain a TED-like CITE. Similar CITEs can be anticipated in some other related viruses though none has been experimentally verified. Here, in the first place, we have performed a reassessment of the structure of the putative PLPV-TED through in silico predictions and in vitro SHAPE analysis with the full-length PLPV genome, which has indicated that the presumed TED element is larger than previously proposed. The extended conformation of the TED is strongly supported by the pattern of natural sequence variation, thus providing comparative structural evidence in support of the structural data obtained by in silico and in vitro approaches. Next, we have obtained experimental evidence demonstrating the in vivo activity of the PLPV-TED in the genomic (g) RNA, and also in the subgenomic (sg) RNA that the virus produces to express 3´-proximal genes. Besides other structural features, the results have highlighted the key role of long-distance kissing-loop interactions between the 3´-CITE and 5´-proximal hairpins for gRNA and sgRNA translation. Bioassays of CITE mutants have confirmed the importance of the identified 5´-3´ RNA communication for viral infectivity and, moreover, have underlined the strong evolutionary constraints that may operate on genome stretches with both regulatory and coding functions.
Functional and genomic analyses of alpha-solenoid proteins.
Fournier, David; Palidwor, Gareth A; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A
2013-01-01
Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/.
Genome-Wide Analysis of the Arabidopsis Replication Timing Program1[OPEN
Brooks, Ashley M.; Wheeler, Emily; LeBlanc, Chantal; Lee, Tae-Jin; Martienssen, Robert A.; Thompson, William F.
2018-01-01
Eukaryotes use a temporally regulated process, known as the replication timing program, to ensure that their genomes are fully and accurately duplicated during S phase. Replication timing programs are predictive of genomic features and activity and are considered to be functional readouts of chromatin organization. Although replication timing programs have been described for yeast and animal systems, much less is known about the temporal regulation of plant DNA replication or its relationship to genome sequence and chromatin structure. We used the thymidine analog, 5-ethynyl-2′-deoxyuridine, in combination with flow sorting and Repli-Seq to describe, at high-resolution, the genome-wide replication timing program for Arabidopsis (Arabidopsis thaliana) Col-0 suspension cells. We identified genomic regions that replicate predominantly during early, mid, and late S phase, and correlated these regions with genomic features and with data for chromatin state, accessibility, and long-distance interaction. Arabidopsis chromosome arms tend to replicate early while pericentromeric regions replicate late. Early and mid-replicating regions are gene-rich and predominantly euchromatic, while late regions are rich in transposable elements and primarily heterochromatic. However, the distribution of chromatin states across the different times is complex, with each replication time corresponding to a mixture of states. Early and mid-replicating sequences interact with each other and not with late sequences, but early regions are more accessible than mid regions. The replication timing program in Arabidopsis reflects a bipartite genomic organization with early/mid-replicating regions and late regions forming separate, noninteracting compartments. The temporal order of DNA replication within the early/mid compartment may be modulated largely by chromatin accessibility. PMID:29301956
Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation.
Mourad, Raphaël; Cuvier, Olivier
2016-05-01
Recent advances in long-range Hi-C contact mapping have revealed the importance of the 3D structure of chromosomes in gene expression. A current challenge is to identify the key molecular drivers of this 3D structure. Several genomic features, such as architectural proteins and functional elements, were shown to be enriched at topological domain borders using classical enrichment tests. Here we propose multiple logistic regression to identify those genomic features that positively or negatively influence domain border establishment or maintenance. The model is flexible, and can account for statistical interactions among multiple genomic features. Using both simulated and real data, we show that our model outperforms enrichment test and non-parametric models, such as random forests, for the identification of genomic features that influence domain borders. Using Drosophila Hi-C data at a very high resolution of 1 kb, our model suggests that, among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143 and Polycomb group proteins as positive drivers of domain borders. The model also reveals the existence of several negative drivers that counteract the presence of domain borders including P300, RXRA, BCL11A and ELK1.
Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation
Mourad, Raphaël; Cuvier, Olivier
2016-01-01
Recent advances in long-range Hi-C contact mapping have revealed the importance of the 3D structure of chromosomes in gene expression. A current challenge is to identify the key molecular drivers of this 3D structure. Several genomic features, such as architectural proteins and functional elements, were shown to be enriched at topological domain borders using classical enrichment tests. Here we propose multiple logistic regression to identify those genomic features that positively or negatively influence domain border establishment or maintenance. The model is flexible, and can account for statistical interactions among multiple genomic features. Using both simulated and real data, we show that our model outperforms enrichment test and non-parametric models, such as random forests, for the identification of genomic features that influence domain borders. Using Drosophila Hi-C data at a very high resolution of 1 kb, our model suggests that, among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143 and Polycomb group proteins as positive drivers of domain borders. The model also reveals the existence of several negative drivers that counteract the presence of domain borders including P300, RXRA, BCL11A and ELK1. PMID:27203237
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Suhkmann; Zhang, Ziming; Upchurch, Sean
2004-04-16
2 ARID is a homologous family of DNA-binding domains that occur in DNA binding proteins from a wide variety of species, ranging from yeast to nematodes, insects, mammals and plants. SWI1, a member of the SWI/SNF protein complex that is involved in chromatin remodeling during transcription, contains the ARID motif. The ARID domain of human SWI1 (also known as p270) does not select for a specific DNA sequence from a random sequence pool. The lack of sequence specificity shown by the SWI1 ARID domain stands in contrast to the other characterized ARID domains, which recognize specific AT-rich sequences. We havemore » solved the three-dimensional structure of human SWI1 ARID using solution NMR methods. In addition, we have characterized non-specific DNA-binding by the SWI1 ARID domain. Results from this study indicate that a flexible long internal loop in ARID motif is likely to be important for sequence specific DNA-recognition. The structure of human SWI1 ARID domain also represents a distinct structural subfamily. Studies of ARID indicate that boundary of the DNA binding structural and functional domains can extend beyond the sequence homologous region in a homologous family of proteins. Structural studies of homologous domains such as ARID family of DNA-binding domains should provide information to better predict the boundary of structural and functional domains in structural genomic studies. Key Words: ARID, SWI1, NMR, structural genomics, protein-DNA interaction.« less
PGSB PlantsDB: updates to the database framework for comparative plant genome research.
Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai C; Martis, Mihaela M; Seidel, Michael; Kugler, Karl G; Gundlach, Heidrun; Mayer, Klaus F X
2016-01-04
PGSB (Plant Genome and Systems Biology: formerly MIPS) PlantsDB (http://pgsb.helmholtz-muenchen.de/plant/index.jsp) is a database framework for the comparative analysis and visualization of plant genome data. The resource has been updated with new data sets and types as well as specialized tools and interfaces to address user demands for intuitive access to complex plant genome data. In its latest incarnation, we have re-worked both the layout and navigation structure and implemented new keyword search options and a new BLAST sequence search functionality. Actively involved in corresponding sequencing consortia, PlantsDB has dedicated special efforts to the integration and visualization of complex triticeae genome data, especially for barley, wheat and rye. We enhanced CrowsNest, a tool to visualize syntenic relationships between genomes, with data from the wheat sub-genome progenitor Aegilops tauschii and added functionality to the PGSB RNASeqExpressionBrowser. GenomeZipper results were integrated for the genomes of barley, rye, wheat and perennial ryegrass and interactive access is granted through PlantsDB interfaces. Data exchange and cross-linking between PlantsDB and other plant genome databases is stimulated by the transPLANT project (http://transplantdb.eu/). © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Hacquard, Stéphane; Kracher, Barbara; Maekawa, Takaki; Vernaldi, Saskia; Schulze-Lefert, Paul; Ver Loren van Themaat, Emiel
2013-01-01
Barley powdery mildew, Blumeria graminis f. sp. hordei (Bgh), is an obligate biotrophic ascomycete fungal pathogen that can grow and reproduce only on living cells of wild or domesticated barley (Hordeum sp.). Domestication and deployment of resistant barley cultivars by humans selected for amplification of Bgh isolates with different virulence combinations. We sequenced the genomes of two European Bgh isolates, A6 and K1, for comparative analysis with the reference genome of isolate DH14. This revealed a mosaic genome structure consisting of large isolate-specific DNA blocks with either high or low SNP densities. Some of the highly polymorphic blocks likely accumulated SNPs for over 10,000 years, well before the domestication of barley. These isolate-specific blocks of alternating monomorphic and polymorphic regions imply an exceptionally large standing genetic variation in the Bgh population and might be generated and maintained by rare outbreeding and frequent clonal reproduction. RNA-sequencing experiments with isolates A6 and K1 during four early stages of compatible and incompatible interactions on leaves of partially immunocompromised Arabidopsis mutants revealed a conserved Bgh transcriptional program during pathogenesis compared with the natural host barley despite ∼200 million years of reproductive isolation of these hosts. Transcripts encoding candidate-secreted effector proteins are massively induced in successive waves. A specific decrease in candidate-secreted effector protein transcript abundance in the incompatible interaction follows extensive transcriptional reprogramming of the host transcriptome and coincides with the onset of localized host cell death, suggesting a host-inducible defense mechanism that targets fungal effector secretion or production. PMID:23696672
Darlix, J L; Gabus, C; Nugeyre, M T; Clavel, F; Barré-Sinoussi, F
1990-12-05
The retroviral genome consists of two identical RNA molecules joined at their 5' ends by the Dimer Linkage Structure (DLS). To study the mechanism of dimerization and the DLS of HIV-1 RNA, large amounts of bona fide HIV-1 RNA and of mutants have been synthesized in vitro. We report that HIV-1 RNA forms dimeric molecules and that viral nucleocapsid (NC) protein NCp15 greatly activates dimerization. Deletion mutagenesis in the RNA 5' 1333 nucleotides indicated that a small domain of 100 nucleotides, located between positions 311 to 415 from the 5' end, is necessary and sufficient to promote HIV-1 RNA dimerization. This dimerization domain encompasses an encapsidation element located between the 5' splice donor site and initiator AUG of gag and shows little sequence variations in different strains of HIV-1. Furthermore, cross-linking analysis of the interactions between NC and HIV-1 RNA (311 to 415) locates a major contact site in the encapsidation element of HIV-1 RNA. The genomic RNA dimer is tightly associated with nucleocapsid protein molecules in avian and murine retroviruses, and this ribonucleoprotein structure is believed to be the template for reverse transcription. Genomic RNA-protein interactions have been analyzed in human immunodeficiency virus (HIV) virions and results showed that NC protein molecules are tightly bound to the genomic RNA dimer. Since retroviral RNA dimerization and packaging appear to be under the control of the same cis element, the encapsidation sequences, and trans-acting factor, the NC protein, they are probably related events in the course of virion assembly.
Reed, E Kate; Johansen Taber, Katherine A; Ingram Nissen, Therese; Schott, Suzanna; Dowling, Lynn O; O'Leary, James C; Scott, Joan A
2016-07-01
Education of practicing health professionals is likely to be one factor that will speed appropriate integration of genomics into routine clinical practice. Yet many health professionals, including physicians, find it difficult to keep up with the rapid pace of clinical genomic advances and are often uncomfortable using genomic information in practice. Having identified the genomics educational needs of physicians in a Silicon Valley-area community hospital, we developed, implemented, and evaluated an educational course entitled Medicine's Future: Genomics for Practicing Doctors. The course structure and approach were based on best practices in adult learning, including interactivity, case-based learning, skill-focused objectives, and sequential monthly modules. Approximately 20-30 physicians attended each module. They demonstrated significant gains in genomics knowledge and confidence in practice skills that were sustained throughout and following the course. Six months following the course, the majority of participants reported that they had changed their practice to incorporate skills learned during the course. We believe the adult-learning principles underlying the development and delivery of Medicine's Future were responsible for participants' outcomes. These principles form a model for the development and delivery of other genomics educational programs for health professionals.Genet Med 18 7, 737-745.
Genetic architecture, epigenetic influence and environment exposure in the pathogenesis of Autism.
Yu, Li; Wu, YiMing; Wu, Bai-Lin
2015-10-01
Autism spectrum disorder (ASD) is a spectral neurodevelopment disorder affecting approximately 1% of the population. ASD is characterized by impairments in reciprocal social interaction, communication deficits and restricted patterns of behavior. Multiple factors, including genetic/genomic, epigenetic/epigenomic and environmental, are thought to be necessary for autism development. Recent reviews have provided further insight into the genetic/genomic basis of ASD. It has long been suspected that epigenetic mechanisms, including DNA methylation, chromatin structures and long non-coding RNAs may play important roles in the pathology of ASD. In addition to genetic/genomic alterations and epigenetic/epigenomic influences, environmental exposures have been widely accepted as an important role in autism etiology, among which immune dysregulation and gastrointestinal microbiota are two prominent ones.
GenomeD3Plot: a library for rich, interactive visualizations of genomic data in web applications.
Laird, Matthew R; Langille, Morgan G I; Brinkman, Fiona S L
2015-10-15
A simple static image of genomes and associated metadata is very limiting, as researchers expect rich, interactive tools similar to the web applications found in the post-Web 2.0 world. GenomeD3Plot is a light weight visualization library written in javascript using the D3 library. GenomeD3Plot provides a rich API to allow the rapid visualization of complex genomic data using a convenient standards based JSON configuration file. When integrated into existing web services GenomeD3Plot allows researchers to interact with data, dynamically alter the view, or even resize or reposition the visualization in their browser window. In addition GenomeD3Plot has built in functionality to export any resulting genome visualization in PNG or SVG format for easy inclusion in manuscripts or presentations. GenomeD3Plot is being utilized in the recently released Islandviewer 3 (www.pathogenomics.sfu.ca/islandviewer/) to visualize predicted genomic islands with other genome annotation data. However, its features enable it to be more widely applicable for dynamic visualization of genomic data in general. GenomeD3Plot is licensed under the GNU-GPL v3 at https://github.com/brinkmanlab/GenomeD3Plot/. brinkman@sfu.ca. © The Author 2015. Published by Oxford University Press.
López-Manríquez, Eduardo; Vashist, Surender; Ureña, Luis; Goodfellow, Ian; Chavez, Pedro; Mora-Heredia, José Eduardo; Cancio-Lonches, Clotilde; Garrido, Efraín
2013-01-01
Sequences and structures within the terminal genomic regions of plus-strand RNA viruses are targets for the binding of host proteins that modulate functions such as translation, RNA replication, and encapsidation. Using murine norovirus 1 (MNV-1), we describe the presence of long-range RNA-RNA interactions that were stabilized by cellular proteins. The proteins potentially responsible for the stabilization were selected based on their ability to bind the MNV-1 genome and/or having been reported to be involved in the stabilization of RNA-RNA interactions. Cell extracts were preincubated with antibodies against the selected proteins and used for coprecipitation reactions. Extracts treated with antibodies to poly(C) binding protein 2 (PCBP2) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 significantly reduced the 5′-3′ interaction. Both PCBP2 and hnRNP A1 recombinant proteins stabilized the 5′-3′ interactions and formed ribonucleoprotein complexes with the 5′ and 3′ ends of the MNV-1 genomic RNA. Mutations within the 3′ complementary sequences (CS) that disrupt the 5′-3′-end interactions resulted in a significant reduction of the viral titer, suggesting that the integrity of the 3′-end sequence and/or the lack of complementarity with the 5′ end is important for efficient virus replication. Small interfering RNA-mediated knockdown of PCBP2 or hnRNP A1 resulted in a reduction in virus yield, confirming a role for the observed interactions in efficient viral replication. PCBP2 and hnRNP A1 induced the circularization of MNV-1 RNA, as revealed by electron microscopy. This study provides evidence that PCBP2 and hnRNP A1 bind to the 5′ and 3′ ends of the MNV-1 viral RNA and contribute to RNA circularization, playing a role in the virus life cycle. PMID:23946460
Structural Bioinformatics of the Interactome
Petrey, Donald; Honig, Barry
2014-01-01
The last decade has seen a dramatic expansion in the number and range of techniques available to obtain genome-wide information, and to analyze this information so as to infer both the function of individual molecules and how they interact to modulate the behavior of biological systems. Here we review these techniques, focusing on the construction of physical protein-protein interaction networks, and highlighting approaches that incorporate protein structure which is becoming an increasingly important component of systems-level computational techniques. We also discuss how network analyses are being applied to enhance the basic understanding of biological systems and their disregulation, and how they are being applied in drug development. PMID:24895853
Structural Insights into the HIV-1 Minus-strand Strong-stop DNA*
Chen, Yingying; Maskri, Ouerdia; Chaminade, Françoise; René, Brigitte; Benkaroun, Jessica; Godet, Julien; Mély, Yves; Mauffret, Olivier; Fossé, Philippe
2016-01-01
An essential step of human immunodeficiency virus type 1 (HIV-1) reverse transcription is the first strand transfer that requires base pairing of the R region at the 3′-end of the genomic RNA with the complementary r region at the 3′-end of minus-strand strong-stop DNA (ssDNA). HIV-1 nucleocapsid protein (NC) facilitates this annealing process. Determination of the ssDNA structure is needed to understand the molecular basis of NC-mediated genomic RNA-ssDNA annealing. For this purpose, we investigated ssDNA using structural probes (nucleases and potassium permanganate). This study is the first to determine the secondary structure of the full-length HIV-1 ssDNA in the absence or presence of NC. The probing data and phylogenetic analysis support the folding of ssDNA into three stem-loop structures and the presence of four high-affinity binding sites for NC. Our results support a model for the NC-mediated annealing process in which the preferential binding of NC to four sites triggers unfolding of the three-dimensional structure of ssDNA, thus facilitating interaction of the r sequence of ssDNA with the R sequence of the genomic RNA. In addition, using gel retardation assays and ssDNA mutants, we show that the NC-mediated annealing process does not rely on a single pathway (zipper intermediate or kissing complex). PMID:26668324
DNA packaging in viral capsids with peptide arms.
Cao, Qianqian; Bachmann, Michael
2017-01-18
Strong chain rigidity and electrostatic self-repulsion of packed double-stranded DNA in viruses require a molecular motor to pull the DNA into the capsid. However, what is the role of electrostatic interactions between different charged components in the packaging process? Though various theories and computer simulation models were developed for the understanding of viral assembly and packaging dynamics of the genome, long-range electrostatic interactions and capsid structure have typically been neglected or oversimplified. By means of molecular dynamics simulations, we explore the effects of electrostatic interactions on the packaging dynamics of DNA based on a coarse-grained DNA and capsid model by explicitly including peptide arms (PAs), linked to the inner surface of the capsid, and counterions. Our results indicate that the electrostatic interactions between PAs, DNA, and counterions have a significant influence on the packaging dynamics. We also find that the packed DNA conformations are largely affected by the structure of the PA layer, but the packaging rate is insensitive to the layer structure.
Dna2 nuclease-helicase structure, mechanism and regulation by Rpa.
Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P
2015-11-02
The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5' end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5' but not 3' end, explaining how Rpa regulates cleavage polarity.
Formation of new chromatin domains determines pathogenicity of genomic duplications.
Franke, Martin; Ibrahim, Daniel M; Andrey, Guillaume; Schwarzer, Wibke; Heinrich, Verena; Schöpflin, Robert; Kraft, Katerina; Kempfer, Rieke; Jerković, Ivana; Chan, Wing-Lee; Spielmann, Malte; Timmermann, Bernd; Wittler, Lars; Kurth, Ingo; Cambiaso, Paola; Zuffardi, Orsetta; Houge, Gunnar; Lambie, Lindsay; Brancati, Francesco; Pombo, Ana; Vingron, Martin; Spitz, Francois; Mundlos, Stefan
2016-10-13
Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology. Duplications of non-coding DNA within the mouse Sox9 TAD (intra-TAD) that cause female to male sex reversal in humans, showed increased contact of the duplicated regions within the TAD, but no change in the overall TAD structure. In contrast, overlapping duplications that extended over the next boundary into the neighbouring TAD (inter-TAD), resulted in the formation of a new chromatin domain (neo-TAD) that was isolated from the rest of the genome. As a consequence of this insulation, inter-TAD duplications had no phenotypic effect. However, incorporation of the next flanking gene, Kcnj2, in the neo-TAD resulted in ectopic contacts of Kcnj2 with the duplicated part of the Sox9 regulatory region, consecutive misexpression of Kcnj2, and a limb malformation phenotype. Our findings provide evidence that TADs are genomic regulatory units with a high degree of internal stability that can be sculptured by structural genomic variations. This process is important for the interpretation of copy number variations, as these variations are routinely detected in diagnostic tests for genetic disease and cancer. This finding also has relevance in an evolutionary setting because copy-number differences are thought to have a crucial role in the evolution of genome complexity.
Minimal metabolic pathway structure is consistent with associated biomolecular interactions
Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E; Latif, Haythem; Ebrahim, Ali; Federowicz, Stephen; Schellenberger, Jan; Palsson, Bernhard O
2014-01-01
Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway-associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated. PMID:24987116
Rizvi, Tahir A; Kenyon, Julia C; Ali, Jahabar; Aktar, Suriya J; Phillip, Pretty S; Ghazawi, Akela; Mustafa, Farah; Lever, Andrew M L
2010-10-15
The feline immunodeficiency virus (FIV) is a lentivirus that is related to human immunodeficiency virus (HIV), causing a similar pathology in cats. It is a potential small animal model for AIDS and the FIV-based vectors are also being pursued for human gene therapy. Previous studies have mapped the FIV packaging signal (ψ) to two or more discontinuous regions within the 5' 511 nt of the genomic RNA and structural analyses have determined its secondary structure. The 5' and 3' sequences within ψ region interact through extensive long-range interactions (LRIs), including a conserved heptanucleotide interaction between R/U5 and gag. Other secondary structural elements identified include a conserved 150 nt stem-loop (SL2) and a small palindromic stem-loop within gag open reading frame that might act as a viral dimerization initiation site. We have performed extensive mutational analysis of these sequences and structures and ascertained their importance in FIV packaging using a trans-complementation assay. Disrupting the conserved heptanucleotide LRI to prevent base pairing between R/U5 and gag reduced packaging by 2.8-5.5 fold. Restoration of pairing using an alternative, non-wild type (wt) LRI sequence restored RNA packaging and propagation to wt levels, suggesting that it is the structure of the LRI, rather than its sequence, that is important for FIV packaging. Disrupting the palindrome within gag reduced packaging by 1.5-3-fold, but substitution with a different palindromic sequence did not restore packaging completely, suggesting that the sequence of this region as well as its palindromic nature is important. Mutation of individual regions of SL2 did not have a pronounced effect on FIV packaging, suggesting that either it is the structure of SL2 as a whole that is necessary for optimal packaging, or that there is redundancy within this structure. The mutational analysis presented here has further validated the previously predicted RNA secondary structure of FIV ψ. Copyright © 2010 Elsevier Ltd. All rights reserved.
Romero-López, Cristina; Barroso-delJesus, Alicia; Berzal-Herranz, Alfredo
2017-02-24
The RNA genome of the hepatitis C virus (HCV) establishes a network of long-distance RNA-RNA interactions that direct the progression of the infective cycle. This work shows that the dimerization of the viral genome, which is initiated at the dimer linkage sequence (DLS) within the 3'UTR, is promoted by the CRE region, while the IRES is a negative regulatory partner. Using differential 2'-acylation probing (SHAPE-dif) and molecular interference (HMX) technologies, the CRE activity was found to mainly lie in the critical 5BSL3.2 domain, while the IRES-mediated effect is dependent upon conserved residues within the essential structural elements JIIIabc, JIIIef and PK2. These findings support the idea that, along with the DLS motif, the IRES and CRE are needed to control HCV genome dimerization. They also provide evidences of a novel function for these elements as chaperone-like partners that fine-tune the architecture of distant RNA domains within the HCV genome.
Genomic insights into the Ixodes scapularis tick vector of Lyme disease
Gulia-Nuss, Monika; Nuss, Andrew B.; Meyer, Jason M.; Sonenshine, Daniel E.; Roe, R. Michael; Waterhouse, Robert M.; Sattelle, David B.; de la Fuente, José; Ribeiro, Jose M.; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R.; Walenz, Brian P.; Koren, Sergey; Hostetler, Jessica B.; Thiagarajan, Mathangi; Joardar, Vinita S.; Hannick, Linda I.; Bidwell, Shelby; Hammond, Martin P.; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L.; Almeida, Francisca C.; Ayllón, Nieves; Bhide, Ketaki; Bissinger, Brooke W.; Bonzon-Kulichenko, Elena; Buckingham, Steven D.; Caffrey, Daniel R.; Caimano, Melissa J.; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J.; Giraldo-Calderón, Gloria I.; Grabowski, Jeffrey M.; Jiang, David; Khalil, Sayed M. S.; Kim, Donghun; Kocan, Katherine M.; Koči, Juraj; Kuhn, Richard J.; Kurtti, Timothy J.; Lees, Kristin; Lang, Emma G.; Kennedy, Ryan C.; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D.; Sakamoto, Joyce M.; Sánchez-Gracia, Alejandro; Severo, Maiara S.; Silverman, Neal; Šimo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P.; Vázquez, Jesús; Vieira, Filipe G.; Villar, Margarita; Wespiser, Adam R.; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V.; Barker, Stephen C.; Shao, Renfu; Zdobnov, Evgeny M.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H. F.; Nelson, David R.; Unger, Maria F.; Tubio, Jose M. C.; Tu, Zhijian; Robertson, Hugh M.; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R.; Lawson, Daniel; Wikel, Stephen K.; Nene, Vishvanath M.; Fraser, Claire M.; Collins, Frank H.; Birren, Bruce; Nelson, Karen E.; Caler, Elisabet; Hill, Catherine A.
2016-01-01
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent. PMID:26856261
Genomic insights into the Ixodes scapularis tick vector of Lyme disease.
Gulia-Nuss, Monika; Nuss, Andrew B; Meyer, Jason M; Sonenshine, Daniel E; Roe, R Michael; Waterhouse, Robert M; Sattelle, David B; de la Fuente, José; Ribeiro, Jose M; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R; Walenz, Brian P; Koren, Sergey; Hostetler, Jessica B; Thiagarajan, Mathangi; Joardar, Vinita S; Hannick, Linda I; Bidwell, Shelby; Hammond, Martin P; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L; Almeida, Francisca C; Ayllón, Nieves; Bhide, Ketaki; Bissinger, Brooke W; Bonzon-Kulichenko, Elena; Buckingham, Steven D; Caffrey, Daniel R; Caimano, Melissa J; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J; Giraldo-Calderón, Gloria I; Grabowski, Jeffrey M; Jiang, David; Khalil, Sayed M S; Kim, Donghun; Kocan, Katherine M; Koči, Juraj; Kuhn, Richard J; Kurtti, Timothy J; Lees, Kristin; Lang, Emma G; Kennedy, Ryan C; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D; Sakamoto, Joyce M; Sánchez-Gracia, Alejandro; Severo, Maiara S; Silverman, Neal; Šimo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P; Vázquez, Jesús; Vieira, Filipe G; Villar, Margarita; Wespiser, Adam R; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V; Barker, Stephen C; Shao, Renfu; Zdobnov, Evgeny M; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H F; Nelson, David R; Unger, Maria F; Tubio, Jose M C; Tu, Zhijian; Robertson, Hugh M; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R; Lawson, Daniel; Wikel, Stephen K; Nene, Vishvanath M; Fraser, Claire M; Collins, Frank H; Birren, Bruce; Nelson, Karen E; Caler, Elisabet; Hill, Catherine A
2016-02-09
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent.
Romero-López, Cristina; Barroso-delJesus, Alicia; Berzal-Herranz, Alfredo
2017-01-01
The RNA genome of the hepatitis C virus (HCV) establishes a network of long-distance RNA-RNA interactions that direct the progression of the infective cycle. This work shows that the dimerization of the viral genome, which is initiated at the dimer linkage sequence (DLS) within the 3′UTR, is promoted by the CRE region, while the IRES is a negative regulatory partner. Using differential 2′-acylation probing (SHAPE-dif) and molecular interference (HMX) technologies, the CRE activity was found to mainly lie in the critical 5BSL3.2 domain, while the IRES-mediated effect is dependent upon conserved residues within the essential structural elements JIIIabc, JIIIef and PK2. These findings support the idea that, along with the DLS motif, the IRES and CRE are needed to control HCV genome dimerization. They also provide evidences of a novel function for these elements as chaperone-like partners that fine-tune the architecture of distant RNA domains within the HCV genome. PMID:28233845
High-confidence prediction of global interactomes based on genome-wide coevolutionary networks
Juan, David; Pazos, Florencio; Valencia, Alfonso
2008-01-01
Interacting or functionally related protein families tend to have similar phylogenetic trees. Based on this observation, techniques have been developed to predict interaction partners. The observed degree of similarity between the phylogenetic trees of two proteins is the result of many different factors besides the actual interaction or functional relationship between them. Such factors influence the performance of interaction predictions. One aspect that can influence this similarity is related to the fact that a given protein interacts with many others, and hence it must adapt to all of them. Accordingly, the interaction or coadaptation signal within its tree is a composite of the influence of all of the interactors. Here, we introduce a new estimator of coevolution to overcome this and other problems. Instead of relying on the individual value of tree similarity between two proteins, we use the whole network of similarities between all of the pairs of proteins within a genome to reassess the similarity of that pair, thereby taking into account its coevolutionary context. We show that this approach offers a substantial improvement in interaction prediction performance, providing a degree of accuracy/coverage comparable with, or in some cases better than, that of experimental techniques. Moreover, important information on the structure, function, and evolution of macromolecular complexes can be inferred with this methodology. PMID:18199838
High-confidence prediction of global interactomes based on genome-wide coevolutionary networks.
Juan, David; Pazos, Florencio; Valencia, Alfonso
2008-01-22
Interacting or functionally related protein families tend to have similar phylogenetic trees. Based on this observation, techniques have been developed to predict interaction partners. The observed degree of similarity between the phylogenetic trees of two proteins is the result of many different factors besides the actual interaction or functional relationship between them. Such factors influence the performance of interaction predictions. One aspect that can influence this similarity is related to the fact that a given protein interacts with many others, and hence it must adapt to all of them. Accordingly, the interaction or coadaptation signal within its tree is a composite of the influence of all of the interactors. Here, we introduce a new estimator of coevolution to overcome this and other problems. Instead of relying on the individual value of tree similarity between two proteins, we use the whole network of similarities between all of the pairs of proteins within a genome to reassess the similarity of that pair, thereby taking into account its coevolutionary context. We show that this approach offers a substantial improvement in interaction prediction performance, providing a degree of accuracy/coverage comparable with, or in some cases better than, that of experimental techniques. Moreover, important information on the structure, function, and evolution of macromolecular complexes can be inferred with this methodology.
Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia.
Lardi, Martina; Pessi, Gabriella
2018-05-18
Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen-deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia).
Kelemen, Arpad; Vasilakos, Athanasios V; Liang, Yulan
2009-09-01
Comprehensive evaluation of common genetic variations through association of single-nucleotide polymorphism (SNP) structure with common complex disease in the genome-wide scale is currently a hot area in human genome research due to the recent development of the Human Genome Project and HapMap Project. Computational science, which includes computational intelligence (CI), has recently become the third method of scientific enquiry besides theory and experimentation. There have been fast growing interests in developing and applying CI in disease mapping using SNP and haplotype data. Some of the recent studies have demonstrated the promise and importance of CI for common complex diseases in genomic association study using SNP/haplotype data, especially for tackling challenges, such as gene-gene and gene-environment interactions, and the notorious "curse of dimensionality" problem. This review provides coverage of recent developments of CI approaches for complex diseases in genetic association study with SNP/haplotype data.
Systems biology approach in plant abiotic stresses.
Mohanta, Tapan Kumar; Bashir, Tufail; Hashem, Abeer; Abd Allah, Elsayed Fathi
2017-12-01
Plant abiotic stresses are the major constraint on plant growth and development, causing enormous crop losses across the world. Plants have unique features to defend themselves against these challenging adverse stress conditions. They modulate their phenotypes upon changes in physiological, biochemical, molecular and genetic information, thus making them tolerant against abiotic stresses. It is of paramount importance to determine the stress-tolerant traits of a diverse range of genotypes of plant species and integrate those traits for crop improvement. Stress-tolerant traits can be identified by conducting genome-wide analysis of stress-tolerant genotypes through the highly advanced structural and functional genomics approach. Specifically, whole-genome sequencing, development of molecular markers, genome-wide association studies and comparative analysis of interaction networks between tolerant and susceptible crop varieties grown under stress conditions can greatly facilitate discovery of novel agronomic traits that protect plants against abiotic stresses. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus
NASA Astrophysics Data System (ADS)
Zhang, Xing; Ding, Ke; Yu, Xuekui; Chang, Winston; Sun, Jingchen; Hong Zhou, Z.
2015-11-01
Viruses in the Reoviridae, like the triple-shelled human rotavirus and the single-shelled insect cytoplasmic polyhedrosis virus (CPV), all package a genome of segmented double-stranded RNAs (dsRNAs) inside the viral capsid and carry out endogenous messenger RNA synthesis through a transcriptional enzyme complex (TEC). By direct electron-counting cryoelectron microscopy and asymmetric reconstruction, we have determined the organization of the dsRNA genome inside quiescent CPV (q-CPV) and the in situ atomic structures of TEC within CPV in both quiescent and transcribing (t-CPV) states. We show that the ten segmented dsRNAs in CPV are organized with ten TECs in a specific, non-symmetric manner, with each dsRNA segment attached directly to a TEC. The TEC consists of two extensively interacting subunits: an RNA-dependent RNA polymerase (RdRP) and an NTPase VP4. We find that the bracelet domain of RdRP undergoes marked conformational change when q-CPV is converted to t-CPV, leading to formation of the RNA template entry channel and access to the polymerase active site. An amino-terminal helix from each of two subunits of the capsid shell protein (CSP) interacts with VP4 and RdRP. These findings establish the link between sensing of environmental cues by the external proteins and activation of endogenous RNA transcription by the TEC inside the virus.
Evidence that viral RNAs have evolved for efficient, two-stage packaging.
Borodavka, Alexander; Tuma, Roman; Stockley, Peter G
2012-09-25
Genome packaging is an essential step in virus replication and a potential drug target. Single-stranded RNA viruses have been thought to encapsidate their genomes by gradual co-assembly with capsid subunits. In contrast, using a single molecule fluorescence assay to monitor RNA conformation and virus assembly in real time, with two viruses from differing structural families, we have discovered that packaging is a two-stage process. Initially, the genomic RNAs undergo rapid and dramatic (approximately 20-30%) collapse of their solution conformations upon addition of cognate coat proteins. The collapse occurs with a substoichiometric ratio of coat protein subunits and is followed by a gradual increase in particle size, consistent with the recruitment of additional subunits to complete a growing capsid. Equivalently sized nonviral RNAs, including high copy potential in vivo competitor mRNAs, do not collapse. They do support particle assembly, however, but yield many aberrant structures in contrast to viral RNAs that make only capsids of the correct size. The collapse is specific to viral RNA fragments, implying that it depends on a series of specific RNA-protein interactions. For bacteriophage MS2, we have shown that collapse is driven by subsequent protein-protein interactions, consistent with the RNA-protein contacts occurring in defined spatial locations. Conformational collapse appears to be a distinct feature of viral RNA that has evolved to facilitate assembly. Aspects of this process mimic those seen in ribosome assembly.
Miao, Wenwen; Sun, Lirong; Tian, Mi; Wang, Ji
2017-01-01
Abscisic acid (ABA) receptor pyrabactin resistance1/PYR1-like/regulatory components of ABA receptor (PYR1/PYL/RCAR) (named PYLs for simplicity) are core regulators of ABA signaling, and have been well studied in Arabidopsis and rice. However, knowledge is limited about the PYL family regarding genome organization, gene structure, phylogenesis, gene expression and protein interaction with downstream targets in Gossypium. A comprehensive analysis of the Gossypium PYL family was carried out, and 21, 20, 40 and 39 PYL genes were identified in the genomes from the diploid progenitor G. arboretum, G. raimondii and the tetraploid G. hirsutum and G. barbadense, respectively. Characterization of the physical properties, chromosomal locations, structures and phylogeny of these family members revealed that Gossypium PYLs were quite conservative among the surveyed cotton species. Segmental duplication might be the main force promoting the expansion of PYLs, and the majority of the PYLs underwent evolution under purifying selection in Gossypium. Additionally, the expression profiles of GhPYL genes were specific in tissues. Transcriptions of many GhPYL genes were inhibited by ABA treatments and induced by osmotic stress. A number of GhPYLs can interact with GhABI1A or GhABID in the presence and/or absence of ABA by the yeast-two hybrid method in cotton. PMID:29230363
Identification of Factors Promoting HBV Capsid Self-Assembly by Assembly-Promoting Antivirals.
Rath, Soumya Lipsa; Liu, Huihui; Okazaki, Susumu; Shinoda, Wataru
2018-02-26
Around 270 million individuals currently live with hepatitis B virus (HBV) infection. Heteroaryldihydropyrimidines (HAPs) are a family of antivirals that target the HBV capsid protein and induce aberrant self-assembly. The capsids formed resemble the native capsid structure but are unable to propagate the virus progeny because of a lack of RNA/DNA. Under normal conditions, self-assembly is initiated by the viral genome. The mode of action of HAPs, however, remains largely unknown. In this work, using molecular dynamics simulations, we attempted to understand the action of HAP by comparing the dynamics of capsid proteins with and without HAPs. We found that the inhibitor is more stable in higher oligomers. It retains its stability in the hexamer throughout 1 μs of simulation. Our results also show that the inhibitor might help in stabilizing the C-terminus, the HBc 149-183 arginine-rich domain of the capsid protein. The C-termini of dimers interact with each other, assisted by the HAP inhibitor. During capsid assembly, the termini are supposed to directly interact with the viral genome, thereby suggesting that the viral genome might work in a similar way to stabilize the capsid protein. Our results may help in understanding the underlying molecular mechanism of HBV capsid self-assembly, which should be crucial for exploring new drug targets and structure-based drug design.
Zhang, Gaofeng; Lu, Tingting; Miao, Wenwen; Sun, Lirong; Tian, Mi; Wang, Ji; Hao, Fushun
2017-01-01
Abscisic acid (ABA) receptor pyrabactin resistance1/PYR1-like/regulatory components of ABA receptor (PYR1/PYL/RCAR) (named PYLs for simplicity) are core regulators of ABA signaling, and have been well studied in Arabidopsis and rice. However, knowledge is limited about the PYL family regarding genome organization, gene structure, phylogenesis, gene expression and protein interaction with downstream targets in Gossypium . A comprehensive analysis of the Gossypium PYL family was carried out, and 21, 20, 40 and 39 PYL genes were identified in the genomes from the diploid progenitor G. arboretum , G. raimondii and the tetraploid G. hirsutum and G. barbadense , respectively. Characterization of the physical properties, chromosomal locations, structures and phylogeny of these family members revealed that Gossypium PYLs were quite conservative among the surveyed cotton species. Segmental duplication might be the main force promoting the expansion of PYLs , and the majority of the PYLs underwent evolution under purifying selection in Gossypium . Additionally, the expression profiles of GhPYL genes were specific in tissues. Transcriptions of many GhPYL genes were inhibited by ABA treatments and induced by osmotic stress. A number of GhPYLs can interact with GhABI1A or GhABID in the presence and/or absence of ABA by the yeast-two hybrid method in cotton.
RNA 3D Structural Motifs: Definition, Identification, Annotation, and Database Searching
NASA Astrophysics Data System (ADS)
Nasalean, Lorena; Stombaugh, Jesse; Zirbel, Craig L.; Leontis, Neocles B.
Structured RNA molecules resemble proteins in the hierarchical organization of their global structures, folding and broad range of functions. Structured RNAs are composed of recurrent modular motifs that play specific functional roles. Some motifs direct the folding of the RNA or stabilize the folded structure through tertiary interactions. Others bind ligands or proteins or catalyze chemical reactions. Therefore, it is desirable, starting from the RNA sequence, to be able to predict the locations of recurrent motifs in RNA molecules. Conversely, the potential occurrence of one or more known 3D RNA motifs may indicate that a genomic sequence codes for a structured RNA molecule. To identify known RNA structural motifs in new RNA sequences, precise structure-based definitions are needed that specify the core nucleotides of each motif and their conserved interactions. By comparing instances of each recurrent motif and applying base pair isosteriCity relations, one can identify neutral mutations that preserve its structure and function in the contexts in which it occurs.
GCView: the genomic context viewer for protein homology searches
Grin, Iwan; Linke, Dirk
2011-01-01
Genomic neighborhood can provide important insights into evolution and function of a protein or gene. When looking at operons, changes in operon structure and composition can only be revealed by looking at the operon as a whole. To facilitate the analysis of the genomic context of a query in multiple organisms we have developed Genomic Context Viewer (GCView). GCView accepts results from one or multiple protein homology searches such as BLASTp as input. For each hit, the neighboring protein-coding genes are extracted, the regions of homology are labeled for each input and the results are presented as a clear, interactive graphical output. It is also possible to add more searches to iteratively refine the output. GCView groups outputs by the hits for different proteins. This allows for easy comparison of different operon compositions and structures. The tool is embedded in the framework of the Bioinformatics Toolkit of the Max-Planck Institute for Developmental Biology (MPI Toolkit). Job results from the homology search tools inside the MPI Toolkit can be forwarded to GCView and results can be subsequently analyzed by sequence analysis tools. Results are stored online, allowing for later reinspection. GCView is freely available at http://toolkit.tuebingen.mpg.de/gcview. PMID:21609955
CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish.
González, Federico
2016-07-01
Because of their extraordinary differentiation potential, human pluripotent stem cells (hPSCs) can differentiate into virtually any cell type of the human body, providing a powerful platform not only for generating relevant cell types useful for cell replacement therapies, but also for modeling human development and disease. Expanding this potential, structures resembling human organs, termed organoids, have been recently obtained from hPSCs through tissue engineering. Organoids exhibit multiple cell types self-organizing into structures recapitulating in part the physiology and the cellular interactions observed in the organ in vivo, offering unprecedented opportunities for human disease modeling. To fulfill this promise, tissue engineering in hPSCs needs to be supported by robust and scalable genome editing technologies. With the advent of the CRISPR/Cas9 technology, manipulating the genome of hPSCs has now become an easy task, allowing modifying their genome with superior precision, speed, and throughput. Here we review current and potential applications of the CRISPR/Cas9 technology in hPSCs and how they contribute to establish hPSCs as a model of choice for studying human genetics. Developmental Dynamics 245:788-806, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
De Nicola, Beatrice; Lech, Christopher J.; Heddi, Brahim; Regmi, Sagar; Frasson, Ilaria; Perrone, Rosalba; Richter, Sara N.; Phan, Anh Tuân
2016-01-01
The long terminal repeat (LTR) of the proviral human immunodeficiency virus (HIV)-1 genome is integral to virus transcription and host cell infection. The guanine-rich U3 region within the LTR promoter, previously shown to form G-quadruplex structures, represents an attractive target to inhibit HIV transcription and replication. In this work, we report the structure of a biologically relevant G-quadruplex within the LTR promoter region of HIV-1. The guanine-rich sequence designated LTR-IV forms a well-defined structure in physiological cationic solution. The nuclear magnetic resonance (NMR) structure of this sequence reveals a parallel-stranded G-quadruplex containing a single-nucleotide thymine bulge, which participates in a conserved stacking interaction with a neighboring single-nucleotide adenine loop. Transcription analysis in a HIV-1 replication competent cell indicates that the LTR-IV region may act as a modulator of G-quadruplex formation in the LTR promoter. Consequently, the LTR-IV G-quadruplex structure presented within this work could represent a valuable target for the design of HIV therapeutics. PMID:27298260
Hepatitis E: Molecular Virology and Pathogenesis
Panda, Subrat K.; Varma, Satya P.K.
2013-01-01
Hepatitis E virus is a single, positive-sense, capped and poly A tailed RNA virus classified under the family Hepeviridae. Enteric transmission, acute self-limiting hepatitis, frequent epidemic and sporadic occurrence, high mortality in affected pregnants are hallmarks of hepatitis E infection. Lack of an efficient culture system and resulting reductionist approaches for the study of replication and pathogenesis of HEV made it to be a less understood agent. Early studies on animal models, sub-genomic expression of open reading frames (ORF) and infectious cDNA clones have helped in elucidating the genome organization, important stages in HEV replication and pathogenesis. The genome contains three ORF's and three untranslated regions (UTR). The 5′ distal ORF, ORF1 is translated by host ribosomes in a cap dependent manner to form the non-structural polyprotein including the viral replicase. HEV replicates via a negative-sense RNA intermediate which helps in the formation of the positive-sense genomic RNA and a single bi-cistronic sub-genomic RNA. The 3′ distal ORF's including the major structural protein pORF2 and the multifunctional host interacting protein pORF3 are translated from the sub-genomic RNA. Pathogenesis in HEV infections is not well articulated, and remains a concern due to the many aspects like host dependent and genotype specific variations. Animal HEV, zoonosis, chronicity in immunosuppressed patients, and rapid decompensation in affected chronic liver diseased patients warrants detailed investigation of the underlying pathogenesis. Recent advances about structure, entry, egress and functional characterization of ORF1 domains has furthered our understanding about HEV. This article is an effort to review our present understanding about molecular biology and pathogenesis of HEV. PMID:25755485
Predicting Protein Function by Genomic Context: Quantitative Evaluation and Qualitative Inferences
Huynen, Martijn; Snel, Berend; Lathe, Warren; Bork, Peer
2000-01-01
Various new methods have been proposed to predict functional interactions between proteins based on the genomic context of their genes. The types of genomic context that they use are Type I: the fusion of genes; Type II: the conservation of gene-order or co-occurrence of genes in potential operons; and Type III: the co-occurrence of genes across genomes (phylogenetic profiles). Here we compare these types for their coverage, their correlations with various types of functional interaction, and their overlap with homology-based function assignment. We apply the methods to Mycoplasma genitalium, the standard benchmarking genome in computational and experimental genomics. Quantitatively, conservation of gene order is the technique with the highest coverage, applying to 37% of the genes. By combining gene order conservation with gene fusion (6%), the co-occurrence of genes in operons in absence of gene order conservation (8%), and the co-occurrence of genes across genomes (11%), significant context information can be obtained for 50% of the genes (the categories overlap). Qualitatively, we observe that the functional interactions between genes are stronger as the requirements for physical neighborhood on the genome are more stringent, while the fraction of potential false positives decreases. Moreover, only in cases in which gene order is conserved in a substantial fraction of the genomes, in this case six out of twenty-five, does a single type of functional interaction (physical interaction) clearly dominate (>80%). In other cases, complementary function information from homology searches, which is available for most of the genes with significant genomic context, is essential to predict the type of interaction. Using a combination of genomic context and homology searches, new functional features can be predicted for 10% of M. genitalium genes. PMID:10958638
Wang, W; Zhang, W; Jiang, R; Luan, Y
2010-05-01
It is of vital importance to find genetic variants that underlie human complex diseases and locate genes that are responsible for these diseases. Since proteins are typically composed of several structural domains, it is reasonable to assume that harmful genetic variants may alter structures of protein domains, affect functions of proteins and eventually cause disorders. With this understanding, the authors explore the possibility of recovering associations between protein domains and complex diseases. The authors define associations between protein domains and disease families on the basis of associations between non-synonymous single nucleotide polymorphisms (nsSNPs) and complex diseases, similarities between diseases, and relations between proteins and domains. Based on a domain-domain interaction network, the authors propose a 'guilt-by-proximity' principle to rank candidate domains according to their average distance to a set of seed domains in the domain-domain interaction network. The authors validate the method through large-scale cross-validation experiments on simulated linkage intervals, random controls and the whole genome. Results show that areas under receiver operating characteristic curves (AUC scores) can be as high as 77.90%, and the mean rank ratios can be as low as 21.82%. The authors further offer a freely accessible web interface for a genome-wide landscape of associations between domains and disease families.
Torgomyan, Heghine; Trchounian, Armen
2013-02-01
Low-intensity electromagnetic field (EMF) of extremely high frequencies is a widespread environmental factor. This field is used in telecommunication systems, therapeutic practices and food protection. Particularly, in medicine and food industries EMF is used for its bactericidal effects. The significant targets of cellular mechanisms for EMF effects at resonant frequencies in bacteria could be water (H(2)O), cell membrane and genome. The changes in H(2)O cluster structure and properties might be leading to increase of chemical activity or hydration of proteins and other cellular structures. These effects are likely to be specific and long-term. Moreover, cell membrane with its surface characteristics, substance transport and energy-conversing processes is also altered. Then, the genome is affected because the conformational changes in DNA and the transition of bacterial pro-phages from lysogenic to lytic state have been detected. The consequences for EMF interaction with bacteria are the changes in their sensitivity to different chemicals, including antibiotics. These effects are important to understand distinguishing role of bacteria in environment, leading to changed metabolic pathways in bacteria and their antibiotic resistance. This EMF may also affect the cell-to-cell interactions in bacterial populations, since bacteria might interact with each other through EMF of sub-extremely high frequency range.
How Structure Defines Affinity in Protein-Protein Interactions
Erijman, Ariel; Rosenthal, Eran; Shifman, Julia M.
2014-01-01
Protein-protein interactions (PPI) in nature are conveyed by a multitude of binding modes involving various surfaces, secondary structure elements and intermolecular interactions. This diversity results in PPI binding affinities that span more than nine orders of magnitude. Several early studies attempted to correlate PPI binding affinities to various structure-derived features with limited success. The growing number of high-resolution structures, the appearance of more precise methods for measuring binding affinities and the development of new computational algorithms enable more thorough investigations in this direction. Here, we use a large dataset of PPI structures with the documented binding affinities to calculate a number of structure-based features that could potentially define binding energetics. We explore how well each calculated biophysical feature alone correlates with binding affinity and determine the features that could be used to distinguish between high-, medium- and low- affinity PPIs. Furthermore, we test how various combinations of features could be applied to predict binding affinity and observe a slow improvement in correlation as more features are incorporated into the equation. In addition, we observe a considerable improvement in predictions if we exclude from our analysis low-resolution and NMR structures, revealing the importance of capturing exact intermolecular interactions in our calculations. Our analysis should facilitate prediction of new interactions on the genome scale, better characterization of signaling networks and design of novel binding partners for various target proteins. PMID:25329579
Structural Characterization of H-1 Parvovirus: Comparison of Infectious Virions to Empty Capsids
Halder, Sujata; Nam, Hyun-Joo; Govindasamy, Lakshmanan; Vogel, Michèle; Dinsart, Christiane; Salomé, Nathalie; McKenna, Robert
2013-01-01
The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors. PMID:23449783
Ankyrin-repeat containing proteins of microbes: a conserved structure with functional diversity
Al-Khodor, Souhaila; Price, Christopher T.; Kalia, Awdhesh; Kwaik, Yousef Abu
2009-01-01
Summary The ankyrin repeat (ANK) is the most common protein-protein interaction motif in nature and predominantly found in eukaryotic proteins. The genome sequencing of various pathogenic or symbiotic bacteria and eukaryotic viruses identified numerous genes encoding ANK-containing proteins that were proposed to have been acquired from eukaryotes by horizontal gene transfer. However, the recent discovery of additional ANK-containing proteins encoded in the genomes of archaea and free-living bacteria suggests either a more ancient origin of the ANK motif or multiple convergent evolution events. Many bacterial pathogens employ various types of secretion systems to deliver ANK-containing proteins into eukaryotic cells where they mimic or manipulate various host functions. Understanding the molecular and biochemical functions of this family of proteins will enhance our understanding of important host-microbe interactions. PMID:19962898
Immune subversion by chromatin manipulation: a 'new face' of host-bacterial pathogen interaction.
Arbibe, Laurence
2008-08-01
Bacterial pathogens have evolved various strategies to avoid immune surveillance, depending of their in vivo'lifestyle'. The identification of few bacterial effectors capable to enter the nucleus and modifying chromatin structure in host raises the fascinating questions of how pathogens modulate chromatin structure and why. Chromatin is a dynamic structure that maintains the stability and accessibility of the host DNA genome to the transcription machinery. This review describes the various strategies used by pathogens to interface with host chromatin. In some cases, chromatin injury can be a strategy to take control of major cellular functions, such as the cell cycle. In other cases, manipulation of chromatin structure at specific genomic locations by modulating epigenetic information provides a way for the pathogen to impose its own transcriptional signature onto host cells. This emerging field should strongly influence our understanding of chromatin regulation at interphase nucleus and may provide invaluable openings to the control of immune gene expression in inflammatory and infectious diseases.
Wang, Pengfei; Wang, Yingfang; Duan, Guangcai; Xue, Zerun; Wang, Linlin; Guo, Xiangjiao; Yang, Haiyan; Xi, Yuanlin
2015-04-01
This study was aimed to explore the features of clustered regularly interspaced short palindromic repeats (CRISPR) structures in Shigella by using bioinformatics. We used bioinformatics methods, including BLAST, alignment and RNA structure prediction, to analyze the CRISPR structures of Shigella genomes. The results showed that the CRISPRs existed in the four groups of Shigella, and the flanking sequences of upstream CRISPRs could be classified into the same group with those of the downstream. We also found some relatively conserved palindromic motifs in the leader sequences. Repeat sequences had the same group with corresponding flanking sequences, and could be classified into two different types by their RNA secondary structures, which contain "stem" and "ring". Some spacers were found to homologize with part sequences of plasmids or phages. The study indicated that there were correlations between repeat sequences and flanking sequences, and the repeats might act as a kind of recognition mechanism to mediate the interaction between foreign genetic elements and Cas proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koropatkin, Nicole M.; Martens, Eric C.; Gordon, Jeffrey I.
2009-01-12
The human gut microbiota performs functions that are not encoded in our Homo sapiens genome, including the processing of otherwise undigestible dietary polysaccharides. Defining the structures of proteins involved in the import and degradation of specific glycans by saccharolytic bacteria complements genomic analysis of the nutrient-processing capabilities of gut communities. Here, we describe the atomic structure of one such protein, SusD, required for starch binding and utilization by Bacteroides thetaiotaomicron, a prominent adaptive forager of glycans in the distal human gut microbiota. The binding pocket of this unique {alpha}-helical protein contains an arc of aromatic residues that complements the naturalmore » helical structure of starch and imposes this conformation on bound maltoheptaose. Furthermore, SusD binds cyclic oligosaccharides with higher affinity than linear forms. The structures of several SusD/oligosaccharide complexes reveal an inherent ligand recognition plasticity dominated by the three-dimensional conformation of the oligosaccharides rather than specific interactions with the composite sugars.« less
Bertazzoni, Umberto; Turci, Marco; Avesani, Francesca; Di Gennaro, Gianfranco; Bidoia, Carlo; Romanelli, Maria Grazia
2011-01-01
Human T-lymphotropic viruses type 1 (HTLV-1) and type 2 (HTLV-2) present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity. PMID:21994745
NASA Astrophysics Data System (ADS)
Boulos, Rasha E.; Julienne, Hanna; Baker, Antoine; Chen, Chun-Long; Petryk, Nataliya; Kahli, Malik; dʼAubenton-Carafa, Yves; Goldar, Arach; Jensen, Pablo; Hyrien, Olivier; Thermes, Claude; Arneodo, Alain; Audit, Benjamin
2014-11-01
The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome.
The Crystal Structure and RNA-Binding of an Orthomyxovirus Nucleoprotein
Zheng, Wenjie; Olson, John; Vakharia, Vikram; Tao, Yizhi Jane
2013-01-01
Genome packaging for viruses with segmented genomes is often a complex problem. This is particularly true for influenza viruses and other orthomyxoviruses, whose genome consists of multiple negative-sense RNAs encapsidated as ribonucleoprotein (RNP) complexes. To better understand the structural features of orthomyxovirus RNPs that allow them to be packaged, we determined the crystal structure of the nucleoprotein (NP) of a fish orthomyxovirus, the infectious salmon anemia virus (ISAV) (genus Isavirus). As the major protein component of the RNPs, ISAV-NP possesses a bi-lobular structure similar to the influenza virus NP. Because both RNA-free and RNA-bound ISAV NP forms stable dimers in solution, we were able to measure the NP RNA binding affinity as well as the stoichiometry using recombinant proteins and synthetic oligos. Our RNA binding analysis revealed that each ISAV-NP binds ∼12 nts of RNA, shorter than the 24–28 nts originally estimated for the influenza A virus NP based on population average. The 12-nt stoichiometry was further confirmed by results from electron microscopy and dynamic light scattering. Considering that RNPs of ISAV and the influenza viruses have similar morphologies and dimensions, our findings suggest that NP-free RNA may exist on orthomyxovirus RNPs, and selective RNP packaging may be accomplished through direct RNA-RNA interactions. PMID:24068932
Structural Features of a Picornavirus Polymerase Involved in the Polyadenylation of Viral RNA
Kempf, Brian J.; Kelly, Michelle M.; Springer, Courtney L.; Peersen, Olve B.
2013-01-01
Picornaviruses have 3′ polyadenylated RNA genomes, but the mechanisms by which these genomes are polyadenylated during viral replication remain obscure. Based on prior studies, we proposed a model wherein the poliovirus RNA-dependent RNA polymerase (3Dpol) uses a reiterative transcription mechanism while replicating the poly(A) and poly(U) portions of viral RNA templates. To further test this model, we examined whether mutations in 3Dpol influenced the polyadenylation of virion RNA. We identified nine alanine substitution mutations in 3Dpol that resulted in shorter or longer 3′ poly(A) tails in virion RNA. These mutations could disrupt structural features of 3Dpol required for the recruitment of a cellular poly(A) polymerase; however, the structural orientation of these residues suggests a direct role of 3Dpol in the polyadenylation of RNA genomes. Reaction mixtures containing purified 3Dpol and a template RNA with a defined poly(U) sequence provided data consistent with a template-dependent reiterative transcription mechanism for polyadenylation. The phylogenetically conserved structural features of 3Dpol involved in the polyadenylation of virion RNA include a thumb domain alpha helix that is positioned in the minor groove of the double-stranded RNA product and lysine and arginine residues that interact with the phosphates of both the RNA template and product strands. PMID:23468507
The role of internal duplication in the evolution of multi-domain proteins.
Nacher, J C; Hayashida, M; Akutsu, T
2010-08-01
Many proteins consist of several structural domains. These multi-domain proteins have likely been generated by selective genome growth dynamics during evolution to perform new functions as well as to create structures that fold on a biologically feasible time scale. Domain units frequently evolved through a variety of genetic shuffling mechanisms. Here we examine the protein domain statistics of more than 1000 organisms including eukaryotic, archaeal and bacterial species. The analysis extends earlier findings on asymmetric statistical laws for proteome to a wider variety of species. While proteins are composed of a wide range of domains, displaying a power-law decay, the computation of domain families for each protein reveals an exponential distribution, characterizing a protein universe composed of a thin number of unique families. Structural studies in proteomics have shown that domain repeats, or internal duplicated domains, represent a small but significant fraction of genome. In spite of its importance, this observation has been largely overlooked until recently. We model the evolutionary dynamics of proteome and demonstrate that these distinct distributions are in fact rooted in an internal duplication mechanism. This process generates the contemporary protein structural domain universe, determines its reduced thickness, and tames its growth. These findings have important implications, ranging from protein interaction network modeling to evolutionary studies based on fundamental mechanisms governing genome expansion.
The folding landscape of the epigenome
NASA Astrophysics Data System (ADS)
Olarte-Plata, Juan D.; Haddad, Noelle; Vaillant, Cédric; Jost, Daniel
2016-04-01
The role of the spatial organization of chromatin in gene regulation is a long-standing but still open question. Experimentally it has been shown that the genome is segmented into epigenomic chromatin domains that are organized into hierarchical sub-nuclear spatial compartments. However, whether this non-random spatial organization only reflects or indeed contributes—and how—to the regulation of genome function remains to be elucidated. To address this question, we recently proposed a quantitative description of the folding properties of the fly genome as a function of its epigenomic landscape using a polymer model with epigenomic-driven attractions. We propose in this article, to characterize more deeply the physical properties of the 3D epigenome folding. Using an efficient lattice version of the original block copolymer model, we study the structural and dynamical properties of chromatin and show that the size of epigenomic domains and asymmetries in sizes and in interaction strengths play a critical role in the chromatin organization. Finally, we discuss the biological implications of our findings. In particular, our predictions are quantitatively compatible with experimental data and suggest a different mean of self-interaction in euchromatin versus heterochromatin domains.
Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trego, Kelly S.; Groesser, Torsten; Davalos, Albert R.
XPG is a structure-specific endonuclease required for nucleotide excision repair, and incision-defective XPG mutations cause the skin cancer-prone syndrome xeroderma pigmentosum. Truncating mutations instead cause the neurodevelopmental progeroid disorder Cockayne syndrome, but little is known about how XPG loss results in this devastating disease. In this paper, we identify XPG as a partner of BRCA1 and BRCA2 in maintaining genomic stability through homologous recombination (HRR). XPG depletion causes DNA double-strand breaks, chromosomal abnormalities, cell-cycle delays, defective HRR, inability to overcome replication fork stalling, and replication stress. XPG directly interacts with BRCA2, RAD51, and PALB2, and XPG depletion reduces their chromatinmore » binding and subsequent RAD51 foci formation. Upstream in HRR, XPG interacts directly with BRCA1. Its depletion causes BRCA1 hyper-phosphorylation and persistent chromatin binding. Finally, these unexpected findings establish XPG as an HRR protein with important roles in genome stability and suggest how XPG defects produce severe clinical consequences including cancer and accelerated aging.« less
Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability
Trego, Kelly S.; Groesser, Torsten; Davalos, Albert R.; ...
2016-01-28
XPG is a structure-specific endonuclease required for nucleotide excision repair, and incision-defective XPG mutations cause the skin cancer-prone syndrome xeroderma pigmentosum. Truncating mutations instead cause the neurodevelopmental progeroid disorder Cockayne syndrome, but little is known about how XPG loss results in this devastating disease. In this paper, we identify XPG as a partner of BRCA1 and BRCA2 in maintaining genomic stability through homologous recombination (HRR). XPG depletion causes DNA double-strand breaks, chromosomal abnormalities, cell-cycle delays, defective HRR, inability to overcome replication fork stalling, and replication stress. XPG directly interacts with BRCA2, RAD51, and PALB2, and XPG depletion reduces their chromatinmore » binding and subsequent RAD51 foci formation. Upstream in HRR, XPG interacts directly with BRCA1. Its depletion causes BRCA1 hyper-phosphorylation and persistent chromatin binding. Finally, these unexpected findings establish XPG as an HRR protein with important roles in genome stability and suggest how XPG defects produce severe clinical consequences including cancer and accelerated aging.« less
NASA Astrophysics Data System (ADS)
Llauró, Aida; Luque, Daniel; Edwards, Ethan; Trus, Benes L.; Avera, John; Reguera, David; Douglas, Trevor; Pablo, Pedro J. De; Castón, José R.
2016-04-01
Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers.Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers. Electronic supplementary information (ESI) available: 6 figures, 3 tables and theory. See DOI: 10.1039/c6nr01007e
Bioinformatics and variability in drug response: a protein structural perspective
Lahti, Jennifer L.; Tang, Grace W.; Capriotti, Emidio; Liu, Tianyun; Altman, Russ B.
2012-01-01
Marketed drugs frequently perform worse in clinical practice than in the clinical trials on which their approval is based. Many therapeutic compounds are ineffective for a large subpopulation of patients to whom they are prescribed; worse, a significant fraction of patients experience adverse effects more severe than anticipated. The unacceptable risk–benefit profile for many drugs mandates a paradigm shift towards personalized medicine. However, prior to adoption of patient-specific approaches, it is useful to understand the molecular details underlying variable drug response among diverse patient populations. Over the past decade, progress in structural genomics led to an explosion of available three-dimensional structures of drug target proteins while efforts in pharmacogenetics offered insights into polymorphisms correlated with differential therapeutic outcomes. Together these advances provide the opportunity to examine how altered protein structures arising from genetic differences affect protein–drug interactions and, ultimately, drug response. In this review, we first summarize structural characteristics of protein targets and common mechanisms of drug interactions. Next, we describe the impact of coding mutations on protein structures and drug response. Finally, we highlight tools for analysing protein structures and protein–drug interactions and discuss their application for understanding altered drug responses associated with protein structural variants. PMID:22552919
Kersten, Roland D; Ziemert, Nadine; Gonzalez, David J; Duggan, Brendan M; Nizet, Victor; Dorrestein, Pieter C; Moore, Bradley S
2013-11-19
Glycosyl groups are an essential mediator of molecular interactions in cells and on cellular surfaces. There are very few methods that directly relate sugar-containing molecules to their biosynthetic machineries. Here, we introduce glycogenomics as an experiment-guided genome-mining approach for fast characterization of glycosylated natural products (GNPs) and their biosynthetic pathways from genome-sequenced microbes by targeting glycosyl groups in microbial metabolomes. Microbial GNPs consist of aglycone and glycosyl structure groups in which the sugar unit(s) are often critical for the GNP's bioactivity, e.g., by promoting binding to a target biomolecule. GNPs are a structurally diverse class of molecules with important pharmaceutical and agrochemical applications. Herein, O- and N-glycosyl groups are characterized in their sugar monomers by tandem mass spectrometry (MS) and matched to corresponding glycosylation genes in secondary metabolic pathways by a MS-glycogenetic code. The associated aglycone biosynthetic genes of the GNP genotype then classify the natural product to further guide structure elucidation. We highlight the glycogenomic strategy by the characterization of several bioactive glycosylated molecules and their gene clusters, including the anticancer agent cinerubin B from Streptomyces sp. SPB74 and an antibiotic, arenimycin B, from Salinispora arenicola CNB-527.
Insights into the noncoding RNome of nitrogen-fixing endosymbiotic α-proteobacteria.
Jiménez-Zurdo, José I; Valverde, Claudio; Becker, Anke
2013-02-01
Symbiotic chronic infection of legumes by rhizobia involves transition of invading bacteria from a free-living environment in soil to an intracellular state as differentiated nitrogen-fixing bacteroids within the nodules elicited in the host plant. The adaptive flexibility demanded by this complex lifestyle is likely facilitated by the large set of regulatory proteins encoded by rhizobial genomes. However, proteins are not the only relevant players in the regulation of gene expression in bacteria. Large-scale high-throughput analysis of prokaryotic genomes is evidencing the expression of an unexpected plethora of small untranslated transcripts (sRNAs) with housekeeping or regulatory roles. sRNAs mostly act in response to environmental cues as post-transcriptional regulators of gene expression through protein-assisted base-pairing interactions with target mRNAs. Riboregulation contributes to fine-tune a wide range of bacterial processes which, in intracellular animal pathogens, largely compromise virulence traits. Here, we summarize the incipient knowledge about the noncoding RNome structure of nitrogen-fixing endosymbiotic bacteria as inferred from genome-wide searches for sRNA genes in the alfalfa partner Sinorhizobium meliloti and further comparative genomics analysis. The biology of relevant S. meliloti RNA chaperones (e.g., Hfq) is also reviewed as a first global indicator of the impact of riboregulation in the establishment of the symbiotic interaction.
Iteratively improving Hi-C experiments one step at a time.
Golloshi, Rosela; Sanders, Jacob T; McCord, Rachel Patton
2018-06-01
The 3D organization of eukaryotic chromosomes affects key processes such as gene expression, DNA replication, cell division, and response to DNA damage. The genome-wide chromosome conformation capture (Hi-C) approach can characterize the landscape of 3D genome organization by measuring interaction frequencies between all genomic regions. Hi-C protocol improvements and rapid advances in DNA sequencing power have made Hi-C useful to study diverse biological systems, not only to elucidate the role of 3D genome structure in proper cellular function, but also to characterize genomic rearrangements, assemble new genomes, and consider chromatin interactions as potential biomarkers for diseases. Yet, the Hi-C protocol is still complex and subject to variations at numerous steps that can affect the resulting data. Thus, there is still a need for better understanding and control of factors that contribute to Hi-C experiment success and data quality. Here, we evaluate recently proposed Hi-C protocol modifications as well as often overlooked variables in sample preparation and examine their effects on Hi-C data quality. We examine artifacts that can occur during Hi-C library preparation, including microhomology-based artificial template copying and chimera formation that can add noise to the downstream data. Exploring the mechanisms underlying Hi-C artifacts pinpoints steps that should be further optimized in the future. To improve the utility of Hi-C in characterizing the 3D genome of specialized populations of cells or small samples of primary tissue, we identify steps prone to DNA loss which should be considered to adapt Hi-C to lower cell numbers. Copyright © 2018 Elsevier Inc. All rights reserved.
Hosmani, Prashant S.; Villalobos-Ayala, Krystal; Miller, Sherry; Shippy, Teresa; Flores, Mirella; Rosendale, Andrew; Cordola, Chris; Bell, Tracey; Mann, Hannah; DeAvila, Gabe; DeAvila, Daniel; Moore, Zachary; Buller, Kyle; Ciolkevich, Kathryn; Nandyal, Samantha; Mahoney, Robert; Van Voorhis, Joshua; Dunlevy, Megan; Farrow, David; Hunter, David; Morgan, Taylar; Shore, Kayla; Guzman, Victoria; Izsak, Allison; Dixon, Danielle E.; Cridge, Andrew; Cano, Liliana; Cao, Xiaolong; Jiang, Haobo; Leng, Nan; Johnson, Shannon; Cantarel, Brandi L.; Richards, Stephen; English, Adam; Shatters, Robert G.; Childers, Chris; Chen, Mei-Ju; Hunter, Wayne; Cilia, Michelle; Mueller, Lukas A.; Munoz-Torres, Monica; Nelson, David; Poelchau, Monica F.; Benoit, Joshua B.; Wiersma-Koch, Helen; D’Elia, Tom; Brown, Susan J.
2017-01-01
Abstract The Asian citrus psyllid (Diaphorina citri Kuwayama) is the insect vector of the bacterium Candidatus Liberibacter asiaticus (CLas), the pathogen associated with citrus Huanglongbing (HLB, citrus greening). HLB threatens citrus production worldwide. Suppression or reduction of the insect vector using chemical insecticides has been the primary method to inhibit the spread of citrus greening disease. Accurate structural and functional annotation of the Asian citrus psyllid genome, as well as a clear understanding of the interactions between the insect and CLas, are required for development of new molecular-based HLB control methods. A draft assembly of the D. citri genome has been generated and annotated with automated pipelines. However, knowledge transfer from well-curated reference genomes such as that of Drosophila melanogaster to newly sequenced ones is challenging due to the complexity and diversity of insect genomes. To identify and improve gene models as potential targets for pest control, we manually curated several gene families with a focus on genes that have key functional roles in D. citri biology and CLas interactions. This community effort produced 530 manually curated gene models across developmental, physiological, RNAi regulatory and immunity-related pathways. As previously shown in the pea aphid, RNAi machinery genes putatively involved in the microRNA pathway have been specifically duplicated. A comprehensive transcriptome enabled us to identify a number of gene families that are either missing or misassembled in the draft genome. In order to develop biocuration as a training experience, we included undergraduate and graduate students from multiple institutions, as well as experienced annotators from the insect genomics research community. The resulting gene set (OGS v1.0) combines both automatically predicted and manually curated gene models. Database URL: https://citrusgreening.org/ PMID:29220441
Tomescu, Alexandra I; Robb, Nicole C; Hengrung, Narin; Fodor, Ervin; Kapanidis, Achillefs N
2014-08-12
The influenza virus is a major human and animal pathogen responsible for seasonal epidemics and occasional pandemics. The genome of the influenza A virus comprises eight segments of single-stranded, negative-sense RNA with highly conserved 5' and 3' termini. These termini interact to form a double-stranded promoter structure that is recognized and bound by the viral RNA-dependent RNA polymerase (RNAP); however, no 3D structural information for the influenza polymerase-bound promoter exists. Functional studies have led to the proposal of several 2D models for the secondary structure of the bound promoter, including a corkscrew model in which the 5' and 3' termini form short hairpins. We have taken advantage of an insect-cell system to prepare large amounts of active recombinant influenza virus RNAP, and used this to develop a highly sensitive single-molecule FRET assay to measure distances between fluorescent dyes located on the promoter and map its structure both with and without the polymerase bound. These advances enabled the direct analysis of the influenza promoter structure in complex with the viral RNAP, and provided 3D structural information that is in agreement with the corkscrew model for the influenza virus promoter RNA. Our data provide insights into the mechanisms of promoter binding by the influenza RNAP and have implications for the understanding of the regulatory mechanisms involved in the transcription of viral genes and replication of the viral RNA genome. In addition, the simplicity of this system should translate readily to the study of any virus polymerase-promoter interaction.
Tomescu, Alexandra I.; Robb, Nicole C.; Hengrung, Narin; Fodor, Ervin; Kapanidis, Achillefs N.
2014-01-01
The influenza virus is a major human and animal pathogen responsible for seasonal epidemics and occasional pandemics. The genome of the influenza A virus comprises eight segments of single-stranded, negative-sense RNA with highly conserved 5′ and 3′ termini. These termini interact to form a double-stranded promoter structure that is recognized and bound by the viral RNA-dependent RNA polymerase (RNAP); however, no 3D structural information for the influenza polymerase-bound promoter exists. Functional studies have led to the proposal of several 2D models for the secondary structure of the bound promoter, including a corkscrew model in which the 5′ and 3′ termini form short hairpins. We have taken advantage of an insect-cell system to prepare large amounts of active recombinant influenza virus RNAP, and used this to develop a highly sensitive single-molecule FRET assay to measure distances between fluorescent dyes located on the promoter and map its structure both with and without the polymerase bound. These advances enabled the direct analysis of the influenza promoter structure in complex with the viral RNAP, and provided 3D structural information that is in agreement with the corkscrew model for the influenza virus promoter RNA. Our data provide insights into the mechanisms of promoter binding by the influenza RNAP and have implications for the understanding of the regulatory mechanisms involved in the transcription of viral genes and replication of the viral RNA genome. In addition, the simplicity of this system should translate readily to the study of any virus polymerase–promoter interaction. PMID:25071209
Taylor, Christina M.; Mitreva, Makedonka
2011-01-01
A vast majority of the burden from neglected tropical diseases result from helminth infections (nematodes and platyhelminthes). Parasitic helminthes infect over 2 billion, exerting a high collective burden that rivals high-mortality conditions such as AIDS or malaria, and cause devastation to crops and livestock. The challenges to improve control of parasitic helminth infections are multi-fold and no single category of approaches will meet them all. New information such as helminth genomics, functional genomics and proteomics coupled with innovative bioinformatic approaches provide fundamental molecular information about these parasites, accelerating both basic research as well as development of effective diagnostics, vaccines and new drugs. To facilitate such studies we have developed an online resource, HelmCoP (Helminth Control and Prevention), built by integrating functional, structural and comparative genomic data from plant, animal and human helminthes, to enable researchers to develop strategies for drug, vaccine and pesticide prioritization, while also providing a useful comparative genomics platform. HelmCoP encompasses genomic data from several hosts, including model organisms, along with a comprehensive suite of structural and functional annotations, to assist in comparative analyses and to study host-parasite interactions. The HelmCoP interface, with a sophisticated query engine as a backbone, allows users to search for multi-factorial combinations of properties and serves readily accessible information that will assist in the identification of various genes of interest. HelmCoP is publicly available at: http://www.nematode.net/helmcop.html. PMID:21760913
Lu, Z.; Altermann, E.; Breidt, F.; Kozyavkin, S.
2010-01-01
Vegetable fermentations rely on the proper succession of a variety of lactic acid bacteria (LAB). Leuconostoc mesenteroides initiates fermentation. As fermentation proceeds, L. mesenteroides dies off and other LAB complete the fermentation. Phages infecting L. mesenteroides may significantly influence the die-off of L. mesenteroides. However, no L. mesenteroides phages have been previously genetically characterized. Knowledge of more phage genome sequences may provide new insights into phage genomics, phage evolution, and phage-host interactions. We have determined the complete genome sequence of L. mesenteroides phage Φ1-A4, isolated from an industrial sauerkraut fermentation. The phage possesses a linear, double-stranded DNA genome consisting of 29,508 bp with a G+C content of 36%. Fifty open reading frames (ORFs) were predicted. Putative functions were assigned to 26 ORFs (52%), including 5 ORFs of structural proteins. The phage genome was modularly organized, containing DNA replication, DNA-packaging, head and tail morphogenesis, cell lysis, and DNA regulation/modification modules. In silico analyses showed that Φ1-A4 is a unique lytic phage with a large-scale genome inversion (∼30% of the genome). The genome inversion encompassed the lysis module, part of the structural protein module, and a cos site. The endolysin gene was flanked by two holin genes. The tail morphogenesis module was interspersed with cell lysis genes and other genes with unknown functions. The predicted amino acid sequences of the phage proteins showed little similarity to other phages, but functional analyses showed that Φ1-A4 clusters with several Lactococcus phages. To our knowledge, Φ1-A4 is the first genetically characterized L. mesenteroides phage. PMID:20118355
Template-based structure modeling of protein-protein interactions
Szilagyi, Andras; Zhang, Yang
2014-01-01
The structure of protein-protein complexes can be constructed by using the known structure of other protein complexes as a template. The complex structure templates are generally detected either by homology-based sequence alignments or, given the structure of monomer components, by structure-based comparisons. Critical improvements have been made in recent years by utilizing interface recognition and by recombining monomer and complex template libraries. Encouraging progress has also been witnessed in genome-wide applications of template-based modeling, with modeling accuracy comparable to high-throughput experimental data. Nevertheless, bottlenecks exist due to the incompleteness of the proteinprotein complex structure library and the lack of methods for distant homologous template identification and full-length complex structure refinement. PMID:24721449
Johnson, Matthew C.; Tatum, Kelsey B.; Lynn, Jason S.; Brewer, Tess E.; Lu, Stephen; Washburn, Brian K.
2015-01-01
ABSTRACT Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long, contractile tail through which the DNA is delivered to host cells. This phylogenetic and structural study of S. meliloti-infecting T4 superfamily phage ΦM9 provides new insight into the diversity of this family. The comparison of structure-related genes in both ΦM9 and S. meliloti-infecting T4 superfamily phage ΦM12, which comes from a completely different lineage of these phages, allows the identification of host infection-related factors. PMID:26311868
Interactive or static reports to guide clinical interpretation of cancer genomics.
Gray, Stacy W; Gagan, Jeffrey; Cerami, Ethan; Cronin, Angel M; Uno, Hajime; Oliver, Nelly; Lowenstein, Carol; Lederman, Ruth; Revette, Anna; Suarez, Aaron; Lee, Charlotte; Bryan, Jordan; Sholl, Lynette; Van Allen, Eliezer M
2018-05-01
Misinterpretation of complex genomic data presents a major challenge in the implementation of precision oncology. We sought to determine whether interactive genomic reports with embedded clinician education and optimized data visualization improved genomic data interpretation. We conducted a randomized, vignette-based survey study to determine whether exposure to interactive reports for a somatic gene panel, as compared to static reports, improves physicians' genomic comprehension and report-related satisfaction (overall scores calculated across 3 vignettes, range 0-18 and 1-4, respectively, higher score corresponding with improved endpoints). One hundred and five physicians at a tertiary cancer center participated (29% participation rate): 67% medical, 20% pediatric, 7% radiation, and 7% surgical oncology; 37% female. Prior to viewing the case-based vignettes, 34% of the physicians reported difficulty making treatment recommendations based on the standard static report. After vignette/report exposure, physicians' overall comprehension scores did not differ by report type (mean score: interactive 11.6 vs static 10.5, difference = 1.1, 95% CI, -0.3, 2.5, P = .13). However, physicians exposed to the interactive report were more likely to correctly assess sequencing quality (P < .001) and understand when reports needed to be interpreted with caution (eg, low tumor purity; P = .02). Overall satisfaction scores were higher in the interactive group (mean score 2.5 vs 2.1, difference = 0.4, 95% CI, 0.2-0.7, P = .001). Interactive genomic reports may improve physicians' ability to accurately assess genomic data and increase report-related satisfaction. Additional research in users' genomic needs and efforts to integrate interactive reports into electronic health records may facilitate the implementation of precision oncology.
Toward superconducting critical current by design
Sadovskyy, Ivan A.; Jia, Ying; Leroux, Maxime; ...
2016-03-31
The interaction of vortex matter with defects in applied superconductors directly determines their current carrying capacity. Defects range from chemically grown nanostructures and crystalline imperfections to the layered structure of the material itself. The vortex-defect interactions are non-additive in general, leading to complex dynamic behavior that has proven difficult to capture in analytical models. With recent rapid progress in computational powers, a new paradigm has emerged that aims at simulation assisted design of defect structures with predictable ‘critical-current-by-design’: analogous to the materials genome concept of predicting stable materials structures of interest. We demonstrate the feasibility of this paradigm by combiningmore » large-scale time-dependent Ginzburg-Landau numerical simulations with experiments on commercial high temperature superconductor (HTS) containing well-controlled correlated defects.« less
Filichkin, Sergei A.; Bransom, Kay L.; Goodwin, Joel B.; Dreher, Theo W.
2000-01-01
Five highly infectious turnip yellow mosaic virus (TYMV) genomes with sequence changes in their 3′-terminal regions that result in altered aminoacylation and eEF1A binding have been studied. These genomes were derived from cloned parental RNAs of low infectivity by sequential passaging in plants. Three of these genomes that are incapable of aminoacylation have been reported previously (J. B. Goodwin, J. M. Skuzeski, and T. W. Dreher, Virology 230:113–124, 1997). We now demonstrate by subcloning the 3′ untranslated regions into wild-type TYMV RNA that the high infectivities and replication rates of these genomes compared to their progenitors are mostly due to a small number of mutations acquired in the 3′ tRNA-like structure during passaging. Mutations in other parts of the genome, including the replication protein coding region, are not required for high infectivity but probably do play a role in optimizing viral amplification and spread in plants. Two other TYMV RNA variants of suboptimal infectivities, one that accepts methionine instead of the usual valine and one that interacts less tightly with eEF1A, were sequentially passaged to produce highly infectious genomes. The improved infectivities of these RNAs were not associated with increased replication in protoplasts, and no mutations were acquired in their 3′ tRNA-like structures. Complete sequencing of one genome identified two mutations that result in amino acid changes in the movement protein gene, suggesting that improved infectivity may be a function of improved viral dissemination in plants. Our results show that the wild-type TYMV replication proteins are able to amplify genomes with 3′ termini of variable sequence and tRNA mimicry. These and previous results have led to a model in which the binding of eEF1A to the 3′ end to antagonize minus-strand initiation is a major role of the tRNA-like structure. PMID:10954536
Truniger, Verónica; Miras, Manuel; Aranda, Miguel A
2017-01-01
Most of the positive-strand RNA plant viruses lack the 5'-cap and/or the poly(A)-tail that act synergistically to stimulate canonical translation of cellular mRNAs. However, they have RNA elements in the 5'- or 3'-untranslated regions of their RNAs that are required for their cap-independent translation. Cap-independent translation enhancers (CITEs) have been identified in the genomic 3'-end of viruses belonging to the family Tombusviridae and the genus Luteovirus . Seven classes of 3'-CITEs have been described to date based on their different RNA structures. They generally control the efficient formation of the translation initiation complex by varying mechanisms. Some 3'-CITEs bind eukaryotic translation initiation factors, others ribosomal subunits, bridging these to the 5'-end by different mechanisms, often long-distance RNA-RNA interactions. As previously proposed and recently found in one case in nature, 3'-CITEs are functionally independent elements that are transferable through recombination between viral genomes, leading to potential advantages for virus multiplication. In this review, the knowledge on 3'-CITEs and their functioning is updated. We also suggest that there is local structural conservation in the regions interacting with eIF4E of 3'-CITEs belonging to different classes.
Amati, B; Pick, L; Laroche, T; Gasser, S M
1990-01-01
Nuclei isolated from eukaryotic cells can be depleted of histones and most soluble nuclear proteins to isolate a structural framework called the nuclear scaffold. This structure maintains specific interactions with genomic DNA at sites known as scaffold attached regions (SARs), which are thought to be the bases of DNA loops. In both Saccharomyces cerevisiae and Schizosaccharomyces pombe, genomic ARS elements are recovered as SARs. In addition, SARs from Drosophila melanogaster bind to yeast nuclear scaffolds in vitro and a subclass of these promotes autonomous replication of plasmids in yeast. In the present report, we present fine mapping studies of the Drosophila ftz SAR, which has both SAR and ARS activities in yeast. The data establish a close relationship between the sequences involved in ARS activity and scaffold binding: ARS elements that can bind the nuclear scaffold in vitro promote more efficient plasmid replication in vivo, but scaffold association is not a strict prerequisite for ARS function. Efficient interaction with nuclear scaffolds from both yeast and Drosophila requires a minimal length of SAR DNA that contains reiteration of a narrow minor groove structure of the double helix. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:2123454
Truniger, Verónica; Miras, Manuel; Aranda, Miguel A.
2017-01-01
Most of the positive-strand RNA plant viruses lack the 5′-cap and/or the poly(A)-tail that act synergistically to stimulate canonical translation of cellular mRNAs. However, they have RNA elements in the 5′- or 3′-untranslated regions of their RNAs that are required for their cap-independent translation. Cap-independent translation enhancers (CITEs) have been identified in the genomic 3′-end of viruses belonging to the family Tombusviridae and the genus Luteovirus. Seven classes of 3′-CITEs have been described to date based on their different RNA structures. They generally control the efficient formation of the translation initiation complex by varying mechanisms. Some 3′-CITEs bind eukaryotic translation initiation factors, others ribosomal subunits, bridging these to the 5′-end by different mechanisms, often long-distance RNA–RNA interactions. As previously proposed and recently found in one case in nature, 3′-CITEs are functionally independent elements that are transferable through recombination between viral genomes, leading to potential advantages for virus multiplication. In this review, the knowledge on 3′-CITEs and their functioning is updated. We also suggest that there is local structural conservation in the regions interacting with eIF4E of 3′-CITEs belonging to different classes. PMID:29238357
Conformational changes leading to T7 DNA delivery upon interaction with the bacterial receptor.
González-García, Verónica A; Pulido-Cid, Mar; Garcia-Doval, Carmela; Bocanegra, Rebeca; van Raaij, Mark J; Martín-Benito, Jaime; Cuervo, Ana; Carrascosa, José L
2015-04-17
The majority of bacteriophages protect their genetic material by packaging the nucleic acid in concentric layers to an almost crystalline concentration inside protein shells (capsid). This highly condensed genome also has to be efficiently injected into the host bacterium in a process named ejection. Most phages use a specialized complex (often a tail) to deliver the genome without disrupting cell integrity. Bacteriophage T7 belongs to the Podoviridae family and has a short, non-contractile tail formed by a tubular structure surrounded by fibers. Here we characterize the kinetics and structure of bacteriophage T7 DNA delivery process. We show that T7 recognizes lipopolysaccharides (LPS) from Escherichia coli rough strains through the fibers. Rough LPS acts as the main phage receptor and drives DNA ejection in vitro. The structural characterization of the phage tail after ejection using cryo-electron microscopy (cryo-EM) and single particle reconstruction methods revealed the major conformational changes needed for DNA delivery at low resolution. Interaction with the receptor causes fiber tilting and opening of the internal tail channel by untwisting the nozzle domain, allowing release of DNA and probably of the internal head proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Informing the Design of Direct-to-Consumer Interactive Personal Genomics Reports
Shaer, Orit; Okerlund, Johanna; Balestra, Martina; Stowell, Elizabeth; Ascher, Laura; Bi, Joanna; Schlenker, Claire; Ball, Madeleine
2015-01-01
Background In recent years, people who sought direct-to-consumer genetic testing services have been increasingly confronted with an unprecedented amount of personal genomic information, which influences their decisions, emotional state, and well-being. However, these users of direct-to-consumer genetic services, who vary in their education and interests, frequently have little relevant experience or tools for understanding, reasoning about, and interacting with their personal genomic data. Online interactive techniques can play a central role in making personal genomic data useful for these users. Objective We sought to (1) identify the needs of diverse users as they make sense of their personal genomic data, (2) consequently develop effective interactive visualizations of genomic trait data to address these users’ needs, and (3) evaluate the effectiveness of the developed visualizations in facilitating comprehension. Methods The first two user studies, conducted with 63 volunteers in the Personal Genome Project and with 36 personal genomic users who participated in a design workshop, respectively, employed surveys and interviews to identify the needs and expectations of diverse users. Building on the two initial studies, the third study was conducted with 730 Amazon Mechanical Turk users and employed a controlled experimental design to examine the effectiveness of different design interventions on user comprehension. Results The first two studies identified searching, comparing, sharing, and organizing data as fundamental to users’ understanding of personal genomic data. The third study demonstrated that interactive and visual design interventions could improve the understandability of personal genomic reports for consumers. In particular, results showed that a new interactive bubble chart visualization designed for the study resulted in the highest comprehension scores, as well as the highest perceived comprehension scores. These scores were significantly higher than scores received using the industry standard tabular reports currently used for communicating personal genomic information. Conclusions Drawing on multiple research methods and populations, the findings of the studies reported in this paper offer deep understanding of users’ needs and practices, and demonstrate that interactive online design interventions can improve the understandability of personal genomic reports for consumers. We discuss implications for designers and researchers. PMID:26070951
Informing the Design of Direct-to-Consumer Interactive Personal Genomics Reports.
Shaer, Orit; Nov, Oded; Okerlund, Johanna; Balestra, Martina; Stowell, Elizabeth; Ascher, Laura; Bi, Joanna; Schlenker, Claire; Ball, Madeleine
2015-06-12
In recent years, people who sought direct-to-consumer genetic testing services have been increasingly confronted with an unprecedented amount of personal genomic information, which influences their decisions, emotional state, and well-being. However, these users of direct-to-consumer genetic services, who vary in their education and interests, frequently have little relevant experience or tools for understanding, reasoning about, and interacting with their personal genomic data. Online interactive techniques can play a central role in making personal genomic data useful for these users. We sought to (1) identify the needs of diverse users as they make sense of their personal genomic data, (2) consequently develop effective interactive visualizations of genomic trait data to address these users' needs, and (3) evaluate the effectiveness of the developed visualizations in facilitating comprehension. The first two user studies, conducted with 63 volunteers in the Personal Genome Project and with 36 personal genomic users who participated in a design workshop, respectively, employed surveys and interviews to identify the needs and expectations of diverse users. Building on the two initial studies, the third study was conducted with 730 Amazon Mechanical Turk users and employed a controlled experimental design to examine the effectiveness of different design interventions on user comprehension. The first two studies identified searching, comparing, sharing, and organizing data as fundamental to users' understanding of personal genomic data. The third study demonstrated that interactive and visual design interventions could improve the understandability of personal genomic reports for consumers. In particular, results showed that a new interactive bubble chart visualization designed for the study resulted in the highest comprehension scores, as well as the highest perceived comprehension scores. These scores were significantly higher than scores received using the industry standard tabular reports currently used for communicating personal genomic information. Drawing on multiple research methods and populations, the findings of the studies reported in this paper offer deep understanding of users' needs and practices, and demonstrate that interactive online design interventions can improve the understandability of personal genomic reports for consumers. We discuss implications for designers and researchers.
Rotavirus architecture at subnanometer resolution.
Li, Zongli; Baker, Matthew L; Jiang, Wen; Estes, Mary K; Prasad, B V Venkataram
2009-02-01
Rotavirus, a nonturreted member of the Reoviridae, is the causative agent of severe infantile diarrhea. The double-stranded RNA genome encodes six structural proteins that make up the triple-layer particle. X-ray crystallography has elucidated the structure of one of these capsid proteins, VP6, and two domains from VP4, the spike protein. Complementing this work, electron cryomicroscopy (cryoEM) has provided relatively low-resolution structures for the triple-layer capsid in several biochemical states. However, a complete, high-resolution structural model of rotavirus remains unresolved. Combining new structural analysis techniques with the subnanometer-resolution cryoEM structure of rotavirus, we now provide a more detailed structural model for the major capsid proteins and their interactions within the triple-layer particle. Through a series of intersubunit interactions, the spike protein (VP4) adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside one of the three types of aqueous channels between VP7 and VP6 capsid layers. While the trimeric base suggests the presence of three VP4 molecules in one spike, only hints of the third molecule are observed above the capsid surface. Beyond their interactions with VP4, the interactions between VP6 and VP7 subunits could also be readily identified. In the innermost T=1 layer composed of VP2, visualization of the secondary structure elements allowed us to identify the polypeptide fold for VP2 and examine the complex network of interactions between this layer and the T=13 VP6 layer. This integrated structural approach has resulted in a relatively high-resolution structural model for the complete, infectious structure of rotavirus, as well as revealing the subtle nuances required for maintaining interactions in such a large macromolecular assembly.
Functional and Genomic Analyses of Alpha-Solenoid Proteins
Fournier, David; Palidwor, Gareth A.; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H.; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A.
2013-01-01
Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/. PMID:24278209
Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome
NASA Astrophysics Data System (ADS)
Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.
2018-03-01
The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.
Dillinger, Stefan; Straub, Tobias; Németh, Attila
2017-01-01
Mammalian chromosomes are organized in structural and functional domains of 0.1-10 Mb, which are characterized by high self-association frequencies in the nuclear space and different contact probabilities with nuclear sub-compartments. They exhibit distinct chromatin modification patterns, gene expression levels and replication timing. Recently, nucleolus-associated chromosomal domains (NADs) have been discovered, yet their precise genomic organization and dynamics are still largely unknown. Here, we use nucleolus genomics and single-cell experiments to address these questions in human embryonic fibroblasts during replicative senescence. Genome-wide mapping reveals 1,646 NADs in proliferating cells, which cover about 38% of the annotated human genome. They are mainly heterochromatic and correlate with late replicating loci. Using Hi-C data analysis, we show that interactions of NADs dominate interphase chromosome contacts in the 10-50 Mb distance range. Interestingly, only minute changes in nucleolar association are observed upon senescence. These spatial rearrangements in subdomains smaller than 100 kb are accompanied with local transcriptional changes. In contrast, large centromeric and pericentromeric satellite repeat clusters extensively dissociate from nucleoli in senescent cells. Accordingly, H3K9me3-marked heterochromatin gets remodelled at the perinucleolar space as revealed by immunofluorescence analyses. Collectively, this study identifies connections between the nucleolus, 3D genome structure, and cellular aging at the level of interphase chromosome organization.
Dillinger, Stefan
2017-01-01
Mammalian chromosomes are organized in structural and functional domains of 0.1–10 Mb, which are characterized by high self-association frequencies in the nuclear space and different contact probabilities with nuclear sub-compartments. They exhibit distinct chromatin modification patterns, gene expression levels and replication timing. Recently, nucleolus-associated chromosomal domains (NADs) have been discovered, yet their precise genomic organization and dynamics are still largely unknown. Here, we use nucleolus genomics and single-cell experiments to address these questions in human embryonic fibroblasts during replicative senescence. Genome-wide mapping reveals 1,646 NADs in proliferating cells, which cover about 38% of the annotated human genome. They are mainly heterochromatic and correlate with late replicating loci. Using Hi-C data analysis, we show that interactions of NADs dominate interphase chromosome contacts in the 10–50 Mb distance range. Interestingly, only minute changes in nucleolar association are observed upon senescence. These spatial rearrangements in subdomains smaller than 100 kb are accompanied with local transcriptional changes. In contrast, large centromeric and pericentromeric satellite repeat clusters extensively dissociate from nucleoli in senescent cells. Accordingly, H3K9me3-marked heterochromatin gets remodelled at the perinucleolar space as revealed by immunofluorescence analyses. Collectively, this study identifies connections between the nucleolus, 3D genome structure, and cellular aging at the level of interphase chromosome organization. PMID:28575119
USDA-ARS?s Scientific Manuscript database
Interactions among plant pathogenic viruses in the family /react-text Luteoviridae react-text: 233 and their plant hosts and insect vectors are governed by the topology of the viral capsid, which is the sole vehicle for long distance movement of the viral genome. Previous application of a mass spect...
Wang, Xiaofeng; Zhang, Aiqun; Ren, Weizheng; Chen, Caiyu; Dong, Jiahong
2012-11-01
The cell growth, development, and regeneration of tissue and organ are associated with a large number of gene regulation events, which are mediated in part by transcription factors (TFs) binding to cis-regulatory elements involved in the genome. Predicting the binding affinity and inferring the binding specificity of TF-DNA interactions at the genomic level would be fundamentally helpful for our understanding of the molecular mechanism and biological implication underlying sequence-specific TF-DNA recognition. In this study, we report the development of a combination method to characterize the interaction behavior of a 11-mer oligonucleotide segment and its mutations with the Gcn4p protein, a homodimeric, basic leucine zipper TF, and to predict the binding affinity and specificity of potential Gcn4p binders in the genome-wide scale. In this procedure, a position-mutated energy matrix is created based on molecular modeling analysis of native and mutated Gcn4p-DNA complex structures to describe the position-independent interaction energy profile of Gcn4p with different nucleotide types at each position of the oligonucleotide, and the energy terms extracted from the matrix and their interactives are then correlated with experimentally measured affinities of 19268 distinct oligonucleotides using statistical modeling methodology. Subsequently, the best one of built regression models is successfully applied to screen those of potential high-affinity Gcn4p binders from the complete genome. The findings arising from this study are briefly listed below: (i) The 11 positions of oligonucleotides are highly interactive and non-additive in contribution to Gcn4p-DNA binding affinity; (ii) Indirect conformational effects upon nucleotide mutations as well as associated subtle changes in interfacial atomic contacts, but not the direct nonbonded interactions, are primarily responsible for the sequence-specific recognition; (iii) The intrinsic synergistic effects among the sequence positions of oligonucleotides determine Gcn4p-DNA binding affinity and specificity; (iv) Linear regression models in conjunction with variable selection seem to perform fairly well in capturing the internal dependences hidden in the Gcn4p-DNA system, albeit ignoring nonlinear factors may lead the models to systematically underestimate and overestimate high- and low-affinity samples, respectively. © 2012 John Wiley & Sons A/S.
Xavier, Alencar; Jarquin, Diego; Howard, Reka; Ramasubramanian, Vishnu; Specht, James E; Graef, George L; Beavis, William D; Diers, Brian W; Song, Qijian; Cregan, Perry B; Nelson, Randall; Mian, Rouf; Shannon, J Grover; McHale, Leah; Wang, Dechun; Schapaugh, William; Lorenz, Aaron J; Xu, Shizhong; Muir, William M; Rainey, Katy M
2018-02-02
Genetic improvement toward optimized and stable agronomic performance of soybean genotypes is desirable for food security. Understanding how genotypes perform in different environmental conditions helps breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be controlled by a large number of genomic regions with small effects whose magnitude and direction are modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was examined in a large soybean nested association population. For this, a genome-wide association to performance stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic regions were associated with stability, and that multiplicative interactions were present between environments and genetic background. Seven genomic regions in six chromosomes were identified as being associated with genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic regions that were specifically associated with interactions involving environments and subpopulations. Copyright © 2018 Xavier et al.
A statistical approach for inferring the 3D structure of the genome.
Varoquaux, Nelle; Ay, Ferhat; Noble, William Stafford; Vert, Jean-Philippe
2014-06-15
Recent technological advances allow the measurement, in a single Hi-C experiment, of the frequencies of physical contacts among pairs of genomic loci at a genome-wide scale. The next challenge is to infer, from the resulting DNA-DNA contact maps, accurate 3D models of how chromosomes fold and fit into the nucleus. Many existing inference methods rely on multidimensional scaling (MDS), in which the pairwise distances of the inferred model are optimized to resemble pairwise distances derived directly from the contact counts. These approaches, however, often optimize a heuristic objective function and require strong assumptions about the biophysics of DNA to transform interaction frequencies to spatial distance, and thereby may lead to incorrect structure reconstruction. We propose a novel approach to infer a consensus 3D structure of a genome from Hi-C data. The method incorporates a statistical model of the contact counts, assuming that the counts between two loci follow a Poisson distribution whose intensity decreases with the physical distances between the loci. The method can automatically adjust the transfer function relating the spatial distance to the Poisson intensity and infer a genome structure that best explains the observed data. We compare two variants of our Poisson method, with or without optimization of the transfer function, to four different MDS-based algorithms-two metric MDS methods using different stress functions, a non-metric version of MDS and ChromSDE, a recently described, advanced MDS method-on a wide range of simulated datasets. We demonstrate that the Poisson models reconstruct better structures than all MDS-based methods, particularly at low coverage and high resolution, and we highlight the importance of optimizing the transfer function. On publicly available Hi-C data from mouse embryonic stem cells, we show that the Poisson methods lead to more reproducible structures than MDS-based methods when we use data generated using different restriction enzymes, and when we reconstruct structures at different resolutions. A Python implementation of the proposed method is available at http://cbio.ensmp.fr/pastis. © The Author 2014. Published by Oxford University Press.
Coordinated Rates of Evolution between Interacting Plastid and Nuclear Genes in Geraniaceae
Zhang, Jin; Ruhlman, Tracey A.; Sabir, Jamal; Blazier, J. Chris; Jansen, Robert K.
2015-01-01
Although gene coevolution has been widely observed within individuals and between different organisms, rarely has this phenomenon been investigated within a phylogenetic framework. The Geraniaceae is an attractive system in which to study plastid-nuclear genome coevolution due to the highly elevated evolutionary rates in plastid genomes. In plants, the plastid-encoded RNA polymerase (PEP) is a protein complex composed of subunits encoded by both plastid (rpoA, rpoB, rpoC1, and rpoC2) and nuclear genes (sig1-6). We used transcriptome and genomic data for 27 species of Geraniales in a systematic evaluation of coevolution between genes encoding subunits of the PEP holoenzyme. We detected strong correlations of dN (nonsynonymous substitutions) but not dS (synonymous substitutions) within rpoB/sig1 and rpoC2/sig2, but not for other plastid/nuclear gene pairs, and identified the correlation of dN/dS ratio between rpoB/C1/C2 and sig1/5/6, rpoC1/C2 and sig2, and rpoB/C2 and sig3 genes. Correlated rates between interacting plastid and nuclear sequences across the Geraniales could result from plastid-nuclear genome coevolution. Analyses of coevolved amino acid positions suggest that structurally mediated coevolution is not the major driver of plastid-nuclear coevolution. The detection of strong correlation of evolutionary rates between SIG and RNAP genes suggests a plausible explanation for plastome-genome incompatibility in Geraniaceae. PMID:25724640
Nagano, Takashi; Lubling, Yaniv; Yaffe, Eitan; Wingett, Steven W; Dean, Wendy; Tanay, Amos; Fraser, Peter
2015-12-01
Hi-C is a powerful method that provides pairwise information on genomic regions in spatial proximity in the nucleus. Hi-C requires millions of cells as input and, as genome organization varies from cell to cell, a limitation of Hi-C is that it only provides a population average of genome conformations. We developed single-cell Hi-C to create snapshots of thousands of chromatin interactions that occur simultaneously in a single cell. To adapt Hi-C to single-cell analysis, we modified the protocol to include in-nucleus ligation. This enables the isolation of single nuclei carrying Hi-C-ligated DNA into separate tubes, followed by reversal of cross-links, capture of biotinylated ligation junctions on streptavidin-coated magnetic beads and PCR amplification of single-cell Hi-C libraries. The entire laboratory protocol can be carried out in 1 week, and although we have demonstrated its use in mouse T helper (TH1) cells, it should be applicable to any cell type or species for which standard Hi-C has been successful. We also developed an analysis pipeline to filter noise and assess the quality of data sets in a few hours. Although the interactome maps produced by single-cell Hi-C are sparse, the data provide useful information to understand cellular variability in nuclear genome organization and chromosome structure. Standard wet and dry laboratory skills in molecular biology and computational analysis are required.
Insights into Structural and Mechanistic Features of Viral IRES Elements
Martinez-Salas, Encarnacion; Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Embarek, Azman M.
2018-01-01
Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requirement to recruit the ribosomal subunits. In spite of this diversity, evolutionarily conserved motifs in each family of RNA viruses preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES activity. Indeed, IRES elements adopting remarkable different structural organizations contain RNA structural motifs that play an essential role in recruiting ribosomes, initiation factors and/or RNA-binding proteins using different mechanisms. Therefore, given that a universal IRES motif remains elusive, it is critical to understand how diverse structural motifs deliver functions relevant for IRES activity. This will be useful for understanding the molecular mechanisms beyond cap-independent translation, as well as the evolutionary history of these regulatory elements. Moreover, it could improve the accuracy to predict IRES-like motifs hidden in genome sequences. This review summarizes recent advances on the diversity and biological relevance of RNA structural motifs for viral IRES elements. PMID:29354113
The identification and functional annotation of RNA structures conserved in vertebrates
Seemann, Stefan E.; Mirza, Aashiq H.; Hansen, Claus; Bang-Berthelsen, Claus H.; Garde, Christian; Christensen-Dalsgaard, Mikkel; Torarinsson, Elfar; Yao, Zizhen; Workman, Christopher T.; Pociot, Flemming; Nielsen, Henrik; Tommerup, Niels; Ruzzo, Walter L.; Gorodkin, Jan
2017-01-01
Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization, and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for conserved RNA structures (CRSs), leveraging structure-based, rather than sequence-based, alignments. After careful correction for sequence identity and GC content, we predict ∼516,000 human genomic regions containing CRSs. We find that a substantial fraction of human–mouse CRS regions (1) colocalize consistently with binding sites of the same RNA binding proteins (RBPs) or (2) are transcribed in corresponding tissues. Additionally, a CaptureSeq experiment revealed expression of many of our CRS regions in human fetal brain, including 662 novel ones. For selected human and mouse candidate pairs, qRT-PCR and in vitro RNA structure probing supported both shared expression and shared structure despite low abundance and low sequence identity. About 30,000 CRS regions are located near coding or long noncoding RNA genes or within enhancers. Structured (CRS overlapping) enhancer RNAs and extended 3′ ends have significantly increased expression levels over their nonstructured counterparts. Our findings of transcribed uncharacterized regulatory regions that contain CRSs support their RNA-mediated functionality. PMID:28487280
Multiple APOBEC3 Restriction Factors for HIV-1 and One Vif to Rule Them All
Desimmie, Belete A.; Delviks-Frankenberry, Krista A.; Burdick, Ryan; Qi, Dongfei; Izumi, Taisuke; Pathak, Vinay K.
2013-01-01
Several members of the APOBEC3 family of cellular restriction factors provide intrinsic immunity to the host against viral infection. Specifically, APOBEC3DE, APOBEC3F, APOBEC3G, and APOBEC3H haplotypes II, V, and VII provide protection against HIV-1Δvif through hypermutation of the viral genome, inhibition of reverse transcription, and inhibition of viral DNA integration into the host genome. HIV-1 counteracts APOBEC3 proteins by encoding the viral protein Vif, which contains distinct domains that specifically interact with these APOBEC3 proteins to ensure their proteasomal degradation, allowing virus replication to proceed. Here, we review our current understanding of APOBEC3 structure, editing and non-editing mechanisms of APOBEC3-mediated restriction, Vif-APOBEC3 interactions that trigger APOBEC3 degradation, and the contribution of APOBEC3 proteins to restriction and control of HIV-1 replication in infected patients. PMID:24189052
RNA-dependent RNA polymerases from flaviviruses and Picornaviridae.
Lescar, Julien; Canard, Bruno
2009-12-01
Flaviviruses and picornaviruses are positive-strand RNA viruses that encode the RNA-dependent RNA polymerase (RdRp) required for replicating the viral genome in infected cells. Because of their specific and essential role in the virus life cycle, RdRps are prime targets for antiviral drugs. Recent structural data have shed light on the different strategies used by RdRps from flaviviruses and Picornaviridae to initiate RNA polymerization. New details about the catalytic mechanism, the role of metal ions, how these RdRps interact with other nonstructural (NS) viral and host-cell proteins as well as with the viral RNA genome have also been published. These advances contribute to give a more complete picture of the 3D structure and mechanism of a membrane-bound viral replication complex for these two classes of medically important human pathogens.
Parvovirus infection-induced DNA damage response
Luo, Yong; Qiu, Jianming
2014-01-01
Parvoviruses are a group of small DNA viruses with ssDNA genomes flanked by two inverted terminal structures. Due to a limited genetic resource they require host cellular factors and sometimes a helper virus for efficient viral replication. Recent studies have shown that parvoviruses interact with the DNA damage machinery, which has a significant impact on the life cycle of the virus as well as the fate of infected cells. In addition, due to special DNA structures of the viral genomes, parvoviruses are useful tools for the study of the molecular mechanisms underlying viral infection-induced DNA damage response (DDR). This review aims to summarize recent advances in parvovirus-induced DDR, with a focus on the diverse DDR pathways triggered by different parvoviruses and the consequences of DDR on the viral life cycle as well as the fate of infected cells. PMID:25429305
Dougherty, W G; Semler, B L
1993-01-01
Many viruses express their genome, or part of their genome, initially as a polyprotein precursor that undergoes proteolytic processing. Molecular genetic analyses of viral gene expression have revealed that many of these processing events are mediated by virus-encoded proteinases. Biochemical activity studies and structural analyses of these viral enzymes reveal that they have remarkable similarities to cellular proteinases. However, the viral proteinases have evolved unique features that permit them to function in a cellular environment. In this article, the current status of plant and animal virus proteinases is described along with their role in the viral replication cycle. The reactions catalyzed by viral proteinases are not simple enzyme-substrate interactions; rather, the processing steps are highly regulated, are coordinated with other viral processes, and frequently involve the participation of other factors. Images PMID:8302216
Bayesian Peak Picking for NMR Spectra
Cheng, Yichen; Gao, Xin; Liang, Faming
2013-01-01
Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method. PMID:24184964
phiGENOME: an integrative navigation throughout bacteriophage genomes.
Stano, Matej; Klucar, Lubos
2011-11-01
phiGENOME is a web-based genome browser generating dynamic and interactive graphical representation of phage genomes stored in the phiSITE, database of gene regulation in bacteriophages. phiGENOME is an integral part of the phiSITE web portal (http://www.phisite.org/phigenome) and it was optimised for visualisation of phage genomes with the emphasis on the gene regulatory elements. phiGENOME consists of three components: (i) genome map viewer built using Adobe Flash technology, providing dynamic and interactive graphical display of phage genomes; (ii) sequence browser based on precisely formatted HTML tags, providing detailed exploration of genome features on the sequence level and (iii) regulation illustrator, based on Scalable Vector Graphics (SVG) and designed for graphical representation of gene regulations. Bringing 542 complete genome sequences accompanied with their rich annotations and references, makes phiGENOME a unique information resource in the field of phage genomics. Copyright © 2011 Elsevier Inc. All rights reserved.
Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida.
Thorpe, Peter; Mantelin, Sophie; Cock, Peter Ja; Blok, Vivian C; Coke, Mirela C; Eves-van den Akker, Sebastian; Guzeeva, Elena; Lilley, Catherine J; Smant, Geert; Reid, Adam J; Wright, Kathryn M; Urwin, Peter E; Jones, John T
2014-10-23
The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure - the syncytium - which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium. The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure. This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process.
Epigenetic control of plant immunity.
Alvarez, María E; Nota, Florencia; Cambiagno, Damián A
2010-07-01
In eukaryotic genomes, gene expression and DNA recombination are affected by structural chromatin traits. Chromatin structure is shaped by the activity of enzymes that either introduce covalent modifications in DNA and histone proteins or use energy from ATP to disrupt histone-DNA interactions. The genomic 'marks' that are generated by covalent modifications of histones and DNA, or by the deposition of histone variants, are susceptible to being altered in response to stress. Recent evidence has suggested that proteins generating these epigenetic marks play crucial roles in the defence against pathogens. Histone deacetylases are involved in the activation of jasmonic acid- and ethylene-sensitive defence mechanisms. ATP-dependent chromatin remodellers mediate the constitutive repression of the salicylic acid-dependent pathway, whereas histone methylation at the WRKY70 gene promoter affects the activation of this pathway. Interestingly, bacterial-infected tissues show a net reduction in DNA methylation, which may affect the disease resistance genes responsible for the surveillance against pathogens. As some epigenetic marks can be erased or maintained and transmitted to offspring, epigenetic mechanisms may provide plasticity for the dynamic control of emerging pathogens without the generation of genomic lesions.
QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks.
Thibodeau, Asa; Márquez, Eladio J; Luo, Oscar; Ruan, Yijun; Menghi, Francesca; Shin, Dong-Guk; Stitzel, Michael L; Vera-Licona, Paola; Ucar, Duygu
2016-06-01
Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. QuIN's web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/.
Estrada-Ortiz, Natalia; Neochoritis, Constantinos G; Dömling, Alexander
2016-04-19
A recent therapeutic strategy in oncology is based on blocking the protein-protein interaction between the murine double minute (MDM) homologues MDM2/X and the tumor-suppressor protein p53. Inhibiting the binding between wild-type (WT) p53 and its negative regulators MDM2 and/or MDMX has become an important target in oncology to restore the antitumor activity of p53, the so-called guardian of our genome. Interestingly, based on the multiple disclosed compound classes and structural analysis of small-molecule-MDM2 adducts, the p53-MDM2 complex is perhaps the best studied and most targeted protein-protein interaction. Several classes of small molecules have been identified as potent, selective, and efficient inhibitors of the p53-MDM2/X interaction, and many co-crystal structures with the protein are available. Herein we review the properties as well as preclinical and clinical studies of these small molecules and peptides, categorized by scaffold type. A particular emphasis is made on crystallographic structures and the observed binding modes of these compounds, including conserved water molecules present. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular Architecture of Full-length TRF1 Favors Its Interaction with DNA.
Boskovic, Jasminka; Martinez-Gago, Jaime; Mendez-Pertuz, Marinela; Buscato, Alberto; Martinez-Torrecuadrada, Jorge Luis; Blasco, Maria A
2016-10-07
Telomeres are specific DNA-protein structures found at both ends of eukaryotic chromosomes that protect the genome from degradation and from being recognized as double-stranded breaks. In vertebrates, telomeres are composed of tandem repeats of the TTAGGG sequence that are bound by a six-subunit complex called shelterin. Molecular mechanisms of telomere functions remain unknown in large part due to lack of structural data on shelterins, shelterin complex, and its interaction with the telomeric DNA repeats. TRF1 is one of the best studied shelterin components; however, the molecular architecture of the full-length protein remains unknown. We have used single-particle electron microscopy to elucidate the structure of TRF1 and its interaction with telomeric DNA sequence. Our results demonstrate that full-length TRF1 presents a molecular architecture that assists its interaction with telometic DNA and at the same time makes TRFH domains accessible to other TRF1 binding partners. Furthermore, our studies suggest hypothetical models on how other proteins as TIN2 and tankyrase contribute to regulate TRF1 function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Molecular Architecture of Full-length TRF1 Favors Its Interaction with DNA*
Boskovic, Jasminka; Martinez-Gago, Jaime; Mendez-Pertuz, Marinela; Buscato, Alberto; Martinez-Torrecuadrada, Jorge Luis; Blasco, Maria A.
2016-01-01
Telomeres are specific DNA-protein structures found at both ends of eukaryotic chromosomes that protect the genome from degradation and from being recognized as double-stranded breaks. In vertebrates, telomeres are composed of tandem repeats of the TTAGGG sequence that are bound by a six-subunit complex called shelterin. Molecular mechanisms of telomere functions remain unknown in large part due to lack of structural data on shelterins, shelterin complex, and its interaction with the telomeric DNA repeats. TRF1 is one of the best studied shelterin components; however, the molecular architecture of the full-length protein remains unknown. We have used single-particle electron microscopy to elucidate the structure of TRF1 and its interaction with telomeric DNA sequence. Our results demonstrate that full-length TRF1 presents a molecular architecture that assists its interaction with telometic DNA and at the same time makes TRFH domains accessible to other TRF1 binding partners. Furthermore, our studies suggest hypothetical models on how other proteins as TIN2 and tankyrase contribute to regulate TRF1 function. PMID:27563064
Dna2 nuclease-helicase structure, mechanism and regulation by Rpa
Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P
2015-01-01
The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5’ end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5’ but not 3’ end, explaining how Rpa regulates cleavage polarity. DOI: http://dx.doi.org/10.7554/eLife.09832.001 PMID:26491943
Men, Yujie; Yu, Ke; Bælum, Jacob; ...
2017-02-10
The aim of this paper is to obtain a systems-level understanding of the interactions between Dehalococcoides and corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in the Veillonellaceae bin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expressionmore » when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoid de novo biosynthesis pathway was also assigned to the Veillonellaceae bin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway of Dehalococcoides was upregulated in response to the cobalamin stress. Finally, this study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Men, Yujie; Yu, Ke; Bælum, Jacob
The aim of this paper is to obtain a systems-level understanding of the interactions between Dehalococcoides and corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in the Veillonellaceae bin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expressionmore » when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoid de novo biosynthesis pathway was also assigned to the Veillonellaceae bin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway of Dehalococcoides was upregulated in response to the cobalamin stress. Finally, this study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions.« less
Identifying Bacterial Immune Evasion Proteins Using Phage Display.
Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan
2017-01-01
Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.
Scala, Valeria; Grottoli, Alessandro; Aiese Cigliano, Riccardo; Anzar, Irantzu; Beccaccioli, Marzia; Fanelli, Corrado; Dall'Asta, Chiara; Battilani, Paola; Reverberi, Massimo; Sanseverino, Walter
2017-05-31
Fusarium verticillioides causes ear rot disease in maize and its contamination with fumonisins, mycotoxins harmful for humans and livestock. Lipids, and their oxidized forms, may drive the fate of this disease. In a previous study, we have explored the role of oxylipins in this interaction by deleting by standard transformation procedures a linoleate diol synthase-coding gene, lds1 , in F. verticillioides . A profound phenotypic diversity in the mutants generated has prompted us to investigate more deeply the whole genome of two lds1 -deleted strains. Bioinformatics analyses pinpoint significant differences in the genome sequences emerged between the wild type and the lds1 -mutants further than those trivially attributable to the deletion of the lds1 locus, such as single nucleotide polymorphisms, small deletion/insertion polymorphisms and structural variations. Results suggest that the effect of a (theoretically) punctual transformation event might have enhanced the natural mechanisms of genomic variability and that transformation practices, commonly used in the reverse genetics of fungi, may potentially be responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the genome.
Scala, Valeria; Grottoli, Alessandro; Aiese Cigliano, Riccardo; Anzar, Irantzu; Beccaccioli, Marzia; Fanelli, Corrado; Dall’Asta, Chiara; Battilani, Paola; Reverberi, Massimo; Sanseverino, Walter
2017-01-01
Fusarium verticillioides causes ear rot disease in maize and its contamination with fumonisins, mycotoxins harmful for humans and livestock. Lipids, and their oxidized forms, may drive the fate of this disease. In a previous study, we have explored the role of oxylipins in this interaction by deleting by standard transformation procedures a linoleate diol synthase-coding gene, lds1, in F. verticillioides. A profound phenotypic diversity in the mutants generated has prompted us to investigate more deeply the whole genome of two lds1-deleted strains. Bioinformatics analyses pinpoint significant differences in the genome sequences emerged between the wild type and the lds1-mutants further than those trivially attributable to the deletion of the lds1 locus, such as single nucleotide polymorphisms, small deletion/insertion polymorphisms and structural variations. Results suggest that the effect of a (theoretically) punctual transformation event might have enhanced the natural mechanisms of genomic variability and that transformation practices, commonly used in the reverse genetics of fungi, may potentially be responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the genome. PMID:28561789
Thompson, Janelle R.; Rivera, Hanny E.; Closek, Collin J.; Medina, Mónica
2015-01-01
In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health—not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history. Herein, we review the current literature on coral-microbe interactions within the context of their role in evolution, development, and ecology. We ask the following questions, first posed by McFall-Ngai et al. (2013) in their review of animal evolution, with specific attention to how coral-microbial interactions may be affected under future environmental conditions: (1) How do corals and their microbiome affect each other's genomes? (2) How does coral development depend on microbial partners? (3) How is homeostasis maintained between corals and their microbial symbionts? (4) How can ecological approaches deepen our understanding of the multiple levels of coral-microbial interactions? Elucidating the role that microorganisms play in the structure and function of the holobiont is essential for understanding how corals maintain homeostasis and acclimate to changing environmental conditions. PMID:25621279
Recent molecular genetic studies and methodological issues in suicide research.
Tsai, Shih-Jen; Hong, Chen-Jee; Liou, Ying-Jay
2011-06-01
Suicide behavior (SB) spans a spectrum ranging from suicidal ideation to suicide attempts and completed suicide. Strong evidence suggests a genetic susceptibility to SB, including familial heritability and common occurrence in twins. This review addresses recent molecular genetic studies in SB that include case-control association, genome gene-expression microarray, and genome-wide association (GWA). This work also reviews epigenetics in SB and pharmacogenetic studies of antidepressant-induced suicide. SB fulfills criteria for a complex genetic phenotype in which environmental factors interact with multiple genes to influence susceptibility. So far, case-control association approaches are still the mainstream in SB genetic studies, although whole genome gene-expression microarray and GWA studies have begun to emerge in recent years. Genetic association studies have suggested several genes (e.g., serotonin transporter, tryptophan hydroxylase 2, and brain-derived neurotrophic factor) related to SB, but not all reports support these findings. The case-control approach while useful is limited by present knowledge of disease pathophysiology. Genome-wide studies of gene expression and genetic variation are not constrained by our limited knowledge. However, the explanatory power and path to clinical translation of risk estimates for common variants reported in genome-wide association studies remain unclear because of the presence of rare and structural genetic variation. As whole genome sequencing becomes increasingly widespread, available genomic information will no longer be the limiting factor in applying genetics to clinical medicine. These approaches provide exciting new avenues to identify new candidate genes for SB genetic studies. The other limitation of genetic association is the lack of a consistent definition of the SB phenotype among studies, an inconsistency that hampers the comparability of the studies and data pooling. In summary, SB involves multiple genes interacting with non-genetic factors. A better understanding of the SB genes by combining whole genome approaches with case-control association studies, may potentially lead to developing effective screening, prevention, and management of SB. Copyright © 2010 Elsevier Inc. All rights reserved.
Developing improved durum wheat germplasm by altering the cytoplasmic genome
USDA-ARS?s Scientific Manuscript database
In eukaryotic organisms, nuclear and cytoplasmic genomes interact to drive cellular functions. These genomes have co-evolved to form specific nuclear-cytoplasmic interactions that are essential to the origin, success, and evolution of diploid and polyploid species. Hundreds of genetic diseases in h...
Genomes as geography: using GIS technology to build interactive genome feature maps
Dolan, Mary E; Holden, Constance C; Beard, M Kate; Bult, Carol J
2006-01-01
Background Many commonly used genome browsers display sequence annotations and related attributes as horizontal data tracks that can be toggled on and off according to user preferences. Most genome browsers use only simple keyword searches and limit the display of detailed annotations to one chromosomal region of the genome at a time. We have employed concepts, methodologies, and tools that were developed for the display of geographic data to develop a Genome Spatial Information System (GenoSIS) for displaying genomes spatially, and interacting with genome annotations and related attribute data. In contrast to the paradigm of horizontally stacked data tracks used by most genome browsers, GenoSIS uses the concept of registered spatial layers composed of spatial objects for integrated display of diverse data. In addition to basic keyword searches, GenoSIS supports complex queries, including spatial queries, and dynamically generates genome maps. Our adaptation of the geographic information system (GIS) model in a genome context supports spatial representation of genome features at multiple scales with a versatile and expressive query capability beyond that supported by existing genome browsers. Results We implemented an interactive genome sequence feature map for the mouse genome in GenoSIS, an application that uses ArcGIS, a commercially available GIS software system. The genome features and their attributes are represented as spatial objects and data layers that can be toggled on and off according to user preferences or displayed selectively in response to user queries. GenoSIS supports the generation of custom genome maps in response to complex queries about genome features based on both their attributes and locations. Our example application of GenoSIS to the mouse genome demonstrates the powerful visualization and query capability of mature GIS technology applied in a novel domain. Conclusion Mapping tools developed specifically for geographic data can be exploited to display, explore and interact with genome data. The approach we describe here is organism independent and is equally useful for linear and circular chromosomes. One of the unique capabilities of GenoSIS compared to existing genome browsers is the capacity to generate genome feature maps dynamically in response to complex attribute and spatial queries. PMID:16984652
A multivariate prediction model for Rho-dependent termination of transcription.
Nadiras, Cédric; Eveno, Eric; Schwartz, Annie; Figueroa-Bossi, Nara; Boudvillain, Marc
2018-06-21
Bacterial transcription termination proceeds via two main mechanisms triggered either by simple, well-conserved (intrinsic) nucleic acid motifs or by the motor protein Rho. Although bacterial genomes can harbor hundreds of termination signals of either type, only intrinsic terminators are reliably predicted. Computational tools to detect the more complex and diversiform Rho-dependent terminators are lacking. To tackle this issue, we devised a prediction method based on Orthogonal Projections to Latent Structures Discriminant Analysis [OPLS-DA] of a large set of in vitro termination data. Using previously uncharacterized genomic sequences for biochemical evaluation and OPLS-DA, we identified new Rho-dependent signals and quantitative sequence descriptors with significant predictive value. Most relevant descriptors specify features of transcript C>G skewness, secondary structure, and richness in regularly-spaced 5'CC/UC dinucleotides that are consistent with known principles for Rho-RNA interaction. Descriptors collectively warrant OPLS-DA predictions of Rho-dependent termination with a ∼85% success rate. Scanning of the Escherichia coli genome with the OPLS-DA model identifies significantly more termination-competent regions than anticipated from transcriptomics and predicts that regions intrinsically refractory to Rho are primarily located in open reading frames. Altogether, this work delineates features important for Rho activity and describes the first method able to predict Rho-dependent terminators in bacterial genomes.
Tripathi, Pooja; Muth, Theodore R.
2017-01-01
Agrobacterium tumefaciens mediated T-DNA integration is a common tool for plant genome manipulation. However, there is controversy regarding whether T-DNA integration is biased towards genes or randomly distributed throughout the genome. In order to address this question, we performed high-throughput mapping of T-DNA-genome junctions obtained in the absence of selection at several time points after infection. T-DNA-genome junctions were detected as early as 6 hours post-infection. T-DNA distribution was apparently uniform throughout the chromosomes, yet local biases toward AT-rich motifs and T-DNA border sequence micro-homology were detected. Analysis of the epigenetic landscape of previously isolated sites of T-DNA integration in Kanamycin-selected transgenic plants showed an association with extremely low methylation and nucleosome occupancy. Conversely, non-selected junctions from this study showed no correlation with methylation and had chromatin marks, such as high nucleosome occupancy and high H3K27me3, that correspond to three-dimensional-interacting heterochromatin islands embedded within euchromatin. Such structures may play a role in capturing and silencing invading T-DNA. PMID:28742090
The Evolution of Campylobacter jejuni and Campylobacter coli
Sheppard, Samuel K.; Maiden, Martin C.J.
2015-01-01
The global significance of Campylobacter jejuni and Campylobacter coli as gastrointestinal human pathogens has motivated numerous studies to characterize their population biology and evolution. These bacteria are a common component of the intestinal microbiota of numerous bird and mammal species and cause disease in humans, typically via consumption of contaminated meat products, especially poultry meat. Sequence-based molecular typing methods, such as multilocus sequence typing (MLST) and whole genome sequencing (WGS), have been instructive for understanding the epidemiology and evolution of these bacteria and how phenotypic variation relates to the high degree of genetic structuring in C. coli and C. jejuni populations. Here, we describe aspects of the relatively short history of coevolution between humans and pathogenic Campylobacter, by reviewing research investigating how mutation and lateral or horizontal gene transfer (LGT or HGT, respectively) interact to create the observed population structure. These genetic changes occur in a complex fitness landscape with divergent ecologies, including multiple host species, which can lead to rapid adaptation, for example, through frame-shift mutations that alter gene expression or the acquisition of novel genetic elements by HGT. Recombination is a particularly strong evolutionary force in Campylobacter, leading to the emergence of new lineages and even large-scale genome-wide interspecies introgression between C. jejuni and C. coli. The increasing availability of large genome datasets is enhancing understanding of Campylobacter evolution through the application of methods, such as genome-wide association studies, but MLST-derived clonal complex designations remain a useful method for describing population structure. PMID:26101080
What is bioinformatics? A proposed definition and overview of the field.
Luscombe, N M; Greenbaum, D; Gerstein, M
2001-01-01
The recent flood of data from genome sequences and functional genomics has given rise to new field, bioinformatics, which combines elements of biology and computer science. Here we propose a definition for this new field and review some of the research that is being pursued, particularly in relation to transcriptional regulatory systems. Our definition is as follows: Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Analyses in bioinformatics predominantly focus on three types of large datasets available in molecular biology: macromolecular structures, genome sequences, and the results of functional genomics experiments (e.g. expression data). Additional information includes the text of scientific papers and "relationship data" from metabolic pathways, taxonomy trees, and protein-protein interaction networks. Bioinformatics employs a wide range of computational techniques including sequence and structural alignment, database design and data mining, macromolecular geometry, phylogenetic tree construction, prediction of protein structure and function, gene finding, and expression data clustering. The emphasis is on approaches integrating a variety of computational methods and heterogeneous data sources. Finally, bioinformatics is a practical discipline. We survey some representative applications, such as finding homologues, designing drugs, and performing large-scale censuses. Additional information pertinent to the review is available over the web at http://bioinfo.mbb.yale.edu/what-is-it.
2018-01-01
The cereal pathogen Fusarium graminearum is the primary cause of Fusarium head blight (FHB) and a significant threat to food safety and crop production. To elucidate population structure and identify genomic targets of selection within major FHB pathogen populations in North America we sequenced the genomes of 60 diverse F. graminearum isolates. We also assembled the first pan-genome for F. graminearum to clarify population-level differences in gene content potentially contributing to pathogen diversity. Bayesian and phylogenomic analyses revealed genetic structure associated with isolates that produce the novel NX-2 mycotoxin, suggesting a North American population that has remained genetically distinct from other endemic and introduced cereal-infecting populations. Genome scans uncovered distinct signatures of selection within populations, focused in high diversity, frequently recombining regions. These patterns suggested selection for genomic divergence at the trichothecene toxin gene cluster and thirteen additional regions containing genes potentially involved in pathogen specialization. Gene content differences further distinguished populations, in that 121 genes showed population-specific patterns of conservation. Genes that differentiated populations had predicted functions related to pathogenesis, secondary metabolism and antagonistic interactions, though a subset had unique roles in temperature and light sensitivity. Our results indicated that F. graminearum populations are distinguished by dozens of genes with signatures of selection and an array of dispensable accessory genes, suggesting that FHB pathogen populations may be equipped with different traits to exploit the agroecosystem. These findings provide insights into the evolutionary processes and genomic features contributing to population divergence in plant pathogens, and highlight candidate genes for future functional studies of pathogen specialization across evolutionarily and ecologically diverse fungi. PMID:29584736
A Plant-Associated Microbe Genome Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jan E. Leach; Scott Gold; Sue Tolin
2003-03-06
Plant-associated microorganisms are critical to agricultural and food security and are key components in maintaining the balance of our ecosystems. Some of these diverse microbes, which include viruses, bacteria, oomycetes, fungi, and nematodes, cause plant diseases, whereas others prevent diseases or enhance plant growth. Despite their importance, we know little about them on a genomic level. To intervene in disease and understand the basis of biological control or symbiotic relationships, a concerted and coordinated genomic analysis of these microbes is essential. Genome analysis, in this context, refers to the structural and functional analysis of the microbe DNA including the genes,more » the proteins encoded by those genes, as well as noncoding sequences involved in genome dynamics and function. The ultimate emphasis is on understanding genomic functions involved in plant associations. Members of The American Phytopathological Society (APS) developed a prioritized list of plant-associated microbes for genome analysis. With this list as a foundation for discussions, a Workshop on Genomic Analysis of Plant-Associated Microorganisms was held in Washington, D.C., on 9 to 11 April 2002. The workshop was organized by the Public Policy Board of APS, and was funded by the Department of Energy (DOE), the National Science Foundation (NSF), U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), and USDA-National Research Initiatives (USDA-NRI). The workshop included academic, industrial, and governmental experts from the genomics and microbial research communities and observers from the federal funding agencies. After reviewing current and near-term technologies, workshop participants proposed a comprehensive, international initiative to obtain the genomic information needed to understand these important microbes and their interactions with host plants and the environment. Specifically, the recommendations call for a 5-year, $500 million international public effort for genome analysis of plant-associated microbes. The goals are to (i) obtain genome sequence information for several representative groups of microbes; (ii) identify and determine function for the genes/proteins and other genomic elements involved in plant-microbe interactions; (iii) develop and implement standardized bioinformatic tools and a database system that is applicable across all microbes; and (iv) educate and train scientists with skills and knowledge of biological and computational sciences who will apply the information to the protection of our food sources and environment.« less
Kablammo: an interactive, web-based BLAST results visualizer.
Wintersinger, Jeff A; Wasmuth, James D
2015-04-15
Kablammo is a web-based application that produces interactive, vector-based visualizations of sequence alignments generated by BLAST. These visualizations can illustrate many features, including shared protein domains, chromosome structural modifications and genome misassembly. Kablammo can be used at http://kablammo.wasmuthlab.org. For a local installation, the source code and instructions are available under the MIT license at http://github.com/jwintersinger/kablammo. jeff@wintersinger.org. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Covering complete proteomes with X-ray structures: A current snapshot
Mizianty, Marcin J.; Fan, Xiao; Yan, Jing; ...
2014-10-23
Structural genomics programs have developed and applied structure-determination pipelines to a wide range of protein targets, facilitating the visualization of macromolecular interactions and the understanding of their molecular and biochemical functions. The fundamental question of whether three-dimensional structures of all proteins and all functional annotations can be determined using X-ray crystallography is investigated. A first-of-its-kind large-scale analysis of crystallization propensity for all proteins encoded in 1953 fully sequenced genomes was performed. It is shown that current X-ray crystallographic knowhow combined with homology modeling can provide structures for 25% of modeling families (protein clusters for which structural models can be obtainedmore » through homology modeling), with at least one structural model produced for each Gene Ontology functional annotation. The coverage varies between superkingdoms, with 19% for eukaryotes, 35% for bacteria and 49% for archaea, and with those of viruses following the coverage values of their hosts. It is shown that the crystallization propensities of proteomes from the taxonomic superkingdoms are distinct. The use of knowledge-based target selection is shown to substantially increase the ability to produce X-ray structures. It is demonstrated that the human proteome has one of the highest attainable coverage values among eukaryotes, and GPCR membrane proteins suitable for X-ray structure determination were determined.« less
Schönbach, Christian; Li, Jinyan; Ma, Lan; Horton, Paul; Sjaugi, Muhammad Farhan; Ranganathan, Shoba
2018-01-19
The 16th International Conference on Bioinformatics (InCoB) was held at Tsinghua University, Shenzhen from September 20 to 22, 2017. The annual conference of the Asia-Pacific Bioinformatics Network featured six keynotes, two invited talks, a panel discussion on big data driven bioinformatics and precision medicine, and 66 oral presentations of accepted research articles or posters. Fifty-seven articles comprising a topic assortment of algorithms, biomolecular networks, cancer and disease informatics, drug-target interactions and drug efficacy, gene regulation and expression, imaging, immunoinformatics, metagenomics, next generation sequencing for genomics and transcriptomics, ontologies, post-translational modification, and structural bioinformatics are the subject of this editorial for the InCoB2017 supplement issues in BMC Genomics, BMC Bioinformatics, BMC Systems Biology and BMC Medical Genomics. New Delhi will be the location of InCoB2018, scheduled for September 26-28, 2018.
The role of protein structural analysis in the next generation sequencing era.
Yue, Wyatt W; Froese, D Sean; Brennan, Paul E
2014-01-01
Proteins are macromolecules that serve a cell's myriad processes and functions in all living organisms via dynamic interactions with other proteins, small molecules and cellular components. Genetic variations in the protein-encoding regions of the human genome account for >85% of all known Mendelian diseases, and play an influential role in shaping complex polygenic diseases. Proteins also serve as the predominant target class for the design of small molecule drugs to modulate their activity. Knowledge of the shape and form of proteins, by means of their three-dimensional structures, is therefore instrumental to understanding their roles in disease and their potentials for drug development. In this chapter we outline, with the wide readership of non-structural biologists in mind, the various experimental and computational methods available for protein structure determination. We summarize how the wealth of structure information, contributed to a large extent by the technological advances in structure determination to date, serves as a useful tool to decipher the molecular basis of genetic variations for disease characterization and diagnosis, particularly in the emerging era of genomic medicine, and becomes an integral component in the modern day approach towards rational drug development.
De Nicola, Beatrice; Lech, Christopher J; Heddi, Brahim; Regmi, Sagar; Frasson, Ilaria; Perrone, Rosalba; Richter, Sara N; Phan, Anh Tuân
2016-07-27
The long terminal repeat (LTR) of the proviral human immunodeficiency virus (HIV)-1 genome is integral to virus transcription and host cell infection. The guanine-rich U3 region within the LTR promoter, previously shown to form G-quadruplex structures, represents an attractive target to inhibit HIV transcription and replication. In this work, we report the structure of a biologically relevant G-quadruplex within the LTR promoter region of HIV-1. The guanine-rich sequence designated LTR-IV forms a well-defined structure in physiological cationic solution. The nuclear magnetic resonance (NMR) structure of this sequence reveals a parallel-stranded G-quadruplex containing a single-nucleotide thymine bulge, which participates in a conserved stacking interaction with a neighboring single-nucleotide adenine loop. Transcription analysis in a HIV-1 replication competent cell indicates that the LTR-IV region may act as a modulator of G-quadruplex formation in the LTR promoter. Consequently, the LTR-IV G-quadruplex structure presented within this work could represent a valuable target for the design of HIV therapeutics. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Microbial Interactions in Plants: Perspectives and Applications of Proteomics.
Imam, Jahangir; Shukla, Pratyoosh; Mandal, Nimai Prasad; Variar, Mukund
2017-01-01
The structure and function of proteins involved in plant-microbe interactions is investigated through large-scale proteomics technology in a complex biological sample. Since the whole genome sequences are now available for several plant species and microbes, proteomics study has become easier, accurate and huge amount of data can be generated and analyzed during plant-microbe interactions. Proteomics approaches are highly important and relevant in many studies and showed that only genomics approaches are not sufficient enough as much significant information are lost as the proteins and not the genes coding them are final product that is responsible for the observed phenotype. Novel approaches in proteomics are developing continuously enabling the study of the various aspects in arrangements and configuration of proteins and its functions. Its application is becoming more common and frequently used in plant-microbe interactions with the advancement in new technologies. They are more used for the portrayal of cell and extracellular destructiveness and pathogenicity variables delivered by pathogens. This distinguishes the protein level adjustments in host plants when infected with pathogens and advantageous partners. This review provides a brief overview of different proteomics technology which is currently available followed by their exploitation to study the plant-microbe interaction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Siyang; Gao, Song; Kondabagil, Kiran
2012-04-04
Tailed DNA bacteriophages assemble empty procapsids that are subsequently filled with the viral genome by means of a DNA packaging machine situated at a special fivefold vertex. The packaging machine consists of a 'small terminase' and a 'large terminase' component. One of the functions of the small terminase is to initiate packaging of the viral genome, whereas the large terminase is responsible for the ATP-powered translocation of DNA. The small terminase subunit has three domains, an N-terminal DNA-binding domain, a central oligomerization domain, and a C-terminal domain for interacting with the large terminase. Here we report structures of the centralmore » domain in two different oligomerization states for a small terminase from the T4 family of phages. In addition, we report biochemical studies that establish the function for each of the small terminase domains. On the basis of the structural and biochemical information, we propose a model for DNA packaging initiation.« less
Integrative Approaches to Enhance Understanding of Plant Metabolic Pathway Structure and Regulation1
Tohge, Takayuki; Scossa, Federico; Fernie, Alisdair R.
2015-01-01
Huge insight into molecular mechanisms and biological network coordination have been achieved following the application of various profiling technologies. Our knowledge of how the different molecular entities of the cell interact with one another suggests that, nevertheless, integration of data from different techniques could drive a more comprehensive understanding of the data emanating from different techniques. Here, we provide an overview of how such data integration is being used to aid the understanding of metabolic pathway structure and regulation. We choose to focus on the pairwise integration of large-scale metabolite data with that of the transcriptomic, proteomics, whole-genome sequence, growth- and yield-associated phenotypes, and archival functional genomic data sets. In doing so, we attempt to provide an update on approaches that integrate data obtained at different levels to reach a better understanding of either single gene function or metabolic pathway structure and regulation within the context of a broader biological process. PMID:26371234
Park, Christopher Y.; Krishnan, Arjun; Zhu, Qian; Wong, Aaron K.; Lee, Young-Suk; Troyanskaya, Olga G.
2015-01-01
Motivation: Leveraging the large compendium of genomic data to predict biomedical pathways and specific mechanisms of protein interactions genome-wide in metazoan organisms has been challenging. In contrast to unicellular organisms, biological and technical variation originating from diverse tissues and cell-lineages is often the largest source of variation in metazoan data compendia. Therefore, a new computational strategy accounting for the tissue heterogeneity in the functional genomic data is needed to accurately translate the vast amount of human genomic data into specific interaction-level hypotheses. Results: We developed an integrated, scalable strategy for inferring multiple human gene interaction types that takes advantage of data from diverse tissue and cell-lineage origins. Our approach specifically predicts both the presence of a functional association and also the most likely interaction type among human genes or its protein products on a whole-genome scale. We demonstrate that directly incorporating tissue contextual information improves the accuracy of our predictions, and further, that such genome-wide results can be used to significantly refine regulatory interactions from primary experimental datasets (e.g. ChIP-Seq, mass spectrometry). Availability and implementation: An interactive website hosting all of our interaction predictions is publically available at http://pathwaynet.princeton.edu. Software was implemented using the open-source Sleipnir library, which is available for download at https://bitbucket.org/libsleipnir/libsleipnir.bitbucket.org. Contact: ogt@cs.princeton.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25431329
Bitzer, Adam S.; Garbeva, Paolina
2014-01-01
Pedobacter sp. strain V48 participates in an interaction with Pseudomonas fluorescens which elicits interaction-induced phenotypes. We report the draft genome sequence of Pedobacter sp. V48, consisting of 6.46 Mbp. The sequence will contribute to improved understanding of the genus and facilitate genomic analysis of the model interspecies interaction with P. fluorescens. PMID:24578271
Role of DNA-DNA Interactions on the Structure and Thermodynamics of Bacteriophages Lambda and P4
Petrov, Anton S.; Harvey, Stephen C.
2010-01-01
Electrostatic interactions play an important role in both packaging of DNA inside bacteriophages and its release into bacterial cells. While at physiological conditions DNA strands repel each other, the presence of polyvalent cations such as spermine and spermidine in solutions leads to the formation of DNA condensates. In this study, we discuss packaging of DNA into bacteriophages P4 and Lambda under repulsive and attractive conditions using a coarse-grained model of DNA and capsids. Packaging under repulsive conditions leads to the appearance of the coaxial spooling conformations; DNA occupies all available space inside the capsid. Under the attractive potential both packed systems reveal toroidal conformations, leaving the central part of the capsids empty. We also present a detailed thermodynamic analysis of packaging and show that the forces required to pack the genomes in the presence of polyamines are significantly lower than those observed under repulsive conditions. The analysis reveals that in both the repulsive and attractive regimes the entropic penalty of DNA confinement has a significant non-negligible contribution into the total energy of packaging. Additionally we report the results of simulations of DNA condensation inside partially packed Lambda. We found that at low densities DNA behaves as free unconfined polymer and condenses into the toroidal structures; at higher densities rearrangement of the genome into toroids becomes hindered, and condensation results in the formation of non-equilibrium structures. In all cases packaging in a specific conformation occurs as a result of interplay between bending stresses experienced by the confined polymer and interactions between the strands. PMID:21074621
Filling the gap: Micro-C accesses the nucleosomal fiber at 100-1000 bp resolution.
Mozziconacci, Julien; Koszul, Romain
2015-08-21
The fine three-dimensional structure of the nucleosomal fiber has remained elusive to genome-wide chromosome conformation capture (3C) approaches. A new study mapping contacts at the single nucleosome level (Micro-C) reveals topological interacting domains along budding yeast chromosomes. These domains encompass one to five consecutive genes and are delimited by highly active promoters.
The three-dimensional genome organization of Drosophila melanogaster through data integration.
Li, Qingjiao; Tjong, Harianto; Li, Xiao; Gong, Ke; Zhou, Xianghong Jasmine; Chiolo, Irene; Alber, Frank
2017-07-31
Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome's organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.
Adapting populations in space: clonal interference and genetic diversity
NASA Astrophysics Data System (ADS)
Weissman, Daniel; Barton, Nick
Most species inhabit ranges much larger than the scales over which individuals interact. How does this spatial structure interact with adaptive evolution? We consider a simple model of a spatially-extended, adapting population and show that, while clonal interference severely limits the adaptation of purely asexual populations, even rare recombination is enough to allow adaptation at rates approaching those of well-mixed populations. We also find that the genetic hitchhiking produced by the adaptive alleles sweeping through the population has strange effects on the patterns of genetic diversity. In large spatial ranges, even low rates of adaptation cause all individuals in the population to rapidly trace their ancestry back to individuals living in a small region in the center of the range. The probability of fixation of an allele is thus strongly dependent on the allele's spatial location, with alleles from the center favored. Surprisingly, these effects are seen genome-wide (instead of being localized to the regions of the genome undergoing the sweeps). The spatial concentration of ancestry produces a power-law dependence of relatedness on distance, so that even individuals sampled far apart are likely to be fairly closely related, masking the underlying spatial structure.
The genome in three dimensions: a new frontier in human brain research.
Mitchell, Amanda C; Bharadwaj, Rahul; Whittle, Catheryne; Krueger, Winfried; Mirnics, Karoly; Hurd, Yasmin; Rasmussen, Theodore; Akbarian, Schahram
2014-06-15
Less than 1.5% of the human genome encodes protein. However, vast portions of the human genome are subject to transcriptional and epigenetic regulation, and many noncoding regulatory DNA elements are thought to regulate the spatial organization of interphase chromosomes. For example, chromosomal "loopings" are pivotal for the orderly process of gene expression, by enabling distal regulatory enhancer or silencer elements to directly interact with proximal promoter and transcription start sites, potentially bypassing hundreds of kilobases of interspersed sequence on the linear genome. To date, however, epigenetic studies in the human brain are mostly limited to the exploration of DNA methylation and posttranslational modifications of the nucleosome core histones. In contrast, very little is known about the regulation of supranucleosomal structures. Here, we show that chromosome conformation capture, a widely used approach to study higher-order chromatin, is applicable to tissue collected postmortem, thereby informing about genome organization in the human brain. We introduce chromosome conformation capture protocols for brain and compare higher-order chromatin structures at the chromosome 6p22.2-22.1 schizophrenia and bipolar disorder susceptibility locus, and additional neurodevelopmental risk genes, (DPP10, MCPH1) in adult prefrontal cortex and various cell culture systems, including neurons derived from reprogrammed skin cells. We predict that the exploration of three-dimensional genome architectures and function will open up new frontiers in human brain research and psychiatric genetics and provide novel insights into the epigenetic risk architectures of regulatory noncoding DNA. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Structural Insights into Helicobacter pylori Cag Protein Interactions with Host Cell Factors.
Bergé, Célia; Terradot, Laurent
2017-01-01
The most virulent strains of Helicobacter pylori carry a genomic island (cagPAI) containing a set of 27-31 genes. The encoded proteins assemble a syringe-like apparatus to inject the cytotoxin-associated gene A (CagA) protein into gastric cells. This molecular device belongs to the type IV secretion system (T4SS) family albeit with unique characteristics. The cagPAI-encoded T4SS and its effector protein CagA have an intricate relationship with the host cell, with multiple interactions that only start to be deciphered from a structural point of view. On the one hand, the major roles of the interactions between CagL and CagA (and perhaps CagI and CagY) and host cell factors are to facilitate H. pylori adhesion and to mediate the injection of the CagA oncoprotein. On the other hand, CagA interactions with host cell partners interfere with cellular pathways to subvert cell defences and to promote H. pylori infection. Although a clear mechanism for CagA translocation is still lacking, the structural definition of CagA and CagL domains involved in interactions with signalling proteins are progressively coming to light. In this chapter, we will focus on the structural aspects of Cag protein interactions with host cell molecules, critical molecular events precluding H. pylori-mediated gastric cancer development.
Visualization for genomics: the Microbial Genome Viewer.
Kerkhoven, Robert; van Enckevort, Frank H J; Boekhorst, Jos; Molenaar, Douwe; Siezen, Roland J
2004-07-22
A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a MySQL database. The generated images are in scalable vector graphics (SVG) format, which is suitable for creating high-quality scalable images and dynamic Web representations. Gene-related data such as transcriptome and time-course microarray experiments can be superimposed on the maps for visual inspection. The Microbial Genome Viewer 1.0 is freely available at http://www.cmbi.kun.nl/MGV
Structural dynamics of the mitochondrial compartment.
Thorsness, P E
1992-09-01
The metabolic activities of mitochondria have been extensively characterized. However, there is much less known about the morphogenic changes of the mitochondrial compartment during growth, development and aging of the cell and the consequences of those structural changes on cellular metabolism. There is a growing body of evidence for interactions of mitochondria with cytoskeletal components and changes of mitochondrial structure during development and in response to changing environmental conditions. Segregation and recombination of mitochondrial genomes are also processes dependent upon the dynamic nature of the mitochondrial compartment. These regulatory and structural aspects of mitochondrial compartment dynamics will play an important role in the analysis of mitochondrial function and pathology.
Song, Yutong; Gorbatsevych, Oleksandr; Liu, Ying; Mugavero, JoAnn; Shen, Sam H; Ward, Charles B; Asare, Emmanuel; Jiang, Ping; Paul, Aniko V; Mueller, Steffen; Wimmer, Eckard
2017-10-10
Computer design and chemical synthesis generated viable variants of poliovirus type 1 (PV1), whose ORF (6,189 nucleotides) carried up to 1,297 "Max" mutations (excess of overrepresented synonymous codon pairs) or up to 2,104 "SD" mutations (randomly scrambled synonymous codons). "Min" variants (excess of underrepresented synonymous codon pairs) are nonviable except for P2 Min , a variant temperature-sensitive at 33 and 39.5 °C. Compared with WT PV1, P2 Min displayed a vastly reduced specific infectivity (si) (WT, 1 PFU/118 particles vs. P2 Min , 1 PFU/35,000 particles), a phenotype that will be discussed broadly. Si of haploid PV presents cellular infectivity of a single genotype. We performed a comprehensive analysis of sequence and structures of the PV genome to determine if evolutionary conserved cis-acting packaging signal(s) were preserved after recoding. We showed that conserved synonymous sites and/or local secondary structures that might play a role in determining packaging specificity do not survive codon pair recoding. This makes it unlikely that numerous "cryptic, sequence-degenerate, dispersed RNA packaging signals mapping along the entire viral genome" [Patel N, et al. (2017) Nat Microbiol 2:17098] play the critical role in poliovirus packaging specificity. Considering all available evidence, we propose a two-step assembly strategy for +ssRNA viruses: step I, acquisition of packaging specificity, either ( a ) by specific recognition between capsid protein(s) and replication proteins (poliovirus), or ( b ) by the high affinity interaction of a single RNA packaging signal (PS) with capsid protein(s) (most +ssRNA viruses so far studied); step II, cocondensation of genome/capsid precursors in which an array of hairpin structures plays a role in virion formation.
The retrovirus HTLV-1 inserts an ectopic CTCF-binding site into the human genome.
Satou, Yorifumi; Miyazato, Paola; Ishihara, Ko; Yaguchi, Hiroko; Melamed, Anat; Miura, Michi; Fukuda, Asami; Nosaka, Kisato; Watanabe, Takehisa; Rowan, Aileen G; Nakao, Mitsuyoshi; Bangham, Charles R M
2016-03-15
Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that causes malignant and inflammatory diseases in ∼10% of infected people. A typical host has between 10(4) and 10(5) clones of HTLV-1-infected T lymphocytes, each clone distinguished by the genomic integration site of the single-copy HTLV-1 provirus. The HTLV-1 bZIP (HBZ) factor gene is constitutively expressed from the minus strand of the provirus, whereas plus-strand expression, required for viral propagation to uninfected cells, is suppressed or intermittent in vivo, allowing escape from host immune surveillance. It remains unknown what regulates this pattern of proviral transcription and latency. Here, we show that CTCF, a key regulator of chromatin structure and function, binds to the provirus at a sharp border in epigenetic modifications in the pX region of the HTLV-1 provirus in T cells naturally infected with HTLV-1. CTCF is a zinc-finger protein that binds to an insulator region in genomic DNA and plays a fundamental role in controlling higher order chromatin structure and gene expression in vertebrate cells. We show that CTCF bound to HTLV-1 acts as an enhancer blocker, regulates HTLV-1 mRNA splicing, and forms long-distance interactions with flanking host chromatin. CTCF-binding sites (CTCF-BSs) have been propagated throughout the genome by transposons in certain primate lineages, but CTCF binding has not previously been described in present-day exogenous retroviruses. The presence of an ectopic CTCF-BS introduced by the retrovirus in tens of thousands of genomic locations has the potential to cause widespread abnormalities in host cell chromatin structure and gene expression.
eXframe: reusable framework for storage, analysis and visualization of genomics experiments
2011-01-01
Background Genome-wide experiments are routinely conducted to measure gene expression, DNA-protein interactions and epigenetic status. Structured metadata for these experiments is imperative for a complete understanding of experimental conditions, to enable consistent data processing and to allow retrieval, comparison, and integration of experimental results. Even though several repositories have been developed for genomics data, only a few provide annotation of samples and assays using controlled vocabularies. Moreover, many of them are tailored for a single type of technology or measurement and do not support the integration of multiple data types. Results We have developed eXframe - a reusable web-based framework for genomics experiments that provides 1) the ability to publish structured data compliant with accepted standards 2) support for multiple data types including microarrays and next generation sequencing 3) query, analysis and visualization integration tools (enabled by consistent processing of the raw data and annotation of samples) and is available as open-source software. We present two case studies where this software is currently being used to build repositories of genomics experiments - one contains data from hematopoietic stem cells and another from Parkinson's disease patients. Conclusion The web-based framework eXframe offers structured annotation of experiments as well as uniform processing and storage of molecular data from microarray and next generation sequencing platforms. The framework allows users to query and integrate information across species, technologies, measurement types and experimental conditions. Our framework is reusable and freely modifiable - other groups or institutions can deploy their own custom web-based repositories based on this software. It is interoperable with the most important data formats in this domain. We hope that other groups will not only use eXframe, but also contribute their own useful modifications. PMID:22103807
IMG/M: integrated genome and metagenome comparative data analysis system
Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; ...
2016-10-13
The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support formore » examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review(ER) companion system (IMG/M ER: https://img.jgi.doe.gov/ mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system.« less
Malhotra, Sony; Sowdhamini, Ramanathan
2013-08-01
The interaction of proteins with their respective DNA targets is known to control many high-fidelity cellular processes. Performing a comprehensive survey of the sequenced genomes for DNA-binding proteins (DBPs) will help in understanding their distribution and the associated functions in a particular genome. Availability of fully sequenced genome of Arabidopsis thaliana enables the review of distribution of DBPs in this model plant genome. We used profiles of both structure and sequence-based DNA-binding families, derived from PDB and PFam databases, to perform the survey. This resulted in 4471 proteins, identified as DNA-binding in Arabidopsis genome, which are distributed across 300 different PFam families. Apart from several plant-specific DNA-binding families, certain RING fingers and leucine zippers also had high representation. Our search protocol helped to assign DNA-binding property to several proteins that were previously marked as unknown, putative or hypothetical in function. The distribution of Arabidopsis genes having a role in plant DNA repair were particularly studied and noted for their functional mapping. The functions observed to be overrepresented in the plant genome harbour DNA-3-methyladenine glycosylase activity, alkylbase DNA N-glycosylase activity and DNA-(apurinic or apyrimidinic site) lyase activity, suggesting their role in specialized functions such as gene regulation and DNA repair.
Pacheco-Arjona, Jose Ramon; Ramirez-Prado, Jorge Humberto
2014-01-01
The cell wall is a protective and versatile structure distributed in all fungi. The component responsible for its rigidity is chitin, a product of chitin synthase (Chsp) enzymes. There are seven classes of chitin synthase genes (CHS) and the amount and type encoded in fungal genomes varies considerably from one species to another. Previous Chsp sequence analyses focused on their study as individual units, regardless of genomic context. The identification of blocks of conserved genes between genomes can provide important clues about the interactions and localization of chitin synthases. On the present study, we carried out an in silico search of all putative Chsp encoded in 54 full fungal genomes, encompassing 21 orders from five phyla. Phylogenetic studies of these Chsp were able to confidently classify 347 out of the 369 Chsp identified (94%). Patterns in the distribution of Chsp related to taxonomy were identified, the most prominent being related to the type of fungal growth. More importantly, a synteny analysis for genomic blocks centered on class IV Chsp (the most abundant and widely distributed Chsp class) identified a putative cell wall metabolism gene cluster in members of the genus Aspergillus, the first such association reported for any fungal genome. PMID:25148134
IMG/M: integrated genome and metagenome comparative data analysis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken
The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support formore » examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review(ER) companion system (IMG/M ER: https://img.jgi.doe.gov/ mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system.« less
IMG/M: integrated genome and metagenome comparative data analysis system
Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Palaniappan, Krishna; Szeto, Ernest; Pillay, Manoj; Ratner, Anna; Huang, Jinghua; Andersen, Evan; Huntemann, Marcel; Varghese, Neha; Hadjithomas, Michalis; Tennessen, Kristin; Nielsen, Torben; Ivanova, Natalia N.; Kyrpides, Nikos C.
2017-01-01
The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support for examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review (ER) companion system (IMG/M ER: https://img.jgi.doe.gov/mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system. PMID:27738135
GermOnline 4.0 is a genomics gateway for germline development, meiosis and the mitotic cell cycle.
Lardenois, Aurélie; Gattiker, Alexandre; Collin, Olivier; Chalmel, Frédéric; Primig, Michael
2010-01-01
GermOnline 4.0 is a cross-species database portal focusing on high-throughput expression data relevant for germline development, the meiotic cell cycle and mitosis in healthy versus malignant cells. It is thus a source of information for life scientists as well as clinicians who are interested in gene expression and regulatory networks. The GermOnline gateway provides unlimited access to information produced with high-density oligonucleotide microarrays (3'-UTR GeneChips), genome-wide protein-DNA binding assays and protein-protein interaction studies in the context of Ensembl genome annotation. Samples used to produce high-throughput expression data and to carry out genome-wide in vivo DNA binding assays are annotated via the MIAME-compliant Multiomics Information Management and Annotation System (MIMAS 3.0). Furthermore, the Saccharomyces Genomics Viewer (SGV) was developed and integrated into the gateway. SGV is a visualization tool that outputs genome annotation and DNA-strand specific expression data produced with high-density oligonucleotide tiling microarrays (Sc_tlg GeneChips) which cover the complete budding yeast genome on both DNA strands. It facilitates the interpretation of expression levels and transcript structures determined for various cell types cultured under different growth and differentiation conditions. Database URL: www.germonline.org/
GermOnline 4.0 is a genomics gateway for germline development, meiosis and the mitotic cell cycle
Lardenois, Aurélie; Gattiker, Alexandre; Collin, Olivier; Chalmel, Frédéric; Primig, Michael
2010-01-01
GermOnline 4.0 is a cross-species database portal focusing on high-throughput expression data relevant for germline development, the meiotic cell cycle and mitosis in healthy versus malignant cells. It is thus a source of information for life scientists as well as clinicians who are interested in gene expression and regulatory networks. The GermOnline gateway provides unlimited access to information produced with high-density oligonucleotide microarrays (3′-UTR GeneChips), genome-wide protein–DNA binding assays and protein–protein interaction studies in the context of Ensembl genome annotation. Samples used to produce high-throughput expression data and to carry out genome-wide in vivo DNA binding assays are annotated via the MIAME-compliant Multiomics Information Management and Annotation System (MIMAS 3.0). Furthermore, the Saccharomyces Genomics Viewer (SGV) was developed and integrated into the gateway. SGV is a visualization tool that outputs genome annotation and DNA-strand specific expression data produced with high-density oligonucleotide tiling microarrays (Sc_tlg GeneChips) which cover the complete budding yeast genome on both DNA strands. It facilitates the interpretation of expression levels and transcript structures determined for various cell types cultured under different growth and differentiation conditions. Database URL: www.germonline.org/ PMID:21149299
Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Lopez-Nicora, Horacio D.; Caetano-Anollés, Gustavo
2011-01-01
The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of parasitic organisms. In contrast, the functional repertoire of the proteomes of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum was no different than the rest of bacteria, failing to support claims of them representing a separate superkingdom. In turn, Protista and Bacteria shared similar functional distribution patterns suggesting an ancestral evolutionary link between these groups. PMID:24710297
Cipriano, Andrea; Ballarino, Monica
2018-01-01
The completion of the human genome sequence together with advances in sequencing technologies have shifted the paradigm of the genome, as composed of discrete and hereditable coding entities, and have shown the abundance of functional noncoding DNA. This part of the genome, previously dismissed as “junk” DNA, increases proportionally with organismal complexity and contributes to gene regulation beyond the boundaries of known protein-coding genes. Different classes of functionally relevant nonprotein-coding RNAs are transcribed from noncoding DNA sequences. Among them are the long noncoding RNAs (lncRNAs), which are thought to participate in the basal regulation of protein-coding genes at both transcriptional and post-transcriptional levels. Although knowledge of this field is still limited, the ability of lncRNAs to localize in different cellular compartments, to fold into specific secondary structures and to interact with different molecules (RNA or proteins) endows them with multiple regulatory mechanisms. It is becoming evident that lncRNAs may play a crucial role in most biological processes such as the control of development, differentiation and cell growth. This review places the evolution of the concept of the gene in its historical context, from Darwin's hypothetical mechanism of heredity to the post-genomic era. We discuss how the original idea of protein-coding genes as unique determinants of phenotypic traits has been reconsidered in light of the existence of noncoding RNAs. We summarize the technological developments which have been made in the genome-wide identification and study of lncRNAs and emphasize the methodologies that have aided our understanding of the complexity of lncRNA-protein interactions in recent years. PMID:29560353
Integrated genome browser: visual analytics platform for genomics.
Freese, Nowlan H; Norris, David C; Loraine, Ann E
2016-07-15
Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB's ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. IGB is open source and is freely available from http://bioviz.org/igb aloraine@uncc.edu. © The Author 2016. Published by Oxford University Press.
Yoo, Eung Jae; Cajiao, Isabela; Kim, Jeong-Seon; Kimura, Atsushi P.; Zhang, Aiwen; Cooke, Nancy E.; Liebhaber, Stephen A.
2006-01-01
Random assortment within mammalian genomes juxtaposes genes with distinct expression profiles. This organization, along with the prevalence of long-range regulatory controls, generates a potential for aberrant transcriptional interactions. The human CD79b/GH locus contains six tightly linked genes with three mutually exclusive tissue specificities and interdigitated control elements. One consequence of this compact organization is that the pituitarycell-specific transcriptional events that activate hGH-N also trigger ectopic activation of CD79b. However, the B-cell-specific events that activate CD79b do not trigger reciprocal activation of hGH-N. Here we utilized DNase I hypersensitive site mapping, chromatin immunoprecipitation, and transgenic models to explore the basis for this asymmetric relationship. The results reveal tissue-specific patterns of chromatin structures and transcriptional controls at the CD79b/GH locus in B cells distinct from those in the pituitary gland and placenta. These three unique transcriptional environments suggest a set of corresponding gene expression pathways and transcriptional interactions that are likely to be found juxtaposed at multiple sites within the eukaryotic genome. PMID:16847312
Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage-host interactions.
Colangelo-Lillis, Jesse R; Deming, Jody W
2013-01-01
The 104 kb genome of cold-active bacteriophage 9A, which replicates in the marine psychrophilic gamma-proteobacterium Colwellia psychrerythraea strain 34H (between -12 and 8 °C), was sequenced and analyzed to investigate elements of molecular adaptation to low temperature and phage-host interactions in the cold. Most characterized ORFs indicated closest similarity to gamma-proteobacteria and their phages, though no single module provided definitive phylogenetic grouping. A subset of primary structural features linked to psychrophily suggested that the majority of annotated phage proteins were not psychrophilic; those that were, primarily serve phage-specific functions and may also contribute to 9A's restricted temperature range for replication as compared to host. Comparative analyses suggest ribonucleotide reductase genes were acquired laterally from host. Neither restriction modification nor the CRISPR-Cas system appeared to be the predominant phage defense mechanism of Cp34H or other cold-adapted bacteria; we hypothesize that psychrophilic hosts rely more on the use of extracellular polymeric material to block cell surface receptors recognized by phages. The relative dearth of evidence for genome-specific defenses, genetic transfer events or auxiliary metabolic genes suggest that the 9A-Cp34H system may be less tightly coupled than are other genomically characterized marine phage-host systems, with possible implications for phage specificity under different environmental conditions.
Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes.
Liu, Bernard A
2017-01-01
Today there exists a rapidly expanding number of sequenced genomes. Cataloging protein interaction domains such as the Src Homology 2 (SH2) domain across these various genomes can be accomplished with ease due to existing algorithms and predictions models. An evolutionary analysis of SH2 domains provides a step towards understanding how SH2 proteins integrated with existing signaling networks to position phosphotyrosine signaling as a crucial driver of robust cellular communication networks in metazoans. However organizing and tracing SH2 domain across organisms and understanding their evolutionary trajectory remains a challenge. This chapter describes several methodologies towards analyzing the evolutionary trajectory of SH2 domains including a global SH2 domain classification system, which facilitates annotation of new SH2 sequences essential for tracing the lineage of SH2 domains throughout eukaryote evolution. This classification utilizes a combination of sequence homology, protein domain architecture and the boundary positions between introns and exons within the SH2 domain or genes encoding these domains. Discrete SH2 families can then be traced across various genomes to provide insight into its origins. Furthermore, additional methods for examining potential mechanisms for divergence of SH2 domains from structural changes to alterations in the protein domain content and genome duplication will be discussed. Therefore a better understanding of SH2 domain evolution may enhance our insight into the emergence of phosphotyrosine signaling and the expansion of protein interaction domains.
Integration and visualization of systems biology data in context of the genome
2010-01-01
Background High-density tiling arrays and new sequencing technologies are generating rapidly increasing volumes of transcriptome and protein-DNA interaction data. Visualization and exploration of this data is critical to understanding the regulatory logic encoded in the genome by which the cell dynamically affects its physiology and interacts with its environment. Results The Gaggle Genome Browser is a cross-platform desktop program for interactively visualizing high-throughput data in the context of the genome. Important features include dynamic panning and zooming, keyword search and open interoperability through the Gaggle framework. Users may bookmark locations on the genome with descriptive annotations and share these bookmarks with other users. The program handles large sets of user-generated data using an in-process database and leverages the facilities of SQL and the R environment for importing and manipulating data. A key aspect of the Gaggle Genome Browser is interoperability. By connecting to the Gaggle framework, the genome browser joins a suite of interconnected bioinformatics tools for analysis and visualization with connectivity to major public repositories of sequences, interactions and pathways. To this flexible environment for exploring and combining data, the Gaggle Genome Browser adds the ability to visualize diverse types of data in relation to its coordinates on the genome. Conclusions Genomic coordinates function as a common key by which disparate biological data types can be related to one another. In the Gaggle Genome Browser, heterogeneous data are joined by their location on the genome to create information-rich visualizations yielding insight into genome organization, transcription and its regulation and, ultimately, a better understanding of the mechanisms that enable the cell to dynamically respond to its environment. PMID:20642854
Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M
2018-01-30
Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.
2008-01-01
Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstromsmore » resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.« less
Islam, M Nurul; Fox, David; Guo, Rong; Enomoto, Takemi; Wang, Weidong
2010-05-01
The RecQL5 helicase is essential for maintaining genome stability and reducing cancer risk. To elucidate its mechanism of action, we purified a RecQL5-associated complex and identified its major component as RNA polymerase II (Pol II). Bioinformatics and structural modeling-guided mutagenesis revealed two conserved regions in RecQL5 as KIX and SRI domains, already known in transcriptional regulators for Pol II. The RecQL5-KIX domain binds both initiation (Pol IIa) and elongation (Pol IIo) forms of the polymerase, whereas the RecQL5-SRI domain interacts only with the elongation form. Fully functional RecQL5 requires both helicase activity and associations with the initiation polymerase, because mutants lacking either activity are partially defective in the suppression of sister chromatid exchange and resistance to camptothecin-induced DNA damage, and mutants lacking both activities are completely defective. We propose that RecQL5 promotes genome stabilization through two parallel mechanisms: by participation in homologous recombination-dependent DNA repair as a RecQ helicase and by regulating the initiation of Pol II to reduce transcription-associated replication impairment and recombination.
Deciphering the fine-structure of tribal admixture in the Bedouin population using genomic data
Markus, B; Alshafee, I; Birk, O S
2014-01-01
The Bedouin Israeli population is highly inbred and structured with a very high prevalence of recessive diseases. Many studies in the past two decades focused on linkage analysis in large, multiple consanguineous pedigrees of this population. The advent of high-throughput technologies motivated researchers to search for rare variants shared between smaller pedigrees, integrating data from clinically similar yet seemingly non-related sporadic cases. However, such analyses are challenging because, without pedigree data, there is no prior knowledge regarding possible relatedness between the sporadic cases. Here, we describe models and techniques for the study of relationships between pedigrees and use them for the inference of tribal co-ancestry, delineating the complex social interactions between different tribes in the Negev Bedouins of southern Israel. Through our analysis, we differentiate between tribes that share many yet small genomic segments because of co-ancestry versus tribes that share larger segments because of recent admixture. The emergent pattern is well correlated with the prevalence of rare mutations in the different tribes. Tribes that do not intermarry, mostly because of social restrictions, hold private mutations, whereas tribes that do intermarry demonstrate a genetic flow of mutations between them. Thus, social structure within an inbred community can be delineated through genomic data, with implications to genetic counseling and genetic mapping. PMID:24084643
Deciphering the fine-structure of tribal admixture in the Bedouin population using genomic data.
Markus, B; Alshafee, I; Birk, O S
2014-02-01
The Bedouin Israeli population is highly inbred and structured with a very high prevalence of recessive diseases. Many studies in the past two decades focused on linkage analysis in large, multiple consanguineous pedigrees of this population. The advent of high-throughput technologies motivated researchers to search for rare variants shared between smaller pedigrees, integrating data from clinically similar yet seemingly non-related sporadic cases. However, such analyses are challenging because, without pedigree data, there is no prior knowledge regarding possible relatedness between the sporadic cases. Here, we describe models and techniques for the study of relationships between pedigrees and use them for the inference of tribal co-ancestry, delineating the complex social interactions between different tribes in the Negev Bedouins of southern Israel. Through our analysis, we differentiate between tribes that share many yet small genomic segments because of co-ancestry versus tribes that share larger segments because of recent admixture. The emergent pattern is well correlated with the prevalence of rare mutations in the different tribes. Tribes that do not intermarry, mostly because of social restrictions, hold private mutations, whereas tribes that do intermarry demonstrate a genetic flow of mutations between them. Thus, social structure within an inbred community can be delineated through genomic data, with implications to genetic counseling and genetic mapping.
VaProS: a database-integration approach for protein/genome information retrieval.
Gojobori, Takashi; Ikeo, Kazuho; Katayama, Yukie; Kawabata, Takeshi; Kinjo, Akira R; Kinoshita, Kengo; Kwon, Yeondae; Migita, Ohsuke; Mizutani, Hisashi; Muraoka, Masafumi; Nagata, Koji; Omori, Satoshi; Sugawara, Hideaki; Yamada, Daichi; Yura, Kei
2016-12-01
Life science research now heavily relies on all sorts of databases for genome sequences, transcription, protein three-dimensional (3D) structures, protein-protein interactions, phenotypes and so forth. The knowledge accumulated by all the omics research is so vast that a computer-aided search of data is now a prerequisite for starting a new study. In addition, a combinatory search throughout these databases has a chance to extract new ideas and new hypotheses that can be examined by wet-lab experiments. By virtually integrating the related databases on the Internet, we have built a new web application that facilitates life science researchers for retrieving experts' knowledge stored in the databases and for building a new hypothesis of the research target. This web application, named VaProS, puts stress on the interconnection between the functional information of genome sequences and protein 3D structures, such as structural effect of the gene mutation. In this manuscript, we present the notion of VaProS, the databases and tools that can be accessed without any knowledge of database locations and data formats, and the power of search exemplified in quest of the molecular mechanisms of lysosomal storage disease. VaProS can be freely accessed at http://p4d-info.nig.ac.jp/vapros/ .
Gao, Hui; Zhao, Chunyan
2018-01-01
Chromatin immunoprecipitation (ChIP) has become the most effective and widely used tool to study the interactions between specific proteins or modified forms of proteins and a genomic DNA region. Combined with genome-wide profiling technologies, such as microarray hybridization (ChIP-on-chip) or massively parallel sequencing (ChIP-seq), ChIP could provide a genome-wide mapping of in vivo protein-DNA interactions in various organisms. Here, we describe a protocol of ChIP-on-chip that uses tiling microarray to obtain a genome-wide profiling of ChIPed DNA.
USDA-ARS?s Scientific Manuscript database
Genomic selection (GS) models use genome-wide genetic information to predict genetic values of candidates for selection. Originally these models were developed without considering genotype ' environment interaction (GE). Several authors have proposed extensions of the cannonical GS model that accomm...
Butler, J B; Vaillancourt, R E; Potts, B M; Lee, D J; King, G J; Baten, A; Shepherd, M; Freeman, J S
2017-05-22
Previous studies suggest genome structure is largely conserved between Eucalyptus species. However, it is unknown if this conservation extends to more divergent eucalypt taxa. We performed comparative genomics between the eucalypt genera Eucalyptus and Corymbia. Our results will facilitate transfer of genomic information between these important taxa and provide further insights into the rate of structural change in tree genomes. We constructed three high density linkage maps for two Corymbia species (Corymbia citriodora subsp. variegata and Corymbia torelliana) which were used to compare genome structure between both species and Eucalyptus grandis. Genome structure was highly conserved between the Corymbia species. However, the comparison of Corymbia and E. grandis suggests large (from 1-13 MB) intra-chromosomal rearrangements have occurred on seven of the 11 chromosomes. Most rearrangements were supported through comparisons of the three independent Corymbia maps to the E. grandis genome sequence, and to other independently constructed Eucalyptus linkage maps. These are the first large scale chromosomal rearrangements discovered between eucalypts. Nonetheless, in the general context of plants, the genomic structure of the two genera was remarkably conserved; adding to a growing body of evidence that conservation of genome structure is common amongst woody angiosperms.
Predicting human genetic interactions from cancer genome evolution.
Lu, Xiaowen; Megchelenbrink, Wout; Notebaart, Richard A; Huynen, Martijn A
2015-01-01
Synthetic Lethal (SL) genetic interactions play a key role in various types of biological research, ranging from understanding genotype-phenotype relationships to identifying drug-targets against cancer. Despite recent advances in empirical measuring SL interactions in human cells, the human genetic interaction map is far from complete. Here, we present a novel approach to predict this map by exploiting patterns in cancer genome evolution. First, we show that empirically determined SL interactions are reflected in various gene presence, absence, and duplication patterns in hundreds of cancer genomes. The most evident pattern that we discovered is that when one member of an SL interaction gene pair is lost, the other gene tends not to be lost, i.e. the absence of co-loss. This observation is in line with expectation, because the loss of an SL interacting pair will be lethal to the cancer cell. SL interactions are also reflected in gene expression profiles, such as an under representation of cases where the genes in an SL pair are both under expressed, and an over representation of cases where one gene of an SL pair is under expressed, while the other one is over expressed. We integrated the various previously unknown cancer genome patterns and the gene expression patterns into a computational model to identify SL pairs. This simple, genome-wide model achieves a high prediction power (AUC = 0.75) for known genetic interactions. It allows us to present for the first time a comprehensive genome-wide list of SL interactions with a high estimated prediction precision, covering up to 591,000 gene pairs. This unique list can potentially be used in various application areas ranging from biotechnology to medical genetics.
QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks
Thibodeau, Asa; Márquez, Eladio J.; Luo, Oscar; Ruan, Yijun; Shin, Dong-Guk; Stitzel, Michael L.; Ucar, Duygu
2016-01-01
Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. AVAILABILITY: QuIN’s web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/. PMID:27336171
Genome-nuclear lamina interactions: from cell populations to single cells.
Yáñez-Cuna, J Omar; van Steensel, Bas
2017-04-01
Lamina-associated domains (LADs) are large genomic regions that interact with the nuclear lamina (NL) and help to guide the spatial folding of chromosomes in the interphase nucleus. LADs have been linked to gene repression and other functions. Recent studies have begun to uncover some of the molecular players that drive LAD-NL interactions. A picture emerges in which DNA sequence, chromatin components and nuclear lamina proteins play an important role. Complementary to this, imaging and single-cell genomics approaches have revealed that some LAD-NL interactions are variable from cell to cell, while others are very stable. Understanding LADs can provide a unique perspective into the general process of genome organization. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Kalloush, Rawan M.; Vivet-Boudou, Valérie; Ali, Lizna M.; Mustafa, Farah; Marquet, Roland; Rizvi, Tahir A.
2016-01-01
MPMV has great potential for development as a vector for gene therapy. In this respect, precisely defining the sequences and structural motifs that are important for dimerization and packaging of its genomic RNA (gRNA) are of utmost importance. A distinguishing feature of the MPMV gRNA packaging signal is two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences, LRI-I and LRI-II. To test their biological significance in the MPMV life cycle, we introduced mutations into these structural motifs and tested their effects on MPMV gRNA packaging and propagation. Furthermore, we probed the structure of key mutants using SHAPE (selective 2′hydroxyl acylation analyzed by primer extension). Disrupting base-pairing of the LRIs affected gRNA packaging and propagation, demonstrating their significance to the MPMV life cycle. A double mutant restoring a heterologous LRI-I was fully functional, whereas a similar LRI-II mutant failed to restore gRNA packaging and propagation. These results demonstrate that while LRI-I acts at the structural level, maintaining base-pairing is not sufficient for LRI-II function. In addition, in vitro RNA dimerization assays indicated that the loss of RNA packaging in LRI mutants could not be attributed to the defects in dimerization. Our findings suggest that U5-gag LRIs play an important architectural role in maintaining the structure of the 5′ region of the MPMV gRNA, expanding the crucial role of LRIs to the nonlentiviral group of retroviruses. PMID:27095024
Structural imprints in vivo decode RNA regulatory mechanisms
Spitale, Robert C.; Flynn, Ryan A.; Zhang, Qiangfeng Cliff; Crisalli, Pete; Lee, Byron; Jung, Jong-Wha; Kuchelmeister, Hannes Y.; Batista, Pedro J.; Torre, Eduardo A.; Kool, Eric T.; Chang, Howard Y.
2015-01-01
Visualizing the physical basis for molecular behavior inside living cells is a grand challenge in biology. RNAs are central to biological regulation, and RNA’s ability to adopt specific structures intimately controls every step of the gene expression program1. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles view only two of four nucleotides that make up RNA2,3. Here we present a novel biochemical approach, In Vivo Click SHAPE (icSHAPE), that enables the first global view of RNA secondary structures of all four bases in living cells. icSHAPE of mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguishes different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA binding proteins or RNA modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N6-methyladenosine (m6A) modification genome-wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression. PMID:25799993
Structural imprints in vivo decode RNA regulatory mechanisms.
Spitale, Robert C; Flynn, Ryan A; Zhang, Qiangfeng Cliff; Crisalli, Pete; Lee, Byron; Jung, Jong-Wha; Kuchelmeister, Hannes Y; Batista, Pedro J; Torre, Eduardo A; Kool, Eric T; Chang, Howard Y
2015-03-26
Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA. Here we present a novel biochemical approach, in vivo click selective 2'-hydroxyl acylation and profiling experiment (icSHAPE), which enables the first global view, to our knowledge, of RNA secondary structures in living cells for all four bases. icSHAPE of the mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguish different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro conditions, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA-binding proteins or RNA-modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N(6)-methyladenosine (m(6)A) modification genome wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression.
Survey of protein–DNA interactions in Aspergillus oryzae on a genomic scale
Wang, Chao; Lv, Yangyong; Wang, Bin; Yin, Chao; Lin, Ying; Pan, Li
2015-01-01
The genome-scale delineation of in vivo protein–DNA interactions is key to understanding genome function. Only ∼5% of transcription factors (TFs) in the Aspergillus genus have been identified using traditional methods. Although the Aspergillus oryzae genome contains >600 TFs, knowledge of the in vivo genome-wide TF-binding sites (TFBSs) in aspergilli remains limited because of the lack of high-quality antibodies. We investigated the landscape of in vivo protein–DNA interactions across the A. oryzae genome through coupling the DNase I digestion of intact nuclei with massively parallel sequencing and the analysis of cleavage patterns in protein–DNA interactions at single-nucleotide resolution. The resulting map identified overrepresented de novo TF-binding motifs from genomic footprints, and provided the detailed chromatin remodeling patterns and the distribution of digital footprints near transcription start sites. The TFBSs of 19 known Aspergillus TFs were also identified based on DNase I digestion data surrounding potential binding sites in conjunction with TF binding specificity information. We observed that the cleavage patterns of TFBSs were dependent on the orientation of TF motifs and independent of strand orientation, consistent with the DNA shape features of binding motifs with flanking sequences. PMID:25883143
Interaction of packaging motor with the polymerase complex of dsRNA bacteriophage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisal, Jiri; Kainov, Denis E.; Lam, TuKiet T.
2006-07-20
Many viruses employ molecular motors to package their genomes into preformed empty capsids (procapsids). In dsRNA bacteriophages the packaging motor is a hexameric ATPase P4, which is an integral part of the multisubunit procapsid. Structural and biochemical studies revealed a plausible RNA-translocation mechanism for the isolated hexamer. However, little is known about the structure and regulation of the hexamer within the procapsid. Here we use hydrogen-deuterium exchange and mass spectrometry to delineate the interactions of the P4 hexamer with the bacteriophage phi12 procapsid. P4 associates with the procapsid via its C-terminal face. The interactions also stabilize subunit interfaces within themore » hexamer. The conformation of the virus-bound hexamer is more stable than the hexamer in solution, which is prone to spontaneous ring openings. We propose that the stabilization within the viral capsid increases the packaging processivity and confers selectivity during RNA loading.« less
Cross, Megan; Klepzig, Emma; Dallaston, Madeleine; Young, Neil D; Bailey, Ulla-Maja; Mason, Lyndel; Jones, Malcolm K; Gasser, Robin B; Hofmann, Andreas
Despite the massive disease burden worldwide caused by parasitic nematodes and other infectious pathogens, the molecular basis of many infectious diseases caused by these pathogens has been unduly neglected for a long time. Therefore, accelerated progress towards novel therapeutics, and ultimately control of such infectious diseases, is of crucial importance. Capitalising on the wealth of data becoming available from proteomic and genomic studies, new protein targets at the pathogen-host interface can be identified and subjected to protein-based explorations of the molecular basis of pathogen-host interactions. By combining the use of systems and structural biology methodologies, insights into the structural and molecular mechanisms of these interactions can assist in the development of therapeutics and/or vaccines. This brief review examines two different proteins from the body wall of blood flukes - annexins and the stress-induced phosphoprotein 1 - both of which are presently interesting targets for the development of therapeutics.
Koçer, Zeynep A; Fan, Yiping; Huether, Robert; Obenauer, John; Webby, Richard J; Zhang, Jinghui; Webster, Robert G; Wu, Gang
2014-12-12
Most influenza pandemics have been caused by H1N1 viruses of purely or partially avian origin. Here, using Cox proportional hazard model, we attempt to identify the genetic variations in the whole genome of wild-type North American avian H1N1 influenza A viruses that are associated with their virulence in mice by residue variations, host origins of virus (Anseriformes-ducks or Charadriiformes-shorebirds), and host-residue interactions. In addition, through structural modeling, we predicted that several polymorphic sites associated with pathogenicity were located in structurally important sites, especially in the polymerase complex and NS genes. Our study introduces a new approach to identify pathogenic variations in wild-type viruses circulating in the natural reservoirs and ultimately to understand their infectious risks to humans as part of risk assessment efforts towards the emergence of future pandemic strains.
Vit, Allegra; Misson, Laëtitia; Blankenfeldt, Wulf; Seebeck, Florian P
2015-01-02
Ergothioneine is an N-α-trimethyl-2-thiohistidine derivative that occurs in human, plant, fungal, and bacterial cells. Biosynthesis of this redox-active betaine starts with trimethylation of the α-amino group of histidine. The three consecutive methyl transfers are catalyzed by the S-adenosylmethionine-dependent methyltransferase EgtD. Three crystal structures of this enzyme in the absence and in the presence of N-α-dimethylhistidine and S-adenosylhomocysteine implicate a preorganized array of hydrophilic interactions as the determinants for substrate specificity and apparent processivity. We identified two active site mutations that change the substrate specificity of EgtD 10(7)-fold and transform the histidine-methyltransferase into a proficient tryptophan-methyltransferase. Finally, a genomic search for EgtD homologues in fungal genomes revealed tyrosine and tryptophan trimethylation activity as a frequent trait in ascomycetous and basidomycetous fungi. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coordinated rates of evolution between interacting plastid and nuclear genes in Geraniaceae.
Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal; Blazier, J Chris; Jansen, Robert K
2015-03-01
Although gene coevolution has been widely observed within individuals and between different organisms, rarely has this phenomenon been investigated within a phylogenetic framework. The Geraniaceae is an attractive system in which to study plastid-nuclear genome coevolution due to the highly elevated evolutionary rates in plastid genomes. In plants, the plastid-encoded RNA polymerase (PEP) is a protein complex composed of subunits encoded by both plastid (rpoA, rpoB, rpoC1, and rpoC2) and nuclear genes (sig1-6). We used transcriptome and genomic data for 27 species of Geraniales in a systematic evaluation of coevolution between genes encoding subunits of the PEP holoenzyme. We detected strong correlations of dN (nonsynonymous substitutions) but not dS (synonymous substitutions) within rpoB/sig1 and rpoC2/sig2, but not for other plastid/nuclear gene pairs, and identified the correlation of dN/dS ratio between rpoB/C1/C2 and sig1/5/6, rpoC1/C2 and sig2, and rpoB/C2 and sig3 genes. Correlated rates between interacting plastid and nuclear sequences across the Geraniales could result from plastid-nuclear genome coevolution. Analyses of coevolved amino acid positions suggest that structurally mediated coevolution is not the major driver of plastid-nuclear coevolution. The detection of strong correlation of evolutionary rates between SIG and RNAP genes suggests a plausible explanation for plastome-genome incompatibility in Geraniaceae. © 2015 American Society of Plant Biologists. All rights reserved.
Ferron, François; Li, Zongli; Danek, Eric I.; Luo, Dahai; Wong, Yeehwa; Coutard, Bruno; Lantez, Violaine; Charrel, Rémi; Canard, Bruno; Walz, Thomas; Lescar, Julien
2011-01-01
Rift Valley fever virus (RVFV), a Phlebovirus with a genome consisting of three single-stranded RNA segments, is spread by infected mosquitoes and causes large viral outbreaks in Africa. RVFV encodes a nucleoprotein (N) that encapsidates the viral RNA. The N protein is the major component of the ribonucleoprotein complex and is also required for genomic RNA replication and transcription by the viral polymerase. Here we present the 1.6 Å crystal structure of the RVFV N protein in hexameric form. The ring-shaped hexamers form a functional RNA binding site, as assessed by mutagenesis experiments. Electron microscopy (EM) demonstrates that N in complex with RNA also forms rings in solution, and a single-particle EM reconstruction of a hexameric N-RNA complex is consistent with the crystallographic N hexamers. The ring-like organization of the hexamers in the crystal is stabilized by circular interactions of the N terminus of RVFV N, which forms an extended arm that binds to a hydrophobic pocket in the core domain of an adjacent subunit. The conformation of the N-terminal arm differs from that seen in a previous crystal structure of RVFV, in which it was bound to the hydrophobic pocket in its own core domain. The switch from an intra- to an inter-molecular interaction mode of the N-terminal arm may be a general principle that underlies multimerization and RNA encapsidation by N proteins from Bunyaviridae. Furthermore, slight structural adjustments of the N-terminal arm would allow RVFV N to form smaller or larger ring-shaped oligomers and potentially even a multimer with a super-helical subunit arrangement. Thus, the interaction mode between subunits seen in the crystal structure would allow the formation of filamentous ribonucleocapsids in vivo. Both the RNA binding cleft and the multimerization site of the N protein are promising targets for the development of antiviral drugs. PMID:21589902
Almeida, Daniela; Maldonado, Emanuel; Vasconcelos, Vitor; Antunes, Agostinho
2015-01-01
Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments ranging from the intertidal to the deep sea, having distinct metabolic requirements, varied body shapes and highly advanced visual and nervous systems that make them highly competitive and successful worldwide predators. Thus, cephalopods are valuable models for testing natural selection acting on their mitochondrial subunits (mt subunits). Here, we used concatenated mt genes from 17 fully sequenced mt genomes of diverse cephalopod species to generate a robust mitochondrial phylogeny for the Class Cephalopoda. We followed an integrative approach considering several branches of interest–covering cephalopods with distinct morphologies, metabolic rates and habitats–to identify sites under positive selection and localize them in the respective protein alignment and/or tridimensional structure of the mt subunits. Our results revealed significant adaptive variation in several mt subunits involved in the energy production pathway of cephalopods: ND5 and ND6 from Complex I, CYTB from Complex III, COX2 and COX3 from Complex IV, and in ATP8 from Complex V. Furthermore, we identified relevant sites involved in protein-interactions, lining proton translocation channels, as well as disease/deficiencies related sites in the aforementioned complexes. A particular case, revealed by this study, is the involvement of some positively selected sites, found in Octopoda lineage in lining proton translocation channels (site 74 from ND5) and in interactions between subunits (site 507 from ND5) of Complex I. PMID:26285039
Shang, Yanfang; Duan, Zhibing; Hu, Xiao; Xie, Xue-Qin; Zhou, Gang; Peng, Guoxiong; Luo, Zhibing; Huang, Wei; Wang, Bing; Fang, Weiguo; Wang, Sibao; Zhong, Yi; Ma, Li-Jun; St. Leger, Raymond J.; Zhao, Guo-Ping; Pei, Yan; Feng, Ming-Guang; Xia, Yuxian; Wang, Chengshu
2011-01-01
Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties. PMID:21253567
Evolution and Diversity of the Human Hepatitis D Virus Genome
Huang, Chi-Ruei; Lo, Szecheng J.
2010-01-01
Human hepatitis delta virus (HDV) is the smallest RNA virus in genome. HDV genome is divided into a viroid-like sequence and a protein-coding sequence which could have originated from different resources and the HDV genome was eventually constituted through RNA recombination. The genome subsequently diversified through accumulation of mutations selected by interactions between the mutated RNA and proteins with host factors to successfully form the infectious virions. Therefore, we propose that the conservation of HDV nucleotide sequence is highly related with its functionality. Genome analysis of known HDV isolates shows that the C-terminal coding sequences of large delta antigen (LDAg) are the highest diversity than other regions of protein-coding sequences but they still retain biological functionality to interact with the heavy chain of clathrin can be selected and maintained. Since viruses interact with many host factors, including escaping the host immune response, how to design a program to predict RNA genome evolution is a great challenging work. PMID:20204073
Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly
2015-01-01
Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3’untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3’ UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3’UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3’UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3’ UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity. PMID:26646790
Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly
2015-12-01
Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity.
USDA-ARS?s Scientific Manuscript database
We provide here a comparative genome analysis of the Pseudomonas fluorescens group, including seven new genomic sequences for plant-associated strains. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and ins...
ShinyGPAS: interactive genomic prediction accuracy simulator based on deterministic formulas.
Morota, Gota
2017-12-20
Deterministic formulas for the accuracy of genomic predictions highlight the relationships among prediction accuracy and potential factors influencing prediction accuracy prior to performing computationally intensive cross-validation. Visualizing such deterministic formulas in an interactive manner may lead to a better understanding of how genetic factors control prediction accuracy. The software to simulate deterministic formulas for genomic prediction accuracy was implemented in R and encapsulated as a web-based Shiny application. Shiny genomic prediction accuracy simulator (ShinyGPAS) simulates various deterministic formulas and delivers dynamic scatter plots of prediction accuracy versus genetic factors impacting prediction accuracy, while requiring only mouse navigation in a web browser. ShinyGPAS is available at: https://chikudaisei.shinyapps.io/shinygpas/ . ShinyGPAS is a shiny-based interactive genomic prediction accuracy simulator using deterministic formulas. It can be used for interactively exploring potential factors that influence prediction accuracy in genome-enabled prediction, simulating achievable prediction accuracy prior to genotyping individuals, or supporting in-class teaching. ShinyGPAS is open source software and it is hosted online as a freely available web-based resource with an intuitive graphical user interface.
Genome-Wide Structural Variation Detection by Genome Mapping on Nanochannel Arrays.
Mak, Angel C Y; Lai, Yvonne Y Y; Lam, Ernest T; Kwok, Tsz-Piu; Leung, Alden K Y; Poon, Annie; Mostovoy, Yulia; Hastie, Alex R; Stedman, William; Anantharaman, Thomas; Andrews, Warren; Zhou, Xiang; Pang, Andy W C; Dai, Heng; Chu, Catherine; Lin, Chin; Wu, Jacob J K; Li, Catherine M L; Li, Jing-Woei; Yim, Aldrin K Y; Chan, Saki; Sibert, Justin; Džakula, Željko; Cao, Han; Yiu, Siu-Ming; Chan, Ting-Fung; Yip, Kevin Y; Xiao, Ming; Kwok, Pui-Yan
2016-01-01
Comprehensive whole-genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short-read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole-genome structural variation detection without sequencing. While whole-genome haplotyping is not achieved, local phasing (across >150-kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variations that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation. Copyright © 2016 by the Genetics Society of America.
Three invariant Hi-C interaction patterns: Applications to genome assembly.
Oddes, Sivan; Zelig, Aviv; Kaplan, Noam
2018-06-01
Assembly of reference-quality genomes from next-generation sequencing data is a key challenge in genomics. Recently, we and others have shown that Hi-C data can be used to address several outstanding challenges in the field of genome assembly. This principle has since been developed in academia and industry, and has been used in the assembly of several major genomes. In this paper, we explore the central principles underlying Hi-C-based assembly approaches, by quantitatively defining and characterizing three invariant Hi-C interaction patterns on which these approaches can build: Intrachromosomal interaction enrichment, distance-dependent interaction decay and local interaction smoothness. Specifically, we evaluate to what degree each invariant pattern holds on a single locus level in different species, cell types and Hi-C map resolutions. We find that these patterns are generally consistent across species and cell types but are affected by sequencing depth, and that matrix balancing improves consistency of loci with all three invariant patterns. Finally, we overview current Hi-C-based assembly approaches in light of these invariant patterns and demonstrate how local interaction smoothness can be used to easily detect scaffolding errors in extremely sparse Hi-C maps. We suggest that simultaneously considering all three invariant patterns may lead to better Hi-C-based genome assembly methods. Copyright © 2018 Elsevier Inc. All rights reserved.
Structure and assembly of the Ebola virus nucleocapsid
Wan, William; Kolesnikova, Larissa; Clarke, Mairi; Koehler, Alexander; Noda, Takeshi; Becker, Stephan; Briggs, John A. G.
2017-01-01
Ebola and Marburg viruses are filoviruses: filamentous, enveloped viruses that cause hemorrhagic fever1. Filoviruses are within the order Mononegavirales2 which also includes rabies virus, measles virus, and respiratory syncytial virus. Mononegaviruses have non-segmented, single-stranded negative-sense RNA genomes that are encapsidated by nucleoprotein (NP) and other viral proteins to form a helical nucleocapsid (NC). NC acts as a scaffold for virus assembly and as a template for genome transcription and replication. Insights into NP-NP interactions have been derived from structural studies of oligomerized, RNA-encapsidating NP3–6 and cryo-electron microscopy (cryo-EM) of NC7–12 or NC-like structures11–13. There have been no high-resolution reconstructions of complete mononegavirus NCs. Here, we have applied cryo-electron tomography and subtomogram averaging to determine the structure of Ebola virus NC within intact viruses and recombinant NC-like assemblies. These structures reveal the identity and arrangement of the NC components, and suggest that the formation of an extended alpha-helix from the disordered C-terminal region of NP-core links NP oligomerization, NC condensation, RNA encapsidation, and accessory protein recruitment. PMID:29144446
Functional genomics of lactic acid bacteria: from food to health
2014-01-01
Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768
Functional genomics of lactic acid bacteria: from food to health.
Douillard, François P; de Vos, Willem M
2014-08-29
Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.
The identification and functional annotation of RNA structures conserved in vertebrates.
Seemann, Stefan E; Mirza, Aashiq H; Hansen, Claus; Bang-Berthelsen, Claus H; Garde, Christian; Christensen-Dalsgaard, Mikkel; Torarinsson, Elfar; Yao, Zizhen; Workman, Christopher T; Pociot, Flemming; Nielsen, Henrik; Tommerup, Niels; Ruzzo, Walter L; Gorodkin, Jan
2017-08-01
Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization, and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for conserved RNA structures (CRSs), leveraging structure-based, rather than sequence-based, alignments. After careful correction for sequence identity and GC content, we predict ∼516,000 human genomic regions containing CRSs. We find that a substantial fraction of human-mouse CRS regions (1) colocalize consistently with binding sites of the same RNA binding proteins (RBPs) or (2) are transcribed in corresponding tissues. Additionally, a CaptureSeq experiment revealed expression of many of our CRS regions in human fetal brain, including 662 novel ones. For selected human and mouse candidate pairs, qRT-PCR and in vitro RNA structure probing supported both shared expression and shared structure despite low abundance and low sequence identity. About 30,000 CRS regions are located near coding or long noncoding RNA genes or within enhancers. Structured (CRS overlapping) enhancer RNAs and extended 3' ends have significantly increased expression levels over their nonstructured counterparts. Our findings of transcribed uncharacterized regulatory regions that contain CRSs support their RNA-mediated functionality. © 2017 Seemann et al.; Published by Cold Spring Harbor Laboratory Press.
Mashiyama, Susan T.; Koupparis, Kyriacos; Caffrey, Conor R.; McKerrow, James H.; Babbitt, Patricia C.
2012-01-01
We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups (“M32” and “C51”) that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html. PMID:23236535
Bressan, Gustavo Costa; Kobarg, Jörg
2010-01-01
The mapping of protein-protein interactions of a determined organism is considered fundamental to assign protein function in the post-genomic era. As part of this effort, screenings for pairwise interactions by yeast two-hybrid system have been used popularly to reveal protein interaction networks in different biological systems. Through the identification of protein interaction partners we have successfully obtained interesting functional clues for Ki-1/57, a human protein with no previous functional annotation, in the context of RNA metabolism. We briefly discuss the way we approached protein-protein interaction data to conduct and interpret further molecular biological and cellular studies as well as structural analyses on this protein. Our data suggest that Ki-1/57 belongs to the family of intrinsically unstructured proteins and that the structural flexibility may be crucial for its capacity to interact with many different proteins. A large fraction of these proteins are involved in pre-mRNA splicing control. Finally, Ki-1/57 is localized to several subnuclear domains, all of which have been described to splicing and other RNA processing events.
Li, Jian; Harris, R. Alan; Cheung, Sau Wai; Coarfa, Cristian; Jeong, Mira; Goodell, Margaret A.; White, Lisa D.; Patel, Ankita; Kang, Sung-Hae; Shaw, Chad; Chinault, A. Craig; Gambin, Tomasz; Gambin, Anna; Lupski, James R.; Milosavljevic, Aleksandar
2012-01-01
The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR) mediated by low-copy repeats (LCRs). Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ∼1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs) from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH) chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR–mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease. PMID:22615578
Personalized biochemistry and biophysics.
Kroncke, Brett M; Vanoye, Carlos G; Meiler, Jens; George, Alfred L; Sanders, Charles R
2015-04-28
Whole human genome sequencing of individuals is becoming rapid and inexpensive, enabling new strategies for using personal genome information to help diagnose, treat, and even prevent human disorders for which genetic variations are causative or are known to be risk factors. Many of the exploding number of newly discovered genetic variations alter the structure, function, dynamics, stability, and/or interactions of specific proteins and RNA molecules. Accordingly, there are a host of opportunities for biochemists and biophysicists to participate in (1) developing tools to allow accurate and sometimes medically actionable assessment of the potential pathogenicity of individual variations and (2) establishing the mechanistic linkage between pathogenic variations and their physiological consequences, providing a rational basis for treatment or preventive care. In this review, we provide an overview of these opportunities and their associated challenges in light of the current status of genomic science and personalized medicine, the latter often termed precision medicine.
Personalized Biochemistry and Biophysics
2016-01-01
Whole human genome sequencing of individuals is becoming rapid and inexpensive, enabling new strategies for using personal genome information to help diagnose, treat, and even prevent human disorders for which genetic variations are causative or are known to be risk factors. Many of the exploding number of newly discovered genetic variations alter the structure, function, dynamics, stability, and/or interactions of specific proteins and RNA molecules. Accordingly, there are a host of opportunities for biochemists and biophysicists to participate in (1) developing tools to allow accurate and sometimes medically actionable assessment of the potential pathogenicity of individual variations and (2) establishing the mechanistic linkage between pathogenic variations and their physiological consequences, providing a rational basis for treatment or preventive care. In this review, we provide an overview of these opportunities and their associated challenges in light of the current status of genomic science and personalized medicine, the latter often termed precision medicine. PMID:25856502
Hepatitis A Virus Genome Organization and Replication Strategy.
McKnight, Kevin L; Lemon, Stanley M
2018-04-02
Hepatitis A virus (HAV) is a positive-strand RNA virus classified in the genus Hepatovirus of the family Picornaviridae It is an ancient virus with a long evolutionary history and multiple features of its capsid structure, genome organization, and replication cycle that distinguish it from other mammalian picornaviruses. HAV proteins are produced by cap-independent translation of a single, long open reading frame under direction of an inefficient, upstream internal ribosome entry site (IRES). Genome replication occurs slowly and is noncytopathic, with transcription likely primed by a uridylated protein primer as in other picornaviruses. Newly produced quasi-enveloped virions (eHAV) are released from cells in a nonlytic fashion in a unique process mediated by interactions of capsid proteins with components of the host cell endosomal sorting complexes required for transport (ESCRT) system. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
2009 Epigenetics Gordon Research Conference (August 9 - 14, 2009)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeanie Lee
Epigenetics refers to the study of heritable changes in genome function that occur without a change in primary DNA sequence. The 2009 Gordon Conference in Epigenetics will feature discussion of various epigenetic phenomena, emerging understanding of their underlying mechanisms, and the growing appreciation that human, animal, and plant health all depend on proper epigenetic control. Special emphasis will be placed on genome-environment interactions particularly as they relate to human disease. Towards improving knowledge of molecular mechanisms, the conference will feature international leaders studying the roles of higher order chromatin structure, noncoding RNA, repeat elements, nuclear organization, and morphogenic evolution. Traditionalmore » and new model organisms are selected from plants, fungi, and metazoans.« less
Forging Ahead through Darkness: PCNA, Still the Principal Conductor at the Replication Fork.
Choe, Katherine N; Moldovan, George-Lucian
2017-02-02
Proliferating cell nuclear antigen (PCNA) lies at the center of the faithful duplication of eukaryotic genomes. With its distinctive doughnut-shaped molecular structure, PCNA was originally studied for its role in stimulating DNA polymerases. However, we now know that PCNA does much more than promote processive DNA synthesis. Because of the complexity of the events involved, cellular DNA replication poses major threats to genomic integrity. Whatever predicament lies ahead for the replication fork, PCNA is there to orchestrate the events necessary to handle it. Through its many protein interactions and various post-translational modifications, PCNA has far-reaching impacts on a myriad of cellular functions. Copyright © 2017 Elsevier Inc. All rights reserved.
Threshold models for genome-enabled prediction of ordinal categorical traits in plant breeding.
Montesinos-López, Osval A; Montesinos-López, Abelardo; Pérez-Rodríguez, Paulino; de Los Campos, Gustavo; Eskridge, Kent; Crossa, José
2014-12-23
Categorical scores for disease susceptibility or resistance often are recorded in plant breeding. The aim of this study was to introduce genomic models for analyzing ordinal characters and to assess the predictive ability of genomic predictions for ordered categorical phenotypes using a threshold model counterpart of the Genomic Best Linear Unbiased Predictor (i.e., TGBLUP). The threshold model was used to relate a hypothetical underlying scale to the outward categorical response. We present an empirical application where a total of nine models, five without interaction and four with genomic × environment interaction (G×E) and genomic additive × additive × environment interaction (G×G×E), were used. We assessed the proposed models using data consisting of 278 maize lines genotyped with 46,347 single-nucleotide polymorphisms and evaluated for disease resistance [with ordinal scores from 1 (no disease) to 5 (complete infection)] in three environments (Colombia, Zimbabwe, and Mexico). Models with G×E captured a sizeable proportion of the total variability, which indicates the importance of introducing interaction to improve prediction accuracy. Relative to models based on main effects only, the models that included G×E achieved 9-14% gains in prediction accuracy; adding additive × additive interactions did not increase prediction accuracy consistently across locations. Copyright © 2015 Montesinos-López et al.
Herod, Morgan R; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C; Verdaguer, Nuria; Rowlands, David J; Stonehouse, Nicola J
2016-08-01
The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen. Copyright © 2016 Herod et al.
Herod, Morgan R.; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C.; Verdaguer, Nuria; Rowlands, David J.
2016-01-01
ABSTRACT The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. IMPORTANCE Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen. PMID:27194768
Web-based visual analysis for high-throughput genomics
2013-01-01
Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618
ClusPro: an automated docking and discrimination method for the prediction of protein complexes.
Comeau, Stephen R; Gatchell, David W; Vajda, Sandor; Camacho, Carlos J
2004-01-01
Predicting protein interactions is one of the most challenging problems in functional genomics. Given two proteins known to interact, current docking methods evaluate billions of docked conformations by simple scoring functions, and in addition to near-native structures yield many false positives, i.e. structures with good surface complementarity but far from the native. We have developed a fast algorithm for filtering docked conformations with good surface complementarity, and ranking them based on their clustering properties. The free energy filters select complexes with lowest desolvation and electrostatic energies. Clustering is then used to smooth the local minima and to select the ones with the broadest energy wells-a property associated with the free energy at the binding site. The robustness of the method was tested on sets of 2000 docked conformations generated for 48 pairs of interacting proteins. In 31 of these cases, the top 10 predictions include at least one near-native complex, with an average RMSD of 5 A from the native structure. The docking and discrimination method also provides good results for a number of complexes that were used as targets in the Critical Assessment of PRedictions of Interactions experiment. The fully automated docking and discrimination server ClusPro can be found at http://structure.bu.edu
USDA-ARS?s Scientific Manuscript database
The process of speciation is impacted by the interaction between the genomic architecture of diverging lineages and the environmental context they occupy. Yet, while climate can have a significant impact on this interaction, its role in determining the patterns of geographic and genomic divergence i...
Paull, Evan O; Carlin, Daniel E; Niepel, Mario; Sorger, Peter K; Haussler, David; Stuart, Joshua M
2013-11-01
Identifying the cellular wiring that connects genomic perturbations to transcriptional changes in cancer is essential to gain a mechanistic understanding of disease initiation, progression and ultimately to predict drug response. We have developed a method called Tied Diffusion Through Interacting Events (TieDIE) that uses a network diffusion approach to connect genomic perturbations to gene expression changes characteristic of cancer subtypes. The method computes a subnetwork of protein-protein interactions, predicted transcription factor-to-target connections and curated interactions from literature that connects genomic and transcriptomic perturbations. Application of TieDIE to The Cancer Genome Atlas and a breast cancer cell line dataset identified key signaling pathways, with examples impinging on MYC activity. Interlinking genes are predicted to correspond to essential components of cancer signaling and may provide a mechanistic explanation of tumor character and suggest subtype-specific drug targets. Software is available from the Stuart lab's wiki: https://sysbiowiki.soe.ucsc.edu/tiedie. jstuart@ucsc.edu. Supplementary data are available at Bioinformatics online.
Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kumar, Konidala Kranthi; Bhaskar, Matcha
2015-01-01
Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes) to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50%) to Silicibacter pomeroyi DUF1285 family protein (2RE3). A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the glycerol structural analogs from the PubChem database. We identified five best inhibitors with strong affinities, stable interactions, and also with reliable drug-like properties. Hence, these leads might be used as the most effective inhibitors of modeled protein. The outcome of the present work of virtual screening of putative gene targets might facilitate design of potential drugs for better treatment against brucellosis. PMID:25834405
Prasad, Pushplata; Varshney, Deepti; Adholeya, Alok
2015-11-25
The fungus Purpureocillium lilacinum is widely known as a biological control agent against plant parasitic nematodes. This research article consists of genomic annotation of the first draft of whole genome sequence of P. lilacinum. The study aims to decipher the putative genetic components of the fungus involved in nematode pathogenesis by performing comparative genomic analysis with nine closely related fungal species in Hypocreales. de novo genomic assembly was done and a total of 301 scaffolds were constructed for P. lilacinum genomic DNA. By employing structural genome prediction models, 13, 266 genes coding for proteins were predicted in the genome. Approximately 73% of the predicted genes were functionally annotated using Blastp, InterProScan and Gene Ontology. A 14.7% fraction of the predicted genes shared significant homology with genes in the Pathogen Host Interactions (PHI) database. The phylogenomic analysis carried out using maximum likelihood RAxML algorithm provided insight into the evolutionary relationship of P. lilacinum. In congruence with other closely related species in the Hypocreales namely, Metarhizium spp., Pochonia chlamydosporia, Cordyceps militaris, Trichoderma reesei and Fusarium spp., P. lilacinum has large gene sets coding for G-protein coupled receptors (GPCRs), proteases, glycoside hydrolases and carbohydrate esterases that are required for degradation of nematode-egg shell components. Screening of the genome by Antibiotics & Secondary Metabolite Analysis Shell (AntiSMASH) pipeline indicated that the genome potentially codes for a variety of secondary metabolites, possibly required for adaptation to heterogeneous lifestyles reported for P. lilacinum. Significant up-regulation of subtilisin-like serine protease genes in presence of nematode eggs in quantitative real-time analyses suggested potential role of serine proteases in nematode pathogenesis. The data offer a better understanding of Purpureocillium lilacinum genome and will enhance our understanding on the molecular mechanism involved in nematophagy.
Extensive Copy-Number Variation of Young Genes across Stickleback Populations
Eizaguirre, Christophe; Samonte, Irene E.; Kalbe, Martin; Lenz, Tobias L.; Stoll, Monika; Bornberg-Bauer, Erich; Milinski, Manfred; Reusch, Thorsten B. H.
2014-01-01
Duplicate genes emerge as copy-number variations (CNVs) at the population level, and remain copy-number polymorphic until they are fixed or lost. The successful establishment of such structural polymorphisms in the genome plays an important role in evolution by promoting genetic diversity, complexity and innovation. To characterize the early evolutionary stages of duplicate genes and their potential adaptive benefits, we combine comparative genomics with population genomics analyses to evaluate the distribution and impact of CNVs across natural populations of an eco-genomic model, the three-spined stickleback. With whole genome sequences of 66 individuals from populations inhabiting three distinct habitats, we find that CNVs generally occur at low frequencies and are often only found in one of the 11 populations surveyed. A subset of CNVs, however, displays copy-number differentiation between populations, showing elevated within-population frequencies consistent with local adaptation. By comparing teleost genomes to identify lineage-specific genes and duplications in sticklebacks, we highlight rampant gene content differences among individuals in which over 30% of young duplicate genes are CNVs. These CNV genes are evolving rapidly at the molecular level and are enriched with functional categories associated with environmental interactions, depicting the dynamic early copy-number polymorphic stage of genes during population differentiation. PMID:25474574
Epigenetically regulated imprinted genes and foetal programming.
Keverne, Eric B
2010-11-01
Genomic imprinting is a widespread epigenetic phenomenon in mammals and many imprinted genes are expressed in the developing hypothalamus and placenta. The placenta and brain are very different structures with very different roles, but in the pregnant mother they functionally interact coordinating and ensuring the provision of nutrients, timing of parturition and priming of hypothalamus for maternal care and nurturing. This interaction has been evolutionarily fine-tuned to optimise infant survival such that when resources are poor, the mother 'informs' this condition to the foetus producing a thrifty phenotype that is adapted to survive scarce resources after birth.
CID-miRNA: A web server for prediction of novel miRNA precursors in human genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, Sonika; Vaz, Candida; Gupta, Vipin
2008-08-08
microRNAs (miRNA) are a class of non-protein coding functional RNAs that are thought to regulate expression of target genes by direct interaction with mRNAs. miRNAs have been identified through both experimental and computational methods in a variety of eukaryotic organisms. Though these approaches have been partially successful, there is a need to develop more tools for detection of these RNAs as they are also thought to be present in abundance in many genomes. In this report we describe a tool and a web server, named CID-miRNA, for identification of miRNA precursors in a given DNA sequence, utilising secondary structure-based filteringmore » systems and an algorithm based on stochastic context free grammar trained on human miRNAs. CID-miRNA analyses a given sequence using a web interface, for presence of putative miRNA precursors and the generated output lists all the potential regions that can form miRNA-like structures. It can also scan large genomic sequences for the presence of potential miRNA precursors in its stand-alone form. The web server can be accessed at (http://mirna.jnu.ac.in/cidmirna/)« less
Epigenetic regulation and chromatin remodeling in learning and memory.
Kim, Somi; Kaang, Bong-Kiun
2017-01-13
Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms.
Effect of gene polymorphisms on periodontal diseases
Tarannum, Fouzia; Faizuddin, Mohamed
2012-01-01
Periodontal diseases are inflammatory diseases of supporting structures of the tooth. It results in the destruction of the supporting structures and most of the destructive processes involved are host derived. The processes leading to destruction and regeneration of the destroyed tissues are of great interest to both researchers and clinicians. The selective susceptibility of subjects for periodontitis has remained an enigma and wide varieties of risk factors have been implicated for the manifestation and progression of periodontitis. Genetic factors have been a new addition to the list of risk factors for periodontal diseases. With the availability of human genome sequence and the knowledge of the complement of the genes, it should be possible to identify the metabolic pathways involved in periodontal destruction and regeneration. Most forms of periodontitis represent a life-long account of interactions between the genome, behaviour, and environment. The current practical utility of genetic knowledge in periodontitis is limited. The information contained within the human genome can potentially lead to a better understanding of the control mechanisms modulating the production of inflammatory mediators as well as provides potential therapeutic targets for periodontal disease. Allelic variants at multiple gene loci probably influence periodontitis susceptibility. PMID:22754216
Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian method
Burger, Lukas; van Nimwegen, Erik
2008-01-01
Accurate and large-scale prediction of protein–protein interactions directly from amino-acid sequences is one of the great challenges in computational biology. Here we present a new Bayesian network method that predicts interaction partners using only multiple alignments of amino-acid sequences of interacting protein domains, without tunable parameters, and without the need for any training examples. We first apply the method to bacterial two-component systems and comprehensively reconstruct two-component signaling networks across all sequenced bacteria. Comparisons of our predictions with known interactions show that our method infers interaction partners genome-wide with high accuracy. To demonstrate the general applicability of our method we show that it also accurately predicts interaction partners in a recent dataset of polyketide synthases. Analysis of the predicted genome-wide two-component signaling networks shows that cognates (interacting kinase/regulator pairs, which lie adjacent on the genome) and orphans (which lie isolated) form two relatively independent components of the signaling network in each genome. In addition, while most genes are predicted to have only a small number of interaction partners, we find that 10% of orphans form a separate class of ‘hub' nodes that distribute and integrate signals to and from up to tens of different interaction partners. PMID:18277381
Knoch, Tobias A; Wachsmuth, Malte; Kepper, Nick; Lesnussa, Michael; Abuseiris, Anis; Ali Imam, A M; Kolovos, Petros; Zuin, Jessica; Kockx, Christel E M; Brouwer, Rutger W W; van de Werken, Harmen J G; van IJcken, Wilfred F J; Wendt, Kerstin S; Grosveld, Frank G
2016-01-01
The dynamic three-dimensional chromatin architecture of genomes and its co-evolutionary connection to its function-the storage, expression, and replication of genetic information-is still one of the central issues in biology. Here, we describe the much debated 3D architecture of the human and mouse genomes from the nucleosomal to the megabase pair level by a novel approach combining selective high-throughput high-resolution chromosomal interaction capture ( T2C ), polymer simulations, and scaling analysis of the 3D architecture and the DNA sequence. The genome is compacted into a chromatin quasi-fibre with ~5 ± 1 nucleosomes/11 nm, folded into stable ~30-100 kbp loops forming stable loop aggregates/rosettes connected by similar sized linkers. Minor but significant variations in the architecture are seen between cell types and functional states. The architecture and the DNA sequence show very similar fine-structured multi-scaling behaviour confirming their co-evolution and the above. This architecture, its dynamics, and accessibility, balance stability and flexibility ensuring genome integrity and variation enabling gene expression/regulation by self-organization of (in)active units already in proximity. Our results agree with the heuristics of the field and allow "architectural sequencing" at a genome mechanics level to understand the inseparable systems genomic properties.
Diao, Weiping; Snyder, John C.; Liu, Jinbing; Pan, Baogui; Guo, Guangjun; Ge, Wei; Dawood, Mohammad Hasan Salman Ali
2018-01-01
The NAM, ATAF1/2, and CUC2 (NAC) transcription factors form a large plant-specific gene family, which is involved in the regulation of tissue development in response to biotic and abiotic stress. To date, there have been no comprehensive studies investigating chromosomal location, gene structure, gene phylogeny, conserved motifs, or gene expression of NAC in pepper (Capsicum annuum L.). The recent release of the complete genome sequence of pepper allowed us to perform a genome-wide investigation of Capsicum annuum L. NAC (CaNAC) proteins. In the present study, a comprehensive analysis of the CaNAC gene family in pepper was performed, and a total of 104 CaNAC genes were identified. Genome mapping analysis revealed that CaNAC genes were enriched on four chromosomes (chromosomes 1, 2, 3, and 6). In addition, phylogenetic analysis of the NAC domains from pepper, potato, Arabidopsis, and rice showed that CaNAC genes could be clustered into three groups (I, II, and III). Group III, which contained 24 CaNAC genes, was exclusive to the Solanaceae plant family. Gene structure and protein motif analyses showed that these genes were relatively conserved within each subgroup. The number of introns in CaNAC genes varied from 0 to 8, with 83 (78.9%) of CaNAC genes containing two or less introns. Promoter analysis confirmed that CaNAC genes are involved in pepper growth, development, and biotic or abiotic stress responses. Further, the expression of 22 selected CaNAC genes in response to seven different biotic and abiotic stresses [salt, heat shock, drought, Phytophthora capsici, abscisic acid, salicylic acid (SA), and methyl jasmonate (MeJA)] was evaluated by quantitative RT-PCR to determine their stress-related expression patterns. Several putative stress-responsive CaNAC genes, including CaNAC72 and CaNAC27, which are orthologs of the known stress-responsive Arabidopsis gene ANAC055 and potato gene StNAC30, respectively, were highly regulated by treatment with different types of stress. Our results also showed that CaNAC36 plays an important role in the interaction network, interacting with 48 genes. Most of these genes are in the mitogen-activated protein kinase (MAPK) family. Taken together, our results provide a platform for further studies to identify the biological functions of CaNAC genes. PMID:29596349
Padilla-Sanchez, Victor; Gao, Song; Kim, Hyung Rae; Kihara, Daisuke; Sun, Lei; Rossmann, Michael G; Rao, Venigalla B
2014-03-06
Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special 5-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1, and P22 have been determined, their mechanistic roles have not been well understood. Structural analysis of phage T4 portal (gp20) has been hampered because of its unusual interaction with the Escherichia coli inner membrane. Here, we predict atomic models for the T4 portal monomer and dodecamer, and we fit the dodecamer into the cryo-electron microscopy density of the phage portal vertex. The core structure, like that from other phages, is cone shaped with the wider end containing the "wing" and "crown" domains inside the phage head. A long "stem" encloses a central channel, and a narrow "stalk" protrudes outside the capsid. A biochemical approach was developed to analyze portal function by incorporating plasmid-expressed portal protein into phage heads and determining the effect of mutations on head assembly, DNA translocation, and virion production. We found that the protruding loops of the stalk domain are involved in assembling the DNA packaging motor. A loop that connects the stalk to the channel might be required for communication between the motor and the portal. The "tunnel" loops that project into the channel are essential for sealing the packaged head. These studies established that the portal is required throughout the DNA packaging process, with different domains participating at different stages of genome packaging. © 2013.
Lewis, Tony E; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L; Buchan, Daniel W A; Chothia, Cyrus; Cuff, Alison; Dana, Jose M; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T; Kelley, Lawrence A; Kleywegt, Gerard J; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G; Ochoa-Montaño, Bernardo; Rackham, Owen J L; Smith, James; Sternberg, Michael J E; Velankar, Sameer; Yeats, Corin; Orengo, Christine
2013-01-01
Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).
Computational Methods to Predict Protein Interaction Partners
NASA Astrophysics Data System (ADS)
Valencia, Alfonso; Pazos, Florencio
In the new paradigm for studying biological phenomena represented by Systems Biology, cellular components are not considered in isolation but as forming complex networks of relationships. Protein interaction networks are among the first objects studied from this new point of view. Deciphering the interactome (the whole network of interactions for a given proteome) has been shown to be a very complex task. Computational techniques for detecting protein interactions have become standard tools for dealing with this problem, helping and complementing their experimental counterparts. Most of these techniques use genomic or sequence features intuitively related with protein interactions and are based on "first principles" in the sense that they do not involve training with examples. There are also other computational techniques that use other sources of information (i.e. structural information or even experimental data) or are based on training with examples.
Invertebrate Iridoviruses: A Glance over the Last Decade
Özcan, Orhan; Ilter-Akulke, Ayca Zeynep; Scully, Erin D.; Özgen, Arzu
2018-01-01
Members of the family Iridoviridae (iridovirids) are large dsDNA viruses that infect both invertebrate and vertebrate ectotherms and whose symptoms range in severity from minor reductions in host fitness to systemic disease and large-scale mortality. Several characteristics have been useful for classifying iridoviruses; however, novel strains are continuously being discovered and, in many cases, reliable classification has been challenging. Further impeding classification, invertebrate iridoviruses (IIVs) can occasionally infect vertebrates; thus, host range is often not a useful criterion for classification. In this review, we discuss the current classification of iridovirids, focusing on genomic and structural features that distinguish vertebrate and invertebrate iridovirids and viral factors linked to host interactions in IIV6 (Invertebrate iridescent virus 6). In addition, we show for the first time how complete genome sequences of viral isolates can be leveraged to improve classification of new iridovirid isolates and resolve ambiguous relations. Improved classification of the iridoviruses may facilitate the identification of genus-specific virulence factors linked with diverse host phenotypes and host interactions. PMID:29601483
Invertebrate Iridoviruses: A Glance over the Last Decade.
İnce, İkbal Agah; Özcan, Orhan; Ilter-Akulke, Ayca Zeynep; Scully, Erin D; Özgen, Arzu
2018-03-30
Members of the family Iridoviridae (iridovirids) are large dsDNA viruses that infect both invertebrate and vertebrate ectotherms and whose symptoms range in severity from minor reductions in host fitness to systemic disease and large-scale mortality. Several characteristics have been useful for classifying iridoviruses; however, novel strains are continuously being discovered and, in many cases, reliable classification has been challenging. Further impeding classification, invertebrate iridoviruses (IIVs) can occasionally infect vertebrates; thus, host range is often not a useful criterion for classification. In this review, we discuss the current classification of iridovirids, focusing on genomic and structural features that distinguish vertebrate and invertebrate iridovirids and viral factors linked to host interactions in IIV6 (Invertebrate iridescent virus 6). In addition, we show for the first time how complete genome sequences of viral isolates can be leveraged to improve classification of new iridovirid isolates and resolve ambiguous relations. Improved classification of the iridoviruses may facilitate the identification of genus-specific virulence factors linked with diverse host phenotypes and host interactions.
Luna-Zurita, Luis; Stirnimann, Christian U; Glatt, Sebastian; Kaynak, Bogac L; Thomas, Sean; Baudin, Florence; Samee, Md Abul Hassan; He, Daniel; Small, Eric M; Mileikovsky, Maria; Nagy, Andras; Holloway, Alisha K; Pollard, Katherine S; Müller, Christoph W; Bruneau, Benoit G
2016-02-25
Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.
A Method to Predict the Structure and Stability of RNA/RNA Complexes.
Xu, Xiaojun; Chen, Shi-Jie
2016-01-01
RNA/RNA interactions are essential for genomic RNA dimerization and regulation of gene expression. Intermolecular loop-loop base pairing is a widespread and functionally important tertiary structure motif in RNA machinery. However, computational prediction of intermolecular loop-loop base pairing is challenged by the entropy and free energy calculation due to the conformational constraint and the intermolecular interactions. In this chapter, we describe a recently developed statistical mechanics-based method for the prediction of RNA/RNA complex structures and stabilities. The method is based on the virtual bond RNA folding model (Vfold). The main emphasis in the method is placed on the evaluation of the entropy and free energy for the loops, especially tertiary kissing loops. The method also uses recursive partition function calculations and two-step screening algorithm for large, complicated structures of RNA/RNA complexes. As case studies, we use the HIV-1 Mal dimer and the siRNA/HIV-1 mutant (T4) to illustrate the method.
Bayesian peak picking for NMR spectra.
Cheng, Yichen; Gao, Xin; Liang, Faming
2014-02-01
Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein-DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method. Copyright © 2013. Production and hosting by Elsevier Ltd.
De Novo Chromosome Structure Prediction
NASA Astrophysics Data System (ADS)
di Pierro, Michele; Cheng, Ryan R.; Lieberman-Aiden, Erez; Wolynes, Peter G.; Onuchic, Jose'n.
Chromatin consists of DNA and hundreds of proteins that interact with the genetic material. In vivo, chromatin folds into nonrandom structures. The physical mechanism leading to these characteristic conformations, however, remains poorly understood. We recently introduced MiChroM, a model that generates chromosome conformations by using the idea that chromatin can be subdivided into types based on its biochemical interactions. Here we extend and complete our previous finding by showing that structural chromatin types can be inferred from ChIP-Seq data. Chromatin types, which are distinct from DNA sequence, are partially epigenetically controlled and change during cell differentiation, thus constituting a link between epigenetics, chromosomal organization, and cell development. We show that, for GM12878 lymphoblastoid cells we are able to predict accurate chromosome structures with the only input of genomic data. The degree of accuracy achieved by our prediction supports the viability of the proposed physical mechanism of chromatin folding and makes the computational model a powerful tool for future investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Men, Yujie; Yu, Ke; Bælum, Jacob
ABSTRACT The aim of this study is to obtain a systems-level understanding of the interactions betweenDehalococcoidesand corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in theVeillonellaceaebin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin wasmore » not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoidde novobiosynthesis pathway was also assigned to theVeillonellaceaebin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway ofDehalococcoideswas upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions. IMPORTANCEThe key chloroethene-dechlorinating bacteriumDehalococcoides mccartyiis a cobalamin auxotroph, thus acquiring corrinoids from other community members. Therefore, it is important to investigate the microbe-microbe interactions betweenDehalococcoidesand the corrinoid-providing microorganisms in a community. This study provides systems-level information, i.e., taxonomic and functional compositions and dynamics of the supportive microorganisms in dechlorinating communities under different cobalamin conditions. The findings shed light on the important roles ofVeillonellaceaespecies in the communities compared to other coexisting community members in producing and providing corrinoids forDehalococcoidesspecies under cobalamin-limited conditions.« less
Yu, Ke; Bælum, Jacob; Gao, Ying; Tremblay, Julien; Prestat, Emmanuel; Stenuit, Ben; Tringe, Susannah G.; Jansson, Janet; Zhang, Tong; Alvarez-Cohen, Lisa
2017-01-01
ABSTRACT The aim of this study is to obtain a systems-level understanding of the interactions between Dehalococcoides and corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in the Veillonellaceae bin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoid de novo biosynthesis pathway was also assigned to the Veillonellaceae bin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway of Dehalococcoides was upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions. IMPORTANCE The key chloroethene-dechlorinating bacterium Dehalococcoides mccartyi is a cobalamin auxotroph, thus acquiring corrinoids from other community members. Therefore, it is important to investigate the microbe-microbe interactions between Dehalococcoides and the corrinoid-providing microorganisms in a community. This study provides systems-level information, i.e., taxonomic and functional compositions and dynamics of the supportive microorganisms in dechlorinating communities under different cobalamin conditions. The findings shed light on the important roles of Veillonellaceae species in the communities compared to other coexisting community members in producing and providing corrinoids for Dehalococcoides species under cobalamin-limited conditions. PMID:28188205
McPhillips, M. G.; Oliveira, J. G.; Spindler, J. E.; Mitra, R.; McBride, A. A.
2006-01-01
Bromodomain protein 4 (Brd4) has been identified as the cellular binding target through which the E2 protein of bovine papillomavirus type 1 links the viral genome to mitotic chromosomes. This tethering ensures retention and efficient partitioning of genomes to daughter cells following cell division. E2 is also a regulator of viral gene expression and a replication factor, in association with the viral E1 protein. In this study, we show that E2 proteins from a wide range of papillomaviruses interact with Brd4, albeit with variations in efficiency. Moreover, disruption of the E2-Brd4 interaction abrogates the transactivation function of E2, indicating that Brd4 is required for E2-mediated transactivation of all papillomaviruses. However, the interaction of E2 and Brd4 is not required for genome partitioning of all papillomaviruses since a number of papillomavirus E2 proteins associate with mitotic chromosomes independently of Brd4 binding. Furthermore, mutations in E2 that disrupt the interaction with Brd4 do not affect the ability of these E2s to associate with chromosomes. Thus, while all papillomaviruses attach their genomes to cellular chromosomes to facilitate genome segregation, they target different cellular binding partners. In summary, the E2 proteins from many papillomaviruses, including the clinically important alpha genus human papillomaviruses, interact with Brd4 to mediate transcriptional activation function but not all depend on this interaction to efficiently associate with mitotic chromosomes. PMID:16973557
Frost, Jennifer M; Kim, M Yvonne; Park, Guen Tae; Hsieh, Ping-Hung; Nakamura, Miyuki; Lin, Samuel J H; Yoo, Hyunjin; Choi, Jaemyung; Ikeda, Yoko; Kinoshita, Tetsu; Choi, Yeonhee; Zilberman, Daniel; Fischer, Robert L
2018-05-15
The DEMETER (DME) DNA glycosylase catalyzes genome-wide DNA demethylation and is required for endosperm genomic imprinting and embryo viability. Targets of DME-mediated DNA demethylation reside in small, euchromatic, AT-rich transposons and at the boundaries of large transposons, but how DME interacts with these diverse chromatin states is unknown. The STRUCTURE SPECIFIC RECOGNITION PROTEIN 1 (SSRP1) subunit of the chromatin remodeler FACT (facilitates chromatin transactions), was previously shown to be involved in the DME-dependent regulation of genomic imprinting in Arabidopsis endosperm. Therefore, to investigate the interaction between DME and chromatin, we focused on the activity of the two FACT subunits, SSRP1 and SUPPRESSOR of TY16 (SPT16), during reproduction in Arabidopsis We found that FACT colocalizes with nuclear DME in vivo, and that DME has two classes of target sites, the first being euchromatic and accessible to DME, but the second, representing over half of DME targets, requiring the action of FACT for DME-mediated DNA demethylation genome-wide. Our results show that the FACT-dependent DME targets are GC-rich heterochromatin domains with high nucleosome occupancy enriched with H3K9me2 and H3K27me1. Further, we demonstrate that heterochromatin-associated linker histone H1 specifically mediates the requirement for FACT at a subset of DME-target loci. Overall, our results demonstrate that FACT is required for DME targeting by facilitating its access to heterochromatin. Copyright © 2018 the Author(s). Published by PNAS.
Predicting ecological roles in the rhizosphere using metabolome and transportome modeling
Larsen, Peter E.; Collart, Frank R.; Dai, Yang; ...
2015-09-02
The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. New algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter ofmore » plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less
Predicting Ecological Roles in the Rhizosphere Using Metabolome and Transportome Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Peter E.; Collart, Frank R.; Dai, Yang
2015-09-02
The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. However, new algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad's ecological role in the rhizosphere: a biofilm, biocontrol agent, promotermore » of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism's transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less
GeneWiz browser: An Interactive Tool for Visualizing Sequenced Chromosomes.
Hallin, Peter F; Stærfeldt, Hans-Henrik; Rotenberg, Eva; Binnewies, Tim T; Benham, Craig J; Ussery, David W
2009-09-25
We present an interactive web application for visualizing genomic data of prokaryotic chromosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as mapping alignments of homologous genes to other genomes, mapping of short sequencing reads to a reference chromosome, and calculating DNA properties such as curvature or stacking energy along the chromosome. The GeneWiz browser produces an interactive graphic that enables zooming from a global scale down to single nucleotides, without changing the size of the plot. Its ability to disproportionally zoom provides optimal readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot allowing, for example, visualization of gene expression and regulation data. Further, standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. Supplemental material including interactive atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/.
Kim, Tae Hoon; Dekker, Job
2018-05-01
ChIP-chip can be used to analyze protein-DNA interactions in a region-wide and genome-wide manner. DNA microarrays contain PCR products or oligonucleotide probes that are designed to represent genomic sequences. Identification of genomic sites that interact with a specific protein is based on competitive hybridization of the ChIP-enriched DNA and the input DNA to DNA microarrays. The ChIP-chip protocol can be divided into two main sections: Amplification of ChIP DNA and hybridization of ChIP DNA to arrays. A large amount of DNA is required to hybridize to DNA arrays, and hybridization to a set of multiple commercial arrays that represent the entire human genome requires two rounds of PCR amplifications. The relative hybridization intensity of ChIP DNA and that of the input DNA is used to determine whether the probe sequence is a potential site of protein-DNA interaction. Resolution of actual genomic sites bound by the protein is dependent on the size of the chromatin and on the genomic distance between the probes on the array. As with expression profiling using gene chips, ChIP-chip experiments require multiple replicates for reliable statistical measure of protein-DNA interactions. © 2018 Cold Spring Harbor Laboratory Press.
Plastome-Genome Interactions Affect Plastid Transmission in Oenothera
Chiu, W. L.; Sears, B. B.
1993-01-01
Plastids of Oenothera, the evening primrose, can be transmitted to the progeny from both parents. In a constant nuclear background, the frequency of biparental plastid transmission is determined by the types of plastid genomes (plastomes) involved in the crosses. In this study, the impact of nuclear genomes on plastid inheritance was analyzed. In general, the transmission efficiency of each plastome correlated strongly with its compatibility with the nuclear genome of the progeny, suggesting that plastome-genome interactions can influence plastid transmission by affecting the efficiency of plastid multiplication after fertilization. Lower frequencies of plastid transmission from the paternal side were observed when the pollen had poor vigor due to an incompatible plastome-genome combination, indicating that plastome-genome interactions may also affect the input of plastids at fertilization. Parental traits that affect the process of fertilization can also have an impact on plastid transmission. Crosses using maternal parents with long styles or pollen with relatively low growth capacity resulted in reduced frequencies of paternal plastid transmission. These observations suggest that degeneration of pollen plastids may occur as the time interval between pollination and fertilization is lengthened. PMID:8462856
Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.
Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao
2016-04-01
To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.
NASA Astrophysics Data System (ADS)
Shakeel, Shabih; Westerhuis, Brenda M.; Domanska, Ausra; Koning, Roman I.; Matadeen, Rishi; Koster, Abraham J.; Bakker, Arjen Q.; Beaumont, Tim; Wolthers, Katja C.; Butcher, Sarah J.
2016-07-01
The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA-protein interactions and dissection of virus assembly on the basis of RNA nucleation.
Struct2Net: a web service to predict protein–protein interactions using a structure-based approach
Singh, Rohit; Park, Daniel; Xu, Jinbo; Hosur, Raghavendra; Berger, Bonnie
2010-01-01
Struct2Net is a web server for predicting interactions between arbitrary protein pairs using a structure-based approach. Prediction of protein–protein interactions (PPIs) is a central area of interest and successful prediction would provide leads for experiments and drug design; however, the experimental coverage of the PPI interactome remains inadequate. We believe that Struct2Net is the first community-wide resource to provide structure-based PPI predictions that go beyond homology modeling. Also, most web-resources for predicting PPIs currently rely on functional genomic data (e.g. GO annotation, gene expression, cellular localization, etc.). Our structure-based approach is independent of such methods and only requires the sequence information of the proteins being queried. The web service allows multiple querying options, aimed at maximizing flexibility. For the most commonly studied organisms (fly, human and yeast), predictions have been pre-computed and can be retrieved almost instantaneously. For proteins from other species, users have the option of getting a quick-but-approximate result (using orthology over pre-computed results) or having a full-blown computation performed. The web service is freely available at http://struct2net.csail.mit.edu. PMID:20513650
USDA-ARS?s Scientific Manuscript database
The foot-and-mouth disease virus (FMDV) contains a 5’ untranslated region (5’UTR) with multiple structural domains that regulate viral genome replication, translation, and virus-host interactions. At its 5’terminus, the S fragment of over 360 bp is predicted to form a stable stem-loop that is separ...
Deriving a Mutation Index of Carcinogenicity Using Protein Structure and Protein Interfaces
Hakas, Jarle; Pearl, Frances; Zvelebil, Marketa
2014-01-01
With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/. PMID:24454733
Inferring network structure in non-normal and mixed discrete-continuous genomic data.
Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran
2018-03-01
Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. © 2017, The International Biometric Society.
Inferring network structure in non-normal and mixed discrete-continuous genomic data
Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran
2017-01-01
Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. PMID:28437848
HCV RNA traffic and association with NS5A in living cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiches, Guillaume N.; Eyre, Nicholas S.; Aloia, Amanda L.
The spatiotemporal dynamics of Hepatitis C Virus (HCV) RNA localisation are poorly understood. To address this we engineered HCV genomes harbouring MS2 bacteriophage RNA stem-loops within the 3′-untranslated region to allow tracking of HCV RNA via specific interaction with a MS2-Coat-mCherry fusion protein. Despite the impact of these insertions on viral fitness, live imaging revealed that replication of tagged-HCV genomes induced specific redistribution of the mCherry-tagged-MS2-Coat protein to motile and static foci. Further analysis showed that HCV RNA was associated with NS5A in both static and motile structures while a subset of motile NS5A structures was devoid of HCV RNA.more » Further investigation of viral RNA traffic with respect to lipid droplets (LDs) revealed HCV RNA-positive structures in close association with LDs. These studies provide new insights into the dynamics of HCV RNA traffic with NS5A and LDs and provide a platform for future investigations of HCV replication and assembly. - Highlights: • HCV can tolerate can bacteriophage MS2 stem-loop insertions within the 3′ UTR. • MS2 stem-loop containing HCV genomes allow for real-time imaging of HCV RNA. • HCV RNA is both static and motile and associates with NS5A and lipid droplets.« less
A naturally occurring, noncanonical GTP aptamer made of simple tandem repeats
Curtis, Edward A; Liu, David R
2014-01-01
Recently, we used in vitro selection to identify a new class of naturally occurring GTP aptamer called the G motif. Here we report the discovery and characterization of a second class of naturally occurring GTP aptamer, the “CA motif.” The primary sequence of this aptamer is unusual in that it consists entirely of tandem repeats of CA-rich motifs as short as three nucleotides. Several active variants of the CA motif aptamer lack the ability to form consecutive Watson-Crick base pairs in any register, while others consist of repeats containing only cytidine and adenosine residues, indicating that noncanonical interactions play important roles in its structure. The circular dichroism spectrum of the CA motif aptamer is distinct from that of A-form RNA and other major classes of nucleic acid structures. Bioinformatic searches indicate that the CA motif is absent from most archaeal and bacterial genomes, but occurs in at least 70 percent of approximately 400 eukaryotic genomes examined. These searches also uncovered several phylogenetically conserved examples of the CA motif in rodent (mouse and rat) genomes. Together, these results reveal the existence of a second class of naturally occurring GTP aptamer whose sequence requirements, like that of the G motif, are not consistent with those of a canonical secondary structure. They also indicate a new and unexpected potential biochemical activity of certain naturally occurring tandem repeats. PMID:24824832
Paugh, Steven W.; Coss, David R.; Bao, Ju; ...
2016-02-04
MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10 -16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paugh, Steven W.; Coss, David R.; Bao, Ju
MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10 -16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, Chhavi; Savithri, Handanahal S., E-mail: bchss@biochem.iisc.ernet.in
2012-10-12
Highlights: Black-Right-Pointing-Pointer Pepper vein banding potyvirus VPg harbors Walker motifs. Black-Right-Pointing-Pointer VPg exhibits ATPase activity in the presence of NIa-Pro. Black-Right-Pointing-Pointer Plausible structural and functional interplay between VPg and NIa-Pro. Black-Right-Pointing-Pointer Functional relevance of prolonged presence of VPg-Pro during infection. -- Abstract: Potyviruses temporally regulate their protein function by polyprotein processing. Previous studies have shown that VPg (Viral Protein genome-linked) of Pepper vein banding virus interacts with the NIa-Pro (Nuclear Inclusion-a protease) domain, and modulates the kinetics of the protease. In the present study, we report for the first time that VPg harbors the Walker motifs A and B, andmore » the presence of NIa-Pro, especially in cis (cleavage site (E191A) VPg-Pro mutant), is essential for manifestation of the ATPase activity. Mutation of Lys47 (Walker motif A) and Asp88:Glu89 (Walker motif B) to alanine in E191A VPg-Pro lead to reduced ATPase activity, confirming that this activity was inherent to VPg. We propose that potyviral VPg, established as an intrinsically disordered domain, undergoes plausible structural alterations upon interaction with globular NIa-Pro which induces the ATPase activity.« less
Kalloush, Rawan M; Vivet-Boudou, Valérie; Ali, Lizna M; Mustafa, Farah; Marquet, Roland; Rizvi, Tahir A
2016-06-01
MPMV has great potential for development as a vector for gene therapy. In this respect, precisely defining the sequences and structural motifs that are important for dimerization and packaging of its genomic RNA (gRNA) are of utmost importance. A distinguishing feature of the MPMV gRNA packaging signal is two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences, LRI-I and LRI-II. To test their biological significance in the MPMV life cycle, we introduced mutations into these structural motifs and tested their effects on MPMV gRNA packaging and propagation. Furthermore, we probed the structure of key mutants using SHAPE (selective 2'hydroxyl acylation analyzed by primer extension). Disrupting base-pairing of the LRIs affected gRNA packaging and propagation, demonstrating their significance to the MPMV life cycle. A double mutant restoring a heterologous LRI-I was fully functional, whereas a similar LRI-II mutant failed to restore gRNA packaging and propagation. These results demonstrate that while LRI-I acts at the structural level, maintaining base-pairing is not sufficient for LRI-II function. In addition, in vitro RNA dimerization assays indicated that the loss of RNA packaging in LRI mutants could not be attributed to the defects in dimerization. Our findings suggest that U5-gag LRIs play an important architectural role in maintaining the structure of the 5' region of the MPMV gRNA, expanding the crucial role of LRIs to the nonlentiviral group of retroviruses. © 2016 Kalloush et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
LOLAweb: a containerized web server for interactive genomic locus overlap enrichment analysis.
Nagraj, V P; Magee, Neal E; Sheffield, Nathan C
2018-06-06
The past few years have seen an explosion of interest in understanding the role of regulatory DNA. This interest has driven large-scale production of functional genomics data and analytical methods. One popular analysis is to test for enrichment of overlaps between a query set of genomic regions and a database of region sets. In this way, new genomic data can be easily connected to annotations from external data sources. Here, we present an interactive interface for enrichment analysis of genomic locus overlaps using a web server called LOLAweb. LOLAweb accepts a set of genomic ranges from the user and tests it for enrichment against a database of region sets. LOLAweb renders results in an R Shiny application to provide interactive visualization features, enabling users to filter, sort, and explore enrichment results dynamically. LOLAweb is built and deployed in a Linux container, making it scalable to many concurrent users on our servers and also enabling users to download and run LOLAweb locally.
From genes to genomes: a new paradigm for studying fungal pathogenesis in Magnaporthe oryzae.
Xu, Jin-Rong; Zhao, Xinhua; Dean, Ralph A
2007-01-01
Magnaporthe oryzae is the most destructive fungal pathogen of rice worldwide and because of its amenability to classical and molecular genetic manipulation, availability of a genome sequence, and other resources it has emerged as a leading model system to study host-pathogen interactions. This chapter reviews recent progress toward elucidation of the molecular basis of infection-related morphogenesis, host penetration, invasive growth, and host-pathogen interactions. Related information on genome analysis and genomic studies of plant infection processes is summarized under specific topics where appropriate. Particular emphasis is placed on the role of MAP kinase and cAMP signal transduction pathways and unique features in the genome such as repetitive sequences and expanded gene families. Emerging developments in functional genome analysis through large-scale insertional mutagenesis and gene expression profiling are detailed. The chapter concludes with new prospects in the area of systems biology, such as protein expression profiling, and highlighting remaining crucial information needed to fully appreciate host-pathogen interactions.
Mansuroglu, Z; Josse, T; Gilleron, J; Billecocq, A; Leger, P; Bouloy, M; Bonnefoy, E
2010-01-01
Rift Valley fever virus (RVFV) is an emerging, highly pathogenic virus; RVFV infection can lead to encephalitis, retinitis, or fatal hepatitis associated with hemorrhagic fever in humans, as well as death, abortions, and fetal deformities in animals. RVFV nonstructural NSs protein, a major factor of the virulence, forms filamentous structures in the nuclei of infected cells. In order to further understand RVFV pathology, we investigated, by chromatin immunoprecipitation, immunofluorescence, fluorescence in situ hybridization, and confocal microscopy, the capacity of NSs to interact with the host genome. Our results demonstrate that even though cellular DNA is predominantly excluded from NSs filaments, NSs interacts with some specific DNA regions of the host genome such as clusters of pericentromeric gamma-satellite sequence. Targeting of these sequences by NSs was correlated with the induction of chromosome cohesion and segregation defects in RVFV-infected murine, as well as sheep cells. Using recombinant nonpathogenic virus rZHDeltaNSs210-230, expressing a NSs protein deleted of its region of interaction with cellular factor SAP30, we showed that the NSs-SAP30 interaction was essential for NSs to target pericentromeric sequences, as well as for induction of chromosome segregation defects. The effect of RVFV upon the inheritance of genetic information is discussed with respect to the pathology associated with fetal deformities and abortions, highlighting the main role played by cellular cofactor SAP30 on the establishment of NSs interactions with host DNA sequences and RVFV pathogenesis.
Mookerjee, Shona A; Sia, Elaine A
2006-03-20
The mechanisms that govern mutation avoidance in the mitochondrial genome, though believed to be numerous, are poorly understood. The identification of individual genes has implicated mismatch repair and several recombination pathways in maintaining the fidelity and structural stability of mitochondrial DNA. However, the majority of genes in these pathways have not been identified and the interactions between different pathways have not been extensively studied. Additionally, the multicopy presence of the mitochondrial genome affects the occurrence and persistence of mutant phenotypes, making mitochondrial DNA transmission and sorting important factors affecting mutation accumulation. We present new evidence that the putative recombination genes CCE1, DIN7, and MHR1 have overlapping function with the mismatch repair homolog MSH1 in point mutation avoidance and suppression of aberrant recombination events. In addition, we demonstrate a novel role for Msh1p in mtDNA transmission, a role not predicted by studies of its nuclear homologs.
Miras, Manuel; Rodríguez-Hernández, Ana M; Romero-López, Cristina; Berzal-Herranz, Alfredo; Colchero, Jaime; Aranda, Miguel A; Truniger, Verónica
2018-01-01
In eukaryotes, the formation of a 5'-cap and 3'-poly(A) dependent protein-protein bridge is required for translation of its mRNAs. In contrast, several plant virus RNA genomes lack both of these mRNA features, but instead have a 3'-CITE (for cap-independent translation enhancer), a RNA element present in their 3'-untranslated region that recruits translation initiation factors and is able to control its cap-independent translation. For several 3'-CITEs, direct RNA-RNA long-distance interactions based on sequence complementarity between the 5'- and 3'-ends are required for efficient translation, as they bring the translation initiation factors bound to the 3'-CITE to the 5'-end. For the carmovirus melon necrotic spot virus (MNSV), a 3'-CITE has been identified, and the presence of its 5'-end in cis has been shown to be required for its activity. Here, we analyze the secondary structure of the 5'-end of the MNSV RNA genome and identify two highly conserved nucleotide sequence stretches that are complementary to the apical loop of its 3'-CITE. In in vivo cap-independent translation assays with mutant constructs, by disrupting and restoring sequence complementarity, we show that the interaction between the 3'-CITE and at least one complementary sequence in the 5'-end is essential for virus RNA translation, although efficient virus translation and multiplication requires both connections. The complementary sequence stretches are invariant in all MNSV isolates, suggesting that the dual 5'-3' RNA:RNA interactions are required for optimal MNSV cap-independent translation and multiplication.
Llauró, Aida; Luque, Daniel; Edwards, Ethan; Trus, Benes L.; Avera, John; Reguera, David; Douglas, Trevor
2016-01-01
Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers’ stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo–shell and cargo–cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo–cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers. PMID:27091107
Pan, Joshua; Meyers, Robin M; Michel, Brittany C; Mashtalir, Nazar; Sizemore, Ann E; Wells, Jonathan N; Cassel, Seth H; Vazquez, Francisca; Weir, Barbara A; Hahn, William C; Marsh, Joseph A; Tsherniak, Aviad; Kadoch, Cigall
2018-05-23
Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DNA Replication Origins and Fork Progression at Mammalian Telomeres
Higa, Mitsunori; Fujita, Masatoshi; Yoshida, Kazumasa
2017-01-01
Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions. PMID:28350373
Prospecting sugarcane resistance to Sugarcane yellow leaf virus by genome-wide association.
Debibakas, S; Rocher, S; Garsmeur, O; Toubi, L; Roques, D; D'Hont, A; Hoarau, J-Y; Daugrois, J H
2014-08-01
Using GWAS approaches, we detected independent resistant markers in sugarcane towards a vectored virus disease. Based on comparative genomics, several candidate genes potentially involved in virus/aphid/plant interactions were pinpointed. Yellow leaf of sugarcane is an emerging viral disease whose causal agent is a Polerovirus, the Sugarcane yellow leaf virus (SCYLV) transmitted by aphids. To identify quantitative trait loci controlling resistance to yellow leaf which are of direct relevance for breeding, we undertook a genome-wide association study (GWAS) on a sugarcane cultivar panel (n = 189) representative of current breeding germplasm. This panel was fingerprinted with 3,949 polymorphic markers (DArT and AFLP). The panel was phenotyped for SCYLV infection in leaves and stalks in two trials for two crop cycles, under natural disease pressure prevalent in Guadeloupe. Mixed linear models including co-factors representing population structure fixed effects and pairwise kinship random effects provided an efficient control of the risk of inflated type-I error at a genome-wide level. Six independent markers were significantly detected in association with SCYLV resistance phenotype. These markers explained individually between 9 and 14 % of the disease variation of the cultivar panel. Their frequency in the panel was relatively low (8-20 %). Among them, two markers were detected repeatedly across the GWAS exercises based on the different disease resistance parameters. These two markers could be blasted on Sorghum bicolor genome and candidate genes potentially involved in plant-aphid or plant-virus interactions were localized in the vicinity of sorghum homologs of sugarcane markers. Our results illustrate the potential of GWAS approaches to prospect among sugarcane germplasm for accessions likely bearing resistance alleles of significant effect useful in breeding programs.
Sung, Yun J; Winkler, Thomas W; de Las Fuentes, Lisa; Bentley, Amy R; Brown, Michael R; Kraja, Aldi T; Schwander, Karen; Ntalla, Ioanna; Guo, Xiuqing; Franceschini, Nora; Lu, Yingchang; Cheng, Ching-Yu; Sim, Xueling; Vojinovic, Dina; Marten, Jonathan; Musani, Solomon K; Li, Changwei; Feitosa, Mary F; Kilpeläinen, Tuomas O; Richard, Melissa A; Noordam, Raymond; Aslibekyan, Stella; Aschard, Hugues; Bartz, Traci M; Dorajoo, Rajkumar; Liu, Yongmei; Manning, Alisa K; Rankinen, Tuomo; Smith, Albert Vernon; Tajuddin, Salman M; Tayo, Bamidele O; Warren, Helen R; Zhao, Wei; Zhou, Yanhua; Matoba, Nana; Sofer, Tamar; Alver, Maris; Amini, Marzyeh; Boissel, Mathilde; Chai, Jin Fang; Chen, Xu; Divers, Jasmin; Gandin, Ilaria; Gao, Chuan; Giulianini, Franco; Goel, Anuj; Harris, Sarah E; Hartwig, Fernando Pires; Horimoto, Andrea R V R; Hsu, Fang-Chi; Jackson, Anne U; Kähönen, Mika; Kasturiratne, Anuradhani; Kühnel, Brigitte; Leander, Karin; Lee, Wen-Jane; Lin, Keng-Hung; 'an Luan, Jian; McKenzie, Colin A; Meian, He; Nelson, Christopher P; Rauramaa, Rainer; Schupf, Nicole; Scott, Robert A; Sheu, Wayne H H; Stančáková, Alena; Takeuchi, Fumihiko; van der Most, Peter J; Varga, Tibor V; Wang, Heming; Wang, Yajuan; Ware, Erin B; Weiss, Stefan; Wen, Wanqing; Yanek, Lisa R; Zhang, Weihua; Zhao, Jing Hua; Afaq, Saima; Alfred, Tamuno; Amin, Najaf; Arking, Dan; Aung, Tin; Barr, R Graham; Bielak, Lawrence F; Boerwinkle, Eric; Bottinger, Erwin P; Braund, Peter S; Brody, Jennifer A; Broeckel, Ulrich; Cabrera, Claudia P; Cade, Brian; Caizheng, Yu; Campbell, Archie; Canouil, Mickaël; Chakravarti, Aravinda; Chauhan, Ganesh; Christensen, Kaare; Cocca, Massimiliano; Collins, Francis S; Connell, John M; de Mutsert, Renée; de Silva, H Janaka; Debette, Stephanie; Dörr, Marcus; Duan, Qing; Eaton, Charles B; Ehret, Georg; Evangelou, Evangelos; Faul, Jessica D; Fisher, Virginia A; Forouhi, Nita G; Franco, Oscar H; Friedlander, Yechiel; Gao, He; Gigante, Bruna; Graff, Misa; Gu, C Charles; Gu, Dongfeng; Gupta, Preeti; Hagenaars, Saskia P; Harris, Tamara B; He, Jiang; Heikkinen, Sami; Heng, Chew-Kiat; Hirata, Makoto; Hofman, Albert; Howard, Barbara V; Hunt, Steven; Irvin, Marguerite R; Jia, Yucheng; Joehanes, Roby; Justice, Anne E; Katsuya, Tomohiro; Kaufman, Joel; Kerrison, Nicola D; Khor, Chiea Chuen; Koh, Woon-Puay; Koistinen, Heikki A; Komulainen, Pirjo; Kooperberg, Charles; Krieger, Jose E; Kubo, Michiaki; Kuusisto, Johanna; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lehne, Benjamin; Lewis, Cora E; Li, Yize; Lim, Sing Hui; Lin, Shiow; Liu, Ching-Ti; Liu, Jianjun; Liu, Jingmin; Liu, Kiang; Liu, Yeheng; Loh, Marie; Lohman, Kurt K; Long, Jirong; Louie, Tin; Mägi, Reedik; Mahajan, Anubha; Meitinger, Thomas; Metspalu, Andres; Milani, Lili; Momozawa, Yukihide; Morris, Andrew P; Mosley, Thomas H; Munson, Peter; Murray, Alison D; Nalls, Mike A; Nasri, Ubaydah; Norris, Jill M; North, Kari; Ogunniyi, Adesola; Padmanabhan, Sandosh; Palmas, Walter R; Palmer, Nicholette D; Pankow, James S; Pedersen, Nancy L; Peters, Annette; Peyser, Patricia A; Polasek, Ozren; Raitakari, Olli T; Renström, Frida; Rice, Treva K; Ridker, Paul M; Robino, Antonietta; Robinson, Jennifer G; Rose, Lynda M; Rudan, Igor; Sabanayagam, Charumathi; Salako, Babatunde L; Sandow, Kevin; Schmidt, Carsten O; Schreiner, Pamela J; Scott, William R; Seshadri, Sudha; Sever, Peter; Sitlani, Colleen M; Smith, Jennifer A; Snieder, Harold; Starr, John M; Strauch, Konstantin; Tang, Hua; Taylor, Kent D; Teo, Yik Ying; Tham, Yih Chung; Uitterlinden, André G; Waldenberger, Melanie; Wang, Lihua; Wang, Ya X; Wei, Wen Bin; Williams, Christine; Wilson, Gregory; Wojczynski, Mary K; Yao, Jie; Yuan, Jian-Min; Zonderman, Alan B; Becker, Diane M; Boehnke, Michael; Bowden, Donald W; Chambers, John C; Chen, Yii-Der Ida; de Faire, Ulf; Deary, Ian J; Esko, Tõnu; Farrall, Martin; Forrester, Terrence; Franks, Paul W; Freedman, Barry I; Froguel, Philippe; Gasparini, Paolo; Gieger, Christian; Horta, Bernardo Lessa; Hung, Yi-Jen; Jonas, Jost B; Kato, Norihiro; Kooner, Jaspal S; Laakso, Markku; Lehtimäki, Terho; Liang, Kae-Woei; Magnusson, Patrik K E; Newman, Anne B; Oldehinkel, Albertine J; Pereira, Alexandre C; Redline, Susan; Rettig, Rainer; Samani, Nilesh J; Scott, James; Shu, Xiao-Ou; van der Harst, Pim; Wagenknecht, Lynne E; Wareham, Nicholas J; Watkins, Hugh; Weir, David R; Wickremasinghe, Ananda R; Wu, Tangchun; Zheng, Wei; Kamatani, Yoichiro; Laurie, Cathy C; Bouchard, Claude; Cooper, Richard S; Evans, Michele K; Gudnason, Vilmundur; Kardia, Sharon L R; Kritchevsky, Stephen B; Levy, Daniel; O'Connell, Jeff R; Psaty, Bruce M; van Dam, Rob M; Sims, Mario; Arnett, Donna K; Mook-Kanamori, Dennis O; Kelly, Tanika N; Fox, Ervin R; Hayward, Caroline; Fornage, Myriam; Rotimi, Charles N; Province, Michael A; van Duijn, Cornelia M; Tai, E Shyong; Wong, Tien Yin; Loos, Ruth J F; Reiner, Alex P; Rotter, Jerome I; Zhu, Xiaofeng; Bierut, Laura J; Gauderman, W James; Caulfield, Mark J; Elliott, Paul; Rice, Kenneth; Munroe, Patricia B; Morrison, Alanna C; Cupples, L Adrienne; Rao, Dabeeru C; Chasman, Daniel I
2018-03-01
Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10 -8 ) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10 -8 ). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2). Copyright © 2018 American Society of Human Genetics. All rights reserved.
Chandra, Saket; Kazmi, Andaleeb Z; Ahmed, Zainab; Roychowdhury, Gargi; Kumari, Veena; Kumar, Manish; Mukhopadhyay, Kunal
2017-07-01
NB-ARC domain-containing resistance genes from the wheat genome were identified, characterized and localized on chromosome arms that displayed differential yet positive response during incompatible and compatible leaf rust interactions. Wheat (Triticum aestivum L.) is an important cereal crop; however, its production is affected severely by numerous diseases including rusts. An efficient, cost-effective and ecologically viable approach to control pathogens is through host resistance. In wheat, high numbers of resistance loci are present but only few have been identified and cloned. A comprehensive analysis of the NB-ARC-containing genes in complete wheat genome was accomplished in this study. Complete NB-ARC encoding genes were mined from the Ensembl Plants database to predict 604 NB-ARC containing sequences using the HMM approach. Genome-wide analysis of orthologous clusters in the NB-ARC-containing sequences of wheat and other members of the Poaceae family revealed maximum homology with Oryza sativa indica and Brachypodium distachyon. The identification of overlap between orthologous clusters enabled the elucidation of the function and evolution of resistance proteins. The distributions of the NB-ARC domain-containing sequences were found to be balanced among the three wheat sub-genomes. Wheat chromosome arms 4AL and 7BL had the most NB-ARC domain-containing contigs. The spatio-temporal expression profiling studies exemplified the positive role of these genes in resistant and susceptible wheat plants during incompatible and compatible interaction in response to the leaf rust pathogen Puccinia triticina. Two NB-ARC domain-containing sequences were modelled in silico, cloned and sequenced to analyze their fine structures. The data obtained in this study will augment isolation, characterization and application NB-ARC resistance genes in marker-assisted selection based breeding programs for improving rust resistance in wheat.
NASA Astrophysics Data System (ADS)
Pacheco, Ana Carolina L.; Araújo, Fabiana F.; Kamimura, Michel T.; Medeiros, Sarah R.; Viana, Daniel A.; Oliveira, Fátima de Cássia E.; Filho, Raimundo Araújo; Costa, Marcília P.; Oliveira, Diana M.
2007-11-01
For performing vital cellular processes, such as motility, eukaryotic cells rely on the actin cytoskeleton, whose structure and dynamics are tightly controlled by a large number of actin-interacting (AIP) or actin-related/regulating (ARP) proteins. Trypanosomatid protozoa, such as Leishmania, rely on their flagellum for motility and sensory reception, which are believed to allow parasite migration, adhesion, invasion and even persistence on mammalian host tissues to cause disease. Actin can determine cell stiffness and transmit force during mechanotransduction, cytokinesis, cell motility and other cellular shape changes, while the identification and analyses of AIPs can help to improve understanding of their mechanical properties on physiological architectures, such as the present case regarding Leishmania flagellar apparatus. This work conveniently apply bioinformatics tools in some refined pattern recognition techniques (such as hidden Markov models (HMMs) through the Viterbi algorithm/path) in order to improve the recognition of actin-binding/interacting activity through identification of AIPs in genomes, transcriptomes and proteomes of Leishmania species. We here report cofilin and twinfilin as putative components of the flagellar apparatus, a direct bioinformatics contribution in the secondary annotation of Leishmania and trypanosomatid genomes.
Architectural protein subclasses shape 3-D organization of genomes during lineage commitment
Phillips-Cremins, Jennifer E.; Sauria, Michael E. G.; Sanyal, Amartya; Gerasimova, Tatiana I.; Lajoie, Bryan R.; Bell, Joshua S. K.; Ong, Chin-Tong; Hookway, Tracy A.; Guo, Changying; Sun, Yuhua; Bland, Michael J.; Wagstaff, William; Dalton, Stephen; McDevitt, Todd C.; Sen, Ranjan; Dekker, Job; Taylor, James; Corces, Victor G.
2013-01-01
Summary Understanding the topological configurations of chromatin may reveal valuable insights into how the genome and epigenome act in concert to control cell fate during development. Here we generate high-resolution architecture maps across seven genomic loci in embryonic stem cells and neural progenitor cells. We observe a hierarchy of 3-D interactions that undergo marked reorganization at the sub-Mb scale during differentiation. Distinct combinations of CTCF, Mediator, and cohesin show widespread enrichment in looping interactions at different length scales. CTCF/cohesin anchor long-range constitutive interactions that form the topological basis for invariant sub-domains. Conversely, Mediator/cohesin together with pioneer factors bridge shortrange enhancer-promoter interactions within and between larger sub-domains. Knockdown of Smc1 or Med12 in ES cells results in disruption of spatial architecture and down-regulation of genes found in cohesin-mediated interactions. We conclude that cell type-specific chromatin organization occurs at the sub-Mb scale and that architectural proteins shape the genome in hierarchical length scales. PMID:23706625
Ron, Gil; Globerson, Yuval; Moran, Dror; Kaplan, Tommy
2017-12-21
Proximity-ligation methods such as Hi-C allow us to map physical DNA-DNA interactions along the genome, and reveal its organization into topologically associating domains (TADs). As the Hi-C data accumulate, computational methods were developed for identifying domain borders in multiple cell types and organisms. Here, we present PSYCHIC, a computational approach for analyzing Hi-C data and identifying promoter-enhancer interactions. We use a unified probabilistic model to segment the genome into domains, which we then merge hierarchically and fit using a local background model, allowing us to identify over-represented DNA-DNA interactions across the genome. By analyzing the published Hi-C data sets in human and mouse, we identify hundreds of thousands of putative enhancers and their target genes, and compile an extensive genome-wide catalog of gene regulation in human and mouse. As we show, our predictions are highly enriched for ChIP-seq and DNA accessibility data, evolutionary conservation, eQTLs and other DNA-DNA interaction data.
Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H
2014-11-19
Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.
Traore, Karim; Bull, Susan; Niare, Alassane; Konate, Salimata; Thera, Mahamadou A; Kwiatkowski, Dominic; Parker, Michael; Doumbo, Ogobara K
2015-06-16
Obtaining informed consent for participation in genomic research in low-income settings presents specific ethical issues requiring attention. These include the challenges that arise when providing information about unfamiliar and technical research methods, the implications of complicated infrastructure and data sharing requirements, and the potential consequences of future research with samples and data. This study investigated researchers' and participants' parents' experiences of a consent process and understandings of a genome-wide association study of malaria involving children aged five and under in Mali. It aimed to inform best practices in recruiting participants into genomic research. A qualitative rapid ethical assessment was undertaken. Fifty-five semi-structured interviews were conducted with the parents of research participants. An additional nine semi-structured interviews were conducted with senior research scientists, research assistants and with a member of an ethics committee. A focus group with five parents of research participants and direct observations of four consent processes were also conducted. French and translated English transcripts were descriptively and thematically coded using OpenCode software. Participants' parents in the MalariaGEN study had differing understandings of the causes of malaria, the rationale for collecting blood samples, the purposes of the study and the kinds of information the study would generate. Genomic aspects of the research, including the gene/environment interaction underlying susceptibility or resistance to severe malaria, proved particularly challenging to explain and understand. This study identifies a number of areas to be addressed in the design of consent processes for genomic research, some of which require careful ethical analysis. These include determining how much information should be provided about differing aspects of the research and how best to promote understandings of genomic research. We conclude that it is important to build capacity in the design and conduct of effective and appropriate consent processes for genomic research in low and middle-income settings. Additionally, consideration should be given to the role of review committees and community consultation activities in protecting the interests of participants in genomic research.
Comparative Phylogeography in a Specific and Obligate Pollination Antagonism
Espíndola, Anahí; Alvarez, Nadir
2011-01-01
In specific and obligate interactions the nature and abundance of a given species can have important effects on the survival and population dynamics of associated organisms. In a phylogeographic framework, we therefore expect that the fates of organisms interacting specifically are also tightly interrelated. Here we investigate such a scenario by analyzing the genetic structures of species interacting in an obligate plant-insect pollination lure-and-trap antagonism, involving Arum maculatum (Araceae) and its specific psychodid (Diptera) visitors Psychoda phalaenoides and Psycha grisescens. Because the interaction is asymmetric (i.e., only the plant depends on the insect), we expect the genetic structure of the plant to be related with the historical pollinator availability, yielding incongruent phylogeographic patterns between the interacting organisms. Using insect mtDNA sequences and plant AFLP genome fingerprinting, we inferred the large-scale phylogeographies of each species and the distribution of genetic diversities throughout the sampled range, and evaluated the congruence in their respective genetic structures using hierarchical analyses of molecular variances (AMOVA). Because the composition of pollinator species varies in Europe, we also examined its association with the spatial genetic structure of the plant. Our findings indicate that while the plant presents a spatially well-defined genetic structure, this is not the case in the insects. Patterns of genetic diversities also show dissimilar distributions among the three interacting species. Phylogeographic histories of the plant and its pollinating insects are thus not congruent, a result that would indicate that plant and insect lineages do not share the same glacial and postglacial histories. However, the genetic structure of the plant can, at least partially, be explained by the type of pollinators available at a regional scale. Differences in life-history traits of available pollinators might therefore have influenced the genetic structure of the plant, the dependent organism, in this antagonistic interaction. PMID:22216104
4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments.
Raviram, Ramya; Rocha, Pedro P; Müller, Christian L; Miraldi, Emily R; Badri, Sana; Fu, Yi; Swanzey, Emily; Proudhon, Charlotte; Snetkova, Valentina; Bonneau, Richard; Skok, Jane A
2016-03-01
4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait") that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.
4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments
Raviram, Ramya; Rocha, Pedro P.; Müller, Christian L.; Miraldi, Emily R.; Badri, Sana; Fu, Yi; Swanzey, Emily; Proudhon, Charlotte; Snetkova, Valentina
2016-01-01
4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or “bait”) that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes. PMID:26938081
Structural Genomics: Correlation Blocks, Population Structure, and Genome Architecture
Hu, Xin-Sheng; Yeh, Francis C.; Wang, Zhiquan
2011-01-01
An integration of the pattern of genome-wide inter-site associations with evolutionary forces is important for gaining insights into the genomic evolution in natural or artificial populations. Here, we assess the inter-site correlation blocks and their distributions along chromosomes. A correlation block is broadly termed as the DNA segment within which strong correlations exist between genetic diversities at any two sites. We bring together the population genetic structure and the genomic diversity structure that have been independently built on different scales and synthesize the existing theories and methods for characterizing genomic structure at the population level. We discuss how population structure could shape correlation blocks and their patterns within and between populations. Effects of evolutionary forces (selection, migration, genetic drift, and mutation) on the pattern of genome-wide correlation blocks are discussed. In eukaryote organisms, we briefly discuss the associations between the pattern of correlation blocks and genome assembly features in eukaryote organisms, including the impacts of multigene family, the perturbation of transposable elements, and the repetitive nongenic sequences and GC-rich isochores. Our reviews suggest that the observable pattern of correlation blocks can refine our understanding of the ecological and evolutionary processes underlying the genomic evolution at the population level. PMID:21886455
Accetto, Tomaž; Avguštin, Gorazd
2011-01-01
The Shine-Dalgarno (SD) sequence is a key element directing the translation to initiate at the authentic start codons and also enabling translation initiation to proceed in 5′ untranslated mRNA regions (5′-UTRs) containing moderately strong secondary structures. Bioinformatic analysis of almost forty genomes from the major bacterial phylum Bacteroidetes revealed, however, a general absence of SD sequence, drop in GC content and consequently reduced tendency to form secondary structures in 5′-UTRs. The experiments using the Prevotella bryantii TC1-1 expression system were in agreement with these findings: neither addition nor omission of SD sequence in the unstructured 5′-UTR affected the level of the reporter protein, non-specific nuclease NucB. Further, NucB level in P. bryantii TC1-1, contrary to hMGFP level in Escherichia coli, was five times lower when SD sequence formed part of the secondary structure with a folding energy -5,2 kcal/mol. Also, the extended SD sequences did not affect protein levels as in E. coli. It seems therefore that a functional SD interaction does not take place during the translation initiation in P. bryanttii TC1-1 and possibly other members of phylum Bacteroidetes although the anti SD sequence is present in 16S rRNA genes of their genomes. We thus propose that in the absence of the SD sequence interaction, the selection of genuine start codons in Bacteroidetes is accomplished by binding of ribosomal protein S1 to unstructured 5′-UTR as opposed to coding region which is inaccessible due to mRNA secondary structure. Additionally, we found that sequence logos of region preceding the start codons may be used as taxonomical markers. Depending on whether complete sequence logo or only part of it, such as information content and base proportion at specific positions, is used, bacterial genera or families and in some cases even bacterial phyla can be distinguished. PMID:21857964
Keaton, Jacob M; Gao, Chuan; Guan, Meijian; Hellwege, Jacklyn N; Palmer, Nicholette D; Pankow, James S; Fornage, Myriam; Wilson, James G; Correa, Adolfo; Rasmussen-Torvik, Laura J; Rotter, Jerome I; Chen, Yii-Der I; Taylor, Kent D; Rich, Stephen S; Wagenknecht, Lynne E; Freedman, Barry I; Ng, Maggie C Y; Bowden, Donald W
2018-04-24
Although type 2 diabetes (T2D) results from metabolic defects in insulin secretion and insulin sensitivity, most of the genetic risk loci identified to date relates to insulin secretion. We reported that T2D loci influencing insulin sensitivity may be identified through interactions with insulin secretion loci, thereby leading to T2D. Here, we hypothesize that joint testing of variant main effects and interaction effects with an insulin secretion locus increases power to identify genetic interactions leading to T2D. We tested this hypothesis with an intronic MTNR1B SNP, rs10830963, which is associated with acute insulin response to glucose, a dynamic measure of insulin secretion. rs10830963 was tested for interaction and joint (main + interaction) effects with genome-wide data in African Americans (2,452 cases and 3,772 controls) from five cohorts. Genome-wide genotype data (Affymetrix Human Genome 6.0 array) was imputed to a 1000 Genomes Project reference panel. T2D risk was modeled using logistic regression with rs10830963 dosage, age, sex, and principal component as predictors. Joint effects were captured using the Kraft two degrees of freedom test. Genome-wide significant (P < 5 × 10 -8 ) interaction with MTNR1B and joint effects were detected for CMIP intronic SNP rs17197883 (P interaction = 1.43 × 10 -8 ; P joint = 4.70 × 10 -8 ). CMIP variants have been nominally associated with T2D, fasting glucose, and adiponectin in individuals of East Asian ancestry, with high-density lipoprotein, and with waist-to-hip ratio adjusted for body mass index in Europeans. These data support the hypothesis that additional genetic factors contributing to T2D risk, including insulin sensitivity loci, can be identified through interactions with insulin secretion loci. © 2018 WILEY PERIODICALS, INC.
Smith, Jennifer A; Zhao, Wei; Yasutake, Kalyn; August, Carmella; Ratliff, Scott M; Faul, Jessica D; Boerwinkle, Eric; Chakravarti, Aravinda; Diez Roux, Ana V; Gao, Yan; Griswold, Michael E; Heiss, Gerardo; Kardia, Sharon L R; Morrison, Alanna C; Musani, Solomon K; Mwasongwe, Stanford; North, Kari E; Rose, Kathryn M; Sims, Mario; Sun, Yan V; Weir, David R; Needham, Belinda L
2017-12-18
Inter-individual variability in blood pressure (BP) is influenced by both genetic and non-genetic factors including socioeconomic and psychosocial stressors. A deeper understanding of the gene-by-socioeconomic/psychosocial factor interactions on BP may help to identify individuals that are genetically susceptible to high BP in specific social contexts. In this study, we used a genomic region-based method for longitudinal analysis, Longitudinal Gene-Environment-Wide Interaction Studies (LGEWIS), to evaluate the effects of interactions between known socioeconomic/psychosocial and genetic risk factors on systolic and diastolic BP in four large epidemiologic cohorts of European and/or African ancestry. After correction for multiple testing, two interactions were significantly associated with diastolic BP. In European ancestry participants, outward/trait anger score had a significant interaction with the C10orf107 genomic region ( p = 0.0019). In African ancestry participants, depressive symptom score had a significant interaction with the HFE genomic region ( p = 0.0048). This study provides a foundation for using genomic region-based longitudinal analysis to identify subgroups of the population that may be at greater risk of elevated BP due to the combined influence of genetic and socioeconomic/psychosocial risk factors.
Zhang, Qingzhu; Wang, Dong; Lang, Zhaobo; He, Li; Yang, Lan; Zeng, Liang; Li, Yanqiang; Zhao, Cheng; Huang, Huan; Zhang, Heng; Zhang, Huiming; Zhu, Jian-Kang
2016-01-01
DNA methylation is a conserved epigenetic mark in plants and many animals. How parental alleles interact in progeny to influence the epigenome is poorly understood. We analyzed the DNA methylomes of Arabidopsis Col and C24 ecotypes, and their hybrid progeny. Hybrids displayed nonadditive DNA methylation levels, termed methylation interactions, throughout the genome. Approximately 2,500 methylation interactions occurred at regions where parental DNA methylation levels are similar, whereas almost 1,000 were at differentially methylated regions in parents. Methylation interactions were characterized by an abundance of 24-nt small interfering RNAs. Furthermore, dysfunction of the RNA-directed DNA methylation pathway abolished methylation interactions but did not affect the increased biomass observed in hybrid progeny. Methylation interactions correlated with altered genetic variation within the genome, suggesting that they may play a role in genome evolution. PMID:27382183
Complex multi-enhancer contacts captured by Genome Architecture Mapping (GAM)
Beagrie, Robert A.; Scialdone, Antonio; Schueler, Markus; Kraemer, Dorothee C.A.; Chotalia, Mita; Xie, Sheila Q.; Barbieri, Mariano; de Santiago, Inês; Lavitas, Liron-Mark; Branco, Miguel R.; Fraser, James; Dostie, Josée; Game, Laurence; Dillon, Niall; Edwards, Paul A.W.; Nicodemi, Mario; Pombo, Ana
2017-01-01
Summary The organization of the genome in the nucleus and the interactions of genes with their regulatory elements are key features of transcriptional control and their disruption can cause disease. We developed a novel genome-wide method, Genome Architecture Mapping (GAM), for measuring chromatin contacts, and other features of three-dimensional chromatin topology, based on sequencing DNA from a large collection of thin nuclear sections. We apply GAM to mouse embryonic stem cells and identify an enrichment for specific interactions between active genes and enhancers across very large genomic distances, using a mathematical model ‘SLICE’ (Statistical Inference of Co-segregation). GAM also reveals an abundance of three-way contacts genome-wide, especially between regions that are highly transcribed or contain super-enhancers, highlighting a previously inaccessible complexity in genome architecture and a major role for gene-expression specific contacts in organizing the genome in mammalian nuclei. PMID:28273065
Mitochondrial health, the epigenome and healthspan
Aon, Miguel A.; Cortassa, Sonia; Juhaszova, Magdalena; Sollott, Steven J.
2016-01-01
Food nutrients and metabolic supply-demand dynamics constitute environmental factors that interact with our genome influencing health and disease states. These gene–environment interactions converge at the metabolic-epigenome-genome axis to regulate gene expression and phenotypic outcomes. Mounting evidence indicates that nutrients and lifestyle strongly influence genome-metabolic functional interactions determining disease via altered epigenetic regulation. The mitochondrial network is a central player of the metabolic-epigenome-genome axis, regulating the level of key metabolites (NAD+, AcCoA, ATP) acting as substrates/cofactors for acetyl transferases, kinases (e.g., protein kinase A), deacetylases (e.g., sirtuins). The chromatin, an assembly of DNA and nucleoproteins, regulates the transcriptional process, acting at the epigenomic interface between metabolism and the genome. Within this framework, we review existing evidence showing that preservation of mitochondrial network function is directly involved in decreasing the rate of damage accumulation thus slowing aging and improving healthspan. PMID:27358026
Statistical physics of nucleosome positioning and chromatin structure
NASA Astrophysics Data System (ADS)
Morozov, Alexandre
2012-02-01
Genomic DNA is packaged into chromatin in eukaryotic cells. The fundamental building block of chromatin is the nucleosome, a 147 bp-long DNA molecule wrapped around the surface of a histone octamer. Arrays of nucleosomes are positioned along DNA according to their sequence preferences and folded into higher-order chromatin fibers whose structure is poorly understood. We have developed a framework for predicting sequence-specific histone-DNA interactions and the effective two-body potential responsible for ordering nucleosomes into regular higher-order structures. Our approach is based on the analogy between nucleosomal arrays and a one-dimensional fluid of finite-size particles with nearest-neighbor interactions. We derive simple rules which allow us to predict nucleosome occupancy solely from the dinucleotide content of the underlying DNA sequences.Dinucleotide content determines the degree of stiffness of the DNA polymer and thus defines its ability to bend into the nucleosomal superhelix. As expected, the nucleosome positioning rules are universal for chromatin assembled in vitro on genomic DNA from baker's yeast and from the nematode worm C.elegans, where nucleosome placement follows intrinsic sequence preferences and steric exclusion. However, the positioning rules inferred from in vivo C.elegans chromatin are affected by global nucleosome depletion from chromosome arms relative to central domains, likely caused by the attachment of the chromosome arms to the nuclear membrane. Furthermore, intrinsic nucleosome positioning rules are overwritten in transcribed regions, indicating that chromatin organization is actively managed by the transcriptional and splicing machinery.
Circularization of the HIV-1 genome facilitates strand transfer during reverse transcription
Beerens, Nancy; Kjems, Jørgen
2010-01-01
Two obligatory DNA strand transfers take place during reverse transcription of a retroviral RNA genome. The first strand transfer involves a jump from the 5′ to the 3′ terminal repeat (R) region positioned at each end of the viral genome. The process depends on base pairing between the cDNA synthesized from the 5′ R region and the 3′ R RNA. The tertiary conformation of the viral RNA genome may facilitate strand transfer by juxtaposing the 5′ R and 3′ R sequences that are 9 kb apart in the linear sequence. In this study, RNA sequences involved in an interaction between the 5′ and 3′ ends of the HIV-1 genome were mapped by mutational analysis. This interaction appears to be mediated mainly by a sequence in the extreme 3′ end of the viral genome and in the gag open reading frame. Mutation of 3′ R sequences was found to inhibit the 5′–3′ interaction, which could be restored by a complementary mutation in the 5′ gag region. Furthermore, we find that circularization of the HIV-1 genome does not affect the initiation of reverse transcription, but stimulates the first strand transfer during reverse transcription in vitro, underscoring the functional importance of the interaction. PMID:20430859
Structural systems pharmacology: a new frontier in discovering novel drug targets.
Tan, Hepan; Ge, Xiaoxia; Xie, Lei
2013-08-01
The modern target-based drug discovery process, characterized by the one-drug-one-gene paradigm, has been of limited success. In contrast, phenotype-based screening produces thousands of active compounds but gives no hint as to what their molecular targets are or which ones merit further research. This presents a question: What is a suitable target for an efficient and safe drug? In this paper, we argue that target selection should take into account the proteome-wide energetic and kinetic landscape of drug-target interactions, as well as their cellular and organismal consequences. We propose a new paradigm of structural systems pharmacology to deconvolute the molecular targets of successful drugs as well as to identify druggable targets and their drug-like binders. Here we face two major challenges in structural systems pharmacology: How do we characterize and analyze the structural and energetic origins of drug-target interactions on a proteome scale? How do we correlate the dynamic molecular interactions to their in vivo activity? We will review recent advances in developing new computational tools for biophysics, bioinformatics, chemoinformatics, and systems biology related to the identification of genome-wide target profiles. We believe that the integration of these tools will realize structural systems pharmacology, enabling us to both efficiently develop effective therapeutics for complex diseases and combat drug resistance.
Regulation of Flavivirus RNA synthesis and replication
Selisko, Barbara; Wang, Chunling; Harris, Eva; Canard, Bruno
2014-01-01
RNA synthesis and replication of the members of the Flavivirus genus (including dengue, West Nile and Japanese encephalitis viruses) is regulated by a wide variety of mechanisms and actors. These include the sequestration of the RNA-dependent RNA polymerase (RdRp) for functions other than RNA synthesis, regulatory interactions with other viral and host proteins within the replication complex (RC), and regulatory elements within the RNA genome itself. In this review, we discuss our current knowledge of the multiple levels at which Flavivirus RNA synthesis is controlled. We aim to bring together two active research fields: the structural and functional biology of individual proteins of the RC and the impressive wealth of knowledge acquired regarding the viral genomic RNA. PMID:25462437