Sample records for structure multiple layers

  1. Single-crystal micromachining using multiple fusion-bonded layers

    NASA Astrophysics Data System (ADS)

    Brown, Alan; O'Neill, Garry; Blackstone, Scott C.

    2000-08-01

    Multi-layer structures have been fabricated using Fusion bonding. The paper shows void free layers of between 2 and 100 microns that have been bonded to form multi-layer structures. Silicon layers have been bonded both with and without interfacial oxide layers.

  2. Highly efficient organic light-emitting diodes with a quantum dot interfacial layer.

    PubMed

    Ryu, Seung Yoon; Hwang, Byoung Har; Park, Ki Wan; Hwang, Hyeon Seok; Sung, Jin Woo; Baik, Hong Koo; Lee, Chang Ho; Song, Seung Yong; Lee, Jun Yeob

    2009-02-11

    Advanced organic light-emitting diodes (OLEDs), based on a multiple structure, were achieved in combination with a quantum dot (QD) interfacial layer. The authors used core/shell CdSe/ZnS QDs passivated with trioctylphosphine oxide (TOPO) and TOPO-free QDs as interlayers. Multiple-structure OLEDs (MOLEDs) with TOPO-free QDs showed higher device efficiency because of a well-defined interfacial monolayer formation. Additionally, the three-unit MOLED showed high performance for device efficiency with double-structured QD interfacial layers due to the enhanced charge balance and recombination probability.

  3. Ge/graded-SiGe multiplication layers for low-voltage and low-noise Ge avalanche photodiodes on Si

    NASA Astrophysics Data System (ADS)

    Miyasaka, Yuji; Hiraki, Tatsurou; Okazaki, Kota; Takeda, Kotaro; Tsuchizawa, Tai; Yamada, Koji; Wada, Kazumi; Ishikawa, Yasuhiko

    2016-04-01

    A new structure is examined for low-voltage and low-noise Ge-based avalanche photodiodes (APDs) on Si, where a Ge/graded-SiGe heterostructure is used as the multiplication layer of a separate-absorption-carrier-multiplication structure. The Ge/SiGe heterojunction multiplication layer is theoretically shown to be useful for preferentially enhancing impact ionization for photogenerated holes injected from the Ge optical-absorption layer via the graded SiGe, reflecting the valence band discontinuity at the Ge/SiGe interface. This property is effective not only for the reduction of operation voltage/electric field strength in Ge-based APDs but also for the reduction of excess noise resulting from the ratio of the ionization coefficients between electrons and holes being far from unity. Such Ge/graded-SiGe heterostructures are successfully fabricated by ultrahigh-vacuum chemical vapor deposition. Preliminary pin diodes having a Ge/graded-SiGe multiplication layer act reasonably as photodetectors, showing a multiplication gain larger than those for diodes without the Ge/SiGe heterojunction.

  4. On Multiple-Layered Vortices

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2011-01-01

    As part of an ongoing effort to find ways to make vortex flow fields decompose more quickly, photographs and observations are presented of vortex flow fields that indicate the presence of multiple layers of fluid rotating about a common axis. A survey of the literature indicates that multiple-layered vortices form in waterspouts, tornadoes and lift-generated vortices of aircraft. An explanation for the appearance of multiple-layered structures in vortices is suggested. The observations and data presented are intended to improve the understanding of the formation and persistence of vortex flow fields.

  5. Distributed bragg reflector using AIGaN/GaN

    DOEpatents

    Waldrip, Karen E.; Lee, Stephen R.; Han, Jung

    2004-08-10

    A supported distributed Bragg reflector or superlattice structure formed from a substrate, a nucleation layer deposited on the substrate, and an interlayer deposited on the nucleation layer, followed by deposition of (Al,Ga,B)N layers or multiple pairs of (Al,Ga,B)N/(Al,Ga,B)N layers, where the interlayer is a material selected from AlN, Al.sub.x Ga.sub.1-x N, and AlBN with a thickness of approximately 20 to 1000 angstroms. The interlayer functions to reduce or eliminate the initial tensile growth stress, thereby reducing cracking in the structure. Multiple interlayers utilized in an AlGaN/GaN DBR structure can eliminate cracking and produce a structure with a reflectivity value greater than 0.99.

  6. Laboratory observation of multiple double layer resembling space plasma double layer

    NASA Astrophysics Data System (ADS)

    Alex, Prince; Arumugam, Saravanan; Sinha, Suraj

    2017-10-01

    Perceptible double layer consisting of more than one layers were produced in laboratory using a double discharge plasma setup. The confinement of oppositely charged particles in each layer with sharply defined luminous boarder is attributed to the self-organization scenario. This structure is generated in front of a positively biased electrode when the electron drift velocity (νd) exceeds 1.3 times the electron thermal velocity (νte) . Stable multiple double layer structures were observed only between 1.3 νte <=νd <= 3 νte. At νd = 1.3 νte, oscillations were excited in the form of large amplitude burst followed by a high frequency stable oscillation. Beyond νd = 3 νte, multiple double layer begins to collapse which is characterized by an emergence in turbulence. Long range dependence in the corresponding electrostatic potential fluctuations indicates the role of self-organized criticality in the emergence of turbulence. The algebraic decaying tale of the autocorrelation function and power law behavior in the power spectrum are consistent with the observation.

  7. Understanding the corrosion behavior of amorphous multiple-layer carbon coating

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Gao, Ying; Xu, Yongxian; Zhang, Renhui; Madkour, Loutfy H.; Yang, Yingchang

    2018-04-01

    The corrosion behavior of multiple-layer carbon coating that contained hydrogen, fluorine and silicon, possessed dual amorphous structure with sutured interfaces was investigated using potentiodynamic polarization and electrochemical impedances (ETS) in 3.5 wt.% NaCl solution. The coating exhibited good resistance to corrosion in 3.5 wt.% NaCl solution due to its amorphous and dense structures.

  8. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure.

    PubMed

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling

    2017-01-25

    This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas.

  9. Influence of Silver and Gold Nanoparticles and Thin Layers on Charge Carrier Generation in InGaN/GaN Multiple Quantum Well Structures and Crystalline Zinc Oxide Films

    NASA Astrophysics Data System (ADS)

    Mezdrogina, M. M.; Vinogradov, A. Ya.; Kozhanova, Yu. V.; Levitskii, V. S.

    2018-04-01

    It has been shown that Ag and Au nanoparticles and thin layers influence charge carrier generation in InGaN/GaN multiple quantum well structures and crystalline ZnO films owing to the surface morphology heterogeneity of the semiconductors. When nanoparticles 10 < d < 20 nm in size are applied on InGaN/GaN multiple quantum well structures with surface morphology less nonuniform than that of ZnO films, the radiation intensity has turned out to grow considerably because of a plasmon resonance with the participation of localized plasmons. The application of Ag or Au layers on the surface of the structures strongly attenuates the radiation. When Ag and Au nanoparticles are applied on crystalline ZnO films obtained by rf magnetron sputtering, the radiation intensity in the short-wavelength part of the spectrum increases insignificantly because of their highly heterogeneous surface morphology.

  10. Light Absorption Enhancement of Silicon-Based Photovoltaic Devices with Multiple Bandgap Structures of Porous Silicon

    PubMed Central

    Wu, Kuen-Hsien; Li, Chong-Wei

    2015-01-01

    Porous-silicon (PS) multi-layered structures with three stacked PS layers of different porosity were prepared on silicon (Si) substrates by successively tuning the electrochemical-etching parameters in an anodization process. The three PS layers have different optical bandgap energy and construct a triple-layered PS (TLPS) structure with multiple bandgap energy. Photovoltaic devices were fabricated by depositing aluminum electrodes of Schottky contacts on the surfaces of the developed TLPS structures. The TLPS-based devices exhibit broadband photoresponses within the spectrum of the solar irradiation and get high photocurrent for the incident light of a tungsten lamp. The improved spectral responses of devices are owing to the multi-bandgap structures of TLPS, which are designed with a layered configuration analog to a tandem cell for absorbing a wider energy range of the incidental sun light. The large photocurrent is mainly ascribed to an enhanced light-absorption ability as a result of applying nanoporous-Si thin films as the surface layers to absorb the short-wavelength light and to improve the Schottky contacts of devices. Experimental results reveal that the multi-bandgap PS structures produced from electrochemical-etching of Si wafers are potentially promising for development of highly efficient Si-based solar cells. PMID:28793542

  11. Effects of complex internal structures on rheology of multiple emulsions particles in 2D from a boundary integral method.

    PubMed

    Wang, Jingtao; Liu, Jinxia; Han, Junjie; Guan, Jing

    2013-02-08

    A boundary integral method is developed to investigate the effects of inner droplets and asymmetry of internal structures on rheology of two-dimensional multiple emulsion particles with arbitrary numbers of layers and droplets within each layer. Under a modest extensional flow, the number increment of layers and inner droplets, and the collision among inner droplets subject the particle to stronger shears. In addition, the coalescence or release of inner droplets changes the internal structure of the multiple emulsion particles. Since the rheology of such particles is sensitive to internal structures and their change, modeling them as the core-shell particles to obtain the viscosity equation of a single particle should be modified by introducing the time-dependable volume fraction Φ(t) of the core instead of the fixed Φ. An asymmetric internal structure induces an oriented contact and merging of the outer and inner interface. The start time of the interface merging is controlled by adjusting the viscosity ratio and enhancing the asymmetry, which is promising in the controlled release of inner droplets through hydrodynamics for targeted drug delivery.

  12. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows

    PubMed Central

    Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang

    2014-01-01

    Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing. PMID:25146672

  13. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows.

    PubMed

    Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang

    2014-08-22

    Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing.

  14. Structure of Protein Layers in Polyelectrolyte Matrices Studied by Neutron Reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlovskaya, Veronika; Ankner, John Francis; O'Neill, Hugh Michael

    2011-01-01

    Polyelectrolyte multilayer films obtained by localized incorporation of Green Fluorescent Protein (GFP) within electrostatically assembled matrices of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) via spin-assisted layer-by-layer growth were discovered to be highly structured, with closely packed monomolecular layers of the protein within the bio-hybrid films. The structure of the films was evaluated in both vertical and lateral directions with neutron reflectometry, using deuterated GFP as a marker for neutron scattering contrast. Importantly, the GFP preserves its structural stability upon assembly as confirmed by circular dichroism (CD) and in situ attenuated total reflection Fourier Transform Infrared spectroscopy (ATR-FTIR). Atomic force microscopy was complimentedmore » with X-ray reflectometry to characterize the external roughness of the biohybrid films. Remarkably, films assembled with a single GFP layer confined at various distances from the substrate exhibit a strong localization of the GFP layer without intermixing into the LbL matrix. However, partial intermixing of the GFP layers with polymeric material is evidenced in multiple-GFP layer films with alternating protein-rich and protein-deficient regions. We hypothesize that the polymer-protein exchange observed in the multiple-GFP layer films suggests the existence of a critical protein concentration which can be accommodated by the multilayer matrix. Our results yield new insights into the mechanism of GFP interaction with a polyelectrolyte matrix and open opportunities for fabrication of bio-hybrid films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.« less

  15. Millimeter-wave monolithic diode-grid frequency multiplier

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    A semiconductor diode structure useful for harmonic generation of millimeter or submillimeter wave radiation from a fundamental input wave is fabricated on a GaAs substrate. A heavily doped layer of n(sup ++) GaAs is produced on the substrate and then a layer of intrinsic GaAs on said heavily doped layer on top of which a sheet of heavy doping (++) is produced. A thin layer of intrinsic GaAs grown over the sheet is capped with two metal contacts separated by a gap to produce two diodes connected back to back through the n(sup ++) layer for multiplication of frequency by an odd multiple. If only one metal contact caps the thin layer of intrinsic GaAs, the second diode contact is produced to connect to the n(sup ++) layer for multiplication of frequency by an even number. The odd or even frequency multiple is selected by a filter. A phased array of diodes in a grid will increase the power of the higher frequency generated.

  16. Organometallic chemical vapor deposition and characterization of ZnGeP2/GaP multiple heterostructures on GaP substrates

    NASA Technical Reports Server (NTRS)

    Xing, G. C.; Bachmann, Klaus J.

    1993-01-01

    The growth of ZnGeP2/GaP double and multiple heterostructures on GaP substrates by organometallic chemical vapor deposition is reported. These epitaxial films were deposited at a temperature of 580 C using dimethylzinc, trimethylgallium, germane, and phosphine as source gases. With appropriate deposition conditions, mirror smooth epitaxial GaP/ZnGeP2 multiple heterostructures were obtained on (001) GaP substrates. Transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS) studies of the films showed that the interfaces are sharp and smooth. Etching study of the films showed dislocation density on the order of 5x10(exp 4)cm(sup -2). The growth rates of the GaP layers depend linearly on the flow rates of trimethylgallium. While the GaP layers crystallize in zinc-blende structure, the ZnGeP2 layers crystallize in the chalcopyrite structure as determined by (010) electron diffraction pattern. This is the first time that multiple heterostructures combining these two crystal structures were made.

  17. Fabrication of GaAs/Al0.3Ga0.7As multiple quantum well nanostructures on (100) si substrate using a 1-nm InAs relief layer.

    PubMed

    Oh, H J; Park, S J; Lim, J Y; Cho, N K; Song, J D; Lee, W; Lee, Y J; Myoung, J M; Choi, W J

    2014-04-01

    Nanometer scale thin InAs layer has been incorporated between Si (100) substrate and GaAs/Al0.3Ga0.7As multiple quantum well (MQW) nanostructure in order to reduce the defects generation during the growth of GaAs buffer layer on Si substrate. Observations based on atomic force microscopy (AFM) and transmission electron microscopy (TEM) suggest that initiation and propagation of defect at the Si/GaAs interface could be suppressed by incorporating thin (1 nm in thickness) InAs layer. Consequently, the microstructure and resulting optical properties improved as compared to the MQW structure formed directly on Si substrate without the InAs layer. It was also observed that there exists some limit to the desirable thickness of the InAs layer since the MQW structure having thicker InAs layer (4 nm-thick) showed deteriorated properties.

  18. Dynamics of multiple double layers in high pressure glow discharge in a simple torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar Paul, Manash, E-mail: manashkr@gmail.com; Sharma, P. K.; Thakur, A.

    2014-06-15

    Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presencemore » of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.« less

  19. Preparation and self-folding of amphiphilic DNA origami.

    PubMed

    Zhou, Chao; Wang, Dianming; Dong, Yuanchen; Xin, Ling; Sun, Yawei; Yang, Zhongqiang; Liu, Dongsheng

    2015-03-01

    Amphiphilic DNA origami is prepared by dressing multiple hydrophobic molecules on a rectangular single layer DNA origami, which is then folded or coupled in sandwich-like structures with two outer DNA origami layer and one inner hydrophobic molecules layer. The preference to form different kinds of structures could be tailored by rational design of DNA origami. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Silicon Alignment Pins: An Easy Way to Realize a Wafer-To-Wafer Alignment

    NASA Technical Reports Server (NTRS)

    Peralta, Alejandro (Inventor); Gill, John J. (Inventor); Toda, Risaku (Inventor); Lin, Robert H. (Inventor); Jung-Kubiak, Cecile (Inventor); Reck, Theodore (Inventor); Thomas, Bertrand (Inventor); Siles, Jose V. (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor)

    2016-01-01

    A silicon alignment pin is used to align successive layers of components made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.

  1. Radiative transfer in multilayered random medium with laminar structure - Green's function approach

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1986-01-01

    For a multilayered random medium with a laminar structure a Green's function approach is introduced to obtain the emitted intensity due to an arbitrary point source. It is then shown that the approach is applicable to both active and passive remote sensing. In active remote sensing, the computed radar backscattering cross section for the multilayered medium includes the effects of both volume multiple scattering and surface multiple scattering at the layer boundaries. In passive remote sensing, the brightness temperature is obtained for arbitrary temperature profiles in the layers. As an illustration the brightness temperature and reflectivity are calculated for a bounded layer and compared with results in the literature.

  2. Performance Dependences of Multiplication Layer Thickness for InP/InGaAs Avalanche Photodiodes Based on Time Domain Modeling

    NASA Technical Reports Server (NTRS)

    Xiao, Yegao; Bhat, Ishwara; Abedin, M. Nurul

    2005-01-01

    InP/InGaAs avalanche photodiodes (APDs) are being widely utilized in optical receivers for modern long haul and high bit-rate optical fiber communication systems. The separate absorption, grading, charge, and multiplication (SAGCM) structure is an important design consideration for APDs with high performance characteristics. Time domain modeling techniques have been previously developed to provide better understanding and optimize design issues by saving time and cost for the APD research and development. In this work, performance dependences on multiplication layer thickness have been investigated by time domain modeling. These performance characteristics include breakdown field and breakdown voltage, multiplication gain, excess noise factor, frequency response and bandwidth etc. The simulations are performed versus various multiplication layer thicknesses with certain fixed values for the areal charge sheet density whereas the values for the other structure and material parameters are kept unchanged. The frequency response is obtained from the impulse response by fast Fourier transformation. The modeling results are presented and discussed, and design considerations, especially for high speed operation at 10 Gbit/s, are further analyzed.

  3. Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics.

    PubMed

    Kim, Wansun; Lee, Inhwa; Yoon Kim, Dong; Yu, Youn-Yeol; Jung, Hae-Yoon; Kwon, Seyeoul; Seo Park, Weon; Kim, Taek-Soo

    2017-05-12

    To protect brittle layers in organic photovoltaic devices, the mechanical neutral plane strategy can be adopted through placing the brittle functional materials close to the neutral plane where stress and strain are zero during bending. However, previous research has been significantly limited in the location and number of materials to protect through using a single neutral plane. In this study, multiple neutral planes are generated using low elastic modulus adhesives and are controlled through quantitative analyses in order to protect the multiple brittle materials at various locations. Moreover, the protection of multiple brittle layers at various locations under both concave and convex bending directions is demonstrated. Multilayer structures that have soft adhesives are further analyzed using the finite element method analysis in order to propose guidelines for structural design when employing multiple neutral planes.

  4. Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography.

    PubMed

    Yuan, Liang Leon; Herman, Peter R

    2015-12-21

    A multi-level nanophotonic structure is a major goal in providing advanced optical functionalities as found in photonic crystals and metamaterials. A three-level nano-grating phase mask has been fabricated in an electron-beam resist (ma-N) to meet the requirement of holographic generation of a diamond-like 3D nanostructure in photoresist by a single exposure step. A 2D mask with 600 nm periodicity is presented for generating first order diffracted beams with a preferred π/2 phase shift on the X- and Y-axes and with sufficient 1(st) order diffraction efficiency of 3.5% at 800 nm wavelength for creating a 3D periodic nanostructure in SU-8 photoresist. The resulting 3D structure is anticipated to provide an 8% complete photonic band gap (PBG) upon silicon inversion. A thin SiO2 layer was used to isolate the grating layers and multiple spin-coating steps served to planarize the final resist layer. A reversible soft coating (aquaSAVE) was introduced to enable SEM inspection and verification of each insulating grating layer. This e-beam lithographic method is extensible to assembling multiple layers of a nanophotonic structure.

  5. Current induced incoherent magnetization dynamics in ferromagnetic/non-magnetic metallic multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Al-Rashid, Md Mamun; Maqableh, Mazin; Stadler, Bethanie; Atulasimha, Jayasimha

    High density arrays of electrodeposited nanowires consisting of ferromagnetic/non-magnetic (Co/Cu) multilayers are promising as magnetic memory devices. For individual nanowires containing multiple (Co/Cu) bilayers, the stable magnetization orientations of the Co layers (with respect to each other and the nanowire axis) are dependent on the Cu layer thickness, even when the Co layer dimensions are fixed. This dependence is a result of the competition between shape anisotropy, magneto-crystalline anisotropy and intra-wire dipole coupling. However, when the nanowires are closely packed in arrays, inter-wire dipole coupling can result in complex and tunable domain structures comprising segments of multiple nanowires. This work explores the dependence of these domain structures and their switching on the non-magnetic layer thickness and intra-wire spacing both experimentally and via rigorous micromagnetic simulation. These domain structures play a crucial role in determining the current and time required for STT switching. NSF CAREER Grant CCF-1253370.

  6. Observation of layered antiferromagnetism in self-assembled parallel NiSi nanowire arrays on Si(110) by spin-polarized scanning tunneling spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Ie-Hong; Hsu, Hsin-Zan

    2018-03-01

    The layered antiferromagnetism of parallel nanowire (NW) arrays self-assembled on Si(110) have been observed at room temperature by direct imaging of both the topographies and magnetic domains using spin-polarized scanning tunneling microscopy/spectroscopy (SP-STM/STS). The topographic STM images reveal that the self-assembled unidirectional and parallel NiSi NWs grow into the Si(110) substrate along the [\\bar{1}10] direction (i.e. the endotaxial growth) and exhibit multiple-layer growth. The spatially-resolved SP-STS maps show that these parallel NiSi NWs of different heights produce two opposite magnetic domains, depending on the heights of either even or odd layers in the layer stack of the NiSi NWs. This layer-wise antiferromagnetic structure can be attributed to an antiferromagnetic interlayer exchange coupling between the adjacent layers in the multiple-layer NiSi NW with a B2 (CsCl-type) crystal structure. Such an endotaxial heterostructure of parallel magnetic NiSi NW arrays with a layered antiferromagnetic ordering in Si(110) provides a new and important perspective for the development of novel Si-based spintronic nanodevices.

  7. Effect of broad recombination zone in multiple quantum well structures on lifetime and efficiency of blue organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Seok Jae; Lee, Song Eun; Lee, Dong Hyung; Koo, Ja Ryong; Lee, Ho Won; Yoon, Seung Soo; Park, Jaehoon; Kim, Young Kwan

    2014-10-01

    Blue phosphorescent organic light-emitting diodes with multiple quantum well (MQW) structures (from one to four quantum wells) within an emitting layer (EML) are fabricated with charge control layers (CCLs) to control carrier movement. The distributed recombination zone and balanced charge carrier injection within EML are achieved through the MQW structure with CCLs. Remarkably, the half-decay lifetime of a blue device with three quantum wells, measured at an initial luminance of 500 cd/m2, is 3.5 times longer than that using a conventional structure. Additionally, the device’s efficiency improved. These results are explained with the effects of triplet exciton confinement and triplet-triplet annihilation within each EML.

  8. Absorption of a rigid frame porous layer with periodic circular inclusions backed by a periodic grating.

    PubMed

    Groby, J-P; Duclos, A; Dazel, O; Boeckx, L; Lauriks, W

    2011-05-01

    The acoustic properties of a periodic rigid frame porous layer with multiple irregularities in the rigid backing and embedded rigid circular inclusions are investigated theoretically and numerically. The theoretical representation of the sound field in the structure is obtained using a combination of multipole method that accounts for the periodic inclusions and multi-modal method that accounts for the multiple irregularities of the rigid backing. The theoretical model is validated against a finite element method. The predictions show that the acoustic response of this structure exhibits quasi-total, high absorption peaks at low frequencies which are below the frequency of the quarter-wavelength resonance typical for a flat homogeneous porous layer backed by a rigid plate. This result is explained by excitation of additional modes in the porous layer and by a complex interaction between various acoustic modes. These modes relate to the resonances associated with the presence of a profiled rigid backing and rigid inclusions in the porous layer.

  9. Robust Real-Time Music Transcription with a Compositional Hierarchical Model.

    PubMed

    Pesek, Matevž; Leonardis, Aleš; Marolt, Matija

    2017-01-01

    The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.

  10. Growth of rough-surface p-GaN layers on InGaN/GaN multiple-quantum-well structures by metalorganic chemical vapor deposition and their application to GaN-based solar cells

    NASA Astrophysics Data System (ADS)

    Mori, Takuma; Egawa, Takashi; Miyoshi, Makoto

    2017-08-01

    We conducted the study on the growth of rough-surface p-GaN layers on InGaN/GaN multiple-quantum-well (MQW) structures by metalorganic chemical vapor deposition (MOCVD). It was found that the sum of InGaN well thickness t well_total was a predominant factor to form the rough surface, in addition to the growth temperature as low as 800 °C for the p-GaN layers. Microstructure analyses revealed that the rough surfaces consisted of a certain number of hexagonal V-shaped pits starting from dislocations propagated through an under layer and they increased with the increased t well_total. It was confirmed that the light absorption was enlarged for MQW structure samples with rough-surface p-GaN layers on the top, owing to not only the thickness effect in MQWs but also their reduced light reflection on the surfaces. It was also confirmed that these optical properties contributed to the performance improvement in InGaN/GaN MQW solar cells.

  11. Rolled-up inductor structure for a radiofrequency integrated circuit (RFIC)

    DOEpatents

    Li, Xiuling; Huang, Wen; Ferreira, Placid M.; Yu, Xin

    2015-12-29

    A rolled-up inductor structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises a conductive pattern layer on a strain-relieved layer, and the conductive pattern layer comprises at least one conductive strip having a length extending in a rolling direction. The at least one conductive strip thereby wraps around the longitudinal axis in the rolled configuration. The conductive pattern layer may also comprise two conductive feed lines connected to the conductive strip for passage of electrical current therethrough. The conductive strip serves as an inductor cell of the rolled-up inductor structure.

  12. Influence of δ p-doping on the behaviour of GaAs/AlGaAs SAM-APDs for synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Steinhartova, T.; Nichetti, C.; Antonelli, M.; Cautero, G.; Menk, R. H.; Pilotto, A.; Driussi, F.; Palestri, P.; Selmi, L.; Koshmak, K.; Nannarone, S.; Arfelli, F.; Dal Zilio, S.; Biasiol, G.

    2017-11-01

    This work focuses on the development and the characterization of avalanche photodiodes with separated absorption and multiplication regions grown by molecular beam epitaxy. The i-GaAs absorption region is separated from the multiplication region by a δ p-doped layer of carbon atoms, which ensures that after applying a reverse bias, the vast majority of the potential drops in the multiplication region. Therein, thin layers of AlGaAs and GaAs alternate periodically in a so-called staircase structure to create a periodic modulation of the band gap, which under bias enables a well-defined charge multiplication and results in a low multiplication noise. The influence of the concentration of carbon atoms in the δ p-doped layer on the device characteristics was investigated and experimental data are presented together with simulation results.

  13. Prediction of beta-turns and beta-turn types by a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN).

    PubMed

    Kirschner, Andreas; Frishman, Dmitrij

    2008-10-01

    Prediction of beta-turns from amino acid sequences has long been recognized as an important problem in structural bioinformatics due to their frequent occurrence as well as their structural and functional significance. Because various structural features of proteins are intercorrelated, secondary structure information has been often employed as an additional input for machine learning algorithms while predicting beta-turns. Here we present a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN) capable of predicting multiple mutually dependent structural motifs and demonstrate its efficiency in recognizing three aspects of protein structure: beta-turns, beta-turn types, and secondary structure. The advantage of our method compared to other predictors is that it does not require any external input except for sequence profiles because interdependencies between different structural features are taken into account implicitly during the learning process. In a sevenfold cross-validation experiment on a standard test dataset our method exhibits the total prediction accuracy of 77.9% and the Mathew's Correlation Coefficient of 0.45, the highest performance reported so far. It also outperforms other known methods in delineating individual turn types. We demonstrate how simultaneous prediction of multiple targets influences prediction performance on single targets. The MOLEBRNN presented here is a generic method applicable in a variety of research fields where multiple mutually depending target classes need to be predicted. http://webclu.bio.wzw.tum.de/predator-web/.

  14. Effect of the Conditions of the Nanostructuring Frictional Treatment Process on the Structural and Phase States and the Strengthening of Metastable Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Makarov, A. V.; Skorynina, P. A.; Yurovskikh, A. S.; Osintseva, A. L.

    2017-12-01

    The effect of the multiplicity of frictional loading with a sliding synthetic diamond indenter at room temperature in an argon medium and the temperature of loading in the range of -196 to +250°C on the phase composition, fine structure, and micromechanical properties of the surface layer of metastable austenitic chromium-nickel steel has been studied. It has been established that the completeness of the strain-induced martensitic γ → α' transformation in the surface layer of steel is determined by the loading multiplicity and temperature, as well as the level of strengthening grows with an increase in the frictional loading multiplicity, but weakly depends on the frictional treatment temperature. According to the microindentation data, the characteristics of the surface layer strength and resistance to elastic and plastic deformation are improved with an increase in the frictional loading multiplicity. Frictional treatment by scanning with a synthetic diamond indenter at room and negative temperatures provides high quality for the treated surface with a low roughness parameter ( Ra = 80.115 nm), and an increase in the frictional loading temperature to 150-250°C leads to the development of a seizure and growth in Ra to 195-255 nm. Using transmission electron microscopy (TEM), it has been shown that frictional treatment results in the formation of nanocrystalline and fragmented submicrocrystalline structures of strain-induced α'-martensite (at a loading temperature of -196°C) and austenite (at a loading temperature of +250°C) in the surface layer of steel alongside with two-phase martensitic-austenitic structures (at a loading temperature of +20°C).

  15. A Deep-Structured Conditional Random Field Model for Object Silhouette Tracking

    PubMed Central

    Shafiee, Mohammad Javad; Azimifar, Zohreh; Wong, Alexander

    2015-01-01

    In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering. PMID:26313943

  16. Case study on complex sporadic E layers observed by GPS radio occultations

    NASA Astrophysics Data System (ADS)

    Yue, X.; Schreiner, W. S.; Zeng, Z.; Kuo, Y.-H.; Xue, X.

    2015-01-01

    The occurrence of sporadic E (Es) layers has been a hot scientific topic for a long time. The GNSS (global navigation satellite system)-based radio occultation (RO) has proven to be a powerful technique for detecting the global Es layers. In this paper, we focus on some cases of complex Es layers based on the RO data from multiple missions processed in UCAR/CDAAC (University Corporation for Atmospheric Research (UCAR) the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Data Analysis and Archive Center (CDAAC)). We first show some examples of multiple Es layers occurred in one RO event. Based on the evaluations between colocated simultaneous RO events and between RO and lidar observations, it could be concluded that some of these do manifest the multiple Es layer structures. We then show a case of the occurrence of Es in a broad region during a certain time interval. The result is then validated by independent ionosondes observations. It is possible to explain these complex Es structures using the popular wind shear theory. We could map the global Es occurrence routinely in the near future, given that more RO data will be available. Further statistical studies will enhance our understanding of the Es mechanism. The understanding of Es should benefit both Es-based long-distance communication and accurate neutral RO retrievals.

  17. USArray Receiver Function Imaging of Multiple-Layer Crustal Structure of the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Ma, X.; Lowry, A. R.; Ravat, D.

    2014-12-01

    Thickness andseismic velocity of crustal layers are useful for understanding the history and evolution of continental lithosphere. Lowry and Pérez-Gussinyé (2011) observed that low bulk crustal seismic velocity ratio, Vp/Vs, strongly correlates with high geothermal gradient and active deformation, indicating quartz (to which Vp/Vs is most sensitive) plays a role in these processes. The lower crust (where ductile flow occurs which might explain the relationship) is commonly thought to be quartz-poor. However, layering of the crust may represent changes in either lithology or the phase of quartz. Laboratory strain-stress experiments on quartz indicate that near the a- to b-quartz phase transition, both Vp and Vp/Vs initially drop dramatically but then increase relative to the a-quartz regime because Young's modulus initially decreases by 30% before increasing by a net ~20%. Shear modulus varies only ~3% across the transition. Crustal structure is commonly represented by an upper, mid- and lower layer (e.g., Crust1.0) and conceptualized as primarily reflecting a change to more mafic lithology at greater depth, but estimates of Moho temperature indicate a quartz phase transition should be present in much of the western and central U.S. We have imaged multiple layering of the contiguous U.S. by applying a new cross-correlation and stacking method to USArray receiver functions. Synthetic models of a multiple layer crust indicate 'splitting' of converted-phase arrivals would be expected if a quartz phase transition were responsible. Preliminary imaging using cross-correlation of observed receiver functions with multiple layer synthetics demonstrates a marked improvement in correlation coefficients relative to a single-layer crust. In this presentation we will examine observational evidence for possible a- to b- phase transition layering (indicating quartz at depth) and compare with depths predicted for the quartz phase transition based on Pn-derived Moho temperatures and estimates of magnetic Curie depths.

  18. Electrochemical planarization

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1993-10-26

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.

  19. Resolving the Chemically Discrete Structure of Synthetic Borophene Polymorphs.

    PubMed

    Campbell, Gavin P; Mannix, Andrew J; Emery, Jonathan D; Lee, Tien-Lin; Guisinger, Nathan P; Hersam, Mark C; Bedzyk, Michael J

    2018-05-09

    Atomically thin two-dimensional (2D) materials exhibit superlative properties dictated by their intralayer atomic structure, which is typically derived from a limited number of thermodynamically stable bulk layered crystals (e.g., graphene from graphite). The growth of entirely synthetic 2D crystals, those with no corresponding bulk allotrope, would circumvent this dependence upon bulk thermodynamics and substantially expand the phase space available for structure-property engineering of 2D materials. However, it remains unclear if synthetic 2D materials can exist as structurally and chemically distinct layers anchored by van der Waals (vdW) forces, as opposed to strongly bound adlayers. Here, we show that atomically thin sheets of boron (i.e., borophene) grown on the Ag(111) surface exhibit a vdW-like structure without a corresponding bulk allotrope. Using X-ray standing wave-excited X-ray photoelectron spectroscopy, the positions of boron in multiple chemical states are resolved with sub-angström spatial resolution, revealing that the borophene forms a single planar layer that is 2.4 Å above the unreconstructed Ag surface. Moreover, our results reveal that multiple borophene phases exhibit these characteristics, denoting a unique form of polymorphism consistent with recent predictions. This observation of synthetic borophene as chemically discrete from the growth substrate suggests that it is possible to engineer a much wider variety of 2D materials than those accessible through bulk layered crystal structures.

  20. Selective UV–O3 treatment for indium zinc oxide thin film transistors with solution-based multiple active layer

    NASA Astrophysics Data System (ADS)

    Kim, Yu-Jung; Jeong, Jun-Kyo; Park, Jung-Hyun; Jeong, Byung-Jun; Lee, Hi-Deok; Lee, Ga-Won

    2018-06-01

    In this study, a method to control the electrical performance of solution-based indium zinc oxide (IZO) thin film transistors (TFTs) is proposed by ultraviolet–ozone (UV–O3) treatment on the selective layer during multiple IZO active layer depositions. The IZO film is composed of triple layers formed by spin coating and UV–O3 treatment only on the first layer or last layer. The IZO films are compared by X-ray photoelectron spectroscopy, and the results show that the atomic ratio of oxygen vacancy (VO) increases in the UV–O3 treatment on the first layer, while it decreases on last layer. The device characteristics of the bottom gated structure are also improved in the UV–O3 treatment on the first layer. This indicates that the selective UV–O3 treatment in a multi-stacking active layer is an effective method to optimize TFT properties by controlling the amount of VO in the IZO interface and surface independently.

  1. Multi-Dimensional Damage Detection for Surfaces and Structures

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Roberson, Luke; Medelius, Pedro; Gibson, Tracy; Parks, Steen; Snyder, Sarah

    2013-01-01

    Current designs for inflatable or semi-rigidized structures for habitats and space applications use a multiple-layer construction, alternating thin layers with thicker, stronger layers, which produces a layered composite structure that is much better at resisting damage. Even though such composite structures or layered systems are robust, they can still be susceptible to penetration damage. The ability to detect damage to surfaces of inflatable or semi-rigid habitat structures is of great interest to NASA. Damage caused by impacts of foreign objects such as micrometeorites can rupture the shell of these structures, causing loss of critical hardware and/or the life of the crew. While not all impacts will have a catastrophic result, it will be very important to identify and locate areas of the exterior shell that have been damaged by impacts so that repairs (or other provisions) can be made to reduce the probability of shell wall rupture. This disclosure describes a system that will provide real-time data regarding the health of the inflatable shell or rigidized structures, and information related to the location and depth of impact damage. The innovation described here is a method of determining the size, location, and direction of damage in a multilayered structure. In the multi-dimensional damage detection system, layers of two-dimensional thin film detection layers are used to form a layered composite, with non-detection layers separating the detection layers. The non-detection layers may be either thicker or thinner than the detection layers. The thin-film damage detection layers are thin films of materials with a conductive grid or striped pattern. The conductive pattern may be applied by several methods, including printing, plating, sputtering, photolithography, and etching, and can include as many detection layers that are necessary for the structure construction or to afford the detection detail level required. The damage is detected using a detector or sensory system, which may include a time domain reflectometer, resistivity monitoring hardware, or other resistance-based systems. To begin, a layered composite consisting of thin-film damage detection layers separated by non-damage detection layers is fabricated. The damage detection layers are attached to a detector that provides details regarding the physical health of each detection layer individually. If damage occurs to any of the detection layers, a change in the electrical properties of the detection layers damaged occurs, and a response is generated. Real-time analysis of these responses will provide details regarding the depth, location, and size estimation of the damage. Multiple damages can be detected, and the extent (depth) of the damage can be used to generate prognostic information related to the expected lifetime of the layered composite system. The detection system can be fabricated very easily using off-the-shelf equipment, and the detection algorithms can be written and updated (as needed) to provide the level of detail needed based on the system being monitored. Connecting to the thin film detection layers is very easy as well. The truly unique feature of the system is its flexibility; the system can be designed to gather as much (or as little) information as the end user feels necessary. Individual detection layers can be turned on or off as necessary, and algorithms can be used to optimize performance. The system can be used to generate both diagnostic and prognostic information related to the health of layer composite structures, which will be essential if such systems are utilized for space exploration. The technology is also applicable to other in-situ health monitoring systems for structure integrity.

  2. Highly stable thin film transistors using multilayer channel structure

    NASA Astrophysics Data System (ADS)

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N.

    2015-03-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60 °C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  3. Structural and optical characterization of ZnO/Mg(x)Zn(1-x)O multiple quantum wells based random laser diodes.

    PubMed

    Jiang, Qike; Zheng, He; Wang, Jianbo; Long, Hao; Fang, Guojia

    2012-12-01

    Two kinds of laser diodes (LDs) comprised of ZnO/Mg(x)Zn(1-x)O (ZnO/MZO) multiple quantum wells (MQWs) grown on GaN (MQWs/GaN) and Si (MQWs/Si) substrates, respectively, have been constructed. The LD with MQWs/GaN exhibits ultraviolet random lasing under electrical excitation, while that with MQWs/Si does not. In the MQWs/Si, ZnO/MZO MQWs consist of nanoscaled crystallites, and the MZO layers undergo a phase separation of cubic MgO and hexagonal ZnO. Moreover, the Mg atom predominantly locates in the MZO layers along with a significant aggregation at the ZnO/MZO interfaces; in sharp contrast, the ZnO/MZO MQWs in the MQWs/GaN show a well-crystallized structure with epitaxial relationships among GaN, MZO, and ZnO. Notably, Mg is observed to diffuse into the ZnO well layers. The structure-optical property relationship of these two LDs is further discussed.

  4. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    PubMed Central

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.

    2015-01-01

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ∼60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides. PMID:26088416

  5. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    DOE PAGES

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; ...

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe 2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe 2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS 2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSemore » 2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.« less

  6. Hybrid transfer-matrix FDTD method for layered periodic structures.

    PubMed

    Deinega, Alexei; Belousov, Sergei; Valuev, Ilya

    2009-03-15

    A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.

  7. Lateral electrochemical etching of III-nitride materials for microfabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jung

    Conductivity-selective lateral etching of III-nitride materials is described. Methods and structures for making vertical cavity surface emitting lasers with distributed Bragg reflectors via electrochemical etching are described. Layer-selective, lateral electrochemical etching of multi-layer stacks is employed to form semiconductor/air DBR structures adjacent active multiple quantum well regions of the lasers. The electrochemical etching techniques are suitable for high-volume production of lasers and other III-nitride devices, such as lasers, HEMT transistors, power transistors, MEMs structures, and LEDs.

  8. Inclined dislocation arrays in AlGaN/AlGaN quantum well structures emitting at 290 nm

    NASA Astrophysics Data System (ADS)

    Chang, T. Y.; Moram, M. A.; McAleese, C.; Kappers, M. J.; Humphreys, C. J.

    2010-12-01

    We report on the structural and optical properties of deep ultraviolet emitting AlGaN/AlGaN multiple quantum wells (MQWs) grown on (0001) sapphire by metal-organic vapor phase epitaxy using two different buffer layer structures, one containing a thin (1 μm) AlN layer combined with a GaN interlayer and the other a thick (4 μm) AlN layer. Transmission electron microscopy analysis of both structures showed inclined arrays of dislocations running through the AlGaN layers at an angle of ˜30°, originating at bunched steps at the AlN surface and terminating at bunched steps at the surface of the MQW structure. In all layers, these inclined dislocation arrays are surrounded by AlGaN with a relatively higher Ga content, consistent with plan-view cathodoluminescence maps in which the bunched surface steps are associated with longer emission wavelengths. The structure with the 4 μm-thick AlN buffer layer had a dislocation density lower by a factor of 2 (at (1.7±0.1)×109 cm-2) compared to the structure with the 1 μm thick AlN buffer layer, despite the presence of the inclined dislocation arrays.

  9. Composite passive damping struts for large precision structures

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P. (Inventor)

    1993-01-01

    In the field of viscoelastic dampers, a new strut design comprises a viscoelastic material sandwiched between multiple layers, some of which layers bear and dampen load force. In one embodiment, the layers are composite plies of opposing orientation. In another embodiment, the strut utilizes a viscoelastic layer sandwiched between V-shaped composite plies. In a third embodiment, a viscoelastic layer is sandwiched between sine-shaped plies. Strut strength is equal to or greater than conventional aluminum struts due to the unique high interlaminar shear ply design.

  10. Stacking of ZnSe/ZnCdSe Multi-Quantum Wells on GaAs (100) by Epitaxial Lift-Off

    NASA Astrophysics Data System (ADS)

    Eldose, N. M.; Zhu, J.; Mavridi, N.; Prior, Kevin; Moug, R. T.

    2018-05-01

    Here we present stacking of GaAs/ZnSe/ZnCdSe single-quantum well (QW) structures using epitaxial lift-off (ELO). Molecular beam epitaxy (MBE)-grown II-VI QW structure was lifted using our standard ELO technique. The QW structures were transferred onto glass plates and then subsequent layers stacked on top of each other to form a triple-QW structure. This was compared to an MBE-grown multiple-QW (MQW) structure of similar design. Low-temperature (77 K) photoluminescence (PL) spectroscopy was used to compare the two structures and showed no obvious degradation of the ELO stacked layer. It was observed that by stacking the single QW layer on itself we could increase the PL emission intensity beyond that of the grown MQW structure while maintaining narrow line width.

  11. Electronic band structure of 4d and 5d transition metal trichalcogenides

    NASA Astrophysics Data System (ADS)

    Sugita, Yusuke; Miyake, Takashi; Motome, Yukitoshi

    2018-05-01

    Transition metal trichalcogenides (TMTs), a family of van der Waals materials, have gained increasing interests from the discovery of magnetism in few-layer forms. Although TMTs with 3d transition metal elements have been studied extensively, much less is explored for the 4d and 5d cases, where the interesting interplay between electron correlations and the relativistic spin-orbit coupling is expected. Using ab initio calculations, we here investigate the electronic property of TMTs with 4d and 5d transition metal elements. We show that the band structures exhibit multiple node-like features near the Fermi level. These are the remnant of multiple Dirac cones that were recently discovered in the monolayer cases. Our results indicate that the peculiar two-dimensional multiple Dirac cones are concealed even in the layered bulk systems.

  12. Simple single-emitting layer hybrid white organic light emitting with high color stability

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  13. Oriented shift and inverse of the daughter droplet due to the asymmetry of grand-daughter droplets of multiple emulsions in a symmetric flow field

    NASA Astrophysics Data System (ADS)

    Wang, Jingtao; Wang, Xiaoyong; Tai, Mo; Guan, Jing

    2016-01-01

    The rheological behaviors of multiple emulsions with an asymmetric internal structure in its third layer (grand-daughter droplets) under a modest extensional flow are investigated in this paper. The asymmetric structure will lead to the asymmetric circulation and pressure distribution inside the globule and eventually result in the oriented shift of its daughter droplet (in the second layer). The shift direction is affected not only by the structural asymmetry parameter As but also by some flow features including the capillary number Ca and viscosity ratio λ. Changes of these factors might cause the reverse of the shift direction, which are shown in three phase diagrams as a function of As, Ca, and λ. As the oriented shift of the daughter droplet would cause the oriented breakup of the multiple-emulsion globule, this phenomenon could be applied for the controlled release of the globule insertion by a hydrodynamic approach.

  14. Nonlocal Poisson-Fermi double-layer models: Effects of nonuniform ion sizes on double-layer structure

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan; Jiang, Yi

    2018-05-01

    This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.

  15. In-plane, commensurate GaN/AlN junctions: single-layer composite structures, multiple quantum wells and quantum dots

    NASA Astrophysics Data System (ADS)

    Durgun, Engin; Onen, Abdullatif; Kecik, Deniz; Ciraci, Salim

    In-plane composite structures constructed of the stripes or core/shells of single-layer GaN and AlN, which are joined commensurately display diversity of electronic properties, that can be tuned by the size of their constituents. In heterostructures, the dimensionality of electrons change from 2D to 1D upon their confinements in wide constituent stripes leading to the type-I band alignment and hence multiple quantum well structure in the direct space. The δ-doping of one wide stripe by other narrow stripe results in local narrowing or widening of the band gap. The direct-indirect transition of the fundamental band gap of composite structures can be attained depending on the odd or even values of formula unit in the armchair edged heterojunction. In a patterned array of GaN/AlN core/shells, the dimensionality of the electronic states are reduced from 2D to 0D forming multiple quantum dots in large GaN-cores, while 2D electrons propagate in multiply connected AlN shell as if they are in a supercrystal. These predictions are obtained from first-principles calculations based on density functional theory on single-layer GaN and AlN compound semiconductors which were synthesized recently. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No 115F088.

  16. Clustering network layers with the strata multilayer stochastic block model.

    PubMed

    Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J

    2016-01-01

    Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the "strata multilayer stochastic block model" (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called "strata", which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project.

  17. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    NASA Astrophysics Data System (ADS)

    Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin

    2016-11-01

    A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  18. Clustering network layers with the strata multilayer stochastic block model

    PubMed Central

    Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J.

    2016-01-01

    Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the “strata multilayer stochastic block model” (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called “strata”, which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project. PMID:28435844

  19. SMART Layer and SMART Suitcase for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.

    2001-06-01

    Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.

  20. Anionic poly(p-phenylenevinylene)/layered double hydroxide ordered ultrathin films with multiple quantum well structure: a combined experimental and theoretical study.

    PubMed

    Yan, Dongpeng; Lu, Jun; Ma, Jing; Wei, Min; Wang, Xinrui; Evans, David G; Duan, Xue

    2010-05-18

    The sulfonated phenylenevinylene polyanion derivate (APPV) and exfoliated Mg-Al-layered double hydroxide (LDH) monolayers were alternatively assembled into ordered ultrathin films (UTFs) employing a layer-by-layer method, which shows uniform yellow luminescence. UV-vis absorption and fluorescence spectroscopy present a stepwise and regular growth of the UTFs upon increasing deposited cycles. X-ray diffraction, atomic force microscopy, and scanning electron microscopy demonstrate that the UTFs are orderly periodical layered structure with a thickness of 3.3-3.5 nm per bilayer. The APPV/LDH UTFs exhibit well-defined polarized photoemission characteristic with the maximum luminescence anisotropy of approximately 0.3. Moreover, the UTF exhibit longer fluorescence lifetime (3-3.85-fold) and higher photostability than the drop-casting APPV film under UV irradiation, suggesting that the existence of a LDH monolayer enhances the optical performance of the APPV polyanion. A combination study of electrochemistry and periodic density functional theory was used to investigate the electronic structure of the APPV/LDH system, illustrating that the APPV/LDH UTF is a kind of organic-inorganic hybrid multiple quantum well (MQW) structure with a low band energy of 1.7-1.8 eV, where the valence electrons of APPV can be confined into the energy wells formed by the LDH monolayers effectively. Therefore, this work not only gives a feasible method for fabricating a luminescence ultrathin film but also provides a detailed understanding of the geometric and electronic structures of photoactive polyanions confined between the LDH monolayers.

  1. Low-Temperature Growth and Doping of Mercury-Based II-Vi Multiple Quantum Well Structures by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lansari, Yamina

    The growth of Hg-based single layers and multiple quantum well structures by conventional molecular beam epitaxy (MBE) and photoassisted MBE was studied. The use of photoassisted MBE, an epitaxial growth technique developed at NCSU, has resulted in a substantial reduction of the film growth temperature. Indeed, substrate temperatures 50 to 100^circC lower than those customarily used by others for conventional MBE growth of Hg-based layers were successfully employed. Photoassisted MBE allowed the preparation of excellent structural quality HgTe layers (FWHM for the (400) diffraction peak ~ 40 arcsec), HgCdTe layers (FWHM for the (400) diffraction peak ~ 14 arcsec), and HgTeCdTe superlattices (FWHM for the (400) diffraction peak ~ 28 arcsec). In addition, n-type and p-type modulation-doping of Hg-based multilayers was accomplished by photoassisted MBE. This technique has been shown to have a significant effect on the growth process kinetics as well as on the desorption rates of the film species, thereby affecting dopant incorporation mechanisms and allowing for the successful substitutional doping of the multilayer structures. Finally, surface morphology studies were completed using scanning electron microscopy (SEM) and Nomarsky optical microscopy to study the effects of substrate surface preparation, growth initiation, and growth parameters on the density of pyramidal hillocks, a common growth defect plaguing the Hg-based layers grown in the (100) direction. Conditions which minimize the hillock density for (100) film growth have been determined.

  2. Improved Aerogel Vacuum Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren P.; Bue, Grant C.

    2009-01-01

    An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness.

  3. Rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC)

    DOEpatents

    Li, Xiuling; Huang, Wen

    2015-04-28

    A rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis, where the multilayer sheet comprises a conductive pattern layer on a strain-relieved layer. The conductive pattern layer comprises a first conductive film and a second conductive film separated from the first conductive film in a rolling direction. In the rolled configuration, the first conductive film surrounds the longitudinal axis, and the second conductive film surrounds the first conductive film. The first conductive film serves as a signal line and the second conductive film serves as a conductive shield for the rolled-up transmission line structure.

  4. Heat pipe with improved wick structures

    DOEpatents

    Benson, David A.; Robino, Charles V.; Palmer, David W.; Kravitz, Stanley H.

    2000-01-01

    An improved planar heat pipe wick structure having projections formed by micromachining processes. The projections form arrays of interlocking, semi-closed structures with multiple flow paths on the substrate. The projections also include overhanging caps at their tops to increase the capillary pumping action of the wick structure. The capped projections can be formed in stacked layers. Another layer of smaller, more closely spaced projections without caps can also be formed on the substrate in between the capped projections. Inexpensive materials such as Kovar can be used as substrates, and the projections can be formed by electrodepositing nickel through photoresist masks.

  5. Cell Type-Specific Structural Organization of the Six Layers in Rat Barrel Cortex

    PubMed Central

    Narayanan, Rajeevan T.; Udvary, Daniel; Oberlaender, Marcel

    2017-01-01

    The cytoarchitectonic subdivision of the neocortex into six layers is often used to describe the organization of the cortical circuitry, sensory-evoked signal flow or cortical functions. However, each layer comprises neuronal cell types that have different genetic, functional and/or structural properties. Here, we reanalyze structural data from some of our recent work in the posterior-medial barrel-subfield of the vibrissal part of rat primary somatosensory cortex (vS1). We quantify the degree to which somata, dendrites and axons of the 10 major excitatory cell types of the cortex are distributed with respect to the cytoarchitectonic organization of vS1. We show that within each layer, somata of multiple cell types intermingle, but that each cell type displays dendrite and axon distributions that are aligned to specific cytoarchitectonic landmarks. The resultant quantification of the structural composition of each layer in terms of the cell type-specific number of somata, dendritic and axonal path lengths will aid future studies to bridge between layer- and cell type-specific analyses. PMID:29081739

  6. Strained layer InP/InGaAs quantum well laser

    NASA Technical Reports Server (NTRS)

    Forouhar, Siamak (Inventor); Larsson, Anders G. (Inventor); Ksendzov, Alexander (Inventor); Lang, Robert J. (Inventor)

    1993-01-01

    Strained layer single or multiple quantum well lasers include an InP substrate, a pair of lattice-matched InGaAsP quarternary layers epitaxially grown on the substrate surrounding a pair of lattice matched In.sub.0.53 Ga.sub.0.47 As ternary layers surrounding one or more strained active layers of epitaxially grown, lattice-mismatched In.sub.0.75 Ga.sub.0.25 As. The level of strain is selected to control the bandgap energy to produce laser output having a wavelength in the range of 1.6 to 2.5 .mu.m. The multiple quantum well structure uses between each active layer. Diethyl zinc is used for p-type dopant in an InP cladding layer at a concentration level in the range of about 5.times.10.sup.17 /cm.sup.3 to about 2.times.10.sup.18 /cm.sup.3. Hydrogen sulfide is used for n-type dopant in the substrate.

  7. Thiolated alginate-based multiple layer mucoadhesive films of metformin forintra-pocket local delivery: in vitro characterization and clinical assessment.

    PubMed

    Kassem, Abeer Ahmed; Issa, Doaa Ahmed Elsayed; Kotry, Gehan Sherif; Farid, Ragwa Mohamed

    2017-01-01

    Periodontal disease broadly defines group of conditions in which the supportive structure of the tooth (periodontium) is destroyed. Recent studies suggested that the anti-diabetic drug metformin hydrochloride (MF) has an osteogenic effect and is beneficial for the management of periodontitis. Development of strong mucoadhesive multiple layer film loading small dose of MF for intra-pocket application. Multiple layer film was developed by double casting followed by compression method. Either 6% carboxy methyl cellulose sodium (CMC) or sodium alginate (ALG) constituted the inner drug (0.6%) loaded layer. Thiolated sodium alginate (TSA; 2 or 4%) constituted the outer drug free layers to enhance mucoadhesion and achieve controlled drug release. Optimized formulation was assessed clinically on 20 subjects. Films were uniform, thin and hard enough for easy insertion into periodontal pockets. Based on water uptake and in vitro drug release, CMC based film with 4% TSA as an outer layer was the optimized formulation with enhanced mucoadhesion and controlled drug release (83.73% over 12 h). SEM showed the effective fabrication of the triple layer film in which connective lines between the layers could be observed. FTIR examination suggests possibility of hydrogen bonding between the -NH groups of metformin and -OH groups of CMC. DSC revealed the presence of MF mainly in the amorphous form. Clinical results indicated improvement of all clinical parameters six months post treatment. The results suggested that local application of the mucoadhesive multiple layer films loaded with metformin hydrochloride was able to manage moderate chronic periodontitis.

  8. Inverse Problems in Complex Models and Applications to Earth Sciences

    NASA Astrophysics Data System (ADS)

    Bosch, M. E.

    2015-12-01

    The inference of the subsurface earth structure and properties requires the integration of different types of data, information and knowledge, by combined processes of analysis and synthesis. To support the process of integrating information, the regular concept of data inversion is evolving to expand its application to models with multiple inner components (properties, scales, structural parameters) that explain multiple data (geophysical survey data, well-logs, core data). The probabilistic inference methods provide the natural framework for the formulation of these problems, considering a posterior probability density function (PDF) that combines the information from a prior information PDF and the new sets of observations. To formulate the posterior PDF in the context of multiple datasets, the data likelihood functions are factorized assuming independence of uncertainties for data originating across different surveys. A realistic description of the earth medium requires modeling several properties and structural parameters, which relate to each other according to dependency and independency notions. Thus, conditional probabilities across model components also factorize. A common setting proceeds by structuring the model parameter space in hierarchical layers. A primary layer (e.g. lithology) conditions a secondary layer (e.g. physical medium properties), which conditions a third layer (e.g. geophysical data). In general, less structured relations within model components and data emerge from the analysis of other inverse problems. They can be described with flexibility via direct acyclic graphs, which are graphs that map dependency relations between the model components. Examples of inverse problems in complex models can be shown at various scales. At local scale, for example, the distribution of gas saturation is inferred from pre-stack seismic data and a calibrated rock-physics model. At regional scale, joint inversion of gravity and magnetic data is applied for the estimation of lithological structure of the crust, with the lithotype body regions conditioning the mass density and magnetic susceptibility fields. At planetary scale, the Earth mantle temperature and element composition is inferred from seismic travel-time and geodetic data.

  9. Cooperation in group-structured populations with two layers of interactions

    PubMed Central

    Zhang, Yanling; Fu, Feng; Chen, Xiaojie; Xie, Guangming; Wang, Long

    2015-01-01

    Recently there has been a growing interest in studying multiplex networks where individuals are structured in multiple network layers. Previous agent-based simulations of games on multiplex networks reveal rich dynamics arising from interdependency of interactions along each network layer, yet there is little known about analytical conditions for cooperation to evolve thereof. Here we aim to tackle this issue by calculating the evolutionary dynamics of cooperation in group-structured populations with two layers of interactions. In our model, an individual is engaged in two layers of group interactions simultaneously and uses unrelated strategies across layers. Evolutionary competition of individuals is determined by the total payoffs accrued from two layers of interactions. We also consider migration which allows individuals to move to a new group within each layer. An approach combining the coalescence theory with the theory of random walks is established to overcome the analytical difficulty upon local migration. We obtain the exact results for all “isotropic” migration patterns, particularly for migration tuned with varying ranges. When the two layers use one game, the optimal migration ranges are proved identical across layers and become smaller as the migration probability grows. PMID:26632251

  10. Multilayer insulation blanket, fabricating apparatus and method

    DOEpatents

    Gonczy, John D.; Niemann, Ralph C.; Boroski, William N.

    1992-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  11. Method of fabricating a multilayer insulation blanket

    DOEpatents

    Gonczy, John D.; Niemann, Ralph C.; Boroski, William N.

    1993-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  12. Method of fabricating a multilayer insulation blanket

    DOEpatents

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1993-07-06

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  13. Multilayer insulation blanket, fabricating apparatus and method

    DOEpatents

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1992-09-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.

  14. Protein structure modeling for CASP10 by multiple layers of global optimization.

    PubMed

    Joo, Keehyoung; Lee, Juyong; Sim, Sangjin; Lee, Sun Young; Lee, Kiho; Heo, Seungryong; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung

    2014-02-01

    In the template-based modeling (TBM) category of CASP10 experiment, we introduced a new protocol called protein modeling system (PMS) to generate accurate protein structures in terms of side-chains as well as backbone trace. In the new protocol, a global optimization algorithm, called conformational space annealing (CSA), is applied to the three layers of TBM procedure: multiple sequence-structure alignment, 3D chain building, and side-chain re-modeling. For 3D chain building, we developed a new energy function which includes new distance restraint terms of Lorentzian type (derived from multiple templates), and new energy terms that combine (physical) energy terms such as dynamic fragment assembly (DFA) energy, DFIRE statistical potential energy, hydrogen bonding term, etc. These physical energy terms are expected to guide the structure modeling especially for loop regions where no template structures are available. In addition, we developed a new quality assessment method based on random forest machine learning algorithm to screen templates, multiple alignments, and final models. For TBM targets of CASP10, we find that, due to the combination of three stages of CSA global optimizations and quality assessment, the modeling accuracy of PMS improves at each additional stage of the protocol. It is especially noteworthy that the side-chains of the final PMS models are far more accurate than the models in the intermediate steps. Copyright © 2013 Wiley Periodicals, Inc.

  15. Initial-boundary layer associated with the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system

    NASA Astrophysics Data System (ADS)

    Fei, Mingwen; Han, Daozhi; Wang, Xiaoming

    2017-01-01

    In this paper, we study the vanishing Darcy number limit of the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system (DBOB). This singular perturbation problem involves singular structures both in time and in space giving rise to initial layers, boundary layers and initial-boundary layers. We construct an approximate solution to the DBOB system by the method of multiple scale expansions. The convergence with optimal convergence rates in certain Sobolev norms is established rigorously via the energy method.

  16. Surface Passivation by Quantum Exclusion Using Multiple Layers

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    2013-01-01

    A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes a plurality M of doped layers, where M is an integer greater than 1. The dopant sheet densities in the M doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. M-1 interleaved layers provided between the M doped layers are not deliberately doped (also referred to as "undoped layers"). Structures with M=2, M=3 and M=4 have been demonstrated and exhibit improved passivation.

  17. Photovoltaic driven multiple quantum well optical modulator

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    Multiple quantum well (MQW) structures (12) are utilized to provide real-time, reliable, high-performance, optically-addressed spatial-light modulators (SLM) (10). The optically-addressed SLM comprises a vertical stack of quantum well layers (12a) within the penetration depth of an optical write signal 18, a plurality of space charge barriers (12b) having predetermined tunneling times by control of doping and thickness. The material comprising the quantum well layers has a lower bandgap than that of the space charge barrier layers. The write signal modulates a read signal (20). The modulation sensitivity of the device is high and no external voltage source is required. In a preferred embodiment, the SLM having interleaved doped semiconductor layers for driving the MQW photovoltaically is characterized by the use of a shift analogous to the Moss-Burnstein shift caused by the filling of two-dimensional states in the multiple quantum wells, thus allowing high modulation sensitivity in very narrow wells. Arrays (30) may be formed with a plurality of the modulators.

  18. Interface reconstruction with emerging charge ordering in hexagonal manganite

    PubMed Central

    Xu, Changsong; Han, Myung-Geun; Bao, Shanyong; Nan, Cewen; Bellaiche, Laurent

    2018-01-01

    Multiferroic materials, which simultaneously have multiple orderings, hold promise for use in the next generation of memory devices. We report a novel self-assembled MnO double layer forming at the interface between a multiferroic YMnO3 film and a c-Al2O3 substrate. The crystal structures and the valence states of this MnO double layer were studied by atomically resolved scanning transmission electron microscopy and spectroscopy, as well as density functional theory (DFT) calculations. A new type of charge ordering has been identified within this MnO layer, which also contributes to a polarization along the [001] direction. DFT calculations further establish the occurrence of multiple couplings between charge and lattice in this novel double layer, in addition to the polarization in nearby YMnO3 single layer. The interface reconstruction reported here creates a new playground for emergent physics, such as giant ferroelectricity and strong magnetoelectric coupling, in manganite systems. PMID:29795782

  19. Deep learning

    NASA Astrophysics Data System (ADS)

    Lecun, Yann; Bengio, Yoshua; Hinton, Geoffrey

    2015-05-01

    Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

  20. Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells.

    PubMed

    Lin, Chien-Chung; Han, Hau-Vei; Chen, Hsin-Chu; Chen, Kuo-Ju; Tsai, Yu-Lin; Lin, Wein-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-02-01

    In this review, the concept of utilization of solar spectrum in order to increase the solar cell efficiency is discussed. Among the three mechanisms, down-shifting effect is investigated in detail. Organic dye, rare-earth minerals and quantum dots are three most popular down-shift materials. While the enhancement of solar cell efficiency was not clearly observed in the past, the advances in quantum dot fabrication have brought strong response out of the hybrid platform of a quantum dot solar cell. A multiple layer structure, including PDMS as the isolation layer, is proposed and demonstrated. With the help of pulse spray system, precise control can be achieved and the optimized concentration can be found.

  1. Deep learning.

    PubMed

    LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey

    2015-05-28

    Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

  2. New Synthesis of Ocean Crust Velocity Structure From Two-Dimensional Profiles

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Goff, J.; Carlson, R. L.; Reece, R.

    2017-12-01

    The velocity structure of typical oceanic crust consists of Layer 2, where velocities increase rapidly with depth from seafloor, and Layer 3, which is thicker and has a lower velocity gradient. Previous syntheses have found no correlation of velocity structure with spreading rate, even though we know that magmatic processes differ between slow-spreading and fast-spreading crust. We present a new synthesis of ocean crust velocity structure, compiling observations from two-dimensional studies in the Atlantic, Pacific, and Indian ocean basins. The Layer 2/3 boundary was picked from each publication at a change in gradient either on velocity-depth functions or contour plots (with at least 0.5 km/s contour interval), or from the appropriate layer boundary for layered models. We picked multiple locations at each seismic refraction profile if warranted by model variability. Preliminary results show statistically significant differences in average Layer 2 and Layer 3 thicknesses between slow-spreading and superfast-spreading crust, with Layer 2 thinner and Layer 3 thicker for the higher spreading rate crust. The thickness changes are about equivalent, resulting in no change in mean crustal thickness. The Layer 2/3 boundary is often interpreted as the top of the gabbros; however, a comparison with mapped magma lens depths at the ridge axis shows that the boundary is typically deeper than average axial melt lens depth at superfast-spreading crust, and shallower at intermediate-spreading crust.

  3. Fabrication of large area woodpile structure in polymer

    NASA Astrophysics Data System (ADS)

    Gupta, Jaya Prakash; Dutta, Neilanjan; Yao, Peng; Sharkawy, Ahmed S.; Prather, Dennis W.

    2009-02-01

    A fabrication process of three-dimensional Woodpile photonic crystals based on multilayer photolithography from commercially available photo resist SU8 have been demonstrated. A 6-layer, 2 mm × 2mm woodpile has been fabricated. Different factors that influence the spin thickness on multiple resist application have been studied. The fabrication method used removes, the problem of intermixing, and is more repeatable and robust than the multilayer fabrication techniques for three dimensional photonic crystal structures that have been previously reported. Each layer is developed before next layer photo resist spin, instead of developing the whole structure in the final step as used in multilayer process. The desired thickness for each layer is achieved by the calibration of spin speed and use of different photo resist compositions. Deep UV exposure confinement has been the defining parameter in this process. Layer uniformity for every layer is independent of the previous developed layers and depends on the photo resist planarizing capability, spin parameters and baking conditions. The intermixing problem, which results from the previous layers left uncrossed linked photo resist, is completely removed in this process as the previous layers are fully developed, avoiding any intermixing between the newly spun and previous layers. Also this process gives the freedom to redo every spin any number of times without affecting the previously made structure, which is not possible in other multilayer process where intermediate developing is not performed.

  4. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    NASA Astrophysics Data System (ADS)

    Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.; Ryan, Joseph V.; McCloy, John S.; Wall, Nathalie A.

    2017-07-01

    In order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only. For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.

  5. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    DOE PAGES

    Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.; ...

    2017-07-01

    Here, in order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe 0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only.more » For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe 0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.« less

  6. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.

    Here, in order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe 0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only.more » For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe 0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.« less

  7. Mechanical properties of electrospun bilayer fibrous membranes as potential scaffolds for tissue engineering.

    PubMed

    Pu, Juan; Komvopoulos, Kyriakos

    2014-06-01

    Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Method for Calculating the Optical Diffuse Reflection Coefficient for the Ocular Fundus

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2016-07-01

    We have developed a method for calculating the optical diffuse reflection coefficient for the ocular fundus, taking into account multiple scattering of light in its layers (retina, epithelium, choroid) and multiple refl ection of light between layers. The method is based on the formulas for optical "combination" of the layers of the medium, in which the optical parameters of the layers (absorption and scattering coefficients) are replaced by some effective values, different for cases of directional and diffuse illumination of the layer. Coefficients relating the effective optical parameters of the layers and the actual values were established based on the results of a Monte Carlo numerical simulation of radiation transport in the medium. We estimate the uncertainties in retrieval of the structural and morphological parameters for the fundus from its diffuse reflectance spectrum using our method. We show that the simulated spectra correspond to the experimental data and that the estimates of the fundus parameters obtained as a result of solving the inverse problem are reasonable.

  9. All Together Now: Concurrent Learning of Multiple Structures in an Artificial Language

    ERIC Educational Resources Information Center

    Romberg, Alexa R.; Saffran, Jenny R.

    2013-01-01

    Natural languages contain many layers of sequential structure, from the distribution of phonemes within words to the distribution of phrases within utterances. However, most research modeling language acquisition using artificial languages has focused on only one type of distributional structure at a time. In two experiments, we investigated adult…

  10. Optimization of fixture layouts of glass laser optics using multiple kernel regression.

    PubMed

    Su, Jianhua; Cao, Enhua; Qiao, Hong

    2014-05-10

    We aim to build an integrated fixturing model to describe the structural properties and thermal properties of the support frame of glass laser optics. Therefore, (a) a near global optimal set of clamps can be computed to minimize the surface shape error of the glass laser optic based on the proposed model, and (b) a desired surface shape error can be obtained by adjusting the clamping forces under various environmental temperatures based on the model. To construct the model, we develop a new multiple kernel learning method and call it multiple kernel support vector functional regression. The proposed method uses two layer regressions to group and order the data sources by the weights of the kernels and the factors of the layers. Because of that, the influences of the clamps and the temperature can be evaluated by grouping them into different layers.

  11. Enhanced Detectability of Community Structure in Multilayer Networks through Layer Aggregation.

    PubMed

    Taylor, Dane; Shai, Saray; Stanley, Natalie; Mucha, Peter J

    2016-06-03

    Many systems are naturally represented by a multilayer network in which edges exist in multiple layers that encode different, but potentially related, types of interactions, and it is important to understand limitations on the detectability of community structure in these networks. Using random matrix theory, we analyze detectability limitations for multilayer (specifically, multiplex) stochastic block models (SBMs) in which L layers are derived from a common SBM. We study the effect of layer aggregation on detectability for several aggregation methods, including summation of the layers' adjacency matrices for which we show the detectability limit vanishes as O(L^{-1/2}) with increasing number of layers, L. Importantly, we find a similar scaling behavior when the summation is thresholded at an optimal value, providing insight into the common-but not well understood-practice of thresholding pairwise-interaction data to obtain sparse network representations.

  12. Lidar observation of marine mixed layer

    NASA Technical Reports Server (NTRS)

    Yamagishi, Susumu; Yamanouchi, Hiroshi; Tsuchiya, Masayuki

    1992-01-01

    Marine mixed layer is known to play an important role in the transportation of pollution exiting ship funnels. The application of a diffusion model is critically dependent upon a reliable estimate of a lid. However, the processes that form lids are not well understood, though considerable progress toward marine boundary layer has been achieved. This report describes observations of the marine mixed layer from the course Ise-wan to Nii-jima with the intention of gaining a better understanding of their structure by a shipboard lidar. These observations were made in the summer of 1991. One interesting feature of the observations was that the multiple layers of aerosols, which is rarely numerically modeled, was encountered. No attempt is yet made to present a systematic analysis of all the data collected. Instead we focus on observations that seem to be directly relevant to the structure of the mixed layer.

  13. Separation of effects of InGaN/GaN superlattice on performance of light-emitting diodes using mid-temperature-grown GaN layer

    NASA Astrophysics Data System (ADS)

    Sugimoto, Kohei; Okada, Narihito; Kurai, Satoshi; Yamada, Yoichi; Tadatomo, Kazuyuki

    2018-06-01

    We evaluated the electrical properties of InGaN-based light-emitting diodes (LEDs) with a superlattice (SL) layer or a mid-temperature-grown GaN (MT-GaN) layer just beneath the multiple quantum wells (MQWs). Both the SL layer and the MT-GaN layer were effective in improving the electroluminescence (EL) intensity. However, the SL layer had a more pronounced effect on the EL intensity than did the MT-GaN layer. Based on a comparison with devices with an MT-GaN layer, the overall effects of the SL could be separated into the effect of the V-pits and the structural or compositional effect of the SL. It was observed that the V-pits formed account for 30% of the improvement in the LED performance while the remaining 70% can be attributed to the structural or compositional effect of the SL.

  14. Evolution of Bow-Tie Architectures in Biology

    PubMed Central

    Friedlander, Tamar; Mayo, Avraham E.; Tlusty, Tsvi; Alon, Uri

    2015-01-01

    Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network—that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved. PMID:25798588

  15. Response of rocky invertebrate diversity, structure and function to the vertical layering of vegetation

    NASA Astrophysics Data System (ADS)

    Bustamante, María; Tajadura, Javier; Gorostiaga, José María; Saiz-Salinas, José Ignacio

    2014-06-01

    Macroalgae comprise a prominent part of the rocky benthos where many invertebrates develop, and are believed to be undergoing severe declines worldwide. In order to investigate how the vegetation structure (crustose, basal and canopy layers) contributes to the diversity, structure and function of benthic invertebrates, a total of 31 subtidal transects were sampled along the northeast Atlantic coast of Spain. Significant positive relationships were found between the canopy layer and faunal abundance, taxonomic diversity and functional group diversity. Canopy forming algae were also related to epiphytic invertebrates, medium size forms, colonial strategy and suspensivores. By contrast, basal algae showed negative relationships with all variables tested except for detritivores. Multivariate multiple regression analyses (DISTLM) point to crustose as well as canopy layers as the best link between seaweeds and invertebrate assemblage structure. A close relationship was found between taxonomic and functional diversities. In general, low levels of taxonomic redundancy were detected for functional groups correlated with vegetation structure. A conceptual model based on the results is proposed, describing distinct stages of invertebrate assemblages in relation to the vertical structure of vegetation.

  16. Comparison study of thickness swell performance of commercial oriented strandboard flooring products

    Treesearch

    Hongmei Gu; Siqun Wang; Trairat Neimsuwan; Sunguo Wang

    2005-01-01

    The multiple layer structure of oriented strandboard (OSB) has a significant influence on its performance, including thickness swell (TS). TS is recognized as an important performance property for OSB products. Optimization of TS through layer property ma- nipulation to achieve the lowest total TS while maintaining acceptable mechanical properties is attainable if the...

  17. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.

    PubMed

    Raj, Retheep; Sivanandan, K S

    2017-01-01

    Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.

  18. Sensing Properties of a Fabry-Perot Dielectric Structure and Dimer Nanoparticles

    DOE PAGES

    Polemi, A.; Shuford, K. L.

    2012-01-01

    We investigate the use of a Fabry-Perot dielectric structure combined with differently shaped nanoparticles for Surface Enhanced Raman Scattering. In particular, we show how an ideal two-layer Fabry-Perot configuration enhances the local surface field of silver nanoparticles positioned on the surface of the structure. We develop the concept using disc dimers and then extend the discussion to bowtie nanoparticles. The structure is excited by a single emitter, which couples to the nanoparticles through the dielectric layers, producing a wide aperture field that can be used to excite multiple dimers. We show how an array of nanoparticles can be properly arrangedmore » in order to increase the total scattering signal generated from the structure. The layered geometry produces robust field properties in between nanoparticles, making the overall sensing characteristics less sensitive to the interparticle seperation distance and incident polarization.« less

  19. Morphological and Compositional (S)TEM Analysis of Multiple Exciton Generation Solar Cells

    NASA Astrophysics Data System (ADS)

    Wisnivesky-Rocca-Rivarola, F.; Davis, N. J. L. K.; Bohm, M.; Ducati, C.

    2015-10-01

    Quantum confinement of charge carriers in semiconductor nanocrystals produces optical and electronic properties that have the potential to enhance the power conversion efficiency of solar cells. One of these properties is the efficient formation of more than one electron-hole pair from a single absorbed photon, in a process called multiple exciton generation (MEG). In this work we studied the morphology of nanocrystal multilayers of PbSe treated with CdCl2 using complementary imaging and spectroscopy techniques to characterise the chemical composition and morphology of full MEG devices made with PbSe nanorods (NRs). IN the scanning TEM (STEM), plan view images and chemical maps were obtained of the nanocrystal layers, which allowed for the analysis of crystal structure and orientation, as well as size distribution and aspect ratio. These results were complemented by cross-sectional images of full devices, which allowed accessing the structure of each layer that composes the device, including the nanorod packing in the active nanocrystal layer.

  20. Engineered biomimicry: polymeric replication of surface features found on insects

    NASA Astrophysics Data System (ADS)

    Pulsifer, Drew P.; Lakhtakia, Akhlesh; Martín-Palma, Raúl J.; Pantano, Carlo G.

    2011-04-01

    By combining the modified conformal-evaporated-film-by-rotation (M-CEFR) technique with nickel electroforming, we have produced master negatives of nonplanar biotemplates. An approximately 250-nm-thick conformal coating of nanocrystaline nickel is deposited on a surface structure of interest found in class Insecta, and the coating is then reinforced with a roughly 60-μm-thick structural layer of nickel by electroforming. This structural layer endows the M-CEFR coating with the mechanical robustness necessary for casting or stamping multiple polymer replicas of the biotemplate. We have made master negatives of blowfly corneas, beetle elytrons, and butterfly wings.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polemi, A.; Shuford, K. L.

    We investigate the use of a Fabry-Perot dielectric structure combined with differently shaped nanoparticles for Surface Enhanced Raman Scattering. In particular, we show how an ideal two-layer Fabry-Perot configuration enhances the local surface field of silver nanoparticles positioned on the surface of the structure. We develop the concept using disc dimers and then extend the discussion to bowtie nanoparticles. The structure is excited by a single emitter, which couples to the nanoparticles through the dielectric layers, producing a wide aperture field that can be used to excite multiple dimers. We show how an array of nanoparticles can be properly arrangedmore » in order to increase the total scattering signal generated from the structure. The layered geometry produces robust field properties in between nanoparticles, making the overall sensing characteristics less sensitive to the interparticle seperation distance and incident polarization.« less

  2. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  3. Reflection/suppression coatings for 900 - 1200 A radiation

    NASA Technical Reports Server (NTRS)

    Edelstein, Jerry

    1989-01-01

    The design and performance of multiple-layer, selective-reflection, selective-suppression coatings for the 900 - 1200 A band are described. These coatings are designed to optimize both high reflectivity at a desirable wavelength and low reflectivity at an undesirable wavelength. The minimum structure for a selective coating consists of a thin metal or metal oxide layer (50 - 150 A thickness) over an aluminum substrate protected with a semi-transparent dielectric (100 - 1000 A thickness). Predicted coating performance is strongly effected by varying the layer combination and thickness. A graphical method of optimizing the coating layer structure is developed. Aluminum, silicon, their oxides, and gold have been investigated as coating layer materials. A very simple coating with a 1026 to 1216 A reflectivity ratio greater than 100 was fabricated. Such reflection/suppression coatings may be of great utility to spaceborne EUV spectrographs.

  4. Multiplex PageRank.

    PubMed

    Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra

    2013-01-01

    Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  5. Infrared and Raman spectroscopic characterization of the silicate-carbonate mineral carletonite - KNa4Ca4Si8O18(CO3)4(OH,F)·H2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; López, Andrés; Belotti, Fernanda Maria

    2013-06-01

    An assessment of the molecular structure of carletonite a rare phyllosilicate mineral with general chemical formula given as KNa4Ca4Si8O18(CO3)4(OH,F)·H2O has been undertaken using vibrational spectroscopy. Carletonite has a complex layered structure. Within one period of c, it contains a silicate layer of composition NaKSi8O18·H2O, a carbonate layer of composition NaCO3·0.5H2O and two carbonate layers of composition NaCa2CO3(F,OH)0.5. Raman bands are observed at 1066, 1075 and 1086 cm-1. Whether these bands are due to the CO32- ν1 symmetric stretching mode or to an SiO stretching vibration is open to question. Multiple bands are observed in the 300-800 cm-1 spectral region, making the attribution of these bands difficult. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate and carbonate surfaces.

  6. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L.; Cong, D. Y.; Wang, Z. L.

    2015-07-08

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels.more » The present study is instructive for designing advanced multifunctional alloys with easy actuation.« less

  7. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    NASA Astrophysics Data System (ADS)

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Y.; Wang, Y. D.

    2015-07-01

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  8. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L.; Cong, D. Y.; Wang, Z. L.

    2015-06-03

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels.more » The present study is instructive for designing advanced multifunctional alloys with easy actuation.« less

  9. Surface enhanced Raman scattering spectroscopic waveguide

    DOEpatents

    Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H

    2015-04-14

    A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.

  10. Two-photon excited autofluorescence imaging of freshly isolated frog retinas.

    PubMed

    Lu, Rong-Wen; Li, Yi-Chao; Ye, Tong; Strang, Christianne; Keyser, Kent; Curcio, Christine A; Yao, Xin-Cheng

    2011-06-01

    The purpose of this study was to investigate cellular sources of autofluorescence signals in freshly isolated frog (Rana pipiens) retinas. Equipped with an ultrafast laser, a laser scanning two-photon excitation fluorescence microscope was employed for sub-cellular resolution examination of both sliced and flat-mounted retinas. Two-photon imaging of retinal slices revealed autofluorescence signals over multiple functional layers, including the photoreceptor layer (PRL), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion cell layer (GCL). Using flat-mounted retinas, depth-resolved imaging of individual retinal layers further confirmed multiple sources of autofluorescence signals. Cellular structures were clearly observed at the PRL, ONL, INL, and GCL. At the PRL, the autofluorescence was dominantly recorded from the intracellular compartment of the photoreceptors; while mixed intracellular and extracellular autofluorescence signals were observed at the ONL, INL, and GCL. High resolution autofluorescence imaging clearly revealed mosaic organization of rod and cone photoreceptors; and sub-cellular bright autofluorescence spots, which might relate to connecting cilium, was observed in the cone photoreceptors only. Moreover, single-cone and double-cone outer segments could be directly differentiated.

  11. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Huang, H.; Hartle, M.

    1992-01-01

    Accomplishments are described for the fourth years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded component structures. These accomplishments include: (1) demonstration of coupled solution capability; (2) alternate CSTEM electromagnetic technology; (3) CSTEM acoustic capability; (4) CSTEM tailoring; (5) CSTEM composite micromechanics using ICAN; and (6) multiple layer elements in CSTEM.

  12. Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)

    2014-01-01

    A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.

  13. Thermally activated decomposition of (Ga,Mn)As thin layer at medium temperature post growth annealing

    NASA Astrophysics Data System (ADS)

    Melikhov, Y.; Konstantynov, P.; Domagala, J.; Sadowski, J.; Chernyshova, M.; Wojciechowski, T.; Syryanyy, Y.; Demchenko, I. N.

    2016-05-01

    The redistribution of Mn atoms in Ga1-xMnxAs layer during medium-temperature annealing, 250-450 oC, by Mn K-edge X-ray absorption fine structure (XAFS) recorded at ALBA facility, was studied. For this purpose Ga1-xMnxAs thin layer with x=0.01 was grown on AlAs buffer layer deposited on GaAs(100) substrate by molecular beam epitaxy (MBE) followed by annealing. The examined layer was detached from the substrate using a “lift-off” procedure in order to eliminate elastic scattering in XAFS spectra. Fourier transform analysis of experimentally obtained EXAFS spectra allowed to propose a model which describes a redistribution/diffusion of Mn atoms in the host matrix. Theoretical XANES spectra, simulated using multiple scattering formalism (FEFF code) with the support of density functional theory (WIEN2k code), qualitatively describe the features observed in the experimental fine structure.

  14. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids.

    PubMed

    Lee, Ming-Lun; Yeh, Yu-Hsiang; Tu, Shang-Ju; Chen, P C; Lai, Wei-Chih; Sheu, Jinn-Kong

    2015-04-06

    Non-planar InGaN/GaN multiple quantum well (MQW) structures are grown on a GaN template with truncated hexagonal pyramids (THPs) featuring c-plane and r-plane surfaces. The THP array is formed by the regrowth of the GaN layer on a selective-area Si-implanted GaN template. Transmission electron microscopy shows that the InGaN/GaN epitaxial layers regrown on the THPs exhibit different growth rates and indium compositions of the InGaN layer between the c-plane and r-plane surfaces. Consequently, InGaN/GaN MQW light-emitting diodes grown on the GaN THP array emit multiple wavelengths approaching near white light.

  15. High temperature, flexible, fiber-preform seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Strocky, Paul J. (Inventor)

    1992-01-01

    A seal is mounted in a rectangular groove in a movable structural panel. The seal comprises a fiber preform constructed of multiple layers of fiber having a uniaxial core. Helical fibers are wound over the core. The fibers are of materials capable of withstanding high temperatures and are both left-hand and right-hand wound. An outer layer wrapped over said helical fibers prevents abrasion damage.

  16. Structural health monitoring of inflatable structures for MMOD impacts

    NASA Astrophysics Data System (ADS)

    Anees, Muhammad; Gbaguidi, Audrey; Kim, Daewon; Namilae, Sirish

    2017-04-01

    Inflatable structures for space habitat are highly prone to damage caused by micrometeoroid and orbital debris impacts. Although the structures are effectively shielded against these impacts through multiple layers of impact resistant materials, there is a necessity for a health monitoring system to monitor the structural integrity and damage state within the structures. Assessment of damage is critical for the safety of personnel in the space habitat, as well as predicting the repair needs and the remaining useful life of the habitat. In this paper, we propose a unique impact detection and health monitoring system based on hybrid nanocomposite sensors. The sensors are composed of two fillers, carbon nanotubes and coarse graphene platelets with an epoxy matrix material. The electrical conductivity of these flexible nanocomposite sensors is highly sensitive to strains as well as presence of any holes and damage in the structure. The sensitivity of the sensors to the presence of 3mm holes due to an event of impact is evaluated using four point probe electrical resistivity measurements. An array of these sensors when sandwiched between soft good layers in a space habitat can act as a damage detection layer for inflatable structures. An algorithm is developed to determine the event of impact, its severity and location on the sensing layer for active health monitoring.

  17. Mach Number effects on turbulent superstructures in wall bounded flows

    NASA Astrophysics Data System (ADS)

    Kaehler, Christian J.; Bross, Matthew; Scharnowski, Sven

    2017-11-01

    Planer and three-dimensional flow field measurements along a flat plat boundary layer in the Trisonic Wind Tunnel Munich (TWM) are examined with the aim to characterize the scaling, spatial organization, and topology of large scale turbulent superstructures in compressible flow. This facility is ideal for this investigation as the ratio of boundary layer thickness to test section spanwise extent ratio is around 1/25, ensuring minimal sidewall and corner effects on turbulent structures in the center of the test section. A major difficulty in the experimental investigation of large scale features is the mutual size of the superstructures which can extend over many boundary layer thicknesses. Using multiple PIV systems, it was possible to capture the full spatial extent of large-scale structures over a range of Mach numbers from Ma = 0.3 - 3. To calculate the average large-scale structure length and spacing, the acquired vector fields were analyzed by statistical multi-point methods that show large scale structures with a correlation length of around 10 boundary layer thicknesses over the range of Mach numbers investigated. Furthermore, the average spacing between high and low momentum structures is on the order of a boundary layer thicknesses. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures of the Deutsche Forschungsgemeinschaft.

  18. UV-LIGA microfabrication process for sub-terahertz waveguides utilizing multiple layered SU-8 photoresist

    NASA Astrophysics Data System (ADS)

    Malekabadi, Ali; Paoloni, Claudio

    2016-09-01

    A microfabrication process based on UV LIGA (German acronym of lithography, electroplating and molding) is proposed for the fabrication of relatively high aspect ratio sub-terahertz (100-1000 GHz) metal waveguides, to be used as a slow wave structure in sub-THz vacuum electron devices. The high accuracy and tight tolerances required to properly support frequencies in the sub-THz range can be only achieved by a stable process with full parameter control. The proposed process, based on SU-8 photoresist, has been developed to satisfy high planar surface requirements for metal sub-THz waveguides. It will be demonstrated that, for a given thickness, it is more effective to stack a number of layers of SU-8 with lower thickness rather than using a single thick layer obtained at lower spin rate. The multiple layer approach provides the planarity and the surface quality required for electroforming of ground planes or assembly surfaces and for assuring low ohmic losses of waveguides. A systematic procedure is provided to calculate soft and post-bake times to produce high homogeneity SU-8 multiple layer coating as a mold for very high quality metal waveguides. A double corrugated waveguide designed for 0.3 THz operating frequency, to be used in vacuum electronic devices, was fabricated as test structure. The proposed process based on UV LIGA will enable low cost production of high accuracy sub-THz 3D waveguides. This is fundamental for producing a new generation of affordable sub-THz vacuum electron devices, to fill the technological gap that still prevents a wide diffusion of numerous applications based on THz radiation.

  19. Statistical Significance for Hierarchical Clustering

    PubMed Central

    Kimes, Patrick K.; Liu, Yufeng; Hayes, D. Neil; Marron, J. S.

    2017-01-01

    Summary Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the partition, and the multiplicity of tests required to parse the layers of nested clusters. In this paper, we propose a Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues. The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated through several simulation studies and applications to two cancer gene expression datasets. PMID:28099990

  20. Deep Visual Attention Prediction

    NASA Astrophysics Data System (ADS)

    Wang, Wenguan; Shen, Jianbing

    2018-05-01

    In this work, we aim to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. Although Convolutional Neural Networks (CNNs) have made substantial improvement on human attention prediction, it is still needed to improve CNN based attention models by efficiently leveraging multi-scale features. Our visual attention network is proposed to capture hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. Our model is based on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned in a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark datasets demonstrate our method yields state-of-the-art performance with competitive inference time.

  1. Different foveal schisis patterns in each retinal layer in eyes with hereditary juvenile retinoschisis evaluated by en-face optical coherence tomography.

    PubMed

    Yoshida-Uemura, Tomoyo; Katagiri, Satoshi; Yokoi, Tadashi; Nishina, Sachiko; Azuma, Noriyuki

    2017-04-01

    To analyze the structures of schisis in eyes with hereditary juvenile retinoschisis using en-face optical coherence tomography (OCT) imaging. In this retrospective observational study, we reviewed the medical records of patients with hereditary juvenile retinoschisis who underwent comprehensive ophthalmic examinations including swept-source OCT. OCT images were obtained from 16 eyes of nine boys (mean age ± standard deviation, 10.6 ± 4.0 years). The horizontal OCT images at the fovea showed inner nuclear layer (INL) schisis in one eye (6.3 %), ganglion cell layer (GCL) and INL schisis in 12 eyes (75.0 %), INL and outer plexiform layer (OPL) schisis in two eyes (12.5 %), and GCL, INL, and OPL schisis in one eye (6.3 %). En-face OCT images showed characteristic schisis patterns in each retinal layer, which were represented by multiple hyporeflective holes in the parafoveal region in the GCL, a spoke-like pattern in the foveal region, a reticular pattern in the parafoveal region in the INL, and multiple hyporeflective polygonal cavities with partitions in the OPL. Our results using en-face OCT imaging clarified different patterns of schisis formation among the GCL, INL, and OPL, which lead to further recognition of structure in hereditary juvenile retinoschisis.

  2. Ultrasensitive electrochemical detection of tumor cells based on multiple layer CdS quantum dots-functionalized polystyrene microspheres and graphene oxide - polyaniline composite.

    PubMed

    Wang, Jidong; Wang, Xiaoyu; Tang, Hengshan; Gao, Zehua; He, Shengquan; Li, Jian; Han, Shumin

    2018-02-15

    In this work, a novel ultrasensitive electrochemical biosensor was developed for the detection of K562 cell by a signal amplification strategy based on multiple layer CdS QDs functionalized polystyrene microspheres(PS) as bioprobe and graphene oxide(GO) -polyaniline(PANI) composite as modified materials of capture electrode. Due to electrostatic force of different charge, CdS QDs were decorated on the surface of PS by PDDA (poly(diallyldimethyl-ammonium chloride)) through a layer-by-layer(LBL) assemble technology, in which the structure of multiple layer CdS QDs increased the detection signal intensity. Moreover, GO-PANI composite not only enhanced the electron transfer rate, but also increased tumor cells load ratio. The resulting electrochemical biosensor was used to detect K562 cells with a lower detection limit of 3 cellsmL -1 (S/N = 3) and a wider linear range from 10 to 1.0 × 10 7 cellsmL -1 . This sensor was also used for mannosyl groups on HeLa cells and Hct116 cells, which showed high specificity and sensitivity. This signal amplification strategy would provide a novel approach for detection, diagnosis and treatment for tumor cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Influence of Multiple Nested Layer Waviness on the Compression Strength of Double Nested Wave Formations in a Carbon Fiber Composite Laminate

    NASA Astrophysics Data System (ADS)

    Khan, Z. M.; Adams, D. O.; Anas, S.

    2016-01-01

    As advanced composite materials having superior physical and mechanical properties are being developed, the optimization of their processing techniques is eagerly sought. One of the most common defects arising during processing of structural composites is layer waviness. The layer waviness is more pronounced in thick-section flat and cylindrical laminates, which are extensively used in large wind turbine blades, submersibles, and space platforms. The layer waviness undulates the entire layer of a multidirectional laminate in the throughthe-thickness direction, leading to a gross deterioration of its compressive strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wavy 0° layers were fabricated in an IM/8551-7 carbon-epoxy composite laminate on a steel mold by using a single-step fabrication procedure. The test laminates were cured on a heated press according to the specific curing cycle of epoxy. Their static compression testing was performed using a NASA short block compression fixture on an MTS servohydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of the composite laminate. The experimental and analytical results obtained revealed that the reduction in the compression strength of composite laminate was constant after the fraction of the wavy 0° layers exceeded 35%. This analysis indicated that the percentage of the 0° wavy layer may be used to estimate the reduction in the compression strength of a double nested wave formation in a composite laminate.

  4. Development of Multiple-Frequency Ultrasonic Imaging System Using Multiple Resonance Piezoelectric Transducer

    NASA Astrophysics Data System (ADS)

    Akiyama, Iwaki; Yoshizumi, Natsuki; Saito, Shigemi; Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-07-01

    The authors have developed a multiple frequency imaging system using a multiple resonance transducer (MRT) consisting of 1-3 composite materials with a low mechanical quality factor Q bonded together. The MRT has a structure consisting of thin and thick piezoelectric plates, two matching layers, and a backing layer. This makes it possible to obtain B-mode images of satisfactory resolution using ultrasonic pulses owing to their short duration. In this paper, the vibration property of the MRT derived through equivalent-circuit analysis is first shown. By utilizing the result, an MRT capable of transmitting ultrasonic pulses for generation of the images of biological tissues with satisfactory resolution is designed and prototyped. Setting the prototype transducer in the mechanical sector probe of commercial ultrasonic diagnosis equipment, the speckle reduction effect is demonstrated using images of various phantoms to mimic biological tissues and a human thyroid.

  5. Venting through multiple-layer insulation on Space Station Freedom. II - Ascent rate pressure chamber testing

    NASA Technical Reports Server (NTRS)

    Sharp, Jeffrey B.; Buitekant, Alan; Fay, John F.; Holladay, Jon B.

    1993-01-01

    A test was conducted to determine the venting characteristics of the multiple-layer insulation (MLI) to be installed on the Space Station Freedom (SSF). A full MLI blanket with inter-blanket joints was installed onto a model of a section of the SSF pressure wall, support structure, and debris shield. Data were taken from this test and were used to predict the venting of the actual Space Station pressure-wall/MLI/debris-shield assemply during launch and possible re-entry. It was found that the pressure differences across the debris shields and MLI blankets were well within the specified limits in all cases.

  6. Structural Organization of Baculovirus Occlusion Bodies and Protective Role of Multilayered Polyhedron Envelope Protein.

    PubMed

    Sajjan, Dayanand B; Hinchigeri, Shivayogeppa B

    2016-03-01

    Baculoviruses are the ingenious insect pathogens. Outside the host, baculovirus occlusion bodies (OB) provide stability to occlusion-derived viruses (ODV) embedded within. The OB is an organized structure, chiefly composed of proteins namely polyhedrin, polyhedron envelope protein (PEP) and P10. Currently, the structural organization of OB is poorly understood and the role of OB proteins in conferring the stability to ODV is unknown. Here we have shown that the assembly of polyhedrin unit cells into an OB is a rapid process; the PEP forms in multiple layers; the PEP layers predominantly contribute to ODV viability. Full-grown OBs (n = 36) were found to be 4.0 ± 1.0 µm in diameter and possessed a peculiar geometry of a truncated rhombic dodecahedron. The atomic force microscopy (AFM) study on the structure of OBs at different stages of growth in insect cells revealed polyhedrin assembly and thickness of PEP layers. The thickness of PEP layers at 53 h post-transfection (hpt) ranged from 56 to 80 nm. Mature PEP layers filled up approximately one third of the OB volume. The size of ODV nucleocapsid was found to be 433 ± 10 nm in length. The zeta potential and particle size distribution study of viruses revealed the protective role of PEP layers. The presence of a multilayered PEP confers a viable advantage to the baculoviruses compared to single-layered PEP. Thus, these findings may help in developing PEP layer-based biopolymers for protein-based nanodevices, nanoelectrodes and more stable biopesticides.

  7. Evaluation of Shear Strength of RC Beams with Multiple Interfaces Formed before Initial Setting Using 3D Printing Technology

    PubMed Central

    Kim, Kyeongjin; Park, Sangmin; Jeong, Yoseok; Lee, Jaeha

    2017-01-01

    With the recent development of 3D printing technology, concrete materials are sometimes used in 3D printing. Concrete structures based on 3D printing have been characterized to have the form of multiple layer build-up. Unlike general concrete structures, therefore, the 3D-printed concrete can be regarded as an orthotropic material. The material property of the 3D-printed concrete’s interface between layers is expected to be far different from that of general concrete bodies since there are no aggregate interlocks and weak chemical bonding. Such a difference finally affects the structural performance of concrete structures even though the interfaces are formed before initial setting of the concrete. The current study mainly reviewed the changes in fracture energy (toughness) with respect to various environmental conditions of such interface. Changes in fracture energies of interfaces between concrete layers were measured using low-speed Crack Mouth Opening Displacement (CMOD) closed loop concrete fracture test. The experimental results indicated reduction in fracture energy as well as tensile strengths. To improve the tensile strength of interfaces, the use of bridging materials is suggested. Since it was assumed that reduction in fracture energy could be a cause of shear strength, to evaluate the reduced structural performance of concrete structure constructed with multiple interfaces by 3D printing technology, the shear strength of RC beam by 3D printing technology was predicted and compared with that of plain RC beam. Based on the fracture energy measured in this study, Modified Compression Field Theory (MCFT) theory-applied Vector 2 program was employed to predict the degree of reduction in shear strength without considering stirrups. Reduction factors were presented based on the obtained results to predict the reduction in shear strength due to interfaces before initial setting of the concrete.

  8. Multiple Generations of Boudinage in a P-T Path: Insights from 3D Analysis of Amphibolite Boudins in Marble on Naxos, Greece

    NASA Astrophysics Data System (ADS)

    von Hagke, C.; Virgo, S.; Urai, J. L.

    2016-12-01

    Boudins are periodic structures in mechanically layered rocks deformed by layer parallel extension. At first sight, 2D sections of boudinaged layers are similar although 3D boudin patterns can be dramatically different. We aim to develop criteria to infer 3D strain from 2D outcrop observation of boudins. In marble quarries in the high grade complex on Naxos, Greece, we studied spectacular outcrops of amphibolite and pegmatite boudins, in combination with serial slicing of quarried blocks to reconstruct the 3D boudin structures. We identified multiple boudin generations, with early, high grade pinch and swell boudins followed by two generations of brittle shearband and torn boudins formed along the retrograde path under greenschist facies conditions. This shows how the rheological contract between marble and amphibolite changes from amphibolite to greenschist facies and suggests E-W shortening and N-S stretching in the footwall of the Naxos detachment. The later phases of boudinage interact with existing boudin geometries, producing complex structures in 3D. In 2D section the complexity is not directly apparent and reveals itself only in statistical analysis of long continuous sections. Our findings highlight the importance of 3D characterization of boudinage structures for boudin classification. The insights we gain from the analysis of multiphase boudinage structures on Naxos are the basis for quantitative boudin analysis to infer rheology, effective stress, vorticity and strain and establish a mechanics-based boudin classification scheme.

  9. Cathodoluminescence studies of chevron features in semi-polar (11 2 ¯ 2 ) InGaN/GaN multiple quantum well structures

    NASA Astrophysics Data System (ADS)

    Brasser, C.; Bruckbauer, J.; Gong, Y.; Jiu, L.; Bai, J.; Warzecha, M.; Edwards, P. R.; Wang, T.; Martin, R. W.

    2018-05-01

    Epitaxial overgrowth of semi-polar III-nitride layers and devices often leads to arrowhead-shaped surface features, referred to as chevrons. We report on a study into the optical, structural, and electrical properties of these features occurring in two very different semi-polar structures, a blue-emitting multiple quantum well structure, and an amber-emitting light-emitting diode. Cathodoluminescence (CL) hyperspectral imaging has highlighted shifts in their emission energy, occurring in the region of the chevron. These variations are due to different semi-polar planes introduced in the chevron arms resulting in a lack of uniformity in the InN incorporation across samples, and the disruption of the structure which could cause a narrowing of the quantum wells (QWs) in this region. Atomic force microscopy has revealed that chevrons can penetrate over 150 nm into the sample and quench light emission from the active layers. The dominance of non-radiative recombination in the chevron region was exposed by simultaneous measurement of CL and the electron beam-induced current. Overall, these results provide an overview of the nature and impact of chevrons on the luminescence of semi-polar devices.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, D. H.

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO{sub 2}) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60 °C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO{sub 2} layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO{sub 2} layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnOmore » layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.« less

  11. Advantages of InGaN/GaN multiple quantum wells with two-step grown low temperature GaN cap layers

    NASA Astrophysics Data System (ADS)

    Zhu, Yadan; Lu, Taiping; Zhou, Xiaorun; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe

    2017-11-01

    Two-step grown low temperature GaN cap layers (LT-cap) are employed to improve the optical and structural properties of InGaN/GaN multiple quantum wells (MQWs). The first LT-cap layer is grown in nitrogen atmosphere, while a small hydrogen flow is added to the carrier gas during the growth of the second LT-cap layer. High-resolution X-ray diffraction results indicate that the two-step growth method can improve the interface quality of MQWs. Room temperature photoluminescence (PL) tests show about two-fold enhancement in integrated PL intensity, only 25 meV blue-shift in peak energy and almost unchanged line width. On the basis of temperature-dependent PL characteristics analysis, it is concluded that the first and the second LT-cap layer play a different role during the growth of MQWs. The first LT-cap layer acts as a protective layer, which protects quantum well from serious indium loss and interface roughening resulting from the hydrogen over-etching. The hydrogen gas employed in the second LT-cap layer is in favor of reducing defect density and indium segregation. Consequently, interface/surface and optical properties are improved by adopting the two-step growth method.

  12. Evaluation of multilayered pavement structures from measurements of surface waves

    USGS Publications Warehouse

    Ryden, N.; Lowe, M.J.S.; Cawley, P.; Park, C.B.

    2006-01-01

    A method is presented for evaluating the thickness and stiffness of multilayered pavement structures from guided waves measured at the surface. Data is collected with a light hammer as the source and an accelerometer as receiver, generating a synthetic receiver array. The top layer properties are evaluated with a Lamb wave analysis. Multiple layers are evaluated by matching a theoretical phase velocity spectrum to the measured spectrum. So far the method has been applied to the testing of pavements, but it may also be applicable in other fields such as ultrasonic testing of coated materials. ?? 2006 American Institute of Physics.

  13. Computed a multiple band metamaterial absorber and its application based on the figure of merit value

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Sheng, Yuping; Jun, Wang

    2018-01-01

    A high performed multiple band metamaterial absorber is designed and computed through the software Ansofts HFSS 10.0, which is constituted with two kinds of separated metal particles sub-structures. The multiple band absorption property of the metamaterial absorber is based on the resonance of localized surface plasmon (LSP) modes excited near edges of metal particles. The damping constant of gold layer is optimized to obtain a near-perfect absorption rate. Four kinds of dielectric layers is computed to achieve the perfect absorption perform. The perfect absorption perform of the metamaterial absorber is enhanced through optimizing the structural parameters (R = 75 nm, w = 80 nm). Moreover, a perfect absorption band is achieved because of the plasmonic hybridization phenomenon between LSP modes. The designed metamaterial absorber shows high sensitive in the changed of the refractive index of the liquid. A liquid refractive index sensor strategy is proposed based on the computed figure of merit (FOM) value of the metamaterial absorber. High FOM values (116, 111, and 108) are achieved with three liquid (Methanol, Carbon tetrachloride, and Carbon disulfide).

  14. Coherent Terahertz Radiation from Multiple Electron Beams Excitation within a Plasmonic Crystal-like structure.

    PubMed

    Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang

    2017-01-23

    Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation.

  15. Coherent Terahertz Radiation from Multiple Electron Beams Excitation within a Plasmonic Crystal-like structure

    PubMed Central

    Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang

    2017-01-01

    Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation. PMID:28112234

  16. Damage Detection Sensor System for Aerospace and Multiple Applications

    NASA Technical Reports Server (NTRS)

    Williams, M.; Lewis, M.; Gibson, T.; Medelius, P.; Lane, J.

    2017-01-01

    The damage detection sensory system is an intelligent damage detection ‘skin’ that can be embedded into rigid or flexible structures, providing a lightweight capability for in-situ health monitoring for applications such as spacecraft, expandable or inflatable structures, extravehicular activities (EVA) suits, smart wearables, and other applications where diagnostic impact damage monitoring might be critical. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The operation of the sensor detection system is currently based on the use of parallel conductive traces placed on a firm or flexible surface. Several detection layers can be implemented, where alternate layers are arranged in orthogonal direction with respect to the adjacent layers allowing for location and depth calculations. Increased flexibility of the damage detection sensor system designs will also be introduced.

  17. Structure and properties of the subsolar magnetopause for northward interplanetary magnetic field - Multiple-instrument particle observations

    NASA Technical Reports Server (NTRS)

    Song, P.; Russell, C. T.; Fitzenreiter, R. J.; Gosling, J. T.; Thomsen, M. F.; Mitchell, D. G.; Fuselier, S. A.; Parks, G. K.; Anderson, R. R.; Hubert, D.

    1993-01-01

    The paper examines the structure and properties of the subsolar magnetopause for northward IMF on the basis of measurements from 10 different instrument for three ISEE crossings. It is shown that the overall structure and properties are similar for the three crossings, indicating that the magnetopause is relatively well determined in the subsolar region for strongly northward IMF. The combined data set suggests that the magnetopause region is best organized by defining a sheath transition layer and steplike boundary layers. The electron flux enhancements in the lowest energies in the boundary layers and magnetosphere are found to be ionospheric electrons and not photoelectrons from the spacecraft. For northward IMF, they are photoelectrons, but for southward IMF they may be secondary electrons. The density measurements from differential and integral techniques are similar, leaving no room for a significant 'invisible' population.

  18. Differences between the MEMLS and the multiple-layer HUT model and their comparisons with in-situ snowpack observations

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Sandells, M. J.; Lemmetyinen, J.; Kim, E. J.

    2013-12-01

    Application of passive microwave (PM) brightness temperature for snow water equivalent retrieval requires deep understanding of snow emission models, not only for their performance to reproduce in-situ PM observations, but also for their theoretical differences to approximate radiative transfer theory. In this paper, differences between the multiple-layer HUT (or TKK) model and the Microwave Emission Model of Layered Snowpacks (MEMLS) were listed, and the two models were compared with snow ground-based PM observations at Streamboat Springs, Colorado, USA; Churchill, Canada; and Sodankyla, Finland. The two models were chosen for their multiple-layer schemes are close to actual layer-by-layer snow measurements. Both the two models are semi-empirical models; whereas the HUT model uses the mean snow grain size, MEMLS uses the correlation length to relate the snow microstructure with the scattering coefficients. The two parameters are related according to previous studies. The Specific Surface Area (SSA) was measured at three test sites to derive the correlation length, while the mean snow grain sizes was available at Stream Springs and Sodankyla. It was shown that with different apparent forms of radiative transfer equations, the different parts of the two models have one-to-one correspondence however, and intermediate parameters are comparable. Regarding the multiple-layer structure of the models, it was found that the HUT model considers the internal reflectivity of each snow layer to be zero. The two-flux radiative transfer equations of the two models were compared, and the correspondence of the semi-empirical parameter q in the HUT model was found in the MEMLS. The effect of consideration of transverse radiation scattered into the direction under consideration via the six-flux approximation in MEMLS is compared. Based on model comparisons, we analyzed the differences of TB predictions at the three test sites.

  19. Multi-layer Clouds Over the South Indian Ocean

    NASA Image and Video Library

    2003-05-07

    The complex structure and beauty of polar clouds are highlighted by these images acquired by NASA Terra spacecraft on April 23, 2003. These clouds occur at multiple altitudes and exhibit a noticeable cyclonic circulation over the Southern Indian Ocean,

  20. Organic light emitting device having multiple separate emissive layers

    DOEpatents

    Forrest, Stephen R [Ann Arbor, MI

    2012-03-27

    An organic light emitting device having multiple separate emissive layers is provided. Each emissive layer may define an exciton formation region, allowing exciton formation to occur across the entire emissive region. By aligning the energy levels of each emissive layer with the adjacent emissive layers, exciton formation in each layer may be improved. Devices incorporating multiple emissive layers with multiple exciton formation regions may exhibit improved performance, including internal quantum efficiencies of up to 100%.

  1. Transient Signal Distortion and Coupling in Multilayer Multiconductor MIC Microstrips

    DTIC Science & Technology

    1990-05-22

    cess.ar1 and identify by block number) I FIELD GROUP I $..)3-{; ’\\0-:: Transient signals, distortion, dispersion, microstrip J 1 i nes , multi...printed circuit design; complex microstrip structures {multiple lines and/or dielectric layers), coupling between lines, distortion of non -periodic...signals on complex structures, and a new method to control coupling on multilayer structures, as well as presenting numerical results for each of these

  2. Constructing Cost-Effective Crystal Structures with Table Tennis Balls and Tape That Allows Students to Assemble and Model Multiple Unit Cells

    ERIC Educational Resources Information Center

    Elsworth, Catherine; Li, Barbara T. Y.; Ten, Abilio

    2017-01-01

    In this letter we present an innovative and cost-effective method of constructing crystal structures using Dual Lock fastening adhesive tape with table tennis (ping pong) balls. The use of these fasteners allows the balls to be easily assembled into layers to model various crystal structures and unit cells and then completely disassembled again.…

  3. Zigzag spin structure in layered honeycomb L i3N i2Sb O6 : A combined diffraction and antiferromagnetic resonance study

    NASA Astrophysics Data System (ADS)

    Kurbakov, A. I.; Korshunov, A. N.; Podchezertsev, S. Yu.; Malyshev, A. L.; Evstigneeva, M. A.; Damay, F.; Park, J.; Koo, C.; Klingeler, R.; Zvereva, E. A.; Nalbandyan, V. B.

    2017-07-01

    The magnetic structure of L i3N i2Sb O6 has been determined by low-temperature neutron diffraction, and the crystal structure has been refined by a combination of synchrotron and neutron powder diffraction. The monoclinic (C 2 /m ) symmetry, assigned previously to this pseudohexagonal layered structure, has been unambiguously proven by peak splitting in the synchrotron diffraction pattern. The structure is based on essentially hexagonal honeycomb-ordered N i2Sb O6 layers alternating with L i3 layers, all cations and anions being in an octahedral environment. The compound orders antiferromagnetically below TN=15 K , with the magnetic supercell being a 2 a ×2 b multiple of the crystal cell. The magnetic structure within the honeycomb layer consists of zigzag ferromagnetic spin chains coupled antiferromagnetically. The ordered magnetic moment amounts to 1.62 (2 ) μB/Ni , which is slightly lower than the full theoretical value. Upon cooling below TN, the spins tilt from the c axis, with a maximum tilting angle of 15 .6∘ at T =1.5 K . Our data imply non-negligible ferromagnetic interactions between the honeycomb layers. The observed antiferromagnetic resonance modes are in agreement with the two-sublattice model derived from the neutron data. Orthorhombic anisotropy shows up in zero-field splitting of Δ =198 ±4 and 218 ±4 GHz . Above TN, the electron spin resonance data imply short-range antiferromagnetic order up to about 80 K.

  4. The management of stress in MOCVD-grown InGaN/GaN LED multilayer structures on Si(1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Jiang, Quanzhong; Allsopp, Duncan W. E.; Bowen, Chris R.; Wang, Wang N.

    2013-09-01

    The tensile stress in light-emitting diode (LED)-on-Si(1 1 1) multilayer structures must be reduced so that it does not compromise the multiple quantum well emission wavelength uniformity and structural stability. In this paper it is shown for non-optimized LED structures grown on Si(1 1 1) substrates that both emission wavelength uniformity and structural stability can be achieved within the same growth process. In order to gain a deeper understanding of the stress distribution within such a structure, cross-sectional Raman and photo-luminescence spectroscopy techniques were developed. It is observed that for a Si:GaN layer grown on a low-temperature (LT) AlN intermediate layer there is a decrease in compressive stress with increasing Si:GaN layer thickness during MOCVD growth which leads to a high level of tensile stress in the upper part of the layer. This may lead to the development of cracks during cooling to room temperature. Such a phenomenon may be associated with annihilation of defects such as dislocations. Therefore, a reduction of dislocation intensity should take place at the early stage of GaN growth on an AlN or AlGaN layer in order to reduce a build up of tensile stress with thickness. Furthermore, it is also shown that a prolonged three dimensional GaN island growth on a LT AlN interlayer for the reduction of dislocations may result in a reduction in the compressive stress in the resulting GaN layer.

  5. Modeling Heterogeneous Carbon Nanotube Networks for Photovoltaic Applications Using Silvaco Atlas Software

    DTIC Science & Technology

    2012-06-01

    Nanotube MWCNT Multi-Walled Carbon Nanotube PET Polyethylene Terephthalate 4H-SiC 4-H Silicon Carbide AlGaAs Aluminum Gallium Arsenide...nanotubes ( MWCNTs ). SWCNTs are structured with one layer of graphene rolled into a CNT. MWCNTs are contrastingly composed of 23 multiple layers...simulation 19 times to extract cell parameters at #varying widths set cellWidth=200 loop steps=19 go atlas #Constants which are used to set the

  6. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface

    NASA Astrophysics Data System (ADS)

    Brown, Matthew A.; Abbas, Zareen; Kleibert, Armin; Green, Richard G.; Goel, Alok; May, Sylvio; Squires, Todd M.

    2016-01-01

    The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li+ , Na+ , K+ , and Cs+ ) in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.

  7. Simulation and Implementation of Moth-eye Structures as a Broadband Anti-Reflective Layer

    NASA Astrophysics Data System (ADS)

    Deshpande, Ketan S.

    Conventional single layer thin anti-reflective coatings (ARCs) are only suitable for narrowband applications. A multilayer film stack is often employed for broadband applications. A coating of multiple layers with alternating low and high refractive index materials increases the overall cost of the system. This makes multilayer ARCs unsuitable for low-cost broadband applications. Since the discovery of moth-eye corneal nipple patterns and their potential applicability in the field of broadband ARCs, many studies have been carried out to fabricate these bio-inspired nanostructures with available manufacturing processes. Plasma etching processes used in microelectronic manufacturing are applied for creating these nanostructures at the Rochester Institute of Technology's Semiconductor & Microsystems Fabrication Laboratory (SMFL). Atomic Force Microscope (AFM) scanned surfaces of the nanostructure layer are simulated and characterized for their optical properties using a Finite-Difference Time Domain (FDTD) simulator from Lumerical Solutions, Inc. known as FDTD Solutions. Simulation results show that the layer is anti-reflective over 50 to 350 nm broadband of wavelengths at 0° angle of incidence. These simulation results were supported by ellipsometer reflection measurements off the actual samples at multiple angles of light incidence, which show a 10% to 15% decrease in reflection for 240 to 400 nm wavelengths. Further improvements in the optical efficiency of these structures can be achieved through simulation-fabrication-characterization cycles performed for this project. The optimized nanostructures can then serve the purpose of low-cost anti-reflective coatings for solar cells and similar applications.

  8. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    NASA Astrophysics Data System (ADS)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  9. Local structure of Rb{sub 2}Li{sub 4}(SeO{sub 4}){sub 3}{center_dot}2H{sub 2}O by the modeling of X-ray diffuse scattering - from average-structure to microdomain model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komornicka, Dorota; Wolcyrz, Marek, E-mail: m.wolcyrz@int.pan.wroc.pl; Pietraszko, Adam

    2012-08-15

    Local structure of dirubidium tetralithium tris(selenate(VI)) dihydrate - Rb{sub 2}Li{sub 4}(SeO{sub 4}){sub 3}{center_dot} 2H{sub 2}O has been determined basing on the modeling of X-ray diffuse scattering. The origin of observed structured diffuse streaks is SeO{sub 4} tetrahedra switching between two alternative positions in two quasi-planar layers existing in each unit cell and formation of domains with specific SeO{sub 4} tetrahedra configuration locally fulfilling condition for C-centering in the 2a Multiplication-Sign 2b Multiplication-Sign c superstructure cell. The local structure solution is characterized by a uniform distribution of rather large domains (ca. thousand of unit cells) in two layers, but also monodomainsmore » can be taken into account. Inside a single domain SeO{sub 4} tetrahedra are ordered along ab-diagonal forming two-string ribbons. Inside the ribbons SeO{sub 4} and LiO{sub 4} tetrahedra share the oxygen corners, whereas ribbons are bound to each other by a net of hydrogen bonds and fastened by corner sharing SeO{sub 4} tetrahedra of the neighboring layers. - Graphical abstract: Experimental sections of the reciprocal space showing diffraction effects observed for RLSO. Bragg spots are visible on sections with integer indices (1 kl section - on the left), streaks - on sections with fractional ones (1.5 kl section - on the right). At the center: resulting local structure of the A package modeled as a microdomain: two-string ribbons of ordered oxygen-corners-sharing SeO{sub 4} and LiO{sub 4} terahedra extended along ab-diagonal are seen; ribbons are bound by hydrogen bonds (shown in pink); the multiplied 2a Multiplication-Sign 2b unit cell is shown. Highlights: Black-Right-Pointing-Pointer X-ray diffuse scattering in RLSO was registered and modeled. Black-Right-Pointing-Pointer The origin of diffuse streaks is SeO{sub 4} tetrahedra switching in two structure layers. Black-Right-Pointing-Pointer The local structure is characterized by a uniform distribution of microdomains. Black-Right-Pointing-Pointer Inside a single domain SeO{sub 4} tetrahedra are ordered along ab-diagonal forming ribbons. Black-Right-Pointing-Pointer The ribbons are bound to each other by a net of hydrogen bonds.« less

  10. Material optimization of multi-layered enhanced nanostructures

    NASA Astrophysics Data System (ADS)

    Strobbia, Pietro

    The employment of surface enhanced Raman scattering (SERS)-based sensing in real-world scenarios will offer numerous advantages over current optical sensors. Examples of these advantages are the intrinsic and simultaneous detection of multiple analytes, among many others. To achieve such a goal, SERS substrates with throughput and reproducibility comparable to commonly used fluorescence sensors have to be developed. To this end, our lab has discovered a multi-layer geometry, based on alternating films of a metal and a dielectric, that amplifies the SERS signal (multi-layer enhancement). The advantage of these multi-layered structures is to amplify the SERS signal exploiting layer-to-layer interactions in the volume of the structures, rather than on its surface. This strategy permits an amplification of the signal without modifying the surface characteristics of a substrate, and therefore conserving its reproducibility. Multi-layered structures can therefore be used to amplify the sensitivity and throughput of potentially any previously developed SERS sensor. In this thesis, these multi-layered structures were optimized and applied to different SERS substrates. The role of the dielectric spacer layer in the multi-layer enhancement was elucidated by fabricating spacers with different characteristics and studying their effect on the overall enhancement. Thickness, surface coverage and physical properties of the spacer were studied. Additionally, the multi-layered structures were applied to commercial SERS substrates and to isolated SERS probes. Studies on the dependence of the multi-layer enhancement on the thickness of the spacer demonstrated that the enhancement increases as a function of surface coverage at sub-monolayer thicknesses, due to the increasing multi-layer nature of the substrates. For fully coalescent spacers the enhancement decreases as a function of thickness, due to the loss of interaction between proximal metallic films. The influence of the physical properties of the spacer on the multi-layer enhancement were also studied. The trends in Schottky barrier height, interfacial potential and dielectric constant were isolated by using different materials as spacers (i.e., TiO2, HfO2, Ag 2O and Al2O3). The results show that the bulk dielectric constant of the material can be used to predict the relative magnitude of the multi-layer enhancement, with low dielectric constant materials performing more efficiently as spacers. Optimal spacer layers were found to be ultrathin coalescent films (ideally a monolayer) of low dielectric constant materials. Finally, multi-layered structures were observed to be employable to amplify SERS in drastically different substrate geometries. The multi-layered structures were applied to disposable commercial SERS substrates (i.e., Klarite). This project involved the regeneration of the used substrates, by stripping and redepositing the gold coating layer, and their amplification, by using the multi-layer geometry. The latter was observed to amplify the sensitivity of the substrates. Additionally, the multi-layered structures were applied to probes dispersed in solution. Such probes were observed to yield stronger SERS signal when optically trapped and to reduce the background signal. The application of the multi-layered structures on trapped probes, not only further amplified the SERS signal, but also increased the maximum number of applicable layers for the structures.

  11. A Bio-Inspired Two-Layer Sensing Structure of Polypeptide and Multiple-Walled Carbon Nanotube to Sense Small Molecular Gases

    PubMed Central

    Wang, Li-Chun; Su, Tseng-Hsiung; Ho, Cheng-Long; Yang, Shang-Ren; Chiu, Shih-Wen; Kuo, Han-Wen; Tang, Kea-Tiong

    2015-01-01

    In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT)-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer) coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine. PMID:25751078

  12. Multi-layer Cortical Ca2+ Imaging in Freely Moving Mice with Prism Probes and Miniaturized Fluorescence Microscopy

    PubMed Central

    Gulati, Srishti; Cao, Vania Y.; Otte, Stephani

    2017-01-01

    In vivo circuit and cellular level functional imaging is a critical tool for understanding the brain in action. High resolution imaging of mouse cortical neurons with two-photon microscopy has provided unique insights into cortical structure, function and plasticity. However, these studies are limited to head fixed animals, greatly reducing the behavioral complexity available for study. In this paper, we describe a procedure for performing chronic fluorescence microscopy with cellular-resolution across multiple cortical layers in freely behaving mice. We used an integrated miniaturized fluorescence microscope paired with an implanted prism probe to simultaneously visualize and record the calcium dynamics of hundreds of neurons across multiple layers of the somatosensory cortex as the mouse engaged in a novel object exploration task, over several days. This technique can be adapted to other brain regions in different animal species for other behavioral paradigms. PMID:28654056

  13. Multilayer network of language: A unified framework for structural analysis of linguistic subsystems

    NASA Astrophysics Data System (ADS)

    Martinčić-Ipšić, Sanda; Margan, Domagoj; Meštrović, Ana

    2016-09-01

    Recently, the focus of complex networks' research has shifted from the analysis of isolated properties of a system toward a more realistic modeling of multiple phenomena - multilayer networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems, we introduce the multilayer networks for language. The multilayer network of language is a unified framework for modeling linguistic subsystems and their structural properties enabling the exploration of their mutual interactions. Various aspects of natural language systems can be represented as complex networks, whose vertices depict linguistic units, while links model their relations. The multilayer network of language is defined by three aspects: the network construction principle, the linguistic subsystem and the language of interest. More precisely, we construct a word-level (syntax and co-occurrence) and a subword-level (syllables and graphemes) network layers, from four variations of original text (in the modeled language). The analysis and comparison of layers at the word and subword-levels are employed in order to determine the mechanism of the structural influences between linguistic units and subsystems. The obtained results suggest that there are substantial differences between the networks' structures of different language subsystems, which are hidden during the exploration of an isolated layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or English), while the syllabic subword-level expresses more language dependent structural properties. The preserved weighted overlap quantifies the similarity of word-level layers in weighted and directed networks. Moreover, the analysis of motifs reveals a close topological structure of the syntactic and syllabic layers for both languages. The findings corroborate that the multilayer network framework is a powerful, consistent and systematic approach to model several linguistic subsystems simultaneously and hence to provide a more unified view on language.

  14. Layered Structure and Swelling Behavior of a Multiple Hydrate-Forming Pharmaceutical Compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiang, Y.; Xu, W; Stephens, P

    2009-01-01

    Investigation of one anhydrous and four hydrated forms of a pharmaceutical compound (1) using both single-crystal and high-resolution powder X-ray diffraction methods revealed a two-dimensional framework which, upon exposure to moisture, absorbed water between the layers, causing the lattice to expand by as much as 20% of the axial length along a. The single-crystal structure was solved and refined for the pentahydrate form in space group C2 with unit cell parameters a = 36.961(5) Angstroms, b = 7.458(2) Angstroms, c = 20.691(4) Angstroms, e = 99.461(1), and V = 5626(4) Angstroms3. In the single-crystal structure the water layers were parallelmore » to the bc plane and sandwiched by the crystalline compound 1 framework. Upon a change of relative humidity, water goes in and out of the interlayer space with the retention of the layer structure of the development compound. Starting from the anhydrous form, each additional water of hydration increased the interlayer spacing of the pharmaceutical solid by 1.3 Angstroms, half the size of a water molecule. In an exploratory formulation, this expansion of interlayer spacing caused tablets to crack upon storage at high relative humidity.« less

  15. Calcium dependent formation of tubular assemblies by recombinant S-layer proteins in vivo and in vitro

    NASA Astrophysics Data System (ADS)

    Korkmaz, Nuriye; Ostermann, Kai; Rödel, Gerhard

    2011-03-01

    Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca2 + ) ions, with an optimal concentration of 10 mM. Further increase of the Ca2 + concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications.

  16. Model for the ultrasound reflection from micro-beads and cells distributed in layers on a uniform surface

    NASA Astrophysics Data System (ADS)

    Couture, O.; Cherin, E.; Foster, F. S.

    2007-07-01

    A model predicting the reflection of ultrasound from multiple layers of small scattering spheres is developed. Predictions of the reflection coefficient, which takes into account the interferences between the different sphere layers, are compared to measurements performed in the 10-80 MHz and 15-35 MHz frequency range with layers of glass beads and spherical acute myeloid leukemia (AML) cells, respectively. For both types of scatterers, the reflection coefficient increases as a function of their density on the surface for less than three superimposed layers, at which point it saturates at 0.38 for glass beads and 0.02 for AML cells. Above three layers, oscillations of the reflection coefficient due to constructive or destructive interference between layers are observed experimentally and are accurately predicted by the model. The use of such a model could lead to a better understanding of the structures observed in layered tissue images.

  17. Strain solitons and topological defects in bilayer graphene

    PubMed Central

    Alden, Jonathan S.; Tsen, Adam W.; Huang, Pinshane Y.; Hovden, Robert; Brown, Lola; Park, Jiwoong; Muller, David A.; McEuen, Paul L.

    2013-01-01

    Bilayer graphene has been a subject of intense study in recent years. The interlayer registry between the layers can have dramatic effects on the electronic properties: for example, in the presence of a perpendicular electric field, a band gap appears in the electronic spectrum of so-called Bernal-stacked graphene [Oostinga JB, et al. (2007) Nature Materials 7:151–157]. This band gap is intimately tied to a structural spontaneous symmetry breaking in bilayer graphene, where one of the graphene layers shifts by an atomic spacing with respect to the other. This shift can happen in multiple directions, resulting in multiple stacking domains with soliton-like structural boundaries between them. Theorists have recently proposed that novel electronic states exist at these boundaries [Vaezi A, et al. (2013) arXiv:1301.1690; Zhang F, et al. (2013) arXiv:1301.4205], but very little is known about their structural properties. Here we use electron microscopy to measure with nanoscale and atomic resolution the widths, motion, and topological structure of soliton boundaries and related topological defects in bilayer graphene. We find that each soliton consists of an atomic-scale registry shift between the two graphene layers occurring over 6–11 nm. We infer the minimal energy barrier to interlayer translation and observe soliton motion during in situ heating above 1,000 °C. The abundance of these structures across a variety of samples, as well as their unusual properties, suggests that they will have substantial effects on the electronic and mechanical properties of bilayer graphene. PMID:23798395

  18. Modular assembly of thick multifunctional cardiac patches

    PubMed Central

    Fleischer, Sharon; Shapira, Assaf; Feiner, Ron; Dvir, Tal

    2017-01-01

    In cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation. Microchannels were patterned within the scaffolds and seeded with endothelial cells to form closed lumens. Moreover, cage-like structures were patterned within the scaffolds and accommodated poly(lactic-co-glycolic acid) (PLGA) microparticulate systems that controlled the release of VEGF, which promotes vascularization, or dexamethasone, an anti-inflammatory agent. The structure, morphology, and function of each layer were characterized, and the tissue layers were grown separately in their optimal conditions. Before transplantation the tissue and microparticulate layers were integrated by an ECM-based biological glue to form thick 3D cardiac patches. Finally, the patches were transplanted in rats, and their vascularization was assessed. Because of the simple modularity of this approach, we believe that it could be used in the future to assemble other multicellular, thick, 3D, functional tissues. PMID:28167795

  19. Diagnostic study of multiple double layer formation in expanding RF plasma

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  20. Bifurcation structure of a wind-driven shallow water model with layer-outcropping

    NASA Astrophysics Data System (ADS)

    Primeau, François W.; Newman, David

    The steady state bifurcation structure of the double-gyre wind-driven ocean circulation is examined in a shallow water model where the upper layer is allowed to outcrop at the sea surface. In addition to the classical jet-up and jet-down multiple equilibria, we find a new regime in which one of the equilibrium solutions has a large outcropping region in the subpolar gyre. Time dependent simulations show that the outcropping solution equilibrates to a stable periodic orbit with a period of 8 months. Co-existing with the periodic solution is a stable steady state solution without outcropping. A numerical scheme that has the unique advantage of being differentiable while still allowing layers to outcrop at the sea surface is used for the analysis. In contrast, standard schemes for solving layered models with outcropping are non-differentiable and have an ill-defined Jacobian making them unsuitable for solution using Newton's method. As such, our new scheme expands the applicability of numerical bifurcation techniques to an important class of ocean models whose bifurcation structure had hitherto remained unexplored.

  1. Complex deformation associated with anhydrite layers in the Tromsø Basin, SW Barents Sea.

    NASA Astrophysics Data System (ADS)

    Marfo, George; Olakunle Omosanya, Kamaldeen; Johansen, Ståle Emil; Zervas, Ioannis

    2017-04-01

    Internal and external deformation associated with salt structures is of prime interest due to their economic importance as hydrocarbon seals, reservoirs, repositories for chemical waste and their implication on drilling. Salt structures are often associated with anhydrites, which may 'cap' or are enclosed within the allochthonous salt structures. Despite their economic importance, the internal and external structures of evaporites remain poorly studied from field and seismic data due to the sparse outcrops of evaporites and poor seismic imaging. The zero-phased, normal polarity, high resolution multiple 2D seismic data, in combination with detailed interpretation of wireline logs provide an excellent study into the salt structures, and offers a good opportunity to investigate the dynamics, geometries and mechanisms driving deformation of internal and external salt layers associated with the Late Carboniferous to Early Permian Salt structures in the Tromsø Basin. The methods include seismic interpretation and the application of multiple seismic attributes to map stratigraphic units and discontinuities. Our results show that the anhydrite layers are marked by high amplitude reflections at the crests and flanks or fully enclosed within the salt diapirs. Crestal and lateral anhydrite caprocks represent external salt structures whilst the entrained anhydrites or stringers are intrasalt structures. Anhydrite caprocks generally show structural styles such as faults and large-scale folds which are harmonic to the top salt structure. In contrast, anhydrite stringers show folds of varying scale, which are harmonic to disharmonic to the top salt structure. Boudins and steeply dipping stringer fragments are also interpreted within the stringers. Caprock deformation is attributed to salt upwelling. Folding and boudinaging of originally horizontal and continuous stringer layers formed from a multiphase superimposed sequence of ductile and brittle deformation in response to complex multi-dimensional salt flow. Internal salt flow involves radial and tangential compression, which leads to dominant fold structures near the margins. Boudins on the lower flanks of the diapir formed due radial extension. Our study further demonstrates that differential geometries exhibited by the different anhydrite groups imply that the mechanisms deforming internal and external salt structures are different. The results from this study are comparable to observations from salt mines, field exposures, scaled physical and numerical models.

  2. A probabilistic method to establish the reliability of carbon-carbon rocket motor nozzles. Volume 3: Stress and reliability analysis of layered composite cylinders under thermal shock

    NASA Astrophysics Data System (ADS)

    Heller, R. A.; Thangjitham, S.; Wang, X.

    1992-04-01

    The state of stress in a cylindrical structure consisting of multiple layers of carbon-carbon composite and subjected to thermal and pressure shock are analyzed using an elasticity approach. The reliability of the structure based on the weakest link concept and the Weibull distribution is also calculated. Coupled thermo-elasticity is first assumed and is shown to be unnecessary for the material considered. The effects of external and internal thermal shock as well as a superimposed pressure shock are examined. It is shown that for the geometry chosen, the structure may fail when exposed to thermal shock alone while a superimposed pressure shock can mitigate the probability of failure.

  3. Method of forming a multiple layer dielectric and a hot film sensor therewith

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr. (Inventor); Tran, Sang Q. (Inventor)

    1990-01-01

    The invention is a method of forming a multiple layer dielectric for use in a hot-film laminar separation sensor. The multiple layer dielectric substrate is formed by depositing a first layer of a thermoelastic polymer such as on an electrically conductive substrate such as the metal surface of a model to be tested under cryogenic conditions and high Reynolds numbers. Next, a second dielectric layer of fused silica is formed on the first dielectric layer of thermoplastic polymer. A resistive metal film is deposited on selected areas of the multiple layer dielectric substrate to form one or more hot-film sensor elements to which aluminum electrical circuits deposited upon the multiple layered dielectric substrate are connected.

  4. Flexible Structural-Health-Monitoring Sheets

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  5. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  6. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  7. Modulation of the operational characteristics of amorphous In-Ga-Zn-O thin-film transistors by In2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Min-Jung; Lee, Tae Il; Park, Jee Ho; Kim, Jung Han; Chae, Gee Sung; Jun, Myung Chul; Hwang, Yong Kee; Baik, Hong Koo; Lee, Woong; Myoung, Jae-Min

    2012-05-01

    The structure of thin-film transistors (TFTs) based on amorphous In-Ga-Zn-O (a-IGZO) was modified by spin coating a suspension of In2O3 nanoparticles on a SiO2/p++ Si layered wafer surface prior to the deposition of IGZO layer by room-temperature sputtering. The number of particles per unit area (surface density) of the In2O3 nanoparticles could be controlled by applying multiple spin coatings of the nanoparticle suspension. During the deposition of IGZO, the In2O3 nanoparticles initially located on the substrate surface migrated to the top of the IGZO layer indicating that they were not embedded within the IGZO layer, but they supplied In to the IGZO layer to increase the In concentration in the channel layer. As a result, the channel characteristics of the a-IGZO TFT were modulated so that the device showed an enhanced performance as compared with the reference device prepared without the nanoparticle treatment. Such an improved device performance is attributed to the nano-scale changes in the structure of (InO)n ordering assisted by increased In concentration in the amorphous channel layer.

  8. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plomp, M; Leighton, T; Wheeler, K

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereusmore » was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.« less

  9. Nano-Multiplication-Region Avalanche Photodiodes and Arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata; Cunningham, Thomas

    2008-01-01

    Nano-multiplication-region avalanche photodiodes (NAPDs), and imaging arrays of NAPDs integrated with complementary metal oxide/semiconductor (CMOS) active-pixel-sensor integrated circuitry, are being developed for applications in which there are requirements for high-sensitivity (including photoncounting) detection and imaging at wavelengths from about 250 to 950 nm. With respect to sensitivity and to such other characteristics as speed, geometric array format, radiation hardness, power demand of associated circuitry, size, weight, and robustness, NAPDs and arrays thereof are expected to be superior to prior photodetectors and arrays including CMOS active-pixel sensors (APSs), charge-coupled devices (CCDs), traditional APDs, and microchannelplate/ CCD combinations. Figure 1 depicts a conceptual NAPD array, integrated with APS circuitry, fabricated on a thick silicon-on-insulator wafer (SOI). Figure 2 presents selected aspects of the structure of a typical single pixel, which would include a metal oxide/semiconductor field-effect transistor (MOSFET) integrated with the NAPD. The NAPDs would reside in silicon islands formed on the buried oxide (BOX) layer of the SOI wafer. The silicon islands would be surrounded by oxide-filled insulation trenches, which, together with the BOX layer, would constitute an oxide embedding structure. There would be two kinds of silicon islands: NAPD islands for the NAPDs and MOSFET islands for in-pixel and global CMOS circuits. Typically, the silicon islands would be made between 5 and 10 m thick, but, if necessary, the thickness could be chosen outside this range. The side walls of the silicon islands would be heavily doped with electron-acceptor impurities (p+-doped) to form anodes for the photodiodes and guard layers for the MOSFETs. A nanoscale reach-through structure at the front (top in the figures) central position of each NAPD island would contain the APD multiplication region. Typically, the reach-through structure would be about 0.1 microns in diameter and between 0.3 and 0.4 nm high. The top layer in the reach-through structure would be heavily doped with electron-donor impurities (n+-doped) to make it act as a cathode. A layer beneath the cathode, between 0.1 and 0.2 nm thick, would be p-doped to a concentration .10(exp 17)cu cm. A thin n+-doped polysilicon pad would be formed on the top of the cathode to protect the cathode against erosion during a metal-silicon alloying step that would be part of the process of fabricating the array.

  10. Effect of variations in the doping profiles on the properties of doped multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1996-01-01

    The purpose of this study is to use both theoretical and experimental evidence to determine the impact of doping imbalance and symmetry on the physical and electrical characteristics of doped multiple quantum well avalanche photodiodes (APD). Theoretical models have been developed to calculate the electric field valence and conduction bands, capacitance-voltage (CV), and carrier concentration versus depletion depth profiles. The models showed a strong correlation between the p- and n-doping balance inside the GaAs wells and the number of depleted stages and breakdown voltage of the APD. A periodic doping imbalance in the wells has been shown to result in a gradual increase (or decrease) in the electric field profile throughout the device which gave rise to partially depleted devices at low bias. The MQW APD structures that we modeled consisted of a 1 micron top p(+)-doped (3 x 10(exp 18) cm(exp -3)) GaAs layer followed by a 1 micron region of alternating layers of GaAs (500 A) and Al(0.42)Ga(0.58)As (500 A), and a 1 micron n(+) back layer (3 x 10(exp 18) cm(exp -3)). The GaAs wells were doped with p-i-n layers placed at the center of each well. The simulation results showed that in an APD with nine doped wells, and where the 50 A p-doped layer is off by 10% (p = 1.65 x 10(exp 18) cm(exp -3), n = 1.5 x 10(exp 18) cm(exp -3)), almost half of the MQW stages were shown to be undepleted at low bias which was a result of a reduction in the electric field near the p(+) cap layer by over 50% from its value in the balanced structure. Experimental CV and IV data on similar MBE grown MQW structures have shown very similar depletion and breakdown characteristics. The models have enabled us to better interpret our experimental data and to determine both the extent of the doping imbalances in the devices as well as the overall p- or n-type doping characteristics of the structures.

  11. PropBase Query Layer: a single portal to UK subsurface physical property databases

    NASA Astrophysics Data System (ADS)

    Kingdon, Andrew; Nayembil, Martin L.; Richardson, Anne E.; Smith, A. Graham

    2013-04-01

    Until recently, the delivery of geological information for industry and public was achieved by geological mapping. Now pervasively available computers mean that 3D geological models can deliver realistic representations of the geometric location of geological units, represented as shells or volumes. The next phase of this process is to populate these with physical properties data that describe subsurface heterogeneity and its associated uncertainty. Achieving this requires capture and serving of physical, hydrological and other property information from diverse sources to populate these models. The British Geological Survey (BGS) holds large volumes of subsurface property data, derived both from their own research data collection and also other, often commercially derived data sources. This can be voxelated to incorporate this data into the models to demonstrate property variation within the subsurface geometry. All property data held by BGS has for many years been stored in relational databases to ensure their long-term continuity. However these have, by necessity, complex structures; each database contains positional reference data and model information, and also metadata such as sample identification information and attributes that define the source and processing. Whilst this is critical to assessing these analyses, it also hugely complicates the understanding of variability of the property under assessment and requires multiple queries to study related datasets making extracting physical properties from these databases difficult. Therefore the PropBase Query Layer has been created to allow simplified aggregation and extraction of all related data and its presentation of complex data in simple, mostly denormalized, tables which combine information from multiple databases into a single system. The structure from each relational database is denormalized in a generalised structure, so that each dataset can be viewed together in a common format using a simple interface. Data are re-engineered to facilitate easy loading. The query layer structure comprises tables, procedures, functions, triggers, views and materialised views. The structure contains a main table PRB_DATA which contains all of the data with the following attribution: • a unique identifier • the data source • the unique identifier from the parent database for traceability • the 3D location • the property type • the property value • the units • necessary qualifiers • precision information and an audit trail Data sources, property type and units are constrained by dictionaries, a key component of the structure which defines what properties and inheritance hierarchies are to be coded and also guides the process as to what and how these are extracted from the structure. Data types served by the Query Layer include site investigation derived geotechnical data, hydrogeology datasets, regional geochemistry, geophysical logs as well as lithological and borehole metadata. The size and complexity of the data sets with multiple parent structures requires a technically robust approach to keep the layer synchronised. This is achieved through Oracle procedures written in PL/SQL containing the logic required to carry out the data manipulation (inserts, updates, deletes) to keep the layer synchronised with the underlying databases either as regular scheduled jobs (weekly, monthly etc) or invoked on demand. The PropBase Query Layer's implementation has enabled rapid data discovery, visualisation and interpretation of geological data with greater ease, simplifying the parametrisation of 3D model volumes and facilitating the study of intra-unit heterogeneity.

  12. The role of discrete intrabasement shear zones during multiphase continental rifting

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon

    2016-04-01

    Rift systems form within areas of relatively weak, heterogeneous lithosphere, containing a range of pre-existing structures imparted from previous tectonic events. The extent to which these structures may reactivate during later rift phases, and therefore affect the geometry and evolution of superposed rift systems, is poorly understood. The greatest obstacle to understanding how intrabasement structures influence the overlying rift is obtaining detailed constraints on the origin and 3D geometry of structures within crystalline basement. Such structures are often deeply buried beneath rift systems and therefore rarely sampled directly. In addition, due to relatively low internal acoustic impedance contrasts and large burial depths, crystalline basement typically appears acoustically transparent on seismic reflection data showing no resolvable internal structure. However, offshore SW Norway, beneath the Egersund Basin, intrabasement structures are exceptionally well-imaged due to large impedance contrasts within a highly heterogeneous and shallow basement. We use borehole-constrained 2D and 3D seismic reflection data to constrain the 3D geometry of these intrabasement reflections, and examine their interactions with the overlying rift system. Two types of intrabasement structure are observed: (i) thin (c. 100 m) reflections displaying a characteristic trough-peak-trough wavetrain; and (ii) thick (c. 1 km), sub-parallel reflection packages dipping at c. 30°. Through 1D waveform modelling we show that these reflection patterns arise from a layered sequence as opposed to a single interface. Integrating this with our seismic mapping we correlate these structures to the established onshore geology; specifically layered mylonites associated with the Caledonian thrust belt and cross-cutting extensional Devonian shear zones. We observe multiple phases of reactivation along these structures throughout multiple rift events, in addition to a range of interactions with overlying rift-related faults: (i) Faults exploit planes of weakness internally within the shear zones; (ii) faults initiate within the hangingwall and subsequently merge along the intrabasement structure at depth; and (iii) faults initiate independently from and cross-cut intrabasement structure. We find that reactivation preferentially occurs along the thicker, steeper intrabasement structures, the Devonian Shear Zones, with individual faults exploiting internal mylonite layers. Using a detailed 3D interpretation of intrabasement structures, correlated with the onshore geology, we show that large-scale Devonian shear zones act as a long-lived structural template for fault initiation throughout multiple rift phases. Rift-related faults inherit the orientation and location of underlying intrabasement structures.

  13. Skin and scales of teleost fish: Simple structure but high performance and multiple functions

    NASA Astrophysics Data System (ADS)

    Vernerey, Franck J.; Barthelat, Francois

    2014-08-01

    Natural and man-made structural materials perform similar functions such as structural support or protection. Therefore they rely on the same types of properties: strength, robustness, lightweight. Nature can therefore provide a significant source of inspiration for new and alternative engineering designs. We report here some results regarding a very common, yet largely unknown, type of biological material: fish skin. Within a thin, flexible and lightweight layer, fish skins display a variety of strain stiffening and stabilizing mechanisms which promote multiple functions such as protection, robustness and swimming efficiency. We particularly discuss four important features pertaining to scaled skins: (a) a strongly elastic tensile behavior that is independent from the presence of rigid scales, (b) a compressive response that prevents buckling and wrinkling instabilities, which are usually predominant for thin membranes, (c) a bending response that displays nonlinear stiffening mechanisms arising from geometric constraints between neighboring scales and (d) a robust structure that preserves the above characteristics upon the loss or damage of structural elements. These important properties make fish skin an attractive model for the development of very thin and flexible armors and protective layers, especially when combined with the high penetration resistance of individual scales. Scaled structures inspired by fish skin could find applications in ultra-light and flexible armor systems, flexible electronics or the design of smart and adaptive morphing structures for aerospace vehicles.

  14. America Makes: National Additive Manufacturing Innovation Institute (NAMII) Project 1: Nondestructive Evaluation (NDE) of Complex Metallic Additive Manufactured (AM) Structures

    DTIC Science & Technology

    2014-06-01

    layer-by-layer manufacturing of a component by using PBF processes is accompanied by the establishment of a unidirectional heat transfer along the build...direction. Because grain growth during solidification preferably occurs in the opposite direction of heat transfer , the formation of elongated...development and deployment of phased array technology.[69] Phased array ultrasonic (PAUT) sensors use multiple elements instead of a single element

  15. Effect of different thickness h-BN coatings on interface shear strength of quartz fiber reinforced Sisbnd Osbnd Csbnd N composite

    NASA Astrophysics Data System (ADS)

    Wang, Shubin; Zheng, Yu

    2014-02-01

    Hexagonal boron nitride (h-BN) coatings with different thickness were prepared on quartz fibers to improve mechanical properties of quartz fiber reinforced Sisbnd Osbnd Csbnd N composite. Scanning electron microscopy (SEM), push-out test and single edge notched beam (SENB) in three point bending test were employed to study morphology, interface shear strength and fracture toughness of the composite. The results showed that h-BN coatings changed the crack growth direction and weaken the interface shear strength efficiently. When the h-BN coating was 308.2 nm, the interface shear strength was about 5.2 MPa, which was about one-quarter of that of the sample without h-BN coatings. After the heating process for obtaining composite, the h-BN nanometer-sized grains would grow up to micron-sized hexagonal grains. Different thickness h-BN coatings had different structure. When the coatings were relatively thin, the hexagonal grains were single layer structure, and when the coatings were thicker, the hexagonal grains were multiple layer structure. This multiple layer interface phase would consume more power of cracks, thus interface shear strength of the composite decreased steadily with the increasing of h-BN coatings thickness. When the coating thickness was 238.8 nm, KIC reaches the peak value 3.8 MPa m1/2, which was more than two times of that of composites without h-BN coatings.

  16. Photonic structures in biology

    NASA Astrophysics Data System (ADS)

    Vukusic, Pete; Sambles, J. Roy

    2003-08-01

    Millions of years before we began to manipulate the flow of light using synthetic structures, biological systems were using nanometre-scale architectures to produce striking optical effects. An astonishing variety of natural photonic structures exists: a species of Brittlestar uses photonic elements composed of calcite to collect light, Morpho butterflies use multiple layers of cuticle and air to produce their striking blue colour and some insects use arrays of elements, known as nipple arrays, to reduce reflectivity in their compound eyes. Natural photonic structures are providing inspiration for technological applications.

  17. Tunable electronic structure and spin splitting in single and multiple Fe-adsorbed g-C2N with different layers: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zheng, Z. D.; Wang, X. C.; Mi, W. B.

    2018-04-01

    The electronic structure of Fe adsorbed g-C2N with different layers is investigated by first-principles calculations. The Fe1 and Fe2 represent the Fe adsorptions at Csbnd C and Csbnd N rings, and Fe11 and Fe121 adsorption sites are also considered. The Fe1 adsorbed g-C2N is metallic with layer from n = 1 to 4, and the maximum spin splitting is 515, 428, 46 and 133 meV. The band gap of Fe2 adsorbed g-C2N with different layers is 0, 0, 117 and 6 meV, and the maximum spin splitting is 565, 369, 195 and 146 meV, respectively. All of the Fe11 adsorbed g-C2N are metallic with layer from n = 1 to 4, and the maximum spin splitting is 199, 0, 83 and 203 meV. An indirect band gap of 215 meV appears in Fe121 adsorbed g-C2N at layer n = 3, and the maximum spin splitting is 283, 211, 304 and 153 meV, respectively. Our results show that the electronic structures of Fe adsorbed novel two-dimensional semiconductor g-C2N can be tuned by different layers. Moreover, the spin splitting of Fe2 adsorbed g-C2N decreases monotonically as g-C2N layer increases from n = 1 to 4, which will provide more potential applications in spintronic devices.

  18. Theoretical prediction of energy release rate for interface crack initiation by thermal stress in environmental barrier coatings for ceramics

    NASA Astrophysics Data System (ADS)

    Kawai, E.; Umeno, Y.

    2017-05-01

    As weight reduction of turbines for aircraft engines is demanded to improve fuel consumption and curb emission of carbon dioxide, silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC) are drawing enormous attention as high-pressure turbine materials. For preventing degradation of SiC/SiC, environmental barrier coatings (EBC) for ceramics are deposited on the composites. The purpose of this study is to establish theoretical guidelines for structural design which ensures the mechanical reliability of EBC. We conducted finite element method (FEM) analysis to calculate energy release rates (ERRs) for interface crack initiation due to thermal stress in EBC consisting of Si-based bond coat, Mullite and Ytterbium (Yb)-silicate layers on a SiC/SiC substrate. In the FEM analysis, the thickness of one EBC layer was changed from 25 μm to 200 μm while the thicknesses of the other layers were fixed at 25 μm, 50 μm and 100 μm. We compared ERRs obtained by the FEM analysis and a simple theory for interface crack in a single-layered structure where ERR is estimated as nominal strain energy in the coating layers multiplied by a constant factor (independent of layer thicknesses). We found that, unlike the case of single-layered structures, the multiplication factor is no longer a constant but is determined by the combination of consisting coating layer thicknesses.

  19. Delineating functional principles of the bow tie structure of a kinase-phosphatase network in the budding yeast.

    PubMed

    Abd-Rabbo, Diala; Michnick, Stephen W

    2017-03-16

    Kinases and phosphatases (KP) form complex self-regulating networks essential for cellular signal processing. In spite of having a wealth of data about interactions among KPs and their substrates, we have very limited models of the structures of the directed networks they form and consequently our ability to formulate hypotheses about how their structure determines the flow of information in these networks is restricted. We assembled and studied the largest bona fide kinase-phosphatase network (KP-Net) known to date for the yeast Saccharomyces cerevisiae. Application of the vertex sort (VS) algorithm on the KP-Net allowed us to elucidate its hierarchical structure in which nodes are sorted into top, core and bottom layers, forming a bow tie structure with a strongly connected core layer. Surprisingly, phosphatases tend to sort into the top layer, implying they are less regulated by phosphorylation than kinases. Superposition of the widest range of KP biological properties over the KP-Net hierarchy shows that core layer KPs: (i), receive the largest number of inputs; (ii), form bottlenecks implicated in multiple pathways and in decision-making; (iii), and are among the most regulated KPs both temporally and spatially. Moreover, top layer KPs are more abundant and less noisy than those in the bottom layer. Finally, we showed that the VS algorithm depends on node degrees without biasing the biological results of the sorted network. The VS algorithm is available as an R package ( https://cran.r-project.org/web/packages/VertexSort/index.html ). The KP-Net model we propose possesses a bow tie hierarchical structure in which the top layer appears to ensure highest fidelity and the core layer appears to mediate signal integration and cell state-dependent signal interpretation. Our model of the yeast KP-Net provides both functional insight into its organization as we understand today and a framework for future investigation of information processing in yeast and eukaryotes in general.

  20. Overstory structure and soil nutrients effect on plant diversity in unmanaged moist tropical forest

    NASA Astrophysics Data System (ADS)

    Gautam, Mukesh Kumar; Manhas, Rajesh Kumar; Tripathi, Ashutosh Kumar

    2016-08-01

    Forests with intensive management past are kept unmanaged to restore diversity and ecosystem functioning. Before perpetuating abandonment after protracted restitution, understanding its effect on forest vegetation is desirable. We studied plant diversity and its relation with environmental variables and stand structure in northern Indian unmanaged tropical moist deciduous forest. We hypothesized that post-abandonment species richness would have increased, and the structure of contemporary forest would be heterogeneous. Vegetation structure, composition, and diversity were recorded, in forty 0.1 ha plots selected randomly in four forest ranges. Three soil samples per 0.1 ha were assessed for physicochemistry, fine sand, and clay mineralogy. Contemporary forest had less species richness than pre-abandonment reference period. Fourteen species were recorded as either seedling or sapling, suggesting reappearance or immigration. For most species, regeneration was either absent or impaired. Ordination and multiple regression results showed that exchangeable base cations and phosphorous affected maximum tree diversity and structure variables. Significant correlations between soil moisture and temperature, and shrub layer was observed, besides tree layer correspondence with shrub richness, suggesting that dense overstory resulting from abandonment through its effect on soil conditions, is responsible for dense shrub layer. Herb layer diversity was negatively associated with tree layer and shrub overgrowth (i.e. Mallotus spp.). Protracted abandonment may not reinforce species richness and heterogeneity; perhaps result in high tree and shrub density in moist deciduous forests, which can impede immigrating or reappearing plant species establishment. This can be overcome by density/basal area reduction strategies, albeit for both tree and shrub layer.

  1. Cwp84, a Clostridium difficile cysteine protease, exhibits conformational flexibility in the absence of its propeptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, William J.; Public Health England, Porton Down, Salisbury SP4 0JG; Roberts, April K.

    2015-02-19

    Two structures of Cwp84, a cysteine protease from the S-layer of C. difficile, are presented after propeptide cleavage. They reveal the movement of three loops, two in the active-site groove and one on the surface of the lectin-like domain, exposing a hydrophobic pocket. In recent decades, the global healthcare problems caused by Clostridium difficile have increased at an alarming rate. A greater understanding of this antibiotic-resistant bacterium, particularly with respect to how it interacts with the host, is required for the development of novel strategies for fighting C. difficile infections. The surface layer (S-layer) of C. difficile is likely tomore » be of significant importance to host–pathogen interactions. The mature S-layer is formed by a proteinaceous array consisting of multiple copies of a high-molecular-weight and a low-molecular-weight S-layer protein. These components result from the cleavage of SlpA by Cwp84, a cysteine protease. The structure of a truncated Cwp84 active-site mutant has recently been reported and the key features have been identified, providing the first structural insights into the role of Cwp84 in the formation of the S-layer. Here, two structures of Cwp84 after propeptide cleavage are presented and the three conformational changes that are observed are discussed. These changes result in a reconfiguration of the active site and exposure of the hydrophobic pocket.« less

  2. Background-reducing X-ray multilayer mirror

    DOEpatents

    Bloch, Jeffrey J.; Roussel-Dupre', Diane; Smith, Barham W.

    1992-01-01

    Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."

  3. Structural and optical properties of semi-polar (11-22) InGaN/GaN green light-emitting diode structure

    NASA Astrophysics Data System (ADS)

    Zhao, Guijuan; Wang, Lianshan; Li, Huijie; Meng, Yulin; Li, Fangzheng; Yang, Shaoyan; Wang, Zhanguo

    2018-01-01

    Semi-polar (11-22) InGaN multiple quantum well (MQW) green light-emitting diode (LED) structures have been realized by metal-organic chemical vapor deposition on an m-plane sapphire substrate. By introducing double GaN buffer layers, we improve the crystal quality of semi-polar (11-22) GaN significantly. The vertical alignment of the diffraction peaks in the (11-22) X-ray reciprocal space mapping indicates the fully strained MQW on the GaN layer. The photoluminescence spectra of the LED structure show stronger emission intensity along the [1-100] InGaN/GaN direction. The electroluminescence emission of the LED structure is very broad with peaks around 550 nm and 510 nm at the 100 mA current injection for samples A and B, respectively, and exhibits a significant blue-shift with increasing drive current.

  4. Prediction of β-turns in proteins from multiple alignment using neural network

    PubMed Central

    Kaur, Harpreet; Raghava, Gajendra Pal Singh

    2003-01-01

    A neural network-based method has been developed for the prediction of β-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST–generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Qpred, Qobs, and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published β-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach. PMID:12592033

  5. A Variational Method to Retrieve the Extinction Profile in Liquid Clouds Using Multiple Field-of-View Lidar

    NASA Technical Reports Server (NTRS)

    Pounder, Nicola L.; Hogan, Robin J.; Varnai, Tamas; Battaglia, Alessandro; Cahalan, Robert F.

    2011-01-01

    While liquid clouds playa very important role in the global radiation budget, it's been very difficult to remotely determine their internal cloud structure. Ordinary lidar instruments (similar to radars but using visible light pulses) receive strong signals from such clouds, but the information is limited to a thin layer near the cloud boundary. Multiple field-of-view (FOV) lidars offer some new hope as they are able to isolate photons that were scattered many times by cloud droplets and penetrated deep into a cloud before returning to the instrument. Their data contains new information on cloud structure, although the lack of fast simulation methods made it challenging to interpret the observations. This paper describes a fast new technique that can simulate multiple-FOV lidar signals and can even estimate the way the signals would change in response to changes in cloud properties-an ability that allows quick refinements in our initial guesses of cloud structure. Results for a hypothetical airborne three-FOV lidar suggest that this approach can help determine cloud structure for a deeper layer in clouds, and can reliably determine the optical thickness of even fairly thick liquid clouds. The algorithm is also applied to stratocumulus observations by the 8-FOV airborne "THOR" lidar. These tests demonstrate that the new method can determine the depth to which a lidar provides useful information on vertical cloud structure. This work opens the way to exploit data from spaceborne lidar and radar more rigorously than has been possible up to now.

  6. Cantilevered multilevel LIGA devices and methods

    DOEpatents

    Morales, Alfredo Martin; Domeier, Linda A.

    2002-01-01

    In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.

  7. InGaN stress compensation layers in InGaN/GaN blue LEDs with step graded electron injectors

    NASA Astrophysics Data System (ADS)

    Sheremet, V.; Gheshlaghi, N.; Sözen, M.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2018-04-01

    We investigate the effect of InGaN stress compensation layer on the properties of light emitting diodes based on InGaN/GaN multiple quantum well (MQW) structures with step-graded electron injectors. Insertion of an InGaN stress compensation layer between n-GaN and the step graded electron injector provides, among others, strain reduction in the MQW region and as a result improves epitaxial quality that can be observed by 15-fold decrease of V-pit density. We observed more uniform distribution of In between quantum wells in MQW region from results of electro- and photoluminescence measurement. These structural improvements lead to increasing of radiant intensity by a factor of 1.7-2.0 and enhancement of LED efficiency by 40%.

  8. A boundary condition for layer to level ocean model interaction

    NASA Astrophysics Data System (ADS)

    Mask, A.; O'Brien, J.; Preller, R.

    2003-04-01

    A radiation boundary condition based on vertical normal modes is introduced to allow a physical transition between nested/coupled ocean models that are of differing vertical structure and/or differing physics. In this particular study, a fine resolution regional/coastal sigma-coordinate Naval Coastal Ocean Model (NCOM) has been successfully nested to a coarse resolution (in the horizontal and vertical) basin scale NCOM and a coarse resolution basin scale Navy Layered Ocean Model (NLOM). Both of these models were developed at the Naval Research Laboratory (NRL) at Stennis Space Center, Mississippi, USA. This new method, which decomposes the vertical structure of the models into barotropic and baroclinic modes, gives improved results in the coastal domain over Orlanski radiation boundary conditions for the test cases. The principle reason for the improvement is that each mode has the radiation boundary condition applied individually; therefore, the packet of information passing through the boundary is allowed to have multiple phase speeds instead of a single-phase speed. Allowing multiple phase speeds reduces boundary reflections, thus improving results.

  9. Polyethylenimine/silk fibroin multilayers deposited nanofibrics for cell culture.

    PubMed

    Ye, Xinguo; Li, Sheng; Chen, Xuanxuan; Zhan, Yingfei; Li, Xiaonan

    2017-01-01

    Scaffold with good three-dimensional (3D) structure and appropriate surface modification is essential to tissue regeneration in the treatment of tissue or organ failure. Silk fibroin (SF) is a promising scaffolding material with high biocompatibility, cytocompatibility, biodegradability and flexibility. In this study, positively charged polyethylenimine (PEI) and negatively charged SF assembled alternately onto cellulose nanofibrous substrates hydrolyzed from electrospun cellulose acetate nanofibrous mats. The obtained nanofibrous membranes modified with multiple layers of PEI/SF were characterized by field emission scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. L929 cells were applied to examine the cytocompatibility of PEI/SF coated membranes. The results demonstrated that the nanofibrous membranes after modification with multiple layers of PEI/SF maintained 3D nanofibrous structure, and cells cultured on them showed good adherence and spreading on them as well, which indicated that PEI/SF coated membranes had potential application in tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis.

    PubMed

    Petzold, Axel; Balcer, Laura J; Calabresi, Peter A; Costello, Fiona; Frohman, Teresa C; Frohman, Elliot M; Martinez-Lapiscina, Elena H; Green, Ari J; Kardon, Randy; Outteryck, Olivier; Paul, Friedemann; Schippling, Sven; Vermersch, Patrik; Villoslada, Pablo; Balk, Lisanne J

    2017-10-01

    Structural retinal imaging biomarkers are important for early recognition and monitoring of inflammation and neurodegeneration in multiple sclerosis. With the introduction of spectral domain optical coherence tomography (SD-OCT), supervised automated segmentation of individual retinal layers is possible. We aimed to investigate which retinal layers show atrophy associated with neurodegeneration in multiple sclerosis when measured with SD-OCT. In this systematic review and meta-analysis, we searched for studies in which SD-OCT was used to look at the retina in people with multiple sclerosis with or without optic neuritis in PubMed, Web of Science, and Google Scholar between Nov 22, 1991, and April 19, 2016. Data were taken from cross-sectional cohorts and from one timepoint from longitudinal studies (at least 3 months after onset in studies of optic neuritis). We classified data on eyes into healthy controls, multiple-sclerosis-associated optic neuritis (MSON), and multiple sclerosis without optic neuritis (MSNON). We assessed thickness of the retinal layers and we rated individual layer segmentation performance by random effects meta-analysis for MSON eyes versus control eyes, MSNON eyes versus control eyes, and MSNON eyes versus MSON eyes. We excluded relevant sources of bias by funnel plots. Of 25 497 records identified, 110 articles were eligible and 40 reported data (in total 5776 eyes from patients with multiple sclerosis [1667 MSON eyes and 4109 MSNON eyes] and 1697 eyes from healthy controls) that met published OCT quality control criteria and were suitable for meta-analysis. Compared with control eyes, the peripapillary retinal nerve fibre layer (RNFL) showed thinning in MSON eyes (mean difference -20·10 μm, 95% CI -22·76 to -17·44; p<0·0001) and in MSNON eyes (-7·41 μm, -8·98 to -5·83; p<0·0001). The macula showed RNFL thinning of -6·18 μm (-8·07 to -4·28; p<0·0001) in MSON eyes and -2·15 μm (-3·15 to -1·15; p<0·0001) in MSNON eyes compared with control eyes. Atrophy of the macular ganglion cell layer and inner plexiform layer (GCIPL) was -16·42 μm (-19·23 to -13·60; p<0·0001) for MSON eyes and -6·31 μm (-7·75 to -4·87; p<0·0001) for MSNON eyes compared with control eyes. A small degree of inner nuclear layer (INL) thickening occurred in MSON eyes compared with control eyes (0·77 μm, 0·25 to 1·28; p=0·003). We found no statistical difference in the thickness of the combined outer nuclear layer and outer plexiform layer when we compared MSNON or MSON eyes with control eyes, but we found a small degree of thickening of the combined layer when we compared MSON eyes with MSNON eyes (1·21 μm, 0·24 to 2·19; p=0·01). The largest and most robust differences between the eyes of people with multiple sclerosis and control eyes were found in the peripapillary RNFL and macular GCIPL. Inflammatory disease activity might be captured by the INL. Because of the consistency, robustness, and large effect size, we recommend inclusion of the peripapillary RNFL and macular GCIPL for diagnosis, monitoring, and research. None. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Idealised large-eddy-simulation of thermally driven flows over an isolated mountain range with multiple ridges

    NASA Astrophysics Data System (ADS)

    Lang, Moritz N.; Gohm, Alexander; Wagner, Johannes S.; Leukauf, Daniel; Posch, Christian

    2014-05-01

    Two dimensional idealised large-eddy-simulations are performed using the WRF model to investigate thermally driven flows during the daytime over complex terrain. Both the upslope flows and the temporal evolution of the boundary layer structure are studied with a constant surface heat flux forcing of 150 W m-2. In order to distinguish between different heating processes the flow is Reynold decomposed into its mean and turbulent part. The heating processes associated with the mean flow are a cooling through cold-air advection along the slopes and subsidence warming within the valleys. The turbulent component causes bottom-up heating near the ground leading to a convective boundary layer (CBL) inside the valleys. Overshooting potentially colder thermals cool the stably stratified valley atmosphere above the CBL. Compared to recent investigations (Schmidli 2013, J. Atmos. Sci., Vol. 70, No. 12: pp. 4041-4066; Wagner et al. 2014, manuscript submitted to Mon. Wea. Rev.), which used an idealised topography with two parallel mountain crests separated by a straight valley, this project focuses on multiple, periodic ridges and valleys within an isolated mountain range. The impact of different numbers of ridges on the flow structure is compared with the sinusoidal envelope-topography. The present simulations show an interaction between the smaller-scale upslope winds within the different valleys and the large-scale flow of the superimposed mountain-plain wind circulation. Despite a smaller boundary layer air volume in the envelope case compared to the multiple ridges case the volume averaged heating rates are comparable. The reason is a stronger advection-induced cooling along the slopes and a weaker warming through subsidence at the envelope-topography compared to the mountain range with multiple ridges.

  12. Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaodong; Pan, Ming; Hou, Liwei

    2014-01-07

    The gain and photoresponse characteristics have been numerically studied for back-illuminated separate absorption and multiplication (SAM) GaN avalanche photodiodes (APDs). The parameters of fundamental models are calibrated by simultaneously comparing the simulated dark and light current characteristics with the experimental results. Effects of environmental temperatures and device dimensions on gain characteristics have been investigated, and a method to achieve the optimum thickness of charge layer is obtained. The dependence of gain characteristics and breakdown voltage on the doping concentration of the charge layer is also studied in detail to get the optimal charge layer. The bias-dependent spectral responsivity and quantummore » efficiency are then presented to study the photoresponse mechanisms inside SAM GaN APDs. It is found the responsivity peak red-shifts at first due to the Franz-Keldysh effect and then blue-shifts due to the reach-through effect of the absorption layer. Finally, a new SAM GaN/AlGaN heterojunction APD structure is proposed for optimizing SAM GaN APDs.« less

  13. Fabrication of triple-layered bifurcated vascular scaffold with a certain degree of three-dimensional structure

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyuan; Jiang, Weijian; Yang, Yang; Pu, Huayan; Peng, Yan; Xin, Liming; Zhang, Yi; Sun, Yu

    2018-01-01

    Constructing vascular scaffolds is important in tissue engineering. However, scaffolds with characteristics such as multiple layers and a certain degree of spatial morphology still cannot be readily constructed by current vascular scaffolds fabrication techniques. This paper presents a three-layered bifurcated vascular scaffold with a curved structure. The technique combines 3D printed molds and casting hydrogel and fugitive ink to create vessel-mimicking constructs with customizable structural parameters. Compared with other fabrication methods, the technique can create more native-like 3D geometries. The diameter and wall thickness of the fabricated constructs can be independently controlled, providing a feasible approach for vascular scaffold construction. Enzymatically-crosslinked gelatin was used as the scaffold material. The morphology and mechanical properties were evaluated. Human umbilical cord derived endothelial cells (HUVECs) were seeded on the scaffolds and cultured for 72 h. Cell viability and morphology were assessed. The results showed that the proposed process had good application potentials, and will hopefully provide a feasible approach for constructing vascular scaffolds.

  14. Selective colors reflection from stratified aragonite calcium carbonate plates of mollusk shells.

    PubMed

    Lertvachirapaiboon, Chutiparn; Parnklang, Tewarak; Pienpinijtham, Prompong; Wongravee, Kanet; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2015-08-01

    An interaction between the incident light and the structural architecture within the shell of Asian green mussel (Perna viridis) induces observable pearlescent colors. In this paper, we investigate the influence of the structural architecture on the expressed colors. After a removal of the organic binder, small flakes from crushed shells show vivid rainbow reflection under an optical microscope. An individual flake expresses vivid color under a bright-field illumination while become transparent under a dark-field illumination. The expressed colors of the aragonite flakes are directly associated with its structural architecture. The flakes with aragonite thickness of 256, 310, and 353 nm, respectively, appear blue, green, and red under an optical microscope. The spectral simulation corroborates the experimentally observed optical effects as the flakes with thicker aragonite layers selectively reflected color with longer wavelengths. Flakes with multiple aragonite thicknesses expressed multi-color as the upper aragonite layers allow reflected colors from the lower layers to be observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a structurally chiral material

    NASA Astrophysics Data System (ADS)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh

    2016-03-01

    Multiple compound surface plasmon-polariton (SPP) waves can be guided by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP waves are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP waves differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP waves are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP waves depends on the relative permittivity of the HID material, which can be useful for sensing applications.

  16. Principles of Temporal Processing Across the Cortical Hierarchy.

    PubMed

    Himberger, Kevin D; Chien, Hsiang-Yun; Honey, Christopher J

    2018-05-02

    The world is richly structured on multiple spatiotemporal scales. In order to represent spatial structure, many machine-learning models repeat a set of basic operations at each layer of a hierarchical architecture. These iterated spatial operations - including pooling, normalization and pattern completion - enable these systems to recognize and predict spatial structure, while robust to changes in the spatial scale, contrast and noisiness of the input signal. Because our brains also process temporal information that is rich and occurs across multiple time scales, might the brain employ an analogous set of operations for temporal information processing? Here we define a candidate set of temporal operations, and we review evidence that they are implemented in the mammalian cerebral cortex in a hierarchical manner. We conclude that multiple consecutive stages of cortical processing can be understood to perform temporal pooling, temporal normalization and temporal pattern completion. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Rapid Thermal Processing of 3-5 Compound Semiconductors with Application to the Fabrication of Microwave Devices

    DTIC Science & Technology

    1988-05-01

    LE i GOD~’Q~/ SOLID STATE ELECTRONICS LABORATORY STANFORD ELECTRON ICS LABORATORIES DEPARTMENT OF ELECTRICAL ENGINEERING L STANFORD UNIVERSITY...defects in the growth of subsequent layers. Test structures consisting 325 zEP-H~ PrzC~ LE of multiple layers of GaAs or alternating lay ers of GaAs...QA5) ~erhfellowship. ’J L Ho~ viand ) IF Gibtxn,. itecr Res Soc S% mp Proc 52. 15119t 36 Rapid thermal annealing of Si-implanted GaAs with

  18. Volumetric Visualization of Human Skin

    NASA Astrophysics Data System (ADS)

    Kawai, Toshiyuki; Kurioka, Yoshihiro

    We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.

  19. Multilayer block copolymer meshes by orthogonal self-assembly

    PubMed Central

    Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.

    2016-01-01

    Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218

  20. Covalent layer-by-layer films: chemistry, design, and multidisciplinary applications.

    PubMed

    An, Qi; Huang, Tao; Shi, Feng

    2018-05-16

    Covalent layer-by-layer (LbL) assembly is a powerful method used to construct functional ultrathin films that enables nanoscopic structural precision, componential diversity, and flexible design. Compared with conventional LbL films built using multiple noncovalent interactions, LbL films prepared using covalent crosslinking offer the following distinctive characteristics: (i) enhanced film endurance or rigidity; (ii) improved componential diversity when uncharged species or small molecules are stably built into the films by forming covalent bonds; and (iii) increased structural diversity when covalent crosslinking is employed in componential, spacial, or temporal (labile bonds) selective manners. In this review, we document the chemical methods used to build covalent LbL films as well as the film properties and applications achievable using various film design strategies. We expect to translate the achievement in the discipline of chemistry (film-building methods) into readily available techniques for materials engineers and thus provide diverse functional material design protocols to address the energy, biomedical, and environmental challenges faced by the entire scientific community.

  1. Interface and photoluminescence characteristics of graphene-(GaN/InGaN){sub n} multiple quantum wells hybrid structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liancheng, E-mail: wanglc@semi.ac.cn, E-mail: lzq@semi.ac.cn, E-mail: zh.zhang@hebut.edu.cn; Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083; Mind Star

    The effects of graphene on the optical properties of active system, e.g., the InGaN/GaN multiple quantum wells, are thoroughly investigated and clarified. Here, we have investigated the mechanisms accounting for the photoluminescence reduction for the graphene covered GaN/InGaN multiple quantum wells hybrid structure. Compared to the bare multiple quantum wells, the photoluminescence intensity of graphene covered multiple quantum wells showed a 39% decrease after excluding the graphene absorption losses. The responsible mechanisms have been identified with the following factors: (1) the graphene two dimensional hole gas intensifies the polarization field in multiple quantum wells, thus steepening the quantum well bandmore » profile and causing hole-electron pairs to further separate; (2) a lower affinity of graphene compared to air leading to a weaker capability to confine the excited hot electrons in multiple quantum wells; and (3) exciton transfer through non-radiative energy transfer process. These factors are theoretically analysed based on advanced physical models of semiconductor devices calculations and experimentally verified by varying structural parameters, such as the indium fraction in multiple quantum wells and the thickness of the last GaN quantum barrier spacer layer.« less

  2. REACTOR MODERATOR STRUCTURE

    DOEpatents

    Fraas, A.P.; Tudor, J.J.

    1963-08-01

    An improved moderator structure for nuclear reactors consists of moderator blocks arranged in horizontal layers to form a multiplicity of vertically stacked columns of blocks. The blocks in each vertical column are keyed together, and a ceramic grid is disposed between each horizontal layer of blocks. Pressure plates cover- the lateral surface of the moderator structure in abutting relationship with the peripheral terminal lengths of the ceramic grids. Tubular springs are disposed between the pressure plates and a rigid external support. The tubular springs have their axes vertically disposed to facilitate passage of coolant gas through the springs and are spaced apart a selected distance such that at sonae preselected point of spring deflection, the sides of the springs will contact adjacent springs thereby causing a large increase in resistance to further spring deflection. (AEC)

  3. Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure.

    PubMed

    Choudhary, Nitin; Park, Juhong; Hwang, Jun Yeon; Chung, Hee-Suk; Dumas, Kenneth H; Khondaker, Saiful I; Choi, Wonbong; Jung, Yeonwoong

    2016-05-05

    Two-dimensional (2D) van der Waal (vdW) heterostructures composed of vertically-stacked multiple transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are envisioned to present unprecedented materials properties unobtainable from any other material systems. Conventional fabrications of these hybrid materials have relied on the low-yield manual exfoliation and stacking of individual 2D TMD layers, which remain impractical for scaled-up applications. Attempts to chemically synthesize these materials have been recently pursued, which are presently limited to randomly and scarcely grown 2D layers with uncontrolled layer numbers on very small areas. Here, we report the chemical vapor deposition (CVD) growth of large-area (>2 cm(2)) patterned 2D vdW heterostructures composed of few layer, vertically-stacked MoS2 and WS2. Detailed structural characterizations by Raman spectroscopy and high-resolution/scanning transmission electron microscopy (HRTEM/STEM) directly evidence the structural integrity of two distinct 2D TMD layers with atomically sharp vdW heterointerfaces. Electrical transport measurements of these materials reveal diode-like behavior with clear current rectification, further confirming the formation of high-quality heterointerfaces. The intrinsic scalability and controllability of the CVD method presented in this study opens up a wide range of opportunities for emerging applications based on the unconventional functionalities of these uniquely structured materials.

  4. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations.

    PubMed

    Tan, Chih-Shan; Huang, Michael H

    2017-09-04

    Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of Land Surface Heterogeneity on Simulated Boundary-Layer Structures from the LES to the Mesoscale

    NASA Astrophysics Data System (ADS)

    Poll, Stefan; Shrestha, Prabhakar; Simmer, Clemens

    2017-04-01

    Land heterogeneity influences the atmospheric boundary layer (ABL) structure including organized (secondary) circulations which feed back on land-atmosphere exchange fluxes. Especially the latter effects cannot be incorporated explicitly in regional and climate models due to their coarse computational spatial grids, but must be parameterized. Current parameterizations lead, however, to uncertainties in modeled surface fluxes and boundary layer evolution, which feed back to cloud initiation and precipitation. This study analyzes the impact of different horizontal grid resolutions on the simulated boundary layer structures in terms of stability, height and induced secondary circulations. The ICON-LES (Icosahedral Nonhydrostatic in LES mode) developed by the MPI-M and the German weather service (DWD) and conducted within the framework of HD(CP)2 is used. ICON is dynamically downscaled through multiple scales of 20 km, 7 km, 2.8 km, 625 m, 312 m, and 156 m grid spacing for several days over Germany and partial neighboring countries for different synoptic conditions. We examined the entropy spectrum of the land surface heterogeneity at these grid resolutions for several locations close to measurement sites, such as Lindenberg, Jülich, Cabauw and Melpitz, and studied its influence on the surface fluxes and the evolution of the boundary layer profiles.

  6. Structured Antireflective Coating for Silicon at Submillimeter Frequencies

    NASA Astrophysics Data System (ADS)

    Padilla, Estefania

    2018-01-01

    Observations at millimeter and submillimeter wavelengths are useful for many astronomical studies, such as the polarization of the cosmic microwave background or the formation and evolution of galaxy clusters. In order to allow observations over a broad spectral bandwidth (approximatively from 70 to 420 GHz), innovative broadband anti-reflective (AR) optics must be utilized in submillimeter telescopes. Due to its low loss and high refractive index, silicon is a fine optical material at these frequencies, but an AR coating with multiple layers is required to maximize its transmission over a wide bandwidth. Structured multilayer AR coatings for silicon are currently being developed at Caltech and JPL. The development process includes the design of the structured layers with commercial electromagnetic simulation software, the fabrication by using deep reactive ion etching, and the test of the transmission and reflection of the patterned wafers. Geometrical 3D patterns have successfully been etched at the surface of the silicon wafers creating up to 2 layers with different effective refractive indices. The transmission and reflection of single AR layer wafers, measured between 75 and 330 GHz, are close to the simulation predictions. These results allow the development of new designs with 5 or 6 AR layers in order to improve the bandwidth and transmission of the silicon AR coatings.

  7. Determinants of public cooperation in multiplex networks

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Perc, Matjaž; Latora, Vito

    2017-07-01

    Synergies between evolutionary game theory and statistical physics have significantly improved our understanding of public cooperation in structured populations. Multiplex networks, in particular, provide the theoretical framework within network science that allows us to mathematically describe the rich structure of interactions characterizing human societies. While research has shown that multiplex networks may enhance the resilience of cooperation, the interplay between the overlap in the structure of the layers and the control parameters of the corresponding games has not yet been investigated. With this aim, we consider here the public goods game on a multiplex network, and we unveil the role of the number of layers and the overlap of links, as well as the impact of different synergy factors in different layers, on the onset of cooperation. We show that enhanced public cooperation emerges only when a significant edge overlap is combined with at least one layer being able to sustain some cooperation by means of a sufficiently high synergy factor. In the absence of either of these conditions, the evolution of cooperation in multiplex networks is determined by the bounds of traditional network reciprocity with no enhanced resilience. These results caution against overly optimistic predictions that the presence of multiple social domains may in itself promote cooperation, and they help us better understand the complexity behind prosocial behavior in layered social systems.

  8. New Details of the Human Corneal Limbus Revealed With Second Harmonic Generation Imaging.

    PubMed

    Park, Choul Yong; Lee, Jimmy K; Zhang, Cheng; Chuck, Roy S

    2015-09-01

    To report novel findings of the human corneal limbus by using second harmonic generation (SHG) imaging. Corneal limbus was imaged by using an inverted two-photon excitation fluorescence microscope. Laser (Ti:Sapphire) was tuned at 850 nm for two-photon excitation. Backscatter signals of SHG and autofluorescence (AF) were collected through a 425/30-nm emission filter and a 525/45-emission filter, respectively. Multiple, consecutive, and overlapping image stacks (z-stack) were acquired for the corneal limbal area. Two novel collagen structures were revealed by SHG imaging at the limbus: an anterior limbal cribriform layer and presumed anchoring fibers. Anterior limbal cribriform layer is an intertwined reticular collagen architecture just beneath the limbal epithelial niche and is located between the peripheral cornea and Tenon's/scleral tissue. Autofluorescence imaging revealed high vascularity in this structure. Central to the anterior limbal cribriform layer, radial strands of collagen were found to connect the peripheral cornea to the limbus. These presumed anchoring fibers have both collagen and elastin and were found more extensively in the superficial layers than deep layer and were absent in very deep limbus near Schlemm's canal. By using SHG imaging, new details of the collagen architecture of human corneal limbal area were elucidated. High resolution images with volumetric analysis revealed two novel collagen structures.

  9. Interrogating the superconductor Ca- 10(Pt 4As 8)(Fe 2-xPt xAs 2) 5 Layer-by-layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jisun; Zhu, Yimei; Nam, Hyoungdo

    2016-10-14

    Ever since the discovery of high-Tc superconductivity in layered cuprates, the roles that individual layers play have been debated, due to difficulty in layer-by-layer characterization. While there is similar challenge in many Fe-based layered superconductors, the newly-discovered Ca 10(Pt 4As 8)(Fe 2As 2) 5 provides opportunities to explore superconductivity layer by layer, because it contains both superconducting building blocks (Fe 2As 2 layers) and intermediate Pt 4As 8 layers. Cleaving a single crystal under ultra-high vacuum results in multiple terminations: an ordered Pt 4As 8 layer, two reconstructed Ca layers on the top of a Pt 4As 8 layer, andmore » disordered Ca layer on the top of Fe 2As 2 layer. The electronic properties of individual layers are studied using scanning tunneling microscopy/spectroscopy (STM/S), which reveals different spectra for each surface. Remarkably superconducting coherence peaks are seen only on the ordered Ca/Pt 4As 8 layer. Our results indicate that an ordered structure with proper charge balance is required in order to preserve superconductivity.« less

  10. Interrogating the superconductor Ca10(Pt4As8)(Fe2-xPtxAs2)5 Layer-by-layer.

    PubMed

    Kim, Jisun; Nam, Hyoungdo; Li, Guorong; Karki, A B; Wang, Zhen; Zhu, Yimei; Shih, Chih-Kang; Zhang, Jiandi; Jin, Rongying; Plummer, E W

    2016-10-14

    Ever since the discovery of high-T c superconductivity in layered cuprates, the roles that individual layers play have been debated, due to difficulty in layer-by-layer characterization. While there is similar challenge in many Fe-based layered superconductors, the newly-discovered Ca 10 (Pt 4 As 8 )(Fe 2 As 2 ) 5 provides opportunities to explore superconductivity layer by layer, because it contains both superconducting building blocks (Fe 2 As 2 layers) and intermediate Pt 4 As 8 layers. Cleaving a single crystal under ultra-high vacuum results in multiple terminations: an ordered Pt 4 As 8 layer, two reconstructed Ca layers on the top of a Pt 4 As 8 layer, and disordered Ca layer on the top of Fe 2 As 2 layer. The electronic properties of individual layers are studied using scanning tunneling microscopy/spectroscopy (STM/S), which reveals different spectra for each surface. Remarkably superconducting coherence peaks are seen only on the ordered Ca/Pt 4 As 8 layer. Our results indicate that an ordered structure with proper charge balance is required in order to preserve superconductivity.

  11. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  12. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.

    2012-12-04

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  13. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  14. Electrical failure debug using interlayer profiling method

    NASA Astrophysics Data System (ADS)

    Yang, Thomas; Shen, Yang; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh

    2017-03-01

    It is very well known that as technology nodes move to smaller sizes, the number of design rules increases while design structures become more regular and the process manufacturing steps have increased as well. Normal inspection tools can only monitor hard failures on a single layer. For electrical failures that happen due to inter layers misalignments, we can only detect them through testing. This paper will present a working flow for using pattern analysis interlayer profiling techniques to turn multiple layer physical info into group linked parameter values. Using this data analysis flow combined with an electrical model allows us to find critical regions on a layout for yield learning.

  15. Luminescence of quantum-well exciton polaritons from microstructured AlxGa1-xAs-GaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Kohl, M.; Heitmann, D.; Grambow, P.; Ploog, K.

    1988-06-01

    Periodic multiple-quantum-well wires have been prepared by etching five-layer quantum-well structures through a holographically prepared mask. The periodicity was 380 nm, the lateral confinement 180 nm, and the quantum-well width 13, nm. The luminescence from these microstructured systems in the frequency regime of the one-electron-one-heavy-hole transition was strongly polarized with the electric field perpendicular to the periodic structure. This effect was caused by the resonantly enhanced emission of quantum-well-exciton (QWE) polaritons. Excitation of QWE polaritons was also observed in reflection measurements on the microstructured samples.

  16. WE-E-18A-01: Large Area Avalanche Amorphous Selenium Sensors for Low Dose X-Ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheuermann, J; Goldan, A; Zhao, W

    2014-06-15

    Purpose: A large area indirect flat panel imager (FPI) with avalanche gain is being developed to achieve x-ray quantum noise limited low dose imaging. It uses a thin optical sensing layer of amorphous selenium (a-Se), known as High-Gain Avalanche Rushing Photoconductor (HARP), to detect optical photons generated from a high resolution x-ray scintillator. We will report initial results in the fabrication of a solid-state HARP structure suitable for a large area FPI. Our objective is to establish the blocking layer structures and defect suppression mechanisms that provide stable and uniform avalanche gain. Methods: Samples were fabricated as follows: (1) ITOmore » signal electrode. (2) Electron blocking layer. (3) A 15 micron layer of intrinsic a-Se. (4) Transparent hole blocking layer. (5) Multiple semitransparent bias electrodes to investigate avalanche gain uniformity over a large area. The sample was exposed to 50ps optical excitation pulses through the bias electrode. Transient time of flight (TOF) and integrated charge was measured. A charge transport simulation was developed to investigate the effects of varying blocking layer charge carrier mobility on defect suppression, avalanche gain and temporal performance. Results: Avalanche gain of ∼200 was achieved experimentally with our multi-layer HARP samples. Simulations using the experimental sensor structure produced the same magnitude of gain as a function of electric field. The simulation predicted that the high dark current at a point defect can be reduced by two orders of magnitude by blocking layer optimization which can prevent irreversible damage while normal operation remained unaffected. Conclusion: We presented the first solid state HARP structure directly scalable to a large area FPI. We have shown reproducible and uniform avalanche gain of 200. By reducing mobility of the blocking layers we can suppress defects and maintain stable avalanche. Future work will optimize the blocking layers to prevent lag and ghosting.« less

  17. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  18. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  19. Layered nanocomposites inspired by the structure and mechanical properties of nacre.

    PubMed

    Wang, Jianfeng; Cheng, Qunfeng; Tang, Zhiyong

    2012-02-07

    Nacre (mother-of-pearl), made of inorganic and organic constituents (95 vol% aragonite calcium carbonate (CaCO(3)) platelets and 5 vol% elastic biopolymers), possesses a unique combination of remarkable strength and toughness, which is compatible for conventional high performance materials. The excellent mechanical properties are related to its hierarchical structure and precisely designed organic-inorganic interface. The rational design of aragonite platelet strength, aspect ratio of aragonite platelets, and interface strength ensures that the strength of nacre is maximized under platelet pull-out failure mode. At the same time, the synergy of strain hardening mechanisms acting over multiple scales results in platelets sliding on one another, and thus maximizes the energy dissipation of viscoplastic biopolymers. The excellent integrated mechanical properties with hierarchical structure have inspired chemists and materials scientists to develop biomimetic strategies for artificial nacre materials. This critical review presents a broad overview of the state-of-the-art work on the preparation of layered organic-inorganic nanocomposites inspired by nacre, in particular, the advantages and disadvantages of various biomimetic strategies. Discussion is focused on the effect of the layered structure, interface, and component loading on strength and toughness of nacre-mimic layered nanocomposites (148 references). This journal is © The Royal Society of Chemistry 2012

  20. Structural colour printing from a reusable generic nanosubstrate masked for the target image

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Jiang, H.; Kaminska, B.

    2016-02-01

    Structural colour printing has advantages over traditional pigment-based colour printing. However, the high fabrication cost has hindered its applications in printing large-area images because each image requires patterning structural pixels in nanoscale resolution. In this work, we present a novel strategy to print structural colour images from a pixelated substrate which is called a nanosubstrate. The nanosubstrate is fabricated only once using nanofabrication tools and can be reused for printing a large quantity of structural colour images. It contains closely packed arrays of nanostructures from which red, green, blue and infrared structural pixels can be imprinted. To print a target colour image, the nanosubstrate is first covered with a mask layer to block all the structural pixels. The mask layer is subsequently patterned according to the target colour image to make apertures of controllable sizes on top of the wanted primary colour pixels. The masked nanosubstrate is then used as a stamp to imprint the colour image onto a separate substrate surface using nanoimprint lithography. Different visual colours are achieved by properly mixing the red, green and blue primary colours into appropriate ratios controlled by the aperture sizes on the patterned mask layer. Such a strategy significantly reduces the cost and complexity of printing a structural colour image from lengthy nanoscale patterning into high throughput micro-patterning and makes it possible to apply structural colour printing in personalized security features and data storage. In this paper, nanocone array grating pixels were used as the structural pixels and the nanosubstrate contains structures to imprint the nanocone arrays. Laser lithography was implemented to pattern the mask layer with submicron resolution. The optical properties of the nanocone array gratings are studied in detail. Multiple printed structural colour images with embedded covert information are demonstrated.

  1. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  2. Structural profiling of individual glycosphingolipids in a single thin-layer chromatogram by multiple sequential immunodetection matched with Direct IR-MALDI-o-TOF mass spectrometry.

    PubMed

    Souady, Jamal; Soltwisch, Jens; Dreisewerd, Klaus; Haier, Jörg; Peter-Katalinić, Jasna; Müthing, Johannes

    2009-11-15

    The thin-layer chromatography (TLC) immunoenzyme overlay assay is a widely used tool for antibody-mediated identification of glycosphingolipids (GSLs) in mixtures. However, because the majority of GSLs is left unexamined in a chromatogram of a single assay, we developed a novel method that permits detection of various GSLs by sequential multiple immunostaining combined with individual coloring of GSLs in the same chromatogram. Specific staining was achieved by means of primary anti-GSL antibodies, directed against lactosylceramide, globotriaosylceramide, and globotetraosylceramide, in conjunction with alkaline phosphatase (AP)- or horseradish peroxidase (HRP)-conjugated secondary antibodies together with the appropriate chromogenic substrates. Triple coloring with 5-bromo-4-chloro-3-indolyl phosphate (BCIP)-AP, Fast Red-AP, and 3,3'-diaminobenzidine (DAB)-HRP resulted in blue, red, and black precipitates, respectively, following three sequential immunostaining rounds. Structures of antibody-detected GSLs were determined by direct coupling of TLC with infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry. This combinatorial technique was used to demonstrate structural GSL profiling of crude lipid extracts from human hepatocellular cancer. This powerful technology allows efficient structural characterization of GSLs in small tissue samples and marks a further step forward in the emerging field of glycosphingolipidomics.

  3. Modular representation of layered neural networks.

    PubMed

    Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio

    2018-01-01

    Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Some metal oxides and their applications for creation of Microsystems (MEMS) and Energy Harvesting Devices (EHD)

    NASA Astrophysics Data System (ADS)

    Denishev, K.

    2016-10-01

    This is a review of a part of the work of the Technological Design Group at Technical University of Sofia, Faculty of Electronic Engineering and Technologies, Department of Microelectronics. It is dealing with piezoelectric polymer materials and their application in different microsystems (MEMS) and Energy Harvesting Devices (EHD), some organic materials and their applications in organic (OLED) displays, some transparent conductive materials etc. The metal oxides Lead Zirconium Titanate (PZT) and Zinc Oxide (ZnO) are used as piezoelectric layers - driving part of different sensors, actuators and EHD. These materials are studied in term of their performance in dependence on the deposition conditions and parameters. They were deposited as thin films by using RF Sputtering System. As technological substrates, glass plates and Polyethylenetherephtalate (PET) foils were used. For characterization of the materials, a test structure, based on Surface Acoustic Waves (SAW), was designed and prepared. The layers were characterized by Fourier Transform Infrared spectroscopy (FTIR). The piezoelectric response was tested at variety of mechanical loads (tensile strain, stress) in static and dynamic (multiple bending) mode. The single-layered and double-layered structures were prepared for piezoelectric efficiency increase. A structure of piezoelectric energy transformer is proposed and investigated.

  5. The big lobe of 67P/Churyumov-Gerasimenko comet: morphological and spectrophotometric evidences of layering as from OSIRIS data

    NASA Astrophysics Data System (ADS)

    Ferrari, Sabrina; Penasa, L.; La Forgia, F.; Massironi, M.; Naletto, G.; Lazzarin, M.; Fornasier, S.; Hasselmann, P. H.; Lucchetti, A.; Pajola, M.; Ferri, F.; Cambianica, P.; Oklay, N.; Tubiana, C.; Sierks, H.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Davidsson, B.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Deller, J.; Franceschi, M.; Frattin, E.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Güttler, C.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Küppers, M.; Lara, L. M.; López-Moreno, J. J.; Marzari, F.; Shi, X.; Simioni, E.; Thomas, N.; Vincent, J.-B.

    2018-06-01

    Between 2014 and 2016, ESA's Rosetta OSIRIS cameras acquired multiple-filters images of the layered nucleus of comet 67P/Churyumov-Gerasimenko, ranging from ultraviolet to near-infrared wavelengths. No correlation between layers disposition and surface spectral variegation has been observed so far. This paper investigates possible spectral differences among decametre-thickness outcropping layers of the biggest lobe of the comet by means of OSIRIS image dataset. A two-classes Maximum Likelihood classification was applied on consolidated outcrops and relative deposits identified on post-perihelion multispectral images of the big lobe. We distinguished multispectral data on the basis of the structural elevation of the onion-shell Ellipsoidal Model of 67P. The spatial distribution of the two classes displays a clear dependence on the structural elevation, with the innermost class resulting over 50% brighter that the outermost one. Consolidated cometary materials located at different structural levels are characterized by different brightness and revealed due to the selective removal of large volumes. This variegation can be attributed to a different texture of the outcrop surface and/or to a different content of refractory materials.

  6. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging.

    PubMed

    Zeitler, J Axel; Shen, Yaochun; Baker, Colin; Taday, Philip F; Pepper, Michael; Rades, Thomas

    2007-02-01

    Three dimensional terahertz pulsed imaging (TPI) was evaluated as a novel tool for the nondestructive characterization of different solid oral dosage forms. The time-domain reflection signal of coherent pulsed light in the far infrared was used to investigate film-coated tablets, sugar-coated tablets, multilayered controlled release tablets, and soft gelatin capsules. It is possible to determine the spatial and statistical distribution of coating thickness in single and multiple coated products using 3D TPI. The measurements are nondestructive even for layers buried underneath other coating structures. The internal structure of coating materials can be analyzed. As the terahertz signal penetrates up to 3 mm into the dosage form interfaces between layers in multilayered tablets can be investigated. In soft gelatin capsules it is possible to measure the thickness of the gelatin layer and to characterize the seal between the gelatin layers for quality control. TPI is a unique approach for the nondestructive characterization and quality control of solid dosage forms. The measurements are fast and fully automated with the potential for much wider application of the technique in the process analytical technology scheme. Copyright (c) 2006 Wiley-Liss, Inc.

  7. Modeling Emissions and Vertical Plume Transport of Crop Residue Burning Experiments in the Pacific Northwest

    EPA Science Inventory

    A study in eastern Washington (Walla Walla) and north Idaho (Nez Perce) in August 2013 consisted of multiple burns of well characterized fuels with nearby surface and aerial measurements including trace species concentrations, plume rise height and boundary layer structure. Detai...

  8. InGaP Heterojunction Barrier Solar Cells

    NASA Technical Reports Server (NTRS)

    Welser, Roger E.

    2010-01-01

    A new solar-cell structure utilizes a single, ultra-wide well of either gallium arsenide (GaAs) or indium-gallium-phosphide (InGaP) in the depletion region of a wide bandgap matrix, instead of the usual multiple quantum well layers. These InGaP barrier layers are effective at reducing diode dark current, and photogenerated carrier escape is maximized by the proper design of the electric field and barrier profile. With the new material, open-circuit voltage enhancements of 40 and 100 mV (versus PIN control systems) are possible without any degradation in short-circuit current. Basic tenets of quantum-well and quantum- dot solar cells are utilized, but instead of using multiple thin layers, a single wide well works better. InGaP is used as a barrier material, which increases open current, while simultaneously lowering dark current, reducing both hole diffusion from the base, and space charge recombination within the depletion region. Both the built-in field and the barrier profile are tailored to enhance thermionic emissions, which maximizes the photocurrent at forward bias, with a demonstrated voltage increase. An InGaP heterojunction barrier solar cell consists of a single, ultra-wide GaAs, aluminum-gallium-arsenide (AlGaAs), or lower-energy-gap InGaP absorber well placed within the depletion region of an otherwise wide bandgap PIN diode. Photogenerated electron collection is unencumbered in this structure. InGaAs wells can be added to the thick GaAs absorber layer to capture lower-energy photons.

  9. Behaviour of Mechanically Laminated CLT Members

    NASA Astrophysics Data System (ADS)

    Kuklík, P.; Velebil, L.

    2015-11-01

    Cross laminated timber (CLT) is one of the structural building systems based on the lamination of multiple layers, where each layer is oriented perpendicularly to each other. Recent requirements are placed to develop an alternative process based on the mechanical lamination of the layers, which is of particular interest to our research group at the University Centre for Energy Efficient Buildings. The goal is to develop and verify the behaviour of mechanically laminated CLT wall panels exposed to shear stresses in the plane. The shear resistance of mechanically jointed CLT is ensured by connecting the layers by screws. The paper deals with the experimental analysis focused on the determination of the torsional stiffness and the slip modulus of crossing areas for different numbers of orthogonally connected layers. The results of the experiments were compared with the current analytical model.

  10. Crack-Free, Soft Wrinkles Enable Switchable Anisotropic Wetting.

    PubMed

    Rhee, Dongjoon; Lee, Won-Kyu; Odom, Teri W

    2017-06-01

    Soft skin layers on elastomeric substrates are demonstrated to support mechano-responsive wrinkle patterns that do not exhibit cracking under applied strain. Soft fluoropolymer skin layers on pre-strained poly(dimethylsiloxane) slabs achieved crack-free surface wrinkling at high strain regimes not possible by using conventional stiff skin layers. A side-by-side comparison between the soft and hard skin layers after multiple cycles of stretching and releasing revealed that the soft skin layer enabled dynamic control over wrinkle topography without cracks or delamination. We systematically characterized the evolution of wrinkle wavelength, amplitude, and orientation as a function of tensile strain to resolve the crack-free structural transformation. We demonstrated that wrinkled surfaces can guide water spreading along wrinkle orientation, and hence switchable, anisotropic wetting was realized. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. μ+SR Study on Layered Chromium Perovskites: Srn+1CrnO3n+1 (n = 1-3)

    NASA Astrophysics Data System (ADS)

    Nozaki, Hiroshi; Sakurai, Hiroya; Umegaki, Izumi; Ansaldo, Eduardo J.; Morris, Gerald D.; Hitti, Bassam; Arseneau, Donald J.; Andreica, Daniel; Amato, Alex; Månsson, Martin; Sugiyama, Jun

    The magnetic nature of layered chromium perovskites, Srn+1CrnO3n+1 (n = 1-3) was studied by μ+SR using powder samples prepared by a high pressure synthesis technique. According to the weak transverse field measurements, each sample entered a magnetically ordered state below 110, 200, and 90 K for the n = 1, 2, and 3 samples, respectively. Zero field (ZF) spectra below the transition temperature exhibited a clear oscillation due to the formation of quasi-static magnetic order. The Fourier transform frequency-spectrum for the ZF time-spectrum indicated the existence of the multiple oscillation components. The frequencies for the multiple oscillatory signals showed a complex temperature dependence, implying the occurrence of structural change/transitions below TN.

  12. Investigation of a Modern Incipient Stromatolite from Obsidian Pool Prime, Yellowstone National Park: Implications for Early Lithification in the Formation of Light-Dark Stromatolite Laminae

    NASA Astrophysics Data System (ADS)

    Corsetti, F. A.; Berelson, W.; Pepe-Ranney, C. P.; Mata, S. A.; Spear, J. R.

    2016-12-01

    Stromatolites have been defined multiple ways, but the presence of lamination is common to all definitions. Despite this commonality, the origin of the lamination in many ancient stromatolites remains vague. Lamination styles vary, but sub-mm light-dark couplets are common in many ancient stromatolites. Here, we investigate an actively forming incipient stromatolite from Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park, to better understand the formation of light-dark couplets similar to many ancient stromatolites in texture and structure. In the OPP stromatolites, a dense network of layer-parallel bundles of cyanobacterial filaments (a dark layer) is followed by an open network of layer-perpendicular or random filaments (a light layer) that reflect a diurnal cycle in the leading edge of the microbial mat that coats the stromatolite's surface. Silica crust encases the cyanobacterial filaments maintaining the integrity of the lamination. Bubbles formed via oxygenic photosynthesis are commonly trapped within the light layers, indicating that lithification occurs rapidly before the bubbles can collapse. The filamentous, non-heterocystous stromatoite-building cyanobacterium from OPP is most closely related to a stromatolite-building cyanobacterium from a hot spring in Japan. Once built, "tenants" from multiple microbial phyla move into the structure, mixing and mingling to produce a complicated integrated biogeochemical signal that may be difficult to untangle in ancient examples. While the cyanobacterial response to the diurnal cycle has been previously implicated in the formation of light-dark couplets, the OPP example highlights the importance of early lithification in maintaining the fabric. Thus, the presence of light-dark couplets and bubble structures may indicate very early lithification and therefore a certain degree of mineral saturation in the ancient ocean or other aquatic system, and that bubble structures, if present, may be evidence for oxygenic photosynthesis. Other lamination hypotheses suggest that lithification is driven by sulfate reduction within a stratified microbial mat—a possibility in some stromatolites, but the lithification engine must move deeper in the mat where the formation of fine light-dark couplets becomes more problematic.

  13. Magnetic and Crystal Structure of α-RuCl3

    NASA Astrophysics Data System (ADS)

    Sears, Jennifer

    The layered honeycomb material α-RuCl3 has been proposed as a candidate material to show significant bond-dependent Kitaev type interactions. This has prompted several recent studies of magnetism in this material that have found evidence for multiple magnetic transitions in the temperature range of 8-14 K. We will present elastic neutron scattering measurements collected using a co-aligned array of α-RuCl3 crystals, identifying zigzag magnetic order within the honeycomb planes with an ordering temperature of ~8 K. It has been reported that the ordering temperature depends on the c axis periodicity of the layered structure, with ordering temperatures of 8 and 14 K for three and two-layer periodicity respectively. While the in-plane magnetic order has been identified, it is clear that a complete understanding of magnetic ordering and interactions will depend on the three dimensional structure of the crystal. Evidence of a structural transition at ~150 K has been reported and questions remain about the structural details, in particular the stacking of the honeycomb layers. We will present x-ray diffraction measurements investigating the low and high temperature structures and stacking disorder in α-RuCl3. Finally, we will present inelastic neutron scattering measurements of magnetic excitations in this material. Work done in collaboration with K. W. Plumb (Johns Hopkins University), J. P. Clancy, Young-June Kim (University of Toronto), J. Britten (McMaster University), Yu-Sheng Chen (Argonne National Laboratory), Y. Qiu, Y. Zhao, D. Parshall, and J. W. Lynn (NCNR).

  14. Selenium Interlayer for High-Efficiency Multijunction Solar Cell

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A (Inventor)

    2015-01-01

    A multi junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.

  15. Selenium Interlayer for High-Efficiency Multijunction Solar Cell

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2016-01-01

    A multi-junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.

  16. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies.

    PubMed

    Vogel, Nicolas; Utech, Stefanie; England, Grant T; Shirman, Tanya; Phillips, Katherine R; Koay, Natalie; Burgess, Ian B; Kolle, Mathias; Weitz, David A; Aizenberg, Joanna

    2015-09-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies--potentially as more efficient mimics of structural color as it occurs in nature.

  17. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies

    PubMed Central

    Vogel, Nicolas; Utech, Stefanie; England, Grant T.; Shirman, Tanya; Phillips, Katherine R.; Koay, Natalie; Burgess, Ian B.; Kolle, Mathias; Weitz, David A.; Aizenberg, Joanna

    2015-01-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature. PMID:26290583

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yang; Liu, Zhiqiang, E-mail: lzq@semi.ac.cn, E-mail: spring@semi.ac.cn; Yi, Xiaoyan, E-mail: lzq@semi.ac.cn, E-mail: spring@semi.ac.cn

    To evaluate electron leakage in InGaN/GaN multiple quantum well (MQW) light emitting diodes (LEDs), analytic models of ballistic and quasi-ballistic transport are developed. With this model, the impact of critical variables effecting electron leakage, including the electron blocking layer (EBL), structure of multiple quantum wells (MQWs), polarization field, and temperature are explored. The simulated results based on this model shed light on previously reported experimental observations and provide basic criteria for suppressing electron leakage, advancing the design of InGaN/GaN LEDs.

  19. Framework for Development and Distribution of Hardware Acceleration

    NASA Astrophysics Data System (ADS)

    Thomas, David B.; Luk, Wayne W.

    2002-07-01

    This paper describes IGOL, a framework for developing reconfigurable data processing applications. While IGOL was originally designed to target imaging and graphics systems, its structure is sufficiently general to support a broad range of applications. IGOL adopts a four-layer architecture: application layer, operation layer, appliance layer and configuration layer. This architecture is intended to separate and co-ordinate both the development and execution of hardware and software components. Hardware developers can use IGOL as an instance testbed for verification and benchmarking, as well as for distribution. Software application developers can use IGOL to discover hardware accelerated data processors, and to access them in a transparent, non-hardware specific manner. IGOL provides extensive support for the RC1000-PP board via the Handel-C language, and a wide selection of image processing filters have been developed. IGOL also supplies plug-ins to enable such filters to be incorporated in popular applications such as Premiere, Winamp, VirtualDub and DirectShow. Moreover, IGOL allows the automatic use of multiple cards to accelerate an application, demonstrated using DirectShow. To enable transparent acceleration without sacrificing performance, a three-tiered COM (Component Object Model) API has been designed and implemented. This API provides a well-defined and extensible interface which facilitates the development of hardware data processors that can accelerate multiple applications.

  20. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.

    1985-01-01

    The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.

  1. Chemical and morphological characterization of III-V strained layered heterostructures

    NASA Astrophysics Data System (ADS)

    Gray, Allen Lindsay

    This dissertation describes investigations into the chemical and morphological characterization of III-V strained layered heterostructures by high-resolution x-ray diffraction. The purpose of this work is two-fold. The first was to use high-resolution x-ray diffraction coupled with transmission electron microscopy to characterize structurally a quaternary AlGaAsSb/InGaAsSb multiple quantum well heterostructure laser device. A method for uniquely determining the chemical composition of the strain quaternary quantum well, information previously thought to be unattainable using high resolution x-ray diffraction is thoroughly described. The misconception that high-resolution x-ray diffraction can separately find the well and barrier thickness of a multi-quantum well from the pendellosung fringe spacing is corrected, and thus the need for transmission electron microscopy is motivated. Computer simulations show that the key in finding the well composition is the intensity of the -3rd order satellite peaks in the diffraction pattern. The second part of this work addresses the evolution of strain relief in metastable multi-period InGaAs/GaAs multi-layered structures by high-resolution x-ray reciprocal space maps. Results are accompanied by transmission electron and differential contrast microscopy. The evolution of strain relief is tracked from a coherent "pseudomorphic" growth to a dislocated state as a function of period number by examining the x-ray diffuse scatter emanating from the average composition (zeroth-order) of the multi-layer. Relaxation is determined from the relative positions of the substrate with respect to the zeroth-order peak. For the low period number, the diffuse scatter from the multi-layer structure region arises from periodic, coherent crystallites. For the intermediate period number, the displacement fields around the multi-layer structure region transition to random coherent crystallites. At the higher period number, displacement fields of overlapping dislocations from relaxation of the random crystallites cause the initial stages of relaxation of the multi-layer structure. At the highest period number studied, relaxation of the multi-layer structure becomes bi-modal characterized by overlapping dislocations caused by mosaic block relaxation and periodically spaced misfit dislocations formed by 60°-type dislocations. The relaxation of the multi-layer structure has an exponential dependence on the diffuse scatter length-scale, which is shown to be a sensitive measure of the onset of relaxation.

  2. Cornu Ammonis Regions–Antecedents of Cortical Layers?

    PubMed Central

    Mercer, Audrey; Thomson, Alex M.

    2017-01-01

    Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions—which might be seen as hippocampal antecedents of neocortical layers—lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the “cells that fire and wire together” into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five “pyramidal layers.” If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can perhaps begin to understand why definitive classification, covering every aspect of each neurone's structure and function, is such a challenge. Here, we summarize and compare the development of these two cortices, the properties of their neurones, the circuits they form and the ordered, unidirectional flow of information from one hippocampal region, or one neocortical layer, to another. PMID:29018334

  3. Multi-layered chalcogenides with potential for magnetism and superconductivity

    DOE PAGES

    Li, Li; Parker, David S.; dela Cruz, Clarina R.; ...

    2016-10-24

    Layered thallium copper chalcogenides can form single, double, or triple layers of Cu– Ch separated by Tl sheets. Here we report on the preparation and properties of Tl-based materials of TlCu 2Se 2, TlCu 4S 3, TlCu 4Se 3 and TlCu 6S 4. Having no long-range magnetism for these materials is quite surprising considering the possibilities of inter- and intra-layer exchange interactions through Cu 3 d, and we measure by magnetic susceptibility and confirm by neutron diffraction. First principles density-functional theory calculations for both the single-layer TlCu 2Se 2 (isostructural to the ‘122’ iron-based superconductors) and the double-layer TlCu 4Semore » 3 suggest a lack of Fermi-level spectral weight that is needed to drive a magnetic or superconducting instability. Furthermore, for multiple structural layers with Fe, there is much greater likelihood for magnetism and superconductivity.« less

  4. Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Gaković, B.; Tsibidis, G. D.; Skoulas, E.; Petrović, S. M.; Vasić, B.; Stratakis, E.

    2017-12-01

    The interaction of ultra-short laser pulses with Titanium/Aluminium (Ti/Al) nano-layered thin film was investigated. The sample composed of alternating Ti and Al layers of a few nanometres thick was deposited by ion-sputtering. A single pulse irradiation experiment was conducted in an ambient air environment using focused and linearly polarized femtosecond laser pulses for the investigation of the ablation effects. The laser induced morphological changes and the composition were characterized using several microscopy techniques and energy dispersive X-ray spectroscopy. The following results were obtained: (i) at low values of pulse energy/fluence, ablation of the upper Ti layer only was observed; (ii) at higher laser fluence, a two-step ablation of Ti and Al layers takes place, followed by partial removal of the nano-layered film. The experimental observations were supported by a theoretical model accounting for the thermal response of the multiple layered structure upon irradiation with ultra-short laser pulses.

  5. Multiple layer identification label using stacked identification symbols

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F. (Inventor)

    2005-01-01

    An automatic identification system and method are provided which employ a machine readable multiple layer label. The label has a plurality of machine readable marking layers stacked one upon another. Each of the marking layers encodes an identification symbol detectable using one or more sensing technologies. The various marking layers may comprise the same marking material or each marking layer may comprise a different medium having characteristics detectable by a different sensing technology. These sensing technologies include x-ray, radar, capacitance, thermal, magnetic and ultrasonic. A complete symbol may be encoded within each marking layer or a symbol may be segmented into fragments which are then divided within a single marking layer or encoded across multiple marking layers.

  6. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M.

    2013-12-02

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on themore » inverted Ga-polar surface.« less

  7. A new paper-based platform technology for point-of-care diagnostics.

    PubMed

    Gerbers, Roman; Foellscher, Wilke; Chen, Hong; Anagnostopoulos, Constantine; Faghri, Mohammad

    2014-10-21

    Currently, the Lateral flow Immunoassays (LFIAs) are not able to perform complex multi-step immunodetection tests because of their inability to introduce multiple reagents in a controlled manner to the detection area autonomously. In this research, a point-of-care (POC) paper-based lateral flow immunosensor was developed incorporating a novel microfluidic valve technology. Layers of paper and tape were used to create a three-dimensional structure to form the fluidic network. Unlike the existing LFIAs, multiple directional valves are embedded in the test strip layers to control the order and the timing of mixing for the sample and multiple reagents. In this paper, we report a four-valve device which autonomously directs three different fluids to flow sequentially over the detection area. As proof of concept, a three-step alkaline phosphatase based Enzyme-Linked ImmunoSorbent Assay (ELISA) protocol with Rabbit IgG as the model analyte was conducted to prove the suitability of the device for immunoassays. The detection limit of about 4.8 fm was obtained.

  8. Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM.

    PubMed

    Martínez, José Luis; Moreno, Ignacio; del Mar Sánchez-López, María; Vargas, Asticio; García-Martínez, Pascuala

    2014-10-20

    Multiple internal reflection effects on the optical modulation of a commercial reflective parallel-aligned liquid-crystal on silicon (PAL-LCoS) spatial light modulator (SLM) are analyzed. The display is illuminated with different wavelengths and different angles of incidence. Non-negligible Fabry-Perot (FP) effect is observed due to the sandwiched LC layer structure. A simplified physical model that quantitatively accounts for the observed phenomena is proposed. It is shown how the expected pure phase modulation response is substantially modified in the following aspects: 1) a coupled amplitude modulation, 2) a non-linear behavior of the phase modulation, 3) some amount of unmodulated light, and 4) a reduction of the effective phase modulation as the angle of incidence increases. Finally, it is shown that multiple reflections can be useful since the effect of a displayed diffraction grating is doubled on a beam that is reflected twice through the LC layer, thus rendering gratings with doubled phase modulation depth.

  9. Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norwood, D.P.

    1989-01-31

    A standard thin film circuit containing Ta/sub 2/N (100 ohms/square) resistors is fabricated by depositing on a dielectric substrate successive layers of Ta/sub 2/N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standard TFN manufacturing process enables the formation of Ta/sub 2/N + Ti (10 ohms/square) and Ta/sub 2/N + Ti + Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure.

  10. Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors

    DOEpatents

    Norwood, David P.

    1989-01-01

    A standard thin film circuit containing Ta.sub.2 N (100 ohms/square) resirs is fabricated by depositing on a dielectric substrate successive layers of Ta.sub.2 N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standeard TFN manufacturing process enables the formation of Ta.sub.2 N+Ti (10 ohms/square) and Ta.sub.2 N+Ti+Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure.

  11. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    DOEpatents

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  12. Determination of Cenozoic sedimentary structures using integrated geophysical surveys: A case study in the Barkol Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Chen, Chao; Du, Jinsong; Wang, Limin; Lei, Binhua

    2018-01-01

    Thickness estimation of sedimentary basin is a complex geological problem, especially in an orogenic environment. Intense and multiple tectonic movements and climate changes result in inhomogeneity of sedimentary layers and basement configurations, which making sedimentary structure modelling difficult. In this study, integrated geophysical methods, including gravity, magnetotelluric (MT) sounding and electrical resistivity tomography (ERT), were used to estimate basement relief to understand the geological structure and evolution of the eastern Barkol Basin in China. This basin formed with the uplift of the eastern Tianshan during the Cenozoic. Gravity anomaly map revealed the framework of the entire area, and ERT as well as MT sections reflected the geoelectric features of the Cenozoic two-layer distribution. Therefore, gravity data, constrained by MT, ERT and boreholes, were utilized to estimate the spatial distribution of the Quaternary layer. The gravity effect of the Quaternary layer related to the Tertiary layer was later subtracted to obtain the residual anomaly for inversion. For the Tertiary layer, the study area was divided into several parts because of lateral difference of density contrasts. Gravity data were interpreted to determine the density contrast constrained by the MT results. The basement relief can be verified by geological investigation, including the uplift process and regional tectonic setting. The agreement between geophysical survey and prior information from geology emphasizes the importance of integrated geophysical survey as a complementary means of geological studies in this region.

  13. Multiple density layered insulator

    DOEpatents

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  14. Acoustic contributions of a sound absorbing blanket placed in a double panel structure: absorption versus transmission.

    PubMed

    Doutres, Olivier; Atalla, Noureddine

    2010-08-01

    The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound absorption behavior can affect the performance of the double panel structure.

  15. Electromagnetic interference shielding performance of nano-layered Ti3SiC2 ceramics at high-temperatures

    NASA Astrophysics Data System (ADS)

    Li, Sigong; Tan, Yongqiang; Xue, Jiaxiang; Liu, Tong; Zhou, Xiaosong; Zhang, Haibin

    2018-01-01

    The X-band electromagnetic interference (EMI) shielding properties of nano-layered Ti3SiC2 ceramics were evaluated from room temperature up to 800°C in order to explore the feasibility of Ti3SiC2 as efficient high temperature EMI shielding material. It was found that Ti3SiC2 exhibits satisfactory EMI shielding effectiveness (SE) close to 30 dB at room temperature and the EMI SE shows good temperature stability. The remarkable EMI shielding properties of Ti3SiC2 can be mainly attributed to high electrical conductivity, high dielectric loss and more importantly the multiple reflections due to the layered structure.

  16. High efficiency yellow organic light-emitting diodes with optimized barrier layers

    NASA Astrophysics Data System (ADS)

    Mu, Ye; Zhang, Shiming; Yue, Shouzhen; Wu, Qingyang; Zhao, Yi

    2015-12-01

    High efficiency Iridium (III) bis (4-phenylthieno [3,2-c] pyridinato-N,C2‧) acetylacetonate (PO-01) based yellow organic light-emitting devices are fabricated by employing multiple emission layers. The efficiency of the device using 4,4‧,4″-tris(N-carbazolyl) triphenylamine (TCTA) as potential barrier layer (PBL) outperforms those devices based on other PBLs and detailed analysis is carried out to reveal the mechanisms. A forward-viewing current efficiency (CE) of 65.21 cd/A, which corresponds to a maximum total CE of 110.85 cd/A is achieved at 335.8 cd/m2 in the optimized device without any outcoupling enhancement structures.

  17. One-dimensional, two-dimensional, and three-dimensional photonic crystals fabricated with interferometric techniques on ultrafine-grain silver halide emulsions

    NASA Astrophysics Data System (ADS)

    Ulibarrena, Manuel; Carretero, Luis; Acebal, Pablo; Madrigal, Roque; Blaya, Salvador; Fimia, Antonio

    2004-09-01

    Holographic techniques have been used for manufacturing multiple band one-dimensional, two-dimensional, and three-dimensional photonic crystals with different configurations, by multiplexing reflection and transmission setups on a single layer of holographic material. The recording material used for storage is an ultra fine grain silver halide emulsion, with an average grain size around 20 nm. The results are a set of photonic crystals with the one-dimensional, two-dimensional, and three-dimensional index modulation structure consisting of silver halide particles embedded in the gelatin layer of the emulsion. The characterisation of the fabricated photonic crystals by measuring their transmission band structures has been done and compared with theoretical calculations.

  18. The thermodynamic evolution of the hurricane boundary layer during eyewall replacement cycles

    NASA Astrophysics Data System (ADS)

    Williams, Gabriel J.

    2017-12-01

    Eyewall replacement cycles (ERCs) are frequently observed during the lifecycle of mature tropical cyclones. Although the kinematic structure and intensity changes during an ERC have been well-documented, comparatively little research has been done to examine the evolution of the tropical cyclone boundary layer (TCBL) during an ERC. This study will examine how the inner core thermal structure of the TCBL is affected by the presence of multiple concentric eyewalls using a high-resolution moist, hydrostatic, multilayer diagnostic boundary layer model. Within the concentric eyewalls above the cloud base, latent heat release and vertical advection (due to the eyewall updrafts) dominate the heat and moisture budgets, whereas vertical advection (due to subsidence) and vertical diffusion dominate the heat and moisture budgets for the moat region. Furthermore, it is shown that the development of a moat region within the TCBL depends sensitively on the moat width in the overlying atmosphere and the relative strength of the gradient wind field in the overlying atmosphere. These results further indicate that the TCBL contributes to outer eyewall formation through a positive feedback process between the vorticity in the nascent outer eyewall, boundary layer convergence, and boundary layer moist convection.

  19. Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics.

    PubMed

    Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin

    2018-05-21

    The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.

  20. Relating electronic and geometric structure of atomic layer deposited BaTiO 3 to its electrical properties

    DOE PAGES

    Torgersen, Jan; Acharya, Shinjita; Dadlani, Anup Lal; ...

    2016-03-24

    Atomic layer deposition allows the fabrication of BaTiO 3 (BTO) ultrathin films with tunable dielectric properties, which is a promising material for electronic and optical technology. Industrial applicability necessitates a better understanding of their atomic structure and corresponding properties. Through the use of element-specific X-ray absorption near edge structure (XANES) analysis, O K-edge of BTO as a function of cation composition and underlying substrate (RuO 2 and SiO 2) is revealed. By employing density functional theory and multiple scattering simulations, we analyze the distortions in BTO’s bonding environment captured by the XANES spectra. The spectral weight shifts to lower energymore » with increasing Ti content and provides an atomic scale (microscopic) explanation for the increase in leakage current density. Differences in film morphologies in the first few layers near substrate–film interfaces reveal BTO’s homogeneous growth on RuO 2 and its distorted growth on SiO 2. As a result, this work links structural changes to BTO thin-film properties and provides insight necessary for optimizing future BTO and other ternary metal oxide-based thin-film devices.« less

  1. The TiO2 Hierarchical Structure with Nanosheet Spheres for Improved Photoelectric Performance in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Yin, Xin; Guan, Yingli; Song, Lixin; Xie, Xueyao; Du, Pingfan; Xiong, Jie

    2018-04-01

    A bi-layer photoanode is successfully fabricated for dye-sensitized solar cells (DSSCs) composed of P25/TiO2 nanorod (P25/TNR) as the underlayer and TiO2 nanosheet spheres (TNSs) as the light-scattering layer. Notably, the P25-TNR provides multiple functions, including more dye loading, more efficient charge transport and a lower electron recombination rate for the photoanode. Besides, the unique structure of TNS can significantly improve the light-harvesting capacity, boosting the light-harvesting efficiency. Therefore, an enhanced short-circuit current and power conversion efficiency of 18.04 mA cm-2 and 5.99%, respectively, were achieved for the P25/TNR-TNS-based DSSC, which was better than that of the P25-TNS-based (15.17 mA cm-2, 5.36%) and bare TNS-based (11.43 mA cm-2, 4.14%) DSSCs. This indicates that this bi-layer structure effectively combines the advantages of the one-dimensional (1D) nanostructure and three-dimensional (3D) hierarchical structure. In short, this work demonstrates the possibility of fabricating desirable photoanodes for high-performance DSSCs by rational design of nanostructures and effective combination of multi-functional components.

  2. Multiplicity of the 660-km discontinuity beneath the Izu-Bonin area

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-Ze; Yu, Xiang-Wei; Yang, Hui; Zang, Shao-Xian

    2012-05-01

    The relatively simple subducting slab geometry in the Izu-Bonin region provides a valuable opportunity to study the multiplicity of the 660-km discontinuity and the related response of the subducting slab on the discontinuity. Vertical short-period recordings of deep events with simple direct P phases beneath the Izu-Bonin region were retrieved from two seismic networks in the western USA and were used to study the structure of the 660-km discontinuity. After careful selection and pre-processing, 23 events from the networks, forming 32 pairs of event-network records, were processed. Related vespagrams were produced using the N-th root slant stack method for detecting weak down-going SdP phases that were inverted to the related conversion points. From depth histograms and the spatial distribution of the conversion points, there were three clear interfaces at depths of 670, 710 and 730 km. These interfaces were depressed approximately 20-30 km in the northern region. In the southern region, only two layers were identified in the depth histograms, and no obvious layered structure could be observed from the distribution of the conversion points.

  3. Multiple density layered insulator

    DOEpatents

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  4. Fabrication of optical filters using multilayered porous silicon

    NASA Astrophysics Data System (ADS)

    Gaber, Noha; Khalil, Diaa; Shaarawi, Amr

    2011-02-01

    In this work we describe a method for fabricating optical filters using multilayered porous silicon 1D photonic structure. An electrochemical cell is constructed to control the porosity of variable layers in p-type Si wafers. Porous silicon multilayered structures are formed of λ/4 (or multiples) thin films that construct optical interference filters. By changing the anodizing current density of the cell during fabrication, different porosities can be obtained as the optical refractive index is a direct function of the layer porosity. To determine the morphology, the wavelength dependent refractive index n and absorption coefficient α, first, porous silicon free standing mono-layers have been fabricated at different conditions and characterized in the near infrared region (from 1000 to 2500nm). Large difference in refractive index (between 1.6 and 2.6) is obtained. Subsequently, multilayer structures have been fabricated and tested. Their spectral response has been measured and it shows good agreement with numerical simulations. A technique based on inserting etching breaks is adopted to ensure the depth homogeneity. The effect of differing etching/break times on the reproducibility of the filters is studied.

  5. An experimental investigation of the flow physics of high-lift systems

    NASA Technical Reports Server (NTRS)

    Thomas, Flint O.; Nelson, R. C.

    1995-01-01

    This progress report is a series of overviews outlining experiments on the flow physics of confluent boundary layers for high-lift systems. The research objectives include establishing the role of confluent boundary layer flow physics in high-lift production; contrasting confluent boundary layer structures for optimum and non-optimum C(sub L) cases; forming a high quality, detailed archival data base for CFD/modelling; and examining the role of relaminarization and streamline curvature. Goals of this research include completing LDV study of an optimum C(sub L) case; performing detailed LDV confluent boundary layer surveys for multiple non-optimum C(sub L) cases; obtaining skin friction distributions for both optimum and non-optimum C(sub L) cases for scaling purposes; data analysis and inner and outer variable scaling; setting-up and performing relaminarization experiments; and a final report establishing the role of leading edge confluent boundary layer flow physics on high-lift performance.

  6. Method for making devices having intermetallic structures and intermetallic devices made thereby

    DOEpatents

    Paul, Brian Kevin; Wilson, Richard Dean; Alman, David Eli

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  7. Lunar regolith stratigraphy analysis based on the simulation of lunar penetrating radar signals

    NASA Astrophysics Data System (ADS)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2017-11-01

    The thickness of lunar regolith is an important index of evaluating the quantity of lunar resources such as 3He and relative geologic ages. Lunar penetrating radar (LPR) experiment of Chang'E-3 mission provided an opportunity of in situ lunar subsurface structure measurement in the northern mare imbrium area. However, prior work on analyzing LPR data obtained quite different conclusions of lunar regolith structure mainly because of the missing of clear interface reflectors in radar image. In this paper, we utilized finite-difference time-domain (FDTD) method and three models of regolith structures with different rock density, number of layers, shapes of interfaces, and etc. to simulate the LPR signals for the interpretation of radar image. The simulation results demonstrate that the scattering signals caused by numerous buried rocks in the regolith can mask the horizontal reflectors, and the die-out of radar echo does not indicate the bottom of lunar regolith layer and data processing such as migration method could recover some of the subsurface information but also result in fake signals. Based on analysis of simulation results, we conclude that LPR results uncover the subsurface layered structure containing the rework zone with multiple ejecta blankets of small crater, the ejecta blanket of Chang'E-3 crater, and the transition zone and estimate the thickness of the detected layer is about 3.25 m.

  8. Structures with three dimensional nanofences comprising single crystal segments

    DOEpatents

    Goyal, Amit; Wee, Sung-Hun

    2013-08-27

    An article includes a substrate having a surface and a nanofence supported by the surface. The nanofence includes a multiplicity of primary nanorods and branch nanorods, each of the primary nanorods being attached to said substrate, and each of the branch nanorods being attached to a primary nanorods and/or another branch nanorod. The primary and branch nanorods are arranged in a three-dimensional, interconnected, interpenetrating, grid-like network defining interstices within the nanofence. The article further includes an enveloping layer supported by the nanofence, disposed in the interstices, and forming a coating on the primary and branch nanorods. The enveloping layer has a different composition from that of the nanofence and includes a radial p-n single junction solar cell photovoltaic material and/or a radial p-n multiple junction solar cell photovoltaic material.

  9. A mixed formulation for interlaminar stresses in dropped-ply laminates

    NASA Technical Reports Server (NTRS)

    Harrison, Peter N.; Johnson, Eric R.

    1993-01-01

    A structural model is developed for the linear elastic response of structures consisting of multiple layers of varying thickness such as laminated composites containing internal ply drop-offs. The assumption of generalized plane deformation is used to reduce the solution domain to two dimensions while still allowing some out-of-plane deformation. The Hellinger-Reissner variational principle is applied to a layerwise assumed stress distribution with the resulting governing equations solved using finite differences.

  10. Platelet lysate-based pro-angiogenic nanocoatings.

    PubMed

    Oliveira, Sara M; Pirraco, Rogério P; Marques, Alexandra P; Santo, Vítor E; Gomes, Manuela E; Reis, Rui L; Mano, João F

    2016-03-01

    Human platelet lysate (PL) is a cost-effective and human source of autologous multiple and potent pro-angiogenic factors, such as vascular endothelial growth factor A (VEGF A), fibroblast growth factor b (FGF b) and angiopoietin-1. Nanocoatings previously characterized were prepared by layer-by-layer assembling incorporating PL with marine-origin polysaccharides and were shown to activate human umbilical vein endothelial cells (HUVECs). Within 20 h of incubation, the more sulfated coatings induced the HUVECS to the form tube-like structures accompanied by an increased expression of angiogenic-associated genes, such as angiopoietin-1 and VEGF A. This may be a cost-effective approach to modify 2D/3D constructs to instruct angiogenic cells towards the formation of neo-vascularization, driven by multiple and synergistic stimulations from the PL combined with sulfated polysaccharides. The presence, or fast induction, of a stable and mature vasculature inside 3D constructs is crucial for new tissue formation and its viability. This has been one of the major tissue engineering challenges, limiting the dimensions of efficient tissue constructs. Many approaches based on cells, growth factors, 3D bioprinting and channel incorporation have been proposed. Herein, we explored a versatile technique, layer-by-layer assembling in combination with platelet lysate (PL), that is a cost-effective source of many potent pro-angiogenic proteins and growth factors. Results suggest that the combination of PL with sulfated polyelectrolytes might be used to introduce interfaces onto 2D/3D constructs with potential to induce the formation of cell-based tubular structures. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. S-layers at second glance? Altiarchaeal grappling hooks (hami) resemble archaeal S-layer proteins in structure and sequence

    PubMed Central

    Perras, Alexandra K.; Daum, Bertram; Ziegler, Christine; Takahashi, Lynelle K.; Ahmed, Musahid; Wanner, Gerhard; Klingl, Andreas; Leitinger, Gerd; Kolb-Lenz, Dagmar; Gribaldo, Simonetta; Auerbach, Anna; Mora, Maximilian; Probst, Alexander J.; Bellack, Annett; Moissl-Eichinger, Christine

    2015-01-01

    The uncultivated “Candidatus Altiarchaeum hamiconexum” (formerly known as SM1 Euryarchaeon) carries highly specialized nano-grappling hooks (“hami”) on its cell surface. Until now little is known about the major protein forming these structured fibrous cell surface appendages, the genes involved or membrane anchoring of these filaments. These aspects were analyzed in depth in this study using environmental transcriptomics combined with imaging methods. Since a laboratory culture of this archaeon is not yet available, natural biofilm samples with high Ca. A. hamiconexum abundance were used for the entire analyses. The filamentous surface appendages spanned both membranes of the cell, which are composed of glycosyl-archaeol. The hami consisted of multiple copies of the same protein, the corresponding gene of which was identified via metagenome-mapped transcriptome analysis. The hamus subunit proteins, which are likely to self-assemble due to their predicted beta sheet topology, revealed no similiarity to known microbial flagella-, archaella-, fimbriae- or pili-proteins, but a high similarity to known S-layer proteins of the archaeal domain at their N-terminal region (44–47% identity). Our results provide new insights into the structure of the unique hami and their major protein and indicate their divergent evolution with S-layer proteins. PMID:26106369

  12. Nanoscale visualization of electronic properties of AlxGa1-xN/AlyGa1-yN multiple quantum-well heterostructure by spreading resistance microscopy

    NASA Astrophysics Data System (ADS)

    Sviridov, D. E.; Kozlovsky, V. I.; Rong, X.; Chen, G.; Wang, X.; Jmerik, V. N.; Kirilenko, D. A.; Ivanov, S. V.

    2017-01-01

    Cross-sectional spreading resistance microscopy has been used to investigate nanoscale variations in electronic properties of an undoped Al0.75Ga0.25N/Al0.95Ga0.05N multiple quantum well (MQW) heterostructure grown by plasma-assisted molecular beam epitaxy on an AlN/c-sapphire template, prepared by metalorganic vapor phase epitaxy. It is found that a current signal from the MQWs can be detected only at a negative sample bias. Moreover, its value changes periodically from one quantum well (QW) to another. Analysis of the current-voltage characteristics of the contacts of a tip with the structure layers showed that periodic contrast of MQWs is the result of fluctuations of the chemical composition of the QWs and the concentration of electrons accumulated in them. Mathematical simulations indicate that this modulation is associated with the periodic fluctuations of an Al-mole fraction in the barrier layers of the structure due to counter gradients of the intensity of Al and Ga molecular fluxes across the surface of a substrate rotating slowly during growth. The nanoscale fluctuations of the current contrast observed along the QW layers are caused, most likely, by the presence of the areas of lateral carrier localization, which originate during the formation of QWs by sub-monolayer digital alloying technique.

  13. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.

    PubMed

    Lee, Soobum; Youn, Byeng D

    2011-03-01

    This paper presents an advanced design concept for a piezoelectric energy harvesting (EH), referred to as multimodal EH skin. This EH design facilitates the use of multimodal vibration and enhances power harvesting efficiency. The multimodal EH skin is an extension of our previous work, EH skin, which was an innovative design paradigm for a piezoelectric energy harvester: a vibrating skin structure and an additional thin piezoelectric layer in one device. A computational (finite element) model of the multilayered assembly - the vibrating skin structure and piezoelectric layer - is constructed and the optimal topology and/or shape of the piezoelectric layer is found for maximum power generation from multiple vibration modes. A design rationale for the multimodal EH skin was proposed: designing a piezoelectric material distribution and external resistors. In the material design step, the piezoelectric material is segmented by inflection lines from multiple vibration modes of interests to minimize voltage cancellation. The inflection lines are detected using the voltage phase. In the external resistor design step, the resistor values are found for each segment to maximize power output. The presented design concept, which can be applied to any engineering system with multimodal harmonic-vibrating skins, was applied to two case studies: an aircraft skin and a power transformer panel. The excellent performance of multimodal EH skin was demonstrated, showing larger power generation than EH skin without segmentation or unimodal EH skin.

  14. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    DOEpatents

    Li, Xiuling; Huang, Wen

    2016-05-03

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extending in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.

  15. Vertical structure of medium-scale traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Ssessanga, Nicholas; Kim, Yong Ha; Kim, Eunsol

    2015-11-01

    We develop an algorithm of computerized ionospheric tomography (CIT) to infer information on the vertical and horizontal structuring of electron density during nighttime medium-scale traveling ionospheric disturbances (MSTIDs). To facilitate digital CIT we have adopted total electron contents (TEC) from a dense Global Positioning System (GPS) receiver network, GEONET, which contains more than 1000 receivers. A multiplicative algebraic reconstruction technique was utilized with a calibrated IRI-2012 model as an initial solution. The reconstructed F2 peak layer varied in altitude with average peak-to-peak amplitude of ~52 km. In addition, the F2 peak layer anticorrelated with TEC variations. This feature supports a theory in which nighttime MSTID is composed of oscillating electric fields due to conductivity variations. Moreover, reconstructed TEC variations over two stations were reasonably close to variations directly derived from the measured TEC data set. Our tomographic analysis may thus help understand three-dimensional structure of MSTIDs in a quantitative way.

  16. Formation of nocturnal low-level jets and structure of the nocturnal boundary layer in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Klein, P. M.; Bonin, T. A.; Newman, J. F.; Wainwright, C. E.; Blumberg, W. G.; Turner, D. D.; Chilson, P. B.; Wharton, S.

    2014-12-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma in 2012 and 2013. Its main objective was to study turbulent phenomena in the lowest 2-km of the atmosphere using a variety of novel atmospheric profiling techniques including a sodar, multiple Doppler wind lidars (DWL), a Raman lidar and an atmospheric emitted radiance interferometer (AERI). Several instruments from the University of Oklahoma and Lawrence Livermore National Laboratory were deployed to augment the suite of in-situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides for a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. LABLE can be considered unique in that it was designed as a multi-phase, low-cost, and multi-agency collaboration. Graduate students served as principal investigators who took the lead in designing and conducting experiments aimed at examining boundary-layer processes. This presentation provides an overview of the LABLE experiments and a summary of important results. One focus area will be the dynamic and thermodynamic structure of the nocturnal boundary layer and the formation of nocturnal low-level jets. Such low-level jets were frequently observed during both LABLE campaigns and often interacted with mesoscale atmospheric disturbances such as frontal passages. The combination of high-resolution AERI temperature profiles with DWL mean wind and turbulence profiles provided new insights about the structure and evolution of low-level jets.

  17. Misfit layer compounds and ferecrystals: Model systems for thermoelectric nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, Devin R.; Moore, Daniel B.; Bauers, Sage R.

    A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class ofmore » metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe) 1+δ] m(TiSe₂) n family (m, n ≤ 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor.« less

  18. Misfit layer compounds and ferecrystals: Model systems for thermoelectric nanocomposites

    DOE PAGES

    Merrill, Devin R.; Moore, Daniel B.; Bauers, Sage R.; ...

    2015-04-22

    A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class ofmore » metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe) 1+δ] m(TiSe₂) n family (m, n ≤ 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor.« less

  19. Misfit Layer Compounds and Ferecrystals: Model Systems for Thermoelectric Nanocomposites

    PubMed Central

    Merrill, Devin R.; Moore, Daniel B.; Bauers, Sage R.; Falmbigl, Matthias; Johnson, David C.

    2015-01-01

    A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class of metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe)1+δ]m(TiSe2)n family (m, n ≤ 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor. PMID:28788045

  20. Discrete hierarchy of sizes and performances in the exchange-traded fund universe

    NASA Astrophysics Data System (ADS)

    Vandermarliere, B.; Ryckebusch, J.; Schoors, K.; Cauwels, P.; Sornette, D.

    2017-03-01

    Using detailed statistical analyses of the size distribution of a universe of equity exchange-traded funds (ETFs), we discover a discrete hierarchy of sizes, which imprints a log-periodic structure on the probability distribution of ETF sizes that dominates the details of the asymptotic tail. This allows us to propose a classification of the studied universe of ETFs into seven size layers approximately organized according to a multiplicative ratio of 3.5 in their total market capitalization. Introducing a similarity metric generalizing the Herfindhal index, we find that the largest ETFs exhibit a significantly stronger intra-layer and inter-layer similarity compared with the smaller ETFs. Comparing the performance across the seven discerned ETF size layers, we find an inverse size effect, namely large ETFs perform significantly better than the small ones both in 2014 and 2015.

  1. Theoretical model for VITA-educed coherent structures in the wall region of a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Landahl, Marten T.

    1988-01-01

    Experiments on wall-bounded shear flows (channel flows and boundary layers) have indicated that the turbulence in the region close to the wall exhibits a characteristic intermittently formed pattern of coherent structures. For a quantitative study of coherent structures it is necessary to make use of conditional sampling. One particularly successful sampling technique is the Variable Integration Time Averaging technique (VITA) first explored by Blackwelder and Kaplan (1976). In this, an event is assumed to occur when the short time variance exceeds a certain threshold multiple of the mean square signal. The analysis presented removes some assumptions in the earlier models in that the effects of pressure and viscosity are taken into account in an approximation based on the assumption that the near-wall structures are highly elongated in the streamwise direction. The appropriateness of this is suggested by the observations but is also self consistent with the results of the model which show that the streamwise dimension of the structure grows with time, so that the approximation should improve with the age of the structure.

  2. Melanoma segmentation based on deep learning.

    PubMed

    Zhang, Xiaoqing

    2017-12-01

    Malignant melanoma is one of the most deadly forms of skin cancer, which is one of the world's fastest-growing cancers. Early diagnosis and treatment is critical. In this study, a neural network structure is utilized to construct a broad and accurate basis for the diagnosis of skin cancer, thereby reducing screening errors. The technique is able to improve the efficacy for identification of normally indistinguishable lesions (such as pigment spots) versus clinically unknown lesions, and to ultimately improve the diagnostic accuracy. In the field of medical imaging, in general, using neural networks for image segmentation is relatively rare. The existing traditional machine-learning neural network algorithms still cannot completely solve the problem of information loss, nor detect the precise division of the boundary area. We use an improved neural network framework, described herein, to achieve efficacious feature learning, and satisfactory segmentation of melanoma images. The architecture of the network includes multiple convolution layers, dropout layers, softmax layers, multiple filters, and activation functions. The number of data sets can be increased via rotation of the training set. A non-linear activation function (such as ReLU and ELU) is employed to alleviate the problem of gradient disappearance, and RMSprop/Adam are incorporated to optimize the loss algorithm. A batch normalization layer is added between the convolution layer and the activation layer to solve the problem of gradient disappearance and explosion. Experiments, described herein, show that our improved neural network architecture achieves higher accuracy for segmentation of melanoma images as compared with existing processes.

  3. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  4. Method of making an InAsSb/InAsSbP diode lasers

    DOEpatents

    Razeghi, Manijeh

    1997-01-01

    InAsSb/InAsSbP/InAs Double Heterostructures (DH) and Separate Confinement Heterostructure Multiple Quantum Well (SCH-MQW) structures are taught wherein the ability to tune to a specific wavelength within 3 .mu.m to 5 .mu.m is possible by varying the ratio of As:Sb in the active layer.

  5. Changing Paradigm for Supporting Aging Individuals' Health and Well-Being: A Framework for Professional Development

    ERIC Educational Resources Information Center

    Kemeny, Elizabeth; Mabry, J. Beth

    2015-01-01

    This study addresses the transfer of training to quality care practices among leisure services professionals who serve older adults by applying the Social Structure and Personality approach, a social psychology framework that accounts for layers of influence in that process. Multiple demographic and policy changes contribute to a need for a…

  6. Inkjet Printing Based Mono-layered Photonic Crystal Patterning for Anti-counterfeiting Structural Colors.

    PubMed

    Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung

    2016-08-04

    Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique.

  7. Inkjet Printing Based Mono-layered Photonic Crystal Patterning for Anti-counterfeiting Structural Colors

    NASA Astrophysics Data System (ADS)

    Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung

    2016-08-01

    Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique.

  8. Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films

    NASA Astrophysics Data System (ADS)

    Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva

    2017-11-01

    Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.

  9. Theory of the mode stabilization mechanism in concave-micromirror-capped vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Park, Si-Hyun; Park, Yeonsang; Jeon, Heonsu

    2003-08-01

    We have investigated theoretically the transverse mode stabilization mechanism in oxide-confined concave-micromirror-capped vertical-cavity surface-emitting lasers (CMC-VCSELs) as reported by Park et al. [Appl. Phys. Lett. 80, 183 (2002)]. From detailed numerical calculations on a model CMC-VCSEL structure, we found that mode discrimination factors appear to be periodic in the micromirror layer thickness with a periodicity of λ/2. We also found that there are two possible concave micromirror structures for the fundamental transverse mode laser operation. These structures can be grouped according to the thickness of the concave micromirror layer: whether it is an integer or a half-integer multiple of λ/2. The optimal micromirror curvature radius differs accordingly for each case. In an optimally designed CMC-VCSEL model structure, the fundamental transverse mode can be favored as much as 4, 8, and 13 times more strongly than the first, second, and third excited modes, respectively.

  10. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring.

    PubMed

    McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong; Gould, Kathleen L

    2017-09-15

    The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0-80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80-160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160-350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function.

  11. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring

    PubMed Central

    McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong

    2017-01-01

    The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0–80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80–160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160–350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function. PMID:28914606

  12. Ground Layer Plant Species Turnover and Beta Diversity in Southern-European Old-Growth Forests

    PubMed Central

    Sabatini, Francesco Maria; Burrascano, Sabina; Tuomisto, Hanna; Blasi, Carlo

    2014-01-01

    Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests. PMID:24748155

  13. Navigability of multiplex temporal network

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Song, Qiao-Zhen

    2017-01-01

    Real world complex systems have multiple levels of relationships and in many cases, they need to be modeled as multiplex networks where the same nodes can interact with each other in different layers, such as social networks. However, social relationships only appear at prescribed times so the temporal structures of edge activations can also affect the dynamical processes located above them. To consider both factors are simultaneously, we introduce multiplex temporal networks and propose three different walk strategies to investigate the concurrent dynamics of random walks and the temporal structure of multiplex networks. Thus, we derive analytical results for the multiplex centrality and coverage function in multiplex temporal networks. By comparing them with the numerical results, we show how the underlying topology of the layers and the walk strategy affect the efficiency when exploring the networks. In particular, the most interesting result is the emergence of a super-diffusion process, where the time scale of the multiplex is faster than that of both layers acting separately.

  14. Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust belt

    USGS Publications Warehouse

    Graham, Wall B.R.; Girbacea, R.; Mesonjesi, A.; Aydin, A.

    2006-01-01

    The process of fracture and fault formation in carbonates of the Albanides fold-thrust belt has been systematically documented using hierarchical development of structural elements from hand sample, outcrop, and geologic-map scales. The function of fractures and faults in fluid migration was elucidated using calcite cement and bitumen in these structures as a paleoflow indicator. Two prefolding pressure-solution and vein assemblages were identified: an overburden assemblage and a remote tectonic stress assemblage. Sheared layer-parallel pressure-solution surfaces of the overburden assemblage define mechanical layers. Shearing of mechanical layers associated with folding resulted in the formation of a series of folding assemblage fractures at different orientations, depending on the slip direction of individual mechanical layers. Prefolding- and folding-related fracture assemblages together formed fragmentation zones in mechanical layers and are the sites of incipient fault localization. Further deformation along these sites was accommodated by rotation and translation of fragmented rock, which formed breccia and facilitated fault offset across multiple mechanical layers. Strike-slip faults formed by this process are organized in two sets in an apparent conjugate pattern. Calcite cement and bitumen that accumulated along fractures and faults are evidence of localized fluid flow along fault zones. By systematic identification of fractures and faults, their evolution, and their fluid and bitumen contents, along with subsurface core and well-log data, we identify northeast-southwest-trending strike-slip faults and the associated structures as dominant fluid pathways in the Albanides fold-thrust belt. Copyright ?? 2006. The American Association of Petroleum Geologists. All rights reserved.

  15. The Onset of Channelling in a Fluidized Mud Layer

    NASA Astrophysics Data System (ADS)

    Papanicolaou, T.; Tsakiris, A. G.; Billing, B. M.

    2012-12-01

    Fluidization of a soil occurs when the drag force exerted on the soil grains by upwelling water equals the submerged weight of the soil grains, hence reducing the effective (or contact) stress between the soil grains to zero. In nature, fluidization is commonly encountered in localized portions of highly saturated mud layers found in tidal flats, estuaries and lakes, where upward flow is initiated by significant pore water pressure gradients triggered by wave or tidal action. The water propagates through the fluidized mud layer by forming channels (or vents), carrying the fluidized mud to the surface and forming mud volcano structures. The presence of these fluidization channels alters the mud layer structure with implications on its hydraulic and geotechnical properties, such as the hydraulic conductivity. Despite the importance of these channels, the conditions that lead to their formation and their effects on the mud layer structure still remain poorly documented. The present study couples experimental and theoretical methods aimed at quantifying the conditions, under which fluidization of a saturated mud layer is accompanied by the formation of channels, and assessing the effects of channeling on the mud layer structure. Fluidization and channel formation in a mud layer were reproduced in the laboratory using a carefully designed fluidization column attached to a pressurized vessel (plenum). To eliminate any effects of the material, the mud was produced from pure kaolin clay and deionized water. Local porosity measurements along the mud layer prior, during and after fluidization were conducted using an Americium-241 gamma source placed on a fully automated carriage. Different water inflow rates, q, were applied to the base of the mud layer and the plenum pressure was monitored throughout the experiment. These experiments revealed that for high q values, a single vertical channel formed and erupted at the center of the fluidization column. Instead for low q values, the experiments suggested that a channel network formed within the mud layer leading to the eruption of multiple channels on the mud layer surface. The gamma source measurements captured quantitatively the porosity increase as the channel formed. The experiments were complemented with a theoretical analysis using the two-phase, flow mass and momentum governing equations. This analysis aims to establish a relation between the applied pressure, the fluid velocity and the local porosity of mud during the formation of the channels.

  16. A research about characteristics of longitudinal variations of ES layers irregularities based on CHAMP occultation measurements

    NASA Astrophysics Data System (ADS)

    Liao, Sunmin

    2018-04-01

    Based on the data of CHAMP occultation measurements, this paper makes a preliminary analysis of the longitudinal variations of ES irregular structure by using Fourier decomposition and reconstruction technique. It is found that the longitudinal variations of the ES irregular structure show the features of multiple wave-numbers, which is dominated by the wave number 1 to the wave number 5 components, and decrease from the amplitudes of the wave number 6 components. The features of wave number structures are very different in different DIP latitude and different seasons. The number of crests in summer and autumn is mostly 3 or 4 crest structures, while the number of crests in spring achieves 5 at DIP 15°N with small fluctuates, the crests number of winter is the least. In the multiple wave-numbers structure, the wave number 4 component shows a significant dependence on the season, mainly in the summer and autumn, particularly obvious from July to October.

  17. Magnetization manipulation in multiferroic devices.

    NASA Astrophysics Data System (ADS)

    Gajek, Martin; Martin, Lane; Hao Chu, Ying; Huijben, Mark; Barry, Micky; Ramesh, Ramamoorthy

    2008-03-01

    Controlling magnetization by purely electrical means is a a central topic in spintronics. A very recent route towards this goal is to exploit the coupling between multiple ferroic orders which coexist in multiferroic materials. BiFeO3 (BFO) displays antiferromagnetic and ferroelectric orderings at room temperature and can thus be used as an electrically controllable pinning layer for a ferromagnetic electrode. Furthermore BFO remains ferroelectric down to 2nm and can therefore be integrated as a tunnel barrier in MTJ's. We will describe these two architecture schemes and report on our progresses towards the control of magnetization via the multiferroic layer in those structures.

  18. Successful new anti-sloughing drilling fluid application, Yanchang gas field, China

    NASA Astrophysics Data System (ADS)

    He, Peng; Liu, Hanmei; Du, Sen; He, Chenghai

    2017-10-01

    Borehole collapse had always been encountered when drilling the Shiqianfeng and Shihezi formations in Yan Chang gas field. By analyzing the reasons for the collapse can be obtained, "double layer of stone" brittle strong, pore development, water sensitivity and high mineral content filling skeleton particles, water lock effect and stress sensitivity is a potential factor in inducing strong wall collapse. According to the characteristics of the geological structure developed anti-sloughing drilling fluid system "double layer of stone," "complex fluid loss - dual inhibition - materialized block" multiple cooperative mechanism to achieve the purpose of anti-collapse.

  19. Deep kernel learning method for SAR image target recognition

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao

    2017-10-01

    With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.

  20. Device Engineering and Degradation Mechanism Study of All-Phosphorescent White Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Xu, Lisong

    As a possible next-generation solid-state lighting source, white organic light-emitting diodes (WOLEDs) have the advantages in high power efficiency, large area and flat panel form factor applications. Phosphorescent emitters and multiple emitting layer structures are typically used in high efficiency WOLEDs. However due to the complexity of the device structure comprising a stack of multiple layers of organic thin films, ten or more organic materials are usually required, and each of the layers in the stack has to be optimized to produce the desired electrical and optical functions such that collectively a WOLED of the highest possible efficiency can be achieved. Moreover, device degradation mechanisms are still unclear for most OLED systems, especially blue phosphorescent OLEDs. Such challenges require a deep understanding of the device operating principles and materials/device degradation mechanisms. This thesis will focus on achieving high-efficiency and color-stable all-phosphorescent WOLEDs through optimization of the device structures and material compositions. The operating principles and the degradation mechanisms specific to all-phosphorescent WOLED will be studied. First, we investigated a WOLED where a blue emitter was based on a doped mix-host system with the archetypal bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate iridium(III), FIrpic, as the blue dopant. In forming the WOLED, the red and green components were incorporated in a single layer adjacent to the blue layer. The WOLED efficiency and color were optimized through variations of the mixed-host compositions to control the electron-hole recombination zone and the dopant concentrations of the green-red layers to achieve a balanced white emission. Second, a WOLED structure with two separate blue layers and an ultra-thin red and green co-doped layer was studied. Through a systematic investigation of the placement of the co-doped red and green layer between the blue layers and the material compositions of these layers, we were able to achieve high-efficiency WOLEDs with controllable white emission characteristics. We showed that we can use the ultra-thin co-doped layer and two blue emitting layers to manipulate exciton confinement to certain zones and energy transfer pathways between the various hosts and dopants. Third, a blue phosphorescent dopant tris[1-(2,6-diisopropylphenyl)-2-phenyl-1H-imidazole]iridium(III) (Ir(iprpmi)3) with a low ionization potential (HOMO 4.8 eV) and propensity for hole-trapping was studied in WOLEDs. In a bipolar host, 2,6-bis(3-(carbazol-9-yl)phenyl)-pyridine (DCzPPy), Ir(iprpmi)3 was found to trap holes at low concentrations but transport holes at higher concentrations. By adjusting the dopant concentration and thereby the location of the recombination zone, we were able to demonstrate blue and white OLEDs with external quantum efficiencies over 20%. The fabricated WOLEDs shows high color stability over a wide range of luminance. Moreover, the device lifetime has also been improved with Ir(iprpmi)3 as the emitter compared to FIrpic. Last, we analyzed OLED degradation using Laser Desorption Time-Of-Flight Mass Spectrometry (LDI-TOF-MS) technique. By carefully and systematically comparing the LDI-TOF patterns of electrically/optically stressed and controlled (unstressed) OLED devices, we were able to identify some prominent degradation byproducts and trace possible chemical pathways involving specific host and dopant materials.

  1. Matrix formalism of electromagnetic wave propagation through multiple layers in the near-field region: application to the flat panel display.

    PubMed

    Lee, C Y; Lee, D E; Hong, Y K; Shim, J H; Jeong, C K; Joo, J; Zang, D S; Shim, M G; Lee, J J; Cha, J K; Yang, H G

    2003-04-01

    We have developed an electromagnetic (EM) wave propagation theory through a single layer and multiple layers in the near-field and far-field regions, and have constructed a matrix formalism in terms of the boundary conditions of the EM waves. From the shielding efficiency (SE) against EM radiation in the near-field region calculated by using the matrix formalism, we propose that the effect of multiple layers yields enhanced shielding capability compared to a single layer with the same total thickness in conducting layers as the multiple layers. We compare the intensities of an EM wave propagating through glass coated with conducting indium tin oxide (ITO) on one side and on both sides, applying it to the electromagnetic interference (EMI) shielding filter in a flat panel display such as a plasma display panel (PDP). From the measured intensities of EMI noise generated by a PDP loaded with ITO coated glass samples, the two-side coated glass shows a lower intensity of EMI noise compared to the one-side coated glass. The result confirms the enhancement of the SE due to the effect of multiple layers, as expected in the matrix formalism of EM wave propagation in the near-field region. In the far-field region, the two-side coated glass with ITO in multiple layers has a higher SE than the one-side coated glass with ITO, when the total thickness of ITO in both cases is the same.

  2. Distributed structural control using multilayered piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Cudney, Harley H.; Inman, Daniel J.; Oshman, Yaakov

    1990-01-01

    A method of segmenting piezoelectric sensors and actuators is proposed which can preclude the currently experienced cancelation of sensor signals, or the reduction of actuator effectiveness, due to the integration of the property undergoing measurement or control. The segmentation method is demonstrated by a model developed for beam structures, to which multiple layers of piezoelectric materials are attached. A numerical study is undertaken of increasing active and passive damping of a beam using the segmented sensors and actuators over unsegmented sensors and actuators.

  3. Modal analysis of circular Bragg fibers with arbitrary index profiles

    NASA Astrophysics Data System (ADS)

    Horikis, Theodoros P.; Kath, William L.

    2006-12-01

    A finite-difference approach based upon the immersed interface method is used to analyze the mode structure of Bragg fibers with arbitrary index profiles. The method allows general propagation constants and eigenmodes to be calculated to a high degree of accuracy, while computation times are kept to a minimum by exploiting sparse matrix algebra. The method is well suited to handle complicated structures comprised of a large number of thin layers with high-index contrast and simultaneously determines multiple eigenmodes without modification.

  4. The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/ epoxy on low velocity impact response of a composite plate

    NASA Astrophysics Data System (ADS)

    Al-Maharma, A. Y.; Sendur, P.

    2018-05-01

    In this study, we compare the inter-laminar effect of graphene nano-sheets (GNSs) and CNTs on the single and multiple dynamic impact response of E-glass fiber reinforced epoxy composite (GFEP). In the comparisons, raw GFEP composite is used as baseline for quantifying the improvement on the dynamic impact response. For that purpose, finite element based models are developed for GNSs on GFEP, graphene coating on glass fibers, inter-laminar composite of CNTs reinforced polyester at 7.5 vol%, and combinations of all these reinforcements. Comparisons are made on three metrics: (i) total deformation, (ii) the contact force, and (iii) internal energy of the composite plate. The improvement on axial modulus (E1) of GFEP reinforced with one layer of GNS (0.5 wt%) without polyester at lamination sequence of [0]8 is 29.4%, which is very close to the improvement of 31% on storage modulus for multi-layer graphene with 0.5 wt% reinforced E-glass/epoxy composite at room temperature. Using three GNSs (1.5 wt%) reinforced polyester composite as interlaminar layer results in an improvement of 57.1% on E1 of GFEP composite. The simulation results reveal that the interlaminar three GNSs/polyester composite at mid-plane of GFEP laminated composite can significantly improve the dynamic impact resistance of GFEP structure compared to the other aforementioned structural reinforcements. Reinforcing GFEP composite with three layers of GNSs/polyester composite at mid-plane results in an average of 35% improvement on the dynamic impact resistance for healthy and damaged composite plate under low velocity impacts of single and multiple steel projectiles. This model can find application in various areas including structural health monitoring, fire retardant composite, and manufacturing of high strength and lightweight mechanical parts such as gas tank, aircraft wings and wind turbine blades.

  5. Application of Molecular Techniques To Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site▿ †

    PubMed Central

    Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.

    2010-01-01

    Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022

  6. Coating and functionalization of high density ion track structures by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Mättö, Laura; Szilágyi, Imre M.; Laitinen, Mikko; Ritala, Mikko; Leskelä, Markku; Sajavaara, Timo

    2016-10-01

    In this study flexible TiO2 coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO2 films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti(iOPr)4 and water as precursors at 250 °C. The TiO2 films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils.

  7. Mechanical stresses and amorphization of ion-implanted diamond

    NASA Astrophysics Data System (ADS)

    Khmelnitsky, R. A.; Dravin, V. A.; Tal, A. A.; Latushko, M. I.; Khomich, A. A.; Khomich, A. V.; Trushin, A. S.; Alekseev, A. A.; Terentiev, S. A.

    2013-06-01

    Scanning white light interferometry and Raman spectroscopy were used to investigate the mechanical stresses and structural changes in ion-implanted natural diamonds with different impurity content. The uniform distribution of radiation defects in implanted area was obtained by the regime of multiple-energy implantation of keV He+ ions. A modification of Bosia's et al. (Nucl. Instrum. Meth. B 268 (2010) 2991) method for determining the internal stresses and the density variation in an ion-implanted diamond layer was proposed that suggests measuring, in addition to the surface swelling of a diamond plate, the radius of curvature of the plate. It is shown that, under multiple-energy implantation of He+, mechanical stresses in the implanted layer may be as high as 12 GPa. It is shown that radiation damage reaches saturation for the implantation fluence characteristic of amorphization of diamond but is appreciably lower than the graphitization threshold.

  8. Deep learning of support vector machines with class probability output networks.

    PubMed

    Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho

    2015-04-01

    Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Improved CLARAty Functional-Layer/Decision-Layer Interface

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Rabideau, Gregg; Gaines, Daniel; Johnston, Mark; Chouinard, Caroline; Nessnas, Issa; Shu, I-Hsiang

    2008-01-01

    Improved interface software for communication between the CLARAty Decision and Functional layers has been developed. [The Coupled Layer Architecture for Robotics Autonomy (CLARAty) was described in Coupled-Layer Robotics Architecture for Autonomy (NPO-21218), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48. To recapitulate: the CLARAty architecture was developed to improve the modularity of robotic software while tightening coupling between planning/execution and basic control subsystems. Whereas prior robotic software architectures typically contained three layers, the CLARAty contains two layers: a decision layer (DL) and a functional layer (FL).] Types of communication supported by the present software include sending commands from DL modules to FL modules and sending data updates from FL modules to DL modules. The present software supplants prior interface software that had little error-checking capability, supported data parameters in string form only, supported commanding at only one level of the FL, and supported only limited updates of the state of the robot. The present software offers strong error checking, and supports complex data structures and commanding at multiple levels of the FL, and relative to the prior software, offers a much wider spectrum of state-update capabilities.

  10. Structure and mechanical properties of a two-layered material produced by the E-beam surfacing of Ta and Nb on the titanium base after multiple rolling

    NASA Astrophysics Data System (ADS)

    Bataev, V. A.; Golkovski, M. G.; Samoylenko, V. V.; Ruktuev, A. A.; Polyakov, I. A.; Kuksanov, N. K.

    2018-04-01

    The study has been conducted in line with the current approach to investigation of materials obtained by considerably deep surface alloying of the titanium substrate with Ta, Nb, and Zr. The thickness of the resulting alloyed layer was equal to 2 mm. The coating was formed through weld deposition of a powder with the use of a high-voltage electron beam in the air. It has been lately demonstrated that manufactured such a way alloyed layers possess corrosion resistance which is significantly higher than the resistance of titanium substrates. It has already been shown that such two-layered materials are weldable. The study objective is to investigate the feasibility of rolling for necking the sheets with the Ti-Ta-Nb anticorrosion coating with further fourfold decrease in their thickness. The research is also aimed at investigation of the material properties after rolling. Anticorrosion layers were formed both on CP-titanium and on VT14 (Ti-4Al-3Mo-1 V) durable titanium alloy. The results of chemical composition determination, structure examination, X-ray phase analysis and mechanical properties observations (including bending properties of the alloyed layers) are presented in the paper. The combination of welding, rolling, and bending enables the manufacture of corrosion-resistant vessels and process pipes which are made from the developed material and find technological application.

  11. Sharp transition from ripple patterns to a flat surface for ion beam erosion of Si with simultaneous co-deposition of iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, K.; Broetzmann, M.; Hofsaess, H.

    We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30 Degree-Sign incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}) over dot patterns (2-8 Multiplication-Sign 10{sup 15}more » Fe/cm{sup 2}), ripples patterns (8-17 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}), pill bug structures (1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness {approx} 18 nm) to a rather flat surface (rms roughness {approx} 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi{sub 2}. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.« less

  12. A Basin-Wide Examination of the Arctic Ocean's Double-Diffusive Staircase

    NASA Astrophysics Data System (ADS)

    Shibley, N.; Timmermans, M. L.; Carpenter, J. R.; Toole, J. M.

    2016-02-01

    The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure above the Atlantic Water Layer consisting of multiple mixed layers of order 1-m in height separated by sharp interfaces. This double-diffusive staircase structure is characterized across the entire Arctic Ocean through a detailed analysis of Ice-Tethered Profiler measurements acquired between 2004 and 2013. Staircase properties (mixed layer thicknesses and temperature-salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio for 50-m spanning the staircase stratification. It is shown that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (on the Eurasian side) and higher density ratio (on the Canadian side). We find that the diffusive staircase in the Eurasian Basin is characterized by fewer, thinner mixed layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin staircase mixed layers. Using a double-diffusive 4/3 flux law parameterization, the distribution of vertical heat fluxes through the staircase is estimated across the Arctic; it is found that heat fluxes in the Eurasian Basin [O(1) W/m^2] are generally an order of magnitude larger than those in the Canadian Basin [O(0.1) W/m^2].

  13. Direct Imaging of Individual Intrinsic Hydration Layers on Lipid Bilayers at Ångstrom Resolution

    PubMed Central

    Fukuma, Takeshi; Higgins, Michael J.; Jarvis, Suzanne P.

    2007-01-01

    The interactions between water and biological molecules have the potential to influence the structure, dynamics, and function of biological systems, hence the importance of revealing the nature of these interactions in relation to the local biochemical environment. We have investigated the structuring of water at the interface of supported dipalmitoylphosphatidylcholine bilayers in the gel phase in phosphate buffer solution using frequency modulation atomic force microscopy (FM-AFM). We present experimental results supporting the existence of intrinsic (i.e., surface-induced) hydration layers adjacent to the bilayer. The force versus distance curves measured between the bilayer and the AFM tip show oscillatory force profiles with a peak spacing of 0.28 nm, indicative of the existence of up to two hydration layers next to the membrane surface. These oscillatory force profiles reveal the molecular-scale origin of the hydration force that has been observed between two apposing lipid bilayers. Furthermore, FM-AFM imaging at the water/lipid interface visualizes individual hydration layers in three dimensions, with molecular-scale corrugations corresponding to the lipid headgroups. The results demonstrate that the intrinsic hydration layers are stable enough to present multiple energy barriers to approaching nanoscale objects, such as proteins and solvated ions, and are expected to affect membrane permeability and transport. PMID:17325013

  14. Inkjet Deposition of Layer by Layer Assembled Films

    PubMed Central

    Andres, Christine M.; Kotov, Nicholas A.

    2010-01-01

    Layer-by-layer assembly (LBL) can create advanced composites with exceptional properties unavailable by other means, but the laborious deposition process and multiple dipping cycles hamper their utilization in microtechnologies and electronics. Multiple rinse steps provide both structural control and thermodynamic stability to LBL multilayers but they significantly limit their practical applications and contribute significantly to the processing time and waste. Here we demonstrate that by employing inkjet technology one can deliver the necessary quantities of LBL components required for film build-up without excess, eliminating the need for repetitive rinsing steps. This feature differentiates this approach from all other recognized LBL modalities. Using a model system of negatively charged gold nanoparticles and positively charged poly(diallyldimethylammonium) chloride, the material stability, nanoscale control over thickness and particle coverage offered by the inkjet LBL technique are shown to be equal or better than the multilayers made with traditional dipping cycles. The opportunity for fast deposition of complex metallic patterns using a simple inkjet printer was also shown. The additive nature of LBL deposition based on the formation of insoluble nanoparticle-polyelectrolyte complexes of various compositions provides an excellent opportunity for versatile, multi-component, and non-contact patterning for the simple production of stratified patterns that are much needed in advanced devices. PMID:20863114

  15. Ultrafast carrier dynamics in GaN/InGaN multiple quantum wells nanorods

    NASA Astrophysics Data System (ADS)

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Yang, Jianfeng; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2018-01-01

    GaN/InGaN multiple quantum wells (MQW) is a promising material for high-efficiency solid-state lighting. Ultrafast optical pump-probe spectroscopy is an important characterization technique for examining fundamental phenomena in semiconductor nanostructure with sub-picosecond resolution. In this study, ultrafast exciton and charge carrier dynamics in GaN/InGaN MQW planar layer and nanorod are investigated using femtosecond transient absorption (TA) techniques at room temperature. Here nanorods are fabricated by etching the GaN/InGaN MQW planar layers using nanosphere lithography and reactive ion etching. Photoluminescence efficiency of the nanorods have been proved to be much higher than that of the planar layers, but the mechanism of the nanorod structure improvement of PL efficiency is not adequately studied. By comparing the TA profile of the GaN/InGaN MQW planar layers and nanorods, the impact of surface states and nanorods lateral confinement in the ultrafast carrier dynamics of GaN/InGaN MQW is revealed. The nanorod sidewall surface states have a strong influence on the InGaN quantum well carrier dynamics. The ultrafast relaxation processes studied in this GaN/InGaN MQW nanostructure is essential for further optimization of device application.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bartłomiej

    Herein, silicon substrates in alternative orientations from the commonly used Si(111) were used to enable the growth of polar and semipolar GaN-based structures by the metalorganic vapor phase epitaxy method. Specifically, Si(112) and Si(115) substrates were used for the epitaxial growth of nitride multilayer structures, while the same layer schemes were also deposited on Si(111) for comparison purposes. Multiple approaches were studied to examine the influence of the seed layers and the growth process conditions upon the final properties of the GaN/Si(11x) templates. Scanning electron microscope images were acquired to examine the topography of the deposited samples. It was observedmore » that the substrate orientation and the process conditions allow control to produce an isolated GaN block growth or a coalesced layer growth, resulting in inclined c-axis GaN structures under various forms. The angles of the GaN c-axis inclination were determined by x-ray diffraction measurements and compared with the results obtained from the analysis of the atomic force microscope (AFM) images. The AFM image analysis method to determine the structure tilt was found to be a viable method to estimate the c-axis inclination angles of the isolated blocks and the not-fully coalesced layers. The quality of the grown samples was characterized by the photoluminescence method conducted at a wide range of temperatures from 77 to 297 K, and was correlated with the sample degree of coalescence. Using the free-excitation peak positions plotted as a function of temperature, analytical Bose-Einstein model parameters were fitted to obtain further information about the grown structures.« less

  17. Enabling Data-as- a-Service (DaaS) - Biggest Challenge of Geoscience Australia

    NASA Astrophysics Data System (ADS)

    Bastrakova, I.; Kemp, C.; Car, N. J.

    2016-12-01

    Geoscience Australia (GA) is recognised and respected as the national repository and steward of multiple national significance data collections that provides geoscience information, services and capability to the Australian Government, industry and stakeholders. Provision of Data-as-a-Service is both GA's key responsibility and core business. Through the Science First Transformation Program GA is undergoing a significant rethinking of its data architecture, curation and access to support the Digital Science capability for which DaaS forms both a dependency and underpins its implementation. DaaS, being a service, means we can deliver its outputs in multiple ways thus providing users with data on demand in ready-for-consumption forms. We can then to reuse prebuilt data constructions to allow self-serviced integration of data underpinned by dynamic query tools. In GA's context examples of DaaS are the Australian Geoscience Data Cube, the Foundation Spatial Data Framework and data served through several Virtual Laboratories. We have implemented a three-layered architecture for DaaS in order to store and manage the data while honouring the semantics of Scientific Data Models defined by subject matter experts and GA's Enterprise Data Architecture as well as retain that delivery flexibility. The foundation layer of DaaS is Canonical Datasets, which are optimised for a long-term data stewardship and curation. Data is well structured, standardised, described and audited. All data creation and editing happen within this layer. The middle Data Transformation layer assists with transformation of data from Canonical Datasets to data integration layer. It provides mechanisms for multi-format and multi-technology data transformation. The top Data Integration layer is optimised for data access. Data can be easily reused and repurposed; data formats made available are optimised for scientific computing and adjusted for access by multiple applications, tools and libraries. Moving to DaaS enables GA to increase data alertness, generate new capabilities and be prepared for emerging technological challengers.

  18. Combined Inkjet Printing and Infrared Sintering of Silver Nanoparticles using a Swathe-by-Swathe and Layer-by-Layer Approach for 3-Dimensional Structures.

    PubMed

    Vaithilingam, Jayasheelan; Simonelli, Marco; Saleh, Ehab; Senin, Nicola; Wildman, Ricky D; Hague, Richard J M; Leach, Richard K; Tuck, Christopher J

    2017-02-22

    Despite the advancement of additive manufacturing (AM)/3-dimensional (3D) printing, single-step fabrication of multifunctional parts using AM is limited. With the view of enabling multifunctional AM (MFAM), in this study, sintering of metal nanoparticles was performed to obtain conductivity for continuous line inkjet printing of electronics. This was achieved using a bespoke three-dimensional (3D) inkjet-printing machine, JETx, capable of printing a range of materials and utilizing different post processing procedures to print multilayered 3D structures in a single manufacturing step. Multiple layers of silver were printed from an ink containing silver nanoparticles (AgNPs) and infrared sintered using a swathe-by-swathe (SS) and layer-by-layer sintering (LS) regime. The differences in the heat profile for the SS and LS was observed to influence the coalescence of the AgNPs. Void percentage of both SS and LS samples was higher toward the top layer than the bottom layer due to relatively less IR exposure in the top than the bottom. The results depicted a homogeneous microstructure for LS of AgNPs and showed less deformation compared to the SS. Electrical resistivity of the LS tracks (13.6 ± 1 μΩ cm) was lower than the SS tracks (22.5 ± 1 μΩ cm). This study recommends the use of LS method to sinter the AgNPs to obtain a conductive track in 25% less time than SS method for MFAM.

  19. Charge transport model in solid-state avalanche amorphous selenium and defect suppression design

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Miranda, Yesenia; Liu, Hongyu; Zhao, Wei

    2016-01-01

    Avalanche amorphous selenium (a-Se) in a layer of High Gain Avalanche Rushing Photoconductor (HARP) is being investigated for its use in large area medical imagers. Avalanche multiplication of photogenerated charge requires electric fields greater than 70 V μm-1. For a-Se to withstand this high electric field, blocking layers are used to prevent the injection of charge carriers from the electrodes. Blocking layers must have a high injection barrier and deep trapping states to reduce the electric field at the interface. In the presence of a defect in the blocking layer, a distributed resistive layer (DRL) must be included into the structure to build up space charge and reduce the electric field in a-Se and the defect. A numerical charge transport model has been developed to optimize the properties of blocking layers used in various HARP structures. The model shows the incorporation of a DRL functionality into the p-layer can reduce dark current at a point defect by two orders of magnitude by reducing the field in a-Se to the avalanche threshold. Hole mobility in a DRL of ˜10-8 cm2 V-1 s-1 at 100 V μm-1 as demonstrated by the model can be achieved experimentally by varying the hole mobility of p-type organic or inorganic semiconductors through doping, e.g., using Poly(9-vinylcarbozole) doped with 1%-3% (by weight) of poly(3-hexylthiopene).

  20. Embedded Multimaterial Extrusion Bioprinting.

    PubMed

    Rocca, Marco; Fragasso, Alessio; Liu, Wanjun; Heinrich, Marcel A; Zhang, Yu Shrike

    2018-04-01

    Embedded extrusion bioprinting allows for the generation of complex structures that otherwise cannot be achieved with conventional layer-by-layer deposition from the bottom, by overcoming the limits imposed by gravitational force. By taking advantage of a hydrogel bath, serving as a sacrificial printing environment, it is feasible to extrude a bioink in freeform until the entire structure is deposited and crosslinked. The bioprinted structure can be subsequently released from the supporting hydrogel and used for further applications. Combining this advanced three-dimensional (3D) bioprinting technique with a multimaterial extrusion printhead setup enables the fabrication of complex volumetric structures built from multiple bioinks. The work described in this paper focuses on the optimization of the experimental setup and proposes a workflow to automate the bioprinting process, resulting in a fast and efficient conversion of a virtual 3D model into a physical, extruded structure in freeform using the multimaterial embedded bioprinting system. It is anticipated that further development of this technology will likely lead to widespread applications in areas such as tissue engineering, pharmaceutical testing, and organs-on-chips.

  1. Scalable Inkjet-Based Structural Color Printing by Molding Transparent Gratings on Multilayer Nanostructured Surfaces.

    PubMed

    Jiang, Hao; Kaminska, Bozena

    2018-04-24

    To enable customized manufacturing of structural colors for commercial applications, up-scalable, low-cost, rapid, and versatile printing techniques are highly demanded. In this paper, we introduce a viable strategy for scaling up production of custom-input images by patterning individual structural colors on separate layers, which are then vertically stacked and recombined into full-color images. By applying this strategy on molded-ink-on-nanostructured-surface printing, we present an industry-applicable inkjet structural color printing technique termed multilayer molded-ink-on-nanostructured-surface (M-MIONS) printing, in which structural color pixels are molded on multiple layers of nanostructured surfaces. Transparent colorless titanium dioxide nanoparticles were inkjet-printed onto three separate transparent polymer substrates, and each substrate surface has one specific subwavelength grating pattern for molding the deposited nanoparticles into structural color pixels of red, green, or blue primary color. After index-matching lamination, the three layers were vertically stacked and bonded to display a color image. Each primary color can be printed into a range of different shades controlled through a half-tone process, and full colors were achieved by mixing primary colors from three layers. In our experiments, an image size as big as 10 cm by 10 cm was effortlessly achieved, and even larger images can potentially be printed on recombined grating surfaces. In one application example, the M-MIONS technique was used for printing customizable transparent color optical variable devices for protecting personalized security documents. In another example, a transparent diffractive color image printed with the M-MIONS technique was pasted onto a transparent panel for overlaying colorful information onto one's view of reality.

  2. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures

    DOE PAGES

    Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan; ...

    2018-05-03

    Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less

  3. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan

    Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less

  4. Photonic Bandgaps in Photonic Molecules

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This talk will focus on photonic bandgaps that arise due to nearly free photon and tight-binding effects in coupled microparticle and ring-resonator systems. The Mie formulation for homogeneous spheres is generalized to handle core/shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multi-layered structures to be treated as photonic bandgap (PBG) materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands arising from nearly free photon effects are easily observed in the backscattering, asymmetry parameter, and albedo for periodic quarter-wave concentric layers, though are not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, enhancing the ratio of backscattering to forward scattering inside the bandgap, in direct analogy with planar quarter-wave multilayers. PBGs arising from tight-binding may also be observed when the layers (or rings) are designed such that the coupling between them is weak. We demonstrate that for a structure consisting of N coupled micro-resonators, the morphology dependent resonances split into N higher-Q modes, in direct analogy with other types of oscillators, and that this splitting ultimately results in PBGs which can lead to enhanced nonlinear optical effects.

  5. Method of making an InAsSb/InAsSbP diode lasers

    DOEpatents

    Razeghi, M.

    1997-08-19

    InAsSb/InAsSbP/InAs Double Heterostructures (DH) and Separate Confinement Heterostructure Multiple Quantum Well (SCH-MQW) structures are taught wherein the ability to tune to a specific wavelength within 3 {micro}m to 5 {micro}m is possible by varying the ratio of As:Sb in the active layer. 9 figs.

  6. Understanding the Twists and Turns of Academic Deanship: A Phenomenology of Filipino Medical Technology Deans' Struggles as Organizational Managers

    ERIC Educational Resources Information Center

    de Guzman, Allan B.; Hapan, Ma. Frieda Z.

    2014-01-01

    Capitalizing on the power of qualitative approach in drawing out the multiple layers of meaning entrenched in subjective realities, this phenomenological inquiry described the lived experiences of 12 Filipino medical technology deans, as they face their struggles in managing their organization. An in-depth, semi-structured one-on-one interview…

  7. Training-Dependent Associative Learning Induced Neocortical Structural Plasticity: A Trace Eyeblink Conditioning Analysis

    PubMed Central

    Chau, Lily S.; Prakapenka, Alesia V.; Zendeli, Liridon; Davis, Ashley S.; Galvez, Roberto

    2014-01-01

    Studies utilizing general learning and memory tasks have suggested the importance of neocortical structural plasticity for memory consolidation. However, these learning tasks typically result in learning of multiple different tasks over several days of training, making it difficult to determine the synaptic time course mediating each learning event. The current study used trace-eyeblink conditioning to determine the time course for neocortical spine modification during learning. With eyeblink conditioning, subjects are presented with a neutral, conditioned stimulus (CS) paired with a salient, unconditioned stimulus (US) to elicit an unconditioned response (UR). With multiple CS-US pairings, subjects learn to associate the CS with the US and exhibit a conditioned response (CR) when presented with the CS. Trace conditioning is when there is a stimulus free interval between the CS and the US. Utilizing trace-eyeblink conditioning with whisker stimulation as the CS (whisker-trace-eyeblink: WTEB), previous findings have shown that primary somatosensory (barrel) cortex is required for both acquisition and retention of the trace-association. Additionally, prior findings demonstrated that WTEB acquisition results in an expansion of the cytochrome oxidase whisker representation and synaptic modification in layer IV of barrel cortex. To further explore these findings and determine the time course for neocortical learning-induced spine modification, the present study utilized WTEB conditioning to examine Golgi-Cox stained neurons in layer IV of barrel cortex. Findings from this study demonstrated a training-dependent spine proliferation in layer IV of barrel cortex during trace associative learning. Furthermore, findings from this study showing that filopodia-like spines exhibited a similar pattern to the overall spine density further suggests that reorganization of synaptic contacts set the foundation for learning-induced neocortical modifications through the different neocortical layers. PMID:24760074

  8. Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer.

    PubMed

    Du, J H; Jin, H; Zhang, Z K; Zhang, D D; Jia, S; Ma, L P; Ren, W C; Cheng, H M; Burn, P L

    2017-01-07

    The large surface roughness, low work function and high cost of transparent electrodes using multilayer graphene films can limit their application in organic photovoltaic (OPV) cells. Here, we develop single layer graphene (SLG) films as transparent anodes for OPV cells that contain light-absorbing layers comprised of the evaporable molecular organic semiconductor materials, zinc phthalocyanine (ZnPc)/fullerene (C60), as well as a molybdenum oxide (MoO x ) interfacial layer. In addition to an increase in the optical transmittance, the SLG anodes had a significant decrease in surface roughness compared to two and four layer graphene (TLG and FLG) anodes fabricated by multiple transfer and stacking of SLGs. Importantly, the introduction of a MoO x interfacial layer not only reduced the energy barrier between the graphene anode and the active layer, but also decreased the resistance of the SLG by nearly ten times. The OPV cells with the structure of polyethylene terephthalate/SLG/MoO x /CuI/ZnPc/C60/bathocuproine/Al were flexible, and had a power conversion efficiency of up to 0.84%, which was only 17.6% lower than the devices with an equivalent structure but prepared on commercial indium tin oxide anodes. Furthermore, the devices with the SLG anode were 50% and 86.7% higher in efficiency than the cells with the TLG and FLG anodes. These results show the potential of SLG electrodes for flexible and wearable OPV cells as well as other organic optoelectronic devices.

  9. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  10. Investigation of sacrificial layer and building block for layered nanofabrication (LNF)

    NASA Astrophysics Data System (ADS)

    Shih, Ting-Yu

    Layered Nanoscale Fabrication (LNF) is a "bottom-up" procedure that uses multiple layers to build 3-dimensional nanoscale structures. Here, in this dissertation, several candidates for sacrificial layers were explored, The thermal stability of gold nanoparticles and simple patterns are also reported. In order to obtain information on layer thickness and film quality; the samples were characterized using atomic force microscopy (AFM) and ellipsometry. Octadecyltrichlorosilane (OTS) was first investigated for use as a sacrificial layer and we studied filth growth by targeted self-replication of silane multilayers with and without the presence of thiolated gold nanoparticles on silicon oxide substrates. The particles adhered to the substrate during layer grafting. The film grew selectively on the substrate, without covering the particles. AFM was used to investigate the growth mechanism and the process of embedding the nanoparticles. OTS multilayer films up to 9 layers were grown in a linear, bilayer-by bilayer mode, free of islands and defects. We also report on studies of monolayer and multilayer formation of Methyl-11-dimethylmonochlorosilyl-undecanoate films. Flat multilayers up to 3-layers thick were grown. AFM was used to measure the height of an observable "edge" of the multilayer film and this provides and independent determination of the MOSUD layer height of 1.5 nm: However, the particles detached from the surface when we attempted to grow multilayer. One strategy of linking the particles to form 2D arrays, thermal activation in ambient air, was investigated. The morphological properties of flaked nanoparticles and structures on silicon oxide substrates before and after heating were characterized by using AFM. For widely separated 5 nm gold nanoparticles height decreased over 50% at 600 °C. Further heating to 630 °C caused most particles to completely disappear, with small amount of particle residue left on the surface. Particles positioned near to other particles first formed a neck-like structure at 570 °C and then deformed into one wide particle with tail-shape residue at 650 °C. Clusters of Au nanoparticles rearranged and became one large collide with particles residues left on the surface at 630 °C.

  11. Thermomechanical behavior of mica layers with lenticular fissures

    NASA Astrophysics Data System (ADS)

    Yang, Michael Xinyi

    The thermomechanical behavior of natural phlogopite mica specimens from seven different origins is characterized. An initial heat treatment, to a temperature between 300°C and 400°C, is found to form fissures that stabilize in the material. Following the initial heat treatment, all the phlogopite specimens, regardless of their origin and polytype, exhibit the extraordinarily large thermal expansion (intumescence), more than 200% at 600°C, in the direction perpendicular to the basal planes. This phenomenon is strictly reproducible when tested under a range of thermal conditions including thermal shock, multiple thermal fatigue cycles, varying heating or cooling rates and isothermal heating over an extensive period of time at different temperatures up to 585°C. The hysteresis, associated with the thermal cycle, is increased when the specimen is heated or cooled at a faster rate. The maximum coefficient of linear thermal expansion, approximately 10 -2°C-1, is observed over the temperature range 100--120°C. This is due to the non-structural water, entrapped within the layer structure, which undergoes a phase transition and causes the mica layers to expand abruptly. A model of lenticular fissures is developed based on thin-plate mechanics and thermodynamics assumptions. The state of a lenticular fissure with water vapor molecules is determined to correlate the experimental parameters with the material properties. The average density of water vapor molecules within a lenticular fissure is calculated to be ˜1025 m 3 for the temperature interval between 100°C and 275°C. The concentration of non-structure water, based on the model calculation, is less than 0.1% by weight. Acoustic emission (AE) signals have been reported by Pranevicius et al. (1995) to correspond to the microstructure changes as the internal lenticular fissures develop in phlogopite. This technique has also been proven feasible to characterize the thermomechanical behavior of other layer structures (Pranevicius 1995). Other layer structures are reviewed to determine their potential reversible thermomechanical properties. When phlogopite is used as a model specimen to relate microstructure to intumescence, two criteria are established for selection of the layer structures of potential intumescence. The first is the need for flexible and elastic layers to withstand the strain imposed by large lateral expansion. The second is the requirement of a high degree for intercalation. Possible candidates that fit these two criteria are identified. Finally, a few potential applications of layer structures of intumescence are discussed, and future research in this area is proposed. (Abstract shortened by UMI.)

  12. Tropospheric dry layers in the tropical western Pacific: comparisons of GPS radio occultation with multiple data sets

    NASA Astrophysics Data System (ADS)

    Rieckh, Therese; Anthes, Richard; Randel, William; Ho, Shu-Peng; Foelsche, Ulrich

    2017-03-01

    We use GPS radio occultation (RO) data to investigate the structure and temporal behavior of extremely dry, high-ozone tropospheric air in the tropical western Pacific during the 6-week period of the CONTRAST (CONvective TRansport of Active Species in the Tropics) experiment (January and February 2014). Our analyses are aimed at testing whether the RO method is capable of detecting these extremely dry layers and evaluating comparisons with in situ measurements, satellite observations, and model analyses. We use multiple data sources as comparisons, including CONTRAST research aircraft profiles, radiosonde profiles, AIRS (Atmospheric Infrared Sounder) satellite retrievals, and profiles extracted from the ERA (ERA-Interim reanalysis) and the GFS (US National Weather Service Global Forecast System) analyses, as well as MTSAT-2 satellite images. The independent and complementary radiosonde, aircraft, and RO data provide high vertical resolution observations of the dry layers. However, they all have limitations. The coverage of the radiosonde data is limited by having only a single station in this oceanic region; the aircraft data are limited in their temporal and spatial coverage; and the RO data are limited in their number and horizontal resolution over this period. However, nearby observations from the three types of data are highly consistent with each other and with the lower-vertical-resolution AIRS profiles. They are also consistent with the ERA and GFS data. We show that the RO data, used here for the first time to study this phenomenon, contribute significant information on the water vapor content and are capable of detecting layers in the tropics and subtropics with extremely low humidity (less than 10 %), independent of the retrieval used to extract moisture information. Our results also verify the quality of the ERA and GFS data sets, giving confidence to the reanalyses and their use in diagnosing the full four-dimensional structure of the dry layers.

  13. Localized rotating convection with no-slip boundary conditions

    NASA Astrophysics Data System (ADS)

    Beaume, Cédric; Kao, Hsien-Ching; Knobloch, Edgar; Bergeon, Alain

    2013-12-01

    Localized patches of stationary convection embedded in a background conduction state are called convectons. Multiple states of this type have recently been found in two-dimensional Boussinesq convection in a horizontal fluid layer with stress-free boundary conditions at top and bottom, and rotating about the vertical. The convectons differ in their lengths and in the strength of the self-generated shear within which they are embedded, and exhibit slanted snaking. We use homotopic continuation of the boundary conditions to show that similar structures exist in the presence of no-slip boundary conditions at the top and bottom of the layer and show that such structures exhibit standard snaking. The homotopic continuation allows us to study the transformation from slanted snaking characteristic of systems with a conserved quantity, here the zonal momentum, to standard snaking characteristic of systems with no conserved quantity.

  14. Parallelization of the Flow Field Dependent Variation Scheme for Solving the Triple Shock/Boundary Layer Interaction Problem

    NASA Technical Reports Server (NTRS)

    Schunk, Richard Gregory; Chung, T. J.

    2001-01-01

    A parallelized version of the Flowfield Dependent Variation (FDV) Method is developed to analyze a problem of current research interest, the flowfield resulting from a triple shock/boundary layer interaction. Such flowfields are often encountered in the inlets of high speed air-breathing vehicles including the NASA Hyper-X research vehicle. In order to resolve the complex shock structure and to provide adequate resolution for boundary layer computations of the convective heat transfer from surfaces inside the inlet, models containing over 500,000 nodes are needed. Efficient parallelization of the computation is essential to achieving results in a timely manner. Results from a parallelization scheme, based upon multi-threading, as implemented on multiple processor supercomputers and workstations is presented.

  15. Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yao; Liang, Meng; Fu, Jiajia

    2015-03-15

    In this work, novel double Electron Blocking Layers for InGaN/GaN multiple quantum wells light-emitting diodes were proposed to mitigate the efficiency droop at high current density. The band diagram and carriers distributions were investigated numerically. The results indicate that due to a newly formed holes stack in the p-GaN near the active region, the hole injection has been improved and an uniform carriers distribution can be achieved. As a result, in our new structure with double Electron Blocking Layers, the efficiency droop has been reduced to 15.5 % in comparison with 57.3 % for the LED with AlGaN EBL atmore » the current density of 100 A/cm{sup 2}.« less

  16. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks

    PubMed Central

    Jang, Hojin; Plis, Sergey M.; Calhoun, Vince D.; Lee, Jong-Hwan

    2016-01-01

    Feedforward deep neural networks (DNN), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean ± standard deviation; %) of 6.9 (± 3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4 ± 4.6) and the two-layer network (7.4 ± 4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. PMID:27079534

  17. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.

    PubMed

    Jang, Hojin; Plis, Sergey M; Calhoun, Vince D; Lee, Jong-Hwan

    2017-01-15

    Feedforward deep neural networks (DNNs), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean±standard deviation; %) of 6.9 (±3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4±4.6) and the two-layer network (7.4±4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers

    PubMed Central

    Gattás-Asfura, Kerim M.; Stabler, Cherie L.

    2013-01-01

    The encapsulation of viable tissues via layer-by-layer polymer assembly provides a versatile platform for cell surface engineering, with nanoscale control over capsule properties. Herein, we report the development of a hyperbranched polymer-based, ultrathin capsule architecture expressing bioorthogonal functionality and tailored physiochemical properties. Random carbodiimide-based condensation of 3,5-dicarboxyphenyl glycineamide on alginate yielded a highly branched polysaccharide with multiple, spatially restricted, and readily functionalizable terminal carboxylate moieties. Poly(ethylene glycol) (PEG) was utilized to link azido end groups to the structured alginate. Together with phosphine functionalized poly(amido amine) (PAMAM) dendrimer, nanoscale layer-by-layer coatings, covalently stabilized via Staudinger ligation, were assembled onto solid surfaces and pancreatic islets. The effects of electrostatic and/or bioorthogonal covalent interlayer interactions on the resulting coating efficiency and stability, as well as pancreatic islet viability and function, were studied. These hyperbranched polymers provide a flexible platform for the formation of covalently stabilized ultrathin coatings on viable cells and tissues. In addition, the hyperbranched nature of the polymers presents a highly functionalized surface capable of bioorthogonal conjugation of additional bioactive or labeling motifs. PMID:24063764

  19. Optimal bit allocation for hybrid scalable/multiple-description video transmission over wireless channels

    NASA Astrophysics Data System (ADS)

    Jubran, Mohammad K.; Bansal, Manu; Kondi, Lisimachos P.

    2006-01-01

    In this paper, we consider the problem of optimal bit allocation for wireless video transmission over fading channels. We use a newly developed hybrid scalable/multiple-description codec that combines the functionality of both scalable and multiple-description codecs. It produces a base layer and multiple-description enhancement layers. Any of the enhancement layers can be decoded (in a non-hierarchical manner) with the base layer to improve the reconstructed video quality. Two different channel coding schemes (Rate-Compatible Punctured Convolutional (RCPC)/Cyclic Redundancy Check (CRC) coding and, product code Reed Solomon (RS)+RCPC/CRC coding) are used for unequal error protection of the layered bitstream. Optimal allocation of the bitrate between source and channel coding is performed for discrete sets of source coding rates and channel coding rates. Experimental results are presented for a wide range of channel conditions. Also, comparisons with classical scalable coding show the effectiveness of using hybrid scalable/multiple-description coding for wireless transmission.

  20. Ternary liquid mixtures control the multiplicity, shape and internal structure of emulsion droplets

    NASA Astrophysics Data System (ADS)

    Haase, Martin F.; Brujic, Jasna

    2014-03-01

    It is important to control the shape, internal structure and stability of emulsion droplets for drug delivery, biochemical assays, and the design of materials with novel physical properties. Successful methods involve the mechanical manipulation of the flow of oil in water using complex microfluidic devices to make multiple emulsions with a sequential introduction of specific reactants. Instead, here we show how the thermodynamics of immiscible liquid mixtures tailor emulsions using a single dripping instability. For example, the initial composition and choice of surfactant govern the multiplicity of concentric alternating oil and water layers inside the droplets. Stabilizing ternary droplets using nanoparticles gives rise to a plethora of shapes whose geometry is defined by the deformability of the shell and the flow rate. Another option is to incorporate lipids to the multiple emulsion droplet, which form vesicles upon expulsion of the inner water droplets. Depending on the number of initial water droplets, these vesicles eventually form complex hollow topologies, which can be used as junctions or scaffolds for the self-assembly of colloidal particles in the future.

  1. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  2. Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norwood, D P

    1989-01-31

    A standard thin film circuit containing Ta/sub 2/N (100 ohms/square) resistors is fabricated by depositing on a dielectric substrate successive layers of Ta/sub 2/N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standard TFN (thin film network) manufacturing process enables the formation of Ta/sub 2/N + Ti (10 ohms/square) and Ta/sub 2/N + Ti + Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure. All three types of resistors are temperature-stable and laser-trimmable for precise definition of resistance values.

  3. A study of electrically active traps in AlGaN/GaN high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth

    2013-10-01

    We have studied electron conduction mechanisms and the associated roles of the electrically active traps in the AlGaN layer of an AlGaN/GaN high electron mobility transistor structure. By fitting the temperature dependent I-V (Current-Voltage) curves to the Frenkel-Poole theory, we have identified two discrete trap energy levels. Multiple traces of I-V measurements and constant-current injection experiment all confirm that the main role of the traps in the AlGaN layer is to enhance the current flowing through the AlGaN barrier by trap-assisted electron conduction without causing electron trapping.

  4. Transition from single to multiple double layers. [of plasma

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.

    1982-01-01

    Laboratory results are presented to define parameters which allow the boundary conditions to control the characteristics of double layers of plasma. It is shown that multiple double layers arise when the ratio of Debye length to system length decreases, a result which is in line with boundary layer theory. The significance of inclusion of the system length is noted to render BGK treatments of double layers, wherein the length is neglected, invalid.

  5. Dual wing, swept forward swept rearward wing, and single wing design optimization for high performance business airplanes

    NASA Technical Reports Server (NTRS)

    Rhodes, M. D.; Selberg, B. P.

    1982-01-01

    An investigation was performed to compare closely coupled dual wing and swept forward swept rearward wing aircraft to corresponding single wing 'baseline' designs to judge the advantages offered by aircraft designed with multiple wing systems. The optimum multiple wing geometry used on the multiple wing designs was determined in an analytic study which investigated the two- and three-dimensional aerodynamic behavior of a wide range of multiple wing configurations in order to find the wing geometry that created the minimum cruise drag. This analysis used a multi-element inviscid vortex panel program coupled to a momentum integral boundary layer analysis program to account for the aerodynamic coupling between the wings and to provide the two-dimensional aerodynamic data, which was then used as input for a three-dimensional vortex lattice program, which calculated the three-dimensional aerodynamic data. The low drag of the multiple wing configurations is due to a combination of two dimensional drag reductions, tailoring the three dimensional drag for the swept forward swept rearward design, and the structural advantages of the two wings that because of the structural connections permitted higher aspect ratios.

  6. Metal oxide nanorod arrays on monolithic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can includemore » a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.« less

  7. Release of MEMS devices with hard-baked polyimide sacrificial layer

    NASA Astrophysics Data System (ADS)

    Boroumand Azad, Javaneh; Rezadad, Imen; Nath, Janardan; Smith, Evan; Peale, Robert E.

    2013-03-01

    Removal of polyimides used as sacrificial layer in fabricating MEMS devices can be challenging after hardbaking, which may easily result by the end of multiple-step processing. We consider the specific commercial co-developable polyimide ProLift 100 (Brewer Science). Excessive heat hardens this material, so that during wet release in TMAH based solvents, intact sheets break free from the substrate, move around in the solution, and break delicate structures. On the other hand, dry reactive-ion etching of hard-baked ProLift is so slow, that MEMS structures are damaged from undesirably-prolonged physical bombardment by plasma ions. We found that blanket exposure to ultraviolet light allows rapid dry etch of the ProLift surrounding the desired structures without damaging them. Subsequent removal of ProLift from under the devices can then be safely performed using wet or dry etch. We demonstrate the approach on PECVD-grown silicon-oxide cantilevers of 100 micron × 100 micron area supported 2 microns above the substrate by ~100-micron-long 8-micron-wide oxide arms.

  8. Observed microphysical structure of nimbostratus in northeast cold vortex over China

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Lei, Hengchi

    2014-06-01

    Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a northeast cold vortex in Jilin Province over China on 20 June 2005 to study cloud structure and ice particle spectra. The microphysical structure of the nimbostratus was elucidated by King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2D images provide detailed information on crystal habits. A thick layer of supercooled cloud is observed and Hallett-Mossop ice multiplication process is used to explain very high ice particle concentrations in the temperature region between - 3 °C and - 6 °C. From near cloud top to melting layer, ice crystals shape in the form of columns, needles, aggregations and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Ice particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (N0) and slope (λ) parameters of an exponential size distribution was well characterized by a power law.

  9. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiuling; Huang, Wen

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extendingmore » in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.« less

  10. On Structural Design of a Mobile Lunar Habitat With Multi- Layered Environmental Shielding

    NASA Technical Reports Server (NTRS)

    Pruitt, J. R. (Technical Monitor); Rais-Rohani, M.

    2005-01-01

    This report presents an overview of a Mobile Lunar Habitat (MLH) structural design consisting of advanced composite materials. The habitat design is derived from the cylindrical-shaped U.S. Lab module aboard the International Space Station (ISS) and includes two lateral ports and a hatch at each end that geometrically match those of the ISS Nodes. Thus, several MLH units can be connected together to form a larger lunar outpost of various architectures. For enhanced mobility over the lunar terrain, the MLH uses six articulated insect-like robotic, retractable legs enabling the habitat to .t aboard a launch vehicle. The carbon-composite shell is sandwiched between two layers of hydrogen-rich polyethylene for enhanced radiation shielding. The pressure vessel is covered by modular double-wall panels for meteoroid impact shielding supported by externally mounted stiffeners. The habitat s structure is an assembly of multiple parts manufactured separately and bonded together. Based on the geometric complexity of a part and its material system, an appropriate fabrication process is proposed.

  11. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy.

    PubMed

    Yuan, Bo; Wang, Xinhua; Tang, Chuyang; Li, Xiufen; Yu, Guanghui

    2015-05-15

    Since the concept of the osmotic membrane bioreactor (OMBR) was introduced in 2008, it has attracted growing interests for its potential applications in wastewater treatment and reclamation; however, the fouling mechanisms of forward osmosis (FO) membrane especially the development of biofouling layer in the OMBR are not yet clear. Here, the fouled FO membranes were obtained from the OMBRs on days 3, 8 and 25 in sequence, and then the structure and growing rule of the biofouling layer formed on the FO membrane samples were in-situ characterized by multiple fluorescence labeling and confocal laser scanning microscopy (CLSM). CLSM images indicated that the variations in abundance and distribution of polysaccharides, proteins and microorganisms in the biofouling layer during the operation of OMBRs were significantly different. Before the 8th day, their biovolume dramatically increased. Subsequently, the biovolumes of β-d-glucopyranose polysaccharides and proteins continued increasing and leveled off after 8 days, respectively, while the biovolumes of α-d-glucopyranose polysaccharides and microorganisms decreased. Extracellular polymeric substances (EPS) played a significant role in the formation and growth of biofouling layer, while the microorganisms were seldom detected on the upper fouling layer after 3 days. Based on the results obtained in this study, the growth of biofouling layer on the FO membrane surface in the OMBR could be divided into three stages. Initially, EPS was firstly deposited on the FO membrane surface, and then microorganisms associated with EPS located in the initial depositing layer to form clusters. After that, the dramatic increase of the clusters of EPS and microorganisms resulted in the quick growth of biofouling layer during the flux decline of the OMBR. However, when the water flux became stable in the OMBR, some microorganisms and EPS would be detached from the FO membrane surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. What Does a Multilayer Canopy Model Tell Us About Our Current Understanding of Snow-Canopy Unloading?

    NASA Astrophysics Data System (ADS)

    McGowan, L. E.; Paw U, K. T.; Dahlke, H. E.

    2017-12-01

    In the Western U.S., future water resources depend on the forested mountain snowpack. The variations in and estimates of forest mountain snow volume are vital to projecting annual water availability; yet, snow forest processes are not fully known. Most snow models calculate snow-canopy unloading based on time, temperature, Leaf Area Index (LAI), and/or wind speed. While models crudely consider the canopy shape via LAI, current models typically do not consider the vertical canopy structure or varied energetics within multiple canopy layers. Vertical canopy structure influences the spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability. Within the canopy both the snowpack and energetic exposures to the snowpack (wind, shortwave and longwave radiation, turbulent heat fluxes etc.) vary widely in the vertical. The water and energy balance in each layer is dependent on all other layers. For example, increased snow canopy content in the top of the canopy will reduce available shortwave radiation at the bottom and snow unloading in a mid-layer can cascade and remove snow from all the lower layers. We examined vertical interactions and structures of the forest canopy on the impact of unloading utilizing the Advanced Canopy-Atmosphere-Soil-Algorithm (ACASA), a multilayer soil-vegetation-atmosphere numerical model based on higher-order closure of turbulence equations. Our results demonstrate how a multilayer model can be used to elucidate the physical processes of snow unloading, and could help researchers better parameterize unloading in snow-hydrology models.

  13. Directed-assembled multi-band moiré plasmonic metasurfaces

    NASA Astrophysics Data System (ADS)

    Nagavalli Yogeesh, Maruthi; Wu, Zilong; Li, Wei; Akinwande, Deji; Zheng, Yuebing

    With the large number of component sets and high rotational symmetry, plasmonic metamaterials with moiré patterns can support multiple plasmonic modes for multi-functional applications. Herein, we introduce moiré plasmonic metasurfaces using both gold and graphene, by a recently developed directed-assembled method known as moiré nanosphere lithography (MNSL). The graphene moiré metasurfaces show multiple and tunable resonance modes in the mid-infrared wavelength regime. The number and wavelength of the resonance modes can be tuned by controlling the moiré patterns, which can be easily achieved by changing the relative in-plane rotation angle during MNSL. Furthermore, we have designed a metal-insulator-metal (MIM) patch structure with a thin Au moiré metasurface layer and an optically thick Au layer separated by a dielectric spacer layer. Benefiting from the combination of moiré patterns and field enhancement from the MIM configuration, the moiré metasurface patch exhibits strong broadband absorption in the NIR ( 1.3 μm) and MIR ( 5 μm) range. The dual-band optical responses make moiré metasurface patch a multi-functional platform for surface-enhanced infrared spectroscopy, optical capture and patterning of bacteria, and photothermal denaturation of proteins.

  14. CFL3D User's Manual (Version 5.0)

    NASA Technical Reports Server (NTRS)

    Krist, Sherrie L.; Biedron, Robert T.; Rumsey, Christopher L.

    1998-01-01

    This document is the User's Manual for the CFL3D computer code, a thin-layer Reynolds-averaged Navier-Stokes flow solver for structured multiple-zone grids. Descriptions of the code's input parameters, non-dimensionalizations, file formats, boundary conditions, and equations are included. Sample 2-D and 3-D test cases are also described, and many helpful hints for using the code are provided.

  15. Analysis of coherent dynamical processes through computer vision

    NASA Astrophysics Data System (ADS)

    Hack, M. J. Philipp

    2016-11-01

    Visualizations of turbulent boundary layers show an abundance of characteristic arc-shaped structures whose apparent similarity suggests a common origin in a coherent dynamical process. While the structures have been likened to the hairpin vortices observed in the late stages of transitional flow, a consistent description of the underlying mechanism has remained elusive. Detailed studies are complicated by the chaotic nature of turbulence which modulates each manifestation of the process and which renders the isolation of individual structures a challenging task. The present study applies methods from the field of computer vision to capture the time evolution of turbulent flow features and explore the associated physical mechanisms. The algorithm uses morphological operations to condense the structure of the turbulent flow field into a graph described by nodes and links. The low-dimensional geometric information is stored in a database and allows the identification and analysis of equivalent dynamical processes across multiple scales. The framework is not limited to turbulent boundary layers and can also be applied to different types of flows as well as problems from other fields of science.

  16. Inkjet Printing Based Mono-layered Photonic Crystal Patterning for Anti-counterfeiting Structural Colors

    PubMed Central

    Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung

    2016-01-01

    Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique. PMID:27487978

  17. Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling

    NASA Astrophysics Data System (ADS)

    Yan, Dan-Ping; Xu, Yan-Bo; Dong, Zhou-Bin; Qiu, Liang; Zhang, Sen; Wells, Michael

    2016-03-01

    Fault-related folds of variable structural styles and assemblages commonly coexist in orogenic belts with competent-incompetent interlayered sequences. Despite their commonality, the kinematic evolution of these structural styles and assemblages are often loosely constrained because multiple solutions exist in their structural progression during tectonic restoration. We use a sandbox modeling instrument with a particle image velocimetry monitor to test four designed sandbox models with multilayer competent-incompetent materials. Test results reveal that decollement folds initiate along selected incompetent layers with decreasing velocity difference and constant vorticity difference between the hanging wall and footwall of the initial fault tips. The decollement folds are progressively converted to fault-propagation folds and fault-bend folds through development of fault ramps breaking across competent layers and are followed by propagation into fault flats within an upper incompetent layer. Thick-skinned thrust is produced by initiating a decollement fault within the metamorphic basement. Progressive thrusting and uplifting of the thick-skinned thrust trigger initiation of the uppermost incompetent decollement with formation of a decollement fold and subsequent converting to fault-propagation and fault-bend folds, which combine together to form imbricate thrust. Breakouts at the base of the early formed fault ramps along the lowest incompetent layers, which may correspond to basement-cover contacts, domes the upmost decollement and imbricate thrusts to form passive roof duplexes and constitute the thin-skinned thrust belt. Structural styles and assemblages in each of tectonic stages are similar to that in the representative orogenic belts in the South China, Southern Appalachians, and Alpine orogenic belts.

  18. Research on radiation characteristics of dipole antenna modulation by sub-wavelength inhomogeneous plasma layer

    NASA Astrophysics Data System (ADS)

    Kong, Fanrong; Chen, Peiqi; Nie, Qiuyue; Zhang, Xiaoning; Zhang, Zhen; Jiang, Binhao

    2018-02-01

    The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.

  19. The presence and significance of polar meibum and tear lipids.

    PubMed

    Pucker, Andrew D; Haworth, Kristina M

    2015-01-01

    The ocular tear film is a complex structure composed of a number of elements. While all of these components serve valuable functional and structural roles, the external lipid layer has been a focus because it is known to play a critical role in dry eye. Traditionally, meibomian gland phospholipids have been considered to be the vital amphiphilic molecules needed to create an interphase between the outer nonpolar lipid layer and inner aqueous layers, yet recent work has called this theory into question. The purpose of this review is to clarify the current understanding of the origins, identity, and significance of polar tear lipids. Studies indicate that both phospholipids and ω-hydroxy fatty acids likely play a critical role in tear film stability. Studies also indicate that polar lipids likely originate from multiple sources and that they are integrally involved in ocular surface disease. Additional studies are needed to fully understand the origins and significance of polar tear lipids, because to date only correlational evidence has described their hypothesized origins and functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Structural diversity effects of multilayer networks on the threshold of interacting epidemics

    NASA Astrophysics Data System (ADS)

    Wang, Weihong; Chen, MingMing; Min, Yong; Jin, Xiaogang

    2016-02-01

    Foodborne diseases always spread through multiple vectors (e.g. fresh vegetables and fruits) and reveal that multilayer network could spread fatal pathogen with complex interactions. In this paper, first, we use a "top-down analysis framework that depends on only two distributions to describe a random multilayer network with any number of layers. These two distributions are the overlaid degree distribution and the edge-type distribution of the multilayer network. Second, based on the two distributions, we adopt three indicators of multilayer network diversity to measure the correlation between network layers, including network richness, likeness, and evenness. The network richness is the number of layers forming the multilayer network. The network likeness is the degree of different layers sharing the same edge. The network evenness is the variance of the number of edges in every layer. Third, based on a simple epidemic model, we analyze the influence of network diversity on the threshold of interacting epidemics with the coexistence of collaboration and competition. Our work extends the "top-down" analysis framework to deal with the more complex epidemic situation and more diversity indicators and quantifies the trade-off between thresholds of inter-layer collaboration and intra-layer transmission.

  1. Dynamic Testing of a Subscale Sunshield for the Next Generation Space Telescope (NGST)

    NASA Technical Reports Server (NTRS)

    Lienard, Sebastien; Johnston, John D.; Ross, Brian; Smith, James; Brodeur, Steve (Technical Monitor)

    2001-01-01

    The NGST sunshield is a lightweight, flexible structure consisting of multiple layers of pretensioned, thin-film membranes supported by deployable booms. The structural dynamic behavior of the sunshield must be well understood in order to predict its influence on observatory performance. Ground tests were carried out in a vacuum environment to characterize the structural dynamic behavior of a one-tenth scale model of the sunshield. Results from the tests will be used to validate analytical modeling techniques that can be used in conjunction with scaling laws to predict the performance of the full-sized structure. This paper summarizes the ground tests and presents representative results for the dynamic behavior of the sunshield.

  2. Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice.

    PubMed

    Hatam, Ido; Charchuk, Rhianna; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2014-10-01

    Bacterial communities in Arctic sea ice play an important role in the regulation of nutrient and energy dynamics in the Arctic Ocean. Sea ice has vertical gradients in temperature, brine salinity and volume, and light and UV levels. Multiyear ice (MYI) has at least two distinct ice layers: old fresh ice with limited permeability, and new saline ice, and may also include a surface melt pond layer. Here, we determine whether bacterial communities (1) differ with ice depth due to strong physical and chemical gradients, (2) are relatively homogenous within a layer, but differ between layers, or (3) do not vary with ice depth. Cores of MYI off northern Ellesmere Island, NU, Canada, were subsectioned in 30-cm intervals, and the bacterial assemblage structure was characterized using 16S rRNA gene pyrotag sequencing. Assemblages clustered into three distinct groups: top (0-30 cm); middle (30-150 cm); and bottom (150-236 cm). These layers correspond to the occurrence of refrozen melt pond ice, at least 2-year-old ice, and newly grown first-year ice at the bottom of the ice sheet, respectively. Thus, MYI houses multiple distinct bacterial assemblages, and in situ conditions appear to play a less important role in structuring microbial assemblages than the age or conditions of the ice at the time of formation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Investigating the effect of multiple layers of insulation with a bubble wrap experiment

    NASA Astrophysics Data System (ADS)

    Eggers, Dolores; Ruiz, Michael J.

    2018-03-01

    We provide a fun, inexpensive laboratory experiment for students to investigate the effects of multiple layers of insulation and observe diminishing values for additional layers using bubble wrap. This experiment provides an opportunity for students to learn about heat transfer through conduction using readily available materials. A water-ice pack is placed on top of five layers of bubble wrap. The temperature is taken between each layer periodically for at least 15 min. Students determine asymptotic temperatures for varying layers. This experiment also suggests a real world application.

  4. Classification of polytype structures of zinc sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laptev, V.I.

    1994-12-31

    It is suggested that the existing classification of polytype structures of zinc sulfide be supplemented with an additional criterion: the characteristic of regular point systems (Wyckoff positions) including their type, number, and multiplicity. The consideration of the Wyckoff positions allowed the establishment of construction principles of known polytype series of different symmetries and the systematization (for the first time) of the polytypes with the same number of differently packed layers. the classification suggested for polytype structures of zinc sulfide is compact and provides a basis for creating search systems. The classification table obtained can also be used for numerous siliconmore » carbide polytypes. 8 refs., 4 tabs.« less

  5. Fabrication of monolithic microfluidic channels in diamond with ion beam lithography

    NASA Astrophysics Data System (ADS)

    Picollo, F.; Battiato, A.; Boarino, L.; Ditalia Tchernij, S.; Enrico, E.; Forneris, J.; Gilardino, A.; Jakšić, M.; Sardi, F.; Skukan, N.; Tengattini, A.; Olivero, P.; Re, A.; Vittone, E.

    2017-08-01

    In the present work, we report on the monolithic fabrication by means of ion beam lithography of hollow micro-channels within a diamond substrate, to be employed for microfluidic applications. The fabrication strategy takes advantage of ion beam induced damage to convert diamond into graphite, which is characterized by a higher reactivity to oxidative etching with respect to the chemically inert pristine structure. This phase transition occurs in sub-superficial layers thanks to the peculiar damage profile of MeV ions, which mostly damage the target material at their end of range. The structures were obtained by irradiating commercial CVD diamond samples with a micrometric collimated C+ ion beam at three different energies (4 MeV, 3.5 MeV and 3 MeV) at a total fluence of 2 × 1016 cm-2. The chosen multiple-energy implantation strategy allows to obtain a thick box-like highly damaged region ranging from 1.6 μm to 2.1 μm below the sample surface. High-temperature annealing was performed to both promote the graphitization of the ion-induced amorphous layer and to recover the pristine crystalline structure in the cap layer. Finally, the graphite was removed by ozone etching, obtaining monolithic microfluidic structures. These prototypal microfluidic devices were tested injecting aqueous solutions and the evidence of the passage of fluids through the channels was confirmed by confocal fluorescent microscopy.

  6. Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahab; Baumberg, Jeremy J.; Vijaya Prakash, G.

    2013-12-01

    Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C12H25NH3)2PbI4(1-y)Br4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices.

  7. Nearly Efficiency-Droop-Free AlGaN-Based Ultraviolet Light-Emitting Diodes with a Specifically Designed Superlattice p-Type Electron Blocking Layer for High Mg Doping Efficiency.

    PubMed

    Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung

    2018-04-24

    This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.

  8. Thermal structure of the Venus atmosphere in the middle cloud layer

    NASA Technical Reports Server (NTRS)

    Linkin, V. M.; Seiff, A.; Ragent, B.; Young, R. E.; Elson, L. S.; Preston, A.

    1986-01-01

    Thermal structure measurements obtained by the two VEGA balloons show the Venus middle cloud layer to be generally adiabatic. Temperatures measured by the two balloons at locations roughly symmetric about the equator differed by about 6.5 kelvins at a given pressure. The VEGA-2 temperatures were about 2.5 kelvins cooler and those of VEGA-1 about 4 kelvins warmer than temperatures measured by the Pioneer Venus Large Probe at these levels. Data taken by the VEGA-2 lander as it passed through the middle cloud agreed with those of the VEGA-2 balloon. Study of individual frames of the balloon data suggests the presence of multiple discrete air masses that are internally adiabatic but lie on slightly different adiabats. These adiabats, for a given balloon, can differ in temperature by as much as 1 kelvin at a given pressure.

  9. Nearly Efficiency-Droop-Free AlGaN-Based Ultraviolet Light-Emitting Diodes with a Specifically Designed Superlattice p-Type Electron Blocking Layer for High Mg Doping Efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung

    2018-04-01

    This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.

  10. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  11. Optimisation of multi-layer rotationally moulded foamed structures

    NASA Astrophysics Data System (ADS)

    Pritchard, A. J.; McCourt, M. P.; Kearns, M. P.; Martin, P. J.; Cunningham, E.

    2018-05-01

    Multi-layer skin-foam and skin-foam-skin sandwich constructions are of increasing interest in the rotational moulding process for two reasons. Firstly, multi-layer constructions can improve the thermal insulation properties of a part. Secondly, foamed polyethylene sandwiched between solid polyethylene skins can increase the mechanical properties of rotationally moulded structural components, in particular increasing flexural properties and impact strength (IS). The processing of multiple layers of polyethylene and polyethylene foam presents unique challenges such as the control of chemical blowing agent decomposition temperature, and the optimisation of cooling rates to prevent destruction of the foam core; therefore, precise temperature control is paramount to success. Long cooling cycle times are associated with the creation of multi-layer foam parts due to their insulative nature; consequently, often making the costs of production prohibitive. Devices such as Rotocooler®, a rapid internal mould water spray cooling system, have been shown to have the potential to significantly decrease cooling times in rotational moulding. It is essential to monitor and control such devices to minimise the warpage associated with the rapid cooling of a moulding from only one side. The work presented here demonstrates the use of threaded thermocouples to monitor the polymer melt in multi-layer sandwich constructions, in order to analyse the cooling cycle of multi-layer foamed structures. A series of polyethylene skin-foam test mouldings were produced, and the effect of cooling medium on foam characteristics, mechanical properties, and process cycle time were investigated. Cooling cycle time reductions of 45%, 26%, and 29% were found for increasing (1%, 2%, and 3%) chemical blowing agent (CBA) amount when using internal water cooling technology from ˜123°C compared with forced air cooling (FAC). Subsequently, a reduction of IS for the same skin-foam parts was found to be 1%, 4%, and 16% compared with FAC.

  12. Multiple sparse volumetric priors for distributed EEG source reconstruction.

    PubMed

    Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan

    2014-10-15

    We revisit the multiple sparse priors (MSP) algorithm implemented in the statistical parametric mapping software (SPM) for distributed EEG source reconstruction (Friston et al., 2008). In the present implementation, multiple cortical patches are introduced as source priors based on a dipole source space restricted to a cortical surface mesh. In this note, we present a technique to construct volumetric cortical regions to introduce as source priors by restricting the dipole source space to a segmented gray matter layer and using a region growing approach. This extension allows to reconstruct brain structures besides the cortical surface and facilitates the use of more realistic volumetric head models including more layers, such as cerebrospinal fluid (CSF), compared to the standard 3-layered scalp-skull-brain head models. We illustrated the technique with ERP data and anatomical MR images in 12 subjects. Based on the segmented gray matter for each of the subjects, cortical regions were created and introduced as source priors for MSP-inversion assuming two types of head models. The standard 3-layered scalp-skull-brain head models and extended 4-layered head models including CSF. We compared these models with the current implementation by assessing the free energy corresponding with each of the reconstructions using Bayesian model selection for group studies. Strong evidence was found in favor of the volumetric MSP approach compared to the MSP approach based on cortical patches for both types of head models. Overall, the strongest evidence was found in favor of the volumetric MSP reconstructions based on the extended head models including CSF. These results were verified by comparing the reconstructed activity. The use of volumetric cortical regions as source priors is a useful complement to the present implementation as it allows to introduce more complex head models and volumetric source priors in future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Incorporation of multiple cloud layers for ultraviolet radiation modeling studies

    NASA Technical Reports Server (NTRS)

    Charache, Darryl H.; Abreu, Vincent J.; Kuhn, William R.; Skinner, Wilbert R.

    1994-01-01

    Cloud data sets compiled from surface observations were used to develop an algorithm for incorporating multiple cloud layers into a multiple-scattering radiative transfer model. Aerosol extinction and ozone data sets were also incorporated to estimate the seasonally averaged ultraviolet (UV) flux reaching the surface of the Earth in the Detroit, Michigan, region for the years 1979-1991, corresponding to Total Ozone Mapping Spectrometer (TOMS) version 6 ozone observations. The calculated UV spectrum was convolved with an erythema action spectrum to estimate the effective biological exposure for erythema. Calculations show that decreasing the total column density of ozone by 1% leads to an increase in erythemal exposure by approximately 1.1-1.3%, in good agreement with previous studies. A comparison of the UV radiation budget at the surface between a single cloud layer method and a multiple cloud layer method presented here is discussed, along with limitations of each technique. With improved parameterization of cloud properties, and as knowledge of biological effects of UV exposure increase, inclusion of multiple cloud layers may be important in accurately determining the biologically effective UV budget at the surface of the Earth.

  14. An Analysis of Cassini Observations Regarding the Structure of Jupiter's Equatorial Atmosphere

    NASA Technical Reports Server (NTRS)

    Choi, David S.; Simon-Miller, Amy A.

    2012-01-01

    A variety of intriguing atmospheric phenomena reside on both sides of Jupiter's equator. 5-micron bright hot spots and opaque plumes prominently exhibit dynamic behavior to the north, whereas compact, dark chevron-shaped features and isolated anticyclonic disturbances periodically occupy the southern equatorial latitudes. All of these phenomena are associated with the vertical and meridional perturbations of Rossby waves disturbing the mean atmospheric state. As previous observational analysis and numerical simulations have investigated the dynamics of the region, an examination of the atmosphere's vertical structure though radiative transfer analysis is necessary for improved understanding of this unique environment. Here we present preliminary analysis of a multispectral Cassini imaging data set acquired during the spacecraft's flyby of Jupiter in 2000. We evaluated multiple methane and continuum spectral channels at available viewing angles to improve constraints on the vertical structure of the haze and cloud layers comprising these interesting features. Our preliminary results indicate distinct differences in the structure for both hemispheres. Upper troposphere hazes and cloud layers are prevalent in the northern equatorial latitudes, but are not present in corresponding southern latitudes. Continued analysis will further constrain the precise structure present in these phenomena and the differences between them.

  15. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    PubMed Central

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-01-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal. PMID:28211898

  16. Switchable vanadium dioxide (VO2) metamaterials fabricated from tungsten doped vanadia-based colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Paik, Taejong; Hong, Sung-Hoon; Gordon, Thomas; Gaulding, Ashley; Kagan, Cherie; Murray, Christopher

    2013-03-01

    We report the fabrication of thermochromic VO2-based metamaterials using solution-processable colloidal nanocrystals. Vanadium-based nanoparticles are prepared through a non-hydrolytic reaction, resulting in stable colloidal dispersions in solution. Thermochromic nanocrystalline VO2 thin-films are prepared via rapid thermal annealing of colloidal nanoparticles coated on a variety of substrates. Nanostructured VO2 can be patterned over large areas by nanoimprint lithography. Precise control of tungsten (W) doping concentration in colloidal nanoparticles enables tuning of the phase transition temperature of the nanocrystalline VO2 thin-films. W-doped VO2 films display a sharp temperature dependent phase transition, similar to the undoped VO2 film, but at lower temperatures tunable with the doping level. By sequential coating of doped VO2 with different doping concentrations, we fabricate ?smart? multi-layered VO2 films displaying multiple phase transition temperatures within a single structure, allowing for dynamic modulation of the metal-dielectric layered structure. The optical properties programmed into the layered structure are switchable with temperature, which provides additional degrees of freedom to design tunable optical metamaterials. This work is supported by the US Office of Naval Research Multidisciplinary University Research Initiative (MURI) program grant number ONR-N00014-10-1-0942.

  17. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    NASA Astrophysics Data System (ADS)

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-02-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal.

  18. Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces.

    PubMed

    Jung, Woo-Bin; Cho, Kyeong Min; Lee, Won-Kyu; Odom, Teri W; Jung, Hee-Tae

    2018-01-10

    One of the most interesting topics in physical science and materials science is the creation of complex wrinkled structures on thin-film surfaces because of their several advantages of high surface area, localized strain, and stress tolerance. In this study, a significant step was taken toward solving limitations imposed by the fabrication of previous artificial wrinkles. A universal method for preparing hierarchical three-dimensional wrinkle structures of thin films on a multiple scale (e.g., nanometers to micrometers) by sequential wrinkling with different skin layers was developed. Notably, this method was not limited to specific materials, and it was applicable to fabricating hierarchical wrinkles on all of the thin-film surfaces tested thus far, including those of metals, two-dimensional and one-dimensional materials, and polymers. The hierarchical wrinkles with multiscale structures were prepared by sequential wrinkling, in which a sacrificial layer was used as the additional skin layer between sequences. For example, a hierarchical MoS 2 wrinkle exhibited highly enhanced catalytic behavior because of the superaerophobicity and effective surface area, which are related to topological effects. As the developed method can be adopted to a majority of thin films, it is thought to be a universal method for enhancing the physical properties of various materials.

  19. 35 Hz shape memory alloy actuator with bending-twisting mode.

    PubMed

    Song, Sung-Hyuk; Lee, Jang-Yeob; Rodrigue, Hugo; Choi, Ik-Seong; Kang, Yeon June; Ahn, Sung-Hoon

    2016-02-19

    Shape Memory Alloy (SMA) materials are widely used as an actuating source for bending actuators due to their high power density. However, due to the slow actuation speed of SMAs, there are limitations in their range of possible applications. This paper proposes a smart soft composite (SSC) actuator capable of fast bending actuation with large deformations. To increase the actuation speed of SMA actuator, multiple thin SMA wires are used to increase the heat dissipation for faster cooling. The actuation characteristics of the actuator at different frequencies are measured with different actuator lengths and results show that resonance can be used to realize large deformations up to 35 Hz. The actuation characteristics of the actuator can be modified by changing the design of the layered reinforcement structure embedded in the actuator, thus the natural frequency and length of an actuator can be optimized for a specific actuation speed. A model is used to compare with the experimental results of actuators with different layered reinforcement structure designs. Also, a bend-twist coupled motion using an anisotropic layered reinforcement structure at a speed of 10 Hz is also realized. By increasing their range of actuation characteristics, the proposed actuator extends the range of application of SMA bending actuators.

  20. 35 Hz shape memory alloy actuator with bending-twisting mode

    PubMed Central

    Song, Sung-Hyuk; Lee, Jang-Yeob; Rodrigue, Hugo; Choi, Ik-Seong; Kang, Yeon June; Ahn, Sung-Hoon

    2016-01-01

    Shape Memory Alloy (SMA) materials are widely used as an actuating source for bending actuators due to their high power density. However, due to the slow actuation speed of SMAs, there are limitations in their range of possible applications. This paper proposes a smart soft composite (SSC) actuator capable of fast bending actuation with large deformations. To increase the actuation speed of SMA actuator, multiple thin SMA wires are used to increase the heat dissipation for faster cooling. The actuation characteristics of the actuator at different frequencies are measured with different actuator lengths and results show that resonance can be used to realize large deformations up to 35 Hz. The actuation characteristics of the actuator can be modified by changing the design of the layered reinforcement structure embedded in the actuator, thus the natural frequency and length of an actuator can be optimized for a specific actuation speed. A model is used to compare with the experimental results of actuators with different layered reinforcement structure designs. Also, a bend-twist coupled motion using an anisotropic layered reinforcement structure at a speed of 10 Hz is also realized. By increasing their range of actuation characteristics, the proposed actuator extends the range of application of SMA bending actuators. PMID:26892438

  1. Self-assembly of vertically aligned quantum ring-dot structure by Multiple Droplet Epitaxy

    NASA Astrophysics Data System (ADS)

    Elborg, Martin; Noda, Takeshi; Mano, Takaaki; Kuroda, Takashi; Yao, Yuanzhao; Sakuma, Yoshiki; Sakoda, Kazuaki

    2017-11-01

    We successfully grow vertically aligned quantum ring-dot structures by Multiple Droplet Epitaxy technique. The growth is achieved by depositing GaAs quantum rings in a first droplet epitaxy process which are subsequently covered by a thin AlGaAs barrier. In a second droplet epitaxy process, Ga droplets preferentially position in the center indentation of the ring as well as attached to the edge of the ring in [ 1 1 bar 0 ] direction. By designing the ring geometry, full selectivity for the center position of the ring is achieved where we crystallize the droplets into quantum dots. The geometry of the ring and dot as well as barrier layer can be controlled in separate growth steps. This technique offers great potential for creating complex quantum molecules for novel quantum information technologies.

  2. Recent technological developments on LGAD and iLGAD detectors for tracking and timing applications

    NASA Astrophysics Data System (ADS)

    Pellegrini, G.; Baselga, M.; Carulla, M.; Fadeyev, V.; Fernández-Martínez, P.; García, M. Fernández; Flores, D.; Galloway, Z.; Gallrapp, C.; Hidalgo, S.; Liang, Z.; Merlos, A.; Moll, M.; Quirion, D.; Sadrozinski, H.; Stricker, M.; Vila, I.

    2016-09-01

    This paper reports the latest technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n++-p+-p structure, where the doping profile of the p+ layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.

  3. A single-layer wide-angle negative-index metamaterial at visible frequencies.

    PubMed

    Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies.

  4. Formation of aggregated nanoparticle spheres through femtosecond laser surface processing

    NASA Astrophysics Data System (ADS)

    Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.

    2017-10-01

    A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.

  5. Intricate Short-Range Ordering and Strongly Anisotropic Transport Properties of Li 1–x Sn 2+x As 2

    DOE PAGES

    Lee, Kathleen; Kaseman, Derrick; Sen, Sabyasachi; ...

    2015-02-22

    A new ternary compound, Li 1-xSn 2+xAs 2, 0.2 < x < 0.4, was synthesized via solid-state reaction of elements. The compound crystallizes in a layered structure in the Rmore » $$\\overline{3}m$$ space group (No. 166) with Sn-As layers separated by layers of jointly occupied Li/Sn. The Sn-As layers are comprised of Sn 3As 3 puckered hexagons in a chair conformation that share all edges. Li/Sn atoms in the interlayer space are surrounded by a regular As 6 octahedron. Thorough investigations by synchrotron x-ray and neutron powder diffraction indicate no long-range Li/Sn ordering. In contrast, local Sn/Li ordering was revealed by synergistic investigations via solid-state 6,7Li NMR spectroscopy, HR-TEM, and neutron and X-ray pair distribution function analyses. Due to their different chemical natures, Li and Sn atoms tend to segregate into Li-rich and Sn-rich regions creating substantial inhomogeneity on the nanoscale. Inhomogeneous local structure has high impact on the physical properties of the synthesized compounds: local Li/Sn ordering and multiple nanoscale interfaces result in unexpectedly low thermal conductivity and highly anisotropic resistivity in Li 1-xSn 2+xAs 2.« less

  6. Tracker Studies

    DTIC Science & Technology

    1975-06-01

    implication of the multiple mode effect is that the multiple returns could be combined non -coherently, or perhaps even coherently, to improve the detection...of three superimposed quasi - parabolic layers. The leading edge of the E, F, and F2 layers are computed 2-12 vw LEADING EDGE E LAYER FOCUSING AT...represent the simplest category of propagation with which the OTH radarist must contend. The underlying Fl and E layers are controlled by sunlight, and their

  7. Comparative analysis of high-performance infrared avalanche InxGa1-xAsyP1-y and Hg1-xCdxTe heterophotodiodes

    NASA Astrophysics Data System (ADS)

    Kholodnov, Viacheslav; Drugova, Albina; Nikitin, Mikhail; Chekanova, Galina

    2012-10-01

    Technology of infrared (IR) avalanche photodiodes (APDs) gradually moves from simple single element APD to 2D focal plane arrays (FPA). Spectral covering of APDs is expanded continuously from classic 1.3 μm to longer wavelengths due to using of narrow-gap semiconductor materials like Hg1-xCdxTe. APDs are of great interest to developers and manufacturers of different optical communication, measuring and 3D reconstruction thermal imaging systems. Major IR detector materials for manufacturing of high-performance APDs became heteroepitaxial structures InxGa1-xAsyP1-y and Hg1-xCdxTe. Progress in IR APD technology was achieved through serious improvement in material growing techniques enabling forming of multilayer heterostuctures with separate absorption and multiplication regions (SAM). Today SAM-APD design can be implemented both on InxGa1-xAsyP1-y and Hg1-xCdxTe multilayer heteroepitaxial structures. To create the best performance optimal design avalanche heterophotodiode (AHPD) it is necessary to carry out a detailed theoretical analysis of basic features of generation, avalanche breakdown and multiplication of charge carriers in proper heterostructure. Optimization of AHPD properties requires comprehensive estimation of AHPD's pixel performance depending on pixel's multi-layer structure design, layers doping, distribution of electric field in the structure and operating temperature. Objective of the present article is to compare some features of 1.55 μm SAM-AHPDs based on InxGa1-xAsyP1-y and Hg1-xCdxTe.

  8. Mechanical Controls on Halokinesis in Layered Evaporite Sequences: Insights from 2D Geomechanical Forward Models

    NASA Astrophysics Data System (ADS)

    Goteti, Rajesh; Agar, Susan M.; Brown, John P.; Ball, Philip; Zuhlke, Rainer

    2017-04-01

    Mechanical stratification in LES (Layered Evaporate Sequences) can have a distinct impact on structural and depositional styles in rifted margin salt tectonics. The bulk mechanical response of an LES under geological loading is dependent, among other factors, on the relative proportions of salt and sediment, salt mobility and sedimentation rate. To assess the interactions among the aforementioned factors in a physically consistent manner, we present 2D, large-strain finite element models of an LES salt minibasin and diapirs. Loading from the deposition of alternating salt and sediment layers (i.e., LES), gravity and a prescribed geothermal gradient provide the driving force for halokinesis in the models. To accurately capture the mechanical impact of stratification within the modeled LES, salt is assigned a temperature-dependent visco-plastic rheology, whereas the sediments are assigned a non-associative cap-plasticity model that supports both compaction and shear localization. Perturbations in the initial salt-sediment interface are used to initiate the salt diapirs. Model results suggest that active diapirism in the basal halite layer initiates when the pressure at the base of the incipient salt diapir exceeds that beneath the minibasin. Vertical growth of the diapir is also accompanied by its lateral expansion at higher structural levels where it preferentially intrudes the adjacent pre- and syn-kinematic salt layers. This pressure pumping of deeper salt into shallow salt layers, can result in rapid thickness changes between successive sediment layers within the LES. Caution needs to be exercised as such thickness changes observed in seismic images may not be entirely due to the shifting of depocenters but also due to the lateral pumping of salt within the LES. The presence of salt layers at multiple structural levels decouples the deformation between successive clastic layers resulting in disharmomic folding with contrasting strain histories in the sedimentary stringers. A significant proportion of the bulk deviatoric strain is preferentially partitioned into the salt layers. Effective plastic shear strains within the sediment stringers generally remain low in the minibasin but can be significantly higher with attendant intense folding near the diapirs. In non-LES systems, the shape of a salt diapir is often used as indicator of relative rates of salt supply and sedimentation over geological time. However our models suggest that this rule-of-thumb may not apply in LES where the shape of the salt diapir is a function of the mechanical properties of the salt layers at various structural levels in addition to the relative rates of salt supply and sedimentation. Imaging challenges in LES may preclude placing strong constraints on structural timing based on interpretation of interfaces between the stringers and the salt diapir. In such situations, geomechanical forward modeling can be a useful tool in placing physics-based quantitative constraints on the timing of LES structures.

  9. NMR of thin layers using a meanderline surface coil

    DOEpatents

    Cowgill, Donald F.

    2001-01-01

    A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.

  10. Morphology evolution in strain-compensated multiple quantum well structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledentsov, N. N., E-mail: nikolay.ledentsov@v-i-systems.com; Shchukin, V. A.; Rouvimov, S.

    2014-01-20

    Morphology evolution in (In,Ga)As-Ga(As,P) strain-compensated multilayer structures is studied. The effects of nanoscale interface corrugation and phase separation are evident after the third period of the multilayer structure and become more pronounced with each new stack until the sixth period. Then, the interface stabilizes pointing to the formation of strain-balanced equilibrium interface structure. The epitaxial structure remains defect-free up to the maximum number (twenty) of periods studied. In a structure with a high lattice mismatch between the neighboring layers, In{sub 0.40}Ga{sub 0.60}As/GaAs{sub 0.85}P{sub 0.15}, clusters of dislocations are revealed already in the third period. The observed phenomena are critical formore » proper engineering of optoelectronic devices.« less

  11. Theoretical Studies on InGaAs/InAlAs SAGCM Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Cao, Siyu; Zhao, Yue; ur Rehman, Sajid; Feng, Shuai; Zuo, Yuhua; Li, Chuanbo; Zhang, Lichun; Cheng, Buwen; Wang, Qiming

    2018-05-01

    In this paper, we provide a detailed insight on InGaAs/InAlAs separate absorption, grading, charge, and multiplication avalanche photodiodes (SAGCM APDs) and a theoretical model of APDs is built. Through theoretical analysis and two-dimensional (2D) simulation, the influence of charge layer and tunneling effect on the APDs is fully understood. The design of charge layer (including doping level and thickness) can be calculated by our predictive model for different multiplication thickness. We find that as the thickness of charge layer increases, the suitable doping level range in charge layer decreases. Compared to thinner charge layer, performance of APD varies significantly via several percent deviations of doping concentrations in thicker charge layer. Moreover, the generation rate ( G btt ) of band-to-band tunnel is calculated, and the influence of tunneling effect on avalanche field was analyzed. We confirm that avalanche field and multiplication factor ( M n ) in multiplication will decrease by the tunneling effect. The theoretical model and analysis are based on InGaAs/InAlAs APD; however, they are applicable to other APD material systems as well.

  12. Growth control and design principles of self-assembled quantum dot multiple layer structures for photodetector applications

    NASA Astrophysics Data System (ADS)

    Asano, Tetsuya

    Self-assembled quantum dots (SAQDs) formed by lattice-mismatch strain-driven epitaxy are currently the most advanced nanostructure-based platform for high performance optoelectronic applications such as lasers and photodetectors. While the QD lasers have realized the best performance in terms of threshold current and temperature stability, the performance of QD photodetectors (QDIPs) has not surpassed that of quantum well (QW) photodetectors. This is because the requirement of maximal photon absorption for photodetectors poses the challenge of forming an appropriately-doped large number of uniform multiple SAQD (MQD) layers with acceptable structural defect (dislocation etc.) density. This dissertation addresses this challenge and, through a combination of innovative approach to control of defects in MQD growth and judicious placement of SAQDs in a resonant cavity, shows that SAQD based quantum dot infrared photodetectors (QDIPs) can be made competitive with their quantum well counterparts. Specifically, the following major elements were accomplished: (i) the molecular beam epitaxy (MBE) growth of dislocation-free and uniform InAs/InAlGaAs/GaAs MQD strained structures up to 20-period, (ii) temperature-dependent photo- and dark-current based analysis of the electron density distribution inside the MQD structures for various doping schemes, (iii) deep level transient spectroscopy based identification of growth procedure dependent deleterious deep traps in SAQD structures and their reduction, and (iv) the use of an appropriately designed resonant cavity (RC) and judicious placement of the SAQD layers for maximal enhancement of photon absorption to realize over an order of magnitude enhancement in QDIP detectivity. The lattermost demonstration indicates that implementation of the growth approach and resonant cavity strategy developed here while utilizing the currently demonstrated MIR and LWIR QDIPs with detectivities > 10 10 cmHz1/2/W at ˜ 77 K will enable RC-QDIP with detectivites > 1011 cmHz1/2/W that become competitive with other photodetector technologies in the mid IR (3 -- 5 mum) and long wavelength IR (8 -- 12 mum) ranges with the added advantage of materials stability and normal incidence sensitivity. Extended defect-free and size-uniform MQD structures of shallow InAs on GaAs (001) SAQDs capped with In0.15Ga0.85As strain relief layers and separated by GaAs spacer layer were grown up to 20 periods employing a judicious combination of MBE and migration enhanced epitaxy (MEE) techniques and examined by detailed transmission electron microscopy studies to reveal the absence of detectable extended defects (dislocation density < ˜ 107 /cm2). Photoluminescence studies revealed high optical quality. As our focus was on mid-infrared detectors, the MQD structures were grown in n (GaAs) -- i (MQD) -- n (GaAs) structures providing electron occupancy in at least the quantum confined ground energy states of the SAQDs and thus photodetection based upon transitions to electron excited states. Bias and temperature-dependent dark and photocurrent measurements were carried out for a variety of doping profiles and the electron density spatial distribution was determined from the resulting band bending profiles. It is revealed that almost no free electrons are present in the middle SAQD layers in the 10-period and 20-period n--i--n QDIP structures, indicating the existence of a high density (˜1015/cm3) of negative charges which can be attributed to electrons trapped in deep levels. To examine the nature of these deep traps, samples suitable for deep level transient spectroscopy measurement were synthesized and examined. These studies, carried out for the first time for SAQDs, revealed that the deep traps are dominantly present in the GaAs overgrowth layers grown at 500°C by MBE. For structures involving GaAs overgrowths using MEE at temperatures as low as 350°C, the deep trap density in the GaAs overgrowth layer was found to be significantly reduced by factor of ˜ 20. Thus, employing MEE growth for GaAs spacer layers in n--i(20-period MQD)-- n QDIP structures, electrons could be provided to all the SAQDs owing to the significantly reduced deep trap density. Finally, for enhancement of the incident photon absorption, we designed and fabricated asymmetric Fabry-Perot resonant cavity-enhanced QDIPs. For effective enhancement, SAQDs with a narrow photoresponse in the 3 -- 5 mum infrared regime were realized utilizing [(AlAs)1(GaAs)4]4 short-period superlattices as the confining barrier layers. Incorporating such SAQDs in RC-QDIPs, we successfully demonstrated ˜ 10 times enhancement of the QDIP detectivity. As stated above, this makes RC-QDIPs containing QDIPs with the currently demonstrated detectivities of ˜ 1010 cmHz 1/2/W at ˜ 77 K competitive with other IR photodetector technologies.

  13. Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie

    1994-04-01

    Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. In this program, we concentrated on novel epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays.

  14. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 3; Material Model Development and Simulation of Experiments

    NASA Technical Reports Server (NTRS)

    Simmons, J.; Erlich, D.; Shockey, D.

    2009-01-01

    A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.

  15. Localized versus itinerant states created by multiple oxygen vacancies in SrTiO3

    NASA Astrophysics Data System (ADS)

    Jeschke, Harald O.; Shen, Juan; Valentí, Roser

    2015-02-01

    Oxygen vacancies in strontium titanate surfaces (SrTiO3) have been linked to the presence of a two-dimensional electron gas with unique behavior. We perform a detailed density functional theory study of the lattice and electronic structure of SrTiO3 slabs with multiple oxygen vacancies, with a main focus on two vacancies near a titanium dioxide terminated SrTiO3 surface. We conclude based on total energies that the two vacancies preferably inhabit the first two layers, i.e. they cluster vertically, while in the direction parallel to the surface, the vacancies show a weak tendency towards equal spacing. Analysis of the nonmagnetic electronic structure indicates that oxygen defects in the surface TiO2 layer lead to population of Ti {{t}2g} states and thus itinerancy of the electrons donated by the oxygen vacancy. In contrast, electrons from subsurface oxygen vacancies populate Ti eg states and remain localized on the two Ti ions neighboring the vacancy. We find that both the formation of a bound oxygen-vacancy state composed of hybridized Ti 3eg and 4p states neighboring the oxygen vacancy as well as the elastic deformation after extracting oxygen contribute to the stabilization of the in-gap state.

  16. Multi-domain boundary element method for axi-symmetric layered linear acoustic systems

    NASA Astrophysics Data System (ADS)

    Reiter, Paul; Ziegelwanger, Harald

    2017-12-01

    Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.

  17. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics

    PubMed Central

    Hughes Clarke, John E.

    2016-01-01

    Field observations of turbidity currents remain scarce, and thus there is continued debate about their internal structure and how they modify underlying bedforms. Here, I present the results of a new imaging method that examines multiple surge-like turbidity currents within a delta front channel, as they pass over crescent-shaped bedforms. Seven discrete flows over a 2-h period vary in speed from 0.5 to 3.0 ms−1. Only flows that exhibit a distinct acoustically attenuating layer at the base, appear to cause bedform migration. That layer thickens abruptly downstream of the bottom of the lee slope of the bedform, and the upper surface of the layer fluctuates rapidly at that point. The basal layer is inferred to reflect a strong near-bed gradient in density and the thickening is interpreted as a hydraulic jump. These results represent field-scale flow observations in support of a cyclic step origin of crescent-shaped bedforms. PMID:27283503

  18. Materials design principles of ancient fish armour

    NASA Astrophysics Data System (ADS)

    Bruet, Benjamin J. F.; Song, Juha; Boyce, Mary C.; Ortiz, Christine

    2008-09-01

    Knowledge of the structure-property-function relationships of dermal scales of armoured fish could enable pathways to improved bioinspired human body armour, and may provide clues to the evolutionary origins of mineralized tissues. Here, we present a multiscale experimental and computational approach that reveals the materials design principles present within individual ganoid scales from the `living fossil' Polypterus senegalus. This fish belongs to the ancient family Polypteridae, which first appeared 96 million years ago during the Cretaceous period and still retains many of their characteristics. The mechanistic origins of penetration resistance (approximating a biting attack) were investigated and found to include the juxtaposition of multiple distinct reinforcing composite layers that each undergo their own unique deformation mechanisms, a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, and layers with an undetectable gradation, load-dependent effective material properties, circumferential surface cracking, orthogonal microcracking in laminated sublayers and geometrically corrugated junctions between layers.

  19. Materials design principles of ancient fish armour.

    PubMed

    Bruet, Benjamin J F; Song, Juha; Boyce, Mary C; Ortiz, Christine

    2008-09-01

    Knowledge of the structure-property-function relationships of dermal scales of armoured fish could enable pathways to improved bioinspired human body armour, and may provide clues to the evolutionary origins of mineralized tissues. Here, we present a multiscale experimental and computational approach that reveals the materials design principles present within individual ganoid scales from the 'living fossil' Polypterus senegalus. This fish belongs to the ancient family Polypteridae, which first appeared 96 million years ago during the Cretaceous period and still retains many of their characteristics. The mechanistic origins of penetration resistance (approximating a biting attack) were investigated and found to include the juxtaposition of multiple distinct reinforcing composite layers that each undergo their own unique deformation mechanisms, a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, and layers with an undetectable gradation, load-dependent effective material properties, circumferential surface cracking, orthogonal microcracking in laminated sublayers and geometrically corrugated junctions between layers.

  20. Irradiation of industrial enzyme preparations. II. Characterization of fungal pectinase by thin-layer isoelectric focusing and gel filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delincee, H.

    1978-01-01

    Industrial dry fungal pectinase from A. niger was irradiated with doses (up to 1 Mrad) of /sup 60/Co-..gamma..rays effective in reducing microbial contamination. The pectinase was characterized by thin-layer isoelectric focusing and gel filtration in order to detect possible radiation-induced structural alterations. Thin-layer isoelectric focusing revealed at least fifteen multiple forms with pectin-depolymerizing activity, with isoelectric points in the range pH 4.5 to 7. Heterogeneity of pectinesterase was also demonstrated, the main band occurring around pH 4. By thin-layer gel filtration the molecular weight of the pectin-depolymerase was estimated as being about 36,000, and that of pectinesterase as about 33,000.more » Radiation-induced changes of the charge properties or molecular size of the irradiated pectinase preparation were not observed. The feasibility of using ionizing radiation for the reduction of microbial contamination of industrial enzyme preparations looks promising.« less

  1. Evidence of Momentum Conservation at a Nonepitaxial Metal/Semiconductor Interface Using Ballistic Electron Emission Microscopy

    NASA Technical Reports Server (NTRS)

    Bell, L. D.

    1996-01-01

    Ballistic-Electron-Emission Microscopy (BEEM) spectroscopy has been performed on Au/Si(111) structures as a function of Au thickness and temperature. At 77 K a direct signature of parallel momentum conservation at the Au/Si interface is observed in the BEEM spectra. The variation in spectral shape with both Au thickness and temperature places restrictions on allowable values of inelastic and elastic mean-free paths in the metal, and also requires the presence of multiple electron passes within the Au layer. An independent indication of multiple reflections is directly observed in the attenuation of BEEM current with Au thickness.

  2. Flexible fabrication of multi-scale integrated 3D periodic nanostructures with phase mask

    NASA Astrophysics Data System (ADS)

    Yuan, Liang Leon

    Top-down fabrication of artificial nanostructures, especially three-dimensional (3D) periodic nanostructures, that forms uniform and defect-free structures over large area with the advantages of high throughput and rapid processing and in a manner that can further monolithically integrate into multi-scale and multi-functional devices is long-desired but remains a considerable challenge. This thesis study advances diffractive optical element (DOE) based 3D laser holographic nanofabrication of 3D periodic nanostructures and develops new kinds of DOEs for advanced diffracted-beam control during the fabrication. Phase masks, as one particular kind of DOE, are a promising direction for simple and rapid fabrication of 3D periodic nanostructures by means of Fresnel diffraction interference lithography. When incident with a coherent beam of light, a suitable phase mask (e.g. with 2D nano-grating) can create multiple diffraction orders that are inherently phase-locked and overlap to form a 3D light interference pattern in the proximity of the DOE. This light pattern is typically recorded in photosensitive materials including photoresist to develop into 3D photonic crystal nanostructure templates. Two kinds of advanced phase masks were developed that enable delicate phase control of multiple diffraction beams. The first exploits femtosecond laser direct writing inside fused silica to assemble multiple (up to nine) orthogonally crossed (2D) grating layers, spaced on Talbot planes to overcome the inherent weak diffraction efficiency otherwise found in low-contrast volume gratings. A systematic offsetting of orthogonal grating layers to establish phase offsets over 0 to pi/2 range provided precise means for controlling the 3D photonic crystal structure symmetry between body centered tetragonal (BCT) and woodpile-like tetragonal (wTTR). The second phase mask consisted of two-layered nanogratings with small sub-wavelength grating periods and phase offset control. That was designed with isotropic properties attractive for generating a complete photonic band gap (PBG). An isolation layer was used between adjacent polymer layers to offer a reversal coating for sample preparation of scanning electron microscopy (SEM) imaging and top surface planarization. Electron beam lithography has been employed to fabricate a multi-level nano-grating phase mask that produces a diamond-like 3D nanostructure via phase mask lithography, promising for creating photonic crystal (PC) templates that can be inverted with high-index materials and form a complete PBG at telecommunication wavelengths. A laser scanning holographic method for 3D exposure in thick photoresist is introduced that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form highly uniform 3D nanostructure with beam size scaled to small 200 microm diameter. Further direct-write holography demonstrates monolithical writing of multi-scale lab-on-a-chip with multiple functionalities including on-chip integrated fluorescence. Various 3D periodic nanostructures are demonstrated over a 15 mmx15 mm area, through full 40 microm photoresist thickness and with uniform structural and optical properties revealed by focused ion beam (FIB) milling, SEM imaging and stopband measures. The lateral and axial periods scale from respective 1500 nm to 570 nm and 9.2 microm to 1.2 microm to offer a Gamma-Z stopband at 1.5 microm. Overall, laser scanning is presented as a facile means to embed 3D PC nanostructure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  3. Structuring of Hydrogels across Multiple Length Scales for Biomedical Applications.

    PubMed

    Cooke, Megan E; Jones, Simon W; Ter Horst, Britt; Moiemen, Naiem; Snow, Martyn; Chouhan, Gurpreet; Hill, Lisa J; Esmaeli, Maryam; Moakes, Richard J A; Holton, James; Nandra, Rajpal; Williams, Richard L; Smith, Alan M; Grover, Liam M

    2018-04-01

    The development of new materials for clinical use is limited by an onerous regulatory framework, which means that taking a completely new material into the clinic can make translation economically unfeasible. One way to get around this issue is to structure materials that are already approved by the regulator, such that they exhibit very distinct physical properties and can be used in a broader range of clinical applications. Here, the focus is on the structuring of soft materials at multiple length scales by modifying processing conditions. By applying shear to newly forming materials, it is possible to trigger molecular reorganization of polymer chains, such that they aggregate to form particles and ribbon-like structures. These structures then weakly interact at zero shear forming a solid-like material. The resulting self-healing network is of particular use for a range of different biomedical applications. How these materials are used to allow the delivery of therapeutic entities (cells and proteins) and as a support for additive layer manufacturing of larger-scale tissue constructs is discussed. This technology enables the development of a range of novel materials and structures for tissue augmentation and regeneration. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thin coatings for protecting titanium aluminides in high-temperature oxidizing environments

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Taylor, P. J.; Clark, R. K.; Wallace, T. A.

    1991-01-01

    Titanium aluminides have high specific strengths at high temperatures but are susceptible to environmental attack. Their use in many aerospace applications would require that they be protected with coatings that, for structural efficiency, must be thin. It is conceivable that acceptable coatings might be found in several oxide systems, and consequently, oxide coatings of many compositions were prepared from sol-gels for study. Response-surface methodology was used to refine coating compositions and factorial experiments were used to develop coating strategies. Oxygen permeability diagrams of two-layer coatings for several oxide systems, an analysis of multiple-layer coatings on rough and polished surfaces, and modeling of the oxidation weight gain are presented.

  5. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  6. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  7. Highly efficient quantum dot-based photoconductive THz materials and devices

    NASA Astrophysics Data System (ADS)

    Rafailov, E. U.; Leyman, R.; Carnegie, D.; Bazieva, N.

    2013-09-01

    We demonstrate Terahertz (THz) signal sources based on photoconductive (PC) antenna devices comprising active layers of InAs semiconductor quantum dots (QDs) on GaAs. Antenna structures comprised of multiple active layers of InAs:GaAs PC materials are optically pumped using ultrashort pulses generated by a Ti:Sapphire laser and CW dualwavelength laser diodes. We also characterised THz output signals using a two-antenna coherent detection system. We discuss preliminary performance data from such InAs:GaAs THz devices which exhibit efficient emission of both pulsed and continuous wave (CW) THz signals and significant optical-to-THz conversion at both absorption wavelength ranges, <=850 nm and <=1300 nm.

  8. Natively Unfolded FG Repeats Stabilize the Structure of the Nuclear Pore Complex.

    PubMed

    Onischenko, Evgeny; Tang, Jeffrey H; Andersen, Kasper R; Knockenhauer, Kevin E; Vallotton, Pascal; Derrer, Carina P; Kralt, Annemarie; Mugler, Christopher F; Chan, Leon Y; Schwartz, Thomas U; Weis, Karsten

    2017-11-02

    Nuclear pore complexes (NPCs) are ∼100 MDa transport channels assembled from multiple copies of ∼30 nucleoporins (Nups). One-third of these Nups contain phenylalanine-glycine (FG)-rich repeats, forming a diffusion barrier, which is selectively permeable for nuclear transport receptors that interact with these repeats. Here, we identify an additional function of FG repeats in the structure and biogenesis of the yeast NPC. We demonstrate that GLFG-containing FG repeats directly bind to multiple scaffold Nups in vitro and act as NPC-targeting determinants in vivo. Furthermore, we show that the GLFG repeats of Nup116 function in a redundant manner with Nup188, a nonessential scaffold Nup, to stabilize critical interactions within the NPC scaffold needed for late steps of NPC assembly. Our results reveal a previously unanticipated structural role for natively unfolded GLFG repeats as Velcro to link NPC subcomplexes and thus add a new layer of connections to current models of the NPC architecture. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds

    NASA Astrophysics Data System (ADS)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2017-08-01

    Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.

  10. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-07-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.

  11. Optimized bit extraction using distortion modeling in the scalable extension of H.264/AVC.

    PubMed

    Maani, Ehsan; Katsaggelos, Aggelos K

    2009-09-01

    The newly adopted scalable extension of H.264/AVC video coding standard (SVC) demonstrates significant improvements in coding efficiency in addition to an increased degree of supported scalability relative to the scalable profiles of prior video coding standards. Due to the complicated hierarchical prediction structure of the SVC and the concept of key pictures, content-aware rate adaptation of SVC bit streams to intermediate bit rates is a nontrivial task. The concept of quality layers has been introduced in the design of the SVC to allow for fast content-aware prioritized rate adaptation. However, existing quality layer assignment methods are suboptimal and do not consider all network abstraction layer (NAL) units from different layers for the optimization. In this paper, we first propose a technique to accurately and efficiently estimate the quality degradation resulting from discarding an arbitrary number of NAL units from multiple layers of a bitstream by properly taking drift into account. Then, we utilize this distortion estimation technique to assign quality layers to NAL units for a more efficient extraction. Experimental results show that a significant gain can be achieved by the proposed scheme.

  12. Theoretical investigation on multilayer nanocomposite-based fiber optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Shojaie, Ehsan; Madanipour, Khosro; Gharibzadeh, Azadeh; Abbasi, Shabnam

    2017-06-01

    In this work, a multilayer nanocomposite based fiber optic SPR sensor is considered and especially designed for CO2 gas detection. This proposed fiber sensor consists of fiber core, gold-silver alloy and the absorber layers. The investigation is based on the evaluation of the transmitted-power derived under the transfer matrix method and the multiple-reflection in the sensing area. In terms of sensitivity, the sensor performance is studied theoretically under various conditions related to the metal layer and its gold and silver nanoparticles to form a single alloy film. Effect of additional parameters such as the ratio of the alloy composition and the thickness of the alloy film on the performance of the SPR sensor is studied, as well. Finally, a four-layer structure is introduced to detect carbon dioxide gas. It contains core fiber, gold-silver alloy layer, an absorbent layer of carbon dioxide gas (KOH) and measurement environment. Lower price and size are the main advantages of using such a sensor in compare with commercial (NDIR) gas sensor. Theoretical results show by increasing the metal layer thickness the sensitivity of sensor is increased, and by increasing the ratio of the gold in alloy the sensitivity is decreased.

  13. Plated lamination structures for integrated magnetic devices

    DOEpatents

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  14. Optical properties of a-plane (Al, Ga)N/GaN multiple quantum wells grown on strain engineered Zn1-xMgxO layers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Brault, J.; Nemoz, M.; Teisseire, M.; Vinter, B.; Leroux, M.; Chauveau, J.-M.

    2011-12-01

    Nonpolar (112¯0) Al0.2Ga0.8N/GaN multiple quantum wells (MQWs) have been grown by molecular beam epitaxy on (112¯0) Zn0.74Mg0.26O templates on r-plane sapphire substrates. The quantum wells exhibit well-resolved photoluminescence peaks in the ultra-violet region, and no sign of quantum confined Stark effect is observed in the complete multiple quantum well series. The results agree well with flat band quantum well calculations. Furthermore, we show that the MQW structures are strongly polarized along the [0001] direction. The origin of the polarization is discussed in terms of the strain anisotropy dependence of the exciton optical oscillator strengths.

  15. Thermal annealing induced multiple phase in V/V2O5 alternating multilayer structure

    NASA Astrophysics Data System (ADS)

    Ilahi, B.; Abdel-Rahman, M.; Zaaboub, Z.; Zia, M. F.; Alduraibi, M.; Maaref, H.

    2016-09-01

    In this paper, we report on microstructural, optical and electrical properties of alternating multilayer of vanadium pentoxide (V2O5), 25 nm, and vanadium (V), 5 nm, thin films deposited at room temperature by radio frequency (RF) and DC magnetron sputtering, respectively. Raman and photoluminescence (PL) spectroscopy have been employed to investigate the effects of thermal annealing for 20, 30 and 40 min at 400∘C in Nitrogen (N2) atmosphere on the multiple phase formation and its impact on the film resistance and temperature coefficient of resistance (TCR). We demonstrate that the oxygen free annealing environment allows the formation of multiple phases including V2O5, V6O13 and VO2 through oxygen diffusion and consequent deficiency in V2O5 layer.

  16. Data Acquisition and Linguistic Resources

    NASA Astrophysics Data System (ADS)

    Strassel, Stephanie; Christianson, Caitlin; McCary, John; Staderman, William; Olive, Joseph

    All human language technology demands substantial quantities of data for system training and development, plus stable benchmark data to measure ongoing progress. While creation of high quality linguistic resources is both costly and time consuming, such data has the potential to profoundly impact not just a single evaluation program but language technology research in general. GALE's challenging performance targets demand linguistic data on a scale and complexity never before encountered. Resources cover multiple languages (Arabic, Chinese, and English) and multiple genres -- both structured (newswire and broadcast news) and unstructured (web text, including blogs and newsgroups, and broadcast conversation). These resources include significant volumes of monolingual text and speech, parallel text, and transcribed audio combined with multiple layers of linguistic annotation, ranging from word aligned parallel text and Treebanks to rich semantic annotation.

  17. Direct Visualization of Orbital Flipping in Volborthite by Charge Density Analysis Using Detwinned Data

    NASA Astrophysics Data System (ADS)

    Sugawara, Kento; Sugimoto, Kunihisa; Fujii, Tatsuya; Higuchi, Takafumi; Katayama, Naoyuki; Okamoto, Yoshihiko; Sawa, Hiroshi

    2018-02-01

    The distribution of d-orbital valence electrons in volborthite [Cu3V2O7(OH)2 • 2H2O] was investigated by charge density analysis of the multipole model refinement. Diffraction data were obtained by synchrotron radiation single-crystal X-ray diffraction experiments. Data reduction by detwinning of the multiple structural domains was performed using our developed software. In this study, using high-quality data, we demonstrated that the water molecules in volborthite can be located by the hydrogen bonding in cavities that consist of Kagome lattice layers of CuO4(OH)2 and pillars of V2O7. Final multipole refinements before and after the structural phase transition directly visualized the deformation electron density of the valence electrons. We successfully directly visualized the orbital flipping of the d-orbital dx2-y2, which is the highest level of 3d orbitals occupied by d9 electrons in volborthite. The developed techniques and software can be employed for investigations of structural properties of systems with multiple structural domains.

  18. Development of solid-state avalanche amorphous selenium for medical imaging.

    PubMed

    Scheuermann, James R; Goldan, Amir H; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei

    2015-03-01

    Active matrix flat panel imagers (AMFPI) have limited performance in low dose applications due to the electronic noise of the thin film transistor (TFT) array. A uniform layer of avalanche amorphous selenium (a-Se) called high gain avalanche rushing photoconductor (HARP) allows for signal amplification prior to readout from the TFT array, largely eliminating the effects of the electronic noise. The authors report preliminary avalanche gain measurements from the first HARP structure developed for direct deposition onto a TFT array. The HARP structure is fabricated on a glass substrate in the form of p-i-n, i.e., the electron blocking layer (p) followed by an intrinsic (i) a-Se layer and finally the hole blocking layer (n). All deposition procedures are scalable to large area detectors. Integrated charge is measured from pulsed optical excitation incident on the top electrode (as would in an indirect AMFPI) under continuous high voltage bias. Avalanche gain measurements were obtained from samples fabricated simultaneously at different locations in the evaporator to evaluate performance uniformity across large area. An avalanche gain of up to 80 was obtained, which showed field dependence consistent with previous measurements from n-i-p HARP structures established for vacuum tubes. Measurements from multiple samples demonstrate the spatial uniformity of performance using large area deposition methods. Finally, the results were highly reproducible during the time course of the entire study. We present promising avalanche gain measurement results from a novel HARP structure that can be deposited onto a TFT array. This is a crucial step toward the practical feasibility of AMFPI with avalanche gain, enabling quantum noise limited performance down to a single x-ray photon per pixel.

  19. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GREGORY,DANNY LYNN; CAP,JEROME S.; TOGAMI,THOMAS C.

    1999-11-11

    Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented.

  20. The Benefits of Using Time-Frequency Analysis with Synthetic Aperture Focusing Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Austin P; Clayton, Dwight A

    2015-01-01

    Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results producedmore » using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band s interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m x 2m x 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on improved defect/reinforcement isolation in thick and multilayered reinforcement environments. Additionally, the ability to empirically explore the possibility of a frequency-band-defect-type relationship or sensitivity becomes available.« less

  1. The benefits of using time-frequency analysis with synthetic aperture focusing technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Austin, E-mail: albrightap@ornl.gov, E-mail: claytonda@ornl.gov; Clayton, Dwight, E-mail: albrightap@ornl.gov, E-mail: claytonda@ornl.gov

    2015-03-31

    Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results producedmore » using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m × 2m × 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on improved defect/reinforcement isolation in thick and multilayered reinforcement environments. Additionally, the ability to empirically explore the possibility of a frequency-band-defect-type relationship or sensitivity becomes available.« less

  2. The benefits of using time-frequency analysis with synthetic aperture focusing technique

    NASA Astrophysics Data System (ADS)

    Albright, Austin; Clayton, Dwight

    2015-03-01

    Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m × 2m × 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on improved defect/reinforcement isolation in thick and multilayered reinforcement environments. Additionally, the ability to empirically explore the possibility of a frequency-band-defect-type relationship or sensitivity becomes available.

  3. Piezoelectric T-matrix approach and multiple scattering of electroacoustic waves in thin plates

    NASA Astrophysics Data System (ADS)

    Darabi, Amir; Ruzzene, Massimo; Leamy, Michael J.

    2017-12-01

    Metamaterial-enhanced harvesting (MEH) of wave energy in thin plates and other structures has appeared recently for powering small sensors and devices. To support continued MEH concept development, this paper proposes a fully coupled T-matrix formulation for analyzing scattering of incident wave energy from a piezoelectric patch attached to a thin plate. More generally, the T-matrix represents an input-output relationship between incident and reflected waves from inclusions in a host layer, and is introduced herein for a piezoelectric patch connected to an external circuit. The utility of a T-matrix formalism is most apparent in scenarios employing multiple piezoelectric harvesters, where it can be re-used with other T-matrices (such as those previously formulated for rigid, void, and elastic inclusions) in a multiple scattering context to compute the total wavefield and other response quantities, such as harvested power. Following development of the requisite T-matrix, harvesting in an example funnel-shaped metamaterial waveguide structure is predicted using the multiple scattering approach. Enhanced wave energy harvesting predictions are verified through comparisons to experimental results of a funnel-shaped waveguide formed by placing rigid aluminum inclusions in, and multiple piezoelectric harvesters on, a Lexan plate. Good agreement with predicted response quantities is noted.

  4. A Flexible High-Performance Photoimaging Device Based on Bioinspired Hierarchical Multiple-Patterned Plasmonic Nanostructures.

    PubMed

    Lee, Yoon Ho; Lee, Tae Kyung; Kim, Hongki; Song, Inho; Lee, Jiwon; Kang, Saewon; Ko, Hyunhyub; Kwak, Sang Kyu; Oh, Joon Hak

    2018-03-01

    In insect eyes, ommatidia with hierarchical structured cornea play a critical role in amplifying and transferring visual signals to the brain through optic nerves, enabling the perception of various visual signals. Here, inspired by the structure and functions of insect ommatidia, a flexible photoimaging device is reported that can simultaneously detect and record incoming photonic signals by vertically stacking an organic photodiode and resistive memory device. A single-layered, hierarchical multiple-patterned back reflector that can exhibit various plasmonic effects is incorporated into the organic photodiode. The multiple-patterned flexible organic photodiodes exhibit greatly enhanced photoresponsivity due to the increased light absorption in comparison with the flat systems. Moreover, the flexible photoimaging device shows a well-resolved spatiotemporal mapping of optical signals with excellent operational and mechanical stabilities at low driving voltages below half of the flat systems. Theoretical calculation and scanning near-field optical microscopy analyses clearly reveal that multiple-patterned electrodes have much stronger surface plasmon coupling than flat and single-patterned systems. The developed methodology provides a versatile and effective route for realizing high-performance optoelectronic and photonic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Efficient organ localization using multi-label convolutional neural networks in thorax-abdomen CT scans

    NASA Astrophysics Data System (ADS)

    Efrain Humpire-Mamani, Gabriel; Arindra Adiyoso Setio, Arnaud; van Ginneken, Bram; Jacobs, Colin

    2018-04-01

    Automatic localization of organs and other structures in medical images is an important preprocessing step that can improve and speed up other algorithms such as organ segmentation, lesion detection, and registration. This work presents an efficient method for simultaneous localization of multiple structures in 3D thorax-abdomen CT scans. Our approach predicts the location of multiple structures using a single multi-label convolutional neural network for each orthogonal view. Each network takes extra slices around the current slice as input to provide extra context. A sigmoid layer is used to perform multi-label classification. The output of the three networks is subsequently combined to compute a 3D bounding box for each structure. We used our approach to locate 11 structures of interest. The neural network was trained and evaluated on a large set of 1884 thorax-abdomen CT scans from patients undergoing oncological workup. Reference bounding boxes were annotated by human observers. The performance of our method was evaluated by computing the wall distance to the reference bounding boxes. The bounding boxes annotated by the first human observer were used as the reference standard for the test set. Using the best configuration, we obtained an average wall distance of 3.20~+/-~7.33 mm in the test set. The second human observer achieved 1.23~+/-~3.39 mm. For all structures, the results were better than those reported in previously published studies. In conclusion, we proposed an efficient method for the accurate localization of multiple organs. Our method uses multiple slices as input to provide more context around the slice under analysis, and we have shown that this improves performance. This method can easily be adapted to handle more organs.

  6. Long-range and depth-selective imaging of macroscopic targets using low-coherence and wide-field interferometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Woo, Sungsoo; Kang, Sungsam; Yoon, Changhyeong; Choi, Wonshik

    2016-03-01

    With the advancement of 3D display technology, 3D imaging of macroscopic objects has drawn much attention as they provide the contents to display. The most widely used imaging methods include a depth camera, which measures time of flight for the depth discrimination, and various structured illumination techniques. However, these existing methods have poor depth resolution, which makes imaging complicated structures a difficult task. In order to resolve this issue, we propose an imaging system based upon low-coherence interferometry and off-axis digital holographic imaging. By using light source with coherence length of 200 micro, we achieved the depth resolution of 100 micro. In order to map the macroscopic objects with this high axial resolution, we installed a pair of prisms in the reference beam path for the long-range scanning of the optical path length. Specifically, one prism was fixed in position, and the other prism was mounted on a translation stage and translated in parallel to the first prism. Due to the multiple internal reflections between the two prisms, the overall path length was elongated by a factor of 50. In this way, we could cover a depth range more than 1 meter. In addition, we employed multiple speckle illuminations and incoherent averaging of the acquired holographic images for reducing the specular reflections from the target surface. Using this newly developed system, we performed imaging targets with multiple different layers and demonstrated imaging targets hidden behind the scattering layers. The method was also applied to imaging targets located around the corner.

  7. Laser Induced Fluorescence Studies of Electrostatic Double Layers in an Expanding Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Carr, Jerry, Jr.

    We report the first evidence of a laboratory double layer (DL) collapsing in the presence of an instability studied by Chakraborty Thakur et al. 1 with the use of time resolved laser induced fluorescence (LIF) studies. Higher time resolution studies then provided the first statistically validated proof of the correlation between the ion acoustic instability and a DL. Time-frequency analysis in the form of time resolved cross power spectra and continuous wavelet transforms were used to provide insight into beam formation. The implications of this work is that in the creation of strong DLs in expanding plasmas for plasma propulsion or other applications may be self-limited through instability growth. Over the past decade, experimental and theoretical studies have demonstrated the formation of stable, electrostatic, current-free double layers (CFDLs) in plasmas with a strong density gradient; typically a result of a divergent magnetic field. In this work, we present evidence for the formation of multiple double layers within a single divergent magnetic field structure. Downstream of the divergent magnetic field, multiple accelerated ion populations are observed through laser induced fluorescence measurements of the ion velocity distribution function. The formation of the multiple double layer structure is a strong function of the neutral gas pressure in the experiment. The similarity of the accelerated ion populations observed in these laboratory experiments to ion populations observed in reconnection outflow regions in the magnetosphere and in numerical simulations is also described. If ion energization during magnetic reconnection also results solely from acceleration in electric fields, these observations imply a prediction that the ion heating, i.e., the broadening of ion velocity distribution functions, reported in magnetic reconnection experiments is more accurately described by a superposition of differently accelerated ion populations. Therefore, the ion gheatingh rate during reconnection should scale as the square root of the cube of the charge per unit mass (q3/m)1/2 for ions with varying charge-to-mass ratios. A new RFEA probe was benchmarked on the low pressure CFDL plasmas produced in WVU HELIX-LEIA. This work was the result of collaboration between the University of Tromso (UiT) and WVU. LIF was used to confirm the RFEAs ability to detect a beam when one was present. The RFEA was also able to detect the presence of a beam when LIF techniques were limited by metastable quenching. The probefs limitations in dealing with ion focusing are discussed as well.

  8. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis.

    PubMed

    Feucht, Nikolaus; Maier, Mathias; Lepennetier, Gildas; Pettenkofer, Moritz; Wetzlmair, Carmen; Daltrozzo, Tanja; Scherm, Pauline; Zimmer, Claus; Hoshi, Muna-Miriam; Hemmer, Bernhard; Korn, Thomas; Knier, Benjamin

    2018-01-01

    Patients with multiple sclerosis (MS) and clinically isolated syndrome (CIS) may show alterations of retinal layer architecture as measured by optical coherence tomography. Little is known about changes in the retinal vascular network during MS. To characterize retinal vessel structures in patients with MS and CIS and to test for associations with MS disease activity. In all, 42 patients with MS or CIS and 50 healthy controls underwent retinal optical coherence tomography angiography (OCT-A) with analysis of the superficial and deep vascular plexuses and the choriocapillaries. We tested OCT-A parameters for associations with retinal layer volumes, history of optic neuritis (ON), and the retrospective disease activity. Inner retinal layer volumes correlated positively with the density of both the superficial and deep vascular plexuses. Eyes of MS/CIS patients with a history of ON revealed reduced vessel densities of the superficial and deep vascular plexuses as compared to healthy controls. Higher choriocapillary vessel densities were associated with ongoing inflammatory disease activity during 24 months prior to OCT-A examination in MS and CIS patients. Optic neuritis is associated with rarefaction of the superficial and deep retinal vessels. Alterations of the choriocapillaries might be linked to disease activity in MS.

  9. Two-Axis Direct Fluid Shear Stress Sensor for Aerodynamic Applications

    NASA Technical Reports Server (NTRS)

    Bajikar, Sateesh S.; Scott, Michael A.; Adcock, Edward E.

    2011-01-01

    This miniature or micro-sized semiconductor sensor design provides direct, nonintrusive measurement of skin friction or wall shear stress in fluid flow situations in a two-axis configuration. The sensor is fabricated by microelectromechanical system (MEMS) technology, enabling small size and multiple, low-cost reproductions. The sensors may be fabricated by bonding a sensing element wafer to a fluid-coupling element wafer. Using this layered machine structure provides a truly three-dimensional device.

  10. Target for production of X-rays

    NASA Astrophysics Data System (ADS)

    Korenev, S. A.

    2004-09-01

    The patented new type of X-ray target is considered in this report. The main concept of the target consists in developing a sandwich structure depositing a coating of materials with high Z on the substrate with low Z, high thermal conductivity and high thermal stability. The target presents multiple layers system. The thermal conditions for X-ray target are discussed. The experimental results for Ta target on the Al and Cu substrates are presented.

  11. A psychoanalyst views inception.

    PubMed

    Clemens, Norman A

    2013-05-01

    The author, a psychoanalyst, discusses the 2010 film, Inception, discerning the parallels and differences between cinematic dreaming states as shown in the film and psychoanalytic processes. The movie presents the unknown and un-psychoanalytic phenomena of group shared dreaming, manipulation of other people's dreams with criminal intent, and multiple structured layers of dreaming. In parallel, however, the lead character appears to work through a complicated state of derealization, mourning, guilt, rage, and loss in the course of dreaming.

  12. Diversity of multilayer networks and its impact on collaborating epidemics

    NASA Astrophysics Data System (ADS)

    Min, Yong; Hu, Jiaren; Wang, Weihong; Ge, Ying; Chang, Jie; Jin, Xiaogang

    2014-12-01

    Interacting epidemics on diverse multilayer networks are increasingly important in modeling and analyzing the diffusion processes of real complex systems. A viral agent spreading on one layer of a multilayer network can interact with its counterparts by promoting (cooperative interaction), suppressing (competitive interaction), or inducing (collaborating interaction) its diffusion on other layers. Collaborating interaction displays different patterns: (i) random collaboration, where intralayer or interlayer induction has the same probability; (ii) concentrating collaboration, where consecutive intralayer induction is guaranteed with a probability of 1; and (iii) cascading collaboration, where consecutive intralayer induction is banned with a probability of 0. In this paper, we develop a top-bottom framework that uses only two distributions, the overlaid degree distribution and edge-type distribution, to model collaborating epidemics on multilayer networks. We then state the response of three collaborating patterns to structural diversity (evenness and difference of network layers). For viral agents with small transmissibility, we find that random collaboration is more effective in networks with higher diversity (high evenness and difference), while the concentrating pattern is more suitable in uneven networks. Interestingly, the cascading pattern requires a network with moderate difference and high evenness, and the moderately uneven coupling of multiple network layers can effectively increase robustness to resist cascading failure. With large transmissibility, however, we find that all collaborating patterns are more effective in high-diversity networks. Our work provides a systemic analysis of collaborating epidemics on multilayer networks. The results enhance our understanding of biotic and informative diffusion through multiple vectors.

  13. One-step nanoimprinted hybrid micro-/nano-structure for in situ protein detection of isolated cell array via localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ali, Riyaz Ahmad Mohamed; Villariza Espulgar, Wilfred; Aoki, Wataru; Jiang, Shu; Saito, Masato; Ueda, Mitsuyoshi; Tamiya, Eiichi

    2018-03-01

    Nanoplasmonic biosensors show high potentials as label-free devices for continuous monitoring in biomolecular analyses. However, most current sensors comprise multiple-dedicated layers with complicated fabrication procedures, which increases production time and manufacturing costs. In this work, we report the synergistic integration of cell-trapping microwell structures with plasmonic sensing nanopillar structures in a single-layered substrate by one-step thermal nanoimprinting. Here, microwell arrays are used for isolating cells, wherein gold-capped nanostructures sense changes in local refractive index via localized surface plasmon resonance (LSPR). Hence, proteins secreted from trapped cells can be label-freely detected as peak shifts in absorbance spectra. The fabricated device showed a detection limit of 10 ng/µL anti-IgA. In Pichia pastoris cells trial analysis, a red shift of 6.9 nm was observed over 12 h, which is likely due to the protein secretion from the cells. This approach provides an inexpensive, rapid, and reproducible alternative for mass production of biosensors for continuous biomolecular analyses.

  14. Growth and properties of wide bandgap (MgSe)n(ZnxCd1-xSe)m short-period superlattices

    NASA Astrophysics Data System (ADS)

    Garcia, Thor A.; Tamargo, Maria C.

    2017-12-01

    We report the molecular beam epitaxy (MBE) growth and properties of (MgSe)n(ZnxCd1-x Se)m short-period superlattices(SPSLs) for potential application in II-VI devices grown on InP substrates. SPSL structures up to 1 μm thick with effective bandgaps ranging from 2.6 eV to above 3.42 eV are grown and characterized, extending the typical range possible for the ZnxCdyMg1-x-ySe random alloy beyond 3.2 eV. Additionally, ZnxCd1-xSe single and multiple quantum well structures using the SPSL barriers are also grown and investigated. The structures are characterized utilizing reflection high-energy electron diffraction, X-ray reflectance, X-ray diffraction and photoluminescence. We observed layer-by-layer growth and smoother interfaces in the QWs grown with SPSL when compared to the ZnxCdyMg1-x-ySe random alloy. The results indicate that this materials platform is a good candidate to replace the random alloy in wide bandgap device applications.

  15. Mapping Metals Incorporation of a Whole Single Catalyst Particle Using Element Specific X-ray Nanotomography

    DOE PAGES

    Meirer, Florian; Morris, Darius T.; Kalirai, Sam; ...

    2015-01-02

    Full-field transmission X-ray microscopy has been used to determine the 3D structure of a whole individual fluid catalytic cracking (FCC) particle at high spatial resolution and in a fast, noninvasive manner, maintaining the full integrity of the particle. Using X-ray absorption mosaic imaging to combine multiple fields of view, computed tomography was performed to visualize the macropore structure of the catalyst and its availability for mass transport. We mapped the relative spatial distributions of Ni and Fe using multiple-energy tomography at the respective X-ray absorption K-edges and correlated these distributions with porosity and permeability of an equilibrated catalyst (E-cat) particle.more » Both metals were found to accumulate in outer layers of the particle, effectively decreasing porosity by clogging of pores and eventually restricting access into the FCC particle.« less

  16. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  17. Double layers and double wells in arbitrary degenerate plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η{sub 0}, ranging from dilutemore » classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η{sub 0} < 0 and quantum with η{sub 0} > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Shahab; Vijaya Prakash, G., E-mail: prakash@physics.iitd.ac.in; Baumberg, Jeremy J.

    Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C{sub 12}H{sub 25}NH{sub 3}){sub 2}PbI{sub 4(1−y)}Br{sub 4y} (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed tomore » the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices.« less

  19. Impact of Tropopause Structures on Deep Convective Transport Observed during MACPEX

    NASA Astrophysics Data System (ADS)

    Mullendore, G. L.; Bigelbach, B. C.; Christensen, L. E.; Maddox, E.; Pinkney, K.; Wagner, S.

    2016-12-01

    Deep convection is the most efficient method of transporting boundary layer mass to the upper troposphere and stratosphere (UTLS). The Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) was conducted during April of 2011 over the central U.S. With a focus on cirrus clouds, the campaign flights often sampled large cirrus anvils downstream from deep convection and included an extensive observational suite of chemical measurements on a high altitude aircraft. As double-tropopause structures are a common feature in the central U.S. during the springtime, the MACPEX campaign provides a good opportunity to gather cases of deep convective transport in the context of both single and double tropopause structures. Sampling of chemical plumes well downstream from convection allows for sampling in relatively quiescent conditions and analysis of irreversible transport. The analysis presented includes multiple methods to assess air mass source and possible convective processing, including back trajectories and ratios of chemical concentrations. Although missions were flown downstream of deep convection, recent processing by convection does not seem likely in all cases that high altitude carbon monoxide plumes were observed. Additionally, the impact of single and double tropopause structures on deep convective transport is shown to be strongly dependent on high stability layers.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasileiadis, Thomas; Department of Materials Science, University of Patras, GR-26504 Rio-Patras; Yannopoulos, Spyros N., E-mail: sny@iceht.forth.gr

    Controlled photo-induced oxidation and amorphization of elemental trigonal tellurium are achieved by laser irradiation at optical wavelengths. These processes are monitored in situ by time-resolved Raman scattering and ex situ by electron microscopies. Ultrathin TeO₂ films form on Te surfaces, as a result of irradiation, with an interface layer of amorphous Te intervening between them. It is shown that irradiation, apart from enabling the controllable transformation of bulk Te to one-dimensional nanostructures, such as Te nanotubes and hybrid core-Te/sheath-TeO₂ nanowires, causes also a series of light-driven (athermal) phase transitions involving the crystallization of the amorphous TeO₂ layers and its transformationmore » to a multiplicity of crystalline phases including the γ-, β-, and α-TeO₂ crystalline phases. The kinetics of the above photo-induced processes is investigated by Raman scattering at various laser fluences revealing exponential and non-exponential kinetics at low and high fluence, respectively. In addition, the formation of ultrathin (less than 10 nm) layers of amorphous TeO₂ offers the possibility to explore structural transitions in 2D glasses by observing changes in the short- and medium-range structural order induced by spatial confinement.« less

  1. Highly monodisperse multiple twinned AuCu-Pt trimetallic nanoparticles with high index surfaces.

    PubMed

    Khanal, Subarna; Bhattarai, Nabraj; McMaster, David; Bahena, Daniel; Velazquez-Salazar, J Jesus; Jose-Yacaman, Miguel

    2014-08-14

    Trimetallic nanoparticles possess different properties than their mono- and bi-metallic counterparts, opening a wide range of possibilities for diverse potential applications with the notion to study possible morphology, atomic ordering, reduce precious metal consumption and many others. In this paper, we present a comprehensive experimental study on AuCu-Pt trimetallic nanoparticles with an average diameter of 15 ± 1.0 nm, synthesized in a one-pot synthesis method and characterized by the Cs-corrected scanning transmission electron microscopy technique that allowed us to probe the structure at the atomic level resolution. A new way to control the nanoparticle morphology by the presence of third metal (Pt) is also discussed by the overgrowth of Pt on the as prepared AuCu core by Frank-van der Merwe (FM) layer-by-layer and Stranski-Krastanov (SK) island-on-wetting-layer growth modes. With the application of this research, we are now a step closer to produce optimum catalysts in which the active phase forms only surface monolayers. In addition, the nanoalloy exhibits high index facet surfaces with {211} and {321} families that are highly open-structure surfaces and are interesting for the catalytic applications.

  2. Highly Monodisperse Multiple Twinned AuCu/Pt Trimetallic Nanoparticles with High Index Surfaces

    PubMed Central

    Khanal, Subarna; Bhattarai, Nabraj; McMaster, David; Bahena, Daniel; Velazquez-Salazar, J. Jesus

    2014-01-01

    Trimetallic nanoparticles present different properties than their mono- and bi-metallic counterparts, opening a wide range of possibilities for diverse potential applications with the notion to study possible morphology, atomic ordering, reduce precious metal consumption and many others. In this paper, we are presenting a comprehensive experimental study on AuCu/Pt trimetallic nanoparticles with an average diameter 15 ± 1.0 nm, synthesized in one-pot synthesis method and characterized by Cs-corrected scanning transmission electron microscopy technique that allowed us to probe the structure at the atomic level resolution. A new way to control the nanoparticle morphology by the presence of third metal (Pt) is also discussed by the overgrowth of Pt on as prepared AuCu core by Frank–van der Merwe (FM) layer-by-layer and Stranski–Krastanov (SK) island-on-wetting-layer growth modes. With the application of this research, we are now a step closer to produce optimum catalysts in which the active phase forms only surface monolayers. In addition, the nanoalloy presents high index facet surfaces with {211} and {321} families, that are highly open-structure surfaces and are interesting for the catalytic applications. PMID:24975090

  3. Earthquake cycle deformation in the Tibetan plateau with a weak mid-crustal layer

    NASA Astrophysics Data System (ADS)

    DeVries, Phoebe M. R.; Meade, Brendan J.

    2013-06-01

    observations of interseismic deformation across the Tibetan plateau contain information about both tectonic and earthquake cycle processes. Time-variations in surface velocities between large earthquakes are sensitive to the rheological structure of the subseismogenic crust, and, in particular, the viscosity of the middle and lower crust. Here we develop a semianalytic solution for time-dependent interseismic velocities resulting from viscoelastic stress relaxation in a localized midcrustal layer in response to forcing by a sequence of periodic earthquakes. Earthquake cycle models with a weak midcrustal layer exhibit substantially more near-fault preseismic strain localization than do classic two-layer models at short (<100 yr) Maxwell times. We apply both this three-layer model and the classic two-layer model to geodetic observations before and after the 1997 MW = 7.6 Manyi and 2001 MW = 7.8 Kokoxili strike-slip earthquakes in Tibet to estimate the viscosity of the crust below a 20 km thick seismogenic layer. For these events, interseismic stress relaxation in a weak (viscosity ≤1018.5 Paṡs) and thin (height ≤20 km) midcrustal layer explains observations of both preseismic near-fault strain localization and rapid (>50 mm/yr) postseismic velocities in the years following the coseismic ruptures. We suggest that earthquake cycle models with a localized midcrustal layer can simultaneously explain both preseismic and postseismic geodetic observations with a single Maxwell viscosity, while the classic two-layer model requires a rheology with multiple relaxation time scales.

  4. Legacy of Pre-Disturbance Spatial Pattern Determines Early Structural Diversity following Severe Disturbance in Montane Spruce Forests

    PubMed Central

    Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.

    2015-01-01

    Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations. PMID:26421726

  5. A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.

    PubMed

    Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao

    2018-05-23

    The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.

  6. Quantum key distribution network for multiple applications

    NASA Astrophysics Data System (ADS)

    Tajima, A.; Kondoh, T.; Ochi, T.; Fujiwara, M.; Yoshino, K.; Iizuka, H.; Sakamoto, T.; Tomita, A.; Shimamura, E.; Asami, S.; Sasaki, M.

    2017-09-01

    The fundamental architecture and functions of secure key management in a quantum key distribution (QKD) network with enhanced universal interfaces for smooth key sharing between arbitrary two nodes and enabling multiple secure communication applications are proposed. The proposed architecture consists of three layers: a quantum layer, key management layer and key supply layer. We explain the functions of each layer, the key formats in each layer and the key lifecycle for enabling a practical QKD network. A quantum key distribution-advanced encryption standard (QKD-AES) hybrid system and an encrypted smartphone system were developed as secure communication applications on our QKD network. The validity and usefulness of these systems were demonstrated on the Tokyo QKD Network testbed.

  7. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Gang; Shao, Kui-Zhan; Chen, Lei

    2012-12-15

    Three new polymers, [Cd(L){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Cd{sub 3}(L){sub 2}({mu}{sub 3}-OH){sub 2}({mu}{sub 2}-Cl){sub 2}(H{sub 2}O){sub 2}]{sub n} (2), {l_brace}[Cd{sub 2}(L){sub 2}(nic){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace}{sub n} (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L{sup -} ligands connecting chain-like [Cd({mu}{sub 3}-OH)({mu}{sub 2}-Cl)]{sub n} secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4{center_dot}8{sup 2})(4{center_dot}8{sup 2}{center_dot}10{sup 3}) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated.more » - Graphical abstract: Three new coordination polymers based on the semi-rigid multidentate N-donor ligand have been successfully synthesized by hydrothermal reaction. Complexes 1 and 2 exhibit the 2D layers formed by inter-linking single helices and L{sup -} anions bridging 1D chain-like SBUs, respectively. Complex 3 is buit by L{sup -} and assistant nic{sup -} ligands connecting metal centers and possesses a (3,4)-connected framework with (4 Multiplication-Sign 8{sup 2})(4 Multiplication-Sign 8{sup 2} Multiplication-Sign 10{sup 3}) topology. Moreover, these complexes display fluorescent properties indicating that they may have potential applications as optical materials. Highlights: Black-Right-Pointing-Pointer Three Cd-compounds were prepared from semi-rigid HL ligand with different N-containing groups. Black-Right-Pointing-Pointer They exhibit diverse structures from 2D monomolecular layer to 3D covalent framework. Black-Right-Pointing-Pointer The HL ligands displayed various coordination modes under different reaction conditions. Black-Right-Pointing-Pointer These compounds exhibit good luminescent properties.« less

  8. A naked eye refractive index sensor with a visible multiple peak metamaterial absorber.

    PubMed

    Ma, Heli; Song, Kun; Zhou, Liang; Zhao, Xiaopeng

    2015-03-26

    We report a naked eye refractive index sensor with a visible metamaterial absorber. The visible metamaterial absorber consisting of a silver dendritic/dielectric/metal structure shows multiple absorption peaks. By incorporating a gain material (rhodamine B) into the dielectric layer, the maximal magnitude of the absorption peak can be improved by about 30%. As the metamaterial absorber is sensitive to the refractive index of glucose solutions, it can function as a sensor that quickly responds to variations of the refractive index of the liquid. Meanwhile, since the response is presented via color changes, it can be clearly observed by the naked eyes. Further experiments have confirmed that the sensor can be used repeatedly.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yao; Huang, Yang; Wang, Junxi

    In this work, a novel carrier concentration adjusting insertion layer for InGaN/GaN multiple quantum wells light-emitting diodes was proposed to mitigate the efficiency droop and improve optical output properties at high current density. The band diagrams and carrier distributions were investigated numerically and experimentally. The results indicate that due to the newly formed electron barrier and the adjusted built-in field near the active region, the hole injection has been improved and a better radiative recombination can be achieved. Compared to the conventional LED, the light output power of our new structure with the carrier concentration adjusting layers is enhanced bymore » 127% at 350 mA , while the efficiency only droops to be 88.2% of its peak efficiency.« less

  10. Novel engineered compound semiconductor heterostructures for advanced electronics applications

    NASA Astrophysics Data System (ADS)

    Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.

    1992-06-01

    To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.

  11. Spatial and Feature-Based Attention in a Layered Cortical Microcircuit Model

    PubMed Central

    Wagatsuma, Nobuhiko; Potjans, Tobias C.; Diesmann, Markus; Sakai, Ko; Fukai, Tomoki

    2013-01-01

    Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception. PMID:24324628

  12. Epidemic spreading with activity-driven awareness diffusion on multiplex network.

    PubMed

    Guo, Quantong; Lei, Yanjun; Jiang, Xin; Ma, Yifang; Huo, Guanying; Zheng, Zhiming

    2016-04-01

    There has been growing interest in exploring the interplay between epidemic spreading with human response, since it is natural for people to take various measures when they become aware of epidemics. As a proper way to describe the multiple connections among people in reality, multiplex network, a set of nodes interacting through multiple sets of edges, has attracted much attention. In this paper, to explore the coupled dynamical processes, a multiplex network with two layers is built. Specifically, the information spreading layer is a time varying network generated by the activity driven model, while the contagion layer is a static network. We extend the microscopic Markov chain approach to derive the epidemic threshold of the model. Compared with extensive Monte Carlo simulations, the method shows high accuracy for the prediction of the epidemic threshold. Besides, taking different spreading models of awareness into consideration, we explored the interplay between epidemic spreading with awareness spreading. The results show that the awareness spreading can not only enhance the epidemic threshold but also reduce the prevalence of epidemics. When the spreading of awareness is defined as susceptible-infected-susceptible model, there exists a critical value where the dynamical process on the awareness layer can control the onset of epidemics; while if it is a threshold model, the epidemic threshold emerges an abrupt transition with the local awareness ratio α approximating 0.5. Moreover, we also find that temporal changes in the topology hinder the spread of awareness which directly affect the epidemic threshold, especially when the awareness layer is threshold model. Given that the threshold model is a widely used model for social contagion, this is an important and meaningful result. Our results could also lead to interesting future research about the different time-scales of structural changes in multiplex networks.

  13. Epidemic spreading with activity-driven awareness diffusion on multiplex network

    NASA Astrophysics Data System (ADS)

    Guo, Quantong; Lei, Yanjun; Jiang, Xin; Ma, Yifang; Huo, Guanying; Zheng, Zhiming

    2016-04-01

    There has been growing interest in exploring the interplay between epidemic spreading with human response, since it is natural for people to take various measures when they become aware of epidemics. As a proper way to describe the multiple connections among people in reality, multiplex network, a set of nodes interacting through multiple sets of edges, has attracted much attention. In this paper, to explore the coupled dynamical processes, a multiplex network with two layers is built. Specifically, the information spreading layer is a time varying network generated by the activity driven model, while the contagion layer is a static network. We extend the microscopic Markov chain approach to derive the epidemic threshold of the model. Compared with extensive Monte Carlo simulations, the method shows high accuracy for the prediction of the epidemic threshold. Besides, taking different spreading models of awareness into consideration, we explored the interplay between epidemic spreading with awareness spreading. The results show that the awareness spreading can not only enhance the epidemic threshold but also reduce the prevalence of epidemics. When the spreading of awareness is defined as susceptible-infected-susceptible model, there exists a critical value where the dynamical process on the awareness layer can control the onset of epidemics; while if it is a threshold model, the epidemic threshold emerges an abrupt transition with the local awareness ratio α approximating 0.5. Moreover, we also find that temporal changes in the topology hinder the spread of awareness which directly affect the epidemic threshold, especially when the awareness layer is threshold model. Given that the threshold model is a widely used model for social contagion, this is an important and meaningful result. Our results could also lead to interesting future research about the different time-scales of structural changes in multiplex networks.

  14. Fabrication of three-dimensional polymer quadratic nonlinear grating structures by layer-by-layer direct laser writing technique

    NASA Astrophysics Data System (ADS)

    Bich Do, Danh; Lin, Jian Hung; Diep Lai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen

    2011-08-01

    We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest--host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

  15. Fabrication of three-dimensional polymer quadratic nonlinear grating structures by layer-by-layer direct laser writing technique.

    PubMed

    Do, Danh Bich; Lin, Jian Hung; Lai, Ngoc Diep; Kan, Hung-Chih; Hsu, Chia Chen

    2011-08-10

    We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest-host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

  16. Managing multiple image stacks from confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Zerbe, Joerg; Goetze, Christian H.; Zuschratter, Werner

    1999-05-01

    A major goal in neuroanatomy is to obtain precise information about the functional organization of neuronal assemblies and their interconnections. Therefore, the analysis of histological sections frequently requires high resolution images in combination with an overview about the structure. To overcome this conflict we have previously introduced a software for the automatic acquisition of multiple image stacks (3D-MISA) in confocal laser scanning microscopy. Here, we describe a Windows NT based software for fast and easy navigation through the multiple images stacks (MIS-browser), the visualization of individual channels and layers and the selection of user defined subregions. In addition, the MIS browser provides useful tools for the visualization and evaluation of the datavolume, as for instance brightness and contrast corrections of individual layers and channels. Moreover, it includes a maximum intensity projection, panning and zoom in/out functions within selected channels or focal planes (x/y) and tracking along the z-axis. The import module accepts any tiff-format and reconstructs the original image arrangement after the user has defined the sequence of images in x/y and z and the number of channels. The implemented export module allows storage of user defined subregions (new single image stacks) for further 3D-reconstruction and evaluation.

  17. ACTOMP - AUTOCAD TO MASS PROPERTIES

    NASA Technical Reports Server (NTRS)

    Jones, A.

    1994-01-01

    AutoCAD to Mass Properties was developed to facilitate quick mass properties calculations of structures having many simple elements in a complex configuration such as trusses or metal sheet containers. Calculating the mass properties of structures of this type can be a tedious and repetitive process, but ACTOMP helps automate the calculations. The structure can be modelled in AutoCAD or a compatible CAD system in a matter of minutes using the 3-Dimensional elements. This model provides all the geometric data necessary to make a mass properties calculation of the structure. ACTOMP reads the geometric data of a drawing from the Drawing Interchange File (DXF) used in AutoCAD. The geometric entities recognized by ACTOMP include POINTs, 3DLINEs, and 3DFACEs. ACTOMP requests mass, linear density, or area density of the elements for each layer, sums all the elements and calculates the total mass, center of mass (CM) and the mass moments of inertia (MOI). AutoCAD utilizes layers to define separate drawing planes. ACTOMP uses layers to differentiate between multiple types of similar elements. For example if a structure is made of various types of beams, modeled as 3DLINEs, each with a different linear density, the beams can be grouped by linear density and each group placed on a separate layer. The program will request the linear density of 3DLINEs for each new layer it finds as it processes the drawing information. The same is true with POINTs and 3DFACEs. By using layers this way a very complex model can be created. POINTs are used for point masses such as bolts, small machine parts, or small electronic boxes. 3DLINEs are used for beams, bars, rods, cables, and other similarly slender elements. 3DFACEs are used for planar elements. 3DFACEs may be created as 3 or 4 Point faces. Some examples of elements that might be modelled using 3DFACEs are plates, sheet metal, fabric, boxes, large diameter hollow cylinders and evenly distributed masses. ACTOMP was written in Microsoft QuickBasic (Version 2.0). It was developed for the IBM PC microcomputer and has been implemented on an IBM PC compatible under DOS 3.21. ACTOMP was developed in 1988 and requires approximately 5K bytes to operate.

  18. Core evidence of paleoseismic events in Paleogene deposits of the Shulu Sag in the Bohai Bay Basin, east China, and their petroleum geologic significance

    NASA Astrophysics Data System (ADS)

    Zheng, Lijing; Jiang, Zaixing; Liu, Hui; Kong, Xiangxin; Li, Haipeng; Jiang, Xiaolong

    2015-10-01

    The Shulu Sag, located in the southwestern corner of the Jizhong Depression, Bohai Bay Basin of east China, is a NE-SW trending, elongate Cenozoic half-graben basin. The lowermost part of the third member of the Shahejie Formation in this basin is characterized by continental rudstone and calcilutite to calcisiltite facies. Based on core observation and regional geologic analysis, seismites are recognized in these lacustrine deposits, which include soft-sediment deformation structures (sedimentary dikes, hydraulic shattering, diapir structures, convolute lamination, load-flame structures, ball-and-pillow structures, loop bedding, and subsidence structures), synsedimentary faults, and seismoturbidites. In addition, mixed-source rudstones, consisting of the Paleozoic carbonate clasts and in situ calcilutite clasts in the lowermost submember of Shahejie 3, appear in the seismites, suggesting an earthquake origin. A complete representative vertical sequence in the lowermost part of the third member found in well ST1H located in the central part of the Shulu Sag shows, from the base to the top: underlying undeformed layers, synsedimentary faults, liquefied carbonate rocks, allogenetic seismoturbidites, and overlying undeformed layers. Seismites are widely distributed around this well and there are multiple sets of stacked seismites separated by undeformed sediment. The nearby NW-trending Taijiazhuang fault whose fault growth index is from 1.1 to 1.8 and the NNE-trending Xinhe fault with a fault growth index of 1.3-1.9 may be the source of the instability to create the seismites. These deformed sedimentary layers are favorable for the accumulation of oil and gas; for example, sedimentary dikes can cut through many layers and serve as conduits for fluid migration. Sedimentary faults and fractures induced by earthquakes can act as oil and gas migration channels or store petroleum products as well. Seismoturbidites and mixed-source rudstones are excellent reservoirs due to their abundant primary or dissolved pores.

  19. Mussel-inspired nano-building block assemblies for mimicking extracellular matrix microenvironments with multiple functions.

    PubMed

    Wang, Zhenming; Jia, Zhanrong; Jiang, Yanan; Li, Pengfei; Han, Lu; Lu, Xiong; Ren, Fuzeng; Wang, Kefeng; Yuan, Huiping

    2017-08-03

    The assembly of nano-building blocks is an effective way to produce artificial extracellular matrix microenvironments with hierarchical micro/nano structures. However, it is hard to assemble different types of nano-building blocks, to form composite coatings with multiple functions, by traditional layer-by-layer (LbL) self-assembly methods. Inspired by the mussel adhesion mechanism, we developed polydopamine (PDA)-decorated bovine serum albumin microspheres (BSA-MS) and nano-hydroxyapatite (nano-HA), and assembled them to form bioactive coatings with micro/nano structures encapsulating bone morphogenetic protein-2 (BMP-2). First, PDA-decorated nano-HA (nano-pHA) was obtained by oxidative polymerization of dopamine on nano-HA. Second, BMP-2-encapsulated BSA microspheres were prepared through desolvation, and then were also decorated by PDA (pBSA-MS). Finally, the nano-pHA and pBSA-MS were assembled using the adhesive properties of PDA. Bone marrow stromal cell cultures and in vivo implantation, showed that the pHA/pBSA (BMP-2) coatings can promote cell adhesion, proliferation, and benefited for osteoinductivity. PDA decoration was also applied to assemble various functional nanoparticles, such as nano-HA, polystyrene, and Fe 3 O 4 nanoparticles. In summary, this study provides a novel strategy for the assembly of biofunctional nano-building blocks, which surpasses traditional LbL self-assembly of polyelectrolytes, and can find broad applications in bioactive agents delivery or multi-functional coatings.

  20. Risk factors for progressive axonal degeneration of the retinal nerve fibre layer in multiple sclerosis patients.

    PubMed

    Garcia-Martin, Elena; Pueyo, Victoria; Almarcegui, Carmen; Martin, Jesus; Ara, Jose R; Sancho, Eva; Pablo, Luis E; Dolz, Isabel; Fernandez, Javier

    2011-11-01

    To quantify structural and functional degeneration in the retinal nerve fibre layer (RNFL) of patients with multiple sclerosis (MS) over a 2-year time period, and to analyse the effect of prior optic neuritis (ON) as well as the duration and incidence of MS relapses. 166 MS patients and 120 healthy controls underwent assessment of visual acuity and colour vision, visual field examination, optical coherence tomography, scanning laser polarimetry and visual evoked potentials (VEPs). All subjects were re-evaluated after a period of 12 and 24 months. Changes in the optic nerve were detected by structural measurements but not by functional assessments. Changes registered in MS patients were greater than changes in healthy controls (p<0.05). Eyes with previous ON showed a greater reduction of parameters in the baseline evaluation, but RNFL atrophy was not significantly greater in the longitudinal study. Patients with MS relapses showed a greater reduction of RNFL thickness and VEP amplitude compared with non-relapsing cases. Patients with and without treatment showed similar measurement reduction, but the non-treated group had a significantly higher increase in Expanded Disability Status Scale (p=0.029). MS causes progressive axonal loss in the optic nerve, regardless of a history of ON. This ganglion cell atrophy occurs in all eyes but is more marked in MS eyes than in healthy eyes.

  1. The μ-RWELL: A compact, spark protected, single amplification-stage MPGD

    NASA Astrophysics Data System (ADS)

    Poli Lener, M.; Bencivenni, G.; de Olivera, R.; Felici, G.; Franchino, S.; Gatta, M.; Maggi, M.; Morello, G.; Sharma, A.

    2016-07-01

    In this work we present two innovative architectures of resistive MPGDs based on the WELL-amplification concept: - the micro-Resistive WELL (μ-RWELL) is a compact spark-protected single amplification-stage Micro-Pattern Gas Detector (MPGD). The amplification stage, realized with a structure very similar to a GEM foil (called WELL), is embedded through a resistive layer in the readout board. A cathode electrode, defining the gas conversion/drift gap, completes the detector mechanics. The new architecture, showing an excellent space resolution, 50 μm, is a very compact device, robust against discharges and exhibiting a large gain (>104), simple to construct and easy for engineering and then suitable for large area tracking devices as well as digital calorimeters. - the Fast Timing Micro-pattern (FTM): a new device with an architecture based on a stack of several coupled full-resistive layers where drift and multiplication stages (WELL type) alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings, providing a signal with a gain of 104-105. The main advantage of this new device is the improvement of the timing provided by the competition of the ionization processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as for applications like medical imaging.

  2. Automated Pathogenesis-Based Diagnosis of Lumbar Neural Foraminal Stenosis via Deep Multiscale Multitask Learning.

    PubMed

    Han, Zhongyi; Wei, Benzheng; Leung, Stephanie; Nachum, Ilanit Ben; Laidley, David; Li, Shuo

    2018-02-15

    Pathogenesis-based diagnosis is a key step to prevent and control lumbar neural foraminal stenosis (LNFS). It conducts both early diagnosis and comprehensive assessment by drawing crucial pathological links between pathogenic factors and LNFS. Automated pathogenesis-based diagnosis would simultaneously localize and grade multiple spinal organs (neural foramina, vertebrae, intervertebral discs) to diagnose LNFS and discover pathogenic factors. The automated way facilitates planning optimal therapeutic schedules and relieving clinicians from laborious workloads. However, no successful work has been achieved yet due to its extreme challenges since 1) multiple targets: each lumbar spine has at least 17 target organs, 2) multiple scales: each type of target organ has structural complexity and various scales across subjects, and 3) multiple tasks, i.e., simultaneous localization and diagnosis of all lumbar organs, are extremely difficult than individual tasks. To address these huge challenges, we propose a deep multiscale multitask learning network (DMML-Net) integrating a multiscale multi-output learning and a multitask regression learning into a fully convolutional network. 1) DMML-Net merges semantic representations to reinforce the salience of numerous target organs. 2) DMML-Net extends multiscale convolutional layers as multiple output layers to boost the scale-invariance for various organs. 3) DMML-Net joins a multitask regression module and a multitask loss module to prompt the mutual benefit between tasks. Extensive experimental results demonstrate that DMML-Net achieves high performance (0.845 mean average precision) on T1/T2-weighted MRI scans from 200 subjects. This endows our method an efficient tool for clinical LNFS diagnosis.

  3. Engineering Strain for Improved III-Nitride Optoelectronic Device Performance

    NASA Astrophysics Data System (ADS)

    Van Den Broeck, Dennis Marnix

    Due to growing environmental and economic concerns, renewable energy generation and high-efficiency lighting are becoming even more important in the scientific community. III-Nitride devices have been essential in production of high-brightness light-emitting diodes (LEDs) and are now entering the photovoltaic (PV) realm as the technology advances. InGaN/GaN multiple quantum well LEDs emitting in the blue/green region have emerged as promising candidates for next-generation lighting technologies. Due to the large lattice mismatch between InN and GaN, large electric fields exist within the quantum well layers and result in low rates of radiative recombination, especially for the green spectral region. This is commonly referred to as the "green gap" and results in poor external quantum efficiencies for light-emitting diodes and laser diodes. In order to mitigate the compressive stress of InGaN QWs, a novel growth technique is developed in order to grown thick, strain-relaxed In yGa1-yN templates for 0.08 < y < 0.11. By inserting 2 nm GaN interlayers into the growing InyGa1-yN film, and subsequently annealing the structure, "semibulk" InGaN templates were achieved with vastly superior crystal and optical properties than bulk InGaN films. These semibulk InGaN templates were then utilized as new templates for multiple quantum well active layers, effectively reducing the compressive strain in the InGaN wells due to the larger lattice constant of the InGaN template with respect to a GaN template. A zero-stress balance method was used in order to realize a strain-balanced multiple quantum well structure, which again showed improved optical characteristics when compared to fully-strain active regions. The semibulk InGaN template was then implemented into "strain-compensated" LED structures, where light emission was achieved with very little leakage current. Discussion of these strain-compensated devices compared to conventional LEDs is detailed.

  4. A method for building low loss multi-layer wiring for superconducting microwave devices

    NASA Astrophysics Data System (ADS)

    Dunsworth, A.; Barends, R.; Chen, Yu; Chen, Zijun; Chiaro, B.; Fowler, A.; Foxen, B.; Jeffrey, E.; Kelly, J.; Klimov, P. V.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, John M.; Megrant, A.

    2018-02-01

    Complex integrated circuits require multiple wiring layers. In complementary metal-oxide-semiconductor processing, these layers are robustly separated by amorphous dielectrics. These dielectrics would dominate energy loss in superconducting integrated circuits. Here, we describe a procedure that capitalizes on the structural benefits of inter-layer dielectrics during fabrication and mitigates the added loss. We use a deposited inter-layer dielectric throughout fabrication and then etch it away post-fabrication. This technique is compatible with foundry level processing and can be generalized to make many different forms of low-loss wiring. We use this technique to create freestanding aluminum vacuum gap crossovers (airbridges). We characterize the added capacitive loss of these airbridges by connecting ground planes over microwave frequency λ/4 coplanar waveguide resonators and measuring resonator loss. We measure a low power resonator loss of ˜3.9 × 10-8 per bridge, which is 100 times lower than that of dielectric supported bridges. We further characterize these airbridges as crossovers, control line jumpers, and as part of a coupling network in gmon and fluxmon qubits. We measure qubit characteristic lifetimes (T1s) in excess of 30 μs in gmon devices.

  5. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction

    PubMed Central

    Wang, Haotian; Lu, Zhiyi; Xu, Shicheng; Kong, Desheng; Cha, Judy J.; Zheng, Guangyuan; Hsu, Po-Chun; Yan, Kai; Bradshaw, David; Prinz, Fritz B.; Cui, Yi

    2013-01-01

    The ability to intercalate guest species into the van der Waals gap of 2D layered materials affords the opportunity to engineer the electronic structures for a variety of applications. Here we demonstrate the continuous tuning of layer vertically aligned MoS2 nanofilms through electrochemical intercalation of Li+ ions. By scanning the Li intercalation potential from high to low, we have gained control of multiple important material properties in a continuous manner, including tuning the oxidation state of Mo, the transition of semiconducting 2H to metallic 1T phase, and expanding the van der Waals gap until exfoliation. Using such nanofilms after different degree of Li intercalation, we show the significant improvement of the hydrogen evolution reaction activity. A strong correlation between such tunable material properties and hydrogen evolution reaction activity is established. This work provides an intriguing and effective approach on tuning electronic structures for optimizing the catalytic activity. PMID:24248362

  6. Platform technology for scalable assembly of instantaneously functional mosaic tissues

    PubMed Central

    Zhang, Boyang; Montgomery, Miles; Davenport-Huyer, Locke; Korolj, Anastasia; Radisic, Milica

    2015-01-01

    Engineering mature tissues requires a guided assembly of cells into organized three-dimensional (3D) structures with multiple cell types. Guidance is usually achieved by microtopographical scaffold cues or by cell-gel compaction. The assembly of individual units into functional 3D tissues is often time-consuming, relying on cell ingrowth and matrix remodeling, whereas disassembly requires an invasive method that includes either matrix dissolution or mechanical cutting. We invented Tissue-Velcro, a bio-scaffold with a microfabricated hook and loop system. The assembly of Tissue-Velcro preserved the guided cell alignment realized by the topographical features in the 2D scaffold mesh and allowed for the instant establishment of coculture conditions by spatially defined stacking of cardiac cell layers or through endothelial cell coating. The assembled cardiac 3D tissue constructs were immediately functional as measured by their ability to contract in response to electrical field stimulation. Facile, on-demand tissue disassembly was demonstrated while preserving the structure, physical integrity, and beating function of individual layers. PMID:26601234

  7. Calcium intercalation into layered fluorinated sodium iron phosphate

    NASA Astrophysics Data System (ADS)

    Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; Liao, Chen; Fister, Timothy T.; Ingram, Brian J.

    2017-11-01

    The energy density and cost of battery systems, relative to the current state-of-the art, can be improved by developing alternative chemistries utilizing multivalent working ions such as calcium. Many challenges must be overcome, such as the identification of cathode materials with high energy density and an electrolyte with a wide electrochemical stability window that can plate and strip calcium metal, before market implementation. Herein, the feasibility and cycling performance of Ca2+ intercalation into a desodiated layered Na2FePO4F host is described. This is the first demonstration of Ca2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca2+ intercalation. Although substantial effort is expected in order to develop a high energy density cathode material, this study demonstrates the feasibility of Ca2+ intercalation into multiple host structures types, thereby extending opportunities for development of Ca insertion host structures, suggesting such a cathode material can be identified and developed.

  8. Gravity Wave Seeding of Equatorial Plasma Bubbles

    NASA Technical Reports Server (NTRS)

    Singh, Sardul; Johnson, F. S.; Power, R. A.

    1997-01-01

    Some examples from the Atmosphere Explorer E data showing plasma bubble development from wavy ion density structures in the bottomside F layer are described. The wavy structures mostly had east-west wavelengths of 150-800 km, in one example it was about 3000 km. The ionization troughs in the wavy structures later broke up into either a multiple-bubble patch or a single bubble, depending upon whether, in the precursor wavy structure, shorter wavelengths were superimposed on the larger scale wavelengths. In the multiple bubble patches, intrabubble spacings vaned from 55 km to 140 km. In a fully developed equatorial spread F case, east-west wavelengths from 690 km down to about 0.5 km were present simultaneously. The spacings between bubble patches or between bubbles in a patch appear to be determined by the wavelengths present in the precursor wave structure. In some cases, deeper bubbles developed on the western edge of a bubble patch, suggesting an east-west asymmetry. Simultaneous horizontal neutral wind measurements showed wavelike perturbations that were closely associated with perturbations in the plasma horizontal drift velocity. We argue that the wave structures observed here that served as the initial seed ion density perturbations were caused by gravity waves, strengthening the view that gravity waves seed equatorial spread F irregularities.

  9. Comparative evaluation of concrete sealers and multiple layer polymer concrete overlays. Interim report no. 1.

    DOT National Transportation Integrated Search

    1987-01-01

    The report presents comparisons of initial evaluations of several concrete sealers and multiple layer polymer concrete overlays. The sealers evaluated included a solvent-dlspersed epoxy, a water-dlspersed epoxy, a silane, and a high molecular weight ...

  10. Nervous-Tissue-Specific Elimination of Microtubule-Actin Crosslinking Factor 1a Results in Multiple Developmental Defects in the Mouse Brain

    PubMed Central

    Goryunov, Dmitry; He, Cui-Zhen; Lin, Chyuan-Sheng; Leung, Conrad L.; Liem, Ronald K. H.

    2010-01-01

    The microtubule-actin crosslinking factor 1 (MACF1) is a ubiquitous cytoskeletal linker protein with multiple spliced isoforms expressed in different tissues. The MACF1a isoform contains microtubule and actin binding regions and is expressed at high levels in the nervous system. Macf1−/− mice are early embryonic lethal and hence the role of MACF1 in the nervous system could not be determined. We have specifically knocked out MACF1a in the developing mouse nervous system using Cre/loxP technology. Mutant mice died within 24–36 hrs after birth of apparent respiratory distress. Their brains displayed a disorganized cerebral cortex with a mixed layer structure, heterotopia in the pyramidal layer of the hippocampus, disorganized thalamocortical and corticofugal fibers, and aplastic anterior and hippocampal commissures. Embryonic neurons showed a defect in traversing the cortical plate. Our data suggest a critical role for MACF1 in neuronal migration that is dependent on its ability to interact with both microfilaments and microtubules. PMID:20170731

  11. Nervous-tissue-specific elimination of microtubule-actin crosslinking factor 1a results in multiple developmental defects in the mouse brain.

    PubMed

    Goryunov, Dmitry; He, Cui-Zhen; Lin, Chyuan-Sheng; Leung, Conrad L; Liem, Ronald K H

    2010-05-01

    The microtubule-actin crosslinking factor 1 (MACF1) is a ubiquitous cytoskeletal linker protein with multiple spliced isoforms expressed in different tissues. The MACF1a isoform contains microtubule and actin-binding regions and is expressed at high levels in the nervous system. Macf1-/- mice are early embryonic lethal and hence the role of MACF1 in the nervous system could not be determined. We have specifically knocked out MACF1a in the developing mouse nervous system using Cre/loxP technology. Mutant mice died within 24-36h after birth of apparent respiratory distress. Their brains displayed a disorganized cerebral cortex with a mixed layer structure, heterotopia in the pyramidal layer of the hippocampus, disorganized thalamocortical and corticofugal fibers, and aplastic anterior and hippocampal commissures. Embryonic neurons showed a defect in traversing the cortical plate. Our data suggest a critical role for MACF1 in neuronal migration that is dependent on its ability to interact with both microfilaments and microtubules. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Modelling a real-world buried valley system with vertical non-stationarity using multiple-point statistics

    NASA Astrophysics Data System (ADS)

    He, Xiulan; Sonnenborg, Torben O.; Jørgensen, Flemming; Jensen, Karsten H.

    2017-03-01

    Stationarity has traditionally been a requirement of geostatistical simulations. A common way to deal with non-stationarity is to divide the system into stationary sub-regions and subsequently merge the realizations for each region. Recently, the so-called partition approach that has the flexibility to model non-stationary systems directly was developed for multiple-point statistics simulation (MPS). The objective of this study is to apply the MPS partition method with conventional borehole logs and high-resolution airborne electromagnetic (AEM) data, for simulation of a real-world non-stationary geological system characterized by a network of connected buried valleys that incise deeply into layered Miocene sediments (case study in Denmark). The results show that, based on fragmented information of the formation boundaries, the MPS partition method is able to simulate a non-stationary system including valley structures embedded in a layered Miocene sequence in a single run. Besides, statistical information retrieved from the AEM data improved the simulation of the geology significantly, especially for the deep-seated buried valley sediments where borehole information is sparse.

  13. Multilayer-based lab-on-a-chip systems for perfused cell-based assays

    NASA Astrophysics Data System (ADS)

    Klotzbach, Udo; Sonntag, Frank; Grünzner, Stefan; Busek, Mathias; Schmieder, Florian; Franke, Volker

    2014-12-01

    A novel integrated technology chain of laser-microstructured multilayer foils for fast, flexible, and low-cost manufacturing of lab-on-a-chip devices especially for complex cell and tissue culture applications, which provides pulsatile fluid flow within physiological ranges at low media-to-cells ratio, was developed and established. Initially the microfluidic system is constructively divided into individual layers, which are formed by separate foils or plates. Based on the functional boundary conditions and the necessary properties of each layer, their corresponding foils and plates are chosen. In the third step, the foils and plates are laser microstructured and functionalized from both sides. In the fourth and last manufacturing step, the multiple plates and foils are joined using different bonding techniques like adhesive bonding, welding, etc. This multilayer technology together with pneumatically driven micropumps and valves permits the manufacturing of fluidic structures and perfusion systems, which spread out above multiple planes. Based on the established lab-on-a-chip platform for perfused cell-based assays, a multilayer microfluidic system with two parallel connected cell culture chambers was successfully implemented.

  14. Acoustic behavior of a rigidly backed poroelastic layer with periodic resonant inclusions by a multiple scattering approach.

    PubMed

    Weisser, Thomas; Groby, Jean-Philippe; Dazel, Olivier; Gaultier, François; Deckers, Elke; Futatsugi, Sideto; Monteiro, Luciana

    2016-02-01

    The acoustic response of a rigidly backed poroelastic layer with a periodic set of elastic cylindrical inclusions embedded is studied. A semi-analytical approach is presented, based on Biot's 1956 theory to account for the deformation of the skeleton, coupling mode matching technique, Bloch wave representation, and multiple scattering theory. This model is validated by comparing the derived absorption coefficients to finite element simulations. Numerical results are further exposed to investigate the influence of the properties of the inclusions (type, material properties, size) of this structure, while a modal analysis is performed to characterize the dynamic behaviors leading to high acoustic absorption. Particularly, in the case of thin viscoelastic membranes, an absorption coefficient larger than 0.8 is observed on a wide frequency band. This property is found to be due to the coupling between the first volume mode of the inclusion and the trapped mode induced by the periodic array and the rigid backing, for a wavelength in the air smaller than 11 times the material thickness.

  15. Predicting the stability of a compressible periodic parallel jet flow

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H.

    1996-01-01

    It is known that mixing enhancement in compressible free shear layer flows with high convective Mach numbers is difficult. One design strategy to get around this is to use multiple nozzles. Extrapolating this design concept in a one dimensional manner, one arrives at an array of parallel rectangular nozzles where the smaller dimension is omega and the longer dimension, b, is taken to be infinite. In this paper, the feasibility of predicting the stability of this type of compressible periodic parallel jet flow is discussed. The problem is treated using Floquet-Bloch theory. Numerical solutions to this eigenvalue problem are presented. For the case presented, the interjet spacing, s, was selected so that s/omega =2.23. Typical plots of the eigenvalue and stability curves are presented. Results obtained for a range of convective Mach numbers from 3 to 5 show growth rates omega(sub i)=kc(sub i)/2 range from 0.25 to 0.29. These results indicate that coherent two-dimensional structures can occur without difficulty in multiple parallel periodic jet nozzles and that shear layer mixing should occur with this type of nozzle design.

  16. Modeling the 360° Innovating Firm as a Multiple System or Collective Being

    NASA Astrophysics Data System (ADS)

    Bouchard, Véronique

    Confronted with fast changing technologies and markets and with increasing competitive pressures, firms are now required to innovate fast and continuously. In order to do so, several firms superpose an intrapreneurial layer (IL) to their formal organization (FO). The two systems are in complex relations: the IL is embedded in the FO, sharing human, financial and technical components, but strongly diverges from it when it comes to representation, structure, values and behavior of the shared components. Furthermore, the two systems simultaneously cooperate and compete. In the long run, the organizational dynamics usually end to the detriment of the intrapreneurial layer, which remains marginal or regresses after an initial period of boom. The concepts of Multiple Systems and Collective Beings, proposed by Minati and Pessa, can help students of the firm adopt a different viewpoint on this issue. These concepts can help them move away from a rigid, Manichean view of the two systems' respective functions and roles towards a more fluid and elaborate vision of their relations, allowing for greater flexibility and coherence.

  17. Lightweight acoustic treatments for aerospace applications

    NASA Astrophysics Data System (ADS)

    Naify, Christina Jeanne

    2011-12-01

    Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their acoustic response. Acoustic metamaterials with negative dynamic mass density have been shown to demonstrate a significant (5x) increase in TL over mass law predictions for a narrow band (100Hz) at low frequencies (100--1000Hz). The peak TL frequency can be tuned to specific values by varying the membrane and mass properties. TL magnitude as a function of frequency was measured for variations of the mass magnitude and membrane tension using an impedance tube setup. The dynamic properties of membranes constructed from different materials and thicknesses were measured and compared to the results of coupled field acoustic-structural finite element analysis (FEA) modeling to understand the role of tension and element quality factor. To better comprehend the mechanism(s) responsible for the TL peak, a laser vibrometer was used to map the out-of-plane dynamic response of the structure under acoustic loading at discrete frequencies. Negative dynamic mass was experimentally demonstrated at the peak TL frequency. The scale-up of the acoustic metamaterial structure was explored by examining the behavior of multiple elements arranged in arrays. Single membranes were stretched over rigid frame supports and masses were attached to the center of each divided cell. TL behavior was measured for multiple configurations with different magnitudes of mass distributed across each of the cell membranes in the array resulting in a multi-peak TL profile. To better understand scale-up issues, the effect of the frame structure compliance was evaluated, and more compliant frames resulted in a reduction in TL peak frequency bandwidth. In addition, displacement measurements of frames and membranes were performed using a laser vibrometer. The measured TL of the multi-celled structure was compared with TL behavior predicted by FEA to understand the role of non-uniform mass distribution and frame compliance. TL of membrane-type LRAM with added ring masses was analyzed using both finite element analysis and experimental techniques. The addition of a ring mass to the structure either increased the bandwidth of the TL peak, or introduced multiple peaks, depending on the number of rings, the distribution of mass between the center and ring masses, and radii of the rings. FEA was used to predict TL behavior of several ring configurations, and TL for these configurations was measured to validate the model predictions. Finally, FEA was used to predict the mode shapes of the structure under single-frequency excitation to understand the mechanisms responsible for the TL peaks.

  18. Improved engineering models for turbulent wall flows

    NASA Astrophysics Data System (ADS)

    She, Zhen-Su; Chen, Xi; Zou, Hong-Yue; Hussain, Fazle

    2015-11-01

    We propose a new approach, called structural ensemble dynamics (SED), involving new concepts to describe the mean quantities in wall-bounded flows, and its application to improving the existing engineering turbulence models, as well as its physical interpretation. First, a revised k - ω model for pipe flows is obtained, which accurately predicts, for the first time, both mean velocity and (streamwise) kinetic energy for a wide range of the Reynolds number (Re), validated by Princeton experimental data. In particular, a multiplicative factor is introduced in the dissipation term to model an anomaly in the energy cascade in a meso-layer, predicting the outer peak of agreeing with data. Secondly, a new one-equation model is obtained for compressible turbulent boundary layers (CTBL), building on a multi-layer formula of the stress length function and a generalized temperature-velocity relation. The former refines the multi-layer description - viscous sublayer, buffer layer, logarithmic layer and a newly defined bulk zone - while the latter characterizes a parabolic relation between the mean velocity and temperature. DNS data show our predictions to have a 99% accuracy for several Mach numbers Ma = 2.25, 4.5, improving, up to 10%, a previous similar one-equation model (Baldwin & Lomax, 1978). Our results promise notable improvements in engineering models.

  19. Overexpression of the lamina proteins Lamin and Kugelkern induces specific ultrastructural alterations in the morphology of the nuclear envelope of intestinal stem cells and enterocytes.

    PubMed

    Petrovsky, Roman; Krohne, Georg; Großhans, Jörg

    2018-03-01

    The nuclear envelope has a stereotypic morphology consisting of a flat double layer of the inner and outer nuclear membrane, with interspersed nuclear pores. Underlying and tightly linked to the inner nuclear membrane is the nuclear lamina, a proteinous layer of intermediate filament proteins and associated proteins. Physiological, experimental or pathological alterations in the constitution of the lamina lead to changes in nuclear morphology, such as blebs and lobulations. It has so far remained unclear whether the morphological changes depend on the differentiation state and the specific lamina protein. Here we analysed the ultrastructural morphology of the nuclear envelope in intestinal stem cells and differentiated enterocytes in adult Drosophila flies, in which the proteins Lam, Kugelkern or a farnesylated variant of LamC were overexpressed. Surprisingly, we detected distinct morphological features specific for the respective protein. Lam induced envelopes with multiple layers of membrane and lamina, surrounding the whole nucleus whereas farnesylated LamC induced the formation of a thick fibrillary lamina. In contrast, Kugelkern induced single-layered and double-layered intranuclear membrane structures, which are likely be derived from infoldings of the inner nuclear membrane or of the double layer of the envelope. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Tuning transitions in rotating Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Joshi, Pranav; Kunnen, Rudie; Clercx, Herman

    2015-11-01

    Turbulent rotating Rayleigh-Bénard convection, depending on the system parameters, exhibits multiple flow states and transitions between them. The present experimental study aims to control the transitions between the flow regimes, and hence the system heat transfer characteristics, by introducing particles in the flow. We inject near-neutrally buoyant silver coated hollow ceramic spheres (~100 micron diameter) and measure the system response, i.e. the Nusselt number, at different particle concentrations and rotation rates. Both for rotating and non-rotating cases, most of the particles settle on the top and bottom plates in a few hours following injection. This rapid settling may be a result of ``trapping'' of particles in the laminar boundary layers at the horizontal walls. These particle layers on the heat-transfer surfaces reduce their effective conductivity, and consequently, lower the heat transfer rate. We calculate the effective system parameters by estimating, and accounting for, the temperature drop across the particle layers. Preliminary analysis suggests that the thermal resistance of the particle layers may affect the flow structure and delay the transition to the ``geostrophic'' regime. Financial support from Foundation for Fundamental Research on Matter.

  1. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    PubMed Central

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.

    2015-01-01

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor–inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance. PMID:26080437

  2. Efficient Vacuum-Deposited Ternary Organic Solar Cells with Broad Absorption, Energy Transfer, and Enhanced Hole Mobility.

    PubMed

    Shim, Hyun-Sub; Moon, Chang-Ki; Kim, Jihun; Wang, Chun-Kai; Sim, Bomi; Lin, Francis; Wong, Ken-Tsung; Seo, Yongsok; Kim, Jang-Joo

    2016-01-20

    The use of multiple donors in an active layer is an effective way to boost the efficiency of organic solar cells by broadening their absorption window. Here, we report an efficient vacuum-deposited ternary organic photovoltaic (OPV) using two donors, 2-((2-(5-(4-(diphenylamino)phenyl)thieno[3,2-b]thiophen-2-yl)thiazol-5-yl)methylene)malononitrile (DTTz) for visible absorption and 2-((7-(5-(dip-tolylamino)thiophen-2-yl)benzo[c]-[1,2,5]thiadiazol-4-yl)methylene)malononitrile (DTDCTB) for near-infrared absorption, codeposited with C70 in the ternary layer. The ternary device achieved a power conversion efficiency of 8.02%, which is 23% higher than that of binary OPVs. This enhancement is the result of incorporating two donors with complementary absorption covering wavelengths of 350 to 900 nm with higher hole mobility in the ternary layer than that of binary layers consisting of one donor and C70, combined with energy transfer from the donor with lower hole mobility (DTTz) to that with higher mobility (DTDCTB). This structure fulfills all the requirements for efficient ternary OPVs.

  3. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    DOE PAGES

    Zhou, Nanjia; Kim, Myung -Gil; Loser, Stephen; ...

    2015-06-15

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor– inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactivemore » materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Lastly, continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.« less

  4. Learning Midlevel Auditory Codes from Natural Sound Statistics.

    PubMed

    Młynarski, Wiktor; McDermott, Josh H

    2018-03-01

    Interaction with the world requires an organism to transform sensory signals into representations in which behaviorally meaningful properties of the environment are made explicit. These representations are derived through cascades of neuronal processing stages in which neurons at each stage recode the output of preceding stages. Explanations of sensory coding may thus involve understanding how low-level patterns are combined into more complex structures. To gain insight into such midlevel representations for sound, we designed a hierarchical generative model of natural sounds that learns combinations of spectrotemporal features from natural stimulus statistics. In the first layer, the model forms a sparse convolutional code of spectrograms using a dictionary of learned spectrotemporal kernels. To generalize from specific kernel activation patterns, the second layer encodes patterns of time-varying magnitude of multiple first-layer coefficients. When trained on corpora of speech and environmental sounds, some second-layer units learned to group similar spectrotemporal features. Others instantiate opponency between distinct sets of features. Such groupings might be instantiated by neurons in the auditory cortex, providing a hypothesis for midlevel neuronal computation.

  5. Avalanche atomic switching in strain engineered Sb2Te3-GeTe interfacial phase-change memory cells

    NASA Astrophysics Data System (ADS)

    Zhou, Xilin; Behera, Jitendra K.; Lv, Shilong; Wu, Liangcai; Song, Zhitang; Simpson, Robert E.

    2017-09-01

    By confining phase transitions to the nanoscale interface between two different crystals, interfacial phase change memory heterostructures represent the state of the art for energy efficient data storage. We present the effect of strain engineering on the electrical switching performance of the {{Sb}}2{{Te}}3-GeTe superlattice van der Waals devices. Multiple Ge atoms switching through a two-dimensional Te layer reduces the activation barrier for further atoms to switch; an effect that can be enhanced by biaxial strain. The out-of-plane phonon mode of the GeTe crystal remains active in the superlattice heterostructures. The large in-plane biaxial strain imposed by the {{Sb}}2{{Te}}3 layers on the GeTe layers substantially improves the switching speed, reset energy, and cyclability of the superlattice memory devices. Moreover, carefully controlling residual stress in the layers of {{Sb}}2{{Te}}3-GeTe interfacial phase change memories provides a new degree of freedom to design the properties of functional superlattice structures for memory and photonics applications.

  6. Localized entrapment of green fluorescent protein within nanostructured polymer films

    NASA Astrophysics Data System (ADS)

    Ankner, John; Kozlovskaya, Veronika; O'Neill, Hugh; Zhang, Qiu; Kharlampieva, Eugenia

    2012-02-01

    Protein entrapment within ultrathin polymer films is of interest for applications in biosensing, drug delivery, and bioconversion, but controlling protein distribution within the films is difficult. We report on nanostructured protein/polyelectrolyte (PE) materials obtained through incorporation of green fluorescent protein (GFP) within poly(styrene sulfonate)/poly(allylamine hydrochloride) multilayer films assembled via the spin-assisted layer-by-layer method. By using deuterated GFP as a marker for neutron scattering contrast we have inferred the architecture of the films in both normal and lateral directions. We find that films assembled with a single GFP layer exhibit a strong localization of the GFP without intermixing into the PE matrix. The GFP volume fraction approaches the monolayer density of close-packed randomly oriented GFP molecules. However, intermixing of the GFP with the PE matrix occurs in multiple-GFP layer films. Our results yield new insight into the organization of immobilized proteins within polyelectrolyte matrices and open opportunities for fabrication of protein-containing films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.

  7. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    PubMed

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  8. Cylindrical Organic Solar Cells with Carbon Nanotube Charge Collectors

    NASA Astrophysics Data System (ADS)

    Zakhidov, Dante; Lou, Raymond; Ravi, Nav; Mielczarek, Kamil; Cook, Alexander

    2009-10-01

    Traditional organic photovoltaic devices (OPV) are built on a flat glass substrates coated by ITO. The maximum area covered by the solar cells is limited to a two dimensional plane. Moreover the light absorption is not maximized for a very thin photoactive layer. We suggest here a cylindrical design which has a vertical structure of optical fiber coated by OPV, with light incident from the side and from edge. The sunlight, entering via a smaller area is captured into optical fiber, which allows more sunlight to be absorbed by a cylindrical OPV overcoating with multiple reflections inside the optical fiber. Instead of using brittle ITO as a hole collecting layer in the cylindrical OPV, transparent sheets of multi-walled carbon nanotubes are applied. Their highly conductive nature and 3-D collection of carriers from the P3HT/PCBM photoactive layer allows for increased efficiency over a planar geometry while keeping the device transparent. Aluminum is used as the electron collecting layer and as a cylindrical mirror. [4pt] [1] Ulbricht, et.al, phys. stat. sol. (b) 243, No. 13, 3528 - 3532 (2006) / DOI 10.1002/pssb.200669181

  9. Crystallographic effects during radiative melting of semitransparent materials

    NASA Astrophysics Data System (ADS)

    Webb, B. W.; Viskanta, R.

    1987-10-01

    Experiments have been performed to illustrate crystallogrpahic effects during radiative melting of unconfined vertical layers of semitransparent material. Radiative melting of a polycrystalline paraffin was performed and the instantaneous layer weight and transmittance were measured using a cantilever beam technique and thermopile radiation detector, respectively. The effects of radiative flux, initial solid subcooling, spectral distribution of the irradiation, and crystal structure of the solid as determined qualitatively by the sample solidification rate were studied. Experimental results show conclusively the dominant influence of cystallographic effects in the form of multiple internal scattering of radiation during the melting process. A theoretical model is formulated to predict the melting rate of the material. Radiation transfer is treated by solving the one-dimensional radiative transfer equation for an absorbing-scattering medium using the discrete ordinates method. Melting rate and global layer reflectance as predicted by the model agree well with experimental data. Parametric studies conducted with the model illustrate the sensitivity of the melting behavior to such variables as incident radiative flux, initial layer opacity (material extinction coefficient), and scattering asymmetry factor.

  10. Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Qin, E-mail: xueqin19851202@163.com; Liu, Shouyin; Xie, Guohua

    2014-03-21

    An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq){sub 3}) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C{sup 2′})-iridium(III) (Ir(ppz){sub 3}) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy tomore » balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz){sub 3} is inserted between the blue phosphorescent emitter and the ultrathin red emitter.« less

  11. Half-metallic superconducting triplet spin multivalves

    NASA Astrophysics Data System (ADS)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  12. Acoustic characteristics of the medium with gradient change of impedance

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, Desen; Sun, Yu; Shi, Jie; Shi, Shengguo; Zhang, Haoyang

    2015-10-01

    The medium with gradient change of acoustic impedance is a new acoustic structure which developed from multiple layer structures. In this paper, the inclusion is introduced and a new set of equations is developed. It can obtain better acoustic properties based on the medium with gradient change of acoustic impedance. Theoretical formulation has been systematically addressed which demonstrates how the idea of utilizing this method. The sound reflection and absorption coefficients were obtained. At last, the validity and the correctness of this method are assessed by simulations. The results show that appropriate design of parameters of the medium can improve underwater acoustic properties.

  13. Magnetic and electrical control of engineered materials

    DOEpatents

    Schuller, Ivan K.; de La Venta Granda, Jose; Wang, Siming; Ramirez, Gabriel; Erekhinskiy, Mikhail; Sharoni, Amos

    2016-08-16

    Methods, systems, and devices are disclosed for controlling the magnetic and electrical properties of materials. In one aspect, a multi-layer structure includes a first layer comprising a ferromagnetic or ferrimagnetic material, and a second layer positioned within the multi-layer structure such that a first surface of the first layer is in direct physical contact with a second surface of the second layer. The second layer includes a material that undergoes structural phase transitions and metal-insulator transitions upon experiencing a change in temperature. One or both of the first and second layers are structured to allow a structural phase change associated with the second layer cause a change magnetic properties of the first layer.

  14. Chip connectivity verification program

    NASA Technical Reports Server (NTRS)

    Riley, Josh (Inventor); Patterson, George (Inventor)

    1999-01-01

    A method for testing electrical connectivity between conductive structures on a chip that is preferably layered with conductive and nonconductive layers. The method includes determining the layer on which each structure is located and defining the perimeter of each structure. Conductive layer connections between each of the layers are determined, and, for each structure, the points of intersection between the perimeter of that structure and the perimeter of each other structure on the chip are also determined. Finally, electrical connections between the structures are determined using the points of intersection and the conductive layer connections.

  15. Thin film solar cell design based on photonic crystal and diffractive grating structures.

    PubMed

    Mutitu, James G; Shi, Shouyuan; Chen, Caihua; Creazzo, Timothy; Barnett, Allen; Honsberg, Christiana; Prather, Dennis W

    2008-09-15

    In this paper we present novel light trapping designs applied to multiple junction thin film solar cells. The new designs incorporate one dimensional photonic crystals as band pass filters that reflect short light wavelengths (400 - 867 nm) and transmit longer wavelengths(867 -1800 nm) at the interface between two adjacent cells. In addition, nano structured diffractive gratings that cut into the photonic crystal layers are incorporated to redirect incoming waves and hence increase the optical path length of light within the solar cells. Two designs based on the nano structured gratings that have been realized using the scattering matrix and particle swarm optimization methods are presented. We also show preliminary fabrication results of the proposed devices.

  16. Nanodiamonds do not provide unique evidence for a Younger Dryas impact

    PubMed Central

    Tian, H.; Schryvers, D.; Claeys, Ph.

    2011-01-01

    Microstructural, δ13C isotope and C/N ratio investigations were conducted on excavated material from the black Younger Dryas boundary in Lommel, Belgium, aiming for a characterisation of the carbon content and structures. Cubic diamond nanoparticles are found in large numbers. The larger ones with diameters around or above 10 nm often exhibit single or multiple twins. The smaller ones around 5 nm in diameter are mostly defect-free. Also larger flake-like particles, around 100 nm in lateral dimension, with a cubic diamond structure are observed as well as large carbon onion structures. The combination of these characteristics does not yield unique evidence for an exogenic impact related to the investigated layer. PMID:21173270

  17. Spatial variability of the Arctic Ocean's double-diffusive staircase

    NASA Astrophysics Data System (ADS)

    Shibley, N. C.; Timmermans, M.-L.; Carpenter, J. R.; Toole, J. M.

    2017-02-01

    The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure overlying the Atlantic Water Layer that can be attributed to the diffusive form of double-diffusive convection. The staircase consists of multiple layers of O(1) m in thickness separated by sharp interfaces, across which temperature and salinity change abruptly. Through a detailed analysis of Ice-Tethered Profiler measurements from 2004 to 2013, the double-diffusive staircase structure is characterized across the entire Arctic Ocean. We demonstrate how the large-scale Arctic Ocean circulation influences the small-scale staircase properties. These staircase properties (layer thicknesses and temperature and salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio spanning the staircase stratification. We show that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (approximately 3-4) on the Eurasian side and higher density ratio (approximately 6-7) on the Canadian side. We find that the Eurasian Basin staircase is characterized by fewer, thinner layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin layers and the absence of a well-defined staircase. A double-diffusive 4/3 flux law parametrization is used to estimate vertical heat fluxes in the Canadian Basin to be O(0.1) W m-2. It is shown that the 4/3 flux law may not be an appropriate representation of heat fluxes through the Eurasian Basin staircase. Here molecular heat fluxes are estimated to be between O(0.01) and O(0.1) W m-2. However, many uncertainties remain about the exact nature of these fluxes.

  18. Investigation of surface-plasmon coupled red light emitting InGaN/GaN multi-quantum well with Ag nanostructures coated on GaN surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yi; Liu, Bin, E-mail: bliu@nju.edu.cn, E-mail: rzhang@nju.edu.cn; Zhang, Rong, E-mail: bliu@nju.edu.cn, E-mail: rzhang@nju.edu.cn

    Surface-plasmon (SP) coupled red light emitting InGaN/GaN multiple quantum well (MQW) structure is fabricated and investigated. The centre wavelength of 5-period InGaN/GaN MQW structure is about 620 nm. The intensity of photoluminescence (PL) for InGaN QW with naked Ag nano-structures (NS) is only slightly increased due to the oxidation of Ag NS as compared to that for the InGaN QW. However, InGaN QW with Ag NS/SiO{sub 2} structure can evidently enhance the emission efficiency due to the elimination of surface oxide layer of Ag NS. With increasing the laser excitation power, the PL intensity is enhanced by 25%–53% as compared tomore » that for the SiO{sub 2} coating InGaN QW. The steady-state electric field distribution obtained by the three-dimensional finite-difference time-domain method is different for both structures. The proportion of the field distributed in the Ag NS for the GaN/Ag NS/SiO{sub 2} structure is smaller as compared to that for the GaN/naked Ag NS structure. As a result, the energy loss of localized SP modes for the GaN/naked Ag NS structure will be larger due to the absorption of Ag layer.« less

  19. SLX4 Assembles a Telomere Maintenance Toolkit by Bridging Multiple Endonucleases with Telomeres

    PubMed Central

    Wan, Bingbing; Yin, Jinhu; Horvath, Kent; Sarkar, Jaya; Chen, Yong; Wu, Jian; Wan, Ke; Lu, Jian; Gu, Peili; Yu, Eun Young; Lue, Neal F.; Chang, Sandy

    2014-01-01

    Summary SLX4 interacts with several endonucleases to resolve structural barriers in DNA metabolism. SLX4 also interacts with telomeric protein TRF2 in human cells. The molecular mechanism of these interactions at telomeres remains unknown. Here, we report the crystal structure of the TRF2-binding motif of SLX4 (SLX4TBM) in complex with the TRFH domain of TRF2 (TRF2TRFH) and map the interactions of SLX4 with endonucleases SLX1, XPF, and MUS81. TRF2 recognizes a unique HxLxP motif on SLX4 via the peptide-binding site in its TRFH domain. Telomeric localization of SLX4 and associated nucleases depend on the SLX4-endonuclease and SLX4-TRF2 interactions and the protein levels of SLX4 and TRF2. SLX4 assembles an endonuclease toolkit that negatively regulates telomere length via SLX1-catalyzed nucleolytic resolution of telomere DNA structures. We propose that the SLX4-TRF2 complex serves as a double-layer scaffold bridging multiple endonucleases with telomeres for recombination-based telomere maintenance. PMID:24012755

  20. VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures.

    PubMed

    Tateno, Kouta; Zhang, Guoqiang; Gotoh, Hideki; Sogawa, Tetsuomi

    2012-06-13

    We investigated the Au-assisted growth of alternating InAsP/InP heterostructures in wurtzite InP nanowires on InP(111)B substrates for constructing multiple-quantum-dot structures. Vertical InP nanowires without stacking faults were obtained at a high PH(3)/TMIn mole flow ratio of 300-1000. We found that the growth rate changed largely when approximately 40 min passed. Ten InAsP layers were inserted in the InP nanowire, and it was found that both the InP growth rate and the background As level increased after the As supply. We also grew the same structure using TBAs/TBP and could reduce the As level in the InP segments. A simulation using a finite-difference time-domain method suggests that the nanowire growth was dominated by the diffusion of the reaction species with long residence time on the surface. For TBAs/TBP, when the source gases were changed, the formed surface species showed a short diffusion length so as to reduce the As background after the InAsP growth.

Top