Sample records for structure physicochemical properties

  1. Amylopectin molecular structure in relation to physicochemical properties of quinoa starch.

    PubMed

    Li, Guantian; Zhu, Fan

    2017-05-15

    Structure-function relationships of starch components remain a subject of research interest. Quinoa starch has very small granules (∼2μm) with unique properties. In this study, nine quinoa starches varied greatly in composition, structure, and physicochemical properties were selected for the analysis of structure-function relationships. Pearson correlation analysis revealed that the properties related to gelatinization such as swelling power, water solubility index, crystallinity, pasting, and thermal properties are much affected by the amylopectin chain profile and amylose content. The parameters of gel texture and amylose leaching are much related to amylopectin internal structure. Other properties such as enzyme susceptibility and particle size distribution are also strongly correlated with starch composition and amylopectin structure. Interesting findings indicate the importance of amylopectin internal structure and individual unit chain profile in determining the physicochemical properties of starch. This work highlights some relationships among composition, amylopectin structure and physicochemical properties of quinoa starch. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Rapid experimental measurements of physicochemical properties to inform models and testing.

    PubMed

    Nicolas, Chantel I; Mansouri, Kamel; Phillips, Katherine A; Grulke, Christopher M; Richard, Ann M; Williams, Antony J; Rabinowitz, James; Isaacs, Kristin K; Yau, Alice; Wambaugh, John F

    2018-05-02

    The structures and physicochemical properties of chemicals are important for determining their potential toxicological effects, toxicokinetics, and route(s) of exposure. These data are needed to prioritize the risk for thousands of environmental chemicals, but experimental values are often lacking. In an attempt to efficiently fill data gaps in physicochemical property information, we generated new data for 200 structurally diverse compounds, which were rigorously selected from the USEPA ToxCast chemical library, and whose structures are available within the Distributed Structure-Searchable Toxicity Database (DSSTox). This pilot study evaluated rapid experimental methods to determine five physicochemical properties, including the log of the octanol:water partition coefficient (known as log(K ow ) or logP), vapor pressure, water solubility, Henry's law constant, and the acid dissociation constant (pKa). For most compounds, experiments were successful for at least one property; log(K ow ) yielded the largest return (176 values). It was determined that 77 ToxPrint structural features were enriched in chemicals with at least one measurement failure, indicating which features may have played a role in rapid method failures. To gauge consistency with traditional measurement methods, the new measurements were compared with previous measurements (where available). Since quantitative structure-activity/property relationship (QSAR/QSPR) models are used to fill gaps in physicochemical property information, 5 suites of QSPRs were evaluated for their predictive ability and chemical coverage or applicability domain of new experimental measurements. The ability to have accurate measurements of these properties will facilitate better exposure predictions in two ways: 1) direct input of these experimental measurements into exposure models; and 2) construction of QSPRs with a wider applicability domain, as their predicted physicochemical values can be used to parameterize exposure models in the absence of experimental data. Published by Elsevier B.V.

  3. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations.

    PubMed

    Lu, Biao; Vayssade, Muriel; Miao, Yong; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Drelich, Audrey; Egles, Christophe; Pezron, Isabelle

    2016-09-01

    Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Computational and Statistical Analyses of Amino Acid Usage and Physico-Chemical Properties of the Twelve Late Embryogenesis Abundant Protein Classes

    PubMed Central

    Jaspard, Emmanuel; Macherel, David; Hunault, Gilles

    2012-01-01

    Late Embryogenesis Abundant Proteins (LEAPs) are ubiquitous proteins expected to play major roles in desiccation tolerance. Little is known about their structure - function relationships because of the scarcity of 3-D structures for LEAPs. The previous building of LEAPdb, a database dedicated to LEAPs from plants and other organisms, led to the classification of 710 LEAPs into 12 non-overlapping classes with distinct properties. Using this resource, numerous physico-chemical properties of LEAPs and amino acid usage by LEAPs have been computed and statistically analyzed, revealing distinctive features for each class. This unprecedented analysis allowed a rigorous characterization of the 12 LEAP classes, which differed also in multiple structural and physico-chemical features. Although most LEAPs can be predicted as intrinsically disordered proteins, the analysis indicates that LEAP class 7 (PF03168) and probably LEAP class 11 (PF04927) are natively folded proteins. This study thus provides a detailed description of the structural properties of this protein family opening the path toward further LEAP structure - function analysis. Finally, since each LEAP class can be clearly characterized by a unique set of physico-chemical properties, this will allow development of software to predict proteins as LEAPs. PMID:22615859

  5. Structure Property Relationships of Carboxylic Acid Isosteres.

    PubMed

    Lassalas, Pierrik; Gay, Bryant; Lasfargeas, Caroline; James, Michael J; Tran, Van; Vijayendran, Krishna G; Brunden, Kurt R; Kozlowski, Marisa C; Thomas, Craig J; Smith, Amos B; Huryn, Donna M; Ballatore, Carlo

    2016-04-14

    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure-property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group.

  6. Some pungent arguments against the physico-chemical theories of the origin of the genetic code and corroborating the coevolution theory.

    PubMed

    Di Giulio, Massimo

    2017-02-07

    Whereas it is extremely easy to prove that "if the biosynthetic relationships between amino acids were fundamental in the structuring of the genetic code, then their physico-chemical properties might also be revealed in the genetic code table"; it is, on the contrary, impossible to prove that "if the physico-chemical properties of amino acids were fundamental in the structuring of the genetic code, then the presence of the biosynthetic relationships between amino acids should not be revealed in the genetic code". And, given that in the genetic code table are mirrored both the biosynthetic relationships between amino acids and their physico-chemical properties, all this would be a test that would falsify the physico-chemical theories of the origin of the genetic code. That is to say, if the physico-chemical properties of amino acids had a fundamental role in organizing the genetic code, then we would not have duly revealed the presence - in the genetic code - of the biosynthetic relationships between amino acids, and on the contrary this has been observed. Therefore, this falsifies the physico-chemical theories of genetic code origin. Whereas, the coevolution theory of the origin of the genetic code would be corroborated by this analysis, because it would be able to give a description of evolution of the genetic code more coherent with the indisputable empirical observations that link both the biosynthetic relationships of amino acids and their physico-chemical properties to the evolutionary organization of the genetic code. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Physicochemical properties of precursors of Al2O3-ZrO2 oxide ceramics prepared by electrochemical method

    NASA Astrophysics Data System (ADS)

    Petrova, E. V.; Dresvyannikov, A. F.; Ahmadi Daryakenari, M.; Khairullina, A. I.

    2016-05-01

    Scanning electron microscopy, X-ray, and thermal analysis are used to examine the structure and properties of dispersive systems based on aluminum and zirconium oxides prepared electrochemically. The effect the conditions of synthesis have on the structure and morphology of Al2O3-ZrO2 particles is studied. It is shown that the effect of an electric field on the reaction medium allows us to adjust the physicochemical properties and morphology.

  8. 20180318 - Rapid collection of experimental physicochemical property data to inform various models and testing methods (ACS Spring)

    EPA Science Inventory

    In order to determine the potential toxicological effects, toxicokinetics, and route(s) of exposure for chemicals, their structures and corresponding physicochemical properties are required. With this data, the risk for thousands of environmental chemicals can be prioritized. How...

  9. Correlation between soil physicochemical properties and vegetation parameters in secondary tropical forest in Sabal, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Karyati, K.; Ipor, I. B.; Jusoh, I.; Wasli, M. E.

    2018-04-01

    The tree growth is influenced by soil morphological and physicochemical properties in the site. The purpose of this study was to describe correlation between soil properties under various stage secondary forests and vegetation parameters, such as floristic structure parameters and floristic diversity indices. The vegetation surveys were conducted in 5, 10, and 20 years old at secondary tropical forests in Sarawak, Malaysia. Nine sub plots sized 20 m × 20 m were established within each study site. The Pearson analysis showed that soil physicochemical properties were significantly correlated to floristic structure parameters and floristic diversity indices. The result of PCA clarified the correlation among most important soil properties, floristic structure parameters, and floristic diversity indices. The PC1 represented cation retention capacity and soil texture which were little affected by the fallow age and its also were correlated by floristic structure and diversity. The PC2 was linked to the levels of soil acidity. This property reflected the remnant effects of ash addition and fallow duration, and the significant correlation were showed among pH (H2O), floristic structure and diversity. The PC3 represented the soil compactness. The soil hardness could be influenced by fallow period and it was also correlated by floristic structure.

  10. Composition, structure, physicochemical properties, and modifications of cassava starch.

    PubMed

    Zhu, Fan

    2015-05-20

    Cassava is highly tolerant to harsh climatic conditions and has great productivity on marginal lands. The supply of cassava starch, the major component of the root, is thus sustainable and cheap. This review summarizes the current knowledge of the composition, physical and chemical structures, physicochemical properties, nutritional quality, and modifications of cassava starch. Research opportunities to better understand this starch are provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effects of spent mushroom compost application on the physicochemical properties of a degraded soil

    NASA Astrophysics Data System (ADS)

    Gümüş, İlknur; Şeker, Cevdet

    2017-11-01

    Under field and laboratory conditions, the application of organic amendments has generally shown an improvement in soil physicochemical properties. Here, spent mushroom compost (SMC) is proposed as a suitable organic amendment for soil structure restoration. Our study assessed the impact of SMC on the physicochemical properties of a weak-structured and physically degraded soil. The approach involved the establishment of a pot experiment with SMC applications into soil (control, 0.5, 1, 2, 4 and 8 %). Soils were incubated at field capacity (-33 kPa) for 21, 42, and 62 days under laboratory conditions. SMC applications into the soil significantly increased the aggregate stability (AS) and decreased the modulus of rupture. The application of SMC at rates of 1, 2, 4, and 8 % significantly increased the total nitrogen and soil organic carbon contents of the degraded soil at all incubation periods (p < 0.05). The results obtained in this study indicate that the application of SMC can improve soil physicochemical properties, which may benefit farmers, land managers, and mushroom growers.

  12. Effect of high hydrostatic pressure and retrogradation treatments on structural and physicochemical properties of waxy wheat starch.

    PubMed

    Hu, Xiao-Pei; Zhang, Bao; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2017-10-01

    In this study, the effects of high hydrostatic pressure and retrogradation (HHPR) treatments on in vitro digestibility, structural and physicochemical properties of waxy wheat starch were investigated. The waxy wheat starch slurries (10%, w/v) were treated with high hydrostatic pressures of 300, 400, 500, 600MPa at 20°C for 30min, respectively, and then retrograded at 4°C for 4d. The results indicated that the content of slowly digestible starch (SDS) in HHPR-treated starch samples increased with increasing pressure level, and it reached the maximum (31.12%) at 600MPa. HHPR treatment decreased the gelatinization temperatures, the gelatinization enthalpy, the relative crystallinity and the peak viscosity of the starch samples. Moreover, HHPR treatment destroyed the surface and interior structures of starch granules. These results suggest that the in vitro digestibility, physicochemical, and structural properties of waxy wheat starch are effectively modified by HHPR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Molecular modeling of polymers 16. Gaseous diffusion in polymers: a quantitative structure-property relationship (QSPR) analysis.

    PubMed

    Patel, H C; Tokarski, J S; Hopfinger, A J

    1997-10-01

    The purpose of this study was to identify the key physicochemical molecular properties of polymeric materials responsible for gaseous diffusion in the polymers. Quantitative structure-property relationships, QSPRs were constructed using a genetic algorithm on a training set of 16 polymers for which CO2, N2, O2 diffusion constants were measured. Nine physicochemical properties of each of the polymers were used in the trial basis set for QSPR model construction. The linear cross-correlation matrices were constructed and investigated for colinearity among the members of the training sets. Common water diffusion measures for a limited training set of six polymers was used to construct a "semi-QSPR" model. The bulk modulus of the polymer was overwhelmingly found to be the dominant physicochemical polymer property that governs CO2, N2 and O2 diffusion. Some secondary physicochemical properties controlling diffusion, including conformational entropy, were also identified as correlation descriptors. Very significant QSPR diffusion models were constructed for all three gases. Cohesive energy was identified as the main correlation physicochemical property with aqueous diffusion measures. The dominant role of polymer bulk modulus on gaseous diffusion makes it difficult to develop criteria for selective transport of gases through polymers. Moreover, high bulk moduli are predicted to be necessary for effective gas barrier materials. This property requirement may limit the processing and packaging features of the material. Aqueous diffusion in polymers may occur by a different mechanism than gaseous diffusion since bulk modulus does not correlate with aqueous diffusion, but rather cohesive energy of the polymer.

  14. Importance of asparagine on the conformational stability and chemical reactivity of selected anti-inflammatory peptides

    NASA Astrophysics Data System (ADS)

    Soriano-Correa, Catalina; Barrientos-Salcedo, Carolina; Campos-Fernández, Linda; Alvarado-Salazar, Andres; Esquivel, Rodolfo O.

    2015-08-01

    Inflammatory response events are initiated by a complex series of molecular reactions that generate chemical intermediaries. The structure and properties of peptides and proteins are determined by the charge distribution of their side chains, which play an essential role in its electronic structure and physicochemical properties, hence on its biological functionality. The aim of this study was to analyze the effect of changing one central amino acid, such as substituting asparagine for aspartic acid, from Cys-Asn-Ser in aqueous solution, by assessing the conformational stability, physicochemical properties, chemical reactivity and their relationship with anti-inflammatory activity; employing quantum-chemical descriptors at the M06-2X/6-311+G(d,p) level. Our results suggest that asparagine plays a more critical role than aspartic acid in the structural stability, physicochemical features, and chemical reactivity of these tripeptides. Substituent groups in the side chain cause significant changes on the conformational stability and chemical reactivity, and consequently on their anti-inflammatory activity.

  15. Computing the Ediz eccentric connectivity index of discrete dynamic structures

    NASA Astrophysics Data System (ADS)

    Wu, Hualong; Kamran Siddiqui, Muhammad; Zhao, Bo; Gan, Jianhou; Gao, Wei

    2017-06-01

    From the earlier studies in physical and chemical sciences, it is found that the physico-chemical characteristics of chemical compounds are internally connected with their molecular structures. As a theoretical basis, it provides a new way of thinking by analyzing the molecular structure of the compounds to understand their physical and chemical properties. In our article, we study the physico-chemical properties of certain molecular structures via computing the Ediz eccentric connectivity index from mathematical standpoint. The results we yielded mainly apply to the techniques of distance and degree computation of mathematical derivation, and the conclusions have guiding significance in physical engineering.

  16. Structural and physico-chemical properties of insoluble rice bran fiber: effect of acid–base induced modifications

    USDA-ARS?s Scientific Manuscript database

    The structural modifications of insoluble rice bran fiber (IRBF) by sequential regimes of sulphuric acid (H2SO4) and their effects on the physicochemical attributes were studied. The increment of H2SO4 concentration resulted in decreased water holding capacity that ultimately enhanced the oil bindin...

  17. Detecting site-specific physicochemical selective pressures: applications to the Class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic self-incompatibility system.

    PubMed

    Sainudiin, Raazesh; Wong, Wendy Shuk Wan; Yogeeswaran, Krithika; Nasrallah, June B; Yang, Ziheng; Nielsen, Rasmus

    2005-03-01

    Models of codon substitution are developed that incorporate physicochemical properties of amino acids. When amino acid sites are inferred to be under positive selection, these models suggest the nature and extent of the physicochemical properties under selection. This is accomplished by first partitioning the codons on the basis of some property of the encoded amino acids. This partition is used to parametrize the rates of property-conserving and property-altering base substitutions at the codon level by means of finite mixtures of Markov models that also account for codon and transition:transversion biases. Here, we apply this method to two positively selected receptors involved in ligand-recognition: the class I alleles of the human major histocompatibility complex (MHC) of known structure and the S-locus receptor kinase (SRK) of the sporophytic self-incompatibility system (SSI) in cruciferous plants (Brassicaceae), whose structure is unknown. Through likelihood ratio tests we demonstrate that at some sites, the positively selected MHC and SRK proteins are under physicochemical selective pressures to alter polarity, volume, polarity and/or volume, and charge to various extents. An empirical Bayes approach is used to identify sites that may be important for ligand recognition in these proteins.

  18. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties

    PubMed Central

    2011-01-01

    Background Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors. Results This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der Waals volume, pK (pK-C, pK-N, pK-COOH and pK-a(RCOOH)), etc. Conclusions The proposed approach Auto-IDPCPs would help designers to investigate informative physicochemical and biochemical properties by considering both prediction accuracy and analysis of binding mechanism simultaneously. The approach Auto-IDPCPs can be also applicable to predict and analyze other protein functions from sequences. PMID:21342579

  19. Heterocyclic cationic gemini surfactants: a comparative overview of their synthesis, self-assembling, physicochemical, and biological properties.

    PubMed

    Sharma, Vishnu Dutt; Ilies, Marc A

    2014-01-01

    Gemini surfactants (GS) are presently receiving substantial attention due to their special self-assembling properties and unique interfacial activity. This comprehensive review is focused on positively charged heterocyclic GS, presenting their major synthetic access routes and examining the impact of structural elements on physicochemical and aggregation properties of this class of amphiphiles. Interaction of geminis surfactants with cells and their biological properties as novel transfection agents are emphasized through a detailed structure-activity relationship analysis. Throughout the review we have also presented the properties of selected ammonium GS, simple surfactants and lipid congeners, in order to emphasize the advantages conferred by using heterocyclic polar heads in GS design. © 2012 Wiley Periodicals, Inc.

  20. MOLE 2.0: advanced approach for analysis of biomacromolecular channels

    PubMed Central

    2013-01-01

    Background Channels and pores in biomacromolecules (proteins, nucleic acids and their complexes) play significant biological roles, e.g., in molecular recognition and enzyme substrate specificity. Results We present an advanced software tool entitled MOLE 2.0, which has been designed to analyze molecular channels and pores. Benchmark tests against other available software tools showed that MOLE 2.0 is by comparison quicker, more robust and more versatile. As a new feature, MOLE 2.0 estimates physicochemical properties of the identified channels, i.e., hydropathy, hydrophobicity, polarity, charge, and mutability. We also assessed the variability in physicochemical properties of eighty X-ray structures of two members of the cytochrome P450 superfamily. Conclusion Estimated physicochemical properties of the identified channels in the selected biomacromolecules corresponded well with the known functions of the respective channels. Thus, the predicted physicochemical properties may provide useful information about the potential functions of identified channels. The MOLE 2.0 software is available at http://mole.chemi.muni.cz. PMID:23953065

  1. PHYSICOCHEMICAL PROPERTY CALCULATIONS

    EPA Science Inventory

    Computer models have been developed to estimate a wide range of physical-chemical properties from molecular structure. The SPARC modeling system approaches calculations as site specific reactions (pKa, hydrolysis, hydration) and `whole molecule' properties (vapor pressure, boilin...

  2. Estimation of Melting Points of Organics.

    PubMed

    Yalkowsky, Samuel H; Alantary, Doaa

    2018-05-01

    Unified physicochemical property estimation relationships is a system of empirical and theoretical relationships that relate 20 physicochemical properties of organic molecules to each other and to chemical structure. Melting point is a key parameter in the unified physicochemical property estimation relationships scheme because it is a determinant of several other properties including vapor pressure, and solubility. This review describes the first-principals calculation of the melting points of organic compounds from structure. The calculation is based on the fact that the melting point, T m , is equal to the ratio of the heat of melting, ΔH m , to the entropy of melting, ΔS m . The heat of melting is shown to be an additive constitutive property. However, the entropy of melting is not entirely group additive. It is primarily dependent on molecular geometry, including parameters which reflect the degree of restriction of molecular motion in the crystal to that of the liquid. Symmetry, eccentricity, chirality, flexibility, and hydrogen bonding, each affect molecular freedom in different ways and thus make different contributions to the total entropy of fusion. The relationships of these entropy determining parameters to chemical structure are used to develop a reasonably accurate means of predicting the melting points over 2000 compounds. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Beneficial reuse of fly ashes in geotechnical engineering with physicochemical and electron microscopic methods.

    DOT National Transportation Integrated Search

    2013-06-01

    The sedimentation behavior of fine grained soil is largely dependent on its pore fluid chemistry. Physicochemical properties of the : pore fluid, such as ionic strength and pH, could greatly influence the micro structure of kaolinite which in turn in...

  4. Magnetic ionic liquids in analytical chemistry: A review.

    PubMed

    Clark, Kevin D; Nacham, Omprakash; Purslow, Jeffrey A; Pierson, Stephen A; Anderson, Jared L

    2016-08-31

    Magnetic ionic liquids (MILs) have recently generated a cascade of innovative applications in numerous areas of analytical chemistry. By incorporating a paramagnetic component within the cation or anion, MILs exhibit a strong response toward external magnetic fields. Careful design of the MIL structure has yielded magnetoactive compounds with unique physicochemical properties including high magnetic moments, enhanced hydrophobicity, and the ability to solvate a broad range of molecules. The structural tunability and paramagnetic properties of MILs have enabled magnet-based technologies that can easily be added to the analytical method workflow, complement needed extraction requirements, or target specific analytes. This review highlights the application of MILs in analytical chemistry and examines the important structural features of MILs that largely influence their physicochemical and magnetic properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch.

    PubMed

    Zeng, Shaoxiao; Chen, Bingyan; Zeng, Hongliang; Guo, Zebin; Lu, Xu; Zhang, Yi; Zheng, Baodong

    2016-03-30

    The objective of this study is to investigate the effect of microwave irradiation on the physicochemical and digestive properties of lotus seed starch. The physicochemical properties of lotus seed starch were characterized by light microscopy, (1)H NMR, FT-IR spectroscopy, and HPSEC-MALLS-RI. The starch-water interaction and crystalline region increased due to the changed water distribution of starch granules and the increase of the double-helix structure. The swelling power, amylose leaching, molecular properties, and radius of gyration reduced with the increasing microwave power, which further affected the sensitivity of lotus seed starch to enzymatic degradation. Furthermore, the resistant starch and slowly digestible starch increased with the increasing microwave irradiation, which further resulted in their decreasing hydrolysis index and glycemic index. The digestive properties of lotus seed starch were mainly influenced by the reduced branching degree of amylopectin and the strong amylose-amylose interaction.

  6. Application of ultra high pressure (UHP) in starch chemistry.

    PubMed

    Kim, Hyun-Seok; Kim, Byung-Yong; Baik, Moo-Yeol

    2012-01-01

    Ultra high pressure (UHP) processing is an attractive non-thermal technique for food treatment and preservation at room temperature, with the potential to achieve interesting functional effects. The majority of UHP process applications in food systems have focused on shelf-life extension associated with non-thermal sterilization and a reduction or increase in enzymatic activity. Only a few studies have investigated modifications of structural characteristics and/or protein functionalities. Despite the rapid expansion of UHP applications in food systems, limited information is available on the effects of UHP on the structural and physicochemical properties of starch and/or its chemical derivatives included in most processed foods as major ingredients or minor additives. Starch and its chemical derivatives are responsible for textural and physical properties of food systems, impacting their end-use quality and/or shelf-life. This article reviews UHP processes for native (unmodified) starch granules and their effects on the physicochemical properties of UHP-treated starch. Furthermore, functional roles of UHP in acid-hydrolysis, hydroxypropylation, acetylation, and cross-linking reactions of starch granules, as well as the physicochemical properties of UHP-assisted starch chemical derivatives, are discussed.

  7. Significant Differences in Physicochemical Properties of Human Immunoglobulin Kappa and Lambda CDR3 Regions.

    PubMed

    Townsend, Catherine L; Laffy, Julie M J; Wu, Yu-Chang Bryan; Silva O'Hare, Joselli; Martin, Victoria; Kipling, David; Fraternali, Franca; Dunn-Walters, Deborah K

    2016-01-01

    Antibody variable regions are composed of a heavy and a light chain, and in humans, there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain complementarity-determining region (CDR)-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains and probed the Protein Data Bank to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda, and heavy chain gene rearrangements are correlated within donors but can differ between donors. This indicates that terminal deoxynucleotidyl transferase may work with differing efficiencies between different people but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response.

  8. Significant Differences in Physicochemical Properties of Human Immunoglobulin Kappa and Lambda CDR3 Regions

    PubMed Central

    Townsend, Catherine L.; Laffy, Julie M. J.; Wu, Yu-Chang Bryan; Silva O’Hare, Joselli; Martin, Victoria; Kipling, David; Fraternali, Franca; Dunn-Walters, Deborah K.

    2016-01-01

    Antibody variable regions are composed of a heavy and a light chain, and in humans, there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain complementarity-determining region (CDR)-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains and probed the Protein Data Bank to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda, and heavy chain gene rearrangements are correlated within donors but can differ between donors. This indicates that terminal deoxynucleotidyl transferase may work with differing efficiencies between different people but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response. PMID:27729912

  9. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity.

    PubMed

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous system) suggesting specific molecular and physiological roles of promiscuous metabolites.

  10. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity

    PubMed Central

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous system) suggesting specific molecular and physiological roles of promiscuous metabolites. PMID:26442281

  11. Understanding physicochemical properties changes from multi-scale structures of starch/CNT nanocomposite films.

    PubMed

    Liu, Siyuan; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing; Zhu, Jie

    2017-11-01

    From the view of multi-scale structures of hydroxypropyl starch (HPS)/carbon nanotube (CNT) nanocomposite films, the film physicochemical properties were affected by comprehensive factors including molecular interaction, short range molecular conformation, crystalline structure and aggregated structure. The less original HPS hydrogen bonding that was broken, less decreased order of HPS short range molecular conformation, lower film crystallinity and larger size of micro-ordered regions contributed to higher tensile strength and Young's modulus of the film with CNT content of 0.5% (g/g, CNT in HPS). The higher film overall crystallinity and larger size of micro-ordered regions of the film with CNT content of 0.05%-0.3% compared with those of control contributed to better film barrier property. The addition of CNT with the content of 0.05%-0.5% broke the original HPS hydrogen bonding and decreased the order of starch short range molecular conformation, which counteracted the positive effect of CNT on the thermal stability of the material, thus thermal degradation temperature of these nanocomposite films did not increase. But the sharp increase of film crystallinity increased film thermal degradation temperature. This study provided a better understanding of film physicochemical properties changes which guides to rational design of starch-based nanocomposite films for packaging and coating application. Copyright © 2017. Published by Elsevier B.V.

  12. Preparation and physicochemical properties of protein concentrate and isolate produced from Acacia tortilis (Forssk.) Hayne ssp. raddiana.

    PubMed

    Embaby, Hassan E; Swailam, Hesham M; Rayan, Ahmed M

    2018-02-01

    The composition and physicochemical properties of defatted acacia flour (DFAF), acacia protein concentrate (APC) and acacia protein isolate (API) were evaluated. The results indicated that API had lower, ash and fat content, than DFAF and APC. Also, significant difference in protein content was noticed among DFAF, APC and API (37.5, 63.7 and 91.8%, respectively). Acacia protein concentrate and isolates were good sources of essential amino acids except cystine and methionine. The physicochemical and functional properties of acacia protein improved with the processing of acacia into protein concentrate and protein isolate. The results of scanning electron micrographs showed that DFAF had a compact structure; protein concentrate were, flaky, and porous type, and protein isolate had intact flakes morphology.

  13. Effect of acidity on the physicochemical properties of α- and β-chitin nanofibers.

    PubMed

    Suenaga, Shin; Totani, Kazuhide; Nomura, Yoshihiro; Yamashita, Kazuhiko; Shimada, Iori; Fukunaga, Hiroshi; Takahashi, Nobuhide; Osada, Mitsumasa

    2017-09-01

    We have investigated whether acidity can be used to control the physicochemical properties of chitin nanofibers (ChNFs). In this study, we define acidity as the molar ratio of dissociated protons from the acid to the amino groups in the raw chitin powder. The effect of acidity on the physicochemical properties of α- and β-ChNFs was compared. The transmittance and viscosity of the β-ChNFs drastically and continuously increased with increasing acidity, while those of the α-ChNFs were not affected by acidity. These differences are because of the higher ability for cationization based on the more flexible crystal structure of β-chitin than α-chitin. In addition, the effect of the acid species on the transmittance of β-ChNFs was investigated. The transmittance of β-ChNFs can be expressed by the acidity regardless of the acid species, such as hydrochloric acid, phosphoric acid, and acetic acid. These results indicate that the acidity defined in this work is an effective parameter to define and control the physicochemical properties of ChNFs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    PubMed Central

    Kumirska, Jolanta; Czerwicka, Małgorzata; Kaczyński, Zbigniew; Bychowska, Anna; Brzozowski, Krzysztof; Thöming, Jorg; Stepnowski, Piotr

    2010-01-01

    Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds. PMID:20559489

  15. Physicochemical and morphological properties of plasticized poly(vinyl alcohol)-agar biodegradable films.

    PubMed

    Madera-Santana, T J; Freile-Pelegrín, Y; Azamar-Barrios, J A

    2014-08-01

    The effects of the addition of glycerol (GLY) on the physicochemical and morphological properties of poly(vinyl alcohol) (PVA)-agar films were reported. PVA-agar films were prepared by solution cast method, and the addition of GLY in PVA-agar films altered the optical properties, resulting in a decrease in opacity values and in the color difference (ΔE) of the films. Structural characterization using Fourier transformation infrared (FTIR) spectroscopy and X-ray diffraction (XRD) indicated that the presence of GLY altered the intensity of the bands (from 1200 to 800cm(-1)) and crystallinity. The characterization of the thermal properties indicated that an increase in the agar content produces a decrease in the melting temperature and augments the heat of fusion. Similar tendencies were observed in plasticized films, but at different magnification. The formulation that demonstrated the lowest mechanical properties contained 25wt.% agar, whereas the formulation that contained 75wt.% agar demonstrated a significant improvement. The water vapor transmission rate (WVTR) and surface morphology analysis demonstrated that the structure of PVA-agar films is reorganized upon GLY addition. The physicochemical properties of PVA-agar films using GLY as a plasticizer provide information for the application of this formulation as packaging material for specific food applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties

    USDA-ARS?s Scientific Manuscript database

    Natural waxes (candelilla wax, carnauba wax, and beeswax) were utilized as canola oil structurants to produce oleogels and their physicochemical properties were evaluated from rheological, thermal, and oxidative points of view. The oleogels with candelilla wax exhibited the highest hardness, followe...

  17. Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances.

    PubMed

    Bhadani, Avinash; Misono, Takeshi; Singh, Sukhprit; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2016-05-01

    The current review covers recent advances on development and investigation of cationic surfactants containing imidazolium headgroup, which are being extensively investigated for their self-aggregation properties and are currently being utilized in various conventional and non-conventional application areas. These surfactants are being used as: soft template for synthesis of mesoporous/microporous materials, drug and gene delivery agent, stabilizing agent for nanoparticles, dispersants for single/multi walled carbon nanotubes, antimicrobial and antifungal agent, viscosity modifiers, preparing nanocomposite materials, stabilizing microemulsions, corrosion inhibitors and catalyst for organic reactions. Recently several structural derivatives of these surfactants have been developed having many interesting physicochemical properties and they have demonstrated enormous potential in the area of nanotechnology, material science and biomedical science. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Fractionation, physicochemical property and immunological activity of polysaccharides from Cassia obtusifolia.

    PubMed

    Feng, Lei; Yin, Junyi; Nie, Shaoping; Wan, Yiqun; Xie, Mingyong

    2016-10-01

    The seeds of Cassia obtusifolia are widely used as a drink in Asia and an additive in food industry. Considerable amounts of water-soluble polysaccharides were found in the whole seeds, while conflicting results on structure characteristics have been reported, and few studies have been reported on physicochemical properties and immunomodulatory activities. In the present study, gradient ethanol precipitation was applied to fractionate the water-soluble polysaccharide (CP), and two sub-fractions CP-30 (30% ethanol precipitate) and CP-40 (40% ethanol precipitate) were obtained. Different rheological properties for CP-30 and CP-40 were found, indicating the differences in structure characteristics between CP-30 and CP-40. Chemical properties, including molecular weight, monosaccharide composition, and glycosidic linkage were investigated. Compared with CP-30, CP-40 had lower molecular weight and higher content of xylose. The immunomodulatory effects of CP, CP-30 and CP-40 were assessed. All of them were found to possess significant immunomodulation activities, while varied effects of them on macrophage functions were observed. The aim of the present study was to develop a simple and efficient method to purify cassia polysaccharides, and investigate their physicochemical properties and biological activities, which was meaningful for their potential use in food industry and folk medicine. Copyright © 2016. Published by Elsevier B.V.

  19. Analysis of Physicochemical and Structural Properties Determining HIV-1 Coreceptor Usage

    PubMed Central

    Bozek, Katarzyna; Lengauer, Thomas; Sierra, Saleta; Kaiser, Rolf; Domingues, Francisco S.

    2013-01-01

    The relationship of HIV tropism with disease progression and the recent development of CCR5-blocking drugs underscore the importance of monitoring virus coreceptor usage. As an alternative to costly phenotypic assays, computational methods aim at predicting virus tropism based on the sequence and structure of the V3 loop of the virus gp120 protein. Here we present a numerical descriptor of the V3 loop encoding its physicochemical and structural properties. The descriptor allows for structure-based prediction of HIV tropism and identification of properties of the V3 loop that are crucial for coreceptor usage. Use of the proposed descriptor for prediction results in a statistically significant improvement over the prediction based solely on V3 sequence with 3 percentage points improvement in AUC and 7 percentage points in sensitivity at the specificity of the 11/25 rule (95%). We additionally assessed the predictive power of the new method on clinically derived ‘bulk’ sequence data and obtained a statistically significant improvement in AUC of 3 percentage points over sequence-based prediction. Furthermore, we demonstrated the capacity of our method to predict therapy outcome by applying it to 53 samples from patients undergoing Maraviroc therapy. The analysis of structural features of the loop informative of tropism indicates the importance of two loop regions and their physicochemical properties. The regions are located on opposite strands of the loop stem and the respective features are predominantly charge-, hydrophobicity- and structure-related. These regions are in close proximity in the bound conformation of the loop potentially forming a site determinant for the coreceptor binding. The method is available via server under http://structure.bioinf.mpi-inf.mpg.de/. PMID:23555214

  20. Structural and physicochemical characterization of thermoplastic corn starch films containing microalgae.

    PubMed

    Fabra, María José; Martínez-Sanz, Marta; Gómez-Mascaraque, L G; Gavara, Rafael; López-Rubio, Amparo

    2018-04-15

    This work provides an in-depth analysis on how the addition of different microalgae species (Nannochloropsis, Spirulina and Scenedesmus) affected the structural and physicochemical properties of thermoplastic corn starch biocomposites. Structural characterization was conducted by combined SAXS/WAXS experiments and it was correlated with mechanical and barrier properties of the biocomposites. A water vapour permeability drop of ca. 54% was observed upon addition of the different microalgae species. The oxygen permeability and the mechanical properties of biocomposites containing Spirulina or Scenedesmus were not improved since the presence of microalgae hindered the re-arrangement and packing of the lamellar structure of starch polymeric chains, according to the SAXS results. Nannochloropsis caused a great reduction of the matrix rigidity and, the oxygen permeability was also improved. Therefore, all of these features make the Nannochloropsis biocomposites an alternative to generate biodegradable food packaging materials with the additional advantage that they can be easily scaled-up. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Physicochemical and Immunomodulatory Properties of Gum Exudates Obtained from Astragalus myriacanthus and Some of Its Isolated Carbohydrate Biopolymers

    PubMed Central

    Hamedi, Azadeh; Yousefi, Gholamhossein; Farjadian, Shirin; Bour Bour, Mitra Saadat; Parhizkar, Elahenaz

    2017-01-01

    Plants gums are complex mixtures of different polysaccharides with a variety of biological activities and pharmaceutical applications. Few studies have focused on physicochemical and biological properties of gums obtained from different plants. This study was designed to determine potential pharmaceutical and pharmacological values of the gum exudates and its isolated biopolymers obtained from Astragalus myriacanthus Boiss [syn. Astracantha myriacantha (Boiss.) Podlech] (Fabaceae). The physicochemical, rheological, and mucoadhesion properties of the gum and its fractions was measured at 7, 27, and 37 °C with and without the presence of NaCl (1%). Also, the structural and immunomodulatory properties of several water soluble biopolymers isolated using ion exchange and size exclusion chromatographic methods were investigated on Jurkat cells at concentrations of 31.25, 62.5, 125, 250, 500 and 1000 μg/mL. The consistency and shear-thinning property of the gum and its fractions decreased as temperature increased. In the presence of NaCl, the consistency increased but no regular pattern was observed regarding to shear-thinning behavior. The mucoadhesion strength was 40.66 ± 2.08 g/cm2 which is suitable for use as a formulary mucoadhesive polymer. The isolated biopolymers had proteo-arabinoglycan structure. Their molecular weight was calculated to be 1.67-667 kDa. One biopolymer had a proliferative effect and others had dose dependent cytotoxic/proliferative properties. The crude gum and its insoluble fraction showed suitable mucoadhesion, swellability and rheological properties which makes them suitable for designing drug delivery systems. The gum proteo-arabinoglycans with different molecular weight and structures had different immunomodulatory properties. PMID:29552060

  2. THE USE OF STRUCTURE-ACTIVITY RELATIONSHIPS IN INTEGRATING THE CHEMISTRY AND TOXICOLOGY OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Structure activity relationships (SARs) are based on the principle that structurally similar chemicals should have similar biological activity. SARs relate specifically-defined toxicological activity of chemicals to their molecular structure and physico-chemical properties. To de...

  3. Xanthine oxidase inhibitors beyond allopurinol and febuxostat; an overview and selection of potential leads based on in silico calculated physico-chemical properties, predicted pharmacokinetics and toxicity.

    PubMed

    Šmelcerović, Andrija; Tomović, Katarina; Šmelcerović, Žaklina; Petronijević, Živomir; Kocić, Gordana; Tomašič, Tihomir; Jakopin, Žiga; Anderluh, Marko

    2017-07-28

    Xanthine oxidase (XO), a versatile metalloflavoprotein enzyme, catalyzes the oxidative hydroxylation of hypoxanthine and xanthine to uric acid in purine catabolism while simultaneously producing reactive oxygen species. Both lead to the gout-causing hyperuricemia and oxidative damage of the tissues where overactivity of XO is present. Over the past years, significant progress and efforts towards the discovery and development of new XO inhibitors have been made and we believe that not only experts in the field, but also general readership would benefit from a review that addresses this topic. Accordingly, the aim of this article was to overview and select the most potent recently reported XO inhibitors and to compare their structures, mechanisms of action, potency and effectiveness of their inhibitory activity, in silico calculated physico-chemical properties as well as predicted pharmacokinetics and toxicity. Derivatives of imidazole, 1,3-thiazole and pyrimidine proved to be more potent than febuxostat while also displaying/possessing favorable predicted physico-chemical, pharmacokinetic and toxicological properties. Although being structurally similar to febuxostat, these optimized inhibitors bear some structural freshness and could be adopted as hits for hit-to-lead development and further evaluation by in vivo studies towards novel drug candidates, and represent valuable model structures for design of novel XO inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Type II Collagen and Gelatin from Silvertip Shark (Carcharhinus albimarginatus) Cartilage: Isolation, Purification, Physicochemical and Antioxidant Properties

    PubMed Central

    Jeevithan, Elango; Bao, Bin; Bu, Yongshi; Zhou, Yu; Zhao, Qingbo; Wu, Wenhui

    2014-01-01

    Type II acid soluble collagen (CIIA), pepsin soluble collagen (CIIP) and type II gelatin (GII) were isolated from silvertip shark (Carcharhinus albimarginatus) cartilage and examined for their physicochemical and antioxidant properties. GII had a higher hydroxyproline content (173 mg/g) than the collagens and cartilage. CIIA, CIIP and GII were composed of two identical α1 and β chains and were characterized as type II. Amino acid analysis of CIIA, CIIP and GII indicated imino acid contents of 150, 156 and 153 amino acid residues per 1000 residues, respectively. Differing Fourier transform infrared (FTIR) spectra of CIIA, CIIP and GII were observed, which suggested that the isolation process affected the secondary structure and molecular order of collagen, particularly the triple-helical structure. The denaturation temperature of GII (32.5 °C) was higher than that of CIIA and CIIP. The antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl radicals and the reducing power of CIIP was greater than that of CIIA and GII. SEM microstructure of the collagens depicted a porous, fibrillary and multi-layered structure. Accordingly, the physicochemical and antioxidant properties of type II collagens (CIIA, CIIP) and GII isolated from shark cartilage were found to be suitable for biomedical applications. PMID:24979271

  5. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR ORGANIC CONTAMINANTS FROM ADSORBENT AND ADSORBATE PROPERTIES

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  6. Pharmaceutical Cocrystals and Their Physicochemical Properties

    PubMed Central

    2009-01-01

    Over the last 20 years, the number of publications outlining the advances in design strategies, growing techniques, and characterization of cocrystals has continued to increase significantly within the crystal engineering field. However, only within the last decade have cocrystals found their place in pharmaceuticals, primarily due to their ability to alter physicochemical properties without compromising the structural integrity of the active pharmaceutical ingredient (API) and thus, possibly, the bioactivity. This review article will highlight and discuss the advances made over the last 10 years pertaining to physical and chemical property improvements through pharmaceutical cocrystalline materials and, hopefully, draw closer the fields of crystal engineering and pharmaceutical sciences. PMID:19503732

  7. Effects of volumetric expansion in molecular crystals: A quantum mechanical investigation on aspirin and paracetamol most stable polymorphs

    NASA Astrophysics Data System (ADS)

    Adhikari, Kapil; Flurchick, Kenneth M.; Valenzano, Loredana

    2015-02-01

    This work reports a study performed at hybrid semi-empirical density functional level (B3LYP-D2*) of the physico-chemical properties of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) in their most stable crystalline forms. It is shown how effects arising from volumetric expansions influence the properties of the materials. Structural, energetic, and vibrational properties are in good agreement with experimental values reported at temperatures far from 0 K. Results show that the proposed approach is reliable enough to reproduce effects of volumetric expansion on lattice energies and other measurable physico-chemical observables related to inter-molecular forces.

  8. Effect of High-Pressure Treatment on Catalytic and Physicochemical Properties of Pepsin.

    PubMed

    Wang, Jianan; Bai, Tenghui; Ma, Yaping; Ma, Hanjun

    2017-10-11

    For a long time, high-pressure treatment has been used to destroy the compact structures of natural proteins in order to promote subsequent enzymatic hydrolysis. However, there are few reports evaluating the feasibility of directly improving the catalytic capability of proteases by using high-pressure treatments. In this study, the effects of high-pressure treatment on the catalytic capacity and structure of pepsin were investigated, and the relationship between its catalytic properties and changes in its physicochemical properties was explored. It was found that high-pressure treatment could lead to changes of the sulfhydryl group/disulfide bond content, hydrophobicity, hydrodynamic radius, intrinsic viscosity, and subunit composition of pepsin, and the conformational change of pepsin resulted in improvement to its enzymatic activity and hydrolysis efficiency, which had an obvious relationship with the high-pressure treatment conditions.

  9. Physicochemical properties of black pepper (Piper nigrum) starch.

    PubMed

    Zhu, Fan; Mojel, Reuben; Li, Guantian

    2018-02-01

    Black pepper (Piper nigrum) is among the most popular spices around the world. Starch is the major component of black pepper. However, little is known about functional properties of this starch. In this study, swelling, solubility, thermal properties, rheology, and enzyme susceptibility of 2 black pepper starches were studied and compared with those of maize starch. Pepper starch had lower water solubility and swelling power than maize starch. It had higher viscosity during pasting event. In dynamic oscillatory analysis, pepper starch had lower storage modulus. Thermal analysis showed that pepper starch had much higher gelatinization temperatures (e.g., conclusion temperature of 94°C) than maize starch. The susceptibility to α-amylolysis of pepper starch was not very different from that of maize starch. Overall, the differences in the physicochemical properties of the 2 pepper starches are non-significant. The relationships between structure (especially amylopectin internal molecular structure) and properties of starch components are highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR EMERGING ORGANIC CONTAMINANTS FROM FUNDAMENTAL ADSORBENT AND ADSORBATE PROPERTIES - PRESENTATION

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  11. Structural Prediction and In Silico Physicochemical Characterization for Mouse Caltrin I and Bovine Caltrin Proteins

    PubMed Central

    Grasso, Ernesto J.; Sottile, Adolfo E.; Coronel, Carlos E.

    2016-01-01

    It is known that caltrin (calcium transport inhibitor) protein binds to sperm cells during ejaculation and inhibits extracellular Ca2+ uptake. Although the sequence and some biological features of mouse caltrin I and bovine caltrin are known, their physicochemical properties and tertiary structure are mainly unknown. We predicted the 3D structures of mouse caltrin I and bovine caltrin by molecular homology modeling and threading. Surface electrostatic potentials and electric fields were calculated using the Poisson–Boltzmann equation. Several different bioinformatics tools and available web servers were used to thoroughly analyze the physicochemical characteristics of both proteins, such as their Kyte and Doolittle hydropathy scores and helical wheel projections. The results presented in this work significantly aid further understanding of the molecular mechanisms of caltrin proteins modulating physiological processes associated with fertilization. PMID:27812283

  12. Complexation of rice starch/flour and maize oil through heat moisture treatment: Structural, in vitro digestion and physicochemical properties.

    PubMed

    Chen, Xu; He, Xiaowei; Fu, Xiong; Zhang, Bin; Huang, Qiang

    2017-05-01

    This study investigated structural, in vitro digestion and physicochemical properties of normal rice starch (NRS)/flour (NRF) complexed with maize oil (MO) through heat-moisture treatment (HMT). The NRS-/NRF-MO complex displayed an increased pasting temperature and a decreased peak viscosity. After HMT, less ordered Maltese and more granule fragments were observed for NRS-/NRF-MO complex. Meanwhile, more aggregation was observed in the HMT samples with higher moisture contents. We found that higher onset temperature, lower enthalpy change and relative crystallinity of the NRS-/NRF-MO complex were associated with a higher moisture content of HMT samples. The higher moisture content of HMT was also favorable for the amylose-lipid complex formation. Differences in starch digestion properties were found for NRS-MO and NRF-MO complex. All of the NRS/NRF complexed MO after cooking showed lower rapidly digestible starch (RDS) contents compared with the control sample, therein NRS-/NRF- MO 20% exhibited the highest sum of the slowly digestible starch and resistant starch contents. In general, HMT had a greater impact on the in vitro digestion and physicochemical properties of flour samples compared with starch counterparts. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    PubMed

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical properties represents a good starting point for further biological research. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Acoustic characterisation of liquid foams with an impedance tube.

    PubMed

    Pierre, Juliette; Guillermic, Reine-Marie; Elias, Florence; Drenckhan, Wiebke; Leroy, Valentin

    2013-10-01

    Acoustic measurements provide convenient non-invasive means for the characterisation of materials. We show here for the first time how a commercial impedance tube can be used to provide accurate measurements of the velocity and attenuation of acoustic waves in liquid foams, as well as their effective "acoustic" density, over the 0.5-6kHz frequency range. We demonstrate this using two types of liquid foams: a commercial shaving foam and "home-made" foams with well-controlled physico-chemical and structural properties. The sound velocity in the latter foams is found to be independent of the bubble size distribution and is very well described by Wood's law. This implies that the impedance technique may be a convenient way to measure in situ the density of liquid foams. Important questions remain concerning the acoustic attenuation, which is found to be influenced in a currently unpredictible manner by the physico-chemical composition and the bubble size distribution of the characterised foams. We confirm differences in sound velocities in the two types of foams (having the same structural properties) which suggests that the physico-chemical composition of liquid foams has a non-negligible effect on their acoustic properties.

  15. Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices

    PubMed Central

    Huang, Jieying; Yu, Zixuan; Gao, Hongjian; Yan, Xiaoming; Chang, Jiang; Wang, Chengming; Hu, Jingwei

    2017-01-01

    Changes in physicochemical characteristics, chemical structures and maturity of swine, cattle and chicken manures and composts during 70-day composting without addition of bulking agents were investigated. Physicochemical characteristics were measured by routine analyses and chemical structures by solid-state 13C NMR and FT-IR. Three manures were of distinct properties. Their changes in physicochemical characteristics, chemical structures, and maturity were different not only from each other but also from those with addition of bulking agents during composting. Aromaticity in chicken manure composts decreased at first, and then increased whereas that in cattle and swine manure composts increased. Enhanced ammonia volatilization occurred without addition of bulking agents. NMR structural information indicated that cattle and chicken composts were relatively stable at day 36 and 56, respectively, but swine manure composts were not mature up to day 70. Finally, the days required for three manures to reach the threshold values of different maturity indices were different. PMID:28604783

  16. Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites.

    PubMed

    Guz, L; Famá, L; Candal, R; Goyanes, S

    2017-02-10

    This work demonstrates that the size of ZnO nanorods (ZnONR) with similar aspect ratio determines several physicochemical and microbiological properties of thermoplastic starch composites (TPS/ZnONR) at a given concentration of ZnONRs. A combination of sol-gel and hydrothermal methods was developed to synthesize ZnONR with different sizes but similar aspect ratios. Starch composites containing 1wt.% of ZnONR were prepared by casting. Composites with smaller size nanorods (ZnONR-S) showed more efficiency in shielding UVA radiation and had a higher solubility and water vapor permeability than those with larger nanorods (ZnONR-L). Mechanical properties, biodegradability and antibacterial activity were also influenced by the size of the ZnONR. X-ray diffraction analysis showed that composites with ZnONR-S maintained the typical B-V type starch structure, intensifying the V-type starch structure peaks, while composite with ZnONR-L induced the formation of an amorphous structure, preventing starch retrogradation during storage. Properties affected by nanorods size are fundamental in determining composite applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. ABIOTIC REDOX TRANSFORMATION OF ORGANIC COMPOUNDS AT THE CLAY-WATER INTERFACE

    EPA Science Inventory

    The interactions of clay, water and organic compounds considerably modify the structural and physico-chemical properties of all components and create a unique domain for biological and chemical species in environments. Previous research indicates that the nature and properties of...

  18. Theoretical Studies for Dendrimer-Based Drug Delivery.

    PubMed

    Bello, Martiniano; Fragoso-Vázquez, Jonathan; Correa-Basurto, José

    2017-01-01

    Numerous theoretical studies have been performed to iteratively optimize the physicochemical properties such as dendrimer size and surface constituents in solution, as well as their molecular recognition properties for drugs, lipid membranes, nucleic acids and proteins, etc. Molecular modeling approaches such as docking and molecular dynamic (MD) simulations have supported experimental efforts by providing important insights into the structural properties of dendrimers in solution and possible binding properties of drugs at the atomic level. We review the utilization of molecular modelling tools to obtain insight into the study and design of dendrimers, with particular importance placed on the improvement of binding properties of dendrimers for their use as drug nanocarriers and to increase the water solubility properties and drug delivery. The modeling studies discussed in this review have provided substantial insight into the physicochemical properties of dendrimers in solution, including solvent pH and counterion distribution, at the atomic level, as well as the elucidation of some of the key interactions in solution of unmodified and modified dendrimers with some drugs of pharmaceutics interest and biological systems such as nucleic acids, proteins and lipid membranes. the described studies illustrate that whether simulations will be run at the all-atom or coarse-grained level, physicochemical conditions such as the type of force field, the treatment of electrostatics effects, counterion distribution, protonation state of dendrimers, and dendrimer concentrations which have been probed to play a crucial role in the structural behavior and binding properties must be prudently incorporated in the simulations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Physicochemical properties and biocompatibility of N-trimethyl chitosan: effect of quaternization and dimethylation.

    PubMed

    Jintapattanakit, Anchalee; Mao, Shirui; Kissel, Thomas; Junyaprasert, Varaporn Buraphacheep

    2008-10-01

    The aim of this research was to investigate the effect of degrees of quaternization (DQ) and dimethylation (DD) on physicochemical properties and cytotoxicity of N-trimethyl chitosan (TMC). TMC was synthesized by reductive methylation of chitosan in the presence of a strong base at elevated temperature and polymer characteristics were investigated. The number of methylation process and duration of reaction were demonstrated to affect the DQ and DD. An increased number of reaction steps increased DQ and decreased DD, while an extended duration of reaction increased both DQ and DD. The molecular weight of TMC was in the range of 60-550kDa. From the Mark-Houwink equation, it was found that TMC in 2% acetic acid/0.2M sodium acetate behaved as a spherical structure, approximating a random coil. The highest solubility was found with TMC of an intermediate DQ (40%) regardless of DD and molecular weight. The effect of DD on the physicochemical properties and cytotoxicity was obviously observed when proportion of DD to DQ was higher than 1. TMC with relatively high DD showed reduction in both solubility and mucoadhesion and hence decreased cytotoxicity. However, the influence of DD was insignificant when DQ of TMC was higher than 40% at which physicochemical properties and cytotoxicity were mainly dependent upon DQ.

  20. Influence of selected physicochemical parameters on microbiological activity of mucks.

    NASA Astrophysics Data System (ADS)

    Całka, A.; Sokołowska, Z.; Warchulska, P.; Dąbek-Szreniawska, M.

    2009-04-01

    One of the basic factor decided about soil fertility are microorganisms that together with flora, determine trend and character of biochemical processes as well totality of fundamental transformations connected with biogeochemistry and physicochemical properties of soil. Determination of general bacteria number, quantity of selected groups of microorganisms and investigation of respiration intensity let estimate microbiological activity of soil. Intensity of microbiological processes is directly connected with physicochemical soil parameters. In that case, such structural parameters as bulk density, porosity, surface or carbon content play significant role. Microbiological activity also changes within the bounds of mucks with different stage of humification and secondary transformation. Knowledge of relations between structural properties, microorganism activity and degree of transformation and humification can lead to better understanding microbiological processes as well enable to estimate microbiological activity at given physicochemical conditions and at progressing process of soil transformation. The study was carried out on two peaty-moorsh (muck) soils at different state of secondary transformation and humification degree. Soil samples were collected from Polesie Lubelskie (layer depth: 5 - 25 cm). Investigated mucks originated from soils formed from low peatbogs. Soil sample marked as I belonged to muck group weakly secondary transformed. Second sample (II) represented soil group with middle stage of secondary transformation. The main purpose of the research was to examine the relations between some physicochemical and surface properties and their biological activity. Total number and respiration activity of microorganisms were determined. The effectiveness of utilizing the carbon substances from the soil by the bacteria increased simultaneously with the transformation state of the peat-muck soils. Quantity of organic carbon decreased distinctly in the soil at the higher stage of secondary transformation and it influenced quantity and activity of soil microorganisms. Bulk density and surface increased with increasing secondary transformation degree. On the other hand, porosity decreased with increasing secondary transformation index. Process of secondary transformation influenced the soil environment for the microbes by changing the physicochemical properties. This way it influenced the number of microorganisms and caused changes of biological activity in the soils.

  1. The physico-chemical properties and structural characteristics of artificial soil for cut slope restoration in Southwestern China

    PubMed Central

    Chen, Shunan; Ai, Xiaoyan; Dong, Tengyun; Li, Binbin; Luo, Ruihong; Ai, Yingwei; Chen, Zhaoqiong; Li, Chuanren

    2016-01-01

    Cut slopes are frequently generated by construction work in hilly areas, and artificial soil is often sprayed onto them to promote ecological rehabilitation. The artificial soil properties are very important for effective management of the slopes. This paper uses fractal and moment methods to characterize soil particle size distribution (PSD) and aggregates composition. The fractal dimension (D) showed linear relationships between clay, silt, and sand contents, with coefficients of determination from 0.843 to 0.875, suggesting that using of D to evaluate the PSD of artificial soils is reasonable. The bias (CS) and peak convex (CE) coefficients showed significant correlations with structure failure rate, moisture content, and total porosity, which validated the moment method to quantitatively describe soil structure. Railway slope (RS) soil has lower organic carbon and soil moisture, and higher pH than natural slope soil. Overall, RS exhibited poor soil structure and physicochemical properties, increasing the risk of soil erosion. Hence, more effective management measures should be adopted to promote the restoration of cut slopes. PMID:26883986

  2. A comparative analysis on the physicochemical properties of tick-borne encephalitis virus envelope protein residues that affect its antigenic properties.

    PubMed

    Bukin, Yu S; Dzhioev, Yu P; Tkachev, S E; Kozlova, I V; Paramonov, A I; Ruzek, D; Qu, Z; Zlobin, V I

    2017-06-15

    This work is dedicated to the study of the variability of the main antigenic envelope protein E among different strains of tick-borne encephalitis virus at the level of physical and chemical properties of the amino acid residues. E protein variants were extracted from then NCBI database. Four amino acid residues properties in the polypeptide sequences were investigated: the average volume of the amino acid residue in the protein tertiary structure, the number of amino acid residue hydrogen bond donors, the charge of amino acid residue lateral radical and the dipole moment of the amino acid residue. These physico-chemical properties are involved in antigen-antibody interactions. As a result, 103 different variants of the antigenic determinants of the tick-borne encephalitis virus E protein were found, significantly different by physical and chemical properties of the amino acid residues in their structure. This means that some strains among the natural variants of tick-borne encephalitis virus can potentially escape the immune response induced by the standard vaccine. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Assessing therapeutic relevance of biologically interesting, ampholytic substances based on their physicochemical and spectral characteristics with chemometric tools

    NASA Astrophysics Data System (ADS)

    Judycka, U.; Jagiello, K.; Bober, L.; Błażejowski, J.; Puzyn, T.

    2018-06-01

    Chemometric tools were applied to investigate the biological behaviour of ampholytic substances in relation to their physicochemical and spectral properties. Results of the Principal Component Analysis suggest that size of molecules and their electronic and spectral characteristics are the key properties required to predict therapeutic relevance of the compounds examined. These properties were used for developing the structure-activity classification model. The classification model allows assessing the therapeutic behaviour of ampholytic substances on the basis of solely values of descriptors that can be obtained computationally. Thus, the prediction is possible without necessity of carrying out time-consuming and expensive laboratory tests, which is its main advantage.

  4. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    PubMed

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  5. Physico-chemical characteristics of ZnO nanoparticles-based discs and toxic effect on human cervical cancer HeLa cells

    NASA Astrophysics Data System (ADS)

    Sirelkhatim, Amna; Mahmud, Shahrom; Seeni, Azman; Kaus, Noor Haida Mohd.; Sendi, Rabab

    2014-10-01

    In this study, we investigated physico-chemical properties of zinc oxide nanoparticles (ZnO NPs)-based discs and their toxicity on human cervical cancer HeLa cell lines. ZnO NPs (80 nm) were produced by the conventional ceramic processing method. FESEM analysis indicated dominant structure of nanorods with dimensions 100-500 nm in length, and 20-100 nm in diameter. The high content of ZnO nanorods in the discs probably played significant role in toxicity towards HeLa cells. Structural defects (oxygen vacancies and zinc/oxygen interstitials) were revealed by PL spectra peaks at 370-376 nm and 519-533 nm for the ZnO discs. The structural, optical and electrical properties of prepared sample have influenced the toxicological effects of ZnO discs towards HeLa cell lines via the generation of reactive oxygen species (ROS), internalization, membrane damage, and eventually cell death. The larger surface to volume area of the ZnO nanorods, combined with defects, stimulated enhanced toxicity via ROS generation hydrogen peroxide, hydroxyl radicals, and superoxide anion. The preliminary results confirmed the ZnO-disc toxicity on HeLa cells was significantly associated with the unique physicochemical properties of ZnO NPs and to our knowledge, this is the first cellular study for treatment of HeLa cells with ZnO discs made from 80 nm ZnO particles.

  6. Structural Modification of Fish Gelatin by the Addition of Gellan, κ-Carrageenan, and Salts Mimics the Critical Physicochemical Properties of Pork Gelatin.

    PubMed

    Sow, Li Cheng; Kong, Karmaine; Yang, Hongshun

    2018-05-01

    Pork gelatin is not suitable for halal and kosher application; however, fish gelatin (FG) can be modified for use as a pork gelatin (PG) mimetic. Herein, low-acyl gellan (GE), κ-carrageenan (KC), and salts (CaCl 2 or KCl) were combined with a 180 Bloom tilapia FG. A formulation comprising 5.925% (w/v) FG + 0.025% (w/v) GE + 3mM CaCl 2 best matched the physicochemical properties of PG. The modification increased the FG gel strength from 115 ± 2 to 149 ± 2 g (matching the 148 ± 2 of PG), while the T m increased from 27.9 ± 1.0 to 32.4 ± 0.8 °C (matching the 33.1 ± 0.3 °C of PG). Nanoaggregates (diameter between 150 and 300 nm) could be an important structural factor affecting the physicochemical properties, as both PG and GE-modified FG showed a similar frequency distribution in this size group (57.4 ± 1.6% (PG) compared with 56.3 ± 2.2% (modified FG)). To further explore the differences between KC and GE in modifying of FG's structure, the FG-KC and FG-GE gels were compared. The zeta potential and Fourier transform infrared (FTIR) spectroscopy results for the FG-KC gel supported an associative interaction with complex formation, as indicated from the large aggregates and amorphous phase under atomic force microscopy (AFM). Contrastingly, a segregative FG-GE interaction took place in presence of CaCl 2 . These structures and interaction differences between FG-GE and FG-KC influenced the macro-properties of FG, possibly explaining the differences in the modification of the melting temperature of FG. A diagram representing the interaction-structure-physicochemical properties was proposed to explain the differences between the FG-GE and FG-KC gels. Certain people cannot consume any pork product or derivatives for religious reasons, thus it is essential to find a pork gelatin (PG) substitute for food product development. The commonly used polysaccharides, gellan and carrageenan, together with salt, can be added to fish gelatin (FG) to match the textural properties of PG, representing a promising substitute for PG. The difference in the mechanism of gellan and carrageenan to improve properties of FG has been revealed from nanostructure level. The use of food grade ingredients and simple mixing process are favorable in the food industry. © 2018 Institute of Food Technologists®.

  7. Synthesis and physicochemical characterizations and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, Bhumika K.; Patel, Kinjal; Roy, Debesh R.

    2018-05-01

    Nanoparticles exhibit very interesting and useful physicochemical properties when they interact with substrates and goes through some physicochemical and/or biological processes. ZnO is known to be a highly demanding nanomaterial due to its discreet properties, shapes and sizes. A detail experimental study on the synthesis, characterization and antibacterial activity of ZnO nanoparticles (NPs) is performed. ZnO NPs are synthesized using chemical precipitation method. The understanding of crystal structure, morphology and elemental compositions are explained using Powder X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM) respectively. Fourier transform infrared spectroscopy (FTIR) is performed to achieve the information on the presence of various functional groups. The antibacterial activity of these ZnO NPs is investigated in terms of Zone of Inhibition (ZOI) against Escherichia coli (Gram negative) microorganisms.

  8. Influence of pectinase treatment on the physicochemical properties of potato flours.

    PubMed

    Kim, Eun-Jung; Kim, Hyun-Seok

    2015-01-15

    Untreated and pectinase-treated potato flours from Atlantic and Superior cultivars were characterised to identify the effects of pectinase treatment on their physicochemical properties. Steam-cooked potato whole-tissues were treated with and without pectinase to prepare the dehydrated potato flours. Untreated and pectinase-treated potato flours were investigated with respect to morphology, chemical composition, starch leaching, swelling power, gelatinization, and pasting viscosity. Upon viewing with scanning electron microscopy and light microscopy, the pectinase-treated (relative to untreated) potato flours revealed that the retrograded starch materials were present in intact parenchyma cells, apparently exhibiting granular structures. Their protein and ash contents were reduced through pectinase treatment. While starch leachate contents were lower for the pectinase-treated potato flours, the opposite trend in swelling powers was observed. Pectinase-treated potato flours exhibited higher melting temperatures and pasting viscosities than untreated counterparts. Overall, the modification of potato flour morphology by pectinase treatment may result in alteration of physicochemical properties of potato flours. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents

    PubMed Central

    Di Marco, Mariagrazia; Sadun, Claudia; Port, Marc; Guilbert, Irene; Couvreur, Patrick; Dubernet, Catherine

    2007-01-01

    Ultrasmall superparamagnetic iron oxide (USPIO) particles are maghemite or magnetite nanoparticles currently used as contrast agent in magnetic resonance imaging. The coatings surrounding the USPIO inorganic core play a major role in both the in vitro stability and, over all, USPIO’s in vivo fate. Different physicochemical properties such as final size, surface charge and coating density are key factors in this respect. Up to now no precise structure – activity relationship has been described to predict entirely the USPIOs stability, as well as their pharmacokinetics and their safety. This review is focused on both the classical and the latest available techniques allowing a better insight in the magnetic core structure and the organic surface of these particles. Concurrently, this work clearly shows the difficulty to obtain a complete physicochemical characterization of USPIOs particles owing to their small dimensions, reaching the analytical resolution limits of many commercial instruments. An extended characterization is therefore necessary to improve the understanding of the properties of USPIOs when dispersed in an aqueous environment and to set the specifications and limits for their conception. PMID:18203428

  10. Measuring Physicochemical Properties to Inform the Scope of Existing QSAR/QSPR Models (SOT annual meeting)

    EPA Science Inventory

    Chemical structures and their properties are important for determining their potential toxicological effects, toxicokinetics, and route of exposure. These data are needed to prioritize thousands of environmental chemicals, but are often lacking. In order to fill data gaps, robust...

  11. Sludge Biochar Amendment and Alfalfa Revegetation Improve Soil Physicochemical Properties and Increase Diversity of Soil Microbes in Soils from a Rare Earth Element Mining Wasteland

    PubMed Central

    Inubushi, Kazuyuki; Liang, Jian; Zhu, Sipin; Wei, Zhenya; Guo, Xiaobin; Luo, Xianping

    2018-01-01

    Long-term unregulated mining of ion-adsorption clays (IAC) in China has resulted in severe ecological destruction and created large areas of wasteland in dire need of rehabilitation. Soil amendment and revegetation are two important means of rehabilitation of IAC mining wasteland. In this study, we used sludge biochar prepared by pyrolysis of municipal sewage sludge as a soil ameliorant, selected alfalfa as a revegetation plant, and conducted pot trials in a climate-controlled chamber. We investigated the effects of alfalfa revegetation, sludge biochar amendment, and their combined amendment on soil physicochemical properties in soil from an IAC mining wasteland as well as the impact of sludge biochar on plant growth. At the same time, we also assessed the impacts of these amendments on the soil microbial community by means of the Illumina Miseq sequences method. Results showed that alfalfa revegetation and sludge biochar both improved soil physicochemical properties and microbial community structure. When alfalfa revegetation and sludge biochar amendment were combined, we detected additive effects on the improvement of soil physicochemical properties as well as increases in the richness and diversity of bacterial and fungal communities. Redundancy analyses suggested that alfalfa revegetation and sludge biochar amendment significantly affected soil microbial community structure. Critical environmental factors consisted of soil available K, pH, organic matter, carbon–nitrogen ratio, bulk density, and total porosity. Sludge biochar amendment significantly promoted the growth of alfalfa and changed its root morphology. Combining alfalfa the revegetation with sludge biochar amendment may serve to not only achieve the revegetation of IAC mining wasteland, but also address the challenge of municipal sludge disposal by making the waste profitable. PMID:29751652

  12. Sludge Biochar Amendment and Alfalfa Revegetation Improve Soil Physicochemical Properties and Increase Diversity of Soil Microbes in Soils from a Rare Earth Element Mining Wasteland.

    PubMed

    Luo, Caigui; Deng, Yangwu; Inubushi, Kazuyuki; Liang, Jian; Zhu, Sipin; Wei, Zhenya; Guo, Xiaobin; Luo, Xianping

    2018-05-11

    Long-term unregulated mining of ion-adsorption clays (IAC) in China has resulted in severe ecological destruction and created large areas of wasteland in dire need of rehabilitation. Soil amendment and revegetation are two important means of rehabilitation of IAC mining wasteland. In this study, we used sludge biochar prepared by pyrolysis of municipal sewage sludge as a soil ameliorant, selected alfalfa as a revegetation plant, and conducted pot trials in a climate-controlled chamber. We investigated the effects of alfalfa revegetation, sludge biochar amendment, and their combined amendment on soil physicochemical properties in soil from an IAC mining wasteland as well as the impact of sludge biochar on plant growth. At the same time, we also assessed the impacts of these amendments on the soil microbial community by means of the Illumina Miseq sequences method. Results showed that alfalfa revegetation and sludge biochar both improved soil physicochemical properties and microbial community structure. When alfalfa revegetation and sludge biochar amendment were combined, we detected additive effects on the improvement of soil physicochemical properties as well as increases in the richness and diversity of bacterial and fungal communities. Redundancy analyses suggested that alfalfa revegetation and sludge biochar amendment significantly affected soil microbial community structure. Critical environmental factors consisted of soil available K, pH, organic matter, carbon⁻nitrogen ratio, bulk density, and total porosity. Sludge biochar amendment significantly promoted the growth of alfalfa and changed its root morphology. Combining alfalfa the revegetation with sludge biochar amendment may serve to not only achieve the revegetation of IAC mining wasteland, but also address the challenge of municipal sludge disposal by making the waste profitable.

  13. The Purine Bias of Coding Sequences is Determined by Physicochemical Constraints on Proteins.

    PubMed

    Ponce de Leon, Miguel; de Miranda, Antonio Basilio; Alvarez-Valin, Fernando; Carels, Nicolas

    2014-01-01

    For this report, we analyzed protein secondary structures in relation to the statistics of three nucleotide codon positions. The purpose of this investigation was to find which properties of the ribosome, tRNA or protein level, could explain the purine bias (Rrr) as it is observed in coding DNA. We found that the Rrr pattern is the consequence of a regularity (the codon structure) resulting from physicochemical constraints on proteins and thermodynamic constraints on ribosomal machinery. The physicochemical constraints on proteins mainly come from the hydropathy and molecular weight (MW) of secondary structures as well as the energy cost of amino acid synthesis. These constraints appear through a network of statistical correlations, such as (i) the cost of amino acid synthesis, which is in favor of a higher level of guanine in the first codon position, (ii) the constructive contribution of hydropathy alternation in proteins, (iii) the spatial organization of secondary structure in proteins according to solvent accessibility, (iv) the spatial organization of secondary structure according to amino acid hydropathy, (v) the statistical correlation of MW with protein secondary structures and their overall hydropathy, (vi) the statistical correlation of thymine in the second codon position with hydropathy and the energy cost of amino acid synthesis, and (vii) the statistical correlation of adenine in the second codon position with amino acid complexity and the MW of secondary protein structures. Amino acid physicochemical properties and functional constraints on proteins constitute a code that is translated into a purine bias within the coding DNA via tRNAs. In that sense, the Rrr pattern within coding DNA is the effect of information transfer on nucleotide composition from protein to DNA by selection according to the codon positions. Thus, coding DNA structure and ribosomal machinery co-evolved to minimize the energy cost of protein coding given the functional constraints on proteins.

  14. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering

    PubMed Central

    Liuyun, Jiang; Yubao, Li; Chengdong, Xiong

    2009-01-01

    In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR), transmission electron microscope(TEM), scanning electron microscope(SEM), universal material testing machine and phosphate buffer solution (PBS) soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs) culture experiment in vitro and a short period implantation study in vivo. The results show that the composite scaffold is mainly formed through the ionic crossing-linking of the two polyions between CS and CMC, and n-HA is incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration, which endows the scaffold with good physico-chemical properties such as highly interconnected porous structure, high compressive strength and good structural stability and degradation. More important, the results of cells attached, proliferated on the scaffold indicate that the scaffold is non-toxic and has good cell biocompatibility, and the results of implantation experiment in vivo further confirm that the scaffold has good tissue biocompatibility. All the above results suggest that the novel degradable n-HA/CS/CMC composite scaffold has a great potential to be used as bone tissue engineering material. PMID:19594953

  15. [Resistant starches. Part II. Physico-chemical and technological aspects solution medico-biological problems].

    PubMed

    Iur'ev, V P; Gapparov, M M; Vasserman, L A; Genkina, N K

    2006-01-01

    This paper is a review of the recent literature data related to structure, composition and physico-chemical properties of starches as well as the special methods of processing of the starch containing raw sources producing the food products with increasing content of resistant starches. The prognosis is made about usefulness of such resistant starches for control of some metabolic disorder in human organism and for prophylactic aims.

  16. Arginine-based poly(ester amide) nanoparticle platform: From structure-property relationship to nucleic acid delivery.

    PubMed

    You, Xinru; Gu, Zhipeng; Huang, Jun; Kang, Yang; Chu, Chih-Chang; Wu, Jun

    2018-05-25

    Many different types of polycations have been vigorously studied for nucleic acid delivery, but a systematical investigation of the structure-property relationships of polycations for nucleic acid delivery is still lacking. In this study, a new library of biodegradable and biocompatible arginine-based poly(ester amide) (Arg-PEA) biomaterials was designed and synthesized with a tunable structure for such a comprehensive structure-property research. Nanoparticle (NP) complexes were formed through the electrostatic interactions between the polycationic Arg-PEAs and anionic nucleic acids. The following structure effects of the Arg-PEAs on the transfection efficiency of nucleic acids were investigated: 1) the linker/spacer length (length effect and odd-even effect); 2) salt type of arginine; 3) the side chain; 4) chain stiffness; 5) molecular weight (MW). The data obtained revealed that a slight change in the Arg-PEA structure could finely tune its physicochemical property such as hydrophobicity, and this could subsequently affect the nanoparticle size and zeta potential, which, in turn, regulate the transfection efficiency and silencing outcomes. A further study of the Arg-PEA/CpG oligodeoxynucleotide NP complexes indicated that the polymer structure could precisily regulate the immune response of CpG, thus providing a new potential nano-immunotherapy strategy. The in vitro data have further confirmed that the Arg-PEA NPs showed a satisfactory delivery performance for a variety of nucleic acids. Therefore, the data from the current study provide comprehensive information about the Arg-PEA structure-transfection property relationship; the tunable property of the library of Arg-PEA biomaterials can be one of the promising candidates for nucleic acid delivery and other biomedical applications. Polycations have being intensive utilized for nucleic acid delivery. However, there has not been elucidated about the relationship between polycation's structure and the physicochemical properties/biological function. In this timely report, an arginine based poly(ester amide) (Arg-PEA) library was prepared with finely tunable structure to systematically investigate the structure-property relationships of polycations for nucleic acid delivery. The results revealed that slight change of Arg-PEA structure could finely tune the physicochemical property (such as hydrophobicity), which subsequently affect the size and zeta potential of Arg-PEA/nucleic acid nanoparticles(NPs), and finally regulate the resulting transfection or silencing outcomes. Further study of Arg-PEA/CpG NPs indicated that the polymer structure could precisely regulate immuno response of CpG, providing new potential nano-immunotherapy strategy. In vitro evaluations confirmed that the NPs showed satisfied delivery performance for a variety types of nucleic acids. Therefore, these studies provide comprehensive information of Arg-PEA structure-property relationship, and the tunable properties of Arg-PEAs make them promising candidates for nucleic acid delivery and other biomedical applications. Overall, we have shown enough significance and novelty in terms of nucleic acid delivery, biomaterials, pharmaceutical science and nanomedicine. Copyright © 2018. Published by Elsevier Ltd.

  17. Improving Physical Properties via C–H Oxidation: Chemical and Enzymatic Approaches

    PubMed Central

    Michaudel, Quentin; Journot, Guillaume; Regueiro-Ren, Alicia; Goswami, Animesh; Guo, Zhiwei; Tully, Thomas P.; Zou, Lufeng; Ramabhadran, Raghunath O.; Houk, Kendall N.

    2014-01-01

    Physicochemical properties constitute a key factor for the success of a drug candidate. Whereas many strategies to improve the physicochemical properties of small heterocycle-type leads exist, complex hydrocarbon skeletons are more challenging to derivatize due to the absence of functional groups. A variety of C–H oxidation methods have been explored on the betulin skeleton to improve the solubility of this very bioactive, yet poorly water soluble, natural product. Capitalizing on the innate reactivity of the molecule, as well as the few molecular handles present on the core, allowed for oxidations at different positions across the pentacyclic structure. Enzymatic oxidations afforded several orthogonal oxidations to chemical methods. Solubility measurements showed an enhancement for many of the synthesized compounds. PMID:25244630

  18. Physico-chemical properties and gasification reactivity of co-pyrolysis char from different rank of coal blended with lignocellulosic biomass: Effects of the cellulose.

    PubMed

    Wu, Zhiqiang; Wang, Shuzhong; Luo, Zhengyuan; Chen, Lin; Meng, Haiyu; Zhao, Jun

    2017-07-01

    In this paper, the influence of cellulose on the physicochemical properties and the gasification reactivity of co-pyrolysis char was investigated. A specific surface area analyzer and an X-ray diffraction system were used to characterize the pore structure and the micro-crystalline structure of char. Fractal theory and deconvolution method were applied to quantitatively investigate the influence of cellulose on the structure of co-pyrolysis char. The results indicate that the improvements in the pore structure due to the presence of cellulose are more pronounced in the case of anthracite char with respect to bituminous char. Cellulose promotes the ordering of micro-scale structure and the uniformity of both anthracite and bituminous char, while the negative synergetic effect was observed during gasification of co-pyrolysis char. The exponential relationships between fractal dimension and specific surface area were determined, along with the relations between the gasification reactivity index and the microcrystalline structure parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A simple approach to hybrid inorganic–organic step-growth hydrogels with scalable control of physicochemical properties and biodegradability† †Electronic supplementary information (ESI) available: Experimental details and characterization data as mentioned in the text. See DOI: 10.1039/c4py01789g Click here for additional data file.

    PubMed Central

    Alves, F.

    2015-01-01

    We prepared new and scalable, hybrid inorganic–organic step-growth hydrogels with polyhedral oligomeric silsesquioxane (POSS) network knot construction elements and hydrolytically degradable poly(ethylene glycol) (PEG) di-ester macromonomers by in situ radical-mediated thiol–ene photopolymerization. The physicochemical properties of the gels are fine-tailored over orders of magnitude including functionalization of their interior, a hierarchical gel structure, and biodegradability. PMID:25821524

  20. The first report of the physicochemical structure of chitin isolated from Hermetia illucens.

    PubMed

    Waśko, Adam; Bulak, Piotr; Polak-Berecka, Magdalena; Nowak, Katarzyna; Polakowski, Cezary; Bieganowski, Andrzej

    2016-11-01

    This is the first report on the physicochemical properties of chitin obtained from larvae and imagoes of black soldier flies (Hermetia illucens). Scanning electron microscopy revealed differences in surface morphologies of the two types of chitin. The crystalline index values of chitins from adult flies and larvae were 24.9% and 35%, respectively. This is a trait that differentiates these biopolymers from chitins extracted from other sources described so far. X-ray diffraction patterns and IR spectroscopy revealed that both types of samples of chitin were in an α crystalline form. Also, the results of elemental analysis, thermal stabilities and FTIR spectroscopy of the chitins from larvae and adults of H. illucens were similar, which points to a general similarity in their physicochemical structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Application of a Dense Gas Technique for Sterilizing Soft Biomaterials

    PubMed Central

    Karajanagi, Sandeep S.; Yoganathan, Roshan; Mammucari, Raffaella; Park, Hyoungshin; Cox, Julian; Zeitels, Steven M.; Langer, Robert; Foster, Neil R.

    2017-01-01

    Sterilization of soft biomaterials such as hydrogels is challenging because existing methods such as gamma irradiation, steam sterilization, or ethylene oxide sterilization, while effective at achieving high sterility assurance levels (SAL), may compromise their physicochemical properties and biocompatibility. New methods that effectively sterilize soft biomaterials without compromising their properties are therefore required. In this report, a dense-carbon dioxide (CO2)-based technique was used to sterilize soft polyethylene glycol (PEG)-based hydrogels while retaining their structure and physicochemical properties. Conventional sterilization methods such as gamma irradiation and steam sterilization severely compromised the structure of the hydrogels. PEG hydrogels with high water content and low elastic shear modulus (a measure of stiffness) were deliberately inoculated with bacteria and spores and then subjected to dense CO2. The dense CO2-based methods effectively sterilized the hydrogels achieving a SAL of 10−7 without compromising the viscoelastic properties, pH, water-content, and structure of the gels. Furthermore, dense CO2-treated gels were biocompatible and non-toxic when implanted subcutaneously in ferrets. The application of novel dense CO2-based methods to sterilize soft biomaterials has implications in developing safe sterilization methods for soft biomedical implants such as dermal fillers and viscosupplements. PMID:21337339

  2. Black Carbon (Biochar) In Water/Soil Environments: Molecular Structure, Sorption, Stability, and Potential Risk.

    PubMed

    Lian, Fei; Xing, Baoshan

    2017-12-05

    Black carbon (BC) is ubiquitous in the environments and participates in various biogeochemical processes. Both positive and negative effects of BC (especially biochar) on the ecosystem have been identified, which are mainly derived from its diverse physicochemical properties. Nevertheless, few studies systematically examined the linkage between the evolution of BC molecular structure with the resulted BC properties, environmental functions as well as potential risk, which is critical for understanding the BC environmental behavior and utilization as a multifunctional product. Thus, this review highlights the molecular structure evolution of BC during pyrolysis and the impact of BC physicochemical properties on its sorption behavior, stability, and potential risk in terrestrial and aqueous ecosystems. Given the wide application of BC and its important role in biogeochemical processes, future research should focus on the following: (1) establishing methodology to more precisely predict and design BC properties on the basis of pyrolysis and phase transformation of biomass; (2) developing an assessment system to evaluate the long-term effect of BC on stabilization and bioavailability of contaminants, agrochemicals, and nutrient elements in soils; and (3) elucidating the interaction mechanisms of BC with plant roots, microorganisms, and soil components.

  3. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.

    PubMed

    Ivanciuc, Ovidiu

    2013-06-01

    Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.

  4. PRince: a web server for structural and physicochemical analysis of protein-RNA interface.

    PubMed

    Barik, Amita; Mishra, Abhishek; Bahadur, Ranjit Prasad

    2012-07-01

    We have developed a web server, PRince, which analyzes the structural features and physicochemical properties of the protein-RNA interface. Users need to submit a PDB file containing the atomic coordinates of both the protein and the RNA molecules in complex form (in '.pdb' format). They should also mention the chain identifiers of interacting protein and RNA molecules. The size of the protein-RNA interface is estimated by measuring the solvent accessible surface area buried in contact. For a given protein-RNA complex, PRince calculates structural, physicochemical and hydration properties of the interacting surfaces. All these parameters generated by the server are presented in a tabular format. The interacting surfaces can also be visualized with software plug-in like Jmol. In addition, the output files containing the list of the atomic coordinates of the interacting protein, RNA and interface water molecules can be downloaded. The parameters generated by PRince are novel, and users can correlate them with the experimentally determined biophysical and biochemical parameters for better understanding the specificity of the protein-RNA recognition process. This server will be continuously upgraded to include more parameters. PRince is publicly accessible and free for use. Available at http://www.facweb.iitkgp.ernet.in/~rbahadur/prince/home.html.

  5. [Strategy of molecular design of drugs: the unification of macro-properties and micro-structures of a molecule].

    PubMed

    Guo, Zong-Ru

    2008-03-01

    The interaction of a drug with the organism involves both the disposition of a drug by the organism and the action of a drug on the organism. The disposition of various exogenous substances, including drugs, complies with general rules. The underlying physical and chemical changes to different drugs in view of time and space, i. e. pharmacokinetics, share common characteristics, that is the tout ensemble of a molecule and its macroscopic properties convey direct effect on the pharmacokinetic behavior as the tendency and consequence of biological evolution. The action of a drug on the organism, on the other hand, implicates the physico-chemical binding of a drug molecule to the target protein, which induces pharmacological and toxicological effects. The biological reactions, no matter beneficial or adverse, are all specific and individual manifestation of the drug molecule and determined by the interactive binding between definitive atoms or groups of the drug molecule and the macromolecular target in three-dimension. Such critical atoms, groups, or fragments responsible for the interaction reflect the microscopic structures of drug molecules and are called pharmacophore. In this context, a drug molecule is presumed as an assembly of macroscopic property and microscopic structure, with the macroscopic properties determining the absorption, distribution, metabolism and elimination of drugs and the microscopic structure coining pharmacological action. The knowledge of the internal relationship between macroscopy/microscopy and PK/PD conduces to comprehension of drug action and guides molecular drug design, because this conception facilitates the identification of structural features necessary for biological response, and the determination of factors modulating the physico-chemical and pharmacokinetic properties. The factors determining macro-properties include molecular weight, solubility, charge, lipophilicity (partition), and polar surface area, etc., which are destined by molecular scaffolds and/or side chain(s) apart from pharmacophore. The features of micro-structures contributing to specific activity contain hydrogen bonding donor and acceptor, positive and negative charge centers, hydrophobic centers and centers of aromatic rings. Different combinations and spacial arrangements of these features determine the distinct activity presented. The macro-property and micro-structure are integrated into a single molecule, and are inseparable. The macro-property reflects overall contribution of atoms and groups in the micro-structure. On the other hand, structural changes aimed to adjust macroscopic property usually alter the relative position of the microscopic structure. The goal of molecular drug design is to integrate the macroscopic and microscopic factors in optimized manner. In the early stage of molecular design, both macroscopic property and microscopic structure should be considered to make pharmacodynamics, pharmacokinetics, and physico-chemical properties in optimal match. Therefore, it required the existence of structural overlapping among acceptable pharmacokinetics, visible developing potential and specific pharmacodynamics. The larger the scope of overlapping, the higher the possibility to be a drug.

  6. Water Splitting Using Porous Silicon Photo-electrodes for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Ali, M.; Starkov, V. V.; Gosteva, E. A.; Druzhinin, A. V.; Sattar, S.

    2017-11-01

    This paper presents the efficiency study results of using gradient-porous silicon structures with different morphology, as photo-anodes for photo-electrochemical dissociation of water. The results of a study of the physicochemical properties of gradient-porous silicon structures show the relatively low cost and simplicity of the technological process, as well as the possibility of forming structures with predefined properties, allow the creation of effective devices for artificial photosynthesis based on porous silicon for subsequent use in hydrogen energy.

  7. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates

    NASA Astrophysics Data System (ADS)

    Ioannidou, Katerina; Kanduč, Matej; Li, Lunna; Frenkel, Daan; Dobnikar, Jure; Del Gado, Emanuela

    2016-07-01

    Gelation and densification of calcium-silicate-hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials.

  8. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates

    PubMed Central

    Ioannidou, Katerina; Kanduč, Matej; Li, Lunna; Frenkel, Daan; Dobnikar, Jure; Del Gado, Emanuela

    2016-01-01

    Gelation and densification of calcium–silicate–hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials. PMID:27417911

  9. The Halophile protein database.

    PubMed

    Sharma, Naveen; Farooqi, Mohammad Samir; Chaturvedi, Krishna Kumar; Lal, Shashi Bhushan; Grover, Monendra; Rai, Anil; Pandey, Pankaj

    2014-01-01

    Halophilic archaea/bacteria adapt to different salt concentration, namely extreme, moderate and low. These type of adaptations may occur as a result of modification of protein structure and other changes in different cell organelles. Thus proteins may play an important role in the adaptation of halophilic archaea/bacteria to saline conditions. The Halophile protein database (HProtDB) is a systematic attempt to document the biochemical and biophysical properties of proteins from halophilic archaea/bacteria which may be involved in adaptation of these organisms to saline conditions. In this database, various physicochemical properties such as molecular weight, theoretical pI, amino acid composition, atomic composition, estimated half-life, instability index, aliphatic index and grand average of hydropathicity (Gravy) have been listed. These physicochemical properties play an important role in identifying the protein structure, bonding pattern and function of the specific proteins. This database is comprehensive, manually curated, non-redundant catalogue of proteins. The database currently contains 59 897 proteins properties extracted from 21 different strains of halophilic archaea/bacteria. The database can be accessed through link. Database URL: http://webapp.cabgrid.res.in/protein/ © The Author(s) 2014. Published by Oxford University Press.

  10. Nano-QSPR Modelling of Carbon-Based Nanomaterials Properties.

    PubMed

    Salahinejad, Maryam

    2015-01-01

    Evaluation of chemical and physical properties of nanomaterials is of critical importance in a broad variety of nanotechnology researches. There is an increasing interest in computational methods capable of predicting properties of new and modified nanomaterials in the absence of time-consuming and costly experimental studies. Quantitative Structure- Property Relationship (QSPR) approaches are progressive tools in modelling and prediction of many physicochemical properties of nanomaterials, which are also known as nano-QSPR. This review provides insight into the concepts, challenges and applications of QSPR modelling of carbon-based nanomaterials. First, we try to provide a general overview of QSPR implications, by focusing on the difficulties and limitations on each step of the QSPR modelling of nanomaterials. Then follows with the most significant achievements of QSPR methods in modelling of carbon-based nanomaterials properties and their recent applications to generate predictive models. This review specifically addresses the QSPR modelling of physicochemical properties of carbon-based nanomaterials including fullerenes, single-walled carbon nanotube (SWNT), multi-walled carbon nanotube (MWNT) and graphene.

  11. Physicochemical Parameters Affecting the Electrospray Ionization Efficiency of Amino Acids after Acylation

    PubMed Central

    2017-01-01

    Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC–MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pKa, and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure–property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response. PMID:28737384

  12. Improving physical properties via C-H oxidation: chemical and enzymatic approaches.

    PubMed

    Michaudel, Quentin; Journot, Guillaume; Regueiro-Ren, Alicia; Goswami, Animesh; Guo, Zhiwei; Tully, Thomas P; Zou, Lufeng; Ramabhadran, Raghunath O; Houk, Kendall N; Baran, Phil S

    2014-11-03

    Physicochemical properties constitute a key factor for the success of a drug candidate. Whereas many strategies to improve the physicochemical properties of small heterocycle-type leads exist, complex hydrocarbon skeletons are more challenging to derivatize because of the absence of functional groups. A variety of C-H oxidation methods have been explored on the betulin skeleton to improve the solubility of this very bioactive, yet poorly water-soluble, natural product. Capitalizing on the innate reactivity of the molecule, as well as the few molecular handles present on the core, allowed oxidations at different positions across the pentacyclic structure. Enzymatic oxidations afforded several orthogonal oxidations to chemical methods. Solubility measurements showed an enhancement for many of the synthesized compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Perylene and Perylene-Derivative Nano-Cocrystals: Preparation and Physicochemical Property

    NASA Astrophysics Data System (ADS)

    Baba, Koichi; Konta, Sayaka; Oliveira, Daniel; Sugai, Kenji; Onodera, Tsunenobu; Masuhara, Akito; Kasai, Hitoshi; Oikawa, Hidetoshi; Nakanishi, Hachiro

    2012-12-01

    Organic nano-cocrystals of functional dyes of perylene and a perylene derivative were successfully prepared by the reprecipitation method. The particle sizes, optical properties, and powder X-ray diffraction patterns of nano-cocrystals were evaluated. Typically, the size with size distribution of nano-cocrystals was 55±15 nm when the molar ratio of perylene to the perylene derivative was 50:50. The particular intermolecular electronic interaction between perylene and the perylene derivative in the nano-cocrystal state was observed by absorption and fluorescence spectra measurements. The powder X-ray diffraction pattern analysis confirmed that the structure of nano-cocrystals was different from those prepared from perylene and the perylene derivative. The nano-cocrystal having unique physicochemical properties will be potentially classified as a new type of functional nanomaterial.

  14. Effect of ultrasound-assisted freezing on the physico-chemical properties and volatile compounds of red radish.

    PubMed

    Xu, Bao-Guo; Zhang, Min; Bhandari, Bhesh; Cheng, Xin-Feng; Islam, Md Nahidul

    2015-11-01

    Power ultrasound, which can enhance nucleation rate and crystal growth rate, can also affect the physico-chemical properties of immersion frozen products. In this study, the influence of slow freezing (SF), immersion freezing (IF) and ultrasound-assisted freezing (UAF) on physico-chemical properties and volatile compounds of red radish was investigated. Results showed that ultrasound application significantly improved the freezing rate; the freezing time of ultrasound application at 0.26 W/cm(2) was shorten by 14% and 90%, compared to IF and SF, respectively. UAF products showed significant (p<0.05) reduction in drip loss and phytonutrients (anthocyanins, vitamin C and phenolics) loss. Compared to SF products, IF and UAF products showed better textural preservation and higher calcium content. The radish tissues exhibited better cellular structures under ultrasonic power intensities of 0.17 and 0.26 W/cm(2) with less cell separation and disruption. Volatile compound data revealed that radish aromatic profile was also affected in the freezing process. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Discovery of Antibiotics-derived Polymers for Gene Delivery using Combinatorial Synthesis and Cheminformatics Modeling

    PubMed Central

    Potta, Thrimoorthy; Zhen, Zhuo; Grandhi, Taraka Sai Pavan; Christensen, Matthew D.; Ramos, James; Breneman, Curt M.; Rege, Kaushal

    2014-01-01

    We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and ‘building block’ polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology. PMID:24331709

  16. EVALUATION OF THE SYNTHESIS AND STRUCTURE OF NEW AZETIDIN-2-ONES OF FERULIC ACID.

    PubMed

    Stan, Cătălina Daniela; Drăgan, Maria; Pânzariu, Andreea; Profire, Lenuţa

    2016-01-01

    To synthesize some new azetidin-2-ones of ferulic acid and to evaluate them from physicochemical and spectral point of view. The synthesis was carried out in several steps: (i) obtaining the ferulic acid chloride; (ii) obtaining the ferulic acid hydrazide with hydrazine hydrate (98%); (iii) condensation of ferulic acid hydrazide with different benzaldehydes (2-hydroxy-/2-nitro-/4-chloro-/4- fluoro-/4-bromo-benzaldehyde) in order to obtain the corresponding hydrazones; (iv) cy- clization of ferulic acid hydrazones with chloroacethyl chloride in freshly distilled toluene medium and in the presence of triethylamine, resulting in the corresponding azetidin-2-ones. Six new azetidin-2-ones of ferulic acid were synthesized. They were characterized in terms of their physicochemical properties and their structure was confirmed by IR and 1H-NMR spectroscopy. Six new azetidin-2-ones of ferulic acid were synthesized, physicochemically characterized and validated spectrally. A

  17. Physicochemical and microbiological effects of long- and short-term winery wastewater application to soils.

    PubMed

    Mosse, K P M; Patti, A F; Smernik, R J; Christen, E W; Cavagnaro, T R

    2012-01-30

    Application of winery wastewaters to soils for irrigation of various crops or landscapes is a common practice in the wine industry. In this study, we sought to investigate the effects of this practice, by comparing the physicochemical and microbiological soil properties in paired sites that differed in having had a history of winery waste application or not. We also compared the effects of a single application of untreated winery wastewater, to application of treated winery wastewater (sequencing batch reactor) and pure water to eliminate the effects of wetting alone. Long-term application of winery wastes was found to have significant impacts on soil microbial community structure, as determined by phospholipid fatty acid analysis, as well as on many physicochemical properties including pH, EC, and cation concentrations. (13)C NMR revealed only slight differences in the nature of the carbon present at each of the paired sites. A single application of untreated winery wastewater was shown to have significant impacts upon soil respiration, nitrogen cycling and microbial community structure, but the treated wastewater application showed no significant differences to wetting alone. Results are discussed in the context of sustainable winery wastewater disposal. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch.

    PubMed

    Mei, Ji-Qiang; Zhou, Da-Nian; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2015-11-15

    In this study, citric acid was used to react with cassava starch in order to compare the digestibility, structural and physicochemical properties of citrate starch samples. The results indicated that citric acid esterification treatment significantly increased the content of resistant starch (RS) in starch samples. The swelling power and solubility of citrate starch samples were lower than those of native starch. Compared with native starch, a new peak at 1724 cm(-1) was appeared in all citrate starch samples, and crystalline peaks of all starch citrates became much smaller or even disappeared. Differential scanning calorimetry results indicated that the endothermic peak of citrate starches gradually shrank or even disappeared. Moreover, the citrate starch gels exhibited better freeze-thaw stability. These results suggested that citric acid esterification induced structural changes in cassava starch significantly affected its digestibility and it could be a potential method for the preparation of RS with thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch.

    PubMed

    Zhang, Hao; Zhou, Xing; He, Jian; Wang, Tao; Luo, Xiaohu; Wang, Li; Wang, Ren; Chen, Zhengxing

    2017-04-01

    Recombinant amylosucrase from Neisseria polysaccharea was utilized to modify native and acid-thinned starches. The molecular structures and physicochemical properties of modified starches were investigated. Acid-thinned starch displayed much lower viscosity after gelatinization than did the native starch. However, the enzyme exhibited similar catalytic efficiency for both forms of starch. The modified starches had higher proportions of long (DP>33) and intermediate chains (DP 13-33), and X-ray diffraction showed a B-type crystalline structure for all modified starches. With increasing reaction time, the relative crystallinity and endothermic enthalpy of the modified starches gradually decreased, whereas the melting peak temperatures and resistant starch contents increased. Slight differences were observed in thermal parameters, relative crystallinity, and branch chain length distribution between the modified native and acid-thinned starches. Moreover, the digestibility of the modified starches was not affected by acid hydrolysis pretreatment, but was affected by the percentage of intermediate and long chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Physicochemical properties of quinoa starch.

    PubMed

    Li, Guantian; Wang, Sunan; Zhu, Fan

    2016-02-10

    Physicochemical properties of quinoa starches isolated from 26 commercial samples from a wide range of collection were studied. Swelling power (SP), water solubility index (WSI), amylose leaching (AML), enzyme susceptibility, pasting, thermal and textural properties were analyzed. Apparent amylose contents (AAM) ranged from 7.7 to 25.7%. Great variations in the diverse physicochemical properties were observed. Correlation analysis showed that AAM was the most significant factor related to AML, WSI, and pasting parameters. Correlations among diverse physicochemical parameters were analyzed. Principal component analysis using twenty three variables were used to visualize the difference among samples. Six principal components were extracted which could explain 88.8% of the total difference. The wide variations in physicochemical properties could contribute to innovative utilization of quinoa starch for food and non-food applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. [The influence of N-, S-containing chinasolone derivatives (NC-224) on the biochemical and physicochemical parameters of membrane endoplasmatic reticulum and nuclear chromatine fractions of rats liver cells in conditions of its injury by tetrachloromethane].

    PubMed

    Gubs'kyî, Iu I; Goriushko, G G; Belenichev, I F; Kovalenko, S I; Litvinova, N V; Marchenko, O M; Kurapova, T M; Babenko, L P; Velychko, O M

    2010-01-01

    Using biochemical and physicochemical methods of investigation in vivo, the effect of the substance NC-224, N-, S-chinasolone-derivative, on the lipoperoxidation activity in rat liver endoplasmatic reticulum membranes and nuclear chromatin fractions under tetrachloromethane intoxication have been studied. It was shown that NC-224 has pronounced antioxidant activity which is the biochemical basis of the substance membrane- and genome-protective effects and its ability to restore physicochemical properties of the surface and hydrophobic zones of hepatocyte membranes and structural parameter nuclear chromatin fractions in the conditions of chemical liver injury.

  2. Two-level QSAR network (2L-QSAR) for peptide inhibitor design based on amino acid properties and sequence positions.

    PubMed

    Du, Q S; Ma, Y; Xie, N Z; Huang, R B

    2014-01-01

    In the design of peptide inhibitors the huge possible variety of the peptide sequences is of high concern. In collaboration with the fast accumulation of the peptide experimental data and database, a statistical method is suggested for peptide inhibitor design. In the two-level peptide prediction network (2L-QSAR) one level is the physicochemical properties of amino acids and the other level is the peptide sequence position. The activity contributions of amino acids are the functions of physicochemical properties and the sequence positions. In the prediction equation two weight coefficient sets {ak} and {bl} are assigned to the physicochemical properties and to the sequence positions, respectively. After the two coefficient sets are optimized based on the experimental data of known peptide inhibitors using the iterative double least square (IDLS) procedure, the coefficients are used to evaluate the bioactivities of new designed peptide inhibitors. The two-level prediction network can be applied to the peptide inhibitor design that may aim for different target proteins, or different positions of a protein. A notable advantage of the two-level statistical algorithm is that there is no need for host protein structural information. It may also provide useful insight into the amino acid properties and the roles of sequence positions.

  3. Direct Human Contact with Siloxanes (Silicones) – Safety or Risk Part 1. Characteristics of Siloxanes (Silicones)

    PubMed Central

    Mojsiewicz-Pieńkowska, Krystyna; Jamrógiewicz, Marzena; Szymkowska, Katarzyna; Krenczkowska, Dominika

    2016-01-01

    Siloxanes are commonly known as silicones. They belong to the organosilicon compounds and are exclusively obtained by synthesis. Their chemical structure determines a range of physicochemical properties which were recognized as unique. Due to the susceptibility to chemical modifications, ability to create short, long or complex polymer particles, siloxanes found an application in many areas of human life. Siloxanes differ in particle size, molecular weight, shape and chemical groups. As a result, this determines the different physico-chemical properties, that directly affect the safety or the risk of their use. The areas that can be a source of danger to human health will be commented in this paper. PMID:27303296

  4. Physicochemical properties of mucus and their impact on transmucosal drug delivery.

    PubMed

    Leal, Jasmim; Smyth, Hugh D C; Ghosh, Debadyuti

    2017-10-30

    Mucus is a selective barrier to particles and molecules, preventing penetration to the epithelial surface of mucosal tissues. Significant advances in transmucosal drug delivery have recently been made and have emphasized that an understanding of the basic structure, viscoelastic properties, and interactions of mucus is of great value in the design of efficient drug delivery systems. Mucins, the primary non-aqueous component of mucus, are polymers carrying a complex and heterogeneous structure with domains that undergo a variety of molecular interactions, such as hydrophilic/hydrophobic, hydrogen bonds and electrostatic interactions. These properties are directly relevant to the numerous mucin-associated diseases, as well as delivering drugs across the mucus barrier. Therefore, in this review we discuss regional differences in mucus composition, mucus physicochemical properties, such as pore size, viscoelasticity, pH, and ionic strength. These factors are also discussed with respect to changes in mucus properties as a function of disease state. Collectively, the review seeks to provide a state of the art roadmap for researchers who must contend with this critical barrier to drug delivery. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Qing-Yin, Zhang; Peng, Xie; Xin, Wang; Xue-Wen, Yu; Zhi-Qiang, Shi; Shi-Huai, Zhao

    2016-06-01

    Organic salts such as spiro-(1,1')-bipyrrolidinium tetrafluoroborate ([SBP][BF4]) dissolved in liquid acetonitrile (ACN) are a new kind of organic salt solution, which is expected to be used as an electrolyte in electrical double layer capacitors (EDLCs). To explore the physicochemical properties of the solution, an all-atom force field is established on the basis of AMBER parameter values and quantum mechanical calculations. Molecular dynamics (MD) simulations are carried out to explore the liquid structure and physicochemical properties of [SBP][BF4] electrolyte at room temperature. The computed thermodynamic and transport properties match the available experimental results very well. The microscopic structures of [SBP][BF4] salt solution are also discussed in detail. The method used in this work provides an efficient way of predicting the properties of organic salt solvent as an electrolyte in EDLCs. Project supported by the National Natural Science Foundation of China (Grant Nos. 21476172 and 51172160), the National High Technology Research and Development Program of China (Grant No. 2013AA050905), and the Natural Science Foundation of Tianjin, China (Grant Nos. 12JCZDJC28400, 14RCHZGX00859, 14JCTPJC00484, and 14JCQNJC07200).

  6. Swirling cavitation improves the emulsifying properties of commercial soy protein isolate.

    PubMed

    Yang, Feng; Liu, Xue; Ren, Xian'e; Huang, Yongchun; Huang, Chengdu; Zhang, Kunming

    2018-04-01

    Since emulsifying properties are important functional properties of soy protein, many physical, chemical, and enzymatic methods have been applied to treat soy protein to improve emulsifying properties. In this study, we investigated the effects of swirling cavitation at different pressures and for different times on emulsifying and physicochemical properties of soy protein isolate (SPI). The SPI treated with swirling cavitation showed a significant decrease in particle size and increase in solubility. Emulsions formed from treated SPI had higher emulsifying activity and emulsifying stability indexes, smaller oil droplet sizes, lower flocculation indexes, higher adsorbed proteins, lower interfacial protein concentrations, and lower creaming indexes than those formed from untreated SPI, indicating that swirling cavitation improved the emulsifying properties of the SPI. Furthermore, swirling cavitation treatment significantly enhanced the surface hydrophobicity, altered the disulfide bond and exposed sulfhydryl group contents of the SPI. The secondary structure of the SPI was also influenced by swirling cavitation, with an increase in β-sheet content and a decrease in α-helix, β-turn, and random coil contents. In addition, several significant correlations between physicochemical and emulsifying properties were revealed by Pearson correlation analysis, suggesting that the physicochemical changes observed in treated SPI, including the decreased particle size, increased solubility and surface hydrophobicity, and enhanced β-sheet formation, may explain the improved emulsifying properties of the isolate. Thus, our findings implied that swirling cavitation treatment may be an effective technique to improve the emulsifying properties of SPI. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Bis-quaternary gemini surfactants as components of nonviral gene delivery systems: a comprehensive study from physicochemical properties to membrane interactions.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Silva, Sandra G; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Maria Amália S

    2014-10-20

    Gemini surfactants have been successfully used as components of gene delivery systems. In the present work, a family of gemini surfactants, represented by the general structure [CmH2m+1(CH3)2N(+)(CH2)sN(+)(CH3)2CmH2m+1]2Br(-), or simply m-s-m, was used to prepare cationic gene carriers, aiming at their application in transfection studies. An extensive characterization of the gemini surfactant-based complexes, produced with and without the helper lipids cholesterol and DOPE, was carried out in order to correlate their physico-chemical properties with transfection efficiency. The most efficient complexes were those containing helper lipids, which, combining amphiphiles with propensity to form structures with different intrinsic curvatures, displayed a morphologically labile architecture, putatively implicated in the efficient DNA release upon complex interaction with membranes. While complexes lacking helper lipids were translocated directly across the lipid bilayer, complexes containing helper lipids were taken up by cells also by macropinocytosis. This study contributes to shed light on the relationship between important physico-chemical properties of surfactant-based DNA vectors and their efficiency to promote gene transfer, which may represent a step forward to the rational design of gene delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Molecular design for enhancement of ocular penetration.

    PubMed

    Shirasaki, Yoshihisa

    2008-07-01

    Over the past two decades, many oral drugs have been designed in consideration of physicochemical properties to attain optimal pharmacokinetic properties. This strategy significantly reduced attrition in drug development owing to inadequate pharmacokinetics during the last decade. On the other hand, most ophthalmic drugs are generated from reformulation of other therapeutic dosage forms. Therefore, the modification of formulations has been used mainly as the approach to improve ocular pharmacokinetics. However, to maximize ocular pharmacokinetic properties, a specific molecular design for ocular drug is preferable. Passive diffusion of drugs across the cornea membranes requires appropriate lipophilicity and aqueous solubility. Improvement of such physicochemical properties has been achieved by structure optimization or prodrug approaches. This review discusses the current knowledge about ophthalmic drugs adapted from systemic drugs and molecular design for ocular drugs. I propose the approaches for molecular design to obtain the optimal ocular penetration into anterior segment based on published studies to date.

  9. Effect of ultrasound treatment on the wet heating Maillard reaction between mung bean [Vigna radiate (L.)] protein isolates and glucose and on structural and physico-chemical properties of conjugates.

    PubMed

    Wang, Zhongjiang; Han, Feifei; Sui, Xiaonan; Qi, Baokun; Yang, Yong; Zhang, Hui; Wang, Rui; Li, Yang; Jiang, Lianzhou

    2016-03-30

    The objective of this study was to determine the effect of ultrasound treatment on the wet heating Maillard reaction between mung bean protein isolates (MBPIs) and glucose, and on structural and physico-chemical properties of the conjugates. The degree of glycosylation of MBPI-glucose conjugates treated by ultrasound treatment and wet heating (MBPI-GUH) was higher than that of MBPI-glucose conjugates only treated by wet heating (MBPI-GH). Solubility, emulsification activity, emulsification stability and surface hydrophobicity of MBPI-GUH were higher than that of MBPI-GH. Grafted MBPIs had a lower content of α-helix and unordered coil, but a higher content of β-sheet and β-turn structure than MBPIs. No significant structural changes were observed in β-turn and random coil structure of MBPI-GUH, while α-helix content increased with ultrasonic time, and decreased at 300 W ultrasonic power with the increase of β-sheet. MBPI-GUH had a less compact tertiary structure compared to MBPI-GH and MBPI. Grafting MBPIs with glucose formed conjugates of higher molecular weight, while no significant changes were observed in electrophoresis profiles of MBPI-GUH. Ultrasound-assisted wet heating Maillard reaction between MBPIs and glucose could be a promising way to improve functional properties of MBPIs. © 2015 Society of Chemical Industry.

  10. How far are rheological parameters from amplitude sweep tests predictable using common physicochemical soil properties?

    NASA Astrophysics Data System (ADS)

    Stoppe, N.; Horn, R.

    2017-01-01

    A basic understanding of soil behavior on the mesoscale resp. macroscale (i.e. soil aggregates resp. bulk soil) requires knowledge of the processes at the microscale (i.e. particle scale), therefore rheological investigations of natural soils receive growing attention. In the present research homogenized and sieved (< 2 mm) samples from Marshland soils of the riparian zone of the River Elbe (North Germany) were analyzed with a modular compact rheometer MCR 300 (Anton Paar, Ostfildern, Germany) with a profiled parallel-plate measuring system. Amplitude sweep tests (AST) with controlled shear deformation were conducted to investigate the viscoelastic properties of the studied soils under oszillatory stress. The gradual depletion of microstructural stiffness during AST cannot only be characterized by the well-known rheological parameters G, G″ and tan δ but also by the dimensionless area parameter integral z, which quantifies the elasticity of microstructure. To discover the physicochemical parameters, which influences the microstructural stiffness, statistical tests were used taking the combined effects of these parameters into account. Although the influence of the individual factors varies depending on soil texture, the physicochemical features significantly affecting soil micro structure were identified. Based on the determined statistical relationships between rheological and physicochemical parameters, pedotransfer functions (PTF) have been developed, which allow a mathematical estimation of the rheological target value integral z. Thus, stabilizing factors are: soil organic matter, concentration of Ca2+, content of CaCO3 and pedogenic iron oxides; whereas the concentration of Na+ and water content represent structurally unfavorable factors.

  11. Principal Physicochemical Methods Used to Characterize Dendrimer Molecule Complexes Used as Genetic Therapy Agents, Nanovaccines or Drug Carriers.

    PubMed

    Alberto, Rodríguez Fonseca Rolando; Joao, Rodrigues; de Los Angeles, Muñoz-Fernández María; Alberto, Martínez Muñoz; Manuel Jonathan, Fragoso Vázquez; José, Correa Basurto

    2017-08-30

    Nanomedicine is the application of nanotechnology to medicine. This field is related to the study of nanodevices and nanomaterials applied to various medical uses, such as in improving the pharmacological properties of different molecules. Dendrimers are synthetic nanoparticles whose physicochemical properties vary according to their chemical structure. These molecules have been extensively investigated as drug nanocarriers to improve drug solubility and as sustained-release systems. New therapies such as gene therapy and the development of nanovaccines can be improved by the use of dendrimers. The biophysical and physicochemical characterization of nucleic acid/peptide-dendrimer complexes is crucial to identify their functional properties prior to biological evaluation. In that sense, it is necessary to first identify whether the peptide-dendrimer or nucleic aciddendrimer complexes can be formed and whether the complex can dissociate under the appropriate conditions at the target cells. In addition, biophysical and physicochemical characterization is required to determine how long the complexes remain stable, what proportion of peptide or nucleic acid is required to form the complex or saturate the dendrimer, and the size of the complex formed. In this review, we present the latest information on characterization systems for dendrimer-nucleic acid, dendrimer-peptide and dendrimer-drug complexes with several biotechnological and pharmacological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Effect of heat-moisture treatment on the structural, physicochemical, and rheological characteristics of arrowroot starch.

    PubMed

    Pepe, Larissa S; Moraes, Jaqueline; Albano, Kivia M; Telis, Vânia R N; Franco, Célia M L

    2016-04-01

    The effect of heat-moisture treatment on structural, physicochemical, and rheological characteristics of arrowroot starch was investigated. Heat-moisture treatment was performed with starch samples conditioned to 28% moisture at 100 ℃ for 2, 4, 8, and 16 h. Structural and physicochemical characterization of native and modified starches, as well as rheological assays with gels of native and 4 h modified starches subjected to acid and sterilization stresses were performed. Arrowroot starch had 23.1% of amylose and a CA-type crystalline pattern that changed over the treatment time to A-type. Modified starches had higher pasting temperature and lower peak viscosity while breakdown viscosity practically disappeared, independently of the treatment time. Gelatinization temperature and crystallinity increased, while enthalpy, swelling power, and solubility decreased with the treatment. Gels from modified starches, independently of the stress conditions, were found to have more stable apparent viscosities and higher G' and G″ than gels from native starch. Heat-moisture treatment caused a reorganization of starch chains that increased molecular interactions. This increase resulted in higher paste stability and strengthened gels that showed higher resistance to shearing and heat, even after acid or sterilization conditions. A treatment time of 4 h was enough to deeply changing the physicochemical properties of starch. © The Author(s) 2015.

  13. Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties

    PubMed Central

    Kocbach Bølling, Anette; Pagels, Joakim; Yttri, Karl Espen; Barregard, Lars; Sallsten, Gerd; Schwarze, Per E; Boman, Christoffer

    2009-01-01

    Background Residential wood combustion is now recognized as a major particle source in many developed countries, and the number of studies investigating the negative health effects associated with wood smoke exposure is currently increasing. The combustion appliances in use today provide highly variable combustion conditions resulting in large variations in the physicochemical characteristics of the emitted particles. These differences in physicochemical properties are likely to influence the biological effects induced by the wood smoke particles. Outline The focus of this review is to discuss the present knowledge on physicochemical properties of wood smoke particles from different combustion conditions in relation to wood smoke-induced health effects. In addition, the human wood smoke exposure in developed countries is explored in order to identify the particle characteristics that are relevant for experimental studies of wood smoke-induced health effects. Finally, recent experimental studies regarding wood smoke exposure are discussed with respect to the applied combustion conditions and particle properties. Conclusion Overall, the reviewed literature regarding the physicochemical properties of wood smoke particles provides a relatively clear picture of how these properties vary with the combustion conditions, whereas particle emissions from specific classes of combustion appliances are less well characterised. The major gaps in knowledge concern; (i) characterisation of the atmospheric transformations of wood smoke particles, (ii) characterisation of the physicochemical properties of wood smoke particles in ambient and indoor environments, and (iii) identification of the physicochemical properties that influence the biological effects of wood smoke particles. PMID:19891791

  14. Conformational interpretation of vescalagin and castalagin physicochemical properties.

    PubMed

    Vivas, Nicolas; Laguerre, Michel; Pianet de Boissel, Isabelle; Vivas de Gaulejac, Nathalie; Nonier, Marie-Françoise

    2004-04-07

    Vescalagin and castalagin are two diastereoisomers. The variability of their principal physicochemical properties, compared with their small structural differences, suggests important conformational variations. This study shows, experimentally, that vescalagin has a greater effect on polarity, oxidizability in solution, and thermodegradability than castalagin. Conformational analysis by molecular mechanics demonstrated that vescalagin was more hydrophilic and was more reactive to electrophilic reagents than castalagin. Experimental results were thus explained and demonstrated the distinct behaviors of vescalagin and castalagin. These results were attributed to the C1 position of the two compounds because vescalin and castalin have comparable characteristics. Experimental data were confirmed and interpreted by molecular mechanics. This work represents one of the first attempts to correlate conformation and the properties of phenolic compounds. This step constitutes a predictive method for the pharmacology or chemistry of new compounds.

  15. Noncoded amino acids in protein engineering: Structure-activity relationship studies of hirudin-thrombin interaction.

    PubMed

    De Filippis, Vincenzo; Acquasaliente, Laura; Pontarollo, Giulia; Peterle, Daniele

    2018-01-01

    The advent of recombinant DNA technology allowed to site-specifically insert, delete, or mutate almost any amino acid in a given protein, significantly improving our knowledge of protein structure, stability, and function. Nevertheless, a quantitative description of the physical and chemical basis that makes a polypeptide chain to efficiently fold into a stable and functionally active conformation is still elusive. This mainly originates from the fact that nature combined, in a yet unknown manner, different properties (i.e., hydrophobicity, conformational propensity, polarizability, and hydrogen bonding capability) into the 20 standard natural amino acids, thus making difficult, if not impossible, to univocally relate the change in protein stability or function to the alteration of physicochemical properties caused by amino acid exchange(s). In this view, incorporation of noncoded amino acids with tailored side chains, allowing to finely tune the structure at a protein site, would facilitate to dissect the effects of a given mutation in terms of one or a few physicochemical properties, thus much expanding the scope of physical organic chemistry in the study of proteins. In this review, relevant applications from our laboratory will be presented on the use of noncoded amino acids in structure-activity relationships studies of hirudin binding to thrombin. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  16. Bio-lubricants derived from waste cooking oil with improved oxidation stability and low-temperature properties.

    PubMed

    Li, Weimin; Wang, Xiaobo

    2015-01-01

    Waste cooking oil (WCO) was chemically modified via epoxidation using H2O2 followed by transesterification with methanol and branched alcohols (isooctanol, isotridecanol and isooctadecanol) to produce bio-lubricants with improved oxidative stability and low temperature properties. Physicochemical properties of synthesized bio-lubricants such as pour point (PP), cloud point (CP), viscosity, viscosity index (VI), oxidative stability, and corrosion resistant property were determined according to standard methods. The synthesized bio-lubricants showed improved low temperature flow performances compared with WCO, which can be attributing to the introduction of branched chains in their molecular structures. What's more, the oxidation stability of the WCO showed more than 10 folds improvement due to the elimination of -C=C-bonds in the WCO molecule. Tribological performances of these bio-lubricants were also investigated using four-ball friction and wear tester. Experimental results showed that derivatives of WCO exhibited favorable physicochemical properties and tribological performances which making them good candidates in formulating eco-friendly lubricants.

  17. Structural characteristics and physicochemical properties of lotus seed resistant starch prepared by different methods.

    PubMed

    Zeng, Shaoxiao; Wu, Xiaoting; Lin, Shan; Zeng, Hongliang; Lu, Xu; Zhang, Yi; Zheng, Baodong

    2015-11-01

    Lotus seed resistant starch (LRS) is commonly known as resistant starch type 3 (LRS3). The objective of this study was to investigate the effect of different preparation methods on the structural characteristics and physicochemical properties of LRS3. The molar mass of LRS3 prepared by autoclaving method (GP-LRS3) and ultrasonic-autoclaving method (UP-LRS3) was mainly distributed in the range 1.0 × 10(4)-2 × 10(4) g/mol while a decrease of LRS3 prepared by microwave-moisture method (MP-LRS3) was observed. The particle of MP-LRS3 was smaller and relatively smoother while UP-LRS3 was bigger and rougher compared to GP-LRS3. Among these samples, GP-LRS3 exhibited the highest degree of ordered structure and crystallinity, the amorphous region of MP-LRS3 was the biggest and UP-LRS3 displayed the highest degree of double helical structure. Additionally, MP-LRS3 displayed the strongest solubility and swelling power while UP-LRS3 exhibited the strongest iodine absorption ability and thermostability, which were affected by their structural characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Substituent-directed structural and physicochemical controls of diruthenium catecholate complexes with ligand-unsupported Ru-Ru bonds.

    PubMed

    Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu

    2005-05-30

    A family of diruthenium complexes with ligand-unsupported Ru-Ru bonds has been systematically synthesized, and their crystal structures and physical properties have been examined. A simple, useful reaction between Ru2(OAc)4Cl (OAc- = acetate) and catechol derivatives in the presence of bases afforded a variety of diruthenium complexes, generally formulated as [Na(n){Ru2(R4Cat)4}] (n = 2 or 3; R4 = -F4, -Cl4, -Br4, -H4, -3,5-di-t-Bu, and -3,6-di-t-Bu; Cat(2-) = catecholate). The most characteristic feature of the complexes is the formation of short ligand-unsupported Ru-Ru bonds (2.140-2.273 A). These comprehensive studies were carried out to evaluate the effects of the oxidation states and the substituents governing the molecular structures and physicochemical properties. The Ru-Ru bond distances, rotational conformations, and bending structures of the complexes were successfully varied. The results presented in this manuscript clearly demonstrate that the complexes with ligand-unsupported Ru-Ru bonds can sensitively respond to redox reactions and ligand substituents on the basis of the greater degree of freedom in their molecular structures.

  19. Synthesis of mouse centromere-targeted polyamides and physico-chemical studies of their interaction with the target double-stranded DNA.

    PubMed

    Nozeret, Karine; Bonan, Marc; Yarmoluk, Serguiy M; Novopashina, Darya S; Boutorine, Alexandre S

    2015-09-01

    Synthetic minor groove-binding pyrrole-imidazole polyamides labeled by fluorophores are promising candidates for fluorescence imaging of double-stranded DNA in isolated chromosomes or fixed and living cells. We synthesized nine hairpin and two head-to-head tandem polyamides targeting repeated sequences from mouse major satellites. Their interaction with synthetic target dsDNA has been studied by physico-chemical methods in vitro before and after coupling to various fluorophores. Great variability in affinities and fluorescence properties reveals a conclusion that these properties do not only rely on recognition rules, but also on other known and unknown structural factors. Individual testing of each probe is needed before cellular applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Physicochemical properties and ion-solvent interactions in aqueous sodium, ammonium, and lead acetate solution

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Mendkudle, M. S.

    2014-09-01

    Densities (ρ), viscosities (η) and refractive indices ( n D) of aqueous sodium acetate (SA), ammonium acetate (AA), and lead acetate (LA) solutions have been measured for different concentrations of salts at 302.15 K. Apparent molar volumes (φv) for studied solutions were calculated from density data, and fitted to Masson's relation and partial molar volume (φ{v/o}) was determined. Viscosity data were fitted to Jones-Dole equation and viscosity A- and B-coefficients were determined. Refractive index and density data were fitted to Lorentz and Lorenz equation and specific refraction ( R D) were calculated. Behavior of various physicochemical properties indicated presence of strong ion-solvent interactions in present systems and the acetate salts structure maker in water.

  1. Physicochemical and Rheological Properties of a Dairy Dessert, Enriched with Chickpea Flour.

    PubMed

    Aguilar-Raymundo, Victoria Guadalupe; Vélez-Ruiz, Jorge Fernando

    2018-02-18

    Dairy desserts are complex mixtures and matrices including main components such as milk, sugar, starch, hydrocolloids, colorants and flavors, with a proteinaceous structure; they are widely consumed and present a semisolid consistency. In this work, the physicochemical and rheological properties of a dairy dessert with the addition of chickpea flour (raw and cooked, at four concentrations) were studied to determine the effect of the flour. The results indicated that luminosity (L*: 62.75-83.29), pH (6.35-7.11) and acidity (1.56-3.56) changed with the type of flour. The flow properties of the custards exhibited a non-Newtonian behavior that was well fitted by three flow models. The studied custard systems were stored for twelve days at 4 °C. The physicochemical and flow properties of the custards changed notably as a function of flour addition and storage time. From all samples, only four were analyzed with oscillatory tests, showing their mechanical spectra with elastic behavior. The dessert texture was also measured, founding that those formulated with Blanco Noroeste chickpea flour exhibited the highest values of hardness (0.356-0.391 Newton (N)) through the twelve days. It can be concluded that those custard systems with the highest content of flour presented a very good response as a potential new dairy product.

  2. Investigation of Methylene Blue Release from Functional Polymeric Systems Using Dielectric Analysis.

    PubMed

    Bruschi, Marcos Luciano; Junqueira, Mariana Volpato; Borghi-Pangoni, Fernanda Belincanta; Yu, Tao; Andrews, Gavin Paul; Jones, David Simon

    2018-01-01

    Methylene blue (MB) is a photosensitizer used in photodynamic therapy (PDT) to treat colorectal cancer tumors and leishmaniasis infection. The clinical efficacy of PDT using MB is dependent on the physicochemical characteristics of the formulation. Bioadhesive thermoresponsive systems containing poloxamer 407 and Carbopol 934P have been proposed as platforms for PDT. However, the effect of MB on the physicochemical properties of these platforms is not fully understood, particularly in light of the MB availability. The aim of this study was to investigate the dielectric characteristics of functional polymeric systems containing MB and their influence on mucoadhesion and drug release. Binary polymeric systems containing different concentrations of poloxamer 407, Carbopol 934P and MB were evaluated as dielectric and mucoadhesive properties, as well as in vitro drug release profile. MB, temperature and polymeric composition influenced the physicochemical properties of the systems. The presence of MB altered the supramolecular structure of the preparations. The mucoadhesive properties of systems were influenced by MB presence and the formulation with the lowest amount of MB displayed faster release. The lower MB concentration in the systems displayed better results in terms of ionic mobility and drug release, and is indicative of a suitable clinical performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. The influence of water on the physicochemical characteristics of 1-butyl-3-methylimidazolium bromide ionic liquid

    NASA Astrophysics Data System (ADS)

    Ramenskaya, L. M.; Grishina, E. P.; Pimenova, A. M.; Gruzdev, M. S.

    2008-07-01

    A modified synthesis of 1-butyl-3-methylimidazolium bromide (BMImBr) was suggested and performed, and some physicochemical properties of the product containing 0.64 13.6 wt % water were determined. Water increased the electrical conductivity and decreased the viscosity and melting point of the substance but weakly influenced its density. Water in amounts of 5 8 wt % (45 50 mol %) caused structural changes. The BMImBr · 0.5H2O crystal hydrate was found to be stable thermodynamically.

  4. Nanocrystalline hydroxyapatite enriched in selenite and manganese ions: physicochemical and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Kolmas, Joanna; Groszyk, Ewa; Piotrowska, Urszula

    2015-07-01

    In this work, we used the co-precipitation method to synthesize hydroxyapatite (Mn-SeO3-HA) containing both selenium IV (approximately 3.60 wt.%) and manganese II (approximately 0.29 wt.%). Pure hydroxyapatite (HA), hydroxyapatite-containing manganese (II) ions (Mn-HA), and hydroxyapatite-containing selenite ions alone (SeO3-HA), prepared with the same method, were used as reference materials. The structures and physicochemical properties of all the obtained samples were investigated. PXRD studies showed that the obtained materials were homogeneous and consisted of apatite phase. Introducing selenites into the hydroxyapatite crystals considerably affects the size and degree of ordering. Experiments with transmission electron microscopy (TEM) showed that Mn-SeO3-HA crystals are very small, needle-like, and tend to form agglomerates. Fourier transform infrared spectroscopy (FT-IR) and solid-state nuclear magnetic resonance (ssNMR) were used to analyze the structure of the obtained material. Preliminary microbiological tests showed that the material demonstrated antibacterial activity against Staphylococcus aureus, yet such properties were not confirmed regarding Escherichia coli. PACS codes: 61, 76, 81

  5. A study on the electrical, optical, and physicochemical properties of poly(MMA-co-MAA)/ poly(3,4-ethylenedioxythiophene) hybrid thin films.

    PubMed

    Han, Yong-Hyeon; Kim, Hyeong Eun; Hwangbo, Kyung-Hee; Yim, Jin-Heong; Cho, Kuk Young

    2013-08-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) has good properties as a conductive polymer such as high conductivity, optical transmittance, and chemical stability, while offering relatively weak physicochemical properties. The main purpose of this paper is to improve physicochemical properties such as solvent resistance and pencil hardness of PEDOT. Carboxyl groups in the poly(MMA-co-MAA) polymer chains can effectively crosslink each other in the presence of aziridine, resulting in physicochemically robust PEDOT/poly(MMA-co-MAA) hybrid conductive films. The electrical conductivity, optical properties, and physicochemical properties of the hybrid conductive film were compared by varying the solid content and poly(MMA-co-MAA) portion in the coating precursor solution. From the results, the transparency and surface resistance of the hybrid film show a tendency to decrease with increasing solid content in the coating precursor. Moreover, solvent resistance and hardness were dramatically enhanced by hybridization of PEDOT and crosslinked poly(MMA-co-MAA) due to curing reactions between carboxyl groups. The chemical composition of 30 wt-% of poly(MMA-co-MAA) (MMA:MAA mole ratio 9:1) and 3 wt-% - 5 wt-% of aziridine yields the best physicochemical properties of poly(MMA-co-MAA)/PEDOT hybrid thin films.

  6. Physicochemical properties of collagen solutions cross-linked by glutaraldehyde.

    PubMed

    Tian, Zhenhua; Li, Conghu; Duan, Lian; Li, Guoying

    2014-06-01

    The physicochemical properties of collagen solutions (5 mg/ml) cross-linked by various amounts of glutaraldehyde (GTA) [GTA/collagen (w/w) = 0-0.5] under acidic condition (pH 4.00) were examined. Based on the results of the determination of residual amino group content, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, dynamic rheological measurements, differential scanning calorimetry and atomic force microscopy (AFM), it was proved that the collagen solutions possessed strikingly different physicochemical properties depending on the amount of GTA. At low GTA amounts [GTA/collagen (w/w) ≤ 0.1], the residual amino group contents of the cross-linked collagens decreased largely from 100% to 32.76%, accompanied by an increase in the molecular weight. Additionally, increases of the fiber diameter and the values of G', G″ and η* were measured, while the thermal denaturation temperature (Td) did not change visibly and the fluidity of collagen samples was still retained with increasing the GTA amount. When the ratio of GTA to collagen exceeded 0.1, although the residual amino group content only decreased by ~8.2%, the cross-linked collagen solution [GTA/collagen (w/w) = 0.3] displayed a clear loss of flow and a sudden rise (~2.0 °C) of the Td value compared to the uncross-linked collagen solution, probably illustrating that the collagen solution was converted into a gel with mature network structure-containing nuclei observed in AFM image. It was conjectured that the physicochemical properties of the collagen solutions might be in connection with the cross-linking between collagen molecules from the same aggregate or different aggregates.

  7. Preparation and characterization of cyanocobalamin (vit B12) microemulsion properties and structure for topical and transdermal application.

    PubMed

    Salimi, Anayatollah; Sharif Makhmal Zadeh, Behzad; Moghimipour, Eskandar

    2013-07-01

    The objective of this study was to design a topical microemulsion of Vit B12 and to study the correlation between internal structure and physicochemical properties of the microemulsions. Microemulsions are thermodynamically stable mixtures of water, oil, surfactants and usually cosurfactants with several advantages for topical and transdermal drug delivery. The formulation of microemulsions for pharmaceutical use requires a clear understanding of the properties and microstructures of the microemulsions. In this study, phase behavior and microstructure of traditional and novel microemulsions of Vit B12 have been investigated by Small-angle X-ray (SAXS), differential scanning calorimetery (DSC) and measuring density, particle size, conductivity and surface tension. WO and bicontinuous microemulsion with different microstructures were found in novel and traditional formulations. In this study, amount of water, surfactant concentration, oil/ surfactant ratio and physicochemical properties of cosurfactants influenced the microstructures. In both formulations, water behavior was affected by the concentration of the surfactant. Water Solubilization capacity and enthalpy of exothermic peak of interfacial and free water of traditional formulations were more than novel ones. This means that the affinity of water to interfacial film is dependent on the surfactant properties.   This study showed that both microemulsions provided good solubility of Vit B12 with a wide range of internal structure. Low water solubilization capacity is a common property of microemulsions that can affect drug release and permeability through the skin.  Based on Vit B12 properties, specially, intermediate oil and water solubility, better drug partitioning into the skin may be obtained by traditional formulations with wide range of structure and high amount of free and bounded water.    

  8. A Study of Physicochemical Properties of Subcutaneous Fat of the Abdomen and its Implication in Abdominal Obesity.

    PubMed

    Pandey, Arvind Kumar; Kumar, Pramod; Kodavoor, Srinivas Aithal; Kotian, Sushma Rama; Yathdaka, Sudhakar Narahari; Nayak, Dayanand; Souza, Anne D; Souza, Antony Sylvan D

    2016-05-01

    The lower abdominal obesity is more resistant to absorption as compared to that of upper abdomen. Differences in the physicochemical properties of the subcutaneous fat of the upper and lower abdomen may be responsible for this variation. There is paucity of the scientific literature on the physicochemical properties of the subcutaneous fat of abdomen. The present study was undertaken to create a database of physicochemical properties of abdominal subcutaneous fat. The samples of subcutaneous fat from upper and lower abdomen were collected from 40 fresh autopsied bodies (males 33, females 7). The samples were prepared for physicochemical analysis using organic and inorganic solvents. Various physicochemical properties of the fat samples analysed were surface tension, viscosity, specific gravity, specific conductivity, iodine value and thermal properties. Data was analysed by paired and independent sample t-tests. There was a statistically significant difference in all the physicochemical parameters between males and females except surface tension (organic) and surface tension (inorganic) of upper abdominal fat, and surface tension (organic) of lower abdominal fat. In males, viscosity of upper abdominal fat was more compared to that of lower abdomen (both organic and inorganic) unlike the specific conductivity that was higher for the lower abdominal fat as compared to that of the upper abdomen. In females there were statistically significant higher values of surface tension (inorganic) and specific gravity (organic) of the upper abdomen fat as compared to that of lower abdomen. The initial and final weight loss of the lower abdominal fat as indicated by Thermo Gravimetric Analysis was significantly more in males than in female. The difference in the physicochemical properties of subcutaneous fat between upper and lower abdomen and between males and females could be responsible for the variant behaviour of subcutaneous abdominal fat towards resorption.

  9. Structures, properties, modifications, and uses of oat starch.

    PubMed

    Zhu, Fan

    2017-08-15

    There has been increasing interest to utilise oats and their components to formulate healthy food products. Starch is the major component of oat kernels and may account up to 60% of the dry weight. Starch properties may greatly determine the product quality. As a by-product of oat processing and fractionation, the starch may also be utilised for food and non-food applications. This mini-review updates the recent advances in the isolation, chemical and granular structures, physicochemical properties, chemical and physical modifications, and food and non-food uses of oat starch. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Influence of the Surface Neutralization of Active Impurities on the Field-Electron Emission Properties of p-Type Silicon Crystals

    NASA Astrophysics Data System (ADS)

    Yafarov, R. K.

    2017-12-01

    Correlation dependences between variations of the structural-phase composition, morphology characteristics, and field-electron-emission (FEE) properties of surface-structured p-type silicon singlecrystalline (100)-oriented wafers have been studied during their stepwise high-dose carbon-ion-beam irradiation. It is established that the stepwise implantation of carbon decreases the FEE threshold and favors an increase in the maximum FEE-current density by more than two orders of magnitude. Physicochemical mechanisms involved in this modification of the properties of near-surface layers of silicon under carbon-ion implantation are considered.

  11. CLINICALLY RELEVANT IGE-CROSS-REACTIVITY OF NUT ALLERGENS

    EPA Science Inventory

    All data resulting from this study will be catalogued in SDAP .This work will generate important information relating the structure/ physicochemical properties of cross-reactive IgE epitopes to clinical response, and model factors that underlie allergen recognition by the immu...

  12. Key physicochemical properties of nanomaterials in view of their toxicity: an exploratory systematic investigation for the example of carbon-based nanomaterial

    NASA Astrophysics Data System (ADS)

    Salieri, Beatrice; Pasteris, Andrea; Netkueakul, Woranan; Hischier, Roland

    2017-03-01

    Currently, a noncomprehensive understanding of the physicochemical properties of carbon-based nanomaterial (CBNs), which may affect toxic effects, is still observable. In this study, an exploratory systematic investigation into the key physicochemical properties of multiwall carbon nanotube (MWCNT), single-wall carbon nanotube (SWCNT), and C60-fullerene on their ecotoxicity has been undertaken. We undertook an extensive survey of the literature pertaining to the ecotoxicity of organism representative of the trophic level of algae, crustaceans, and fish. Based on this, a set of data reporting both the physicochemical properties of carbon-based nanomaterial and the observed toxic effect has been established. The relationship between physicochemical properties and observed toxic effect was investigated based on various statistical approaches. Specifically, analysis of variance by one-way ANOVA was used to assess the effect of categorical properties (use of a dispersant or treatments in the test medium, type of carbon-based nanomaterial, i.e., SWCNT, MWCNT, C60-fullerene, functionalization), while multiple regression analysis was used to assess the effect of quantitative properties (i.e., diameter length of nanotubes, secondary size) on the toxicity values. The here described investigations revealed significant relationships among the physicochemical properties and observed toxic effects. The research was mainly affected by the low availability of data and also by the low variability of the studies collected. Overall, our results demonstrate that the here proposed and applied approach could have a major role in identifying the physicochemical properties of relevance for the toxicity of nanomaterial. However, the future success of the approach would require that the ENMs and the experimental conditions used in the toxicity studies are fully characterized.

  13. An Invitation to Open Innovation in Malaria Drug Discovery: 47 Quality Starting Points from the TCAMS.

    PubMed

    Calderón, Félix; Barros, David; Bueno, José María; Coterón, José Miguel; Fernández, Esther; Gamo, Francisco Javier; Lavandera, José Luís; León, María Luisa; Macdonald, Simon J F; Mallo, Araceli; Manzano, Pilar; Porras, Esther; Fiandor, José María; Castro, Julia

    2011-10-13

    In 2010, GlaxoSmithKline published the structures of 13533 chemical starting points for antimalarial lead identification. By using an agglomerative structural clustering technique followed by computational filters such as antimalarial activity, physicochemical properties, and dissimilarity to known antimalarial structures, we have identified 47 starting points for lead optimization. Their structures are provided. We invite potential collaborators to work with us to discover new clinical candidates.

  14. Preparation and physicochemical characterization of 5 niclosamide solvates and 1 hemisolvate.

    PubMed

    van Tonder, Elsa C; Mahlatji, Mabatane D; Malan, Sarel F; Liebenberg, Wilna; Caira, Mino R; Song, Mingna; de Villiers, Melgardt M

    2004-02-23

    The purpose of the study was to characterize the physicochemical, structural, and spectral properties of the 1:1 niclosamide and methanol, diethyl ether, dimethyl sulfoxide, N,N' dimethylformamide, and tetrahydrofuran solvates and the 2:1 niclosamide and tetraethylene glycol hemisolvate prepared by recrystallization from these organic solvents. Structural, spectral, and thermal analysis results confirmed the presence of the solvents and differences in the structural properties of these solvates. In addition, differences in the activation energy of desolvation, batch solution calorimetry, and the aqueous solubility at 25 degrees C, 24 hours, showed the stability of the solvates to be in the order: anhydrate > diethyl ether solvate > tetraethylene glycol hemisolvate > methanol solvate > dimethyl sulfoxide solvate > N,N' dimethylformamide solvate. The intrinsic and powder dissolution rates of the solvates were in the order: anhydrate > diethyl ether solvate > tetraethylene glycol hemisolvate > N,N' dimethylformamide solvate > methanol solvate > dimethyl sulfoxide solvate. Although these nonaqueous solvates had higher solubility and dissolution rates than the monohydrous forms, they were unstable in aqueous media and rapidly transformed to one of the monohydrous forms.

  15. Synthesis, physico-chemical properties and complexing abilities of new amphiphilic ligands from D-galacturonic acid.

    PubMed

    Allam, Anas; Behr, Jean-Bernard; Dupont, Laurent; Nardello-Rataj, Véronique; Plantier-Royon, Richard

    2010-04-19

    This paper describes a convenient and efficient synthesis of new complexing surfactants from d-galacturonic acid and n-octanol as renewable raw materials in a two-step sequence. In the first step, simultaneous O-glycosidation-esterification under Fischer conditions was achieved. The anomeric ratio of the products was studied based on the main experimental parameters and the activation mode (thermal or microwave). In the second step, aminolysis of the n-octyl ester was achieved with various functionalized primary amines under standard thermal or microwave activation. The physico-chemical properties of these new amphiphilic ligands were measured and these compounds were found to exhibit interesting surface properties. Complexing abilities of one uronamide ligand functionalized with a pyridine moiety toward Cu(II) ions was investigated in solution by EPR titrations. A solid compound was also synthesized and characterized, its relative structure was deduced from spectroscopic data. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Physicochemical and Nonlinear Optical Properties of Novel Environmentally Benign Heterocyclic Azomethine Dyes: Experimental and Theoretical Studies

    PubMed Central

    Afzal, S. M.; Razvi, M. A. N.; Khan, Salman A.; Osman, Osman I.; Bakry, Ahmed H.; Asiri, Abdullah M.

    2016-01-01

    Novel heterocyclic azomethine dyes were prepared by the reaction of anthracene-9-carbaldehyde with different heterocyclic amines under microwave irradiation. Structures of the azomethine dyes were confirmed by the elemental analysis, mass spectrometry and several spectroscopic techniques. We studied absorbance and fluorescence spectra of the azomethine dyes in various solvents. They are found to be good absorbers and emitters. We also report photophysical properties like, extinction coefficient, oscillator strength, stokes shift and transition dipole moment. This reflects physicochemical behaviors of synthesized dyes. In addition, their intramolecular charge transfer and nonlinear optical properties, supported by natural bond orbital technique, were also studied computationally by density functional theory. The negative nonlinear refractive index and nonlinear absorption coefficient were measured for these dyes using the closed and open aperture Z-scan technique with a continuous wave helium-neon laser. These are found to vary linearly with solution concentration. PMID:27631371

  17. Effects of gamma irradiation on physicochemical properties of native and acetylated wheat starches.

    PubMed

    Kong, Xiangli; Zhou, Xin; Sui, Zhongquan; Bao, Jinsong

    2016-10-01

    Effects of gamma irradiation on the physicochemical and crystalline properties of the native and acetylated wheat starches were investigated. Peak, hot paste, cool paste and setback viscosities of both native and acetylated wheat starches decreased continuously and significantly with the increase of the irradiation dose, whereas breakdown viscosity increased after irradiation. However, gamma irradiation only exerted slight effects on thermal and retrogradation properties of both native and acetylated wheat starches. X-ray diffraction and fourier transform infrared spectroscopy revealed that acetylation modification had considerable effects on the molecular structure of wheat starch, and the crystallinity of both untreated and acetylated starches increased slightly with the increase of irradiation dose. However, the V-type crystallinity of amylose-lipid complex was not affected by gamma irradiation treatments with doses up to 9kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Implications of interfacial characteristics of food foaming agents in foam formulations.

    PubMed

    Rodríguez Patino, Juan M; Carrera Sánchez, Cecilio; Rodríguez Niño, Ma Rosario

    2008-08-05

    The manufacture of food dispersions (emulsions and foams) with specific quality attributes depends on the selection of the most appropriate raw materials and processing conditions. These dispersions being thermodynamically unstable require the use of emulsifiers (proteins, lipids, phospholipids, surfactants etc.). Emulsifiers typically coexist in the interfacial layer with specific functions in the processing and properties of the final product. The optimum use of emulsifiers depends on our knowledge of their interfacial physico-chemical characteristics - such as surface activity, amount adsorbed, structure, thickness, topography, ability to desorb (stability), lateral mobility, interactions between adsorbed molecules, ability to change conformation, interfacial rheological properties, etc. -, the kinetics of film formation and other associated physico-chemical properties at fluid interfaces. These monolayers constitute well defined systems for the analysis of food colloids at the micro- and nano-scale level, with several advantages for fundamental studies. In the present review we are concerned with the analysis of physico-chemical properties of emulsifier films at fluid interfaces in relation to foaming. Information about the above properties would be very helpful in the prediction of optimised formulations for food foams. We concluded that at surface pressures lower than that of monolayer saturation the foaming capacity is low, or even zero. A close relationship was observed between foaming capacity and the rate of diffusion of the foaming agent to the air-water interface. However, the foam stability correlates with the properties of the film at long-term adsorption.

  19. Physico-chemical study of some areas of fundamental significance to biophysics. Final report, 1974--1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGlynn, S.P.

    1977-08-18

    The comprehensive report includes a complete list of publications resulting from the work and a review of studies made in the vacuum ultraviolet, photoelectron spectroscopy, excited states and electron structure of inorganic salts, a model for polar molecules, application of abstract mathematics to the genetic code, the orbital approximation in which orbital properties are related to state properties. (JSR)

  20. [HEALTH-IMPROVING REMEDIES ON THE BASIS OF SMECTITE®].

    PubMed

    Shirobokov, V; Yankovskii, D; Dyment, G

    2015-01-01

    The review is devoted to the issues of using smectites in medicine. Modern information concerning smectite composition, structure, physico-chemical properties and reasonability of using them with health-improving purposes is presented. Special attention is given to smectite sorbtional and ionic properties and their unique mineral composition. Characterization is given to modern preparation based on smectites, including developed in Ukraine dietary additives of the series Smectovit®.

  1. General Platform for Systematic Quantitative Evaluation of Small-Molecule Permeability in Bacteria

    PubMed Central

    2015-01-01

    The chemical features that impact small-molecule permeability across bacterial membranes are poorly understood, and the resulting lack of tools to predict permeability presents a major obstacle to the discovery and development of novel antibiotics. Antibacterials are known to have vastly different structural and physicochemical properties compared to nonantiinfective drugs, as illustrated herein by principal component analysis (PCA). To understand how these properties influence bacterial permeability, we have developed a systematic approach to evaluate the penetration of diverse compounds into bacteria with distinct cellular envelopes. Intracellular compound accumulation is quantitated using LC-MS/MS, then PCA and Pearson pairwise correlations are used to identify structural and physicochemical parameters that correlate with accumulation. An initial study using 10 sulfonyladenosines in Escherichia coli, Bacillus subtilis, and Mycobacterium smegmatis has identified nonobvious correlations between chemical structure and permeability that differ among the various bacteria. Effects of cotreatment with efflux pump inhibitors were also investigated. This sets the stage for use of this platform in larger prospective analyses of diverse chemotypes to identify global relationships between chemical structure and bacterial permeability that would enable the development of predictive tools to accelerate antibiotic drug discovery. PMID:25198656

  2. Linking the structures, free volumes, and properties of ionic liquid mixtures† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01407d

    PubMed Central

    Brooks, Nicholas J.; Castiglione, Franca; Doherty, Cara M.; Dolan, Andrew; Hill, Anita J.; Hunt, Patricia A.; Matthews, Richard P.; Mauri, Michele; Mele, Andrea; Simonutti, Roberto; Villar-Garcia, Ignacio J.; Weber, Cameron C.

    2017-01-01

    The formation of ionic liquid (IL) mixtures has been proposed as an approach to rationally fine-tune the physicochemical properties of ILs for a variety of applications. However, the effects of forming such mixtures on the resultant properties of the liquids are only beginning to be understood. Towards a more complete understanding of both the thermodynamics of mixing ILs and the effect of mixing these liquids on their structures and physicochemical properties, the spatial arrangement and free volume of IL mixtures containing the common [C4C1im]+ cation and different anions have been systematically explored using small angle X-ray scattering (SAXS), positron annihilation lifetime spectroscopy (PALS) and 129Xe NMR techniques. Anion size has the greatest effect on the spatial arrangement of the ILs and their mixtures in terms of the size of the non-polar domains and inter-ion distances. It was found that differences in coulombic attraction between oppositely charged ions arising from the distribution of charge density amongst the atoms of the anion also significantly influences these inter-ion distances. PALS and 129Xe NMR results pertaining to the free volume of these mixtures were found to strongly correlate with each other despite the vastly different timescales of these techniques. Furthermore, the excess free volumes calculated from each of these measurements were in excellent agreement with the excess volumes of mixing measured for the IL mixtures investigated. The correspondence of these techniques indicates that the static and dynamic free volume of these liquid mixtures are strongly linked. Consequently, fluxional processes such as hydrogen bonding do not significantly contribute to the free volumes of these liquids compared to the spatial arrangement of ions arising from their size, shape and coulombic attraction. Given the relationship between free volume and transport properties such as viscosity and conductivity, these results provide a link between the structures of IL mixtures, the thermodynamics of mixing and their physicochemical properties. PMID:29619199

  3. Effects of biochar blends on microbial community composition in two coastal plain soils

    EPA Science Inventory

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....

  4. Study of heat-moisture treatment of potato starch granules by chemical surface gelatinization.

    PubMed

    Bartz, Josiane; da Rosa Zavareze, Elessandra; Dias, Alvaro Renato Guerra

    2017-08-01

    Native potato starch was subjected to heat-moisture treatment (HMT) at 12%, 15%, 18%, 21%, and 24% of moisture content at 110 °C for 1 h, and the effects on morphology, structure, and thermal and physicochemical properties were investigated. To reveal the internal structure, 30% and 50% of the granular surface were removed by chemical surface gelatinization in concentrated LiCl solution. At moisture contents of 12% and 15%, HTM reduced the gelatinization temperatures and relative crystallinity of the starches, while at moisture contents of 21% and 24 % both increased. The alterations on morphology, X-ray pattern, physicochemical properties, and increase of amylose content were more intense with the increase of moisture content of HMT. The removal of granular layers showed that the changes promoted by HMT occur throughout the whole granule and were pronounced at the core or peripheral region, depending of the moisture content applied during HMT. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Physicochemical properties of manganese oxides obtained via the sol-gel method: The reduction of potassium permanganate by polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Ivanets, A. I.; Prozorovich, V. G.; Krivoshapkina, E. F.; Kuznetsova, T. F.; Krivoshapkin, P. V.; Katsoshvili, L. L.

    2017-08-01

    Experimental data on the sol-gel synthesis of manganese oxides formed during the reduction of potassium permanganate by polyvinyl alcohol in an aqueous medium are presented. The physicochemical properties of the obtained manganese oxide systems that depend on the conditions of the synthesis are studied by means of DTA, XRD, SEM, and the low temperature adsorption-desorption of nitrogen. It is found that the obtained samples have a mesoporous structure and predominantly consist of double potassium-manganese oxide K2Mn4O8 with a tunnel structure and impurities of oxides such as α-MnO2, MnO, α-Mn2O3, and Mn5O8. It is shown that the proposed method of synthesis allows us to regulate the size and volume of mesopores and, to a lesser extent, the texture of the obtained oxides, which can be considered promising sorbents for the selective extraction of strontium and cesium ions from multicomponent aqueous solutions.

  6. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    PubMed

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characterization of electronic structure and physicochemical properties of antiparasitic nifurtimox analogues: A theoretical study

    NASA Astrophysics Data System (ADS)

    Soriano-Correa, Catalina; Raya, A.; Esquivel, Rodolfo O.

    American trypanosomiasis, also known as Chagas' disease, is caused by Trypanosoma cruzi (T. cruzi). It is well known that trypanosomes, and particularly T. cruzi, are highly sensitive towards oxidative stress, i.e., to compounds than are able to produce free radicals. Generally, nifurtimox (NFX) and benznidazol are most effective in the acute phase of the disease; therefore, nitroheterocycles constitute good models to design other nitrocompounds with specific biological characteristics. Thus, we have performed an ab initio study at the Hartree-Fock and Density Functional Theory levels of theory of several NFX analogues recently synthesized, to characterize them by obtaining their electronic, structural, and physicochemical properties, which might be linked to the observed antichagasic activity. The antitrypanosomal activity scale previously reported for the NFX analogues studied in this work is in good agreement with our theoretical results, from which we can conclude that the activity seems to be related to the reactivity along with the acidity observed for the most active molecules.

  8. Physicochemical of pillared clays prepared by several metal oxides

    NASA Astrophysics Data System (ADS)

    Rinaldi, Nino; Kristiani, Anis

    2017-03-01

    Natural clays could be modified by the pillarization method, called as Pillared Clays (PILCs). PILCs have been known as porous materials that can be used for many applications, one of the fields is catalysis. PILCs as two dimensional materials are interesting because their structures and textural properties can be controlled by using a metal oxide as the pillar. Different metal oxide used as the pillar causes different properties results of pillared clays. Usually, natural smectite clays/bentonites are used as a raw material. Therefore, a series of bentonite pillared by metal oxides was prepared through pillarization method. Variation of metals pillared into bentonite are aluminium, chromium, zirconium, and ferro. The physicochemical properties of catalysts were characterized by using X-ray Diffraction (XRD), Thermo Gravimetric Analysis (TGA), Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) analysis, and Fourier transform infrared spectroscopy (FTIR) measurement. Noteworthy characterization results showed that different metals pillared into bentonite affected physical and chemical properties, i.e. basal spacing, surface area, pore size distribution, thermal stability and acidity.

  9. Discovery of chiral dihydropyridopyrimidinones as potent, selective and orally bioavailable inhibitors of AKT.

    PubMed

    Parthasarathy, Saravanan; Henry, Kenneth; Pei, Huaxing; Clayton, Josh; Rempala, Mark; Johns, Deidre; De Frutos, Oscar; Garcia, Pablo; Mateos, Carlos; Pleite, Sehila; Wang, Yong; Stout, Stephanie; Condon, Bradley; Ashok, Sheela; Lu, Zhohai; Ehlhardt, William; Raub, Tom; Lai, Mei; Geeganage, Sandaruwan; Burkholder, Timothy P

    2018-06-01

    During the course of our research efforts to develop potent and selective AKT inhibitors, we discovered enatiomerically pure substituted dihydropyridopyrimidinones (DHP) as potent inhibitors of protein kinase B/AKT with excellent selectivity against ROCK 2 . A key challenge in this program was the poor physicochemical properties of the initial lead compound 5. Integration of structure-based drug design and physical properties-based design resulted in replacement of a highly hydrophobic poly fluorinated aryl ring by a simple trifluoromethyl that led to identification of compound 6 with much improved physicochemical properties. Subsequent SAR studies led to the synthesis of new pyran analog 7 with improved cell potency. Further optimization of pharmacokintetics properties by increasing permeability with appropriate fluorinated alkyl led to compound 8 as a potent, selective AKT inhibitors that blocks the phosphorylation of GSK3β in vivo and had robust, dose and concentration dependent efficacy in the U87MG tumor xenograft model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Atomic force microscopy of starch systems.

    PubMed

    Zhu, Fan

    2017-09-22

    Atomic force microscopy (AFM) generates information on topography, adhesion, and elasticity of sample surface by touching with a tip. Under suitable experimental settings, AFM can image biopolymers of few nanometers. Starch is a major food and industrial component. AFM has been used to probe the morphology, properties, modifications, and interactions of starches from diverse botanical origins at both micro- and nano-structural levels. The structural information obtained by AFM supports the blocklet structure of the granules, and provides qualitative and quantitative basis for some physicochemical properties of diverse starch systems. It becomes evident that AFM can complement other microscopic techniques to provide novel structural insights for starch systems.

  11. Calculation of phase diagrams for the FeCl2, PbCl2, and ZnCl2 binary systems by using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Seo, Won-Gap; Matsuura, Hiroyuki; Tsukihashi, Fumitaka

    2006-04-01

    Recently, molecular dynamics (MD) simulation has been widely employed as a very useful method for the calculation of various physicochemical properties in the molten slags and fluxes. In this study, MD simulation has been applied to calculate the structural, transport, and thermodynamic properties for the FeCl2, PbCl2, and ZnCl2 systems using the Born—Mayer—Huggins type pairwise potential with partial ionic charges. The interatomic potential parameters were determined by fitting the physicochemical properties of iron chloride, lead chloride, and zinc chloride systems with experimentally measured results. The calculated structural, transport, and thermodynamic properties of pure FeCl2, PbCl2, and ZnCl2 showed the same tendency with observed results. Especially, the calculated structural properties of molten ZnCl2 and FeCl2 show the possibility of formation of polymeric network structures based on the ionic complexes of ZnCl{4/2-}, ZnCl{3/-}, FeCl{4/2-}, and FeCl{3/-}, and these calculations have successfully reproduced the measured results. The enthalpy, entropy, and Gibbs energy of mixing for the PbCl2-ZnCl2, FeCl2-PbCl2, and FeCl2-ZnCl2 systems were calculated based on the thermodynamic and structural parameters of each binary system obtained from MD simulation. The phase diagrams of the PbCl2-ZnCl2, FeCl2-PbCl2, and FeCl2-ZnCl2 systems estimated by using the calculated Gibbs energy of mixing reproduced the experimentally measured ones reasonably well.

  12. Structure and photochromic properties of molybdenum-containing silica gels obtained by molecular-lamination method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belotserkovskaya, N.G.; Dobychin, D.P.; Pak, V.N.

    1992-05-10

    The structure and physicochemical properties of molybdenum-containing silica gels obtained by molecular lamination have been studied quite extensively. Up to the present, however, no studies have been made of the influence of the pore structure of the original silica gel on the structure and properties of molybdenum-containing silica gels (MSG). The problem is quite important, since molybdenum silicas obtained by molecular lamination may find applications in catalysis and as sensors of UV radiation. In either case, the structure of the support is not a factor to be ignored. Here, the authors are reporting on an investigation of the structure ofmore » MSG materials with different pore structures and their susceptibility to reduction of the Mo(VI) oxide groupings when exposed to UV radiation. 16 refs., 2 figs., 2 tabs.« less

  13. Relationship between potency and boiling point of general anesthetics: a thermodynamic consideration.

    PubMed

    Dastmalchi, S; Barzegar-Jalali, M

    2000-07-20

    The most important group of nonspecific drugs is that of the general anesthetics. These nonspecific compounds vary greatly in structure, from noble gases such as Ar or Xe to complex steroids. Since the development of clinical anesthesia over a century ago, there has been a vast amount of research and speculation concerning the mechanism of action of general anesthetics. Despite these efforts, the exact mechanism remains unknown. Many theories of narcosis do not explain how unconsciousness is produced at a molecular level, but instead relate some physicochemical property of anesthetic agents to their anesthetic potencies. In this paper, we address some of those physicochemical properties, with more emphasis on correlating the anesthetic potency of volatile anesthetics to their boiling points based on thermodynamic principles.

  14. Engineered Nanomaterials: Their Physicochemical Characteristics and How to Measure Them.

    PubMed

    Atluri, Rambabu; Jensen, Keld Alstrup

    2017-01-01

    Numerous types of engineered nanomaterials (ENMs) are commercially available and developments move towards producing more advanced nanomaterials with tailored properties. Such advanced nanomaterials may include chemically doped or modified derivatives with specific surface chemistries; also called higher generation or multiconstituent nanomaterials. To fully enjoy the benefits of nanomaterials, appropriate characterisation of ENMs is necessary for many aspects of their production, use, testing and reporting to regulatory bodies. This chapter introduces both structural and textural properties of nanomaterials with a focus on demonstrating the information that can be achieved by analysis of primary physicochemical characteristics and how such information is critical to understand or assess the possible toxicity of engineered nanomaterials. Many of characterization methods are very specific to obtain particular characteristics and therefore the most widely used techniques are explained and demonstrated.

  15. Enhancing physicochemical properties of emulsions by heteroaggregation of oppositely charged lactoferrin coated lutein droplets and whey protein isolate coated DHA droplets.

    PubMed

    Li, Xin; Wang, Xu; Xu, Duoxia; Cao, Yanping; Wang, Shaojia; Wang, Bei; Sun, Baoguo; Yuan, Fang; Gao, Yanxiang

    2018-01-15

    The formation and physicochemical stability of mixed functional components (lutein & DHA) emulsions through heteroaggregation were studied. It was formed by controlled heteroaggregation of oppositely charged lutein and DHA droplets coated by cationic lactoferrin (LF) and anionic whey protein isolate (WPI), respectively. Heteroaggregation was induced by mixing the oppositely charged LF-lutein and WPI-DHA emulsions together at pH 6.0. Droplet size, zeta-potential, transmission-physical stability, microrheological behavior and microstructure of the heteroaggregates formed were measured as a function of LF-lutein to WPI-DHA droplet ratio. Lutein degradation and DHA oxidation by measurement of lipid hydroperoxides and thiobarbituric acid reactive substances were determined. Upon mixing the two types of bioactive compounds droplets together, it was found that the largest aggregates and highest physical stability occurred at a droplet ratio of 40% LF-lutein droplets to 60% WPI-DHA droplets. Heteroaggregates formation altered the microrheological properties of the mixed emulsions mainly by the special network structure of the droplets. When LF-coated lutein droplets ratios were more than 30% and less than 60%, the mixed emulsions exhibited distinct decreases in the Mean Square Displacement, which indicated that their limited scope of Brownian motion and stable structure. Mixed emulsions with LF-lutein/WPI-DHA droplets ratio of 4:6 exhibited Macroscopic Viscosity Index with 13 times and Elasticity Index with 3 times of magnitudes higher than the individual emulsions from which they were prepared. Compared with the WPI-DHA emulsion or LF-lutein emulsion, the oxidative stability of the heteroaggregate of LF-lutein/WPI-DHA emulsions was improved. Heteroaggregates formed by oppositely charged bioactive compounds droplets may be useful for creating specific food structures that lead to desirable physicochemical properties, such as microrheological property, physical and chemical stabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances.

    PubMed

    Gomis, Melissa Ines; Wang, Zhanyun; Scheringer, Martin; Cousins, Ian T

    2015-02-01

    Long-chain perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) are persistent, bioaccumulative, and toxic contaminants that are globally present in the environment, wildlife and humans. Phase-out actions and use restrictions to reduce the environmental release of long-chain PFCAs, PFSAs and their precursors have been taken since 2000. In particular, long-chain poly- and perfluoroalkyl substances (PFASs) are being replaced with shorter-chain homologues or other fluorinated or non-fluorinated alternatives. A key question is: are these alternatives, particularly the structurally similar fluorinated alternatives, less hazardous to humans and the environment than the substances they replace? Several fluorinated alternatives including perfluoroether carboxylic acids (PFECAs) and perfluoroether sulfonic acids (PFESAs) have been recently identified. However, the scarcity of experimental data prevents hazard and risk assessments for these substances. In this study, we use state-of-the-art in silico tools to estimate key properties of these newly identified fluorinated alternatives. [i] COSMOtherm and SPARC are used to estimate physicochemical properties. The US EPA EPISuite software package is used to predict degradation half-lives in air, water and soil. [ii] In combination with estimated chemical properties, a fugacity-based multimedia mass-balance unit-world model - the OECD Overall Persistence (POV) and Long-Range Transport Potential (LRTP) Screening Tool - is used to assess the likely environmental fate of these alternatives. Even though the fluorinated alternatives contain some structural differences, their physicochemical properties are not significantly different from those of their predecessors. Furthermore, most of the alternatives are estimated to be similarly persistent and mobile in the environment as the long-chain PFASs. The models therefore predict that the fluorinated alternatives will become globally distributed in the environment similar to their predecessors. Although such in silico methods are coupled with uncertainties, this preliminary assessment provides enough cause for concern to warrant experimental work to better determine the properties of these fluorinated alternatives. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. IDM-PhyChm-Ens: intelligent decision-making ensemble methodology for classification of human breast cancer using physicochemical properties of amino acids.

    PubMed

    Ali, Safdar; Majid, Abdul; Khan, Asifullah

    2014-04-01

    Development of an accurate and reliable intelligent decision-making method for the construction of cancer diagnosis system is one of the fast growing research areas of health sciences. Such decision-making system can provide adequate information for cancer diagnosis and drug discovery. Descriptors derived from physicochemical properties of protein sequences are very useful for classifying cancerous proteins. Recently, several interesting research studies have been reported on breast cancer classification. To this end, we propose the exploitation of the physicochemical properties of amino acids in protein primary sequences such as hydrophobicity (Hd) and hydrophilicity (Hb) for breast cancer classification. Hd and Hb properties of amino acids, in recent literature, are reported to be quite effective in characterizing the constituent amino acids and are used to study protein foldings, interactions, structures, and sequence-order effects. Especially, using these physicochemical properties, we observed that proline, serine, tyrosine, cysteine, arginine, and asparagine amino acids offer high discrimination between cancerous and healthy proteins. In addition, unlike traditional ensemble classification approaches, the proposed 'IDM-PhyChm-Ens' method was developed by combining the decision spaces of a specific classifier trained on different feature spaces. The different feature spaces used were amino acid composition, split amino acid composition, and pseudo amino acid composition. Consequently, we have exploited different feature spaces using Hd and Hb properties of amino acids to develop an accurate method for classification of cancerous protein sequences. We developed ensemble classifiers using diverse learning algorithms such as random forest (RF), support vector machines (SVM), and K-nearest neighbor (KNN) trained on different feature spaces. We observed that ensemble-RF, in case of cancer classification, performed better than ensemble-SVM and ensemble-KNN. Our analysis demonstrates that ensemble-RF, ensemble-SVM and ensemble-KNN are more effective than their individual counterparts. The proposed 'IDM-PhyChm-Ens' method has shown improved performance compared to existing techniques.

  18. Influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with carcinogenic and anticoagulant effect of 17β-aminoestrogens

    NASA Astrophysics Data System (ADS)

    Soriano-Correa, Catalina; Raya, Angélica; Barrientos-Salcedo, Carolina; Esquivel, Rodolfo O.

    2014-06-01

    Activity of steroid hormones is dependent upon a number of factors, as solubility, transport and metabolism. The functional differences caused by structural modifications could exert an influence on the chemical reactivity and biological effect. The goal of this work is to study the influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with the carcinogenic risk that can associate with the anticoagulant effect of 17β-aminoestrogens using quantum-chemical descriptors at the DFT-B3LYP, BH&HLYP and M06-2X levels. The relative acidity of (H1) of the hydroxyl group increases with electron-withdrawing groups. Electron-donor groups favor the basicity. The steric hindrance of the substituents decreases the aromatic character and consequently diminution the carcinogenic effect. Density descriptors: hardness, electrophilic index, atomic charges, molecular orbitals, electrostatic potential and their geometric parameters permit analyses of the chemical reactivity and physicochemical features and to identify some reactive sites of 17β-aminoestrogens.

  19. Virtual screening applications: a study of ligand-based methods and different structure representations in four different scenarios.

    PubMed

    Hristozov, Dimitar P; Oprea, Tudor I; Gasteiger, Johann

    2007-01-01

    Four different ligand-based virtual screening scenarios are studied: (1) prioritizing compounds for subsequent high-throughput screening (HTS); (2) selecting a predefined (small) number of potentially active compounds from a large chemical database; (3) assessing the probability that a given structure will exhibit a given activity; (4) selecting the most active structure(s) for a biological assay. Each of the four scenarios is exemplified by performing retrospective ligand-based virtual screening for eight different biological targets using two large databases--MDDR and WOMBAT. A comparison between the chemical spaces covered by these two databases is presented. The performance of two techniques for ligand--based virtual screening--similarity search with subsequent data fusion (SSDF) and novelty detection with Self-Organizing Maps (ndSOM) is investigated. Three different structure representations--2,048-dimensional Daylight fingerprints, topological autocorrelation weighted by atomic physicochemical properties (sigma electronegativity, polarizability, partial charge, and identity) and radial distribution functions weighted by the same atomic physicochemical properties--are compared. Both methods were found applicable in scenario one. The similarity search was found to perform slightly better in scenario two while the SOM novelty detection is preferred in scenario three. No method/descriptor combination achieved significant success in scenario four.

  20. Physicochemical and Rheological Properties of a Dairy Dessert, Enriched with Chickpea Flour

    PubMed Central

    Aguilar-Raymundo, Victoria Guadalupe; Vélez-Ruiz, Jorge Fernando

    2018-01-01

    Dairy desserts are complex mixtures and matrices including main components such as milk, sugar, starch, hydrocolloids, colorants and flavors, with a proteinaceous structure; they are widely consumed and present a semisolid consistency. In this work, the physicochemical and rheological properties of a dairy dessert with the addition of chickpea flour (raw and cooked, at four concentrations) were studied to determine the effect of the flour. The results indicated that luminosity (L*: 62.75–83.29), pH (6.35–7.11) and acidity (1.56–3.56) changed with the type of flour. The flow properties of the custards exhibited a non-Newtonian behavior that was well fitted by three flow models. The studied custard systems were stored for twelve days at 4 °C. The physicochemical and flow properties of the custards changed notably as a function of flour addition and storage time. From all samples, only four were analyzed with oscillatory tests, showing their mechanical spectra with elastic behavior. The dessert texture was also measured, founding that those formulated with Blanco Noroeste chickpea flour exhibited the highest values of hardness (0.356–0.391 N) through the twelve days. It can be concluded that those custard systems with the highest content of flour presented a very good response as a potential new dairy product. PMID:29463036

  1. Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties.

    PubMed

    López, Débora N; Galante, Micaela; Robson, María; Boeris, Valeria; Spelzini, Darío

    2018-04-01

    An increasing use of vegetable protein is required to support the production of protein-rich foods which can replace animal proteins in the human diet. Amaranth, chia and quinoa seeds contain proteins which have biological and functional properties that provide nutritional benefits due to their reasonably well-balanced aminoacid content. This review analyses these vegetable proteins and focuses on recent research on protein classification and isolation as well as structural characterization by means of fluorescence spectroscopy, surface hydrophobicity and differential scanning calorimetry. Isolation procedures have a profound influence on the structural properties of the proteins and, therefore, on their in vitro digestibility. The present article provides a comprehensive overview of the properties and characterization of these proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Study of Physicochemical Properties of Subcutaneous Fat of the Abdomen and its Implication in Abdominal Obesity

    PubMed Central

    Kumar, Pramod; Kodavoor, Srinivas Aithal; Kotian, Sushma Rama; Yathdaka, Sudhakar Narahari; Nayak, Dayanand; Souza, Anne D; Souza, Antony Sylvan D

    2016-01-01

    Introduction The lower abdominal obesity is more resistant to absorption as compared to that of upper abdomen. Differences in the physicochemical properties of the subcutaneous fat of the upper and lower abdomen may be responsible for this variation. There is paucity of the scientific literature on the physicochemical properties of the subcutaneous fat of abdomen. Aim The present study was undertaken to create a database of physicochemical properties of abdominal subcutaneous fat. Materials and Methods The samples of subcutaneous fat from upper and lower abdomen were collected from 40 fresh autopsied bodies (males 33, females 7). The samples were prepared for physicochemical analysis using organic and inorganic solvents. Various physicochemical properties of the fat samples analysed were surface tension, viscosity, specific gravity, specific conductivity, iodine value and thermal properties. Data was analysed by paired and independent sample t-tests. Results There was a statistically significant difference in all the physicochemical parameters between males and females except surface tension (organic) and surface tension (inorganic) of upper abdominal fat, and surface tension (organic) of lower abdominal fat. In males, viscosity of upper abdominal fat was more compared to that of lower abdomen (both organic and inorganic) unlike the specific conductivity that was higher for the lower abdominal fat as compared to that of the upper abdomen. In females there were statistically significant higher values of surface tension (inorganic) and specific gravity (organic) of the upper abdomen fat as compared to that of lower abdomen. The initial and final weight loss of the lower abdominal fat as indicated by Thermo Gravimetric Analysis was significantly more in males than in female Conclusion The difference in the physicochemical properties of subcutaneous fat between upper and lower abdomen and between males and females could be responsible for the variant behaviour of subcutaneous abdominal fat towards resorption. PMID:27437272

  3. Prediction of Physicochemical Properties of Energetic Materials for Identification of Treatment Technologies for Waste Streams

    DTIC Science & Technology

    2010-11-01

    estimate the pharmacokinetics of potential drugs (Horning and Klamt 2005). QSPR/ QSARs also have potential applications in the fuel science field...group contribution methods, and (2) quantitative structure-property/activity relationships (QSPR/ QSAR ). The group contribution methods are primarily...development of QSPR/ QSARs is the identification of the ap- propriate set of descriptors that allow the desired attribute of the compound to be adequately

  4. Structure, reactivity, and electronic properties of V-doped Co clusters

    NASA Astrophysics Data System (ADS)

    Datta, Soumendu; Kabir, Mukul; Saha-Dasgupta, Tanusri; Mookerjee, Abhijit

    2009-08-01

    Structures and physicochemical properties of V-doped Co13 clusters have been studied in detail using density-functional-theory-based first-principles method. We have found anomalous variation in stability of the doped clusters with increasing V concentration, which has been nicely demonstrated in terms of energetics and electronic properties of the clusters. Our study explains the nonmonotonic variation in reactivity of Co13-mVm clusters toward H2 molecules as reported experimentally [Nonose , J. Phys. Chem. 94, 2744 (1990)]. Moreover, it provides useful insight into the cluster geometry and chemically active sites on the cluster surface, which can help to design better catalytic processes.

  5. Effects of heat-moisture treatment reaction conditions on the physicochemical and structural properties of maize starch: moisture and length of heating.

    PubMed

    Sui, Zhongquan; Yao, Tianming; Zhao, Yue; Ye, Xiaoting; Kong, Xiangli; Ai, Lianzhong

    2015-04-15

    Changes in the properties of normal maize starch (NMS) and waxy maize starch (WMS) after heat-moisture treatment (HMT) under various reaction conditions were investigated. NMS and WMS were adjusted to moisture levels of 20%, 25% and 30% and heated at 100 °C for 2, 4, 8 and 16 h. The results showed that moisture content was the most important factor in determining pasting properties for NMS, whereas the heating length was more important for WMS. Swelling power decreased in NMS but increased in WMS, and while the solubility index decreased for both samples, the changes were largely determined by moisture content. The gelatinisation temperatures of both samples increased with increasing moisture content but remained unchanged with increasing heating length. The Fourier transform infrared (FT-IR) absorbance ratio was affected to different extents by the moisture levels but remained constant with increasing the heating length. The X-ray intensities increased but relative crystallinity decreased to a greater extent with increasing moisture content. This study showed that the levels of moisture content and length of heating had significant impacts on the structural and physicochemical properties of normal and waxy maize starches but to different extents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effects of losartan treatment on the physicochemical properties of diabetic rat bone.

    PubMed

    Donmez, Baris Ozgur; Unal, Mustafa; Ozdemir, Semir; Ozturk, Nihal; Oguz, Nurettin; Akkus, Ozan

    2017-03-01

    Inhibitors of the renin-angiotensin system used to treat several diseases have also been shown to be effective on bone tissue, suggesting that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may reduce fracture risk. The present study investigated the effects of losartan on the physicochemical and biomechanical properties of diabetic rat bone. Losartan (5 mg/kg/day) was administered via oral gavage for 12 weeks. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Whole femurs were tested under tension to evaluate the biomechanical properties of bone. The physicochemical properties of bone were analyzed by Fourier transform infrared spectroscopy. Although losartan did not recover decreases in the BMD of diabetic bone, it recovered the physicochemical (mineral and collagen matrix) properties of diabetic rat bone. Furthermore, losartan also recovered ultimate tensile strength of diabetic rat femurs. Losartan, an angiotensin II type 1 receptor blocker, has a therapeutic effect on the physicochemical properties of diabetic bone resulting in improvement of bone strength at the material level. Therefore, specific inhibition of this pathway at the receptor level shows potential as a therapeutic target for diabetic patients suffering from bone diseases such as osteopenia.

  7. Statistical Analysis of Crystallization Database Links Protein Physico-Chemical Features with Crystallization Mechanisms

    PubMed Central

    Fusco, Diana; Barnum, Timothy J.; Bruno, Andrew E.; Luft, Joseph R.; Snell, Edward H.; Mukherjee, Sayan; Charbonneau, Patrick

    2014-01-01

    X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis. PMID:24988076

  8. Statistical analysis of crystallization database links protein physico-chemical features with crystallization mechanisms.

    PubMed

    Fusco, Diana; Barnum, Timothy J; Bruno, Andrew E; Luft, Joseph R; Snell, Edward H; Mukherjee, Sayan; Charbonneau, Patrick

    2014-01-01

    X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis.

  9. Bio-NCs--the marriage of ultrasmall metal nanoclusters with biomolecules.

    PubMed

    Goswami, Nirmal; Zheng, Kaiyuan; Xie, Jianping

    2014-11-21

    Ultrasmall metal nanoclusters (NCs) have attracted increasing attention due to their fascinating physicochemical properties. Today, functional metal NCs are finding growing acceptance in biomedical applications. To achieve a better performance in biomedical applications, metal NCs can be interfaced with biomolecules, such as proteins, peptides, and DNA, to form a new class of biomolecule-NC composites (or bio-NCs in short), which typically show synergistic or novel physicochemical and physiological properties. This feature article focuses on the recent studies emerging at the interface of metal NCs and biomolecules, where the interactions could impart unique physicochemical properties to the metal NCs, as well as mutually regulate biological functions of the bio-NCs. In this article, we first provide a broad overview of key concepts and developments in the novel biomolecule-directed synthesis of metal NCs. A special focus is placed on the key roles of biomolecules in metal NC synthesis. In the second part, we describe how the encapsulated metal NCs affect the structure and function of biomolecules. Followed by that, we discuss several unique synergistic effects observed in the bio-NCs, and illustrate them with examples highlighting their potential biomedical applications. Continued interdisciplinary efforts are required to build up in-depth knowledge about the interfacial chemistry and biology of bio-NCs, which could further pave their ways toward biomedical applications.

  10. Physicochemical Changes and Resistant-Starch Content of Extruded Cornstarch with and without Storage at Refrigerator Temperatures.

    PubMed

    Neder-Suárez, David; Amaya-Guerra, Carlos A; Quintero-Ramos, Armando; Pérez-Carrillo, Esther; Alanís-Guzmán, María G de J; Báez-González, Juan G; García-Díaz, Carlos L; Núñez-González, María A; Lardizábal-Gutiérrez, Daniel; Jiménez-Castro, Jorge A

    2016-08-15

    Effects of extrusion cooking and low-temperature storage on the physicochemical changes and resistant starch (RS) content in cornstarch were evaluated. The cornstarch was conditioned at 20%-40% moisture contents and extruded in the range 90-130 °C and at screw speeds in the range 200-360 rpm. The extrudates were stored at 4 °C for 120 h and then at room temperature. The water absorption, solubility index, RS content, viscoelastic, thermal, and microstructural properties of the extrudates were evaluated before and after storage. The extrusion temperature and moisture content significantly affected the physicochemical properties of the extrudates before and after storage. The RS content increased with increasing moisture content and extrusion temperature, and the viscoelastic and thermal properties showed related behaviors. Microscopic analysis showed that extrusion cooking damaged the native starch structure, producing gelatinization and retrogradation and forming RS. The starch containing 35% moisture and extruded at 120 °C and 320 rpm produced the most RS (1.13 g/100 g) after to storage at low temperature. Although the RS formation was low, the results suggest that extrusion cooking could be advantageous for RS production and application in the food industry since it is a pollution less, continuous process requiring only a short residence time.

  11. High similarity in physicochemical properties of chitin and chitosan from nymphs and adults of a grasshopper.

    PubMed

    Erdogan, Sevil; Kaya, Murat

    2016-08-01

    This is the first study to explain the differences in the physicochemical properties of chitin and chitosan obtained from the nymphs and adults of Dociostaurus maroccanus using the same method. Fourier transform infrared spectroscopy, thermogravimetric analysis and x-ray diffraction analysis results demonstrated that the chitins from both the adults and nymphs were in the α-form. The chitin contents of the adults (14%) and nymphs (12%) were of the same order of magnitude. The crystalline index values of chitins from the adult and nymph grasshoppers were 71% and 74%, respectively. Thermal stabilities of the chitins and chitosans from adult and nymph grasshoppers were close to each other. Both the adult (7.2kDa) and nymph (5.6kDa) chitosans had low molar masses. Environmental scanning electron microscopy revealed that the surface morphologies of both chitins consisted of nanofibers and nanopores together, and they were very similar to each other. Consequently, it was determined that the physicochemical properties of the chitins and chitosans from adults and nymphs of D. maroccanus were not very different, so it can be hypothesized that the development of the chitin structure in the nymph has almost been completed and the nymph chitin has the same characteristics as the adult. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The physicochemical properties and catalytic performance of carbon-covered alumina for oxidative dehydrogenation of ethylbenzene with CO2

    NASA Astrophysics Data System (ADS)

    Wang, Tehua; Chong, Siying; Wang, Tongtong; Lu, Huiyi; Ji, Min

    2018-01-01

    In order to correlate the physicochemical properties of carbon-covered alumina (CCA) materials with their catalytic performance for oxidative dehydrogenation of ethylbenzene with CO2 (CO2-ODEB), a series of CCA materials with diverse carbon contents (8.7-31.3 wt%) and pyrolysis temperatures (600-800 °C), which were synthesized via an impregnation method followed by pyrolysis, were applied. These catalytic materials were characterized by TGA, N2 physisorption, XRD, Raman spectroscopy and XPS techniques. It was found that the catalytic performance of these CCA materials highly depended on their physicochemical properties, and the optimum CCA catalyst exhibited much better catalytic stability than conventional hydroxyl carbon nanotubes. Below an optimum value of carbon content, the CCA catalyst preserved the main pore characteristics of the Al2O3 support and its catalytic activity increased with the carbon content. Excessive carbon loading resulted in significant textural alterations and thereby decreased both the ethylbenzene conversion and styrene selectivity. On the other hand, high pyrolysis temperature was detrimental to the ordered graphitic structure of the carbon species within the Al2O3 pore. The decreased ordered graphitic degree was found to be associated with the loss of the surface active carbonyl groups, consequently hampering the catalytic efficiency of the CCA catalyst.

  13. Bio-NCs - the marriage of ultrasmall metal nanoclusters with biomolecules

    NASA Astrophysics Data System (ADS)

    Goswami, Nirmal; Zheng, Kaiyuan; Xie, Jianping

    2014-10-01

    Ultrasmall metal nanoclusters (NCs) have attracted increasing attention due to their fascinating physicochemical properties. Today, functional metal NCs are finding growing acceptance in biomedical applications. To achieve a better performance in biomedical applications, metal NCs can be interfaced with biomolecules, such as proteins, peptides, and DNA, to form a new class of biomolecule-NC composites (or bio-NCs in short), which typically show synergistic or novel physicochemical and physiological properties. This feature article focuses on the recent studies emerging at the interface of metal NCs and biomolecules, where the interactions could impart unique physicochemical properties to the metal NCs, as well as mutually regulate biological functions of the bio-NCs. In this article, we first provide a broad overview of key concepts and developments in the novel biomolecule-directed synthesis of metal NCs. A special focus is placed on the key roles of biomolecules in metal NC synthesis. In the second part, we describe how the encapsulated metal NCs affect the structure and function of biomolecules. Followed by that, we discuss several unique synergistic effects observed in the bio-NCs, and illustrate them with examples highlighting their potential biomedical applications. Continued interdisciplinary efforts are required to build up in-depth knowledge about the interfacial chemistry and biology of bio-NCs, which could further pave their ways toward biomedical applications.

  14. Abbott Physicochemical Tiering (APT)--a unified approach to HTS triage.

    PubMed

    Cox, Philip B; Gregg, Robert J; Vasudevan, Anil

    2012-07-15

    The selection of the highest quality chemical matter from high throughput screening (HTS) is the ultimate aim of any triage process. Typically there are many hundreds or thousands of hits capable of modulating a given biological target in HTS with a wide range of physicochemical properties that should be taken into consideration during triage. Given the multitude of physicochemical properties that define drug-like space, a system needs to be in place that allows for a rapid selection of chemical matter based on a prioritized range of these properties. With this goal in mind, we have developed a tool, coined Abbott Physicochemical Tiering (APT) that enables hit prioritization based on ranges of these important physicochemical properties. This tool is now used routinely at Abbott to help prioritize hits out of HTS during the triage process. Herein we describe how this tool was developed and validated using Abbott internal high throughput ADME data (HT-ADME). Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. OPERA: A free and open source QSAR tool for predicting physicochemical properties and environmental fate endpoints

    EPA Science Inventory

    Collecting the chemical structures and data for necessary QSAR modeling is facilitated by available public databases and open data. However, QSAR model performance is dependent on the quality of data and modeling methodology used. This study developed robust QSAR models for physi...

  16. OPERA: A QSAR tool for physicochemical properties and environmental fate predictions (ACS Spring meeting)

    EPA Science Inventory

    The collection of chemical structures and associated experimental data for QSAR modeling is facilitated by the increasing number and size of public databases. However, the performance of QSAR models highly depends on the quality of the data used and the modeling methodology. The ...

  17. PHYSICOCHEMICAL PROPERTIES AS PREDICTORS OF ORGANIC CHEMICAL EFFECTS ON SOIL MICROBIAL RESPIRATION

    EPA Science Inventory

    Structure-activity analysis was used to evaluate the effects of 19 hazardous organic chemicals on microbial respiration in two slightly acidic soils (a Captina silt loam from Roane County Tennessee, and a McLaurin sandy loam from Stone County, Mississippi), both low in organic ca...

  18. Physicochemical properties/descriptors governing the solubility and partitioning of chemicals in water-solvent-gas systems. Part 2. Solubility in 1-octanol.

    PubMed

    Raevsky, O A; Perlovich, G L; Schaper, K-J

    2007-01-01

    On the basis of octanol solubility data (log S(o)) for 218 structurally diverse solid chemicals it was shown that the exclusive consideration of melting points did not provide satisfactory results in the quantitative prediction of this parameter (s = 0.92). The application of HYBOT physicochemical descriptors separately (s = 0.94) and together with melting points (s = 0.70) in the framework of a common regression model also was not successful, although contributions of volume-related and H-bond terms to solubility in octanol were identified. It was proposed that the main reason for such behaviour was the different crystal lattice interaction of different classes of chemicals. Successful calculations of the solubility in octanol of chemicals of interest were performed on the basis of the experimental solubility of structurally/physicochemically/numerically similar nearest neighbours with consideration of their difference in physicochemical parameters (molecular polarisability, H-bond acceptor and donor factors (s = 0.66)) and of these descriptors together with melting point differences (s = 0.38). Good results were obtained for all compounds having nearest neighbours with sufficient similarity, expressed by Tanimoto indexes, and by distances in the scaled 3D descriptor space. Obviously the success of this approach depends on the size of the database.

  19. Influence of succinylation on physicochemical property of yak casein micelles.

    PubMed

    Yang, Min; Yang, Jitao; Zhang, Yuan; Zhang, Weibing

    2016-01-01

    Succinylation is a chemical-modification method that affects the physicochemical characteristics and functional properties of proteins. This study assessed the influence of succinylation on the physicochemical properties of yak casein micelles. The results revealed that surface hydrophobicity indices decreased with succinylation. Additionally, denaturation temperature and denaturation enthalpy decreased with increasing succinylation level, except at 82%. The buffering properties of yak casein micelles were affected by succinylation. It was found that chemical modification contributed to a slight shift of the buffering peak towards a lower pH value and a markedly increase of the maximum buffering values of yak casein micelles at pH 4.5-6.0 and pH < 3. Succinylation increased yak casein micellar hydration and whiteness values. The findings obtained from this study will provide the basic information on the physicochemical properties of native and succinylated yak casein micelles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of the physicochemical properties of gold nanostructures on cellular internalization

    PubMed Central

    Zhang, Jinchao; Wang, Paul C.; Liang, Xing-Jie

    2015-01-01

    Unique physicochemical properties of Au nanomaterials make them potential star materials in biomedical applications. However, we still know a little about the basic problem of what really matters in fabrication of Au nanomaterials which can get into biological systems, especially cells, with high efficiency. An understanding of how the physicochemical properties of Au nanomaterials affect their cell internalization is of significant interest. Studies devoted to clarify the functions of various properties of Au nanostructures such as size, shape and kinds of surface characteristics in cell internalization are under way. These fundamental investigations will give us a foundation for constructing Au nanomaterial-based biomedical devices in the future. In this review, we present the current advances and rationales in study of the relationship between the physicochemical properties of Au nanomaterials and cell uptake. We also provide a perspective on the Au nanomaterial-cell interaction research. PMID:26813673

  1. Assessing Analytical Similarity of Proposed Amgen Biosimilar ABP 501 to Adalimumab.

    PubMed

    Liu, Jennifer; Eris, Tamer; Li, Cynthia; Cao, Shawn; Kuhns, Scott

    2016-08-01

    ABP 501 is being developed as a biosimilar to adalimumab. Comprehensive comparative analytical characterization studies have been conducted and completed. The objective of this study was to assess analytical similarity between ABP 501 and two adalimumab reference products (RPs), licensed by the United States Food and Drug Administration (adalimumab [US]) and authorized by the European Union (adalimumab [EU]), using state-of-the-art analytical methods. Comprehensive analytical characterization incorporating orthogonal analytical techniques was used to compare products. Physicochemical property comparisons comprised the primary structure related to amino acid sequence and post-translational modifications including glycans; higher-order structure; primary biological properties mediated by target and receptor binding; product-related substances and impurities; host-cell impurities; general properties of the finished drug product, including strength and formulation; subvisible and submicron particles and aggregates; and forced thermal degradation. ABP 501 had the same amino acid sequence and similar post-translational modification profiles compared with adalimumab RPs. Primary structure, higher-order structure, and biological activities were similar for the three products. Product-related size and charge variants and aggregate and particle levels were also similar. ABP 501 had very low residual host-cell protein and DNA. The finished ABP 501 drug product has the same strength with regard to protein concentration and fill volume as adalimumab RPs. ABP 501 and the RPs had a similar stability profile both in normal storage and thermal stress conditions. Based on the comprehensive analytical similarity assessment, ABP 501 was found to be similar to adalimumab with respect to physicochemical and biological properties.

  2. Comparative evaluation of physicochemical properties of jatropha curcas seed oil for coolant-lubricant application

    NASA Astrophysics Data System (ADS)

    Murad, Muhamad Nasir; Sharif, Safian; Rahim, Erween Abd.; Abdullah, Rozaini

    2017-09-01

    Increased attention to environmental issues due to industrial activities has forced the authorities raise awareness and implement regulations to reduce the use of mineral oil. Some vegetable oils unexplored or less explored, particularly the non-edible oils such as Jatropha curcas oil (JCO) and others. Physicochemical properties of JCO is compared with others edible oils, synthetic ester and fatty alcohol to obtain a viable alternative in metal cutting fluids. The oil was found to show the suitability of properties for coolant-lubricant applications in term of its physicochemical properties and better in flash point and viscosity value.

  3. Description of recovery method used for curdlan produced by Agrobacterium sp. IFO 13140 and its relation to the morphology and physicochemical and technological properties of the polysaccharide

    PubMed Central

    Mangolim, Camila Sampaio; da Silva, Thamara Thaiane; Fenelon, Vanderson Carvalho; Koga, Luciana Numata; Ferreira, Sabrina Barbosa de Souza; Bruschi, Marcos Luciano; Matioli, Graciette

    2017-01-01

    Curdlan is a linear polysaccharide considered a dietary fiber and with gelation properties. This study evaluated the structure, morphology and the physicochemical and technological properties of curdlan produced by Agrobacterium sp. IFO 13140 recovered by pre-gelation and precipitation methods. Commercial curdlan submitted or otherwise to the pre-gelation process was also evaluated. The data obtained from structural analysis revealed a similarity between the curdlan produced by Agrobacterium sp. IFO 13140 (recovered by both methods) and the commercial curdlans. The results showed that the curdlans evaluated differed significantly in terms of dispersibility and gelation, and only the pre-gelled ones had significant potential for food application, because this method influence on the size of the particles and in the presence of NaCl. In terms of technological properties, the curdlan produced by Agrobacterium sp. IFO 13140 (pre-gelation method) had a greater water and oil holding capacity (64% and 98% greater, respectively) and a greater thickening capacity than the pre-gelled commercial curdlan. The pre-gelled commercial curdlan displayed a greater gelling capacity at 95°C than the others. When applied to food, only the pre-gelled curdlans improved the texture parameters of yogurts and reduced syneresis. The curdlan gels, which are rigid and stable in structure, demonstrated potential for improving the texture of food products, with potential industrial use. PMID:28245244

  4. Description of recovery method used for curdlan produced by Agrobacterium sp. IFO 13140 and its relation to the morphology and physicochemical and technological properties of the polysaccharide.

    PubMed

    Mangolim, Camila Sampaio; Silva, Thamara Thaiane da; Fenelon, Vanderson Carvalho; Koga, Luciana Numata; Ferreira, Sabrina Barbosa de Souza; Bruschi, Marcos Luciano; Matioli, Graciette

    2017-01-01

    Curdlan is a linear polysaccharide considered a dietary fiber and with gelation properties. This study evaluated the structure, morphology and the physicochemical and technological properties of curdlan produced by Agrobacterium sp. IFO 13140 recovered by pre-gelation and precipitation methods. Commercial curdlan submitted or otherwise to the pre-gelation process was also evaluated. The data obtained from structural analysis revealed a similarity between the curdlan produced by Agrobacterium sp. IFO 13140 (recovered by both methods) and the commercial curdlans. The results showed that the curdlans evaluated differed significantly in terms of dispersibility and gelation, and only the pre-gelled ones had significant potential for food application, because this method influence on the size of the particles and in the presence of NaCl. In terms of technological properties, the curdlan produced by Agrobacterium sp. IFO 13140 (pre-gelation method) had a greater water and oil holding capacity (64% and 98% greater, respectively) and a greater thickening capacity than the pre-gelled commercial curdlan. The pre-gelled commercial curdlan displayed a greater gelling capacity at 95°C than the others. When applied to food, only the pre-gelled curdlans improved the texture parameters of yogurts and reduced syneresis. The curdlan gels, which are rigid and stable in structure, demonstrated potential for improving the texture of food products, with potential industrial use.

  5. Pectin-modifying enzymes and pectin-derived materials: applications and impacts.

    PubMed

    Bonnin, Estelle; Garnier, Catherine; Ralet, Marie-Christine

    2014-01-01

    Pectins are complex branched polysaccharides present in primary cell walls. As a distinctive feature, they contain high amount of partly methyl-esterified galacturonic acid and low amount of rhamnose and carry arabinose and galactose as major neutral sugars. Due to their structural complexity, they are modifiable by many different enzymes, including hydrolases, lyases, and esterases. Their peculiar structure is the origin of their physicochemical properties. Among others, their remarkable gelling properties make them a key additive for food industries. Pectin-degrading enzymes and -modifying enzymes may be used in a wide variety of applications to modulate pectin properties or produce pectin derivatives and oligosaccharides with functional as well as nutritional interests. This paper reviews the scientific information available on pectin structure, pectin-modifying enzymes, and the use of enzymes to produce pectin with controlled structure or pectin-derived oligosaccharides, with functional or nutritional interesting properties.

  6. Interspecies quantitative structure-activity relationships (QSARs) for eco-toxicity screening of chemicals: the role of physicochemical properties.

    PubMed

    Furuhama, A; Hasunuma, K; Aoki, Y

    2015-01-01

    In addition to molecular structure profiles, descriptors based on physicochemical properties are useful for explaining the eco-toxicities of chemicals. In a previous study we reported that a criterion based on the difference between the partition coefficient (log POW) and distribution coefficient (log D) values of chemicals enabled us to identify aromatic amines and phenols for which interspecies relationships with strong correlations could be developed for fish-daphnid and algal-daphnid toxicities. The chemicals that met the log D-based criterion were expected to have similar toxicity mechanisms (related to membrane penetration). Here, we investigated the applicability of log D-based criteria to the eco-toxicity of other kinds of chemicals, including aliphatic compounds. At pH 10, use of a log POW - log D > 0 criterion and omission of outliers resulted in the selection of more than 100 chemicals whose acute fish toxicities or algal growth inhibition toxicities were almost equal to their acute daphnid toxicities. The advantage of log D-based criteria is that they allow for simple, rapid screening and prioritizing of chemicals. However, inorganic molecules and chemicals containing certain structural elements cannot be evaluated, because calculated log D values are unavailable.

  7. Process signatures in glatiramer acetate synthesis: structural and functional relationships.

    PubMed

    Campos-García, Víctor R; Herrera-Fernández, Daniel; Espinosa-de la Garza, Carlos E; González, German; Vallejo-Castillo, Luis; Avila, Sandra; Muñoz-García, Leslie; Medina-Rivero, Emilio; Pérez, Néstor O; Gracia-Mora, Isabel; Pérez-Tapia, Sonia Mayra; Salazar-Ceballos, Rodolfo; Pavón, Lenin; Flores-Ortiz, Luis F

    2017-09-21

    Glatiramer Acetate (GA) is an immunomodulatory medicine approved for the treatment of multiple sclerosis, whose mechanisms of action are yet to be fully elucidated. GA is comprised of a complex mixture of polypeptides with different amino acid sequences and structures. The lack of sensible information about physicochemical characteristics of GA has contributed to its comprehensiveness complexity. Consequently, an unambiguous determination of distinctive attributes that define GA is of highest relevance towards dissecting its identity. Herein we conducted a study of characteristic GA heterogeneities throughout its manufacturing process (process signatures), revealing a strong impact of critical process parameters (CPPs) on the reactivity of amino acid precursors; reaction initiation and polymerization velocities; and peptide solubility, susceptibility to hydrolysis, and size-exclusion properties. Further, distinctive GA heterogeneities were correlated to defined immunological and toxicological profiles, revealing that GA possesses a unique repertoire of active constituents (epitopes) responsible of its immunological responses, whose modification lead to altered profiles. This novel approach established CPPs influence on intact GA peptide mixture, whose physicochemical identity cannot longer rely on reduced properties (based on complete or partial GA degradation), providing advanced knowledge on GA structural and functional relationships to ensure a consistent manufacturing of safe and effective products.

  8. Sol-gel route approach and improvisation in physico-chemical, structural, magnetic and electrical properties of BaCox/2Znx/2ZrxFe(12-2x)O19 ferrites

    NASA Astrophysics Data System (ADS)

    Kaur Jassal, Amanpreet; Mudsainiyan, R. K.; Chawla, S. K.; Anu; Bindra Narang, Sukhleen; Pubby, Kunal

    2018-02-01

    The structural and magnetic properties of Zn, Co and Zr cations doped barium hexaferrite [Ba(Znx/2Cox/2)xZrxFe(12-2x)O19] nanoparticles synthesized by sol-gel method have been investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) were employed to investigate the physico-chemical properties of the obtained ferrite samples. XRD studies reveal that the magnetoplumbite structure for all sample (up to x = 0.8) have been formed and the crystallite size of nanoparticles lies in the range of 34-46 nm. At higher dopant concentration, other impurities (α-Fe2O3 and BaFe2O4 etc.) have been observed. Magnetic studies indicate that site occupancy and nature of dopant ions greatly affect the behavior of magnetic properties. The results of VSM and LCR analysis show that magnetic and electrical parameters vary with an increase in dopant concentration. The results of BET surface area of samples indicate that these types of materials could be used for catalytic properties. Dielectric constant, dielectric loss tangent and A.C. conductivity weremeasured using impedance analyzer over wide frequency range 20 Hz-120 MHz. All the three parameters increase significantly with increase in doping. Increase in dielectric constant proposes these materials for fabrication of microwave devices, while increase in dielectric loss tangent proposes these for applications such as attenuator, absorber etc.

  9. Nano-Sized Cyclodextrin-Based Molecularly Imprinted Polymer Adsorbents for Perfluorinated Compounds—A Mini-Review

    PubMed Central

    Karoyo, Abdalla H.; Wilson, Lee D.

    2015-01-01

    Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs) from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive uptake of PFCs using cyclodextrin (CD)-based polymer adsorbents with nano- to micron-sized structural attributes. The relationship between synthesis of adsorbent materials and their structure relate to the overall sorption properties. Hence, the adsorptive uptake properties of CD-based molecularly imprinted polymers (CD-MIPs) are reviewed and compared with conventional MIPs. Further comparison is made with non-imprinted polymers (NIPs) that are based on cross-linking of pre-polymer units such as chitosan with epichlorohydrin in the absence of a molecular template. In general, MIPs offer the advantage of selectivity, chemical tunability, high stability and mechanical strength, ease of regeneration, and overall lower cost compared to NIPs. In particular, CD-MIPs offer the added advantage of possessing multiple binding sites with unique physicochemical properties such as tunable surface properties and morphology that may vary considerably. This mini-review provides a rationale for the design of unique polymer adsorbent materials that employ an intrinsic porogen via incorporation of a macrocyclic compound in the polymer framework to afford adsorbent materials with tunable physicochemical properties and unique nanostructure properties. PMID:28347047

  10. Cold Oxygen Plasma Treatments for the Improvement of the Physicochemical and Biodegradable Properties of Polylactic Acid Films for Food Packaging.

    PubMed

    Song, Ah Young; Oh, Yoon Ah; Roh, Si Hyeon; Kim, Ji Hyeon; Min, Sea C

    2016-01-01

    The effects of cold plasma (CP) treatment on the physicochemical and biodegradable properties of polylactic acid (PLA) films were studied. The PLA films were exposed to CP for 40 min at 900 W and 667 Pa using oxygen as the plasma-forming gas. The tensile, optical, and dynamic mechanical thermal properties, surface morphology, printability, water contact angle, chemical structure, weight change, and biodegradability properties of the films were evaluated during storage for up to 56 d. The tensile and optical properties of the PLA films were not significantly affected by CP treatment (CPT; P > 0.05). The surface roughness and water contact angle of PLA films increased by CPT and further increased during storage for 56 d. The printability of the PLA films increased following CPT and remained stable throughout the storage period. CP-induced hydrophilicity was also sustained during the storage period. The PLA films lost 1.9% of their weight after CPT, but recovered 99.5% of this loss after 14 d in storage. Photodegradation, thermal, and microbial biodegradable properties of the films were significantly improved by CPT (P < 0.05). Accelerated biodegradation of CP-treated PLA sachets with and without cheese was observed in compost. These results demonstrate the potential of CPT for modifying the stiffness, water contact angle, and chemical structure of PLA films and improving the printability and biodegradability of the films for food packaging. © 2015 Institute of Food Technologists®

  11. Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Wei, Yu-Tuo; Pang, Zong-Wen; Du, Li-Qin; Chou, Kuo-Chen

    2009-01-30

    In cooperation with the fragment-based design a new drug design method, the so-called "fragment-based quantitative structure-activity relationship" (FB-QSAR) is proposed. The essence of the new method is that the molecular framework in a family of drug candidates are divided into several fragments according to their substitutes being investigated. The bioactivities of molecules are correlated with the physicochemical properties of the molecular fragments through two sets of coefficients in the linear free energy equations. One coefficient set is for the physicochemical properties and the other for the weight factors of the molecular fragments. Meanwhile, an iterative double least square (IDLS) technique is developed to solve the two sets of coefficients in a training data set alternately and iteratively. The IDLS technique is a feedback procedure with machine learning ability. The standard Two-dimensional quantitative structure-activity relationship (2D-QSAR) is a special case, in the FB-QSAR, when the whole molecule is treated as one entity. The FB-QSAR approach can remarkably enhance the predictive power and provide more structural insights into rational drug design. As an example, the FB-QSAR is applied to build a predictive model of neuraminidase inhibitors for drug development against H5N1 influenza virus. (c) 2008 Wiley Periodicals, Inc.

  12. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme.

    PubMed

    Rasmussen, Kirsten; Rauscher, Hubert; Mech, Agnieszka; Riego Sintes, Juan; Gilliland, Douglas; González, Mar; Kearns, Peter; Moss, Kenneth; Visser, Maaike; Groenewold, Monique; Bleeker, Eric A J

    2018-02-01

    Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be equivalent to those for nanomaterials. However, regulatory agencies lack an authoritative decision framework for nanomaterials that links the relevance of certain physico-chemical endpoints to toxicological effects. This paper investigates various physico-chemical endpoints and available test methods that could be used to produce such a decision framework for nanomaterials. It presents an overview of regulatory relevance and methods used for testing fifteen proposed physico-chemical properties of eleven nanomaterials in the OECD Working Party on Manufactured Nanomaterials' Testing Programme, complemented with methods from literature, and assesses the methods' adequacy and applications limits. Most endpoints are of regulatory relevance, though the specific parameters depend on the nanomaterial and type of assessment. Size (distribution) is the common characteristic of all nanomaterials and is decisive information for classifying a material as a nanomaterial. Shape is an important particle descriptor. The octanol-water partitioning coefficient is undefined for particulate nanomaterials. Methods, including sample preparation, need to be further standardised, and some new methods are needed. The current work of OECD's Test Guidelines Programme regarding physico-chemical properties is highlighted. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents.

    PubMed

    Srichuwong, Sathaporn; Curti, Delphine; Austin, Sean; King, Roberto; Lamothe, Lisa; Gloria-Hernandez, Hugo

    2017-10-15

    Minor grains such as sorghum, millet, quinoa and amaranth can be alternatives to wheat and corn as ingredients for whole grain and gluten-free products. In this study, influences of starch structures and other grain constituents on physicochemical properties and starch digestibility of whole flours made from these grains were investigated. Starches were classified into two groups according to their amylopectin branch chain-length: (i) quinoa, amaranth, wheat (shorter chains); and (ii) sorghum, millet, corn (longer chains). Such amylopectin features and amylose content contributed to the differences in thermal and pasting properties as well as starch digestibility of the flours. Non-starch constituents had additional impacts; proteins delayed starch gelatinization and pasting, especially in sorghum flours, and high levels of soluble fibre retarded starch retrogradation in wheat, quinoa and amaranth flours. Enzymatic hydrolysis of starch was restricted by the presence of associated protein matrix and enzyme inhibitors, but accelerated by endogenous amylolytic enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Supramolecular Cocrystals of Gliclazide: Synthesis, Characterization and Evaluation.

    PubMed

    Chadha, Renu; Rani, Dimpy; Goyal, Parnika

    2017-03-01

    To prepare the supramolecular cocrystals of gliclazide (GL, a BCS class II drug molecule) via mechanochemical route, with the goal of improving physicochemical and biopharmaceutical properties. Two cocrystals of GL with GRAS status coformers, sebacic acid (GL-SB; 1:1) and α-hydroxyacetic acid (GL-HA; 1:1) were screened out using liquid assisted grinding. The prepared cocrystals were characterized using thermal and analytical techniques followed by evaluation of antidiabetic activity and pharmacokinetic parameters. The generation of new, single and pure crystal forms was characterized by DSC and PXRD. The crystal structure determination from PXRD revealed the existence of both cocrystals in triclinic (P-1) crystal system. The hydrogen bonded network, determined by material studio was well supported by shifts in FTIR and SSNMR. Both the new solid forms displayed improved solubility, IDR, antidiabetic activity and pharmacokinetic parameters as compared to GL. The improvement in these physicochemical and biopharmaceutical properties corroborated the fact that the supramolecular cocrystallization may be useful in the development of pharmaceutical crystalline materials with interesting network and properties.

  15. Responses of Bacterial Communities in Arable Soils in a Rice-Wheat Cropping System to Different Fertilizer Regimes and Sampling Times

    PubMed Central

    Zhao, Jun; Ni, Tian; Li, Yong; Xiong, Wu; Ran, Wei; Shen, Biao; Shen, Qirong; Zhang, Ruifu

    2014-01-01

    Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October). All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and bacterial community structure. The combined application of inorganic fertilizer and manure organic-inorganic fertilizer significantly enhanced the bacterial diversity in both seasons. The bacterial communities across all samples were dominated by Proteobacteria, Acidobacteria and Chloroflexi at the phylum level. Permutational multivariate analysis confirmed that both fertilizer treatment and season were significant factors in the variation of the composition of the bacterial community. Hierarchical cluster analysis based on Bray-Curtis distances further revealed that bacterial communities were separated primarily by season. The effect of fertilizer treatment is significant (P = 0.005) and accounts for 7.43% of the total variation in bacterial community. Soil nutrients (e.g., available K, total N, total P and organic matter) rather than pH showed significant correlation with the majority of abundant taxa. In conclusion, both fertilizer treatment and seasonal changes affect soil properties, microbial biomass and bacterial community structure. The application of NPK plus manure organic-inorganic fertilizer may be a sound fertilizer practice for sustainable food production. PMID:24465530

  16. Impact of heating on sensory properties of French Protected Designation of Origin (PDO) blue cheeses. Relationships with physicochemical parameters.

    PubMed

    Bord, Cécile; Guerinon, Delphine; Lebecque, Annick

    2016-07-01

    The aim of this study was to measure the impact of heating on the sensory properties of blue-veined cheeses in order to characterise their sensory properties and to identify their specific sensory typology associated with physicochemical parameters. Sensory profiles were performed on a selection of Protected Designation of Origin (PDO) cheeses representing the four blue-veined cheese categories produced in the Massif Central (Fourme d'Ambert, Fourme de Montbrison, Bleu d'Auvergne and Bleu des Causses). At the same time, physicochemical parameters were measured in these cheeses. The relationship between these two sets of data was investigated. Four types of blue-veined cheeses displayed significantly different behaviour after heating and it is possible to discriminate these cheese categories through specific sensory attributes. Fourme d'Ambert and Bleu d'Auvergne exhibited useful culinary properties: they presented good meltability, stretchability and a weak oiling-off. However, basic tastes (salty, bitter and sour) are also sensory attributes which can distinguish heated blue cheeses. The relationship between the sensory and physicochemical data indicated a correlation suggesting that some of these sensory properties may be explained by certain physicochemical parameters of heated cheeses. © The Author(s) 2015.

  17. Native and Reconstituted Plasma Lipoproteins in Nanomedicine: Physicochemical Determinants of Nanoparticle Structure, Stability, and Metabolism

    PubMed Central

    Pownall, Henry J.; Rosales, Corina; Gillard, Baiba K.; Ferrari, Mauro

    2016-01-01

    Although many acute and chronic diseases are managed via pharmacological means, challenges remain regarding appropriate drug targeting and maintenance of therapeutic levels within target tissues. Advances in nanotechnology will overcome these challenges through the development of lipidic particles, including liposomes, lipoproteins, and reconstituted high-density lipoproteins (rHDL) that are potential carriers of water-soluble, hydrophobic, and amphiphilic molecules. Herein we summarize the properties of human plasma lipoproteins and rHDL, identify the physicochemical determinants of lipid transfer between phospholipid surfaces, and discuss strategies for increasing the plasma half-life of lipoprotein- and liposome-associated molecules. PMID:27826368

  18. TSCA Work Plan Chemical Technical Supplement – Physicochemical Properties and Environmental Fate of the Brominated Phthalates Cluster (BPC) Chemicals

    EPA Pesticide Factsheets

    TSCA Work Plan Chemical Technical Supplement – Physicochemical Properties and Environmental Fate of the Brominated Phthalates Cluster (BPC) Chemicals -- Brominated Phthalates Cluster Flame Retardants.

  19. Understanding the effect of alkyl chains of gemini cations on the physicochemical and cellular properties of polyurethane micelles.

    PubMed

    Pan, Zhicheng; Fang, Danxuan; Song, Yuanqing; Song, Nijia; Ding, Mingming; Li, Jiehua; Luo, Feng; Li, Jianshu; Tan, Hong; Fu, Qiang

    2018-06-06

    Cationic gemini quaternary ammonium (GQA) has been used as a cell internalization promoter to improve the permeability of the cell membrane and enhance the cellular uptake. However, the effect of the alkyl chain length on the cellular properties of nanocarriers has not been elucidated yet. In this study, we developed a series of polyurethane micelles containing GQAs with various alkyl chain lengths. The alteration of the gemini alkyl chain length was found to change the distribution of GQA surfactants in the micellar structure and affect the surface charge exposure, stability, and the protein absorption properties of nanocarriers. Moreover, we also clarified the role of the alkyl chain length in tumor cell internalization and macrophage uptake of polyurethane micelles. This work provides a new understanding on the effect of the GQA alkyl chain length on the physicochemical and biological properties of nanomedicines, and offers guidance on the rational design of effective drug delivery systems where the issue of functional group exposure at the micellar surface should be considered.

  20. The physicochemical properties of the low-temperature ionic liquid silver bromide-1-butyl-3-methylimidazolium bromide

    NASA Astrophysics Data System (ADS)

    Grishina, E. P.; Ramenskaya, L. M.; Pimenova, A. M.

    2009-11-01

    The physicochemical properties of the low-temperature ionic liquid based on 1-butyl-3-methylimidazolium bromide (BMImBr) and silver bromide were studied. Differential scanning calorimetry, Fourier transform IR spectroscopy, densimetry, viscometry, and conductometry measurements were performed to determine the dependences of the parameters under study on the concentration of AgBr. It was shown that the temperature and concentration behavior of the physicochemical properties of BMImBr-AgBr melts characterized the interaction between the system components with the formation of complex particles.

  1. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steshenko, Aleksei, E-mail: steshenko.alexey@gmail.com; Kudyakov, Aleksander; Konusheva, Viktoriya

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significantmore » change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.« less

  2. Dynamic and structural evidence of mesoscopic aggregation in phosphonium ionic liquids

    NASA Astrophysics Data System (ADS)

    Cosby, T.; Vicars, Z.; Heres, M.; Tsunashima, K.; Sangoro, J.

    2018-05-01

    Mesoscopic aggregation in aprotic ionic liquids due to the microphase separation of polar and non-polar components is expected to correlate strongly with the physicochemical properties of ionic liquids and therefore their potential applications. The most commonly cited experimental evidence of such aggregation is the observation of a low-q pre-peak in the x-ray and neutron scattering profiles, attributed to the polarity alternation of polar and apolar phases. In this work, a homologous series of phosphonium ionic liquids with the bis(trifluoromethylsulfonyl)imide anion and systematically varying alkyl chain lengths on the phosphonium cation are investigated by small and wide-angle x-ray scattering, dynamic-mechanical spectroscopy, and broadband dielectric spectroscopy. A comparison of the real space correlation distance corresponding to the pre-peak and the presence or absence of the slow sub-α dielectric relaxation previously associated with the motion of mesoscale aggregates reveals a disruption of mesoscale aggregates with increasing symmetry of the quaternary phosphonium cation. These findings contribute to the broader understanding of the interplay of molecular structures, mesoscale aggregation, and physicochemical properties in aprotic ionic liquids.

  3. Insights into the structural and physicochemical properties of small granular starches from two hydrophyte duckweeds, Spirodela oligorrhiza and Lemna minor.

    PubMed

    Chen, Lei; Yu, Changjiang; Ma, Yubin; Xu, Hua; Wang, Shumin; Wang, Yu; Liu, Xingxun; Zhou, Gongke

    2016-11-29

    The structure and physicochemical properties of starches from two hydrophyte duckweeds, Spirodela oligorrhiza and Lemna minor, were investigated and compared in this study. The amylose content and average size of starches were determined to be 20.85%, 4.70 μm and 27.77%, 6.17 μm for Spirodela oligorrhiza and Lemna minor, respectively. The average chain length of two duckweed starches was measured to be around DP 28. The chain length distribution was observed to be greatly different from other reported starches for the high proportion of long chains (DP ≥ 37) over 50%. Wide-angle X-ray diffraction profiles of the two starch samples displayed typical B-type diffraction pattern. The gelatinization enthalpy-changes (ΔH gel ) of two starch samples was about 10.40 J/g for two duckweed starches. The present results suggested the potential utilization of small granular starches from duckweed in functional foods and dietary supplement products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution.

    PubMed

    Zheng, Yajun; Li, Yan

    2018-08-15

    Effects of cellulase hydrolysis, acid treatment and particle size distribution on the structure, physicochemical and functional properties of coconut cake dietary fiber (DCCDF) were studied. Results showed that both the cellulase hydrolysis and acid treatment contributed to the structural modification of DCCDF as evident from XRD, FT-IR and SEM analysis. Moreover, the cellulase hydrolysis enhanced soluble carbohydrate content, water holding capacity (WHC) and swelling capacity (WSC), α-amylase inhibition activity (α-AAIR), glucose dialysis retardation index (GDRI) and cation-exchange capacity (CEC) of DCCDF; but it had undesirable effects on colour, oil holding capacity (OHC) and emulsifying capacity (EC). On other hand, acid treatment decreased the WHC, WSC and GDRI, but improved the colour, CEC, OHC and emulsion stability of DCCDF. Furthermore, the WHC, WSC and EC of DCCDF increased as the particle size reduced from 250 to 167 μm, while the GDRI, OHC, α-AAIR and emulsion stability decreased with decreasing particle size. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Chain conformational and physicochemical properties of fucoidans from sea cucumber.

    PubMed

    Xu, Xiaoqi; Xue, Changhu; Chang, Yaoguang; Wang, Jun; Jiang, Kunhao

    2016-11-05

    Although fucoidans from sea cucumber (SC-FUCs) have been proven as potential bioactive polysaccharides and functional food ingridents, their chain conformation and physicochemical properties were still poorly understood. This study investigated the chain conformation of fucoidans from sea cucumber Acaudina molpadioides (Am-FUC), Isostichopus badionotus (Ib-FUC) and Apostichopus japonicus (Aj-FUC), of which primary structure has been recently clarified. Chain conformation parameters demonstrated that studied SC-FUCs adopted random coil conformation in 150mM NaCl solution (pH 7.4). Based on the worm-like cylinder model and atomic force microscopy, the chain stiffness of SC-FUCs was further evaluated as Am-FUC≈Ib-FUC>Aj-FUC. It was suggested that the existence of branch structure increased the chain flexibility, while sulfated pattern exerted limited influence. SC-FUCs demonstrated shear-thinning rheological behavior and negative charge. Am-FUC possessed a higher thermostability than Ib-FUC and Aj-FUC. These results have important implications for understanding the molecular characteristics of SC-FUCs, which could facilitate their further application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. PTFE-nanocomposites structure and wear-resistance changing in various methods of structural modification

    NASA Astrophysics Data System (ADS)

    Mashkov, Yu K.; Ruban, A. S.; Rogachev, E. A.; Chemisenko, O. V.

    2018-01-01

    Conditions of polymer materials usage containing nanoelements as modifiers significantly affect the requirements for their physic-mechanical and tribological properties. However, the mechanisms of nanoparticles effect to the polymers tribotechnical properties have not been studied enough. The article aim is to analyze the results of studying polytetrafluoroethylene modified with cryptocrystalline graphite and silicon dioxide and to determine the effectiveness of the modification methods used and methods for further improving filled PTFE mechanical and tribotechnical properties. The effect of modifiers to PCM supramolecular structure was analyzed with SEM methods. The results of modifying the PCM samples surface by depositing a copper film with ion-vacuum deposition methods and changing the structural-phase composition and tribological characteristics are considered. The findings make possible to characterize the physicochemical processes under frictional interaction in metal polymer tribosystems.

  7. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    PubMed

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  8. Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives.

    PubMed

    Rokob, Tibor András; Srnec, Martin; Rulíšek, Lubomír

    2012-05-21

    In the last decade, we have witnessed substantial progress in the development of quantum chemical methodologies. Simultaneously, robust solvation models and various combined quantum and molecular mechanical (QM/MM) approaches have become an integral part of quantum chemical programs. Along with the steady growth of computer power and, more importantly, the dramatic increase of the computer performance to price ratio, this has led to a situation where computational chemistry, when exercised with the proper amount of diligence and expertise, reproduces, predicts, and complements the experimental data. In this perspective, we review some of the latest achievements in the field of theoretical (quantum) bioinorganic chemistry, concentrating mostly on accurate calculations of the spectroscopic and physico-chemical properties of open-shell bioinorganic systems by wave-function (ab initio) and DFT methods. In our opinion, the one-to-one mapping between the calculated properties and individual molecular structures represents a major advantage of quantum chemical modelling since this type of information is very difficult to obtain experimentally. Once (and only once) the physico-chemical, thermodynamic and spectroscopic properties of complex bioinorganic systems are quantitatively reproduced by theoretical calculations may we consider the outcome of theoretical modelling, such as reaction profiles and the various decompositions of the calculated parameters into individual spatial or physical contributions, to be reliable. In an ideal situation, agreement between theory and experiment may imply that the practical problem at hand, such as the reaction mechanism of the studied metalloprotein, can be considered as essentially solved.

  9. Impact of the Soak and the Malt on the Physicochemical Properties of the Sorghum Starches

    PubMed Central

    Claver, Irakoze Pierre; Zhang, Haihua; Li, Qin; Zhu, Kexue; Zhou, Huiming

    2010-01-01

    Starches were isolated from soaked and malted sorghum and studied to understand their physicochemical and functional properties. The swelling power (SP) and the water solubility index (WSI) of both starches were nearly similar at temperatures below 50 °C, but at more than 50 °C, the starch isolated from malted sorghum showed lower SP and high WSI than those isolated from raw and soaked sorghum. The pasting properties of starches determined by rapid visco-analyzer (RVA) showed that malted sorghum starch had a lower viscosity peak value (86 BU/RVU) than raw sorghum starch (454 BU/RVU). For both sorghum, X-ray diffractograms exhibited an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity ranged from 9.62 to 15.50%. Differential scanning calorimetry (DSC) revealed that raw sorghum starch showed an endotherm with a peak temperature (Tp) at 78.06 °C and gelatinization enthalpies of 2.83 J/g whereas five-day malted sorghum starch had a Tp at 47.22 °C and gelatinization enthalpies of 2.06 J/g. Storage modulus (G′) and loss modulus (G″) of all starch suspensions increased steeply to a maximum at 70 °C and then decreased with continuous heating. The structural analysis of malted sorghum starch showed porosity on the granule’s surface susceptible to the amylolysis. The results showed that physicochemical and functional properties of sorghum starches are influenced by soaking and malting methods. PMID:21152287

  10. Use of β-glucan from spent brewer's yeast as a thickener in skimmed yogurt: Physicochemical, textural, and structural properties related to sensory perception.

    PubMed

    Raikos, Vassilios; Grant, Shannon B; Hayes, Helen; Ranawana, Viren

    2018-04-25

    Powdered β-glucan extracted from brewer's yeast (Yestimun, Leiber GmbH, Bramsche, Germany) was incorporated into skimmed-milk yogurt at varying concentrations (0.2-0.8% wt/wt) to investigate its potential application as a thickener. The effect of β-glucan fortification on the nutritional profile, microstructure, physicochemical properties, and texture of freshly prepared yogurts was investigated. Sensory evaluation was also conducted and was correlated with instrumental analysis. The addition of Yestimun significantly reduced the fermentation time of the yogurt mix from 4 h to 3 h. Scanning electron microscopy revealed that β-glucan particles formed small spherical clusters within the yogurt matrix. The majority of the physicochemical properties (syneresis, viscosity, color, and titratable acidity) remained unaffected by the incorporation of Yestimun in the recipe. Textural properties showed a gradual increment with increasing β-glucan concentration. Hardness, total work done, adhesive force, and adhesiveness increased by 19.27, 23.3, 21.53, and 20.76%, respectively, when using the highest amount of Yestimun powder. Sensory analysis (n = 40) indicated that fortifying yogurt with Yestimun at 0.8% (wt/wt) concentration may affect overall acceptance ratings, which was attributed to adverse flavor and aftertaste effects. However, the overall liking score of the yogurt (5.0/9.0) shows potential for commercialization of the product. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Relationship between performance deterioration of a polyamide reverse osmosis membrane used in a seawater desalination plant and changes in its physicochemical properties.

    PubMed

    Suzuki, Tasuma; Tanaka, Ryohei; Tahara, Marina; Isamu, Yuya; Niinae, Masakazu; Lin, Lin; Wang, Jingbo; Luh, Jeanne; Coronell, Orlando

    2016-09-01

    While it is known that the performance of reverse osmosis membranes is dependent on their physicochemical properties, the existing literature studying membranes used in treatment facilities generally focuses on foulant layers or performance changes due to fouling, not on the performance and physicochemical changes that occur to the membranes themselves. In this study, the performance and physicochemical properties of a polyamide reverse osmosis membrane used for three years in a seawater desalination plant were compared to those of a corresponding unused membrane. The relationship between performance changes during long-term use and changes in physicochemical properties was evaluated. The results showed that membrane performance deterioration (i.e., reduced water flux, reduced contaminant rejection, and increased fouling propensity) occurred as a result of membrane use in the desalination facility, and that the main physicochemical changes responsible for performance deterioration were reduction in PVA coating coverage and bromine uptake by polyamide. The latter was likely promoted by oxidant residual in the membrane feed water. Our findings indicate that the optimization of membrane materials and processes towards maximizing the stability of the PVA coating and ensuring complete removal of oxidants in feed waters would minimize membrane performance deterioration in water purification facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Physicochemical characterization of mineral (iron/zinc) bound caseinate and their mineral uptake in Caco-2 cells.

    PubMed

    Shilpashree, B G; Arora, Sumit; Kapila, Suman; Sharma, Vivek

    2018-08-15

    Milk proteins (especially caseins) are widely accepted as good vehicle for the delivery of various bioactive compounds including minerals. Succinylation is one of the most acceptable chemical modification techniques to enhance the mineral binding ability of caseins. Addition of minerals to succinylated proteins may alter their physicochemical and biochemical properties. Physicochemical characteristics of succinylated sodium caseinate (S.NaCN)-mineral (iron/zinc) complexes were elucidated. Chromatographic behaviour and fluorescence intensity confirmed the structural modification of S.NaCN upon binding with minerals. The bound mineral from protein complexes showed significantly higher (P < 0.05) in vitro bioavailability (mineral uptake) than mineral salts in Caco-2 cells. Also, iron bound S.NaCN showed higher cellular ferritin formation than iron in its free form. These mineral bound protein complexes with improved bioavailability could safely replace inorganic fortificants in various functional food formulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. NANOSILVER MOVEMENT THROUGH BIOLOGICAL BARRIERS RELATES TO PHYSICOCHEMICAL PROPERTIES

    EPA Science Inventory

    Linking the physicochemical (PC) properties of engineered nanomaterials (NM) to their biological activity is critical for identifying their (toxic) mode of action, and developing appropriate and effective risk assessment guidelines. Particle surface charge (zeta potential), surfa...

  14. Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides.

    PubMed

    Bhonsle, Jayendra B; Venugopal, Divakaramenon; Huddler, Donald P; Magill, Alan J; Hicks, Rickey P

    2007-12-27

    In our laboratory, a series of antimicrobial peptides have been developed, where the resulting 3D-physicochemical properties are controlled by the placement of amino acids with well-defined properties (hydrophobicity, charge density, electrostatic potential, and so on) at specific locations along the peptide backbone. These peptides exhibited different in vitro activity against Staphylococcus aureus (SA) and Mycobacterium ranae (MR) bacteria. We hypothesized that the differences in the biological activity is a direct manifestation of different physicochemical interactions that occur between the peptides and the cell membranes of the bacteria. 3D-QSAR analysis has shown that, within this series, specific physicochemical properties are responsible for antibacterial activity and selectivity. There are five physicochemical properties specific to the SA QSAR model, while five properties are specific to the MR QSAR model. These results support the hypothesis that, for any particular AMP, organism selectivity and potency are controlled by the chemical composition of the target cell membrane.

  15. Physicochemical Property Guidelines for Modern Agrochemicals.

    PubMed

    Zhang, Yu; Lorsbach, Beth; Castetter, Scott; Lambert, William T; Kister, Jeremy; Wang, Nick X; Klittich, Carla; Roth, Joshua; Sparks, Thomas C; Loso, Mike R

    2018-04-17

    The relentless need for the discovery and development of new agrochemicals continues due to driving forces such as loss of existing products through the development of resistance, the necessity for products with more favorable environmental and toxicological profiles, shifting pest spectra, and the changing agricultural needs and practices of the farming community. These new challenges underscore the demand for novel, high quality starting points to accelerate the discovery of new agrochemicals that address market challenges. This article discusses the efforts to identify the optimum ranges of physicochemical properties of agrochemicals through analysis of modern commercial products. Specifically, we reviewed literature studies examining physicochemical property effects and analyzed the properties typical of successful fungicides, herbicides, and insecticides (chewing and sap-feeding pests). From the analysis, a new set of physicochemical property guidelines for each discipline, as well as building block class, are proposed. These new guidelines should significantly aid in the discovery of next generation agrochemicals. This article is protected by copyright. All rights reserved.

  16. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting.

    PubMed

    Liu, Ling; Wang, Shuqi; Guo, Xiaoping; Zhao, Tingning; Zhang, Bolin

    2018-03-01

    A comprehensive characterization of the bacterial diversity associated to thermophilic stages of green waste composting was achieved. In this study, eight different treatments (T1-T8) and three replicated lab-scale green waste composting were carried out to compare the effect of the cellulase (i.e. 0, 2%), microbial inoculum (i.e. 0, 2 and 4%) and particle size (i.e. 2 and 5 mm) on bacterial community structure. Physicochemical properties and bacterial communities of T1-T8 composts were observed, and the bacterial structure and diversity were examined by high-throughput sequencing via a MiSeq platform. The results showed that the most abundant phyla among the treatments were the Firmicutes, Chloroflexi and Proteobacteria. The shannon index and non-metric multidimensional scaling (NMDS) showed higher bacterial abundance and diversity at the metaphase of composting. Comparing with 5-mm treatments, particle size of 2-mm had a richer diversity of bacterial communities. The addition of cellulase and a microbial inoculum could promote the fermentation temperature, reduce the compost pH and C/N ratio and result in higher GI index. The humic substance (HS) and humic acid (HA) contents for 2-mm particle size treatments were higher than those of 5-mm treatments. Canonical correspondence analysis suggested that differences in bacterial abundance and diversity significantly correlated with HA, E 4 /E 6 and temperature, and the relationship between bacterial diversity and environmental parameters was affected by composting stages. Based on these results, the application of cellulase to promote green waste composting was feasible, and particle size was identified as a potential control of composting physicochemical properties and bacterial diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Microwave Assisted Synthesis, Physicochemical, Photophysical, Single Crystal X-ray and DFT Studies of Novel Push-Pull Chromophores.

    PubMed

    Khan, Salman A; Asiri, Abdullah M; Basisi, Hadi Mussa; Arshad, Muhammad Nadeem; Sharma, Kamlesh

    2015-11-01

    Two push-pull chromophores were synthesized by knoevenagel condensation under microwave irradiation. The structure of synthesized chromophores were established by spectroscopic (FT-IR, (1)H NMR, (13)C NMR, EI-MS) and elemental analysis. Structure of the chromophores was further conformed by X-ray crystallographic. UV-Vis and fluorescence spectroscopy measurements provided that chromophores were good absorbent and fluorescent properties. Fluorescence polarity studies demonstrated that chromophores were sensitive to the polarity of the microenvironment provided by different solvents. Physicochemical parameters, including singlet absorption, extinction coefficient, stokes shift, oscillator strength, dipole moment and flurescence quantum yield were investigated in order to explore the analytical potential of the synthesized chromophores. In addition, the total energy, frontier molecular orbitals, hardness, electron affinity, ionization energy, electrostatic potential map were also studied computationally by using density functional theoretical method.

  18. Prescribed fires effects on physico-chemical properties and quantity of runoff and soil erosion in a Mediterranean forest

    NASA Astrophysics Data System (ADS)

    Esteban Lucas-Borja, Manuel; Plaza Alvaréz, Pedro Antonio; Sagra, Javier; Alfaro Sánchez, Raquel; Moya, Daniel; Ferrandiz Gotor, Pablo; De las Heras Ibañez, Jorge

    2017-04-01

    Wildfires have an important influence in forest ecosystems. Contrary to high severity fire, which may have negative impacts on the ecosystems, low severity induce small changes on soil properties. Thus and in order to reduce fire risk, low-severity prescribed fires have been widely used as a fuel reduction tool and silvicultural treatment in Mediterranean forest ecosystems. However, fire may alter microsite conditions and little is known about the impact of prescribed burning on the physico-chemical properties of runoff. In this study, we compared the effects of prescribed burning on physico-chemical properties and quantity of runoff and soil erosion during twelve months after a low severity prescribed fire applied in twelve 16 m2 plot (6 burned plots and 6 control plots used for comparison) set up in the Lezuza forest (Albacete, central-eastern Spain). Physico-chemical properties and quantity of runoff and soil losses were monitored after each rainfall event (five rainfall events in total). Also, different forest stand characteristics (slope, tree density, basal area and shrub/herbal cover) affecting each plot were measured. Results showed that forest stand characteristics were very similar in all used plots. Also, physico-chemical runoff properties were highly modified after the prescribed fire, increasing water pH, carbonates, bicarbonates, total dissolved solids and organic matter content dissolved in water. Electrical conductivity, calcium, sodium, chloride and magnesium were not affected by prescribed fire. Soil losses were highly related to precipitation intensity and tree interception. Tree intercepted the rainfall and significantly reduced soil losses and also runoff quantity. In conclusion and after the first six-month experiment, the influence of prescribed fires on physico-chemical runoff properties should be taken into account for developing proper prescribed burnings guidelines.

  19. Integral physicochemical properties of reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)

    NASA Astrophysics Data System (ADS)

    Fedyaeva, O. A.; Shubenkova, E. G.; Poshelyuzhnaya, E. G.; Lutaeva, I. A.

    2016-08-01

    The effect the degree of hydration has on optical and electrophysical properties of water/AOT/ n-hexane system is studied. It is found that AOT reverse micelles form aggregates whose dimensions grow along with the degree of hydration and temperature. Aggregation enhances their electrical conductivity and shifts the UV spectrum of AOT reverse emulsions to the red region. Four states of water are found in the structure of AOT reverse micelles.

  20. Investigation of Physico-Chemical Properties of Sand-Lime Products Modified of Diabase Aggregate and Chalcedonite Meal

    NASA Astrophysics Data System (ADS)

    Dachowski, Ryszard; Komisarczyk, Katarzyna

    2017-10-01

    In the era of rapid development in the construction industry, particular attention is focused on harmless and natural materials. Some of the best materials for building masonry walls are sand-lime products. Silicates are obtained from a mixture of quartz, sand and a small amount of water. They emerge as a result of the hydrothermal treatment conducted under high pressure and at a temperature of app. 203 °C. Silicates were modified of different kinds of aggregates, glass or plastics, and the content of dry ingredients was changed because of this fact. The paper describes the studies where the combination of diabase aggregate and chalcedonite meal was used. Microstructure of the products was analyzed with the use of mercury intrusion porosimetry, SEM and XRD methods. Variable content of chalcedonite meal changes the internal structure and the physico-chemical properties.

  1. Profiling the Serum Protein Corona of Fibrillar Human Islet Amyloid Polypeptide.

    PubMed

    Pilkington, Emily H; Gustafsson, Ove J R; Xing, Yanting; Hernandez-Fernaud, Juan; Zampronio, Cleidi; Kakinen, Aleksandr; Faridi, Ava; Ding, Feng; Wilson, Paul; Ke, Pu Chun; Davis, Thomas P

    2018-05-16

    Amyloids may be regarded as native nanomaterials that form in the presence of complex protein mixtures. By drawing an analogy with the physicochemical properties of nanoparticles in biological fluids, we hypothesized that amyloids should form a protein corona in vivo that would imbue the underlying amyloid with a modified biological identity. To explore this hypothesis, we characterized the protein corona of human islet amyloid polypeptide (IAPP) fibrils in fetal bovine serum using two complementary methodologies developed herein: quartz crystal microbalance and "centrifugal capture", coupled with nanoliquid chromatography tandem mass spectroscopy. Clear evidence for a significant protein corona was obtained. No trends were identified for amyloid corona proteins based on their physicochemical properties, whereas strong binding with IAPP fibrils occurred for linear proteins or multidomain proteins with structural plasticity. Proteomic analysis identified amyloid-enriched proteins that are known to play significant roles in mediating cellular machinery and processing, potentially leading to pathological outcomes and therapeutic targets.

  2. Effect of food processing on the physicochemical properties of dietary fibre.

    PubMed

    Ozyurt, Vasfiye Hazal; Ötles, Semih

    2016-01-01

    Products derived from the manufacturing or processing of plant based foods: cereals, fruits, vegetables, as well as algae, are sources of abundant dietary fibre. Diets high in dietary fibre have been associated with the reduced risk of cardiovascular disease, diabetes, hypertension, obesity, and gastrointestinal disorders. These fibre-rich products and byproducts can also fortify foods, increase their dietary fibre content and result in healthy products, low in calories, cholesterol and fat. Traditionally, consumers have chosen foods such as whole grains, fruits and vegetables as sources of dietary fibre. Recently, food manufacturers have responded to consumer demand for foods with a higher fibre content by developing products in which highfibre ingredients are used. Different food processing methods also increase the dietary fiber content of food. Moreover, its chemical and physical properties may be affected by food processing. Some of them might even improve the functionality of fibre. Therefore, they may also be applied as functional ingredients to improve physical properties like the physical and structural properties of hydration, oil-holding capacity, viscosity. This study was conducted to examine the effect of different food processing methods on the physicochemical properties of dietary fibre.

  3. Effect of rice variety on the physicochemical properties of the modified rice powders and their derived mucoadhesive gels.

    PubMed

    Okonogi, Siriporn; Kaewpinta, Adchareeya; Khongkhunthian, Sakornrat; Yotsawimonwat, Songwut

    2015-06-01

    In the present study; the glutinous Niaw Sanpatong (NSP) and Niaw Koko-6 (NKK), and the non-glutinous Jasmine (JM) and Saohai (SH) were chemically modified. The difference of these rice varieties on the physicochemical characteristics of the modified rice powders and the properties of the derived gels were evaluated. X-ray diffractometer was used for crystalline structure investigation of the rice powders and gels. A parallel plate rheometer was used to measure the rheological property of the gels. It was found that the non-glutinous varieties produced gels with higher mucoadhesive properties than the glutinous rice. Rheological behavior of JM and SH gels was pseudoplastic without yield value whereas that of NSP and NKK gels was plastic with the yield values of 1077.4 ± 185.9 and 536.1 ± 45.8 millipascals-second (mPas), respectively. These different properties are considered to be due to the amylose content in different rice variety. The results suggest that the non-glutinous rice varieties with high amylose content are the most suitable for preparing gels as local delivery systems via the mucosal membrane.

  4. Physical aspects of dexibuprofen and racemic ibuprofen.

    PubMed

    Leising, G; Resel, R; Stelzer, F; Tasch, S; Lanziner, A; Hantich, G

    1996-12-01

    This article presents a comparative study of ibuprofen materials in their solid state. Ibuprofen crystallizes into two different structures for the S(+) enantiomer (dexibuprofen) and racemic ibuprofen. The crystal structure of ibuprofen, its optical absorption and photoluminescence, and the thermodynamic results (melting point and heat of fusion) are discussed. From these physicochemical properties, the authors conclude that dexibuprofen, which is the most active species pharmaceutically, and racemic ibuprofen are inherently different solid-state materials.

  5. PREDICTION OF PHYSICOCHEMICAL PROCESSES FOR ENVIRONMENTAL MODELING BY COMPUTER

    EPA Science Inventory

    The major differences among behavioral profiles of molecules in the environment are attributable to their physicochemical properties. For most chemicals, only fragmentary knowledge exists about those properties that determine each compound's environmental fate. A chemical-by-ch...

  6. Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties

    USDA-ARS?s Scientific Manuscript database

    This book summarizes the science and technology of new generation high energy and insensitive explosives. The objective is to provide the professionals with comprehensive information on synthesis, physicochemical, and detonation properties of the explosives. Potential technologies applicable for tre...

  7. Macromolecular metal carboxylates

    NASA Astrophysics Data System (ADS)

    Dzhardimalieva, G. I.; Pomogailo, A. D.

    2008-03-01

    Data on the synthesis and physicochemical studies of salts of mono- or dibasic unsaturated carboxylic acids and unsaturated metal oxo-carboxylates are generalised and described systematically. The structures and properties of the COO group in various compounds and characteristic features of the structures of carboxylate complexes are analysed. The main routes and kinetics of polymerisation transformations of unsaturated metal carboxylates are considered. The attention is focused on the effect of the metal ion on the monomer reactivity and the polymer morphology and structure. The possibility of stereochemical control of radical polymerisation of unsaturated metal carboxylates is demonstrated. The electronic, magnetic, optical, absorption and thermal properties of metal (co)polymers and nanocomposites and their main applications are considered.

  8. Influence of calcium-induced droplet heteroaggregation on the physicochemical properties of oppositely charged lactoferrin coated lutein droplets and whey protein isolate-coated DHA droplets.

    PubMed

    Li, Xin; Wang, Xu; Xu, Duoxia; Cao, Yanping; Wang, Shaojia; Wang, Bei; Wang, Chengtao; Sun, Baoguo

    2017-08-01

    The influence of calcium-induced droplet heteroaggregation on the formation and physicochemical stability of mixed lutein and DHA emulsions was studied. Heteroaggregation was induced by mixing oppositely charged lactoferrin (LF)-coated lutein and whey protein isolate (WPI)-coated DHA emulsions with different CaCl 2 concentrations at pH 6.0. The droplet size, zeta-potential, transmission-physical stability and microstructure behavior (CLSM and Cryo-SEM) of single-protein emulsions and mixed emulsions were measured as a function of different CaCl 2 concentrations. Lutein degradation and DHA oxidation by measurement of lipid hydroperoxides and thiobarbituric acid reactive substances were determined during storage. The physical stability of the mixed emulsions could be modulated by controlling CaCl 2 concentrations. Microstructure behavior indicated that a mixed emulsion with 30 mM CaCl 2 promoted more droplets to form a special three-dimensional network and microcluster structures. The chemical stability of the mixed lutein and DHA emulsions was obviously enhanced by the addition of 30 mM CaCl 2 . The decreased surface areas of the DHA and lutein droplets and the physical barrier of the network of heteroaggregates against transition metals and free radicals could mainly explain the improvement in chemical stability. Calcium-induced droplet aggregation may be useful for creating specific food structures that lead to desirable physicochemical properties of multiple functional components.

  9. Fabrication of novel dental nanocomposites and investigation their physicochemical and biological properties

    NASA Astrophysics Data System (ADS)

    Jaymand, Mehdi; lotfi, Mehrdad; Abbasian, Mojtaba

    2018-03-01

    This article evaluates physicochemical, mechanical, and biological properties of a series of novel dental nanocomposites that fabricated from multifunctional methacrylate-based dental monomers, triethyleneglycol dimethacrylate (TEGDMA) monomer, and modified silica nanoparticles (SiO2 NPs). The antibacterial activities of the monomers were investigated against lactobacillus plantarum by standard agar disk diffusion method. The cytotoxicity characteristics of the monomers and fabricated nanocomposites were evaluated by MTT and trypan blue cell viability tests, respectively against NIH3T3 cell line. In addition, the mechanical properties, as well as physicochemical characteristics including water sorption, sol fraction, and double bond conversion were also investigated. According to the results, the formulated nanocomposites have potential to apply as dental nanocomposites mainly due to their acceptable physicochemical, mechanical and biological characteristics.

  10. Protein structure and evolution: are they constrained globally by a principle derived from information theory?

    PubMed

    Hatton, Leslie; Warr, Gregory

    2015-01-01

    That the physicochemical properties of amino acids constrain the structure, function and evolution of proteins is not in doubt. However, principles derived from information theory may also set bounds on the structure (and thus also the evolution) of proteins. Here we analyze the global properties of the full set of proteins in release 13-11 of the SwissProt database, showing by experimental test of predictions from information theory that their collective structure exhibits properties that are consistent with their being guided by a conservation principle. This principle (Conservation of Information) defines the global properties of systems composed of discrete components each of which is in turn assembled from discrete smaller pieces. In the system of proteins, each protein is a component, and each protein is assembled from amino acids. Central to this principle is the inter-relationship of the unique amino acid count and total length of a protein and its implications for both average protein length and occurrence of proteins with specific unique amino acid counts. The unique amino acid count is simply the number of distinct amino acids (including those that are post-translationally modified) that occur in a protein, and is independent of the number of times that the particular amino acid occurs in the sequence. Conservation of Information does not operate at the local level (it is independent of the physicochemical properties of the amino acids) where the influences of natural selection are manifest in the variety of protein structure and function that is well understood. Rather, this analysis implies that Conservation of Information would define the global bounds within which the whole system of proteins is constrained; thus it appears to be acting to constrain evolution at a level different from natural selection, a conclusion that appears counter-intuitive but is supported by the studies described herein.

  11. Physico-Chemical and Structural Interpretation of Discrete Derivative Indices on N-Tuples Atoms

    PubMed Central

    Martínez-Santiago, Oscar; Marrero-Ponce, Yovani; Barigye, Stephen J.; Le Thi Thu, Huong; Torres, F. Javier; Zambrano, Cesar H.; Muñiz Olite, Jorge L.; Cruz-Monteagudo, Maykel; Vivas-Reyes, Ricardo; Vázquez Infante, Liliana; Artiles Martínez, Luis M.

    2016-01-01

    This report examines the interpretation of the Graph Derivative Indices (GDIs) from three different perspectives (i.e., in structural, steric and electronic terms). It is found that the individual vertex frequencies may be expressed in terms of the geometrical and electronic reactivity of the atoms and bonds, respectively. On the other hand, it is demonstrated that the GDIs are sensitive to progressive structural modifications in terms of: size, ramifications, electronic richness, conjugation effects and molecular symmetry. Moreover, it is observed that the GDIs quantify the interaction capacity among molecules and codify information on the activation entropy. A structure property relationship study reveals that there exists a direct correspondence between the individual frequencies of atoms and Hückel’s Free Valence, as well as between the atomic GDIs and the chemical shift in NMR, which collectively validates the theory that these indices codify steric and electronic information of the atoms in a molecule. Taking in consideration the regularity and coherence found in experiments performed with the GDIs, it is possible to say that GDIs possess plausible interpretation in structural and physicochemical terms. PMID:27240357

  12. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.

    PubMed

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-10-01

    Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were better explained using both soil physicochemical test values and bacterial community structure data than using soil tests alone. Pursuing a better understanding of bacterial community composition and how it is affected by farming practices is a promising avenue for increasing our ability to predict the impact of management practices on important soil functions. Copyright © 2016. Published by Elsevier B.V.

  13. Predictive Models of Nanotoxicity: Relationship of Physicochemical Properties to Particle Movement Through Biological Barriers

    EPA Science Inventory

    Understanding the linkage between the physicochemical (PC) properties of nanoparticles (NP) and their activation of biological systems is poorly understood, yet fundamental to predicting nanotoxicity, idenitifying mode of actions and developing appropriate and effective regul...

  14. Engineering of Fc Fragments with Optimized Physicochemical Properties Implying Improvement of Clinical Potentials for Fc-Based Therapeutics.

    PubMed

    Yang, Chunpeng; Gao, Xinyu; Gong, Rui

    2017-01-01

    Therapeutic monoclonal antibodies and Fc-fusion proteins are successfully used in treatment of various diseases mainly including cancer, immune disease, and viral infection, which belong to the Fc-based therapeutics. In recent years, engineered Fc-derived antibody domains have also shown potential for Fc-based therapeutics. To increase the druggability of Fc-based therapeutic candidates, many efforts have been made in optimizing physicochemical properties and functions mediated by Fc fragment. The desired result is that we can simultaneously obtain Fc variants with increased physicochemical properties in vitro and capacity of mediating appropriate functions in vivo . However, changes of physicochemical properties of Fc may result in alternation of Fc-mediated functions and vice versa , which leads to undesired outcomes for further development of Fc-based therapeutics. Therefore, whether modified Fc fragments are suitable for achievement of expected clinical results or not needs to be seriously considered. Now, this question comes to be noticed and should be figured out to make better translation from the results of laboratory into clinical applications. In this review, we summarize different strategies on engineering physicochemical properties of Fc, and preliminarily elucidate the relationships between modified Fc in vitro and the subsequent therapeutic influence in vivo .

  15. Engineering of Fc Fragments with Optimized Physicochemical Properties Implying Improvement of Clinical Potentials for Fc-Based Therapeutics

    PubMed Central

    Yang, Chunpeng; Gao, Xinyu; Gong, Rui

    2018-01-01

    Therapeutic monoclonal antibodies and Fc-fusion proteins are successfully used in treatment of various diseases mainly including cancer, immune disease, and viral infection, which belong to the Fc-based therapeutics. In recent years, engineered Fc-derived antibody domains have also shown potential for Fc-based therapeutics. To increase the druggability of Fc-based therapeutic candidates, many efforts have been made in optimizing physicochemical properties and functions mediated by Fc fragment. The desired result is that we can simultaneously obtain Fc variants with increased physicochemical properties in vitro and capacity of mediating appropriate functions in vivo. However, changes of physicochemical properties of Fc may result in alternation of Fc-mediated functions and vice versa, which leads to undesired outcomes for further development of Fc-based therapeutics. Therefore, whether modified Fc fragments are suitable for achievement of expected clinical results or not needs to be seriously considered. Now, this question comes to be noticed and should be figured out to make better translation from the results of laboratory into clinical applications. In this review, we summarize different strategies on engineering physicochemical properties of Fc, and preliminarily elucidate the relationships between modified Fc in vitro and the subsequent therapeutic influence in vivo. PMID:29375551

  16. Effects of excipients on the tensile strength, surface properties and free volume of Klucel® free films of pharmaceutical importance

    NASA Astrophysics Data System (ADS)

    Gottnek, Mihály; Süvegh, Károly; Pintye-Hódi, Klára; Regdon, Géza

    2013-08-01

    The physicochemical properties of polymers planned to be applied as mucoadhesive films were studied. Two types of Klucel® hydroxypropylcellulose (LF and MF) were used as film-forming polymers. Hydroxypropylcellulose was incorporated in 2 w/w% with glycerol and xylitol as excipients and lidocaine base as an active ingredient at 5, 10 or 15 w/w% of the mass of the film-forming polymer. The free volume changes of the films were investigated by positron annihilation lifetime spectroscopy, the mechanical properties of the samples were measured with a tensile strength tester and contact angles were determined to assess the surface properties of the films. It was found that the Klucel® MF films had better physicochemical properties than those of the LF films. Klucel® MF as a film-forming polymer with lidocaine base and both excipients at 5 w/w% exhibited physicochemical properties and good workability. The excipients proved to exert strong effects on the physicochemical properties of the tested systems and it is very important to study them intensively in preformulation studies in the pharmaceutical technology in order to utilise their benefits and to avoid any disadvantageous effects.

  17. Visualization of physico-chemical properties and microbial distribution in soil and root microenvironments

    NASA Astrophysics Data System (ADS)

    Eickhorst, Thilo; Schmidt, Hannes

    2016-04-01

    Plant root development is influenced by soil properties and environmental factors. In turn plant roots can also change the physico-chemical conditions in soil resulting in gradients between roots and the root-free bulk soil. By releasing a variety of substances roots facilitate microbial activities in their direct vicinity, the rhizosphere. The related microorganisms are relevant for various ecosystem functions in the root-soil interface such as nutrient cycling. It is therefore important to study the impact and dynamics of microorganisms associated to different compartments in root-soil interfaces on a biologically meaningful micro-scale. The analysis of microorganisms in their habitats requires microscopic observations of the respective microenvironment. This can be obtained by preserving the complex soil structure including the root system by resin impregnation resulting in high quality thin sections. The observation of such sections via fluorescence microscopy, SEM-EDS, and Nano-SIMS will be highlighted in this presentation. In addition, we will discuss the combination of this methodological approach with other imaging techniques such as planar optodes or non-invasive 3D X-ray CT to reveal the entire spatial structure and arrangement of soil particles and roots. When combining the preservation of soil structure via resin impregnation with 16S rRNA targeted fluorescence in situ hybridization (FISH) single microbial cells can be visualized, localized, and quantified in the undisturbed soil matrix including the root-soil interfaces. The simultaneous use of multiple oligonucleotide probes thereby provides information on the spatial distribution of microorganisms belonging to different phylogenetic groups. Results will be shown for paddy soils, where management induced physico-chemical dynamics (flooding and drying) as well as resulting microbial dynamics were visualized via correlative microscopy in resin impregnated samples.

  18. Evaluation of Enzymatically Modified Soy Protein Isolate Film Forming Solution and Film at Different Manufacturing Conditions.

    PubMed

    Mohammad Zadeh, Elham; O'Keefe, Sean F; Kim, Young-Teck; Cho, Jin-Hun

    2018-04-01

    The effects of transglutaminase on soy protein isolate (SPI) film forming solution and films were investigated by rheological behavior and physicochemical properties based on different manufacturing conditions (enzyme treatments, enzyme incubation times, and protein denaturation temperatures). Enzymatic crosslinking reaction and changes in molecular weight distribution were confirmed by viscosity measurement and SDS-PAGE, respectively, compared to 2 controls: the nonenzyme treated and the deactivated enzyme treated. Films treated with both the enzyme and the deactivated enzyme showed significant increase in tensile strength (TS), percent elongation (%E), and initial contact angle of films compared to the nonenzyme control film due to the bulk stabilizers in the commercial enzyme. Water absorption property, protein solubility, Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopy revealed that enzyme treated SPI film matrix in the molecular structure level, resulted in the changes in physicochemical properties. Based on our observation, the enzymatic treatment at appropriate conditions is a practical and feasible way to control the physical properties of protein based biopolymeric film for many different scientific and industrial areas. Enzymes can make bridges selectively among different amino acids in the structure of protein matrix. Therefore, protein network is changed after enzyme treatment. The behavior of biopolymeric materials is dependent on the network structure to be suitable in different applications such as bioplastics applied in food and pharmaceutical products. In the current research, transglutaminase, as an enzyme, applied in soy protein matrix in different types of forms, activated and deactivated, and different preparation conditions to investigate its effects on different properties of the new bioplastic film. © 2018 Institute of Food Technologists®.

  19. [Chemical constituents of Pileostegia viburnoides var. glabrescens].

    PubMed

    Zou, Ju-ying; Chen, Sheng-huang; Li, Qin-wen; Ou, Yang-wen; Chen, Han-jun; Wang, Wei

    2012-05-01

    To study the chemical constituents of Pileostegia viburnoides var. glabrescens. The compounds were isolated and purified by various techniques. Their structures were determined by physicochemical properties and spectral analysis. Five compounds were isolated and identified as friedelin (1), beta-sitosterol (2), umbelliferone (3), daucosterol (4) and skimmin (5). All the compounds were isolated from this genus for the first time.

  20. Invasive Plants Rapidly Reshape Soil Properties in a Grassland Ecosystem.

    PubMed

    Gibbons, Sean M; Lekberg, Ylva; Mummey, Daniel L; Sangwan, Naseer; Ramsey, Philip W; Gilbert, Jack A

    2017-01-01

    Plant invasions often reduce native plant diversity and increase net primary productivity. Invaded soils appear to differ from surrounding soils in ways that impede restoration of diverse native plant communities. We hypothesize that invader-mediated shifts in edaphic properties reproducibly alter soil microbial community structure and function. Here, we take a holistic approach, characterizing plant, prokaryotic, and fungal communities and soil physicochemical properties in field sites, invasion gradients, and experimental plots for three invasive plant species that cooccur in the Rocky Mountain West. Each invader had a unique impact on soil physicochemical properties. We found that invasions drove shifts in the abundances of specific microbial taxa, while overall belowground community structure and functional potential were fairly constant. Forb invaders were generally enriched in copiotrophic bacteria with higher 16S rRNA gene copy numbers and showed greater microbial carbohydrate and nitrogen metabolic potential. Older invasions had stronger effects on abiotic soil properties, indicative of multiyear successions. Overall, we show that plant invasions are idiosyncratic in their impact on soils and are directly responsible for driving reproducible shifts in the soil environment over multiyear time scales. IMPORTANCE In this study, we show how invasive plant species drive rapid shifts in the soil environment from surrounding native communities. Each of the three plant invaders had different but consistent effects on soils. Thus, there does not appear to be a one-size-fits-all strategy for how plant invaders alter grassland soil environments. This work represents a crucial step toward understanding how invaders might be able to prevent or impair native reestablishment by changing soil biotic and abiotic properties.

  1. Self-Motion Depending on the Physicochemical Properties of Esters as the Driving Force

    ERIC Educational Resources Information Center

    Nakata, Satoshi; Matsuo, Kyoko; Kirisaka, Junko

    2007-01-01

    The self-motion of an ester boat is investigated depending on the physicochemical properties of the surface-active substance. The results show that the ester boat moves towards the higher surface tension generating as the driving force.

  2. Rational selection of structurally diverse natural product scaffolds with favorable ADME properties for drug discovery.

    PubMed

    Samiulla, D S; Vaidyanathan, V V; Arun, P C; Balan, G; Blaze, M; Bondre, S; Chandrasekhar, G; Gadakh, A; Kumar, R; Kharvi, G; Kim, H O; Kumar, S; Malikayil, J A; Moger, M; Mone, M K; Nagarjuna, P; Ogbu, C; Pendhalkar, D; Rao, A V S Raja; Rao, G Venkateshwar; Sarma, V K; Shaik, S; Sharma, G V R; Singh, S; Sreedhar, C; Sonawane, R; Timmanna, U; Hardy, L W

    2005-01-01

    Natural product analogs are significant sources for therapeutic agents. To capitalize efficiently on the effective features of naturally occurring substances, a natural product-based library production platform has been devised at Aurigene for drug lead discovery. This approach combines the attractive biological and physicochemical properties of natural product scaffolds, provided by eons of natural selection, with the chemical diversity available from parallel synthetic methods. Virtual property analysis, using computational methods described here, guides the selection of a set of natural product scaffolds that are both structurally diverse and likely to have favorable pharmacokinetic properties. The experimental characterization of several in vitro ADME properties of twenty of these scaffolds, and of a small set of designed congeners based upon one scaffold, is also described. These data confirm that most of the scaffolds and the designed library members have properties favorable to their utilization for creating libraries of lead-like molecules.

  3. Self-organization of multifunctional surfaces--the fingerprints of light on a complex system.

    PubMed

    Reinhardt, Hendrik; Kim, Hee-Cheol; Pietzonka, Clemens; Kruempelmann, Julia; Harbrecht, Bernd; Roling, Bernhard; Hampp, Norbert

    2013-06-25

    Nanocomposite patterns and nanotemplates are generated by a single-step bottom-up concept that introduces laser-induced periodic surface structures (LIPSS) as a tool for site-specific reaction control in multicomponent systems. Periodic intensity fluctuations of this photothermal stimulus inflict spatial-selective reorganizations, dewetting scenarios and phase segregations, thus creating regular patterns of anisotropic physicochemical properties that feature attractive optical, electrical, magnetic, and catalytic properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Benefits of statistical molecular design, covariance analysis, and reference models in QSAR: a case study on acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Andersson, C. David; Hillgren, J. Mikael; Lindgren, Cecilia; Qian, Weixing; Akfur, Christine; Berg, Lotta; Ekström, Fredrik; Linusson, Anna

    2015-03-01

    Scientific disciplines such as medicinal- and environmental chemistry, pharmacology, and toxicology deal with the questions related to the effects small organic compounds exhort on biological targets and the compounds' physicochemical properties responsible for these effects. A common strategy in this endeavor is to establish structure-activity relationships (SARs). The aim of this work was to illustrate benefits of performing a statistical molecular design (SMD) and proper statistical analysis of the molecules' properties before SAR and quantitative structure-activity relationship (QSAR) analysis. Our SMD followed by synthesis yielded a set of inhibitors of the enzyme acetylcholinesterase (AChE) that had very few inherent dependencies between the substructures in the molecules. If such dependencies exist, they cause severe errors in SAR interpretation and predictions by QSAR-models, and leave a set of molecules less suitable for future decision-making. In our study, SAR- and QSAR models could show which molecular sub-structures and physicochemical features that were advantageous for the AChE inhibition. Finally, the QSAR model was used for the prediction of the inhibition of AChE by an external prediction set of molecules. The accuracy of these predictions was asserted by statistical significance tests and by comparisons to simple but relevant reference models.

  5. The Hydric Effect in Inorganic Nanomaterials for Nanoelectronics and Energy Applications.

    PubMed

    Sun, Xu; Guo, Yuqiao; Wu, Changzheng; Xie, Yi

    2015-07-08

    Protons, as one of the world's smallest ions, are able to trigger the charge effect without obvious lattice expansion inside inorganic materials, offering a unique and important test-bed for controlling their diverse functionalities. Arising from the high chemical reactivity of hydrogen (easily losing an electron) with various main group anions (easily accepting a proton), the hydric effect provides a convenient and environmentally benign route to bring about fascinating new physicochemical properties, as well as to create new inorganic structures based on the "old lattice" without dramatically destroying the pristine structure, covering most inorganic materials. Moreover, hydrogen atoms tend to bond with anions or to produce intrinsic defects, both of which are expected to inject extra electrons into lattice framework, promising advances in control of bandgap, spin behavior, and carrier concentration, which determine functionality for wide applications. In this review article, recently developed effective hydric strategies are highlighted, which include the conventional hydric reaction under high temperature or room temperature, proton irradiation or hydrogen plasma treatment, and gate-electrolyte-driven adsorption or doping. The diverse physicochemical properties brought by the hydric effect via modulation of the intrinsic electronic structure are also summarized, finding wide applications in nanoelectronics, energy applications, and catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. In vitro digestibility and physicochemical properties of milled rice.

    PubMed

    Dhital, Sushil; Dabit, Laura; Zhang, Bin; Flanagan, Bernadine; Shrestha, Ashok K

    2015-04-01

    Rice is a staple diet as well as a major ingredient in many processed foods. The physicochemical and supra-molecular structure of eight rice varieties with amylose content from 9% to 19% were studied to elucidate the factors responsible for variation in enzymatic digestibility of raw and cooked rice. Parboiled rice had a digestion rate coefficient almost 4.5 times higher than the least digestible Low GI rice. The rate coefficient was found to be independent of helical structure and long range molecular order, possibly attributed to the effect of rice flour architecture. Strong swelling and pasting behaviour and lower gelatinisation temperature were linked with apparently higher in vitro digestibility but the relationship was statistically insignificant. It is concluded that the enzymatic susceptibility of rice flours are independent of supra-molecular structure and are most likely controlled by external factors not limited to particle size, presence of intact cell wall and other non-starch polymers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.

    PubMed

    Ma, Xiao H; Jia, Jia; Zhu, Feng; Xue, Ying; Li, Ze R; Chen, Yu Z

    2009-05-01

    Machine learning methods have been explored as ligand-based virtual screening tools for facilitating drug lead discovery. These methods predict compounds of specific pharmacodynamic, pharmacokinetic or toxicological properties based on their structure-derived structural and physicochemical properties. Increasing attention has been directed at these methods because of their capability in predicting compounds of diverse structures and complex structure-activity relationships without requiring the knowledge of target 3D structure. This article reviews current progresses in using machine learning methods for virtual screening of pharmacodynamically active compounds from large compound libraries, and analyzes and compares the reported performances of machine learning tools with those of structure-based and other ligand-based (such as pharmacophore and clustering) virtual screening methods. The feasibility to improve the performance of machine learning methods in screening large libraries is discussed.

  8. Using Theoretical Descriptors in Structural Activity Relationships: 4. Molecular Orbital Basicity and Electrostatic Basicity

    DTIC Science & Technology

    1988-11-01

    rates.6 The Hammet equation , also called the Linear Free Energy Relationship (LFER) because of the relationship of the Gibb’s Free Energy to the... equations for numerous biological and physicochemical properties. Linear Solvation Enery Relationship (LSER), a sub-set of QSAR have been used by...originates from thermodynamics, where Hammet recognized the relationship of structure to the Gibb’s Free Energy, and ultimately to equilibria and reaction

  9. Electronic structure and pair potential energy analysis of 4-n-methoxy-4′-cyanobiphenyl: A nematic liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Dipendra, E-mail: d-11sharma@rediffmail.com; Tiwari, S. N., E-mail: sntiwari123@rediffmail.com; Dwivedi, M. K., E-mail: dwivedi-ji@gmail.com

    2016-05-06

    Electronic structure properties of 4-n-methoxy-4′-cyanobiphenyl, a pure nematic liquid crystal have been examined using an ab‒initio, HF/6‒31G(d,p) technique with GAMESS program. Conformational and charge distribution analysis have been carried out. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the liquid crystal molecule have been calculated. Further, stacking, side by side and end to end interactions between a molecular pair have been evaluated. Results have been used to elucidate the physico-chemical and liquid crystalline properties of the system.

  10. Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure.

    PubMed

    Adamová, Gabriela; Gardas, Ramesh L; Nieuwenhuyzen, Mark; Puga, Alberto V; Rebelo, Luís Paulo N; Robertson, Allan J; Seddon, Kenneth R

    2012-07-21

    A series of alkyltributylphosphonium chloride ionic liquids, prepared from tributylphosphine and the respective 1-chloroalkane, C(n)H(2n+1)Cl (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14), is reported. This work is a continuation of an extended series of tetraalkylphosphonium ionic liquids, where the focus is on the variability of n and its impact on the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosity data were interpreted using QPSR and group contribution methods and the crystal structure of propyl(tributyl)phosphonium chloride is detailed.

  11. Physicochemical properties of betaine monohydrate-carboxylic acid mixtures

    NASA Astrophysics Data System (ADS)

    Zahrina, I.; Nasikin, M.; Mulia, K.

    2018-05-01

    Green solvents are widely used to minimize environmental problems associated with the use of volatile organic solvents in many industries. DES are new green solvents in recent. The physicochemical properties of DES can be varied by properly combining of salts with different hydrogen bond donors. The objective of this work is to investigate the effect of varying molar ratios on the physicochemical properties of betaine monohydrate-carboxylic acid (i.e,. propionic or acetic acid) mixtures. Properties of mixtures were measured at 40°C. The viscosity, polarity scale (ENR), density, pH, and water content tend to decrease with the decrease in a molar ratio of betaine monohydrate to acid. Conversely, the ionic conductivity was increased. The physicochemical properties of these mixtures depend on the hydrogen bonding interactions between betaine, water and acid molecules. Betaine monohydratecarboxylic acid mixtures have wide range of polarity, low viscosity, high ionic conductivity, and density higher than 1 g·cm-3 that make them fit for numerous various applications. Additionally, due to these mixtures have acidic pH, it should be properly selected of metal type to minimize corrosion problems in industrial application.

  12. A comparative study of the antihyaluronidase, antiurease, antioxidant, antimicrobial and physicochemical properties of different unifloral degrees of chestnut (Castanea sativa Mill.) honeys.

    PubMed

    Kolayli, Sevgi; Can, Zehra; Yildiz, Oktay; Sahin, Huseyin; Karaoglu, Sengul Alpay

    2016-01-01

    This study was planned to investigate some physicochemical and anti-inflammatory, antioxidant, antimicrobial properties of three different degrees of unifloral characters of chestnut honeys. Antihyaluronidase, antiurease and antimicrobial activities were evaluated as anti-inflammatory characteristics. Total phenolic contents, flavonoids, tannins, phenolic profiles, ferric-reducing antioxidant power (FRAP), scavenging activities of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS + ) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals were evaluated as antioxidant properties. Color, optical rotation, conductivity, moisture, pH and ash content were evaluated as physicochemical parameters, and some sugars content, prolin, diastase, HMF and minerals (Na, K, Ca, P, Fe, Cu and Zn) were evaluated as chemical and biochemical parameters. All studied physicochemical and biological active properties were changed in line with the unifloral character of the chestnut honeys. A higher unifloral character was found associated with greater apitherapeutic capacity of the honey, as well as biological active compounds.

  13. Preparation and Physicochemical Properties of Vinblastine Microparticles by Supercritical Antisolvent Process

    PubMed Central

    Zhang, Xiaonan; Zhao, Xiuhua; Zu, Yuangang; Chen, Xiaoqiang; Lu, Qi; Ma, Yuliang; Yang, Lei

    2012-01-01

    The objective of the study was to prepare vinblastine microparticles by supercritical antisolvent process using N-methyl-2-pyrrolidone as solvent and carbon dioxide as antisolvent and evaluate its physicochemical properties. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during the supercritical antisolvent process, were investigated. Particles with a mean particle size of 121 ± 5.3 nm were obtained under the optimized process conditions (precipitation temperature 60 °C, precipitation pressure 25 MPa, vinblastine concentration 2.50 mg/mL and vinblastine solution flow rate 6.7 mL/min). The vinblastine was characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, mass spectrometry and dissolution test. It was concluded that physicochemical properties of crystalline vinblastine could be improved by physical modification, such as particle size reduction and generation of amorphous state using the supercritical antisolvent process. Furthermore, the supercritical antisolvent process was a powerful methodology for improving the physicochemical properties of vinblastine. PMID:23202916

  14. Physicochemical properties and oral bioavailability of ursolic acid nanoparticles using supercritical anti-solvent (SAS) process.

    PubMed

    Yang, Lei; Sun, Zhen; Zu, Yuangang; Zhao, Chunjian; Sun, Xiaowei; Zhang, Zhonghua; Zhang, Lin

    2012-05-01

    The objective of the study was to prepare ursolic acid (UA) nanoparticles using the supercritical anti-solvent (SAS) process and evaluate its physicochemical properties and oral bioavailability. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during SAS process, were investigated. Particles with mean particle size ranging from 139.2±19.7 to 1039.8±65.2nm were obtained by varying the process parameters. The UA was characterised by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, thermal gravimetric analysis, specific surface area, dissolution test and bioavailability test. It was concluded that physicochemical properties and bioavailability of crystalline UA could be improved by physical modification, such as particle size reduction and generation of amorphous state using SAS process. Further, SAS process was a powerful methodology for improving the physicochemical properties and bioavailability of UA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Physico-chemical characterization of products from vacuum oil under delayed coking process by infrared spectroscopy and chemometrics methods

    NASA Astrophysics Data System (ADS)

    Meléndez, L. V.; Cabanzo, R.; Mejía-Ospino, E.; Guzmán, A.

    2016-02-01

    Eight vacuum residues and their delayed coking liquids products from Colombian crude were study by infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and principal component analysis (PCA). For the samples the structural parameters of aromaticity factor (fa), alifaticity (A2500-3100cm-1), aromatic condensation degree (GCA), length of aliphatic chains (LCA) and aliphatic chain length associated with aromatic (LACAR) were determined through the development of a methodology, which includes the previous processing of spectroscopy data, identifying the regions in the IR spectra of greatest variance using PCA and molecules patterns. The parameters were compared with the results obtained from proton magnetic resonance (1H-NMR) and 13C-NMR. The results showed the influence and correlation of structural parameters with some physicochemical properties such as API gravity, weight percent sulphur (% S) and Conradson carbon content (% CCR)

  16. An investigation on the physicochemical properties of the nanostructured [(4-X)PMAT][N(CN)2] ion pairs as energetic and tunable aryl alkyl amino tetrazolium based ionic liquids

    NASA Astrophysics Data System (ADS)

    Khalili, Behzad; Rimaz, Mehdi

    2017-06-01

    In this study the different class of tunable and high nitrogen content ionic liquids termed TAMATILs (Tunable Aryl Methyl Amino Tetrazolium based Ionic Liquids) were designed. The physicochemical properties of the nanostructured TAMATILs composed of para substituted phenyl methyl amino tetrazolium cations [(4-X)PMAT]+ (X = H, Me, OCH3, OH, NH2, NO2, F, CN, CHO, CF3, COMe and CO2Me) and dicyanimide anion [N(CN)2]- were fully investigated using M06-2X functional in conjunction with the 6-311++G(2d,2p) basis set. For all of the studied nanostructured ILs the structural parameters, interaction energy, cation's enthalpy of formation, natural charges, charge transfer values and topological properties were calculated and discussed. The substituent effect on the interaction energy and physicochemical properties also is taking into account. The results showed that the strength of interaction has a linear correlation with electron content of the phenyl ring in a way the substituents with electron withdrawing effects lead to make more stable ion pairs with higher interaction energies. Some of the main physical properties of ILs such as surface tension, melting point, critical-point temperature, electrochemical stability and conductivity are discussed and estimated for studying ion pairs using quantum chemical computationally obtained thermochemical data. Finally the enthalpy and Gibbs free energy of formation for twelve nanostructured individual cations with the general formula of [(4-X)PMAT]+ (X = 4-H, 4-Me, 4-OMe, 4-OH, 4-NH2, 4-NO2, 4-F, 4-CN, 4-CHO, 4-CF3, 4-COMe and 4-CO2Me) are calculated.

  17. Variation of physicochemical properties of drinking water treatment residuals and Phoslock(®) induced by fulvic acid adsorption: Implication for lake restoration.

    PubMed

    Wang, Changhui; Jiang, He-Long; Xu, Huacheng; Yin, Hongbin

    2016-01-01

    The use of phosphorus (P) inactivating agents to reduce internal P loading from sediment for lake restoration has attracted increasing attention. Reasonably, the physicochemical properties of P inactivating agents may vary with the interference of various environmental factors, leading to the change of control effectiveness and risks. In this study, the effect of fulvic acid (FA) adsorption on the properties of two agents, drinking water treatment residuals (DWTRs) and Phoslock®, was investigated. The results showed that after adsorption, there was little change for the main structures of DWTRs and Phoslock®, but the thermostability of Phoslock®, as well as the particle size and settleability of the two agents decreased. The specific surface area and pore volume of DWTRs also decreased, while those of Phoslock® increased. Further analysis indicated that aluminum and iron in DWTRs were stable during FA adsorption, but a substantial increase of lanthanum release from Phoslock® was observed, in particular at first (P < 0.01). Moreover, the P immobilization capability of DWTRs had little change after FA adsorption, while the capability of Phoslock® after FA adsorption decreased in solutions (P < 0.001) and sediments (P < 0.1); interestingly, from the view of engineering application, the performance of Phoslock® was not substantially affected. Overall, each P inactivating agent had its own particular responses of the physicochemical properties to environment factors, and detailed investigations on the applicability of each agent were essential before practical application.

  18. Physicochemical and in vitro antioxidant properties of pectin extracted from hot pepper (Capsicum annuum L. var. acuminatum (Fingerh.)) residues with hydrochloric and sulfuric acids.

    PubMed

    Xu, Honggao; Tai, Kedong; Wei, Tong; Yuan, Fang; Gao, Yanxiang

    2017-11-01

    Transformation of hot pepper residues to value-added products with concomitant benefits on environmental pollution would be of great value to capsicum oleoresin manufacturers. Pectin, a soluble dietary fiber with multiple functions, from hot pepper residues was investigated in this study. The extraction of hot pepper pectin using hydrochloric acid was first optimized using response surface methodology (RSM). The most efficient parameters for maximum hot pepper pectin yield (14.63%, dry basis) were a pH of 1.0, a temperature of 90 °C, an extraction time of 2 h and a liquid-to-solid ratio of 20 L g -1 . The pectin was mainly composed of uronic acids, and the major neutral sugars were galactose and glucose. The structure of hot pepper pectin was characterized by homogalacturonan and rhamnogalacturonan I elements. The physicochemical properties of hot pepper pectin extracted by sulfuric acid and hydrochloric acid were further investigated. The content of protein and degree of esterification in hot pepper pectin extracted with sulfuric acid solution (SP) were higher (P < 0.05) than those in that extracted with hydrochloric acid solution (HP), while the mean molecular weight of SP was lower than that of HP. Compared with HP, SP exhibited higher viscosity and better emulsifying property. Based on the yield and physicochemical properties of hot pepper pectin, hot pepper residues would be a new source to obtain pectin, and SP would be more preferred than HP. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Cyclodextrin Inclusion Complex to Improve Physicochemical Properties of Herbicide Bentazon: Exploring Better Formulations

    PubMed Central

    Yáñez, Claudia; Cañete-Rosales, Paulina; Castillo, Juan Pablo; Catalán, Nicole; Undabeytia, Tomás; Morillo, Esmeralda

    2012-01-01

    The knowledge of the host-guest complexes using cyclodextrins (CDs) has prompted an increase in the development of new formulations. The capacity of these organic host structures of including guest within their hydrophobic cavities, improves physicochemical properties of the guest. In the case of pesticides, several inclusion complexes with cyclodextrins have been reported. However, in order to explore rationally new pesticide formulations, it is essential to know the effect of cyclodextrins on the properties of guest molecules. In this study, the inclusion complexes of bentazon (Btz) with native βCD and two derivatives, 2-hydroxypropyl-β-cyclodextrin (HPCD) and sulfobutylether-β-cyclodextrin (SBECD), were prepared by two methods: kneading and freeze-drying, and their characterization was investigated with different analytical techniques including Fourier transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), X-ray diffractometry (XRD) and differential pulse voltammetry (DPV). All these approaches indicate that Btz forms inclusion complexes with CDs in solution and in solid state, with a stoichiometry of 1∶1, although some of them are obtained in mixtures with free Btz. The calculated association constant of the Btz/HPCD complex by DPV was 244±19 M−1 being an intermediate value compared with those obtained with βCD and SBECD. The use of CDs significantly increases Btz photostability, and depending on the CDs, decreases the surface tension. The results indicated that bentazon forms inclusion complexes with CDs showing improved physicochemical properties compared to free bentazon indicating that CDs may serve as excipient in herbicide formulations. PMID:22952577

  20. A Short Review of the Generation of Molecular Descriptors and Their Applications in Quantitative Structure Property/Activity Relationships.

    PubMed

    Sahoo, Sagarika; Adhikari, Chandana; Kuanar, Minati; Mishra, Bijay K

    2016-01-01

    Synthesis of organic compounds with specific biological activity or physicochemical characteristics needs a thorough analysis of the enumerable data set obtained from literature. Quantitative structure property/activity relationships have made it simple by predicting the structure of the compound with any optimized activity. For that there is a paramount data set of molecular descriptors (MD). This review is a survey on the generation of the molecular descriptors and its probable applications in QSP/AR. Literatures have been collected from a wide class of research journals, citable web reports, seminar proceedings and books. The MDs were classified according to their generation. The applications of the MDs on the QSP/AR have also been reported in this review. The MDs can be classified into experimental and theoretical types, having a sub classification of the later into structural and quantum chemical descriptors. The structural parameters are derived from molecular graphs or topology of the molecules. Even the pixel of the molecular image can be used as molecular descriptor. In QSPR studies the physicochemical properties include boiling point, heat capacity, density, refractive index, molar volume, surface tension, heat of formation, octanol-water partition coefficient, solubility, chromatographic retention indices etc. Among biological activities toxicity, antimalarial activity, sensory irritant, potencies of local anesthetic, tadpole narcosis, antifungal activity, enzyme inhibiting activity are some important parameters in the QSAR studies. The classification of the MDs is mostly generic in nature. The application of the MDs in QSP/AR also has a generic link. Experimental MDs are more suitable in correlation analysis than the theoretical ones but are more expensive for generation. In advent of sophisticated computational tools and experimental design proliferation of MDs is inevitable, but for a highly optimized MD, studies on generation of MD is an unending process.

  1. The effect of pulping concentration treatment on the properties of microcrystalline cellulose powder obtained from waste paper.

    PubMed

    Okwonna, Okumneme O

    2013-10-15

    Microcrystalline cellulose (MCC) powder was isolated from three grades of waste paper: book, Groundwood/Newsprint and paperboard, through the processes of pulping and hydrolysis. Pulping treatment on these grades of waste paper was done using varying concentrations of caustic soda. Effects of the concentration of the pulping medium on the thermal and kinetic properties were investigated. Also determined were the effects of this on the physico-chemical properties. The chemical structure was characterized using an infrared spectroscopy (FTIR). Results showed these properties to be affected by the concentration of the pulping medium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Influence of lecithin-lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule.

    PubMed

    Bouarab, Lynda; Maherani, Behnoush; Kheirolomoom, Azadeh; Hasan, Mahmoud; Aliakbarian, Bahar; Linder, Michel; Arab-Tehrany, Elmira

    2014-03-01

    In this work, we studied the effect of nanoliposome composition based on phospholipids of docosahexaenoic acid (PL-DHA), salmon and soya lecithin, on physico-chemical characterization of vector. Cinnamic acid was encapsulated as a hydrophobic molecule in nanoliposomes made of three different lipid sources. The aim was to evaluate the influence of membrane lipid structure and composition on entrapment efficiency and membrane permeability of cinnamic acid. These properties are important for active molecule delivery. In addition, size, electrophoretic mobility, phase transition temperature, elasticity and membrane fluidity were measured before and after encapsulation. The results showed a correlation between the size of the nanoliposome and the entrapment. The entrapment efficiency of cinnamic acid was found to be the highest in liposomes prepared from salmon lecithin. The nanoliposomes composed of salmon lecithin presented higher capabilities as a carrier for cinnamic acid encapsulation. These vesicles also showed a high stability which in turn increases the membrane rigidity of nanoliposome as evaluated by their elastic properties, membrane fluidity and phase transition temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Physicochemical characteristics and desulphurization activity of pyrolusite-blended activated coke.

    PubMed

    Yang, Lin; Jiang, Xia; Huang, Tian; Jiang, Wenju

    2015-01-01

    In this study, a novel activated coke (AC-P) was prepared by the blending method using bituminous coal as the raw material and pyrolusite as the catalyst. The physicochemical properties of prepared activated coke (AC) were characterized by BET, Fourier-Transform Infrared Spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The results indicated that the blended pyrolusite had a slight effect on the structural properties of AC, while the oxygenated functional groups on AC were increased and MnO2 and Fe2O3 in pyrolusite were reduced to MnO and Fe on the AC-P samples, respectively. All the AC-P samples significantly improved the removal of SO2, with the highest sulphur capacity (153 mg/g) for the AC blended with 8 wt% pyrolusite, which was 57.7% higher than that of the blank activated cock. This could be mainly attributed to the change in surface chemical properties of the AC-P samples and the active catalytic components in pyrolusite for the catalytic oxidation of SO2 in desulphurization process.

  4. The physicochemical properties of a new class of anticancer fungal polysaccharides: a comparative study.

    PubMed

    Ren, Lu; Reynisson, Jóhannes; Perera, Conrad; Hemar, Yacine

    2013-08-14

    The structural and physicochemical properties of polysaccharides isolated from fungi with anticancer properties were investigated. The majority of the polysaccharides considered, have the β-d-Glcp component mostly connected by 1→3 and 1→6 linkages in the backbones and the short branches, respectively. The established parameters of lead-like, drug-like and of known dug space (KDS) were used and the repeating units of the polysaccharides exhibit some overlap with these. It was found that a unique region of chemical space is occupied by the polysaccharides, with MW: 1.0 x 10(5) to 2.5 x 10(5) g mol(-1); LogP: -3.0 x 10(3) to -1.0 x 10(3); HD: 1.0 x 10(3) to 5.0 x 10(3); HA: 5.0 x 10(3) to 1.0 x 10(4); PSA: 5.0 x 10(4) to 1.0 x 10(5) and RB: 5.0 x 10(3) to 1.0 x 10(4). These findings can be exploited in antitumor drug discovery projects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Recent Advances in Superparamagnetic Iron Oxide Nanoparticles for Cellular Imaging and Targeted Therapy Research

    PubMed Central

    Wang, Yi-Xiang J.; Xuan, Shouhu; Port, Marc; Idee, Jean-Marc

    2013-01-01

    Advances of nanotechnology have led to the development of nanomaterials with both potential diagnostic and therapeutic applications. Among them, superparamagnetic iron oxide (SPIO) nanoparticles have received particular attention. Over the past decade, various SPIOs with unique physicochemical and biological properties have been designed by modifying the particle structure, size and coating. This article reviews the recent advances in preparing SPIOs with novel properties, the way these physicochemical properties of SPIOs influence their interaction with cells, and the development of SPIOs in liver and lymph nodes magnetic resonance imaging (MRI) contrast. Cellular uptake of SPIO can be exploited in a variety of potential clinical applications, including stem cell and inflammation cell tracking and intra-cellular drug delivery to cancerous cells which offers higher intra-cellular concentration. When SPIOs are used as carrier vehicle, additional advantages can be achieved including magnetic targeting and hyperthermia options, as well as monitoring with MRI. Other potential applications of SPIO include magnetofection and gene delivery, targeted retention of labeled stem cells, sentinel lymph nodes mapping, and magnetic force targeting and cell orientation for tissue engineering. PMID:23621536

  6. Formulation, physicochemical characterization and stability study of lithium-loaded microemulsion system.

    PubMed

    Mouri, Abdelkader; Legrand, Philippe; El Ghzaoui, Abdeslam; Dorandeu, Christophe; Maurel, Jean Claude; Devoisselle, Jean-Marie

    2016-04-11

    Lithium biocompatible microemulsion based on Peceol(®), lecithin, ethanol and water was studied in attempt to identify the optimal compositions in term of drug content, physicochemical properties and stability. Lithium solubilization in microemulsion was found to be compatible with a drug-surfactant binding model. Lithium ions were predominantly solubilized within lecithin head group altering significantly the interfacial properties of the system. Pseudo-ternary phase diagrams of drug free and drug loaded microemulsions were built at constant ethanol/lecithin weight ratio (40/60). Lithium loaded microemulsion has totally disappeared in the Peceol(®) rich part of phase diagram; critical fractions of lecithin and ethanol were required for the formation of stable microemulsion. The effect of lithium concentration on the properties and physical stability of microemulsions were studied using microscopy, Karl Fischer titrations, rheology analyses, conductivity measurements and centrifugation tests. The investigated microemulsions were found to be stable under accelerated storage conditions. The systems exhibited low viscosity and behaved as Newtonian fluid and no structural transition was shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effect of parboiling on phytochemical content, antioxidant activity and physicochemical properties of germinated red rice.

    PubMed

    Hu, Zhanqiang; Tang, Xiaozhi; Liu, Junfei; Zhu, Zhiwei; Shao, Yafang

    2017-01-01

    In order to improve functional properties and palatability of germinated red rice, this study investigated differences in phytochemicals and physicochemical properties of germinated red rice at 2, 5, 10, 15min of parboiling. Total free phenolic content and antioxidant activity of germinated red rice parboiled for 5 and 15min was higher than that of germinated red rice. Free p-coumaric acid increased from 0.20 to 0.67mg/100g with parboiling time increasing from 5 to 15min. Bound vanillic (0.17-0.27mg/100g) and p-coumaric acid (6.56-8.59mg/100g) had higher levels at 0, 2, or 5min. During 15min of parboiling, color difference (ΔE) increased from 0.58 to 9.09, heat enthalpy (ΔH) decreased from 4.69 to 1.94J/g, and internal structure of rice was destroyed. Overall, parboiling time of less than 5min was suitable to improve the quality of germinated red rice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters† †Electronic supplementary information (ESI) available: Experimental details and additional structural, physicochemical and optical characterisation. See DOI: 10.1039/c6tc00260a Click here for additional data file.

    PubMed Central

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan

    2016-01-01

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal–organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4′-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications. PMID:28496980

  9. Cholinium-amino acid based ionic liquids: a new method of synthesis and physico-chemical characterization.

    PubMed

    De Santis, Serena; Masci, Giancarlo; Casciotta, Francesco; Caminiti, Ruggero; Scarpellini, Eleonora; Campetella, Marco; Gontrani, Lorenzo

    2015-08-28

    In the present work we report the synthesis and physico-chemical characterization in terms of the viscosity and density of a wide series of cholinium-amino acid based room temperature ionic liquids ([Ch][AA] RTILs). 18 different amino acids were used to obtain 14 room temperature ILs. Among the most common AAs, only valine did not form an RTIL but it is a liquid above 80 °C. With respect to the methods reported in the literature we propose a synthesis based on potentiometric titration which has several advantages such as shorter preparation time, stoichiometry within ±1%, very high yields (close to 100%), high reproducibility, and no use of organic solvents, thus being more environmentally friendly. We tried to prepare dianionic ILs with some AAs with two potentially ionisable groups but in all cases the salts were solids at room temperature. All the ILs were characterized by (1)H NMR to confirm the stoichiometry. Physico-chemical properties such as density, viscosity, refractive index and conductivity were measured as a function of temperature and correlated with empirical equations. The values were compared with the data already reported in the literature for some [Ch][AA] ILs. The thermal expansion coefficient αp and the molar volume Vm were also calculated from the experimental density values. Due to the high number of AAs explored and their structural heterogeneity we have been able to find some interesting correlations between the data obtained and the structural features of the AAs in terms of the alkyl chain length, hydrogen bonding ability, stacking and cyclization. Some parameters were also found to be in good agreement with those reported for other ILs. We think that these data can give an important contribution to the understanding of the structure-property relationship of ILs because they focused on the structural effect of the anions, while most data in the literature are focussed on the cations.

  10. Effect of germination on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria.

    PubMed

    Chinma, Chiemela Enyinnaya; Anuonye, Julian Chukwuemeka; Simon, Omotade Comfort; Ohiare, Raliat Ozavize; Danbaba, Nahemiah

    2015-10-15

    This study determined the effect of germination (48 h) on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria. Local rice varieties (Jamila, Jeep and Kwandala) were evaluated and compared to an improved variety (MR 219). Physicochemical and antioxidant properties of flours were determined using standard methods. Protein, magnesium, phosphorus, potassium and antioxidant properties of rice flours increased after germination while phytic acid and total starch contents decreased. Foaming capacity and stability of rice flours increased after germination. Germination resulted to changes in pasting and thermal characteristics of rice flours. Germinated rice flours had better physicochemical and antioxidant properties with reduced phytic acid and starch contents compared to MR 219, which can be utilized as functional ingredients in the preparation of rice-based products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. [Studies on chemical constituents from Elaeocarpus sylvestris].

    PubMed

    Zhang, Hong-Chao; Shi, Hai-Ming

    2008-10-01

    To study the chemical constituents of Elaeocarpus sylvestris. The compounds were isolated by chromatographic methods and their structures were elucidated by physico-chemical properties and spectral analysis. Six compounds were isolated and identified as: 2-hydroxy-benzaldehyde (1), coniferyl alcohol (2), umbelliferone (3), scopoletin (4), beta-sitosterol (5), daucosterol (6). All above compounds are isolated from Elaeocarpus Genus for the first time.

  12. Fluorophore labeling of a cell-penetrating peptide induces differential effects on its cellular distribution and affects cell viability.

    PubMed

    Birch, Ditlev; Christensen, Malene Vinther; Staerk, Dan; Franzyk, Henrik; Nielsen, Hanne Mørck

    2017-12-01

    Cell-penetrating peptides constitute efficient delivery vectors, and studies of their uptake and mechanism of translocation typically involve fluorophore-labeled conjugates. In the present study, the influence of a number of specific fluorophores on the physico-chemical properties and uptake-related characteristics of penetratin were studied. An array of seven fluorophores belonging to distinct structural classes was examined, and the impact of fluorophore labeling on intracellular distribution and cytotoxicity was correlated to the physico-chemical properties of the conjugates. Exposure of several mammalian cell types to fluorophore-penetratin conjugates revealed a strong structure-dependent reduction in viability (1.5- to 20-fold lower IC 50 values as compared to those of non-labeled penetratin). Also, the degree of less severe effects on membrane integrity, as well as intracellular distribution patterns differed among the conjugates. Overall, neutral hydrophobic fluorophores or negatively charged fluorophores conferred less cytotoxicity as compared to the effect exerted by positively charged, hydrophobic fluorophores. The latter conjugates, however, exhibited less membrane association and more clearly defined intracellular distribution patterns. Thus, selection of the appropriate flurophore is critical. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Use of an integrated approach to characterize the physicochemical properties of foundry green sands

    USDA-ARS?s Scientific Manuscript database

    A fresh green sand, spent green sand, and a weathered spent green sand from a landfill were analyzed using diffractometry, electron microscopy, granulometry, spectrometry, and thermogravimetry. Our objective was to understand how the physicochemical properties of the green sands change from their o...

  14. Improvement in storage stability of infrared dried rough rice

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to develop infrared drying (IRD) method to improve the stability of physicochemical properties of rough rice during storage. The effect of IRD on the physicochemical properties of stored rough rice was compared with that of hot air drying (HAD) and ambient air drying ...

  15. Linking the Physicochemical Properities of Titania with Its Biocidal Properities

    EPA Science Inventory

    LINKING THE PHYSICOCHEMICAL PROPERTIES OF TITANIA WITH ITS BIOCIDAL PROPERTIES. C. Han1, L. Putvin2, M. Pelaez1, H. Zamankhan3, H. Choi3, D. Betancourt4a, D. Dionysiou1. B. Veronesi4b, 1 Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati...

  16. Some Physicochemical Properties of Faience Masses with the Utilization of Perlite and Diatomite,

    DTIC Science & Technology

    Physicochemical properties of faience (15-35 percent perlite or 5 percent diatomite ) were studied. The addition of 35 percent perlite lowered the...The strength increased. The effect of diatomite was not as pronounced, but the addition of diatomite prevented the formation of cristobalite. In

  17. Effect of nitrogen rate and the environment on physicochemical properties of selected high amylose rice cultivars

    USDA-ARS?s Scientific Manuscript database

    Genetic marker haplotypes for the Waxy and alk genes are associated with amylose content and gelatinization temperature, respectively, and are used by breeders to develop rice cultivars that have physicochemical properties desired by the parboiling and canning industries. Cultivars that provide cons...

  18. Characterization of physicochemical and thermal properties and crystallization behavior of krabok (Irvingia Malayana ) and rambutan seed fats.

    PubMed

    Sonwai, Sopark; Ponprachanuvut, Punnee

    2012-01-01

    Fatty acid composition, physicochemical and thermal properties and crystallization behavior of fats extracted from the seeds of krabok (Irvingia Malayana) and rambutan (Nephelium lappaceum L.) trees grown in Thailand were studied and compared with cocoa butter (CB). The krabok seed fat, KSF, consisted of 46.9% lauric and 40.3% myristic acids. It exhibited the highest saponification value and slip melting point but the lowest iodine values. The three fats displayed different crystallization behavior at 25°C. KSF crystallized into a mixture of β' and pseudo-β' structures with a one-step crystallization curve and high solid fat content (SFC). The fat showed simple DSC crystallization and melting thermograms with one distinct peak. The rambutan seed fat, RSF, consisted of 42.5% arachidic and 33.1% oleic acids. Its crystallization behavior was more similar to CB than KSF, displaying a two-step crystallization curve with SFC lower than that of KSF. RSF solidified into a mixture of β' and pseudo-β' before transforming to β after 24 h. The large spherulitic microstructures were observed in both KSF and RSF. According to these results, the Thai KSF and RSF exhibited physicochemical, thermal characteristics and crystallization behavior that could be suitable for specific applications in several areas of the food, cosmetic and pharmaceutical industries.

  19. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. Themore » X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.« less

  20. Unveiling the Molecular Structure of Pulmonary Surfactant Corona on Nanoparticles.

    PubMed

    Hu, Qinglin; Bai, Xuan; Hu, Guoqing; Zuo, Yi Y

    2017-07-25

    The growing risk of human exposure to airborne nanoparticles (NPs) causes a general concern on the biosafety of nanotechnology. Inhaled NPs can deposit in the deep lung at which they interact with the pulmonary surfactant (PS). Despite the increasing study of nano-bio interactions, detailed molecular mechanisms by which inhaled NPs interact with the natural PS system remain unclear. Using coarse-grained molecular dynamics simulation, we studied the interaction between NPs and the PS system in the alveolar fluid. It was found that regardless of different physicochemical properties, upon contacting the PS, both silver and polystyrene NPs are immediately coated with a biomolecular corona that consists of both lipids and proteins. Structure and molecular conformation of the PS corona depend on the hydrophobicity of the pristine NPs. Quantitative analysis revealed that lipid composition of the corona formed on different NPs is relatively conserved and is similar to that of the bulk phase PS. However, relative abundance of the surfactant-associated proteins, SP-A, SP-B, and SP-C, is notably affected by the hydrophobicity of the NP. The PS corona provides the NPs with a physicochemical barrier against the environment, equalizes the hydrophobicity of the pristine NPs, and may enhance biorecognition of the NPs. These modifications in physicochemical properties may play a crucial role in affecting the biological identity of the NPs and hence alter their subsequent interactions with cells and other biological entities. Our results suggest that all studies of inhalation nanotoxicology or NP-based pulmonary drug delivery should consider the influence of the PS corona.

  1. Interaction of pH-sensitive non-phospholipid liposomes with cellular mimetic membranes.

    PubMed

    Marianecci, Carlotta; Rinaldi, Federica; Di Marzio, Luisa; Pozzi, Daniela; Caracciolo, Giulio; Manno, Daniela; Dini, Luciana; Paolino, Donatella; Celia, Christian; Carafa, Maria

    2013-04-01

    Surfactant nanocarriers have received considerable attention in the last several years as interesting alternative to classic liposomes. Different pH-sensitive vesicular colloidal carriers based on Tween 20 derivatives, obtained after functionalization of the head groups of the surfactant with natural, or simply modified, amino acids, were proposed as drug nanocarriers. Dynamic light scattering, Small Angle X-ray Scattering, Trasmission Electron Microscopy and fluorescence studies were used for the physico-chemical characterization of vesicles and mean size, size distribution, zeta potential, vesicle morphology and bilayer properties were evaluated. The pH-sensitivity and the stability of formulations, in absence and in presence of foetal bovine serum, were also evaluated. Moreover, the contact between surfactant vesicles and liposomes designed to model the cellular membrane was investigated by fluorescence studies to preliminary explore the potential interaction between vesicle and cell membranes. Experimental findings showed that physico-chemical and technological features of pH-sensitive vesicles were influenced by the composition of the carriers. Furthermore, proposed carriers are able to interact with mimetic cell membrane and it is reasonable to attribute the observed differences in interaction to the architectural/structural properties of Tween 20 derivatives. The findings reported in this investigation showed that a deep and extensive physico-chemical characterization of the carrier is a fundamental step, according to the evidence that the knowledge of nanocarrier properties is necessary to translate its potentiality to in vitro/in vivo applications.

  2. Biophysical and physicochemical methods differentiate highly ligand-efficient human D-amino acid oxidase inhibitors.

    PubMed

    Lange, Jos H M; Venhorst, Jennifer; van Dongen, Maria J P; Frankena, Jurjen; Bassissi, Firas; de Bruin, Natasja M W J; den Besten, Cathaline; de Beer, Stephanie B A; Oostenbrink, Chris; Markova, Natalia; Kruse, Chris G

    2011-10-01

    Many early drug research efforts are too reductionist thereby not delivering key parameters such as kinetics and thermodynamics of target-ligand binding. A set of human D-Amino Acid Oxidase (DAAO) inhibitors 1-6 was applied to demonstrate the impact of key biophysical techniques and physicochemical methods in the differentiation of chemical entities that cannot be adequately distinguished on the basis of their normalized potency (ligand efficiency) values. The resulting biophysical and physicochemical data were related to relevant pharmacodynamic and pharmacokinetic properties. Surface Plasmon Resonance data indicated prolonged target-ligand residence times for 5 and 6 as compared to 1-4, based on the observed k(off) values. The Isothermal Titration Calorimetry-derived thermodynamic binding profiles of 1-6 to the DAAO enzyme revealed favorable contributions of both ΔH and ΔS to their ΔG values. Surprisingly, the thermodynamic binding profile of 3 elicited a substantially higher favorable contribution of ΔH to ΔG in comparison with the structurally closely related fused bicyclic acid 4. Molecular dynamics simulations and free energy calculations of 1, 3, and 4 led to novel insights into the thermodynamic properties of the binding process at an atomic level and in the different thermodynamic signatures of 3 and 4. The presented holistic approach is anticipated to facilitate the identification of compounds with best-in-class properties at an early research stage. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  3. Physicochemical characterizations of nano-palm oil fuel ash

    NASA Astrophysics Data System (ADS)

    Rajak, Mohd Azrul Abdul; Majid, Zaiton Abdul; Ismail, Mohammad

    2015-07-01

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m2/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  4. Natural Minerals Coated by Biopolymer Chitosan: Synthesis, Physicochemical, and Adsorption Properties

    NASA Astrophysics Data System (ADS)

    Budnyak, T. M.; Yanovska, E. S.; Kichkiruk, O. Yu.; Sternik, D.; Tertykh, V. A.

    2016-11-01

    Natural minerals are widely used in treatment technologies as mineral fertilizer, food additive in animal husbandry, and cosmetics because they combine valuable ion-exchanging and adsorption properties together with unique physicochemical and medical properties. Saponite (saponite clay) of the Ukrainian Podillya refers to the class of bentonites, a subclass of layered magnesium silicate montmorillonite. Clinoptilolits are aluminosilicates with carcase structure. In our work, we have coated biopolymer chitosan on the surfaces of natural minerals of Ukrainian origin — Podilsky saponite and Sokyrnitsky clinoptilolite. Chitosan mineral composites have been obtained by crosslinking of adsorbed biopolymer on saponite and clinoptilolite surface with glutaraldehyde. The obtained composites have been characterized by the physicochemical methods such as thermogravimetric/differential thermal analyses (DTA, DTG, TG), differential scanning calorimetry, mass analysis, nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy to determine possible interactions between the silica and chitosan molecule. The adsorption of microquantities of cations Cu(II), Zn(II), Fe(III), Cd(II), and Pb(II) by the obtained composites and the initial natural minerals has been studied from aqueous solutions. The sorption capacities and kinetic adsorption characteristics of the adsorbents were estimated. It was found that the obtained results have shown that the ability of chitosan to coordinate heavy metal ions Zn(II), Cu(II), Cd(II), and Fe(III) is less or equal to the ability to retain ions of these metals in the pores of minerals without forming chemical bonds.

  5. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation

    NASA Astrophysics Data System (ADS)

    Johnson, Monica M.; Mendoza, Ryan; Raghavendra, Achyut J.; Podila, Ramakrishna; Brown, Jared M.

    2017-03-01

    The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcɛRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.

  6. Physicochemical Profiles of the Marketed Agrochemicals and Clues for Agrochemical Lead Discovery and Screening Library Development.

    PubMed

    Rao, Hanbing; Huangfu, Changxin; Wang, Yanying; Wang, Xianxiang; Tang, Tiansheng; Zeng, Xianyin; Li, Zerong; Chen, Yuzong

    2015-05-01

    Combinatorial chemistry, high-throughput and virtual screening technologies have been extensively used for discovering agrochemical leads from chemical libraries. The knowledge of the physicochemical properties of the marketed agrochemicals is useful for guiding the design and selection of such libraries. Since the earlier profiling of marketed agrochemicals, the number and types of marketed agrochemicals have significantly increased. Recent studies have shown the change of some physicochemical properties of oral drugs with time. There is a need to also profile the physicochemical properties of the marketed agrochemicals. In this work, we analyzed the key physicochemical properties of 1751 marketed agrochemicals in comparison with the previously-analyzed herbicides and insecticides, 106 391 natural products and 57 548 diverse synthetic libraries compounds. Our study revealed the distribution profiles and evolution trend of different types of agrochemicals that in many respects are broadly similar to the reported profiles for oral drugs, with the most marked difference being that agrochemicals have a lower number of hydrogen bond donors. The derived distribution patterns provided the rule of thumb guidelines for selecting potential agrochemical leads and also provided clues for further improving the libraries for agrochemical lead discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Physicochemical, functional and angiotensin converting enzyme inhibitory properties of amaranth (Amaranthus hypochondriacus) 7S globulin.

    PubMed

    Quiroga, Alejandra V; Aphalo, Paula; Ventureira, Jorge L; Martínez, E Nora; Añón, María C

    2012-01-30

    Amaranth 7S globulin is a minor globulin component and its impact on the properties of an amaranth protein ingredient depends on its proportion in the variety of amaranth being considered. Some physicochemical, functional and angiotesin I-converting enzyme (ACE) inhibitory properties of amaranth vicilin were studied in this work and compared with the 11S globulin. Fluorescence spectroscopy results indicated that 7S globulin tryptophans were more exposed to the solvent and, by calorimetry, the 7S globulin denaturation temperature (T(d) ) was found lower than the 11S globulin T(d) , suggesting a more flexible structure. The 7S globulin surface hydrophobicity was higher than that of the 11S globulin, which is in agreement with the better emulsifying properties of the 7S globulin. The solubility in neutral buffer of the 7S globulin (851 ± 25 g kg(-1) ) was also higher than that of the 11S globulin (195 ± 6 g kg(-1) ). Bioinformatic analyses showed the presence of ACE inhibitory peptides encrypted in 7S tryptic sequences and peptides released after in vitro gastrointestinal digestion showed a high ACE-inhibitory capacity (IC(50) = 0.17 g L(-1) ), similar to that of 11S globulin peptides. Compared with the 11S globulin, the 7S globulin presents similar ACE inhibitory activity and some functional advantages, better solubility and emulsifying activity, which suits some food requirements. The functional behavior has been related with the structural properties. Copyright © 2011 Society of Chemical Industry.

  8. A Guide to Design Functional Molecular Liquids with Tailorable Properties using Pyrene-Fluorescence as a Probe.

    PubMed

    Lu, Fengniu; Takaya, Tomohisa; Iwata, Koichi; Kawamura, Izuru; Saeki, Akinori; Ishii, Masashi; Nagura, Kazuhiko; Nakanishi, Takashi

    2017-06-13

    Solvent-free, nonvolatile, room-temperature alkylated-π functional molecular liquids (FMLs) are rapidly emerging as a new generation of fluid matter. However, precision design to tune their physicochemical properties remains a serious challenge because the properties are governed by subtle π-π interactions among functional π-units, which are very hard to control and characterize. Herein, we address the issue by probing π-π interactions with highly sensitive pyrene-fluorescence. A series of alkylated pyrene FMLs were synthesized. The photophysical properties were artfully engineered with rational modulation of the number, length, and substituent motif of alkyl chains attached to the pyrene unit. The different emission from the excimer to uncommon intermediate to the monomer scaled the pyrene-pyrene interactions in a clear trend, from stronger to weaker to negligible. Synchronously, the physical nature of these FMLs was regulated from inhomogeneous to isotropic. The inhomogeneity, unexplored before, was thoroughly investigated by ultrafast time-resolved spectroscopy techniques. The result provides a clearer image of liquid matter. Our methodology demonstrates a potential to unambiguously determine local molecular organizations of amorphous materials, which cannot be achieved by conventional structural analysis. Therefore this study provides a guide to design alkylated-π FMLs with tailorable physicochemical properties.

  9. Morphological and physicochemical characterization of porous starches obtained from different botanical sources and amylolytic enzymes.

    PubMed

    Benavent-Gil, Yaiza; Rosell, Cristina M

    2017-10-01

    Porous starches might offer an attractive alternative as bio-adsorbents of a variety of compounds. However, morphology and physicochemical properties of starches must be understood before exploring their applications. Objective was to study the action of different amylolytic enzymes for producing porous starches. Wheat, rice, potato and cassava starches were treated with Amyloglucosidase (AMG), α-amylase (AM) and cyclodextrin-glycosyltransferase (CGTase). Morphological characteristics, chemical composition, adsorptive capacity and pasting/thermal properties were assessed. Scanning Electron Microscopy (SEM) showed porous structures with diverse pore size distribution, which was dependent on the enzyme type and starch source, but no differences were observed in the total granule surface occupied by pores. The adsorptive capacity analysis revealed that modified starches had high water absorptive capacity and showed different oil adsorptive capacity depending on the enzyme type. Amylose content analysis revealed different hydrolysis pattern of the amylases, suggesting that AMG mainly affected crystalline region meanwhile AM and CGTase attacked amorphous area. A heatmap illustrated the diverse pasting properties of the different porous starches, which also showed significant different thermal properties, with different behavior between cereal and tuber starches. Therefore, it is possible to modulate the properties of starches through the use of different enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Clay facial masks: physicochemical stability at different storage temperatures.

    PubMed

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  11. Revised structure for the phenazine antibiotic from Pseudomonas fluorescens 2-79 (NRRL B-15132).

    PubMed Central

    Brisbane, P G; Janik, L J; Tate, M E; Warren, R F

    1987-01-01

    A phenazine antibiotic (mp, 243 to 244 degrees C), isolated in a yield of 134 micrograms/ml from cultures of Pseudomonas fluorescens 2-79 (NRRL B-15132), was indistinguishable in all of its measured physicochemical (melting point, UV and infrared spectra, and gas chromatography-mass spectrometry data) and biological properties from synthetic phenazine-1-carboxylic acid. Gurusiddaiah et al. (S. Gurusiddaiah, D. M. Weller, A. Sarkar, and R. J. Cook, Antimicrob. Agents Chemother. 29:488-495, 1986) attributed a dimeric phenazine structure to an antibiotic with demonstrably similar properties obtained from the same bacterial strain. Direct comparison of the physicochemical properties of the authentic antibiotic obtained from D. M. Weller with synthetic phenazine-1-carboxylic acid and with the natural product from the present study established that all three samples were indistinguishable within the experimental error of each method. No evidence to support the existence of a biologically active dimeric species was obtained. Phenazine-1-carboxylic acid has a pKa of 4.24 +/- 0.01 (25 degrees C; I = 0.09), and its carboxylate anion shows no detectable antimicrobial activity compared with the active uncharged carboxylic acid species. These data suggest that phenazine-1-carboxylic acid is probably not an effective biological control agent for phytopathogens in environments with a pH greater than 7. Images PMID:3125789

  12. Electronic structure and physicochemical properties of selected penicillins

    NASA Astrophysics Data System (ADS)

    Soriano-Correa, Catalina; Ruiz, Juan F. Sánchez; Raya, A.; Esquivel, Rodolfo O.

    Traditionally, penicillins have been used as antibacterial agents due to their characteristics and widespread applications with few collateral effects, which have motivated several theoretical and experimental studies. Despite the latter, their mechanism of biological action has not been completely elucidated. We present a theoretical study at the Hartree-Fock and density functional theory (DFT) levels of theory of a selected group of penicillins such as the penicillin-G, amoxicillin, ampicillin, dicloxacillin, and carbenicillin molecules, to systematically determine the electron structure of full ?-lactam antibiotics. Our results allow us to analyze the electronic properties of the pharmacophore group, the aminoacyl side-chain, and the influence of the substituents (R and X) attached to the aminoacyl side-chain at 6? (in contrast with previous studies focused at the 3? substituents), and to corroborate the results of previous studies performed at the semiempirical level, solely on the ?-lactam ring of penicillins. Besides, several density descriptors are determined with the purpose of analyzing their link to the antibacterial activity of these penicillin compounds. Our results for the atomic charges (fitted to the electrostatic potential), the bond orders, and several global reactivity descriptors, such as the dipole moments, ionization potential, hardness, and the electrophilicity index, led us to characterize: the active sites, the effect of the electron-attracting substituent properties and their physicochemical features, which altogether, might be important to understand the biological activity of these type of molecules.

  13. Characteristics and functionality of appetite-reducing thylakoid powders produced by three different drying processes.

    PubMed

    Östbring, Karolina; Sjöholm, Ingegerd; Sörenson, Henrietta; Ekholm, Andrej; Erlanson-Albertsson, Charlotte; Rayner, Marilyn

    2018-03-01

    Thylakoids, a chloroplast membrane extracted from green leaves, are a promising functional ingredient with appetite-reducing properties via their lipase-inhibiting effect. Thylakoids in powder form have been evaluated in animal and human models, but no comprehensive study has been conducted on powder characteristics. The aim was to investigate the effects of different isolation methods and drying techniques (drum-drying, spray-drying, freeze-drying) on thylakoids' physicochemical and functional properties. Freeze-drying yielded thylakoid powders with the highest lipase-inhibiting capacity. We hypothesize that the specific macromolecular structures involved in lipase inhibition were degraded to different degrees by exposure to heat during spray-drying and drum-drying. We identified lightness (Hunter's L-value), greenness (Hunter's a-value), chlorophyll content and emulsifying capacity to be correlated to lipase-inhibiting capacity. Thus, to optimize the thylakoids functional properties, the internal membrane structure indicated by retained green colour should be preserved. This opens possibilities to use chlorophyll content as a marker for thylakoid functionality in screening processes during process optimization. Thylakoids are heat sensitive, and a mild drying technique should be used in industrial production. Strong links between physicochemical parameters and lipase inhibition capacity were found that can be used to predict functionality. The approach from this study can be applied towards production of standardized high-quality functional food ingredients. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Changes in resistant starch from two banana cultivars during postharvest storage.

    PubMed

    Wang, Juan; Tang, Xue Juan; Chen, Ping Sheng; Huang, Hui Hua

    2014-08-01

    Banana resistant starch samples were extracted and isolated from two banana cultivars (Musa AAA group, Cavendish subgroup and Musa ABB group, Pisang Awak subgroup) at seven ripening stages during postharvest storage. The structures of the resistant starch samples were analysed by light microscopy, polarising microscopy, scanning electron microscopy, X-ray diffraction, and infrared spectroscopy. Physicochemical properties (e.g., water-holding capacity, solubility, swelling power, transparency, starch-iodine absorption spectrum, and Brabender microviscoamylograph profile) were determined. The results revealed significant differences in microstructure and physicochemical characteristics among the banana resistant starch samples during different ripening stages. The results of this study provide valuable information for the potential applications of banana resistant starches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Adaptive properties of human cementum and cementum dentin junction with age

    PubMed Central

    Jang, Andrew T.; Lin, Jeremy D.; Choi, Ryan M.; Choi, Erin M.; Seto, Melanie L.; Ryder, Mark I.; Gansky, Stuart A.; Curtis, Donald A.; Ho, Sunita P.

    2014-01-01

    Objectives The objective of this study was to evaluate age related changes age related changes in physical (structure/mechanical properties) and chemical (elemental/inorganic mineral content) properties of cementum layers interfacing dentin. Methods Human mandibular molars (N=43) were collected and sorted by age (younger = 19–39, middle = 40–60, older = 61–81 years). The structures of primary and secondary cementum (PC, SC) types were evaluated using light and atomic force microscopy (AFM) techniques. Chemical composition of cementum layers were characterized through gravimetric analysis by estimating ash weight and concentrations of Ca, Mn, and Zn trace elements in the analytes through inductively coupled plasma mass spectroscopy. The hardness of PC and SC was determined using microindentation and site-specific reduced elastic modulus properties were determined using nanoindentation techniques. Results PC contained fibrous, 1–3 µm wide hygroscopic radial PDL-inserts. SC illustrated PC-like structure adjacent to a multilayered architecture composing of regions that contained mineral dominant lamellae. The width of cementum dentin junction (CDJ) decreased as measured from cementum enamel junction (CEJ) to the tooth apex (49–21µm), and significantly decreased with age (44–23µm; p<0.05). The inorganic ratio defined as the ratio of post-burn to pre-burn increased with age within primary cementum (PC) and secondary cementum (SC). Cementum showed an increase in hardness with age (PC (0.40–0.46GPa), SC (0.37–0.43GPa)), while dentin showed a decreasing trend (coronal dentin (0.70–0.72GPa); apical dentin (0.63 – 0.73 GPa)). Significance The observed physicochemical changes are indicative of an increased mineralization of cementum and CDJ over time. Changes in tissue properties of the teeth can alter overall tooth biomechanics, and in turn the entire bone-tooth complex including the periodontal ligament. This study provides baseline information about the changes in physicochemical properties of cementum with age, which can be identified as adaptive in nature. PMID:25133753

  16. The influence of convection drying on the physicochemical properties of yacón (Smallanthus sonchifolius)

    NASA Astrophysics Data System (ADS)

    Salinas, Juan Gabriel; Alvarado, Juan Antonio; Bergenståhl, Björn; Tornberg, Eva

    2018-04-01

    Yacón root is a natural source of fructans, which has many potential benefits. Convective drying has been applied to increase the shelf life of yacón roots. However, this processing may lead to detrimental effects on the physicochemical functionality. The drying was investigated using different conditions (drying temperatures of 45 °C, 50 °C and 55 °C at a drying air velocity of 2 m/s and 60 °C at a drying air velocity of 2 m/s, 3 m/s and 4 m/s). The dried samples were compared to the original yacón with regard to their physicochemical properties. From all the properties that were studied, the color of the dried material and the elastic modulus of the reconstituted yacón were the most important properties being minimized respectively. The results of this investigation indicate that the best drying conditions, where the physicochemical properties of the samples are kept closest to the original material, are obtained either by using temperatures of 55 °C and 2 m/s or using higher temperatures but increasing the air velocity.

  17. Characterization and 2D structural model of corn straw and poplar leaf biochars.

    PubMed

    Zhao, Nan; Lv, YiZhong; Yang, XiXiang; Huang, Feng; Yang, JianWen

    2017-12-22

    The integrated experimental methods were used to analyze the physicochemical properties and structural characteristics and to build the 2D structural model of two kinds of biochars. Corn straw and poplar leaf biochars were gained by pyrolysing the raw materials slowly in a furnace at 300, 500, and 700 °C under oxygen-deficient conditions. Scanning electron microscope was applied to observe the surface morphology of the biochars. High temperatures destroyed the pore structures of the biochars, forming a particle mixture of varying sizes. The ash content, yield, pH, and surface area were also observed to describe the biochars' properties. The yield decreases as the pyrolysis temperature increases. The biochars are neutral to alkaline. The biggest surface area is 251.11 m 2 /g for 700 °C corn straw biochar. Elemental analysis, infrared microspectroscopy, solid-state C-13 NMR spectroscopy, and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) were also used to study the structural characteristics and build the 2D structural models of biochars. The C content in the corn straw and poplar leaf biochars increases with the increase of the pyrolysis temperature. A higher pyrolysis temperature makes the aryl carbon increase, and C=O, OH, and aliphatic hydrocarbon content decrease in the IR spectra. Solid-state C-13 NMR spectra show that a higher pyrolysis temperature makes the alkyl carbon and alkoxy carbon decrease and the aryl carbon increase. The results of IR microspectra and solid-state C-13 NMR spectra reveal that some noticeable differences exist in these two kinds of biochars and in the same type of biochar but under different pyrolysis temperatures. The conceptual elemental compositions of 500 °C corn straw and poplar leaf biochars are C 61 H 33 NO 13 and C 59 H 41 N 3 O 12 , respectively. Significant differences exist in the SEM images, physicochemical properties, and structural characteristics of corn straw and poplar leaf biochars.

  18. Effect of Hydrothermal Treatment on the Physicochemical, Rheological, and Oil-Resistant Properties of Rice Flour

    USDA-ARS?s Scientific Manuscript database

    Rice flour was thermo-mechanically modified by steam jet-cooking and the physico-chemical and rheological properties of the resulting product were characterized. Then, its performance in frying batters was evaluated as an oil barrier. Compared to native rice flour, the steam jet-cooked rice flour ...

  19. Influence of aminosilane precursor concentration on physicochemical properties of composite Nafion membranes for vanadium redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Kondratenko, Mikhail S.; Karpushkin, Evgeny A.; Gvozdik, Nataliya A.; Gallyamov, Marat O.; Stevenson, Keith J.; Sergeyev, Vladimir G.

    2017-02-01

    A series of composite proton-exchange membranes have been prepared via sol-gel modification of commercial Nafion membranes with [N-(2-aminoethyl)-3-aminopropyl]trimethoxysilane. The structure and physico-chemical properties (water uptake, ion-exchange capacity, vanadyl ion permeability, and proton conductivity) of the prepared composite membranes have been studied as a function of the precursor loading (degree of the membrane modification). If the amount of the precursor is below 0.4/1 M ratio of the amino groups of the precursor to the sulfonic groups of Nafion, the composite membranes exhibit decreased vanadium ion permeability while having relatively high proton conductivity. With respect to the use of a non-modified Nafion membrane, the performance of the composite membrane with an optimum precursor loading in a single-cell vanadium redox flow battery demonstrates enhanced energy efficiency in 20-80 mA cm-2 current density range. The maximum efficiency increase of 8% is observed at low current densities.

  20. Formalized classification of moss litters in swampy spruce forests of intermontane depressions of Kuznetsk Alatau

    NASA Astrophysics Data System (ADS)

    Efremova, T. T.; Avrova, A. F.; Efremov, S. P.

    2016-09-01

    The approaches of multivariate statistics have been used for the numerical classification of morphogenetic types of moss litters in swampy spruce forests according to their physicochemical properties (the ash content, decomposition degree, bulk density, pH, mass, and thickness). Three clusters of moss litters— peat, peaty, and high-ash peaty—have been specified. The functions of classification for identification of new objects have been calculated and evaluated. The degree of decomposition and the ash content are the main classification parameters of litters, though all other characteristics are also statistically significant. The final prediction accuracy of the assignment of a litter to a particular cluster is 86%. Two leading factors participating in the clustering of litters have been determined. The first factor—the degree of transformation of plant remains (quality)—specifies 49% of the total variance, and the second factor—the accumulation rate (quantity)— specifies 26% of the total variance. The morphogenetic structure and physicochemical properties of the clusters of moss litters are characterized.

  1. Physicochemical properties of nixtamalized corn flours with and without germ.

    PubMed

    Vega Rojas, Lineth J; Rojas Molina, Isela; Gutiérrez Cortez, Elsa; Rincón Londoño, Natalia; Acosta Osorio, Andrés A; Del Real López, Alicia; Rodríguez García, Mario E

    2017-04-01

    This research studied the influence of the germ components on the physicochemical properties of cooked corn and nixtamalized corn flours as a function of the calcium hydroxide content (from 0 to 2.1 w/w) and steeping time (between 0 and 9h). A linear relationship was found between calcium content in germ and steeping time used during nixtamalization process. X-ray diffraction analysis showed that calcium carbonate is formed into the germ structure to 2.1 w/w of calcium hydroxide and 9h steeping time. The presence of the germ improves the development of peak viscosity in flours, and it is related to the increases in calcium concentration in germ and the formation of amylose-lipid complexes. No significant changes were observed in palmitic, stearic, oleic and linoleic acids of corn oil. The levels of further corn oil deterioration were 2.1 w/w of calcium hydroxide concentration and 9h of steeping time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Physicochemical properties and antioxidant activities of polysaccharides from Gynura procumbens leaves by fractional precipitation.

    PubMed

    Li, Jing-En; Wang, Wen-Jun; Zheng, Guo-Dong; Li, Lin-Yan

    2017-02-01

    Four new polysaccharides (GPP-20, GPP-40, GPP-60 and GPP-80) were fractionated from Gynura procumbens leaves by 20%, 40%, 60% and 80% (v/v) ethanol, successively. Their physicochemical properties including the contents of neutral sugar, uronic acid and protein, as well as the monosaccharide composition were determined. In addition, the antioxidant activities of them were investigated via the reducing power assay and scavenging capacities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and hydroxyl free radicals, respectively. The results indicated that apart from neutral sugar, they all contained uronic acids and proteins in their structures, which were further proved by the UV-vis and FT-IR spectra. Monosaccharide composition analysis implied that they all belonged to heteropolysaccharides consisted of arabinose, galactose, glucose, xylose and galacturonic acid with different types and ratios. What's more, GPP-20, GPP-40 and GPP-80 always exhibited better antioxidant activities than GPP-60 among these three antioxidant assays in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effect of solution plasma process with bubbling gas on physicochemical properties of chitosan.

    PubMed

    Ma, Fengming; Li, Pu; Zhang, Baiqing; Zhao, Xin; Fu, Qun; Wang, Zhenyu; Gu, Cailian

    2017-05-01

    In the present work, solution plasma process (SPP) with bubbling gas was used to prepare oligochitosan. The effect of SPP irradiation with bubbling gas on the degradation of chitosan was evaluated by the intrinsic viscosity reduction rate and the degradation kinetic. The formation of OH radical was studied. Changes of the physicochemical properties of chitosan were measured by scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis, as well as ultraviolet-visible, Fourier-transform infrared, and 13 C nuclear magnetic resonance spectroscopy. The results indicated an obvious decrease in the intrinsic viscosity reduction rate after SPP irradiation with bubbling gas, and that the rate with bubbling was higher than that without. The main chemical structure of chitosan remained intact after irradiation, but changes in the morphology, crystallinity, and thermal stability of oligochitosan were observed. In particular, the crystallinity and thermal stability tended to decrease. The present study indicated that SPP can be effectively used for the degradation of chitosan. Copyright © 2017. Published by Elsevier B.V.

  4. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications

    PubMed Central

    Kalomiraki, Marina; Thermos, Kyriaki; Chaniotakis, Nikos A

    2016-01-01

    Dendrimers are large polymeric structures with nanosize dimensions (1–10 nm) and unique physicochemical properties. The major advantage of dendrimers compared with linear polymers is their spherical-shaped structure. During synthesis, the size and shape of the dendrimer can be customized and controlled, so the finished macromolecule will have a specific “architecture” and terminal groups. These characteristics will determine its suitability for drug delivery, diagnostic imaging, and as a genetic material carrier. This review will focus initially on the unique properties of dendrimers and their use in biomedical applications, as antibacterial, antitumor, and diagnostic agents. Subsequently, emphasis will be given to their use in drug delivery for ocular diseases. PMID:26730187

  5. [Study on the chemical constituents of Rhizoma Cyperi].

    PubMed

    Wu, Xi; Xia, Hou-Lin; Huang, Li-Hua; Chen, Dan-Dan; Chen, Jin-Yu; Weng, Hai-Ting

    2008-07-01

    To study the chemical constituents of Rhizoma Cyperi. The constituents were separated and purified by silica gel column chromatography, their structures were identified on the basis of physico-chemical properties and spectral data. Six compounds were isolated and identified as physicion (1), hexadecanoic acid (2), beta-sitosterol (3), stigmasterol (4), catenarin (5), daucosterol (6). Compounds 1, 4, 5 were isolated from this plant for the first fime.

  6. Preparation of PVDF/SiO2 composite membrane for salty oil emulsion separation: Physicochemical properties changes and its impact on fouling propensity

    NASA Astrophysics Data System (ADS)

    Ngang, H. P.; Ahmad, A. L.; Low, S. C.; Ooi, B. S.

    2017-06-01

    In this study, polyvinylidene fluoride (PVDF)/silica (SiO2) composite membranes were prepared by diffusion induced phase separation through direct blending method. The roles of SiO2 particles concentration on membrane physicochemical properties were evaluated through oil emulsion separation under high ionic strength environment whereby hydrophobic interaction is prevalent. Membranes were characterized using field emission scanning electron microscope (FESEM), atomic force microscopy (AFM), contact angle measurement, membrane porosity and pore size distribution. It was expected that by adding the monodispersed SiO2, it will render the membrane with hydrophilic characteristic. However, it is concomitantly changing the physical properties of the membrane. Addition of SiO2 caused the changes to the physicochemical properties of the composite membrane and its effects on the fouling propensity were evaluated. It was found that the mean pore size of the membranes increased with the increase of SiO2 concentration. The addition of hydrophilic SiO2 had accelerated the precipitation of the membrane dope solution resulting in changes of membrane cross section morphology. FESEM images showed the membrane cross-section morphology of PVDF/SiO2 composite membrane had gradually changed from finger-like to macrovoid-like structure with the increased of SiO2 concentration. The hydrophilicity of the PVDF/SiO2 composite membrane was enhanced which is a desired property for water purification. However, the changes in physical properties (pore size, porosity, and surface roughness) had played more dominant role in the oil emulsion fouling behaviour rather than hydrophilicity enhancement. Due to the salting out effect under high ionic strength environment, hydrophobic interaction played an important role in the oil adsorption. The increment in membrane pore size, porosity, and surface roughness after incorporation of SiO2 particles had encountered more serious relative flux reduction and lower flux recovery ratio.

  7. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low-temperature (~300-800 °C) combustion conditions. Depending on burning sources, significantly different optical properties were observed; diesel combustion particles from automobile and ship showed wavelength independent absorbing properties whereas the particles from coal and charcoal kiln combustion showed the enhanced absorption at shorter wavelength which is a brown carbon characteristic. Our findings suggest that source dependent properties and distributions across the globe should be considered when their impacts on climate change and air qualities are discussed.

  8. Effect of in situ exopolysaccharide production on physicochemical, rheological, sensory, and microstructural properties of the yogurt drink ayran: an optimization study based on fermentation kinetics.

    PubMed

    Yilmaz, M T; Dertli, E; Toker, O S; Tatlisu, N B; Sagdic, O; Arici, M

    2015-03-01

    Exopolysaccharide (EPS)-producing starter cultures are preferred for the manufacture of fermented milk products to improve rheological and technological properties. However, no clear correlation exists between EPS production and the rheological and technological properties of fermented milk products such as the yogurt drink ayran. In this study, 4 different strain conditions (EPS- and EPS+ Streptococcus thermophilus strains) were tested as a function of incubation temperature (32, 37, or 42°C) and time (2, 3, or 4 h) to determine the effect of culture type and in situ EPS production on physicochemical, rheological, sensory, and microstructural properties of ayran. Furthermore, we assessed the effect of fermentation conditions on amounts of EPS production by different EPS-producing strains during ayran production. A multifactorial design of response surface methodology was used to model linear, interaction, and quadratic effects of these variables on steady shear rheological properties of ayran samples and in situ EPS production levels. The physicochemical and microbiological characteristics of ayran samples altered depending on incubation conditions and strain selection. Steady shear tests showed that ayran samples inoculated with EPS+ strains exhibited pseudoplastic flow behavior. Production of ayran with EPS- strain (control sample) resulted in the lowest apparent viscosity values (η50), whereas those produced with the combination of 2 EPS+ strains yielded ayran with notably increased η50 values. We concluded that incubation time was the variable with the greatest effect on η50, consistency coefficient (K), and flow behavior index (n) values. In situ EPS production was also affected by these conditions during ayran fermentation in which strain-specific metabolism conditions were found to be the most important factor for EPS production. In addition, these findings correlated the amount of in situ EPS produced with the rheological properties of ayran. Scanning electron microscopy images of the samples showed differences in structural features, revealing a prominent network strand structure in the ayran samples inoculated with the admixture of 2 EPS-producing strains incubated at 37°C for 3 h. These results provide useful information for large-scale production of ayran by the dairy industry. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. [Regression analysis to select native-like structures from decoys of antigen-antibody docking].

    PubMed

    Chen, Zhengshan; Chi, Xiangyang; Fan, Pengfei; Zhang, Guanying; Wang, Meirong; Yu, Changming; Chen, Wei

    2018-06-25

    Given the increasing exploitation of antibodies in different contexts such as molecular diagnostics and therapeutics, it would be beneficial to unravel properties of antigen-antibody interaction with modeling of computational protein-protein docking, especially, in the absence of a cocrystal structure. However, obtaining a native-like antigen-antibody structure remains challenging due in part to failing to reliably discriminate accurate from inaccurate structures among tens of thousands of decoys after computational docking with existing scoring function. We hypothesized that some important physicochemical and energetic features could be used to describe antigen-antibody interfaces and identify native-like antigen-antibody structure. We prepared a dataset, a subset of Protein-Protein Docking Benchmark Version 4.0, comprising 37 nonredundant 3D structures of antigen-antibody complexes, and used it to train and test multivariate logistic regression equation which took several important physicochemical and energetic features of decoys as dependent variables. Our results indicate that the ability to identify native-like structures of our method is superior to ZRANK and ZDOCK score for the subset of antigen-antibody complexes. And then, we use our method in workflow of predicting epitope of anti-Ebola glycoprotein monoclonal antibody-4G7 and identify three accurate residues in its epitope.

  10. Atomic Force Microscopy of virus capsids uncover the interplay between mechanics, structure and function

    NASA Astrophysics Data System (ADS)

    de Pablo, Pedro J.

    The basic architecture of a virus consists of the capsid, a shell made up of repeating protein subunits, which packs, shuttles and delivers their genome at the right place and moment. Viral particles are endorsed with specific physicochemical properties which confer to their structures certain meta-stability whose modulation permits fulfilling each task of the viral cycle. These natural designed capabilities have impelled using viral capsids as protein containers of artificial cargoes (drugs, polymers, enzymes, minerals) with applications in biomedical and materials sciences. Both natural and artificial protein cages have to protect their cargo against a variety of physicochemical aggressive environments, including molecular impacts of highly crowded media, thermal and chemical stresses, and osmotic shocks. Viral cages stability under these ambiences depend not only on the ultimate structure of the external capsid, which rely on the interactions between protein subunits, but also on the nature of the cargo. During the last decade our lab has focused on the study of protein cages with Atomic Force Microscopy (AFM) (figure 1). We are interested in stablishing links of their mechanical properties with their structure and function. In particular, mechanics provide information about the cargo storage strategies of both natural and virus-derived protein cages. Mechanical fatigue has revealed as a nanosurgery tool to unveil the strength of the capisd subunit bonds. We also interrogated the electrostatics of individual protein shells. Our AFM-fluorescence combination provided information about DNA diffusing out cracked-open protein cages in real time.

  11. Optimization of a sponge cake formulation with inulin as fat replacer: structure, physicochemical, and sensory properties.

    PubMed

    Rodríguez-García, Julia; Puig, Ana; Salvador, Ana; Hernando, Isabel

    2012-02-01

    The effects of several fat replacement levels (0%, 35%, 50%, 70%, and 100%) by inulin in sponge cake microstructure and physicochemical properties were studied. Oil substitution for inulin decreased significantly (P < 0.05) batter viscosity, giving heterogeneous bubbles size distributions as it was observed by light microscopy. Using confocal laser scanning microscopy the fat was observed to be located at the bubbles' interface, enabling an optimum crumb cake structure development during baking. Cryo-SEM micrographs of cake crumbs showed a continuous matrix with embedded starch granules and coated with oil; when fat replacement levels increased, starch granules appeared as detached structures. Cakes with fat replacement up to 70% had a high crumb air cell values; they were softer and rated as acceptable by an untrained sensory panel (n = 51). So, the reformulation of a standard sponge cake recipe to obtain a new product with additional health benefits and accepted by consumers is achieved. Practical Application:  In this study, fat is replaced by inulin in cakes, which is a fiber mainly obtained from chicory roots. Sponge cake formulations with reductions in fat content up to 70% are achieved. These high-quality products can be labeled as "reduced in fat" according to U.S. FDA (2009) and EU regulations (European-Union 2006). © 2012 Institute of Food Technologists®

  12. Morphology, structural and physicochemical properties of starch from the root of Cynanchum auriculatum Royle ex Wight.

    PubMed

    Liu, Jun; Wang, Xingchi; Wen, Fanting; Zhang, Shurong; Shen, Ruru; Jiang, Wei; Kan, Juan; Jin, Changhai

    2016-12-01

    The root of Cynanchum auriculatum Royle ex Wight is a traditional Chinese herbal medicine and healthy food. Although C. auriculatum has already been processed into starch for human consumption in China, the structural characterizations of C. auriculatum starch is still unknown. Therefore, the morphology, structural and physicochemical properties of C. auriculatum starch were investigated in this study. C. auriculatum starch exhibited both spherical and polygonal shapes with granule size ranging from 2 to 12μm. Some void cavities and serpentine channels were observed in the inner of starch granules. X-ray powder diffraction pattern revealed that C. auriculatum starch was a C B -type with relative crystallinity of 25.19%. Small-angle X-ray scattering spectrum indicated C. auriculatum starch had a lamellar repeat distance of 9.21nm. The proportions of single helix, double helix and amorphous components in C. auriculatum starch were 3.42%, 27.11% and 69.47%, respectively. The amylose content of C. auriculatum starch was 28.0% with the gelatinization temperature ranging from 59.3 to 70.1°C. The maximum weight loss rate of C. auriculatum starch appeared at 309°C. In addition, C. auriculatum starch showed higher swelling power than other starches tested. Our results suggest C. auriculatum starch will have wide applications in food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A fragment-based approach applied to a highly flexible target: Insights and challenges towards the inhibition of HSP70 isoforms

    NASA Astrophysics Data System (ADS)

    Jones, Alan M.; Westwood, Isaac M.; Osborne, James D.; Matthews, Thomas P.; Cheeseman, Matthew D.; Rowlands, Martin G.; Jeganathan, Fiona; Burke, Rosemary; Lee, Diane; Kadi, Nadia; Liu, Manjuan; Richards, Meirion; McAndrew, Craig; Yahya, Norhakim; Dobson, Sarah E.; Jones, Keith; Workman, Paul; Collins, Ian; van Montfort, Rob L. M.

    2016-10-01

    The heat shock protein 70s (HSP70s) are molecular chaperones implicated in many cancers and of significant interest as targets for novel cancer therapies. Several HSP70 inhibitors have been reported, but because the majority have poor physicochemical properties and for many the exact mode of action is poorly understood, more detailed mechanistic and structural insight into ligand-binding to HSP70s is urgently needed. Here we describe the first comprehensive fragment-based inhibitor exploration of an HSP70 enzyme, which yielded an amino-quinazoline fragment that was elaborated to a novel ATP binding site ligand with different physicochemical properties to known adenosine-based HSP70 inhibitors. Crystal structures of amino-quinazoline ligands bound to the different conformational states of the HSP70 nucleotide binding domain highlighted the challenges of a fragment-based approach when applied to this particular flexible enzyme class with an ATP-binding site that changes shape and size during its catalytic cycle. In these studies we showed that Ser275 is a key residue in the selective binding of ATP. Additionally, the structural data revealed a potential functional role for the ATP ribose moiety in priming the protein for the formation of the ATP-bound pre-hydrolysis complex by influencing the conformation of one of the phosphate binding loops.

  14. Slip-additive migration, surface morphology, and performance on injection moulded high-density polyethylene closures.

    PubMed

    Dulal, Nabeen; Shanks, Robert; Gengenbach, Thomas; Gill, Harsharn; Chalmers, David; Adhikari, Benu; Pardo Martinez, Isaac

    2017-11-01

    The amount and distribution of slip agents, erucamide, and behenamide, on the surface of high-density polyethene, is determined by integral characteristics of slip agent structure and polymer morphology. A suite of surface analysis techniques was applied to correlate physicochemical properties with slip-additive migration behaviour and their surface morphology. The migration, surface morphology and physicochemical properties of the slip additives, crystallinity and orientation of polyethene spherulites and interaction between slip additives and high-density polyethene influence the surface characteristics. The high-density polyethene closures were produced with erucamide and behenamide separately and stored until they produced required torque. Surface composition was determined employing spectroscopy and gas chromatography. The distribution of additives was observed under optical, scanning electron and atomic force microscopes. The surface energy, crystallinity and application torque were measured using contact angle, differential scanning calorimeter and a torque force tester respectively. Each slip additive produced a characteristic amide peak at 1645cm -1 in infrared spectroscopy and peaks of oxygen and nitrogen in X-ray photoelectron spectroscopy, suggesting their presence on the surface. The erucamide produced placoid scale-like structures and behenamide formed denticulate structures. The surface erucamide and behenamide responsible for reducing the torque was found to be 15.7µg/cm 2 and 1.7µg/cm 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Around the macrolide - Impact of 3D structure of macrocycles on lipophilicity and cellular accumulation.

    PubMed

    Koštrun, Sanja; Munic Kos, Vesna; Matanović Škugor, Maja; Palej Jakopović, Ivana; Malnar, Ivica; Dragojević, Snježana; Ralić, Jovica; Alihodžić, Sulejman

    2017-06-16

    The aim of this study was to investigate lipophilicity and cellular accumulation of rationally designed azithromycin and clarithromycin derivatives at the molecular level. The effect of substitution site and substituent properties on a global physico-chemical profile and cellular accumulation of investigated compounds was studied using calculated structural parameters as well as experimentally determined lipophilicity. In silico models based on the 3D structure of molecules were generated to investigate conformational effect on studied properties and to enable prediction of lipophilicity and cellular accumulation for this class of molecules based on non-empirical parameters. The applicability of developed models was explored on a validation and test sets and compared with previously developed empirical models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. The preparation and structure of salty ice VII under pressure

    NASA Astrophysics Data System (ADS)

    Klotz, Stefan; Bove, Livia E.; Strässle, Thierry; Hansen, Thomas C.; Saitta, Antonino M.

    2009-05-01

    It is widely accepted that ice, no matter what phase, is unable to incorporate large amounts of salt into its structure. This conclusion is based on the observation that on freezing of salt water, ice expels the salt almost entirely as brine. Here, we show that this behaviour is not an intrinsic physico-chemical property of ice phases. We demonstrate by neutron diffraction that substantial amounts of dissolved LiCl can be built homogeneously into the ice VII structure if it is produced by recrystallization of its glassy (amorphous) state under pressure. Such `alloyed' ice VII has significantly different structural properties compared with pure ice VII, such as an 8% larger unit cell volume, 5 times larger displacement factors, an absence of a transition to an ordered ice VIII structure and plasticity. Our study suggests that there could be a whole new class of `salty' high-pressure ice forms.

  17. The preparation and structure of salty ice VII under pressure.

    PubMed

    Klotz, Stefan; Bove, Livia E; Strässle, Thierry; Hansen, Thomas C; Saitta, Antonino M

    2009-05-01

    It is widely accepted that ice, no matter what phase, is unable to incorporate large amounts of salt into its structure. This conclusion is based on the observation that on freezing of salt water, ice expels the salt almost entirely as brine. Here, we show that this behaviour is not an intrinsic physico-chemical property of ice phases. We demonstrate by neutron diffraction that substantial amounts of dissolved LiCl can be built homogeneously into the ice VII structure if it is produced by recrystallization of its glassy (amorphous) state under pressure. Such 'alloyed' ice VII has significantly different structural properties compared with pure ice VII, such as an 8% larger unit cell volume, 5 times larger displacement factors, an absence of a transition to an ordered ice VIII structure and plasticity. Our study suggests that there could be a whole new class of 'salty' high-pressure ice forms.

  18. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona.

  19. Physicochemical properties of an insensitive munitions compound, N-methyl-4-nitroaniline (MNA).

    PubMed

    Boddu, Veera M; Abburi, Krishnaiah; Maloney, Stephen W; Damavarapu, Reddy

    2008-06-30

    Accurate information on physicochemical properties of an organic contaminant is essential for predicting its environmental impact and fate. These properties also provide invaluable information for the overall understanding of environmental distribution, biotransformation, and potential treatment processes. In this study the aqueous solubility (Sw), octanol-water partition coefficient (Kow), and Henry's law constant (K(H)) were determined for an insensitive munitions (IM) compound, N-methyl-4-nitroaniline (MNA), at 298.15, 308.15, and 318.15 K. Effect of ionic strength on solubility, using electrolytes such as NaCl and CaCl2, was also studied. The data on the physicochemical parameters were correlated using the standard Van't Hoff equation. All three properties exhibited a linear relationship with reciprocal temperature. The enthalpy and entropy of phase transfer were derived from the experimental data.

  20. Exploring and validating physicochemical properties of mangiferin through GastroPlus® software

    PubMed Central

    Khurana, Rajneet Kaur; Kaur, Ranjot; Kaur, Manninder; Kaur, Rajpreet; Kaur, Jasleen; Kaur, Harpreet; Singh, Bhupinder

    2017-01-01

    Aim: Mangiferin (Mgf), a promising therapeutic polyphenol, exhibits poor oral bioavailability. Hence, apt delivery systems are required to facilitate its gastrointestinal absorption. The requisite details on its physicochemical properties have not yet been well documented in literature. Accordingly, in order to have explicit insight into its physicochemical characteristics, the present work was undertaken using GastroPlus™ software. Results: Aqueous solubility (0.38 mg/ml), log P (-0.65), Peff (0.16 × 10-4 cm/s) and ability to act as P-gp substrate were defined. Potency to act as a P-gp substrate was verified through Caco-2 cells, while Peff was estimated through single pass intestinal perfusion studies. Characterization of Mgf through transmission electron microscopy, differential scanning calorimetry, infrared spectroscopy and powder x-ray diffraction has also been reported. Conclusion: The values of physicochemical properties for Mgf reported in the current manuscript would certainly enable the researchers to develop newer delivery systems for Mgf. PMID:28344830

  1. Effect of partial reduction of pork meat on the physicochemical and sensory quality of dry ripened sausages: development of a healthy venison salchichon.

    PubMed

    Utrilla, M C; García Ruiz, A; Soriano, A

    2014-12-01

    The minimum percentage of pork meat to be added to traditional venison salchichon has been determined in order to ensure a nutritionally healthier product without impairing physicochemical or sensory properties. Six types of salchichon were made using lean venison and a varying amount of pork meat (40%, 30%, 25%, 20%, 15% and 10%). All types displayed appropriate physicochemical properties (pH, aw, moisture loss) and color (L*, a*, b*) during ripening, as well as adequate levels of lipolysis (acidity index) and lipid oxidation (TBARS). Moreover, reduction of the amount of pork meat in salchichon prompted an increase in the relative percentage of polyunsaturated fatty acids. It was concluded that in making venison salchichon, the addition of a 25% pork meat is sufficient to ensure a satisfactory ripening process and physicochemical characteristics, optimal organoleptic properties and a higher percentage of polyunsaturated fatty acids than that found in traditional venison salchichon. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Structure-Based Drug Design of Novel Potent and Selective Tetrahydropyrazolo[1,5- a ]pyrazines as ATR Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barsanti, Paul A.; Aversa, Robert J.; Jin, Xianming

    A saturation strategy focused on improving the selectivity and physicochemical properties of ATR inhibitor HTS hit 1 led to a novel series of highly potent and selective tetrahydropyrazolo[1,5-a]pyrazines. Use of PI3Kα mutants as ATR crystal structure surrogates was instrumental in providing cocrystal structures to guide the medicinal chemistry designs. Detailed DMPK studies involving cyanide and GSH as trapping agents during microsomal incubations, in addition to deuterium-labeled compounds as mechanistic probes uncovered the molecular basis for the observed CYP3A4 TDI in the series.

  3. Physicochemical Characterization of Functional Lignin–Silica Hybrid Fillers for Potential Application in Abrasive Tools

    PubMed Central

    Strzemiecka, Beata; Klapiszewski, Łukasz; Jamrozik, Artur; Szalaty, Tadeusz J.; Matykiewicz, Danuta; Sterzyński, Tomasz; Voelkel, Adam; Jesionowski, Teofil

    2016-01-01

    Functional lignin–SiO2 hybrid fillers were prepared for potential application in binders for phenolic resins, and their chemical structure was characterized. The properties of these fillers and of composites obtained from them with phenolic resin were compared with those of systems with lignin or silica alone. The chemical structure of the materials was investigated by Fourier transform infrared spectroscopy (FT-IR) and carbon-13 nuclear magnetic resonance spectroscopy (13C CP MAS NMR). The thermal stability of the new functional fillers was examined by thermogravimetric analysis–mass spectrometry (TG-MS). Thermo-mechanical properties of the lignin–silica hybrids and resin systems were investigated by dynamic mechanical thermal analysis (DMTA). The DMTA results showed that abrasive composites with lignin–SiO2 fillers have better thermo-mechanical properties than systems with silica alone. Thus, fillers based on lignin might provide new, promising properties for the abrasive industry, combining the good properties of lignin as a plasticizer and of silica as a filler improving mechanical properties. PMID:28773639

  4. Assessment of physicochemical and antioxidant characteristics of Quercus pyrenaica honeydew honeys.

    PubMed

    Shantal Rodríguez Flores, M; Escuredo, Olga; Carmen Seijo, M

    2015-01-01

    Consumers are exhibiting increasing interest in honeydew honey, principally due to its functional properties. Some plants can be sources of honeydew honey, but in north-western Spain, this honey type only comes from Quercus pyrenaica. In the present study, the melissopalynological and physicochemical characteristics and the antioxidant properties of 32 honeydew honey samples are described. Q. pyrenaica honeydew honey was defined by its colour, high pH, phenols and flavonoids. Multivariate statistical techniques were used to analyse the influence of the production year on the honey's physicochemical parameters and polyphenol content. Differences among the honey samples were found, showing that weather affected the physicochemical composition of the honey samples. Optimal conditions for oak growth favoured the production of honeydew honey. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts

    PubMed Central

    Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart EG; Robinson, Christopher T

    2013-01-01

    Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning. PMID:23842653

  6. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts.

    PubMed

    Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart E G; Robinson, Christopher T

    2013-12-01

    Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning.

  7. Bioinformatics approaches for structural and functional analysis of proteins in secondary metabolism in Withania somnifera.

    PubMed

    Sanchita; Singh, Swati; Sharma, Ashok

    2014-11-01

    Withania somnifera (Ashwagandha) is an affluent storehouse of large number of pharmacologically active secondary metabolites known as withanolides. These secondary metabolites are produced by withanolide biosynthetic pathway. Very less information is available on structural and functional aspects of enzymes involved in withanolides biosynthetic pathways of Withiana somnifera. We therefore performed a bioinformatics analysis to look at functional and structural properties of these important enzymes. The pathway enzymes taken for this study were 3-Hydroxy-3-methylglutaryl coenzyme A reductase, 1-Deoxy-D-xylulose-5-phosphate synthase, 1-Deoxy-D-xylulose-5-phosphate reductase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, and cycloartenol synthase. The prediction of secondary structure was performed for basic structural information. Three-dimensional structures for these enzymes were predicted. The physico-chemical properties such as pI, AI, GRAVY and instability index were also studied. The current information will provide a platform to know the structural attributes responsible for the function of these protein until experimental structures become available.

  8. Interactions between suspension characteristics and physicochemical properties of silver and copper oxide nanoparticles: a case study for optimizing nanoparticle stock suspensions using a central composite design.

    PubMed

    Son, Jino; Vavra, Janna; Li, Yusong; Seymour, Megan; Forbes, Valery

    2015-04-01

    The preparation of a stable nanoparticle stock suspension is the first step in nanotoxicological studies, but how different preparation methods influence the physicochemical properties of nanoparticles in a solution, even in Milli-Q water, is often under-appreciated. In this study, a systematic approach using a central composite design (CCD) was employed to investigate the effects of sonication time and suspension concentration on the physicochemical properties (i.e. hydrodynamic diameter, zeta potential and ion dissolution) of silver (Ag) and copper oxide (CuO) nanoparticles (NPs) and to identify optimal conditions for suspension preparation in Milli-Q water; defined as giving the smallest particle sizes, highest suspension stability and lowest ion dissolution. Indeed, all the physicochemical properties of AgNPs and CuONPs varied dramatically depending on how the stock suspensions were prepared and differed profoundly between nanoparticle types, indicating the importance of suspension preparation. Moreover, the physicochemical properties of AgNPs and CuONPs, at least in simple media (Milli-Q water), behaved in predictable ways as a function of sonication time and suspension concentration, confirming the validity of our models. Overall, the approach allows systematic assessment of the influence of various factors on key properties of nanoparticle suspensions, which will facilitate optimization of the preparation of nanoparticle stock suspensions and improve the reproducibility of nanotoxicological results. We recommend that further attention be given to details of stock suspension preparation before conducting nanotoxicological studies as these can have an important influence on the behavior and subsequent toxicity of nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. High performance diamond-like carbon layers obtained by pulsed laser deposition for conductive electrode applications

    NASA Astrophysics Data System (ADS)

    Stock, F.; Antoni, F.; Le Normand, F.; Muller, D.; Abdesselam, M.; Boubiche, N.; Komissarov, I.

    2017-09-01

    For the future, one of the biggest challenge faced to the technologies of flat panel display and various optoelectronic and photovoltaic devices is to find an alternative to the use of transparent conducting oxides like ITO. In this new approach, the objective is to grow high conductive thin-layer graphene (TLG) on the top of diamond-like carbon (DLC) layers presenting high performance. DLC prepared by pulsed laser deposition (PLD) have attracted special interest due to a unique combination of their properties, close to those of monocrystalline diamond, like its transparency, hardness and chemical inertia, very low roughness, hydrogen-free and thus high thermal stability up to 1000 K. In our future work, we plane to explore the synthesis of conductive TLG on top of insulating DLC thin films. The feasibility and obtained performances of the multi-layered structure will be explored in great details in the short future to develop an alternative to ITO with comparable performance (conductivity of transparency). To select the best DLC candidate for this purpose, we focus this work on the physicochemical properties of the DLC thin films deposited by PLD from a pure graphite target at two wavelengths (193 and 248 nm) at various laser fluences. A surface graphenization process, as well as the required efficiency of the complete structure (TLG/DLC) will clearly be related to the DLC properties, especially to the initial sp3/sp2 hybridization ratio. Thus, an exhaustive description of the physicochemical properties of the DLC layers is a fundamental step in the research of comparable performance to ITO.

  10. Development of novel diolein-niosomes for cutaneous delivery of tretinoin: influence of formulation and in vitro assessment.

    PubMed

    Manca, Maria Letizia; Manconi, Maria; Nacher, Amparo; Carbone, Claudia; Valenti, Donatella; Maccioni, Anna Maria; Sinico, Chiara; Fadda, Anna Maria

    2014-12-30

    This work describes innovative niosomes, composed of diolein alone or in association with the hydrophilic penetration enhancer Labrasol(®), as carriers for cutaneous drug delivery. The model drug was tretinoin and conventional, and Labrasol(®) containing liposomes was used as controls to evaluate the influence of vesicle composition and the role of Labrasol(®) on vesicle physico-chemical properties and performance as skin delivery system. Vesicles, prepared by the thin film hydration technique, were characterized in terms of size distribution, morphology, zeta potential, structure, incorporation efficiency, and rheological properties. The influence of carrier composition on tretinoin delivery to human skin was evaluated by in vitro percutaneous experiments, while formulation distribution on human skin and cellular uptake in human keratinocytes were studied using confocal laser scanning microscopy. showed that tretinoin loaded diolein-niosomes formed unilamellar vesicles very similar in physico-chemical properties to liposomes. The role of Labrasol(®) was similar in niosomes and liposomes. Its addition affected vesicle structure and size, by formation of an interdigitate bilayer with higher curvature and larger vesicle size, and rheological properties. Indeed, the presence of Labrasol(®) allowed both niosomes and liposomes to shift from Newtonian to pseudo-plastic behavior. Confocal laser microscopy highlighted an important contemporaneous deposition of hydrophilic and lipophilic vesicle components in stratum corneum and a high vesicle affinity for skin appendages when Labrasol(®) was added to the diolein-niosomes. Moreover, all samples were internalized in human keratinocytes in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Physicochemical characterizations of nano-palm oil fuel ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajak, Mohd Azrul Abdul, E-mail: azrulrajak88@gmail.com; Preparatory Centre of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah; Majid, Zaiton Abdul, E-mail: zaiton@kimia.fs.utm.my

    2015-07-22

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM)more » and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m{sup 2}/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.« less

  12. Effects of gamma irradiation on the shelf-life of a dairy-like product

    NASA Astrophysics Data System (ADS)

    Odueke, Oluwakemi B.; Chadd, Stephen A.; Baines, Richard N.; Farag, Karim W.; Jansson, Jonathan

    2018-02-01

    This study was aimed to assess the effect of irradiation on the shelf-life of pseudo-dairy food product consisting of different concentration levels of the structural and energy-giving caloric component macronutrients (protein, fat and carbohydrate). Gamma irradiated products (1 kGy, 3 kGy, 5 kGy and 10 kGy) were compared to the current procedure used by the industry of non-irradiated dairy products. The study looked at the impact of different treatments on storage quality in respect to physicochemical (pH, acidity, macronutrients), and microbiological properties [total viable count (TVC)]. The products were aseptically packaged in plastic containers and analysed at regular weekly intervals up until 100 days during refrigerated storage at 4 ± 1 °C. The storage period did not bring about any significant change in physicochemical properties of the products throughout the period of study while the TVC displayed a linear regression for irradiated products stored at 4 ± 1 °C as well as the control (non-irradiated). At the end of the shelf-life trial (benchmarked at log 4.3 CFU/g), the total viable count did not exceed log 3.94 CFU/g for samples treated at 10 kGy after 100 days of analysis. These observations indicated that the product could be safely stored aerobically for > 100days (10 and 5 kGy), 56days at (3 kGy), 42 days at (1 kGy) for the irradiated samples' and 14-28 days for the non-irradiated samples without much change in physicochemical and microbiological properties using refrigerated storage.

  13. A framework for grouping nanoparticles based on their measurable characteristics.

    PubMed

    Sayes, Christie M; Smith, P Alex; Ivanov, Ivan V

    2013-01-01

    There is a need to take a broader look at nanotoxicological studies. Eventually, the field will demand that some generalizations be made. To begin to address this issue, we posed a question: are metal colloids on the nanometer-size scale a homogeneous group? In general, most people can agree that the physicochemical properties of nanomaterials can be linked and related to their induced toxicological responses. The focus of this study was to determine how a set of selected physicochemical properties of five specific metal-based colloidal materials on the nanometer-size scale - silver, copper, nickel, iron, and zinc - could be used as nanodescriptors that facilitate the grouping of these metal-based colloids. The example of the framework pipeline processing provided in this paper shows the utility of specific statistical and pattern recognition techniques in grouping nanoparticles based on experimental data about their physicochemical properties. Interestingly, the results of the analyses suggest that a seemingly homogeneous group of nanoparticles could be separated into sub-groups depending on interdependencies observed in their nanodescriptors. These particles represent an important category of nanomaterials that are currently mass produced. Each has been reputed to induce toxicological and/or cytotoxicological effects. Here, we propose an experimental methodology coupled with mathematical and statistical modeling that can serve as a prototype for a rigorous framework that aids in the ability to group nanomaterials together and to facilitate the subsequent analysis of trends in data based on quantitative modeling of nanoparticle-specific structure-activity relationships. The computational part of the proposed framework is rather general and can be applied to other groups of nanomaterials as well.

  14. Preparation and Characterization of Nanoparticle β-Cyclodextrin:Geraniol Inclusion Complexes.

    PubMed

    Hadian, Zahra; Maleki, Majedeh; Abdi, Khosro; Atyabi, Fatemeh; Mohammadi, Abdoreza; Khaksar, Ramin

    2018-01-01

    The aim of the present study was to formulate β-cyclodextrin (β-CD) nanoparticles loaded with geraniol (GR) essential oil (EO) with appropriate physicochemical properties. Complexation of GR with β-CD was optimized by evaluation of four formulations, using the co-precipitation method, and the encapsulation efficiency (EE), loading, size, particle size distribution (PDI) and zeta potential were investigated. Further characterization was performed with nuclear magnetic resonance spectroscopy ( 1 H NMR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and infra-red (IR) spectroscopy analysis. Results showed that the physicochemical properties of the nanoparticles were affected by GR content in formulations that yielded nanoscale-size particles ranging from 111 to 258 nm. The highest encapsulation efficiency (79.4 ± 5.4%) was obtained when the molar ratio of EO to β-CD was 0.44: 0.13 with negative zeta potential (-21.1 ± 0.5 mV). The 1 H-NMR spectrum confirmed the formation structure of the EO and β-CD nanoparticle complex. Complexation with geraniol resulted in changes of IR profile, NMR chemical shifts, DSC properties, and SEM of β-cyclodextrin. Inclusion complex of essential oil with β-cyclodextrin was considered as promising bioactive materials for designing functional food.

  15. Preparation and Characterization of Nanoparticle β-Cyclodextrin:Geraniol Inclusion Complexes

    PubMed Central

    Hadian, Zahra; Maleki, Majedeh; Abdi, Khosro; Atyabi, Fatemeh; Mohammadi, Abdoreza; Khaksar, Ramin

    2018-01-01

    The aim of the present study was to formulate β-cyclodextrin (β-CD) nanoparticles loaded with geraniol (GR) essential oil (EO) with appropriate physicochemical properties. Complexation of GR with β-CD was optimized by evaluation of four formulations, using the co-precipitation method, and the encapsulation efficiency (EE), loading, size, particle size distribution (PDI) and zeta potential were investigated. Further characterization was performed with nuclear magnetic resonance spectroscopy (1H NMR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and infra-red (IR) spectroscopy analysis. Results showed that the physicochemical properties of the nanoparticles were affected by GR content in formulations that yielded nanoscale-size particles ranging from 111 to 258 nm. The highest encapsulation efficiency (79.4 ± 5.4%) was obtained when the molar ratio of EO to β-CD was 0.44: 0.13 with negative zeta potential (-21.1 ± 0.5 mV). The 1H-NMR spectrum confirmed the formation structure of the EO and β-CD nanoparticle complex. Complexation with geraniol resulted in changes of IR profile, NMR chemical shifts, DSC properties, and SEM of β-cyclodextrin. Inclusion complex of essential oil with β-cyclodextrin was considered as promising bioactive materials for designing functional food.

  16. Physico-chemical properties and extrusion behaviour of selected common bean varieties.

    PubMed

    Natabirwa, Hedwig; Muyonga, John H; Nakimbugwe, Dorothy; Lungaho, Mercy

    2018-03-01

    Extrusion processing offers the possibility of processing common beans industrially into highly nutritious and functional products. However, there is limited information on properties of extrudates from different bean varieties and their association with raw material characteristics and extrusion conditions. In this study, physico-chemical properties of raw and extruded Bishaz, K131, NABE19, Roba1 and RWR2245 common beans were determined. The relationships between bean characteristics and extrusion conditions on the extrudate properties were analysed. Extrudate physico-chemical and pasting properties varied significantly (P < 0.05) among bean varieties. Expansion ratio and water solubility decreased, while bulk density, water absorption, peak and breakdown viscosities increased as feed moisture increased. Protein exhibited significant positive correlation (P < 0.05) with water solubility index, and negative correlations (P < 0.05) with water absorption, bulk density and pasting viscosities. Iron and dietary fibre showed positive correlation while total ash exhibited negative correlation with peak viscosity, final viscosity and setback. Similar trends were observed in principal component analysis. Extrudate physico-chemical properties were found to be associated with beans protein, starch, iron, zinc and fibre contents. Therefore, bean chemical composition may serve as an indicator for beans extrusion behaviour and could be useful in selection of beans for extrusion. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Efficacy of Alkali-treated Sugarcane Fiber for Improving Physicochemical and Textural Properties of Meat Emulsions with Different Fat Levels.

    PubMed

    Kim, Hyun-Wook; Setyabrata, Derico; Lee, Yong-Jae; Brad Kim, Yuan H

    2018-04-01

    The objective of this study was to evaluate the efficacy of alkaline-treated sugarcane bagasse fiber on physicochemical and textural properties of meat emulsion with different fat levels. Crude sugarcane bagasse fiber (CSF) was treated with calcium hydroxide (Ca(OH 2 )) to obtain alkaline-treated sugarcane bagasse fiber (ASF). The two types of sugarcane bagasse fiber (CSF and ASF) were incorporated at 2% levels in pork meat emulsions prepared with 5%, 10% and 20% fat levels. Alkaline-treatment markedly increased acid detergent fiber content ( p =0.002), but significantly decreased protein, fat, ash and other carbohydrate contents. ASF exhibited significantly higher water-binding capacity, but lower oil-binding and emulsifying capacities than CSF. Meat emulsions formulated with 10% fat and 2% sugarcane bagasse fiber had equivalent cooking loss and textural properties to control meat emulsion (20% fat without sugarcane bagasse fiber). The two types of sugarcane bagasse fiber had similar impacts on proximate composition, cooking yield and texture of meat emulsion at the same fat level, respectively ( p >0.05). Our results confirm that sugarcane bagasse fiber could be a functional food ingredient for improving physicochemical and textural properties of meat emulsion, at 2% addition level. Further, the altered functional properties of alkaline-treated sugarcane bagasse fiber had no impacts on physicochemical and textural properties of meat emulsions, regardless of fat level at 5%, 10% and 20%.

  18. Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen.

    PubMed

    Dong, Yingbo; Lin, Hai; He, Yinhai

    2017-03-01

    The physicochemical properties of the 24 modified clinoptilolite samples and their ammonia-nitrogen removal rates were measured to investigate the correlation between them. The modified clinoptilolites obtained by acid modification, alkali modification, salt modification, and thermal modification were used to adsorb ammonia-nitrogen. The surface area, average pore width, macropore volume, mecropore volume, micropore volume, cation exchange capacity (CEC), zeta potential, silicon-aluminum ratios, and ammonia-nitrogen removal rate of the 24 modified clinoptilolite samples were measured. Subsequently, the linear regression analysis method was used to research the correlation between the physicochemical property of the different modified clinoptilolite samples and the ammonia-nitrogen removal rate. Results showed that the CEC was the major physicochemical property affecting the ammonia-nitrogen removal performance. According to the impacts from strong to weak, the order was CEC > silicon-aluminum ratios > mesopore volume > micropore volume > surface area. On the contrary, the macropore volume, average pore width, and zeta potential had a negligible effect on the ammonia-nitrogen removal rate. The relational model of physicochemical property and ammonia-nitrogen removal rate of the modified clinoptilolite was established, which was ammonia-nitrogen removal rate = 1.415[CEC] + 173.533 [macropore volume] + 0.683 [surface area] + 4.789[Si/Al] - 201.248. The correlation coefficient of this model was 0.982, which passed the validation of regression equation and regression coefficients. The results of the significance test showed a good fit to the correlation model.

  19. Structural Design and Physicochemical Foundations of Hydrogels for Biomedical Applications.

    PubMed

    Li, Qingyong; Ning, Zhengxiang; Ren, Jiaoyan; Liao, Wenzhen

    2018-01-01

    Biomedical research, known as medical research, is conducive to support and promote the development of knowledge in the field of medicine. Hydrogels have been extensively used in many biomedical fields due to their highly absorbent and flexible properties. The smart hydrogels, especially, can respond to a broad range of external stimuli such as temperature, pH value, light, electric and magnetic fields. With excellent biocompatibility, tunable rheology, mechanical properties, porosity, and hydrated molecular structure, hydrogels are considered as promising candidate for simulating local tissue microenvironment. In this review article, we mainly focused on the most recent development of engineering synthetic hydrogels; moreover, the classification, properties, especially the biomedical applications including tissue engineering and cell scaffolding, drug and gene delivery, immunotherapies and vaccines, are summarized and discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Charge-switching amino acids-based cationic lipids for efficient gene delivery.

    PubMed

    Zheng, Li-Ting; Yi, Wen-Jing; Liu, Qiang; Su, Rong-Chuan; Zhao, Zhi-Gang

    2015-12-15

    A series of charge-switching amino acids-based cationic lipids 4a-4e bearing a benzyl ester at the terminus of the acyl chain, but differing in the polar-head group were prepared. The physicochemical properties of these lipids, including size, zeta potential and cellular uptake of the lipoplexes formed from with DNA, as well as the transfection efficiency (TE), were investigated. The results showed that the chemical structure of the cationic head-group clearly affects the physicochemical parameters of the amino acid-based lipids and especially the TE. The selected lipid, 4c gave 2.1 times higher TE than bPEI 25k in the presence of 10% serum in HeLa cells, with little toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Physicochemical Investigation of 2,4,5-Trimethoxybenzylidene Propanedinitrile (TMPN) Dye as Fluorescence off-on Probe for Critical Micelle Concentration (CMC) of SDS and CTAB.

    PubMed

    Khan, Salman A; Asiri, Abdullah M

    2015-11-01

    2,4,5-trimethoxybenzylidene propanedinitrile (TMPN) was synthesized by Knoevenagel condensation. Structure of the TMPN was conformed by the elemental analysis and EI-MS, FT-IR, (1)H-NMR, (13)C-NMR spectroscopy. Absorbance and emission spectrum of the TMPN was studied in different solvent provide that TMPN is good absorbent and emission red shift in absorbance and emission spectra as polarity of the solvents increase. Photophysical properties including, oscillator strength, extinction coefficient, transition dipole moment, stokes shift and fluorescence quantum yield were investigated in order to investigate the physicochemical behaviors of TMPN. Dye undergoes solubilization in different micelles and may be used as a probe to determine the critical micelle concentration (CMC) of SDS and CTAB.

  2. [Studies on the chemical constituents of the fruit of Xylocarpus granatum].

    PubMed

    Cheng, Fan; Zhou, Yuan; Zou, Kun; Wu, Jun

    2009-08-01

    To study the chemical constituents of the fruit of Xylocarpus granatum. The chemical constituents were isolated by chromatographic methods and their structures were elucidated by NMR spectra and physicochemical properties. Ten compounds were isolated from the fruit of Xylocarpus granatum and the structures of them were identified as spicatin (1), xyloccensin K(2), 6-acetoxycedrodorin (3), aurantiamide acetate (4), (+)-catechin (5), alpha-tocopherol (6), abscisic acid (7), daucosterol (8), 4-hydroxybenzoic acid (9) and ethyl 3,4-dihydroxybenzoate (10). Compound 4 -10 are isolated from this plant for the first time.

  3. Precise replication of antireflective nanostructures from biotemplates

    NASA Astrophysics Data System (ADS)

    Gao, Hongjun; Liu, Zhongfan; Zhang, Jin; Zhang, Guoming; Xie, Guoyong

    2007-03-01

    The authors report herein a new type of nanonipple structures on the cicada's eye and the direct structural replication of the complex micro- and nanostructures for potential functional emulation. A two-step direct molding process is developed to replicate these natural micro- and nanostructures using epoxy resin with high fidelity, which demonstrates a general way of fabricating functional nanostructures by direct replication of natural biotemplates via a suitable physicochemical process. Measurements of spectral reflectance showed that this kind of replicated nanostructure has remarkable antireflective property, suggestive of its potential applications to optical devices.

  4. Influence of homogenization treatment on physicochemical properties and enzymatic hydrolysis rate of pure cellulose fibers.

    PubMed

    Jacquet, N; Vanderghem, C; Danthine, S; Blecker, C; Paquot, M

    2013-02-01

    The aim of this study is to compare the effect of different homogenization treatments on the physicochemical properties and the hydrolysis rate of a pure bleached cellulose. Results obtained show that homogenization treatments improve the enzymatic hydrolysis rate of the cellulose fibers by 25 to 100 %, depending of the homogenization treatment applied. Characterization of the samples showed also that homogenization had an impact on some physicochemical properties of the cellulose. For moderate treatment intensities (pressure below 500 b and degree of homogenization below 25), an increase of water retention values (WRV) that correlated to the increase of the hydrolysis rate was highlighted. Result also showed that the overall crystallinity of the cellulose properties appeared not to be impacted by the homogenization treatment. For higher treatment intensities, homogenized cellulose samples developed a stable tridimentional network that contributes to decrease cellulase mobility and slowdown the hydrolysis process.

  5. Presence of Fluorescent Carbon Nanoparticles in Baked Lamb: Their Properties and Potential Application for Sensors.

    PubMed

    Wang, Haitao; Xie, Yisha; Liu, Shan; Cong, Shuang; Song, Yukun; Xu, Xianbing; Tan, Mingqian

    2017-08-30

    The presence of nanoparticles in food has drawn much attention in recent years. Fluorescent carbon nanoparticles are a new class of nanostructures; however, the distribution and physicochemical properties of such nanoparticles in food remain unclear. Herein, the presence of fluorescent carbon nanoparticles in baked lamb was confirmed, and their physicochemical properties were investigated. The fluorescent carbon nanoparticles from baked lamb emit strong blue fluorescence under ultraviolet light with a 10% fluorescent quantum yield. The nanoparticles are roughly spherical in appearance with a diameter of around 2.0 nm. Hydroxyl, amino, and carboxyl groups exist on the surface of nanoparticles. In addition, the nanoparticles could serve as a fluorescence sensor for glucose detection through an oxidation-reduction reaction. This work is the first report on fluorescent carbon nanoparticles present in baked lamb, which provides valuable insight into the physicochemical properties of such nanoparticles and their potential application in sensors.

  6. Research and Development of Methods for Estimating Physicochemical Properties of Organic Compounds of Environmental Concern

    DTIC Science & Technology

    1979-02-01

    coefficient (at equilibrium) when hysteresis is apparent. 6. Coefficient n in Freundlich equation for 1/n soil or sediment adsorption isotherms ýX - KC . 7...Biodegradation Chemical structures cal clasaes (e.g., Diffusion Correlations phenols). General Diffusion coefficients Equations terms for organic...OF THE FATE AND TRANSPORT OF ORGANIC CHEMICALS Adsorption coefficients: K, n* from Freundlich equation + Desorption coefficients: K’*, n’* from

  7. Spatial and vertical distribution of soil physico-chemical properties and the content of heavy metals in the pedosphere in Poland

    Treesearch

    Marek Degorski

    1998-01-01

    The lithological and petrographical characteristics of soil pedogenesis was determined, and the spatial and vertical distribution of some soil physico-chemical properties (including heavy metal content) were studied along two transects in Poland. The genetic horizon for 22 soil profiles were described for particle size and petrographic composition, quartz grain...

  8. An FPGA Implementation to Detect Selective Cationic Antibacterial Peptides

    PubMed Central

    Polanco González, Carlos; Nuño Maganda, Marco Aurelio; Arias-Estrada, Miguel; del Rio, Gabriel

    2011-01-01

    Exhaustive prediction of physicochemical properties of peptide sequences is used in different areas of biological research. One example is the identification of selective cationic antibacterial peptides (SCAPs), which may be used in the treatment of different diseases. Due to the discrete nature of peptide sequences, the physicochemical properties calculation is considered a high-performance computing problem. A competitive solution for this class of problems is to embed algorithms into dedicated hardware. In the present work we present the adaptation, design and implementation of an algorithm for SCAPs prediction into a Field Programmable Gate Array (FPGA) platform. Four physicochemical properties codes useful in the identification of peptide sequences with potential selective antibacterial activity were implemented into an FPGA board. The speed-up gained in a single-copy implementation was up to 108 times compared with a single Intel processor cycle for cycle. The inherent scalability of our design allows for replication of this code into multiple FPGA cards and consequently improvements in speed are possible. Our results show the first embedded SCAPs prediction solution described and constitutes the grounds to efficiently perform the exhaustive analysis of the sequence-physicochemical properties relationship of peptides. PMID:21738652

  9. Characterization of rice physicochemical properties local rice germplasm from Tana Toraja regency of South Sulawesi

    NASA Astrophysics Data System (ADS)

    Masniawati, A.; Marwah Asrul, Nur Al; Johannes, E.; Asnady, M.

    2018-03-01

    The research about the characterization of physicochemical properties from local rice germplasm of Tana Toraja’s Regency, South Sulawesi aims to determine the physicochemical properties of rice as a parameter to indicate the quality of cooking. Local varieties categorized as germplasm that needs to be protected for future varietal improvement.In this research, the researchers used seven varieties of local rice. The parameters analyzed including physicochemical properties of amylose content, protein content, gel consistency, and gelatinization temperature. Percentage of amylose content ranged from 2 to 18 %. Pare Bumbungan and Pare Lalodo are categorized as waxy rice and Pare Ambo, Pare Bau, Pare Kobo, Pare Rogon and Pare Tallang are categorized as low amylose content. The percentage of protein content ranged from 7.3 to 9.5 %. Gelatinization temperature of rice showed high gelatinization temperature. Pare Bumbungan, Pare Kobo, Pare Lalodo, and Pare Rogon are categorized as soft gel consistency (˃50 mm). Pare Ambo, Pare Bau and Pare Tallang are categorized as medium gel consistency (36-50m). Pare Rogon and Pare Kobo are two kinds of rice varieties according to the quality of cooking criteria for consumers in Indonesia.

  10. Physicochemical and Antioxidant Properties of Rice Bran Oils Produced from Colored Rice Using Different Extraction Methods.

    PubMed

    Mingyai, Sukanya; Kettawan, Aikkarach; Srikaeo, Khongsak; Singanusong, Riantong

    2017-06-01

    This study investigated the physicochemical and antioxidant properties of rice bran oil (RBO) produced from the bran of three rice varities; Khao Dawk Mali 105 (white rice), Red Jasmine rice (red rice) and Hom-nin rice (black rice) using three extraction methods including cold-press extraction (CPE), solvent extraction (SE) and supercritical CO 2 extraction (SC-CO 2 ). Yields, color, acid value (AV), free fatty acid (FFA), peroxide value (PV), iodine value (IV), total phenolic compound (TPC), γ-oryzanol, α-tocopherol and fatty acid profile were analyzed. It was found that the yields obtained from SE, SC-CO 2 and CPE extractions were 17.35-20.19%, 14.76-18.16% and 3.22-6.22%, respectively. The RBO from the bran of red and black rice samples exhibited high antioxidant activities. They also contained higher amount of γ-oryzanol and α-tocopherol than those of white rice sample. In terms of extraction methods, SC-CO 2 provided better qualities of RBO as evidenced by their physicochemical and antioxidant properties. This study found that RBO produced from the bran of black rice samples using SC-CO 2 extraction method showed the best physicochemical and antioxidant properties.

  11. Recent advances in the application of microbial transglutaminase crosslinking in cheese and ice cream products: A review.

    PubMed

    Taghi Gharibzahedi, Seyed Mohammad; Koubaa, Mohamed; Barba, Francisco J; Greiner, Ralf; George, Saji; Roohinejad, Shahin

    2018-02-01

    Microbial transglutaminase (MTGase) has been currently utilized to form new food structures and matrices with high physicochemical stability. Incorporation of this multi-functional enzyme into structural composition of milk protein-based products, such as cheese and ice cream, can not only be a successful strategy to improve their nutritional and technological characteristics through intramolecular cross-linking, but also to reduce the production cost by decreasing fat and stabilizer contents. The recent research developments and promising results of MTGase application in producing functional formulations of cheese and ice cream with higher quality characteristics are reviewed. New interesting insights and future perspectives are also presented. The addition of MTGase to cheese led to significant improvements in moisture, yield, texture, rheology and sensory properties, without changes in the chemical composition. Furthermore, pH value of ice cream is not affected by the MTGase treatment. Compared to untreated ice creams, application of MTGase significantly promotes consistency, fat destabilization, overrun and organoleptic acceptance, while a substantial reduction in firmness and melting rate of samples was observed. The addition of MTGase to cheese and ice cream-milk provides reinforcement to the protein matrix and can be considered as a novel additive for improving the physicochemical and organoleptic properties of final products. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fuzzy cluster analysis of simple physicochemical properties of amino acids for recognizing secondary structure in proteins.

    PubMed Central

    Mocz, G.

    1995-01-01

    Fuzzy cluster analysis has been applied to the 20 amino acids by using 65 physicochemical properties as a basis for classification. The clustering products, the fuzzy sets (i.e., classical sets with associated membership functions), have provided a new measure of amino acid similarities for use in protein folding studies. This work demonstrates that fuzzy sets of simple molecular attributes, when assigned to amino acid residues in a protein's sequence, can predict the secondary structure of the sequence with reasonable accuracy. An approach is presented for discriminating standard folding states, using near-optimum information splitting in half-overlapping segments of the sequence of assigned membership functions. The method is applied to a nonredundant set of 252 proteins and yields approximately 73% matching for correctly predicted and correctly rejected residues with approximately 60% overall success rate for the correctly recognized ones in three folding states: alpha-helix, beta-strand, and coil. The most useful attributes for discriminating these states appear to be related to size, polarity, and thermodynamic factors. Van der Waals volume, apparent average thickness of surrounding molecular free volume, and a measure of dimensionless surface electron density can explain approximately 95% of prediction results. hydrogen bonding and hydrophobicity induces do not yet enable clear clustering and prediction. PMID:7549882

  13. Different behavioral effect dose–response profiles in mice exposed to two-carbon chlorinated hydrocarbons: Influence of structural and physical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umezu, Toyoshi, E-mail: umechan2@nies.go.jp; Shibata, Yasuyuki, E-mail: yshibata@nies.go.jp

    2014-09-01

    The present study aimed to clarify whether dose–response profiles of acute behavioral effects of 1,2-dichloroethane (DCE), 1,1,1-trichloroethane (TCE), trichloroethylene (TRIC), and tetrachloroethylene (PERC) differ. A test battery involving 6 behavioral endpoints was applied to evaluate the effects of DCE, TCE, TRIC, and PERC in male ICR strain mice under the same experimental conditions. The behavioral effect dose–response profiles of these compounds differed. Regression analysis was used to evaluate the relationship between the dose–response profiles and structural and physical properties of the compounds. Dose–response profile differences correlated significantly with differences in specific structural and physical properties. These results suggest that differencesmore » in specific structural and physical properties of DCE, TCE, TRIC, and PERC are responsible for differences in behavioral effects that lead to a variety of dose–response profiles. - Highlights: • We examine effects of 4 chlorinated hydrocarbons on 6 behavioral endpoints in mice. • The behavioral effect dose–response profiles for the 4 compounds are different. • We utilize regression analysis to clarify probable causes of the different profiles. • The compound's physicochemical properties probably produce the different profiles.« less

  14. Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides.

    PubMed

    Ballesteros, Lina F; Cerqueira, Miguel A; Teixeira, José A; Mussatto, Solange I

    2018-01-01

    Extracts rich in polysaccharides were obtained by alkali pretreatment (PA) or autohydrolysis (PB) of spent coffee grounds, and incorporated into a carboxymethyl cellulose (CMC)-based film aiming at the development of bio-based films with new functionalities. Different concentrations of PA or PB (up to 0.20% w/v) were added to the CMC-based film and the physicochemical properties of the final films were determined. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, as well as determinations of optical and mechanical properties, moisture content, solubility in water, water vapor permeability, contact angle and sorption isotherms were performed. The addition of PA or PB resulted in important changes in the properties of the CMC-based film, mainly in color and opacity. The polysaccharides incorporation significantly improved the light barrier of the film and provided an enhancement or at least a preservation in the physicochemical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis and physico-chemical characterization of a polysialate-hydroxyapatite composite for potential biomedical application

    NASA Astrophysics Data System (ADS)

    Zoulgami, M.; Lucas-Girot, A.; Michaud, V.; Briard, P.; Gaudé, J.; Oudadesse, H.

    2002-09-01

    New composite materials based on aluminosilicate materials were developed to be used in orthopaedic or maxillo-facial surgery. They are called geopolymers or polysialate-siloxo (PSS) and were studied alone or mixed with hydroxyapatite (HAP). The properties of these materials were investigated for potential use in biological or surgery applications. In this work, the chemistry involved in materials preparation was described. Samples were characterized by some physico-chemical methods like X-ray diffraction (XRD), infrared spectrometry (IR) and electron dispersion X-ray spectrometry (EDX). Results indicate that the mixing hydroxyapatite-geopolymer (PSS) leads to a neutral porous composite material with interesting physico-chemical properties. A preliminary evaluation of its cytotoxicity reveals an harmlessness towards fibroblasts. These properties allow to envisage this association as a potential biomaterial.

  16. Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications in Catalyst, Sensing, Imaging, and LEDs

    NASA Astrophysics Data System (ADS)

    Wang, Aiwu; Wang, Chundong; Fu, Li; Wong-Ng, Winnie; Lan, Yucheng

    2017-10-01

    The graphitic carbon nitride (g-C3N4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C3N4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are "earth-abundant." This review summarizes the latest progress related to the design and construction of g-C3N4-based materials and their applications including catalysis, sensing, imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C3N4-based research for emerging properties and applications is also included.

  17. Two glycine containing 2-chloroethylnitrosoureas--a comparative study on some physicochemical properties, in vivo antimelanomic effects and immunomodulatory properties.

    PubMed

    Zheleva, A; Stanilova, S; Dobreva, Z; Zhelev, Z

    2001-07-17

    Physicochemical properties such as alkylating and carbamoylating activity and in vivo antimelanomic effects against B16 melanoma of the spin labeled (nitroxyl free radical containing) glycine nitrosourea (SLCNUgly) and its nonlabeled analogue (ChCNUgly), synthesized in our laboratory are studied and compared to those of antitumour drug 3-cyclohexyl-1-(2-chloroethyl)-1-nitrosourea (CCNU). We have demonstrated that introducing of glycine moiety in the nitrosourea structure in practice does not affect either alkylating or carbamoylating activity. On the other hand replacement of cyclohexyl moiety in ChCNUgly structure with nitroxyl free radical leads to a decrease in carbamoylating activity and an increase in alkylating activity. Compound ChCNUgly showed in vivo a higher antimelanomic activity against B16 melanoma in comparison with CCNU and SLCNUgly. It completely inhibited B16 melanoma growth (TGI=100%) at a dose 64.0 mg/kg. Moreover, we established that joint i.p. application in normal mice of SLCNUgly plus a new immunostimulator (C3bgp) formerly isolated in our laboratory led to a 75% restoration in immune function with respect to antibody production measured by Jerne hemolytic plaque assay. In contrast, no immunostimulation was found after joint application of C3bgp plus ChCNUgly or CCNU at the same experimental conditions. Based on these preliminary results, a possibility for developing of new combination immunochemotherapy schemes for treatment of human cancers is discussed.

  18. Impact of Sulfuric Acid Treatment of Halloysite on Physico-Chemic Property Modification.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H; Nassir, Mohamed H; Al-Amiery, Ahmed A

    2016-07-26

    Halloysite (HNT) is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1), 3 h (H3), 8 h (H8), and 21 h (H21). The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD) spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO₆ octahedral layers and induces the disintegration of SiO₄ tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET) surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO₆ octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO₄. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites.

  19. Effects of oxidation on the plasmonic properties of aluminum nanoclusters.

    PubMed

    Douglas-Gallardo, Oscar A; Soldano, Germán J; Mariscal, Marcelo M; Sánchez, Cristián Gabriel

    2017-11-16

    The scouting of alternative plasmonic materials able to enhance and extend the optical properties of noble metal nanostructures is on the rise. Aluminum is endowed with a set of interesting properties which turn it into an attractive plasmonic material. Here we present the optical and electronic features of different aluminum nanostructures stemming from a multilevel computational study. Molecular Dynamics (MD) simulations using a reactive force field (ReaxFF), carefully validated with Density Functional Theory (DFT), were employed to mimic the oxidation of icosahedral aluminum nanoclusters. Resulting structures with different oxidation degrees were then studied through the Time-Dependent Density Functional Tight Binding (TD-DFTB) method. A similar approach was used in aluminum nanoclusters with a disordered structure to study how the loss of crystallinity affects the optical properties. To the best of our knowledge, this is the first report that addresses this issue from the fully atomistic time-dependent approach by means of two different and powerful simulation tools able to describe quantum and physicochemical properties associated with nanostructured particles.

  20. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy.

    PubMed

    Huang, Zhen-Feng; Song, Jiajia; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2015-09-23

    The conversion, storage, and utilization of renewable energy have all become more important than ever before as a response to ever-growing energy and environment concerns. The performance of energy-related technologies strongly relies on the structure and property of the material used. The earth-abundant family of tungsten oxides (WOx ≤3 ) receives considerable attention in photocatalysis, electrochemistry, and phototherapy due to their highly tunable structures and unique physicochemical properties. Great breakthroughs have been made in enhancing the optical absorption, charge separation, redox capability, and electrical conductivity of WOx ≤3 through control of the composition, crystal structure, morphology, and construction of composite structures with other materials, which significantly promotes the efficiency of processes and devices based on this material. Herein, the properties and synthesis of WOx ≤3 family are reviewed, and then their energy-related applications are highlighted, including solar-light-driven water splitting, CO2 reduction, and pollutant removal, electrochromism, supercapacitors, lithium batteries, solar and fuel cells, non-volatile memory devices, gas sensors, and cancer therapy, from the aspect of function-oriented structure design and control. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of countercations on the structures and redox and spectroscopic properties of diruthenium catecholate complexes with ligand-unsupported Ru-Ru bonds.

    PubMed

    Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu

    2005-05-30

    The molecular structures and physicochemical properties of diruthenium complexes with ligand-unsupported Ru-Ru bonds, generally formulated as [A2{Ru2(DTBCat)4}] (DTB = 3,5- or 3,6-di-tert-butyl; Cat(2-) = catecholate), were studied in detail by changing the countercations. First, the binding structures of the cations in a family of [{A(DME)n}2{Ru2(3,5-DTBCat)4}] (n = 2 for A+ = Li+ and Na+ and n = 1 for A+ = K+ and Rb+) were systematically examined to reveal the effects of the cations on the molecular structures and electrochemical properties. Second, the complex (n-Bu4N)2[Ru2(3,6-DTBCat)4] with a cation-free structure was synthesized using tetra-n-butylammonium cations. The complex clearly demonstrates first that the ligand-unsupported Ru-Ru bonds are essentially stabilized by the dianionic nature of the catecholate derivatives without any other bridging or supporting species. In contrast, the redox potentials and absorption spectra of the complexes can sensitively respond to the countercations depending upon the polarity of the solvents.

  2. Physicochemical signatures of natural surfactant sea films from coastal Middle Adriatic stations

    NASA Astrophysics Data System (ADS)

    Frka, Sanja; Pogorzelski, Stanislaw; Kozarac, Zlatica; Ćosović, Božena

    2013-04-01

    Boundary layers between different environmental compartments represent critical interfaces for biological, chemical and physical processes. The sea surface microlayer (SSM) as a top layer of the sea surface represents natural interface between the atmosphere and ocean. Although < 1 mm in thickness the SML plays a key role in the global biogeochemical cycling because all gaseous, liquid and particulate materials must pass through this interface when exchanging between the ocean and the atmosphere. The SSM thus represents a very important driver enhancing air-water exchange processes. A variety of natural and anthropogenic organic compounds, particularly those which are surface active (SA) are generally enriched in the SML. It is widely acknowledged that the SSM is complex matrix of SA organics as carbohydrates, proteins, lipids and humic substances. Although lipid material is much less abundant than carbohydrates and proteins in the SML, their contribution to surface activity may be disproportionately large. The surfactant films at the air-sea interface change its physicochemical properties reducing air-sea exchange possesses by impeding molecular diffusion across the interface and influencing the hydrodynamic characteristics of water motion at the interface. Various biological, chemical and physical processes lead to the alteration of the film chemical composition, surface physical properties, surface concentration and spatial distribution of film-forming components. Instead of analyzing its chemical composition, it should be possible to scale the SML surface pressure-area (π-A) isotherms in terms of structural parameters which appear to be a sensitive and quantitative measure of the film physicochemical composition, surface concentration and miscibility of its film-forming components. We will present a large data set obtained by electrochemical and monolayer techniques, accompanied with the novel scaling approach for physicochemical characterization of SA substances of the natural microlayers from coastal Middle Adriatic stations including saline Rogoznica Lake and Krka river estuarine station. Higher primary production during late spring-early autumn is reflected in the presence of microlayers of higher surfactant activity containing on average molecules of lower molecular masses (Mw=0.65±0.27 kDa) and higher miscibility (y=6.46±1.33) and elasticity (E=18.33±2.02 mN/m) modulus in comparison to structural parameters (average Mw=2.15±1.58 kDa; y=3.51±1.46; E=6.41±1.97 mN/m) obtained for microlayers from period of lower organic matter production. Higher inhibition effect on the reduction process of cadmium ions is observed for natural microlayers abundant with SA material from more productive period. This kind of distribution is explained as the consequence of competitive adsorption of hydrophobic lipid-like substances of lower Mw which highly influence the surface structural properties of natural air-water interface forming there segregated surface films during more productive period. This study will offer different perspective on contemporary SML concept taking into account the lipids that act as end-members highly influencing seasonal change of SA concentration and surface structural properties of natural films at the air-water interface.

  3. Synthesis, characterization and assembly of metal pnictide nanoparticles, and evaluation of their physicochemical (catalytic, magnetic, and semiconducting) properties

    NASA Astrophysics Data System (ADS)

    Senevirathne, Keerthisinghe

    Synthesis of transition metal phosphide (Ni2P) and arsenide (MnAs) discrete nanoparticles was conducted by following a solution-phase arrested precipitation route and the size- and structure-dependent physicochemical properties of these materials were explored. Furthermore, the assembly of metal phosphide nanoparticles into a network structure via a sol-gel process and the evaluation of their structure related properties also was conducted. The surface ligation chemistry of unsupported Ni2P nanoparticles prepared by arrested precipitation was found to strongly impact the structural integrity and the hydrodesulfurization (HDS) catalytic activity of Ni 2P nanoparticles. The HDS activity of unsupported surface modified Ni2P nanoparticles is higher than that of unsupported Ni2P prepared by temperature programmed reduction (TPR) but considerably lower than silica-supported Ni2P prepared by TPR. However, by supporting the pre-formed Ni 2P nanoparticles on silica, activity comparable to that of silica-supported Ni2P prepared by TPR can be achieved. The synthetic control offered by the Ni2P nanoparticle preparation, not achieved by TPR methods, is expected to enable a systematic study of particle size and shape effects on HDS activity. By using arrested precipitation reactions, for the first time, discrete and dispersible MnAs nanoparticles have been prepared and their magnetic properties evaluated. Syntheses were developed to target both the thermodynamically stable alpha-type (hexagonal) and the metastable beta-type (orthorhombic) MnAs nanoparticles. Surprisingly, both types of ˜25 nm particles exhibit nearly identical ferromagnetic behavior with blocking temperatures, T B, in the region ˜275-310 K, TC's of 315 K and room temperature coercivities of HC ˜ 190-320 Oe. No evidence of the expected structural transition from alpha to beta-MnAs at TC is observed. Oxidative sol-gel assembly of nanoparticles to make nanoparticulate gels was successfully employed to Ni2P nanoparticles, and further extended to MnP and InP nanoparticles, for the first time. The gels were transformed into highly porous, high surface area (175-270 m2/g) 3-D structures (aerogels) via CO2 supercritical drying. Relative to discrete nanoparticles, Ni2P aerogels are less active to HDS, MnP aerogels have similar magnetic properties, and InP aerogels exhibit a greater degree of quantum confinement.

  4. OPERA models for predicting physicochemical properties and environmental fate endpoints.

    PubMed

    Mansouri, Kamel; Grulke, Chris M; Judson, Richard S; Williams, Antony J

    2018-03-08

    The collection of chemical structure information and associated experimental data for quantitative structure-activity/property relationship (QSAR/QSPR) modeling is facilitated by an increasing number of public databases containing large amounts of useful data. However, the performance of QSAR models highly depends on the quality of the data and modeling methodology used. This study aims to develop robust QSAR/QSPR models for chemical properties of environmental interest that can be used for regulatory purposes. This study primarily uses data from the publicly available PHYSPROP database consisting of a set of 13 common physicochemical and environmental fate properties. These datasets have undergone extensive curation using an automated workflow to select only high-quality data, and the chemical structures were standardized prior to calculation of the molecular descriptors. The modeling procedure was developed based on the five Organization for Economic Cooperation and Development (OECD) principles for QSAR models. A weighted k-nearest neighbor approach was adopted using a minimum number of required descriptors calculated using PaDEL, an open-source software. The genetic algorithms selected only the most pertinent and mechanistically interpretable descriptors (2-15, with an average of 11 descriptors). The sizes of the modeled datasets varied from 150 chemicals for biodegradability half-life to 14,050 chemicals for logP, with an average of 3222 chemicals across all endpoints. The optimal models were built on randomly selected training sets (75%) and validated using fivefold cross-validation (CV) and test sets (25%). The CV Q 2 of the models varied from 0.72 to 0.95, with an average of 0.86 and an R 2 test value from 0.71 to 0.96, with an average of 0.82. Modeling and performance details are described in QSAR model reporting format and were validated by the European Commission's Joint Research Center to be OECD compliant. All models are freely available as an open-source, command-line application called OPEn structure-activity/property Relationship App (OPERA). OPERA models were applied to more than 750,000 chemicals to produce freely available predicted data on the U.S. Environmental Protection Agency's CompTox Chemistry Dashboard.

  5. Bioplastics from microorganisms.

    PubMed

    Luengo, José M; García, Belén; Sandoval, Angel; Naharro, Germán; Olivera, Elías R

    2003-06-01

    The term 'biomaterials' includes chemically unrelated products that are synthesised by microorganisms (or part of them) under different environmental conditions. One important family of biomaterials is bioplastics. These are polyesters that are widely distributed in nature and accumulate intracellularly in microorganisms in the form of storage granules, with physico-chemical properties resembling petrochemical plastics. These polymers are usually built from hydroxy-acyl-CoA derivatives via different metabolic pathways. Depending on their microbial origin, bioplastics differ in their monomer composition, macromolecular structure and physical properties. Most of them are biodegradable and biocompatible, which makes them extremely interesting from the biotechnological point of view.

  6. The preparation of low electroendosmosis agarose and its physico-chemical property

    NASA Astrophysics Data System (ADS)

    Hu, Rugui; Liu, Xiaolei; Liu, Li; Zhang, Quanbin; Zhang, Hong; Niu, Xizhen

    2007-10-01

    Studies on Gelidium amansii agar fractionations were carried out in this paper. Gelidium amansii agar was fractionated on DEAE-Cellulose, and four fractions were obtained sequentially. The fractions were analyzed on physical and chemical properties, and IR and 13C-NMR spectroscopy applied for elucidating the chemical structure. Among the four fractions obtained, water fraction measured up to the standard of low EEO agarose. The sulfate content, ash content, electroendosmosis and gel strength (1%) of water fraction were 0.16%, 0.34%, 0.12 and 1 130g/cm2 respectively, similar to those of the Sigma products.

  7. Physicochemical and optical properties of combustion-generated particles from Ship Diesel Engines

    NASA Astrophysics Data System (ADS)

    Kim, H.; Jeong, S.; Jin, H. C.; Kim, J. Y.

    2015-12-01

    Shipping contributes significantly to the anthropogenic burden of particulate matter (PM), and is among the world's highest polluting combustion sources per fuel consumed. Moreover, ships are a highly concentrated source of pollutants which are emitted into clean marine environments (e.g., Artic region). Shipping utilizes heavy fuel oil (HFO) which is less distilled compared to fuels used on land and few investigations on shipping related PM properties are available. BC is one of the dominant combustion products of ship diesel engines and its chemical and microphysical properties have a significant impact on climate by influencing the amount of albedo reduction on bright surfaces such as in polar regions. We have carried out a campaign to characterize the PM emissions from medium-sized marine engines in Gunsan, Jeonbuk Institute of Automotive Technology. The properties of ship-diesel PM have characterized depending on (1) fuel sulfur content (HFO vs. ULSD) and (2) engine conditions (Running state vs. Idling state). Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX) equipped with HRTEM and Raman spectroscopy were used for physicochemical analysis. Optical properties, which are ultimately linked to the snow/ice albedo decrease impacting climate, were assessed as well. PM generated under high engine temperature conditions had typical features of soot, e.g., concentric circles comprised of closely packed graphene layers, however PM generated by the idling state at low combustion temperature was characterized by amorphous and droplet-like carbonaceous particles with no crystalline structure. Significant differences in optical properties depending on the combustion conditions were also observed. Particles from running conditions showed wavelength-independent absorbing properties, whereas the particles from idling conditions showed enhanced absorption at shorter wavelengths, which is characteristic of brown carbon. Regarding different fuel types, distinctive structure differences were not observed, but EDX results showed that PM generated by HFO combustion has sulfur content in PM whereas ULSD generated 100% carbon composed PM.

  8. Ferrocene-pyrimidine conjugates: Synthesis, electrochemistry, physicochemical properties and antiplasmodial activities.

    PubMed

    Chopra, Rakesh; de Kock, Carmen; Smith, Peter; Chibale, Kelly; Singh, Kamaljit

    2015-07-15

    The promise of hybrid antimalarial agents and the precedence set by the antimalarial drug ferroquine prompted us to design ferrocene-pyrimidine conjugates. Herein, we report the synthesis, electrochemistry and anti-plasmodial evaluation of ferrocenyl-pyrimidine conjugates against chloroquine susceptible NF54 strain of the malaria parasite Plasmodium falciparum. Also their physicochemical properties have been studied. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Structural characterization and physicochemical properties of protein extracted from soybean meal assisted by steam flash-explosion with dilute acid soaking.

    PubMed

    Zhang, Yanpeng; Yang, Ruijin; Zhang, Weinong; Hu, Zhixiong; Zhao, Wei

    2017-03-15

    The aim of this work was to analyze the influence of steam flash-explosion (SFE) with dilute acid soaking pretreatment on the structural characteristics and physiochemical properties of protein from soybean meal (SBM). The pretreatment led to depolymerisation of soy protein isolate (SPI) and formation of new protein aggregation through non-disulfide covalent bonds, which resulted in broader MW distribution of SPI. The analysis of CD spectroscopy showed that the SFE treatment induced minor changes in secondary structure, however, the intrinsic tryptophan fluorescence revealed that acid soaking and SFE treatment pronouncedly altered the tertiary structure of SPI. The protein zeta potential was shown to be increased after SFE treatment attributed to the changes in protein structure and the covalent coupling between carbohydrate and protein. These results contribute to clarifying the mechanisms of the effect of pretreatment on SPI structure, thus moving further toward implementing SFE in the processing chain of SPI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Quality assessment of dried okara as a source of production of gluten-free flour.

    PubMed

    Ostermann-Porcel, María V; Rinaldoni, Ana N; Rodriguez-Furlán, Laura T; Campderrós, Mercedes E

    2017-07-01

    Okara is a by-product of soymilk and of tofu elaboration that is rich in protein, fiber and vegetable oils as a source of gluten-free flour. In order to take advantage of the nutritional characteristics of okara and to be able to determine an appropriate drying methodology, microwave, rotary dryer and freeze-drying were assessed. Furthermore, flour with an enzymatic treatment was characterized as well as its functional, physicochemical, and textural properties. The results showed that the physiochemical characteristics of the flour were affected by the drying process, reaching adequate water content, and high protein and fiber content. The freeze-drying process produced clearer flours with porous structure and high water absorption capacity, and with a higher protein denaturation. Okara dried by microwave and rotary dryer exhibited a denser structure with similar functional properties and improved textural characteristics such as firmness and consistency. The microwave-produced flour was darker due to the non-enzymatic browning reactions. The enzymatic treatment employed improved the consistency of the flour. It was possible to choose the drying process to be applied according to the feasible use of the flour, intended to preserve the favorable nutritional aspects of the okara flour. Based on the results, it can be affirmed that the physicochemical properties and attributes of okara are influenced by the drying process employed. Okara dried by freeze-drying resulted in a better product because it had a low final moisture content and the highest whiteness index. The flour presented a porous structure with high solubility, which is an indicator of potential applications in foods developments. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. In Silico Analysis of the Structural and Biochemical Features of the NMD Factor UPF1 in Ustilago maydis.

    PubMed

    Martínez-Montiel, Nancy; Morales-Lara, Laura; Hernández-Pérez, Julio M; Martínez-Contreras, Rebeca D

    2016-01-01

    The molecular mechanisms regulating the accuracy of gene expression are still not fully understood. Among these mechanisms, Nonsense-mediated Decay (NMD) is a quality control process that detects post-transcriptionally abnormal transcripts and leads them to degradation. The UPF1 protein lays at the heart of NMD as shown by several structural and functional features reported for this factor mainly for Homo sapiens and Saccharomyces cerevisiae. This process is highly conserved in eukaryotes but functional diversity can be observed in various species. Ustilago maydis is a basidiomycete and the best-known smut, which has become a model to study molecular and cellular eukaryotic mechanisms. In this study, we performed in silico analysis to investigate the structural and biochemical properties of the putative UPF1 homolog in Ustilago maydis. The putative homolog for UPF1 was recognized in the annotated genome for the basidiomycete, exhibiting 66% identity with its human counterpart at the protein level. The known structural and functional domains characteristic of UPF1 homologs were also found. Based on the crystal structures available for UPF1, we constructed different three-dimensional models for umUPF1 in order to analyze the secondary and tertiary structural features of this factor. Using these models, we studied the spatial arrangement of umUPF1 and its capability to interact with UPF2. Moreover, we identified the critical amino acids that mediate the interaction of umUPF1 with UPF2, ATP, RNA and with UPF1 itself. Mutating these amino acids in silico showed an important effect over the native structure. Finally, we performed molecular dynamic simulations for UPF1 proteins from H. sapiens and U. maydis and the results obtained show a similar behavior and physicochemical properties for the protein in both organisms. Overall, our results indicate that the putative UPF1 identified in U. maydis shows a very similar sequence, structural organization, mechanical stability, physicochemical properties and spatial organization in comparison to the NMD factor depicted for Homo sapiens. These observations strongly support the notion that human and fungal UPF1 could perform equivalent biological activities.

  12. Influence of food intrinsic complexity on Listeria monocytogenes growth in/on vacuum-packed model systems at suboptimal temperatures.

    PubMed

    Baka, Maria; Noriega, Estefanía; Van Langendonck, Kristof; Van Impe, Jan F

    2016-10-17

    Food intrinsic factors e.g., food (micro)structure, compositional and physicochemical aspects, which are mutually dependent, influence microbial growth. While the effect of composition and physicochemical properties on microbial growth has been thoroughly assessed and characterised, the role of food (micro)structure still remains unravelled. Most studies on food (micro)structure focus on comparing planktonic growth in liquid (microbiological) media with colonial growth in/on solid-like systems or on real food surfaces. However, foods are not only liquids or solids; they can also be emulsions or gelled emulsions and have complex compositions. In this study, Listeria monocytogenes growth was studied on the whole spectrum of (micro)structure, in terms of food (model) systems. The model systems varied not only in (micro)structure, which was the target of the study, but also in compositional and physicochemical characteristics, which was an inevitable consequence of the (micro)structural variability. The compositional and physicochemical differences were mainly due to the presence or absence of fat and gelling agents. The targeted (micro)structures were: i) liquids, ii) aqueous gels, iii) emulsions and iv) gelled emulsions. Furthermore, the microbial dynamics were studied and compared in/on all these model systems, as well as on a compositionally predefined canned meat, developed in order to have equal compositional level to the gelled emulsion model system and represent a real food system. Frankfurter sausages were the targeted real foods, selected as a case study, to which the canned meat had similar compositional characteristics. All systems were vacuum packed and incubated at 4, 8 and 12°C. The most appropriate protocol for the preparation of the model systems was developed. The pH, water activity and resistance to penetration of the model systems were characterised. Results indicated that low temperature contributes to growth variations among the model systems. Additionally, the firmer the solid system, the faster L. monocytogenes grew on it. Finally, it was found that L. monocytogenes grows faster on canned meat and real Frankfurters, as found in a previous study, followed by liquids, aqueous gels, emulsions and gelled emulsions. This observation indicates that all model systems, developed in this study, underestimated L. monocytogenes growth. Despite some limitations, model systems are overall advantageous and therefore, their validation is always recommended prior to further use. Copyright © 2016. Published by Elsevier B.V.

  13. Study of intermolecular interactions in binary mixtures of ethanol in methanol

    NASA Astrophysics Data System (ADS)

    Maharolkar, Aruna P.; Khirade, P. W.; Murugkar, A. G.

    2016-05-01

    Present paper deals with study of physicochemical properties like viscosity, density and refractive index for the binary mixtures of ethanol and methanol over the entire concentration range were measured at 298.15 K. The experimental data further used to determine the excess properties viz. excess molar volume, excess viscosity, excess molar refraction. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure making factor in the mixture predominates in the system.

  14. Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering.

    PubMed

    El-Fiqi, Ahmed; Lee, Jae Ho; Lee, Eun-Jung; Kim, Hae-Won

    2013-12-01

    Collagen (Col) hydrogels have poor physicochemical and mechanical properties and are susceptible to substantial shrinkage during cell culture, which limits their potential applications in hard tissue engineering. Here, we developed novel nanocomposite hydrogels made of collagen and mesoporous bioactive glass nanoparticles (mBGns) with surface amination, and addressed the effects of mBGn addition (Col:mBG = 2:1, 1:1 and 1:2) and its surface amination on the physicochemical and mechanical properties of the hydrogels. The amination of mBGn was shown to enable chemical bonding with collagen molecules. As a result, the nanocomposite hydrogels exhibited a significantly improved physicochemical and mechanical stability. The hydrolytic and enzymatic degradation of the Col-mBGn hydrogels were slowed down due to the incorporation of mBGn and its surface amination. The mechanical properties of the hydrogels, specifically the resistance to loading as well as the stiffness, significantly increased with the addition of mBGn and its aminated form, as assessed by a dynamic mechanical analysis. Mesenchymal stem cells cultivated within the Col-mBGn hydrogels were highly viable, with enhanced cytoskeletal extensions, due to the addition of surface aminated mBGn. While the Col hydrogel showed extensive shrinkage (down to ∼20% of initial size) during a few days of culture, the shrinkage of the mBGn-added hydrogel was substantially reduced, and the aminated mBGn-added hydrogel had no observable shrinkage over 21 days. Results demonstrated the effective roles of aminated mBGn in significantly improving the physicochemical and mechanical properties of Col hydrogel, which are ultimately favorable for applications in stem cell culture for bone tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Molecular-Level Control of Ciclopirox Olamine Release from Poly(ethylene oxide)-Based Mucoadhesive Buccal Films: Exploration of Structure-Property Relationships with Solid-State NMR.

    PubMed

    Urbanova, Martina; Gajdosova, Marketa; Steinhart, Miloš; Vetchy, David; Brus, Jiri

    2016-05-02

    Mucoadhesive buccal films (MBFs) provide an innovative way to facilitate the efficient site-specific delivery of active compounds while simultaneously separating the lesions from the environment of the oral cavity. The structural diversity of these complex multicomponent and mostly multiphase systems as well as an experimental strategy for their structural characterization at molecular scale with atomic resolution were demonstrated using MBFs of ciclopirox olamine (CPX) in a poly(ethylene oxide) (PEO) matrix as a case study. A detailed description of each component of the CPX/PEO films was followed by an analysis of the relationships between each component and the physicochemical properties of the MBFs. Two distinct MBFs were identified by solid-state NMR spectroscopy: (i) at low API (active pharmaceutical ingredient) loading, a nanoheterogeneous solid solution of CPX molecularly dispersed in an amorphous PEO matrix was created; and (ii) at high API loading, a pseudoco-crystalline system containing CPX-2-aminoethanol nanocrystals incorporated into the interlamellar space of a crystalline PEO matrix was revealed. These structural differences were found to be closely related to the mechanical and physicochemical properties of the prepared MBFs. At low API loading, the polymer chains of PEO provided sufficient quantities of binding sites to stabilize the CPX that was molecularly dispersed in the highly amorphous semiflexible polymer matrix. Consequently, the resulting MBFs were soft, with low tensile strength, plasticity, and swelling index, supporting rapid drug release. At high CPX content, however, the active compounds and the polymer chains simultaneously cocrystallized, leaving the CPX to form nanocrystals grown directly inside the spherulites of PEO. Interfacial polymer-drug interactions were thus responsible not only for the considerably enhanced plasticity of the system but also for the exclusive crystallization of CPX in the thermodynamically most stable polymorphic form, Form I, which exhibited reduced dissolution kinetics. The bioavailability of CPX olamine formulated as PEO-based MBFs can thus be effectively controlled by inducing the complete dispersion and/or microsegregation and nanocrystallization of CPX olamine in the polymer matrix. Solid-state NMR spectroscopy is an efficient tool for exploring structure-property relationships in these complex pharmaceutical solids.

  16. Breath Figure Method for Construction of Honeycomb Films

    PubMed Central

    Dou, Yingying; Jin, Mingliang; Zhou, Guofu; Shui, Lingling

    2015-01-01

    Honeycomb films with various building units, showing potential applications in biological, medical, physicochemical, photoelectric, and many other areas, could be prepared by the breath figure method. The ordered hexagonal structures formed by the breath figure process are related to the building units, solvents, substrates, temperature, humidity, air flow, and other factors. Therefore, by adjusting these factors, the honeycomb structures could be tuned properly. In this review, we summarized the development of the breath figure method of fabricating honeycomb films and the factors of adjusting honeycomb structures. The organic-inorganic hybrid was taken as the example building unit to discuss the preparation, mechanism, properties, and applications of the honeycomb films. PMID:26343734

  17. Synchrotron X-ray Scattering Analysis of the Interaction Between Corn Starch and an Exogenous Lipid During Hydrothermal Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Hernandez-Hernandez; C Avila-Orta; B Hsiao

    Lipids have an important effect on starch physicochemical properties. There exist few reports about the effect of exogenous lipids on native corn starch structural properties. In this work, a study of the morphological, structural and thermal properties of native corn starch with L-alpha-lysophosphatidylcholine (LPC, the main phospholipid in corn) was performed under an excess of water. Synchrotron radiation, in the form of real-time small and wide-angle X-ray scattering (SAXS/WAXS), was used in order to track structural changes in corn starch, in the presence of LPC during a heating process from 30 to 85 C. When adding LCP, water absorption decreasedmore » within starch granule amorphous regions during gelatinization. This is explained by crystallization of the amylose-LPC inclusion complex during gelatinization, which promotes starch granule thermal stability at up to 95 C. Finally, a conceptual model is proposed for explaining the formation mechanism of the starch-LPC complex.« less

  18. Rheological and structural characterization of agar/whey proteins insoluble complexes.

    PubMed

    Rocha, Cristina M R; Souza, Hiléia K S; Magalhães, Natália F; Andrade, Cristina T; Gonçalves, Maria Pilar

    2014-09-22

    Complex coacervation between whey proteins and carboxylated or highly sulphated polysaccharides has been widely studied. The aim of this work was to characterise a slightly sulphated polysaccharide (agar) and whey protein insoluble complexes in terms of yield, composition and physicochemical properties as well as to study their rheological behaviour for better understanding their structure. Unlike other sulphated polysaccharides, complexation of agar and whey protein at pH 3 in the absence of a buffering agent resulted in a coacervate that was a gel at 20°C with rheological properties and structure similar to those of simple agar gels, reinforced by proteins electrostatically aggregated to the agar network. The behaviour towards heat treatment was similar to that of agar alone, with a high thermal hysteresis and almost full reversibility. In the presence of citrate buffer, the result was a "flocculated solid", with low water content (75-81%), whose properties were governed by protein behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. WRF-TMH: predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids.

    PubMed

    Hayat, Maqsood; Khan, Asifullah

    2013-05-01

    Membrane protein is the prime constituent of a cell, which performs a role of mediator between intra and extracellular processes. The prediction of transmembrane (TM) helix and its topology provides essential information regarding the function and structure of membrane proteins. However, prediction of TM helix and its topology is a challenging issue in bioinformatics and computational biology due to experimental complexities and lack of its established structures. Therefore, the location and orientation of TM helix segments are predicted from topogenic sequences. In this regard, we propose WRF-TMH model for effectively predicting TM helix segments. In this model, information is extracted from membrane protein sequences using compositional index and physicochemical properties. The redundant and irrelevant features are eliminated through singular value decomposition. The selected features provided by these feature extraction strategies are then fused to develop a hybrid model. Weighted random forest is adopted as a classification approach. We have used two benchmark datasets including low and high-resolution datasets. tenfold cross validation is employed to assess the performance of WRF-TMH model at different levels including per protein, per segment, and per residue. The success rates of WRF-TMH model are quite promising and are the best reported so far on the same datasets. It is observed that WRF-TMH model might play a substantial role, and will provide essential information for further structural and functional studies on membrane proteins. The accompanied web predictor is accessible at http://111.68.99.218/WRF-TMH/ .

  20. Spreading properties of cosmetic emollients: Use of synthetic skin surface to elucidate structural effect.

    PubMed

    Douguet, Marine; Picard, Céline; Savary, Géraldine; Merlaud, Fabien; Loubat-Bouleuc, Nathalie; Grisel, Michel

    2017-06-01

    The study focuses on the impact of structural and physicochemical properties of emollients on their spreadability. Fifty-three emollients, among which esters, silicones, vegetable and mineral oils, have been characterized. Their viscosity, surface tension, density and spreadability have been measured. Vitro-skin ® , an artificial skin substitute, was used as an artificial porous substrate to measure spreadability. Two different methods have been selected to characterize spreadability, namely contact angle and spreading value. Dynamic contact angle measurements showed that emollient spreadability is first governed by spontaneous spreading and that, in a second phase, absorption and migration into the porous substrate becomes the driver of the extension of the spreading area. Statistical analysis of physicochemical and spreading value data revealed that viscosity has a major impact on the spreading behavior of emollients whatever their chemical type. A special emphasis was placed on the ester family in which chemical diversity is very wide. The results highlighted a difference between "high viscosity esters" for which viscosity is the main factor impacting spreadability and "low viscosity esters" for which structural variations (mono/diester, saturated/unsaturated chain, linear/branched chain) have to be considered in addition to viscosity. Linear regressions were used to express spreading value as a function of viscosity for each of the four emollient families tested (esters, silicones, vegetable and mineral oils). These regressions allowed the development of reliable predictive models as a powerful tool for formulators to forecast spreadability of emollients. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives.

    PubMed

    Navya, P N; Daima, Hemant Kumar

    2016-01-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  2. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives

    NASA Astrophysics Data System (ADS)

    Navya, P. N.; Daima, Hemant Kumar

    2016-02-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  3. Efficacy of Alkali-treated Sugarcane Fiber for Improving Physicochemical and Textural Properties of Meat Emulsions with Different Fat Levels

    PubMed Central

    Kim, Hyun-Wook; Setyabrata, Derico; Lee, Yong-Jae; Brad Kim, Yuan H.

    2018-01-01

    Abstract The objective of this study was to evaluate the efficacy of alkaline-treated sugarcane bagasse fiber on physicochemical and textural properties of meat emulsion with different fat levels. Crude sugarcane bagasse fiber (CSF) was treated with calcium hydroxide (Ca(OH2)) to obtain alkaline-treated sugarcane bagasse fiber (ASF). The two types of sugarcane bagasse fiber (CSF and ASF) were incorporated at 2% levels in pork meat emulsions prepared with 5%, 10% and 20% fat levels. Alkaline-treatment markedly increased acid detergent fiber content (p=0.002), but significantly decreased protein, fat, ash and other carbohydrate contents. ASF exhibited significantly higher water-binding capacity, but lower oil-binding and emulsifying capacities than CSF. Meat emulsions formulated with 10% fat and 2% sugarcane bagasse fiber had equivalent cooking loss and textural properties to control meat emulsion (20% fat without sugarcane bagasse fiber). The two types of sugarcane bagasse fiber had similar impacts on proximate composition, cooking yield and texture of meat emulsion at the same fat level, respectively (p>0.05). Our results confirm that sugarcane bagasse fiber could be a functional food ingredient for improving physicochemical and textural properties of meat emulsion, at 2% addition level. Further, the altered functional properties of alkaline-treated sugarcane bagasse fiber had no impacts on physicochemical and textural properties of meat emulsions, regardless of fat level at 5%, 10% and 20%. PMID:29805281

  4. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects.

    PubMed

    McClements, David Julian

    2017-02-01

    Biopolymer microgels have considerable potential for their ability to encapsulate, protect, and release bioactive components. Biopolymer microgels are small particles (typically 100nm to 1000μm) whose interior consists of a three-dimensional network of cross-linked biopolymer molecules that traps a considerable amount of solvent. This type of particle is also sometimes referred to as a nanogel, hydrogel bead, biopolymer particles, or microsphere. Biopolymer microgels are typically prepared using a two-step process involving particle formation and particle gelation. This article reviews the major constituents and fabrication methods that can be used to prepare microgels, highlighting their advantages and disadvantages. It then provides an overview of the most important characteristics of microgel particles (such as size, shape, structure, composition, and electrical properties), and describes how these parameters can be manipulated to control the physicochemical properties and functional attributes of microgel suspensions (such as appearance, stability, rheology, and release profiles). Finally, recent examples of the utilization of biopolymer microgels to encapsulate, protect, or release bioactive agents, such as pharmaceuticals, nutraceuticals, enzymes, flavors, and probiotics is given. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Hybridization of polyvinylpyrrolidone to a binary composite of curcumin/α-glucosyl stevia improves both oral absorption and photochemical stability of curcumin.

    PubMed

    Kadota, Kazunori; Okamoto, Daiki; Sato, Hideyuki; Onoue, Satomi; Otsu, Shigeyuki; Tozuka, Yuichi

    2016-12-15

    The tri-component system curcumin/α-glucosyl stevia (Stevia-G)/polyvinylpyrrolidone (PVP) was developed to improve the oral bioavailability and physicochemical properties of curcumin (CUR). The tri-component CUR formulation with Stevia-G and PVP was prepared with freeze-drying. The tri-component CUR system exhibited 13,000-fold higher solubility of CUR than the equilibrium solubility of CUR for 24h, indicating a stable tri-composite structure involving CUR. CUR could be converted into an amorphous form in the presence of Stevia-G and PVP by freeze-drying. The photo-degradation of CUR in the tri-component system was negligible even under an amorphous state of CUR. After oral administration in rats, the oral absorption of the tri-component CUR formulation (20mgCUR/kg) was 6.7-fold higher than that of crystalline CUR. The tri-component CUR formulation would therefore be a promising option to improve physicochemical properties and oral absorption of CUR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Characterization and evaluation of miconazole salts and cocrystals for improved physicochemical properties.

    PubMed

    Tsutsumi, Shunichirou; Iida, Motoo; Tada, Norio; Kojima, Takashi; Ikeda, Yukihiro; Moriwaki, Toshiya; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji

    2011-12-15

    Miconazole salts and cocrystals were studied to improve the physicochemical properties of miconazole. Maleate, hemifumarate, and hemisuccinate were prepared and characterized by powder X-ray diffractometry, differential scanning calorimetry, and single crystal X-ray diffractometry. The intrinsic dissolution rate and stability of each miconazole crystal form were compared to those of freebase and nitrate to evaluate the optimal crystal form. Crystal structure analysis indicated that maleate was a salt formed by proton transfer from the acid to the imidazole group of miconazole. Hemifumarate and hemisuccinate were determined to be cocrystals formed by hydrogen bonding between the acids and the base in their crystal lattices. Intrinsic dissolution tests showed that the formation of salts and cocrystals improved the dissolution rate of miconazole. Stability tests of preliminary formulations prepared with each crystal form indicated that maleate and hemifumarate were unstable at 80°C and generated a specific degraded product, i.e., a Michael adduct, between miconazole and the acids. Hemisuccinate had a superior intrinsic dissolution rate and stability, and is thus considered a promising crystal form of miconazole. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Influence of physicochemical properties of laser-modified polystyrene on bovine serum albumin adsorption and rat C6 glioma cell behavior.

    PubMed

    Wang, Xuefeng; Ohlin, C André; Lu, Qinghua; Hu, Jun

    2006-09-15

    Biomaterial surface modification is an efficient way of improving cell-material interactions. In this study, sub-micrometer laser-induced periodic surface structures (LIPSS) were produced on polystyrene by laser irradiation. FT-IR analysis confirmed that this treatment also led to surface oxidation and anisotropic orientation of the produced carbonyl groups. As a consequence, the surface energy of the laser-treated polystyrene was 1.45 times that of the untreated polystyrene, as measured by contact-angle goniometry. Protein adsorption and rat C6 glioma cell behavior on the two substrates were investigated, showing that the changed physicochemical properties of laser-modified polystyrene surface led to an increase in the quantity of adsorbed bovine serum albumin and significantly affected the behavior of rat C6 glioma cells. In the early stages of cell spreading, cells explored their microenvironment using filopodium as the main sensor. Moreover, cells actively aligned themselves along the direction of LIPSS gradually and cell attachment and proliferation were significantly enhanced. 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006.

  8. Microwave-assisted extraction of silkworm pupal oil and evaluation of its fatty acid composition, physicochemical properties and antioxidant activities.

    PubMed

    Hu, Bin; Li, Cheng; Zhang, Zhiqing; Zhao, Qing; Zhu, Yadong; Su, Zhao; Chen, Yizi

    2017-09-15

    Microwave-assisted extraction (MAE) of oil from silkworm pupae was firstly performed in the present research. The response surface methodology was applied to optimize the parameters for MAE. The yield of oil by MAE was 30.16% under optimal conditions of a mixed solvent consisting of ethanol and n-hexane (1:1, v/v), microwave power (360W), liquid to solid ratio (7.5/1mL/g), microwave time (29min). Moreover, oil extracted by MAE was quantitatively (yield) and qualitatively (fatty acid profile) similar to those obtained using Soxhlet extraction (SE), but oil extracted by MAE exhibited favourable physicochemical properties and oxidation stability. Additionally, oil extracted by MAE had a higher content of total phenolic, and it showed stronger antioxidant activities. Scanning electron microscopy revealed that microwave technique efficiently promoted the release of oil by breaking down the cell structure of silkworm pupae. Therefore, MAE can be an effective method for the silkworm pupal oil extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of pre-treatment on physicochemical and structural properties, and the bioaccessibility of β-carotene in sweet potato flour.

    PubMed

    Trancoso-Reyes, Nalleli; Ochoa-Martínez, Luz A; Bello-Pérez, Luis A; Morales-Castro, Juliana; Estévez-Santiago, Rocío; Olmedilla-Alonso, Begoña

    2016-06-01

    The aim of this research was to evaluate the effect of microwave or steam pre-treatment of raw sweet potato on physicochemical and microstructural properties, and the bioaccessibility of β-carotene in sweet potato flour. This is the first report on using the in vitro digestion model suitable for food, as proposed in a consensus paper, to assess the bioaccessibility of β-carotene in sweet potato flour. The pre-treatments produced a rearrangement of the flour matrix (starch, protein and non-starch polysaccharides), which was greater by using microwaves (M6) conducting to a greater increase in the phase transition temperatures up to 4.14 °C, while the enthalpy presented the higher reduction (4.49 J/g), both parameters in respect to the control. The resistant starch fraction was not modified, with about 3% in all samples. Microwave (M6) and all the steam pre-treatments showed the higher bioaccessibility of β-carotene. This flour can be used in the development of new products with high β-carotene content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Ionic liquids as lubricant additives: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; Qu, Jun

    In pursuit of energy efficiency and durability throughout human history, advances in lubricants have always played important roles. Ionic liquids (ILs) are room-temperature molten salts that possess unique physicochemical properties and have shown great potential in many applications with lubrication as one of the latest. While earlier work (2001–2011) primarily explored the feasibility of using ILs as neat or base lubricants, using ILs as lubricant additives has become the new focal research topic since the breakthrough in ILs’ miscibility in nonpolar hydrocarbon oils in early 2012. This work reviews the recent advances in developing ILs as additives for lubrication withmore » an attempt to correlate among the cationic and anionic structures, oil-solubility, and other relevant physicochemical properties, and lubricating behavior. Effects of the concentration of ILs in lubricants and the compatibility between ILs and other additives in the lubricant formulation on the tribological performance are described followed by a discussion of wear protection mechanism based on tribofilm characterization. As a result, future research directions are suggested at the end.« less

  11. Ionic liquids as lubricant additives: A review

    DOE PAGES

    Zhou, Yan; Qu, Jun

    2016-12-28

    In pursuit of energy efficiency and durability throughout human history, advances in lubricants have always played important roles. Ionic liquids (ILs) are room-temperature molten salts that possess unique physicochemical properties and have shown great potential in many applications with lubrication as one of the latest. While earlier work (2001–2011) primarily explored the feasibility of using ILs as neat or base lubricants, using ILs as lubricant additives has become the new focal research topic since the breakthrough in ILs’ miscibility in nonpolar hydrocarbon oils in early 2012. This work reviews the recent advances in developing ILs as additives for lubrication withmore » an attempt to correlate among the cationic and anionic structures, oil-solubility, and other relevant physicochemical properties, and lubricating behavior. Effects of the concentration of ILs in lubricants and the compatibility between ILs and other additives in the lubricant formulation on the tribological performance are described followed by a discussion of wear protection mechanism based on tribofilm characterization. As a result, future research directions are suggested at the end.« less

  12. Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions.

    PubMed

    Yan, Jing-Kun; Ding, Zhi-Chao; Gao, Xianli; Wang, Yao-Yao; Yang, Yan; Wu, Di; Zhang, He-Nan

    2018-08-01

    In this study, hot water, 0.9% NaCl, citric acid, and 1.25 M NaOH/0.05% NaBH 4 were separately used for the extraction of water-soluble H. erinaceus polysaccharides (HEPs; HEP-W, HEP-S, HEP-C, and HEP-A) from the fruit body of Hericium erinaceus. The physicochemical properties and biological activities were then investigated and compared. Results showed that the extraction solvents exhibited significant effects on the extraction yields, molecular weights, monosaccharide compositions, preliminary structural characteristics, microstructures of HEPs and on their contents, such as neutral sugar, uronic acid, protein, and β-(1 → 3)-glucan. In vitro antioxidant activity assays indicated that HEP-C extracted with citric acid solution showed stronger scavenging abilities on hydroxyl and DPPH radicals and antioxidant capacities than HEP-W and HEP-S. Moreover, HEP-C exhibited the strongest inhibitory effects on α-glycosidase and α-amylase activities. Therefore, HEP-C extracted with citric acid can be developed as a potential bioactive ingredient for applications in food, medicine, and cosmetics industries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Stabilizers influence drug–polymer interactions and physicochemical properties of disulfiram-loaded poly-lactide-co-glycolide nanoparticles

    PubMed Central

    Hoda, Muddasarul; Sufi, Shamim Akhtar; Cavuturu, Bindumadhuri; Rajagopalan, Rukkumani

    2018-01-01

    Aim: Stabilizers are known to be an integral component of polymeric nanostructures. Ideally, they manipulate physicochemical properties of nanoparticles. Based on this hypothesis, we demonstrated that disulfiram (drug) and Poly-lactide-co-glycolide (polymer) interactions and physicochemical properties of their nanoparticles formulations are significantly influenced by the choice of stabilizers. Methodology: Electron microscopy, differential scanning calorimetry, x-ray diffraction, Raman spectrum analysis, isothermal titration calorimetry and in silico docking studies were performed. Results & discussion: Polysorbate 80 imparted highest crystallinity while Triton-X 100 imparted highest rigidity, possibly influencing drug bioavailability, blood-retention time, cellular uptake and sustained drug release. All the molecular interactions were hydrophobic in nature and entropy driven. Therefore, polymeric nanoparticles may be critically manipulated to streamline the passive targeting of drug-loaded nanoparticles. PMID:29379637

  14. Effect of drying procedures on the physicochemical properties and antioxidant activities of polysaccharides from Crassostrea gigas

    PubMed Central

    Zheng, Yaxu; Qu, Min; Jin, Qiao; Tong, Changqing

    2017-01-01

    Crassostrea gigas polysaccharides (CGP) were obtained by different drying methods: freeze-drying (FD), spray-drying (SD) or rotary evaporation-drying (RED). The physicochemical properties of CGP were evaluated on the basis of polysaccharide content, protein content, color characteristics, FT-IR spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Antioxidant activities were researched three different free radicals, including DPPH free radicals, ABTS free radicals and reducing power. The results demonstrated that FDCGP, SDCGP and REDCGP have different physicochemical properties and antioxidant activities. Contrasted with FDCGP and REDCGP, SDCGP exhibited stronger antioxidant abilities. Therefore, considering the polysaccharides appearances and antioxidant activities, the spray drying method is a decent selection for the preparation of such polysaccharides, and it should be selected for application in the food industry. PMID:29176846

  15. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences.

    PubMed

    Chen, Peng; Li, Jinyan; Wong, Limsoon; Kuwahara, Hiroyuki; Huang, Jianhua Z; Gao, Xin

    2013-08-01

    Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. Copyright © 2013 Wiley Periodicals, Inc.

  16. Finding and estimating chemical property data for environmental assessment.

    PubMed

    Boethling, Robert S; Howard, Philip H; Meylan, William M

    2004-10-01

    The ability to predict the behavior of a chemical substance in a biological or environmental system largely depends on knowledge of the physicochemical properties and reactivity of that substance. We focus here on properties, with the objective of providing practical guidance for finding measured values and using estimation methods when necessary. Because currently available computer software often makes it more convenient to estimate than to retrieve measured values, we try to discourage irrational exuberance for these tools by including comprehensive lists of Internet and hard-copy data resources. Guidance for assessors is presented in the form of a process to obtain data that includes establishment of chemical identity, identification of data sources, assessment of accuracy and reliability, substructure searching for analogs when experimental data are unavailable, and estimation from chemical structure. Regarding property estimation, we cover estimation from close structural analogs in addition to broadly applicable methods requiring only the chemical structure. For the latter, we list and briefly discuss the most widely used methods. Concluding thoughts are offered concerning appropriate directions for future work on estimation methods, again with an emphasis on practical applications.

  17. Prospects for graphene–nanoparticle-based hybrid sensors

    PubMed Central

    Yin, Perry T.; Kim, Tae-Hyung; Choi, Jeong-Woo; Lee, Ki-Bum

    2014-01-01

    Graphene is a single-atom thick, two-dimensional sheet of carbon that is characterized by exceptional chemical, electrical, material, optical, and physical properties. As a result, graphene and related materials, such as graphene oxide and reduced graphene oxide, have been brought to the forefront in the field of sensing. Recently, a number of reports have demonstrated that graphene–nanoparticle hybrid structures can act synergistically to offer a number of unique physicochemical properties that are desirable and advantageous for sensing applications. These graphene–nanoparticle hybrid structures are particularly interesting because not only do they display the individual properties of the nanoparticles and of graphene, but they can also exhibit additional synergistic properties thereby enhancing the achievable sensitivity and selectivity using a variety of sensing mechanisms. As such, in this perspective, we will discuss the progress that has been made in the development and application of graphene–nanoparticle hybrid sensors and their future prospects. In particular, we will focus on the preparation of graphene–nanoparticle hybrid structures as well as their application in electronic, electrochemical, and optical sensors. PMID:23828095

  18. Fabrication of reduced graphene oxide nanosheets doped PVA composite films for tailoring their opto-mechanical properties

    NASA Astrophysics Data System (ADS)

    Aslam, Muhammad; Kalyar, Mazhar Ali; Raza, Zulfiqar Ali

    2017-06-01

    Laminar graphene nanosheets have raised passionate attention due to their incredible physico-chemical properties. Its wide-scale, high-yield production at low-cost has made it possible to produce top class promising versatile polymer nanocomposites. Reduced graphene oxide (RGO) nanosheets were incorporated to prepare optically tunable and high mechanical strength polymer nanocomposite films. RGO-doped poly(vinyl alcohol) (PVA) nanocomposite films were prepared via solution casting. Low level RGO doping significantly altered the structural, optical and mechanical properties of pure PVA films. Most of the band structure parameters like direct/indirect band gap, band tail, refractive index, dielectric constant, optical conductivity and dispersion parameters were investigated in detail for the first time. Tauc's, Wemple-DiDomenico, Helpin-Tsai and mixture rule models were employed to investigate optical and mechanical parameters. The applied models reinforced the experimental results in the present study. Advanced analytical techniques were engaged to characterize the nanocomposites films.

  19. "Nonspecific" cholinesterase and acetylcholinesterase in rat tissues: molecular forms, structural and catalytic properties, and significance of the two enzyme systems.

    PubMed Central

    Vigny, M; Gisiger, V; Massoulié, J

    1978-01-01

    "Nonspecific" cholinesterase (acylcholine acylhydrolase; EC 3.1.1.8) from various rat tissues has been found to exist in several stable molecular forms that appear as exact counterparts of molecular forms of acetylcholinesterase (acetylcholine hydrolase; EC 3.1.1.7). The sedimentation pattern of cholinesterase was similar to that of acetylcholinesterase with a small but significant shift between the sedimentation coefficients of the corresponding forms. Extraction yields in different media also demonstrated a close parallelism between the two enzyme systems. Other properties, such as thermal stability and catalytic characteristics, indicated both differences and similarities. In spite of the structural resemblance implied by their physicochemical properties, cholinesterase did not crossreact with antibodies against acetylcholinesterase. The nature of the relationships revealed by these studies and their bearing on the physiological significance of cholinesterases are discussed. PMID:78492

  20. Predicting the properties of the lead alloys from DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buimaga-Iarinca, L., E-mail: luiza.iarinca@itim-cj.ro; Calborean, A.

    2015-12-23

    We provide qualitative results for the physical properties of the lead alloys at atomic scale by using DFT calculations. Our approach is based on the two assumptions: (i) the geometric structure of lead atoms provides a matrix where the alloying elements can take their positions in the structure as substitutions and (ii) there is a small probability of a direct interaction between the alloying elements, thus the interactions of each alloying element may be approximated by the interactions to the lead matrix. DFT calculations are used to investigate the interaction between several types of impurities and the lead matrix formore » low concentrations of the alloying element. We report results such as the enthalpy of formation, charge transfer and mechanical stress induced by the impurities in the lead matrix; these results can be used as qualitative guide in tuning the physico-chemical properties of the lead alloys.« less

  1. A Quantitative Structure-Property Relationship (QSPR) Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure

    PubMed Central

    Liu, Fengping; Cao, Chenzhong; Cheng, Bin

    2011-01-01

    A quantitative structure–property relationship (QSPR) analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP), n-octanol–water partition coefficient (lg POW), water solubility (lg W) and the chromatographic retention indices (RI) on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI), previously developed by Cao, the novel molecular polarizability effect index (MPEI) combined with odd-even index (OEI), the sum eigenvalues of bond-connecting matrix (SX1CH) previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99) and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable. PMID:21731451

  2. Data on physicochemical properties of active films derived from plantain flour/PCL blends developed under reactive extrusion conditions.

    PubMed

    Gutiérrez, Tomy J; Alvarez, Vera A

    2017-12-01

    The data given below relates to the research paper entitled: "Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst", recently published by our research group [1]. This article provides information concerning the physicochemical properties of the above-mentioned film systems: thickness, density, opacity, moisture content and surface moisture.

  3. METAL OXIDE NANOPARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  4. Aggregates, Crystals, Gels, and Amyloids: Intracellular and Extracellular Phenotypes at the Crossroads of Immunoglobulin Physicochemical Property and Cell Physiology

    PubMed Central

    2013-01-01

    Recombinant immunoglobulins comprise an important class of human therapeutics. Although specific immunoglobulins can be purposefully raised against desired antigen targets by various methods, identifying an immunoglobulin clone that simultaneously possesses potent therapeutic activities and desirable manufacturing-related attributes often turns out to be challenging. The variable domains of individual immunoglobulins primarily define the unique antigen specificities and binding affinities inherent to each clone. The primary sequence of the variable domains also specifies the unique physicochemical properties that modulate various aspects of individual immunoglobulin life cycle, starting from the biosynthetic steps in the endoplasmic reticulum, secretory pathway trafficking, secretion, and the fate in the extracellular space and in the endosome-lysosome system. Because of the diverse repertoire of immunoglobulin physicochemical properties, some immunoglobulin clones' intrinsic properties may manifest as intriguing cellular phenotypes, unusual solution behaviors, and serious pathologic outcomes that are of scientific and clinical importance. To gain renewed insights into identifying manufacturable therapeutic antibodies, this paper catalogs important intracellular and extracellular phenotypes induced by various subsets of immunoglobulin clones occupying different niches of diverse physicochemical repertoire space. Both intrinsic and extrinsic factors that make certain immunoglobulin clones desirable or undesirable for large-scale manufacturing and therapeutic use are summarized. PMID:23533417

  5. Physical modification of palm kernel meal improved available carbohydrate, physicochemical properties and in vitro digestibility in economic freshwater fish.

    PubMed

    Thongprajukaew, Karun; Yawang, Pinya; Dudae, Lateepah; Bilanglod, Husna; Dumrongrittamatt, Terdtoon; Tantikitti, Chutima; Kovitvadhi, Uthaiwan

    2013-12-01

    Unavailable carbohydrates are an important limiting factor for utilization of palm kernel meal (PKM) as aquafeed ingredients. The aim of this study was to improve available carbohydrate from PKM. Different physical modifications including water soaking, microwave irradiation, gamma irradiation and electron beam, were investigated in relation to chemical composition, physicochemical properties and in vitro carbohydrate digestibility using digestive enzymes from economic freshwater fish. Modified methods had significant (P < 0.05) effects on chemical composition by decreasing crude fiber and increasing available carbohydrates. Improvements in physicochemical properties of PKM, such as water solubility, microstructure, relative crystallinity and lignocellulosic spectra, were mainly achieved by soaking and microwave irradiation. Carbohydrate digestibility varied among the physical modifications tested (P < 0.05) and three fish species had different abilities to digest PKM. Soaking was the appropriate modification for increasing carbohydrate digestion specifically in Nile tilapia (Oreochromis niloticus), whereas either soaking or microwave irradiation was effective for striped snakehead (Channa striata). For walking catfish (Clarias batrachus), carbohydrate digestibility was similar among raw, soaked and microwave-irradiated PKM. These findings suggest that soaking and microwave irradiation could be practical methods for altering appropriate physicochemical properties of PKM as well as increasing carbohydrate digestibility in select economic freshwater fish. © 2013 Society of Chemical Industry.

  6. Physicochemical mechanisms of plasma-liquid interactions within plasma channels in liquid

    NASA Astrophysics Data System (ADS)

    Franclemont, Joshua; Fan, Xiangru; Mededovic Thagard, Selma

    2015-10-01

    The goal of this study is to advance the fundamental understanding of the physical and chemical mechanisms by which excited radical species produced by electrical plasmas directly in water, OH radicals especially, induce chemical changes in aqueous organic compounds and to exploit this for the development and optimization of drinking and wastewater plasma-based treatment systems. To achieve this goal, this study measured and correlated the production rate of hydrogen peroxide (H2O2) with physicochemical properties of 11 organic compounds. The observed individual correlations between the investigated physicochemical properties and the resulting H2O2 concentrations were used to develop an equation that would allow predicting the measured H2O2 concentration from physicochemical properties of a compound. Results reveal that the production rate of H2O2 directly depends on the surface tension of the solution and compounds’ bulk liquid concentration, hydrophobicity (K ow value), and molecular volume. Other properties such as vapor pressure, Henry’s constant, enthalpy of vaporization, ionization energy, electron affinity, and molecular dipole moment do not affect the H2O2 chemistry. K ow value and surface tension of the solution determine the compound’s concentration at the plasma interface. Once at the interface, the molecular volume determines the rate at which the molecule will react with OH radicals.

  7. Physicochemical properties of quinoa flour as affected by starch interactions.

    PubMed

    Li, Guantian; Zhu, Fan

    2017-04-15

    There has been growing interest in whole grain quinoa flour for new product development due to the unique nutritional benefits. The quality of quinoa flour is much determined by the properties of its major component starch as well as non-starch components. In this study, composition and physicochemical properties of whole grain flour from 7 quinoa samples have been analyzed. Flour properties have been correlated to the flour composition and the properties of isolated quinoa starches through chemometrics. Great variations in chemical composition, swelling power, water soluble index, enzyme susceptibility, pasting, gel texture, and thermal properties of the flour have been observed. Correlation analysis showed that thermal properties and enzyme susceptibility of quinoa flour are highly influenced by the starch. Interactions of starch with non-starch components, including lipids, protein, dietary fibre, phenolics, and minerals, greatly impacted the flour properties. For example, peak gelatinization temperature of the flour is positively correlated to that of the starch (r=0.948, p<0.01) and negatively correlated to the lipid content (r=-0.951, p<0.01). Understanding the roles of starch and other components in physicochemical properties of quinoa flour provides a basis for better utilization of this specialty crop. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Combining Physicochemical and Evolutionary Information for Protein Contact Prediction

    PubMed Central

    Schneider, Michael; Brock, Oliver

    2014-01-01

    We introduce a novel contact prediction method that achieves high prediction accuracy by combining evolutionary and physicochemical information about native contacts. We obtain evolutionary information from multiple-sequence alignments and physicochemical information from predicted ab initio protein structures. These structures represent low-energy states in an energy landscape and thus capture the physicochemical information encoded in the energy function. Such low-energy structures are likely to contain native contacts, even if their overall fold is not native. To differentiate native from non-native contacts in those structures, we develop a graph-based representation of the structural context of contacts. We then use this representation to train an support vector machine classifier to identify most likely native contacts in otherwise non-native structures. The resulting contact predictions are highly accurate. As a result of combining two sources of information—evolutionary and physicochemical—we maintain prediction accuracy even when only few sequence homologs are present. We show that the predicted contacts help to improve ab initio structure prediction. A web service is available at http://compbio.robotics.tu-berlin.de/epc-map/. PMID:25338092

  9. Niobium pentoxide as radiopacifying agent of calcium silicate-based material: evaluation of physicochemical and biological properties.

    PubMed

    Silva, Guilherme F; Tanomaru-Filho, Mário; Bernardi, Maria I B; Guerreiro-Tanomaru, Juliane M; Cerri, Paulo S

    2015-11-01

    The physicochemical properties and the tissue reaction promoted by microparticulated or nanoparticulated niobium pentoxide (Nb2O5) added to calcium silicate-based cement (CS), compared to MTA-Angelus™, were evaluated. Materials were submitted to the tests of radiopacity, setting time, pH, and calcium ion release. Polyethylene tubes filled with the materials were implanted into rats subcutaneously. After 7, 15, 30, and 60 days, the specimens were fixed and embedded in paraffin. Hematoxylin & eosin (H&E)-stained sections were used to compute the number of inflammatory cells (IC). Interleukin-6 (IL-6) detection was performed, and the number of immunolabeled cells was obtained; von Kossa method was also carried out. Data were subjected to ANOVA and Tukey test (p ≤ 0.05). Nb2O5micro and Nb2O5nano provided to the CS radiopacity values (3.52 and 3.75 mm Al, respectively) superior to the minimum recommended. Groups containing Nb2O5 presented initial setting time significantly superior than mineral trioxide aggregate (MTA). All materials presented an alkaline pH and released calcium ions. The number of IC and IL-6 immunolabeled cells in the CS + Nb2O5 groups was significantly reduced in comparison to MTA in all periods. von Kossa-positive structures were observed adjacent to implanted materials in all periods. The addition of Nb2O5 to the CS resulted in a material biocompatible and with adequate characteristics regarding radiopacity and final setting time and provides an alkaline pH to the environment. Furthermore, the particle size did not significantly affect the physicochemical and biological properties of the calcium silicate-based cement. Niobium pentoxide can be used as radiopacifier for the development of calcium silicate-based materials.

  10. A physicochemical study of sugar palm (Arenga Pinnata) starch films plasticized by glycerol and sorbitol

    NASA Astrophysics Data System (ADS)

    Poeloengasih, Crescentiana D.; Pranoto, Yudi; Hayati, Septi Nur; Hernawan, Rosyida, Vita T.; Prasetyo, Dwi J.; Jatmiko, Tri H.; Apriyana, Wuri; Suwanto, Andri

    2016-02-01

    The present work explores the physicochemical characteristics of sugar palm starch film for a potential hard capsule purpose. Sugar palm (Arenga pinnata) starch films were plasticized with glycerol or sorbitol in various concentrations (30% up to 50% w/w starch). Their effects on physicochemical properties of the films were investigated. The results showed that sugar palm starch was successfully developed as the main material of film using casting method. Incorporation of both glycerol or sorbitol affected the properties of films in different ways. It was found that thickness and solubility increased as plasticizer concentration increased, whereas retraction ratio, swelling degree and swelling thickness decreased with the increased plasticizer concentration.

  11. Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths.

    PubMed

    Ledermann, Alexandra; Cademartiri, Ludovico; Hermatschweiler, Martin; Toninelli, Costanza; Ozin, Geoffrey A; Wiersma, Diederik S; Wegener, Martin; von Freymann, Georg

    2006-12-01

    Quasicrystals are a class of lattices characterized by a lack of translational symmetry. Nevertheless, the points of the lattice are deterministically arranged, obeying rotational symmetry. Thus, we expect properties that are different from both crystals and glasses. Indeed, naturally occurring electronic quasicrystals (for example, AlPdMn metal alloys) show peculiar electronic, vibrational and physico-chemical properties. Regarding artificial quasicrystals for electromagnetic waves, three-dimensional (3D) structures have recently been realized at GHz frequencies and 2D structures have been reported for the near-infrared region. Here, we report on the first fabrication and characterization of 3D quasicrystals for infrared frequencies. Using direct laser writing combined with a silicon inversion procedure, we achieve high-quality silicon inverse icosahedral structures. Both polymeric and silicon quasicrystals are characterized by means of electron microscopy and visible-light Laue diffraction. The diffraction patterns of structures with a local five-fold real-space symmetry axis reveal a ten-fold symmetry as required by theory for 3D structures.

  12. Physicochemical properties of extrudates from white yam and bambara nut blends

    NASA Astrophysics Data System (ADS)

    Oluwole, O. B.; Olapade, A. A.; Awonorin, S. O.; Henshaw, F. O.

    2013-01-01

    This study was conducted to investigate effects of extrusion conditions on physicochemical properties of blend of yam and bambara nut flours. A blend of white yam grit (750 μm) and Bambara nut flour (500 μm) in a ratio of 4:1, respectively was extrusion cooked at varying screw speeds 50-70 r.p.m., feed moisture 12.5-17.5% (dry basis) and barrel temperatures 130-150°C. The extrusion variables employed included barrel temperature, screw speed, and feed moisture content, while the physicochemical properties of the extrudates investigated were the expansion ratio, bulk density, and trypsin inhibition activity. The results revealed that all the extrusion variables had significant effects (p<0.05) on the product properties considered in this study. The expansion ratio values ranged 1.55-2.06, bulk density values ranged 0.76-0.94 g cm-3, while trypsin inhibition activities were 1.01-8.08 mg 100 g-1 sample.

  13. The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L) starch.

    PubMed

    Zhu, Dawei; Wei, Haiyan; Guo, Baowei; Dai, Qigen; Wei, Cunxu; Gao, Hui; Hu, Yajie; Cui, Peiyuan; Li, Min; Huo, Zhongyang; Xu, Ke; Zhang, Hongcheng

    2017-12-15

    This study investigates the effect of chilling stress, over a period of three days after anthesis, on the physicochemical properties of starches derived from six rice cultivars. Chilling stress significantly affected the grain characteristics and physicochemical properties of rice starches, except for those of two varieties, NJ 9108 and ZD 18. In the other four rice cultivars subjected to chilling stress, the content of medium, and large sized granules showed a decrease, and an increase, respectively. Amylose content increased as a result of chilling stress, thereby resulting in starch with a lower swelling power, water solubility, and higher retrogradation enthalpy and gelatinization temperature. Chilling stress led to deterioration of cooked rice quality as determined by the pasting properties of starch. This study indicated that among the cultivars studied, the two rice varieties most resistant to chilling stress after rice anthesis were NJ 9108 and ZD 18. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Influence of physicochemical properties of rice flour on oil uptake of tempura frying batter.

    PubMed

    Nakamura, Sumiko; Ohtsubo, Ken'ichi

    2010-01-01

    The physicochemical properties of rice flour and wheat flour influenced the oil uptake of tempura frying batter. Rice flour was better than wheat flour in the overall quality and crispness of the fried tempura batter. Rice flour resisted oil absorption more than wheat flour, and a higher level of apparent starch amylose and higher consistency/breakdown ratio of the pasting properties led to a lower oil uptake of the batter. Super hard EM10 rice showed the highest apparent amylose content and higher consistency/breakdown ratio than the other flour samples, the batter from EM10 revealing the lowest oil content after frying among all the batters examined. The apparent amylose content, consistency/breakdown ratio and oil absorption index are proposed as useful guides for oil absorption when frying from among the physicochemical properties that influence the oil content of fried batter. Our proposal for the "oil absorption index" could be a simple, although not perfect method for estimating the oil content of batter flour.

  15. Evaluation of physicochemical properties and antioxidant activities of kombucha "Tea Fungus" during extended periods of fermentation.

    PubMed

    Amarasinghe, Hashani; Weerakkody, Nimsha S; Waisundara, Viduranga Y

    2018-05-01

    Kombucha fermentation is traditionally carried out by inoculating a previously grown tea fungal mat into a freshly prepared tea broth and incubating under aerobic conditions for 7-10 days. In this study, four kombucha beverages were prepared by placing the tea fungal mats in sugared Sri Lankan black tea at varying concentrations for a period of 8 weeks. The antioxidant activities, physicochemical, and qualitative properties were monitored prior to the commencement of the fermentation process, one day after the inoculation with the microorganisms and subsequently on a weekly basis. All samples displayed a statistically significant decrease ( p  <   .05) in the antioxidant activity at the end of 8 weeks, which was indicative of the decreasing functional properties of the beverage. The physicochemical properties indicated increased acidity and turbidity, which might decrease consumer appeal of the fermented beverage. Further studies are necessary to test the accumulation of organic acids, nucleic acids, and toxicity of kombucha on human organs following the extended period of fermentation.

  16. Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis

    NASA Astrophysics Data System (ADS)

    Li, Jie; Yu, Ying; Zhang, Lizhi

    2014-07-01

    In recent years, layered bismuth oxyhalide nanomaterials have received more and more interest as promising photocatalysts because their unique layered structures endow them with fascinating physicochemical properties; thus, they have great potential photocatalytic applications for environment remediation and energy harvesting. In this article, we explore the synthesis strategies and growth mechanisms of layered bismuth oxyhalide nanomaterials, and propose design principles of tailoring a layered configuration to control the nanoarchitectures for high efficient photocatalysis. Subsequently, we focus on their layered structure dependent properties, including pH-related crystal facet exposure and phase transformation, facet-dependent photoactivity and molecular oxygen activation pathways, so as to clarify the origin of the layered structure dependent photoreactivity. Furthermore, we summarize various strategies for modulating the composition and arrangement of layered structures to enhance the photoactivity of nanostructured bismuth oxyhalides via internal electric field tuning, dehalogenation effect, surface functionalization, doping, plasmon modification, and heterojunction construction, which may offer efficient guidance for the design and construction of high-performance bismuth oxyhalide-based photocatalysis systems. Finally, we highlight some crucial issues in engineering the layered-structure mediated properties of bismuth oxyhalide photocatalysts and provide tentative suggestions for future research on increasing their photocatalytic performance.

  17. Physicochemical properties of nanocomposite: Hydroxyapatite in reduced graphene oxide.

    PubMed

    Rajesh, A; Mangamma, G; Sairam, T N; Subramanian, S; Kalavathi, S; Kamruddin, M; Dash, S

    2017-07-01

    Graphene oxide (GO) based nanocomposites have gained considerable attention in the field of material science due to their excellent physicochemical and biological properties. Incorporation of nanomaterials into GO sheets prevents the formation of π-π stacking bond thereby giving rise to composites that show the improved properties compared to their individual counterparts. In this work, reduced graphene oxide (rGO) - hydroxyapatite (HAP) nanocomposites were synthesized by ultrasonic method. Increasing the c/a ratio of HAP in the diffraction pattern of rGO/HAP nanocomposites indicates the c-axis oriented grown HAP nanorods interacting with rGO layers. Shift in wavenumber (15cm -1 ) and increase of full width at half maximum (45cm -1 ) of G band in Raman spectra of the rGO/HAP nanocomposites are observed and attributed to the tensile strain induced due to the intercalated HAP nanorods between the rGO layers. Atomic force microscopy (AFM) and phase imaging studies revealed the intercalation of HAP nanorod with diameter 30nm and length 110-120nm in rGO sheets was clearly perceived along with improved elasticity compared to pristine HAP. 13 C-NMR results proved the synergistic interaction between both components in rGO/HAP nanocomposite. The novel properties observed and the microscopic mechanism responsible for this are a result of the structural modification in rGO layers brought about by the intercalation of HAP nanorods. Copyright © 2017. Published by Elsevier B.V.

  18. Physico-chemical, rheological and antioxidant properties of sweet chestnut (Castanea sativa Mill.) as affected by pan and microwave roasting.

    PubMed

    Wani, Idrees Ahmed; Hamid, Humaira; Hamdani, Afshan Mumtaz; Gani, Adil; Ashwar, Bilal Ahmad

    2017-07-01

    Sweet chestnut ( Castanea sativa Mill. ) belongs to the family Fagaceae and sub family Castaneoideae. Bioactive components such as tannins are present in sweet chestnut in high proportion giving astringent bitter taste and reducing their palatability. Roasting reduces the anti-nutritional factors in chestnut. This study was conducted to compare the effects of pan and microwave roasting on physicochemical, functional, rheological and antioxidant properties of sweet chestnut. Antioxidant activity was determined using DPPH inhibition activity, reducing power, and total phenolic content. Structural analysis was carried out using FT-IR analysis. Protein, fat, and ash contents displayed insignificant ( P  > 0.05) variations. " L " value decreased from 90.66 to 81.43, whereas, " a " and " b " values increased from 0.02 to 0.90 and 11.99 to 20.5, respectively, upon roasting. Significant ( P  < 0.05) increase in water absorption capacity (1.32-3.39 g/g), oil absorption capacity (1.22-1.63 g/g), and antioxidant properties was observed following roasting. Flour obtained from roasted chestnuts exhibited a significant decrease in light transmittance, foaming, and pasting properties. Higher gelatinization temperatures and lower enthalpies were reported in microwave and pan roasted chestnut flours. Roasting also reduced the viscoelastic behavior of native sweet chestnut and changed the transmittance of identical functional groups as revealed by FT-IR analysis.

  19. Graphene oxide decorated electrospun gelatin nanofibers: Fabrication, properties and applications.

    PubMed

    Jalaja, K; Sreehari, V S; Kumar, P R Anil; Nirmala, R James

    2016-07-01

    Gelatin nanofiber fabricated by electrospinning process is found to mimic the complex structural and functional properties of natural extracellular matrix for tissue regeneration. In order to improve the physico-chemical and biological properties of the nanofibers, graphene oxide is incorporated in the gelatin to form graphene oxide decorated gelatin nanofibers. The current research effort is focussed on the fabrication and evaluation of physico-chemical and biological properties of graphene oxide-gelatin composite nanofibers. The presence of graphene oxide in the nanofibers was established by transmission electron microscopy (TEM). We report the effect of incorporation of graphene oxide on the mechanical, thermal and biological performance of the gelatin nanofibers. The tensile strength of gelatin nanofibers was increased from 8.29±0.53MPa to 21±2.03MPa after the incorporation of GO. In order to improve the water resistance of nanofibers, natural based cross-linking agent, namely, dextran aldehyde was employed. The cross-linked composite nanofibers showed further increase in the tensile strength up to 56.4±2.03MPa. Graphene oxide incorporated gelatin nanofibers are evaluated for bacterial activity against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria and cyto compatibility using mouse fibroblast cells (L-929 cells). The results indicate that the graphene oxide incorporated gelatin nanofibers do not prevent bacterial growth, nevertheless support the L-929 cell adhesion and proliferation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Soil cover of gas-bearing areas

    NASA Astrophysics Data System (ADS)

    Mozharova, N. V.

    2010-08-01

    Natural soils with disturbed functioning parameters compared to the background soils with conservative technogenic-pedogenic features were distinguished on vast areas above the artificial underground gas storages in the zones of spreading and predominant impact of hydrocarbon gases. The disturbance of the functioning parameters is related to the increase in the methane concentration, the bacterial oxidation intensity and destruction, and the complex microbiological and physicochemical synthesis of iron oxides. The technogenic-pedogenic features include neoformations of bacteriomorphic microdispersed iron oxides. The impurity components consist of elements typical for biogenic structures. New soil layers, horizons, specific anthropogenically modified soils, and soil-like structures were formed on small areas in the industrial zones of underground gas storages due to the mechanical disturbance, the deposition of drilling sludge, and the chemical contamination. Among the soils, postlithogenic formations were identified—chemotechnosols (soddy-podzolic soils and chernozems), as well as synlithogenic ones: strato-chemotechnosols and stratochemoembryozems. The soil-like bodies included postlithogenic soil-like structures (chemotechnozems) and synlithogenic ones (strato-chemotechnozems). A substantive approach was used for the soil diagnostics. The morphological and magnetic profiles and the physical, chemical, and physicochemical properties of the soils were analyzed. The micromorphological composition of the soil magnetic fraction was used as a magnetic label.

  1. Sensory and physicochemical evaluation of low-fat chicken mortadella with added native and modified starches.

    PubMed

    Prestes, R C; Silva, L B; Torri, A M P; Kubota, E H; Rosa, C S; Roman, S S; Kempka, A P; Demiate, I M

    2015-07-01

    The objective of this work was to evaluate the effect of adding different starches (native and modified) on the physicochemical, sensory, structural and microbiological characteristics of low-fat chicken mortadella. Two formulations containing native cassava and regular corn starch, coded CASS (5.0 % of cassava starch) and CORN (5.0 % of regular corn starch), and one formulation produced with physically treated starch coded as MOD1 (2.5 % of Novation 2300) and chemically modified starch coded as MOD2 (2.5 % of Thermtex) were studied. The following tests were performed: physicochemical characterization (moisture, ash, protein, starch and lipid contents, and water activity); cooling, freezing and reheating losses; texture (texture profile test); color coordinates (L*, a*, b*, C and h); microbiological evaluation; sensory evaluation (multiple comparison and preference test); and histological evaluation (light microscopy). There was no significant difference (p > 0.05) for ash, protein, cooling loss, cohesiveness or in the preference test for the tested samples. The other evaluated parameters showed significant differences (p < 0.05). Histological study allowed for a qualitative evaluation between the physical properties of the food and its microscopic structure. The best results were obtained for formulation MOD2 (2.5 % Thermtex). The addition of modified starch resulted in a better performance than the native starch in relation to the evaluated technological parameters, mainly in relation to reheating losses, which demonstrated the good interaction between the modified starch in the structure of the product and the possibility of the application of this type of starch in other types of functional meat products.

  2. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    PubMed

    Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket properties for ligand binding.

  3. Insights into an Original Pocket-Ligand Pair Classification: A Promising Tool for Ligand Profile Prediction

    PubMed Central

    Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A.; Villoutreix, Bruno O.; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket properties for ligand binding. PMID:23840299

  4. Determination of physiochemical properties of palm oil methyl ester catalyzed by waste cockle shells

    NASA Astrophysics Data System (ADS)

    Nasir, Nurul Fitriah; Latif, Noradila Abdul; Bakar, Sharifah Adzila Syed Abu; Rahman, Mohd Nasrull Abdul; Selamat, Siti Norhidayah; Nasharudin, Nurul Nadirah

    2017-04-01

    Waste cockle shell can be used as a source of calcium oxide (CaO) in catalyzing a transesterification reaction to produce biodiesel or fatty acid methyl ester (FAME). This aim of this paper is to determine the physicochemical properties of (FAME) which utilize waste cockle shells in the transesterification reaction process. In this study, the catalyst was prepared using high temperature furnace (700°C) for 4 h. The molar ratio of methanol to oil was fixed at 9:1 and the reaction temperature and catalyst concentration were varied from 65 -70 °C, and 10-30 wt. %, respectively for transesterification reaction. The reaction time was also fixed at 3 h. The analyzed physicochemical properties were density, viscosity, flash point and net heat of combustion. The results obtained from the analysis found that reaction temperature 65°C with 30% of catalyst concentration has produced the physical properties of FAME that comply the biodiesel standards. The results suggest that reaction temperature and catalyst concentration have influence on the value of physicochemical properties of FAME produced.

  5. Effect of dietary pomegranate seed oil on laying hen performance and physicochemical properties of eggs.

    PubMed

    Kostogrys, Renata B; Filipiak-Florkiewicz, Agnieszka; Dereń, Katarzyna; Drahun, Anna; Czyżyńska-Cichoń, Izabela; Cieślik, Ewa; Szymczyk, Beata; Franczyk-Żarów, Magdalena

    2017-04-15

    The objective of the study was to determine the effects of pomegranate seed oil, used as a source of punicic acid (CLnA) in the diets of laying hens, on the physicochemical properties of eggs. Forty Isa Brown laying hens (26weeks old) were equally subjected to 4 dietary treatments (n=10) and fed a commercial layer diet supplying 2.5% sunflower oil (control) or three levels (0.5, 1.0 and 1.5%) of punicic acid in the diets. After 12weeks of feeding the hens, eggs collection began. Sixty eggs - randomly selected from each group - were analysed for physicochemical properties. Eggs naturally enriched with CLnA preserve their composition and conventional properties in most of the analysed parameters (including chemical composition, physical as well as organoleptic properties). Dietary CLnA had positive impact on the colour of the eggs' yolk, whereas the hardness of hard-boiled egg yolks was not affected. Additionally, increasing dietary CLnA led to an increase not only the CLnA concentrations, but also CLA in egg-yolk lipids. Copyright © 2016. Published by Elsevier Ltd.

  6. Influence of mannitol concentration on the physicochemical, mechanical and pharmaceutical properties of lyophilised mannitol.

    PubMed

    Kaialy, Waseem; Khan, Usman; Mawlud, Shadan

    2016-08-20

    Mannitol is a pharmaceutical excipient that is receiving increased popularity in solid dosage forms. The aim of this study was to provide comparative evaluation on the effect of mannitol concentration on the physicochemical, mechanical, and pharmaceutical properties of lyophilised mannitol. The results showed that the physicochemical, mechanical and pharmaceutical properties of lyophilised mannitol powders are strong functions of mannitol concentration. By decreasing mannitol concentration, the true density, bulk density, cohesivity, flowability, netcharge-to-mass ratio, and relative degree of crystallinity of LM were decreased, whereas the breakability, size distribution, and size homogeneity of lyophilised mannitol particles were increased. The mechanical properties of lyophilised mannitol tablets improved with decreasing mannitol concentration. The use of lyophilised mannitol has profoundly improved the dissolution rate of indomethacin from tablets in comparison to commercial mannitol. This improvement exhibited an increasing trend with decreasing mannitol concentration. In conclusion, mannitols lyophilised from lower concentrations are more desirable in tableting than mannitols from higher concentrations due to their better mechanical and dissolution properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A study of relations between physicochemical properties of crude oils and microbiological characteristics of reservoir microflora

    NASA Astrophysics Data System (ADS)

    Yashchenko, I. G.; Polishchuk, Yu. M.; Peremitina, T. O.

    2015-10-01

    The dependence of the population and activity of reservoir microflora upon the chemical composition and viscosity of crude oils has been investigated, since it allows the problem of improvement in the technologies and enhancement of oil recovery as applied to production of difficult types of oils with anomalous properties (viscous, heavy, waxy, high resin) to be solved. The effect of the chemical composition of the oil on the number, distribution, and activity of reservoir microflora has been studied using data on the microbiological properties of reservoir water of 16 different fields in oil and gas basins of Russia, Mongolia, China, and Vietnam. Information on the physicochemical properties of crude oils of these fields has been obtained from the database created at the Institute of Petroleum Chemistry, Siberian Branch on the physicochemical properties of oils throughout the world. It has been found that formation water in viscous oil reservoirs is char acterized by a large population of heterotrophic and sulfate reducing bacteria and the water of oil fields with a high paraffin content, by population of denitrifying bacteria.

  8. Three-dimensional quantitative structure-property relationship (3D-QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (PCBs): enthalpy of vaporization.

    PubMed

    Puri, Swati; Chickos, James S; Welsh, William J

    2002-01-01

    Three-dimensional Quantitative Structure-Property Relationship (QSPR) models have been derived using Comparative Molecular Field Analysis (CoMFA) to correlate the vaporization enthalpies of a representative set of polychlorinated biphenyls (PCBs) at 298.15 K with their CoMFA-calculated physicochemical properties. Various alignment schemes, such as inertial, as is, and atom fit, were employed in this study. The CoMFA models were also developed using different partial charge formalisms, namely, electrostatic potential (ESP) charges and Gasteiger-Marsili (GM) charges. The most predictive model for vaporization enthalpy (Delta(vap)H(m)(298.15 K)), with atom fit alignment and Gasteiger-Marsili charges, yielded r2 values 0.852 (cross-validated) and 0.996 (conventional). The vaporization enthalpies of PCBs increased with the number of chlorine atoms and were found to be larger for the meta- and para-substituted isomers. This model was used to predict Delta(vap)H(m)(298.15 K) of the entire set of 209 PCB congeners.

  9. [Studies on chemical constituents from leaves and stems of Aconitum coreanum].

    PubMed

    Li, Yan; Liang, Shuai

    2009-05-01

    To study the chemical constituents in the leaves and stems of Aconitum coreanum. The isolation and purification of chemical constituents were carried out on silica gel and polyamide column chromatographic. Their structures were identified by physico-chemical properties and spectral analysis. Five compounds were obtained and their structures were identified as guan-fu base I (1), guan-fu base R (2), beta-sitosterol (3), D-mannitol (4), daucosterol (5). Compound 2 is a new compound. Compounds 1 and 3, 4 are isolated from the leaves and stems of A. coreanum for the first time.

  10. A new hydrocarbon material based on seabuckthorn ( Hippophae rhamnoides) sawdust: A structural promoter of cobalt catalyst for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Pankina, G. V.; Chernavskii, P. A.; Lunin, V. V.

    2016-09-01

    Aspects of the physicochemical properties of a hydrocarbon material based on seabuckthorn ( Hippophae rhamnoides) sawdust are studied. The use of a hydrocarbon material based on sea buckthorn sawdust as a structural promoter of Co/CHip cobalt catalyst in the reaction of CO hydrogenation is shown to require an additional cycling stage in the mode of reduction and oxidation. The resulting mean size of the Co particles is found to be 18-19 nm and is considered acceptable for the synthesis of C5+ liquid hydrocarbons.

  11. The effect of nanofiber based filter morphology on bacteria deactivation during water filtration

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Lev, Jaroslav; Kalhotka, Libor; Mikula, Premysl; Korinkova, Radka; Sambaer, Wannes; Zatloukal, Martin

    2013-04-01

    Procedures permitting to prepare homogeneous functionalized nanofibre structures based on polyurethanes modified by phthalocyanines (PCs) by employing a suitable combination of variables during the electrospinning process are presented. Compared are filtration and bacteria deactivation properties of open and planar nanostructures with PCs embedded into polyurethane chain by a covalent bond protecting the release of active organic compound during the filtration process. Finding that the morphology of functionalized nanofibre structures have an effect on bacterial growth was confirmed by microbiological and physico-chemical analyses, such as the inoculation in a nutrient agar culture medium and flow cytometry.

  12. B-535a, b and c, new sphingosine kinase inhibitors, produced by a marine bacterium; taxonomy, fermentation, isolation, physico-chemical properties and structure determination.

    PubMed

    Kono, K; Tanaka, M; Mizuno, T; Kodama, K; Ogita, T; Kohama, T

    2000-08-01

    In the course of our screening for inhibitors of sphingosine kinase, we found a series of active compounds in a culture broth of a novel marine bacterium, SANK 71896. The structures of the compounds, named B-5354a, b and c, were elucidated by a combination of spectroscopic analyses to be new esters of 4-amino-3-hydroxybenzoic acid with long-chain unsaturated alcohols. B-5354a, b and c inhibit sphingosine kinase activity with IC50 values of 21, 58 and 38 microm, respectively.

  13. Investigation of physicochemical and tribological properties of transparent oxide semiconducting thin films based on Ti-V oxides

    NASA Astrophysics Data System (ADS)

    Mazur, M.; Sieradzka, K.; Kaczmarek, D.; Domaradzki, J.; Wojcieszak, D.; Domanowski, P.

    2013-08-01

    In this paper investigations of structural and optical properties of nanocrystalline Ti-V oxide thin films are described. The films were deposited onto Corning 7059 glass using a modified reactive magnetron sputtering method. Structural investigations of prepared Ti-V oxides with vanadium addition of 19 at. % revealed amorphous structure, while incorporation of 21 and 23 at. % of vanadium resulted in V2O5 formation with crystallites sizes of 12.7 and 32.4 nm, respectively. All prepared thin films belong to transparent oxide semiconductors due to their high transmission level of ca. 60-75 % in the visible light range, and resistivity in the range of 3.3·102-1.4·105 Ωcm. Additionally, wettability and hardness tests were performed in order to evaluate the usefulness of the films for functional coatings.

  14. A New Look at the Structural and Magnetic Properties of Potassium Neptunate K2NpO4 Combining XRD, XANES Spectroscopy, and Low-Temperature Heat Capacity.

    PubMed

    Smith, Anna L; Colineau, Eric; Griveau, Jean-Christophe; Popa, Karin; Kauric, Guilhem; Martin, Philippe; Scheinost, Andreas C; Cheetham, Anthony K; Konings, Rudy J M

    2017-05-15

    The physicochemical properties of the potassium neptunate K 2 NpO 4 have been investigated in this work using X-ray diffraction, X-ray absorption near edge structure (XANES) spectroscopy at the Np-L 3 edge, and low-temperature heat capacity measurements. A Rietveld refinement of the crystal structure is reported for the first time. The Np(VI) valence state has been confirmed by the XANES data, and the absorption edge threshold of the XANES spectrum has been correlated to the Mössbauer isomer shift value reported in the literature. The standard entropy and heat capacity of K 2 NpO 4 have been derived at 298.15 K from the low-temperature heat capacity data. The latter suggest the existence of a magnetic ordering transition around 25.9 K, most probably of the ferromagnetic type.

  15. Structural and conformational determinants of macrocycle cell permeability.

    PubMed

    Over, Björn; Matsson, Pär; Tyrchan, Christian; Artursson, Per; Doak, Bradley C; Foley, Michael A; Hilgendorf, Constanze; Johnston, Stephen E; Lee, Maurice D; Lewis, Richard J; McCarren, Patrick; Muncipinto, Giovanni; Norinder, Ulf; Perry, Matthew W D; Duvall, Jeremy R; Kihlberg, Jan

    2016-12-01

    Macrocycles are of increasing interest as chemical probes and drugs for intractable targets like protein-protein interactions, but the determinants of their cell permeability and oral absorption are poorly understood. To enable rational design of cell-permeable macrocycles, we generated an extensive data set under consistent experimental conditions for more than 200 non-peptidic, de novo-designed macrocycles from the Broad Institute's diversity-oriented screening collection. This revealed how specific functional groups, substituents and molecular properties impact cell permeability. Analysis of energy-minimized structures for stereo- and regioisomeric sets provided fundamental insight into how dynamic, intramolecular interactions in the 3D conformations of macrocycles may be linked to physicochemical properties and permeability. Combined use of quantitative structure-permeability modeling and the procedure for conformational analysis now, for the first time, provides chemists with a rational approach to design cell-permeable non-peptidic macrocycles with potential for oral absorption.

  16. Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions.

    PubMed

    Kwon, Soon Sik; Kong, Bong Ju; Park, Soo Nam

    2015-05-01

    We investigated the physicochemical properties of pH-sensitive hydroxyethyl cellulose (HEC)/hyaluronic acid (HA) complex hydrogels containing isoliquiritigenin (ILTG), and discussed potential applications as transdermal delivery systems for the treatment of skin lesions caused by pH imbalance. HA has skin compatibility and pH functional groups and HEC serves as scaffold to build hydrogels with varied HCE:HA mass ratio. Hydrogels were synthesized via chemical cross-linking, and three-dimensional network structures were characterized via scanning electron microscopy (SEM). The swelling properties and polymer ratios of the hydrogels were investigated at pH values in the range 1-13. HECHA13 (i.e., an HEC:HA mass ratio of 1:3) was found to have optimal rheological and adhesive properties, and was used to investigate the drug release efficiency as a function of pH; the efficiency was greater than 70% at pH 7. Antimicrobial activity assays against Propionibacterium acnes were conducted to take advantage of the pH-sensitive properties of HECHA13. At pH 7, we found that HECHA13, which contained ILTG, inhibited the growth of P. acnes. Furthermore, HECHA13 was found to exhibit excellent permeability into the skin, which penetrated mostly via the hair follicle. These results indicate that this pH-sensitive hydrogel is effective as a transdermal delivery system for antimicrobial therapeutics, with potential applications in the treatment of acne. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Characterization of cookies made from wheat flour blended with buckwheat flour and effect on antioxidant properties.

    PubMed

    Jan, Ulfat; Gani, Adil; Ahmad, Mudasir; Shah, Umar; Baba, Waqas N; Masoodi, F A; Maqsood, Sajid; Gani, Asir; Wani, Idress Ahmed; Wani, S M

    2015-10-01

    Buckwheat flour was incorporated into wheat flour at different levels (0, 20, 40, 60, 80, and 100 %) and the physicochemical, functional and antioxidant properties of the blended flour were studied. This study also investigated the effect of buckwheat on the retention of antioxidant properties of cookies during baking. The results showed significant variation in physicochemical and functional properties of the blended flour. The addition of buckwheat flour into wheat flour also increased the antioxidant properties of blended flour proportionally, but metal chelating properties decreased. The incorporation of buckwheat in wheat flour helped in better retention of antioxidant potential of cookies during baking process as buckwheat cookies (100 % buckwheat) showed greater percentage increase in antioxidant properties than control (100 % wheat). Quality characteristics of cookies such as hardness and spread ratio decreased, while as non-enzymatic browning (NEB) increased significantly with increase in the proportion of buckwheat flour in wheat flour. The Overall acceptability of cookies by sensory analysis was highest at 40 % level of blending. This study concluded that addition of buckwheat in wheat flour, may not only improve the physico-chemical and functional properties of the blended flour but may also enhance the nutraceutical potential of the product prepared from it.

  18. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment.

    EPA Science Inventory

    In this study, we investigate the role of simulated sunlight on the physicochemical properties, aggregation, and deposition of graphene oxide (GO) in aquatic environments. Results show that light exposure under varied environmental conditions significantly impacts the physicochem...

  19. Molecular properties of food allergens.

    PubMed

    Breiteneder, Heimo; Mills, E N Clare

    2005-01-01

    Plant food allergens belong to a rather limited number of protein families and are also characterized by a number of biochemical and physicochemical properties, many of which are also shared by food allergens of animal origin. These include thermal stability and resistance to proteolysis, which are enhanced by an ability to bind ligands, such as metal ions, lipids, or steroids. Other types of lipid interaction, including membranes or other lipid structures, represent another feature that might promote the allergenic properties of certain food proteins. A structural feature clearly related to stability is intramolecular disulfide bonds alongside posttranslational modifications, such as N-glycosylation. Some plant food allergens, such as the cereal seed storage prolamins, are rheomorphic proteins with polypeptide chains that adopt an ensemble of secondary structures resembling unfolded or partially folded proteins. Other plant food allergens are characterized by the presence of repetitive structures, the ability to form oligomers, and the tendency to aggregate. A summary of our current knowledge regarding the molecular properties of food allergens is presented. Although we cannot as yet predict the allergenicity of a given food protein, understanding of the molecular properties that might predispose them to becoming allergens is an important first step and will undoubtedly contribute to the integrative allergenic risk assessment process being adopted by regulators.

  20. Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay.

    PubMed

    Hebbar, Raghavendra S; Isloor, Arun M; Prabhu, Balakrishna; Inamuddin; Asiri, Abdullah M; Ismail, A F

    2018-03-16

    Functional surfaces and polymers with branched structures have a major impact on physicochemical properties and performance of membrane materials. With the aim of greener approach for enhancement of permeation, fouling resistance and detrimental heavy metal ion rejection capacity of polyetherimide membrane, novel grafting of poly (4-styrenesulfonate) brushes on low cost, natural bentonite was carried out via distillation-precipitation polymerisation method and employed as a performance modifier. It has been demonstrated that, modified bentonite clay exhibited significant improvement in the hydrophilicity, porosity, and water uptake capacity with 3 wt. % of additive dosage. SEM and AFM analysis showed the increase in macrovoides and surface roughness with increased additive concentration. Moreover, the inclusion of modified bentonite displayed an increase in permeation rate and high anti-irreversible fouling properties with reversible fouling ratio of 75.6%. The humic acid rejection study revealed that, PEM-3 membrane having rejection efficiency up to 87.6% and foulants can be easily removed by simple hydraulic cleaning. Further, nanocomposite membranes can be significantly employed for the removal of hazardous heavy metal ions with a rejection rate of 80% and its tentative mechanism was discussed. Conspicuously, bentonite clay-bearing poly (4-styrenesulfonate) brushes are having a synergistic effect on physicochemical properties of nanocomposite membrane to enhance the performance in real field applications.

  1. Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties.

    PubMed

    Akyuz, Lalehan; Kaya, Murat; Koc, Behlul; Mujtaba, Muhammad; Ilk, Sedef; Labidi, Jalel; Salaberria, Asier M; Cakmak, Yavuz Selim; Yildiz, Aysegul

    2017-12-01

    Practical applications of biopolymers in different industries are gaining considerable increase day by day. But still, these biopolymers lack important properties in order to meet the industrial demands. In the same regard, in the current study, chitosan composite films are produced by incorporating diatomite soil at two different concentrations. In order to obtain a homogeneous film, glutaraldehyde was supplemented to chitosan solution as a cross-linker. Compositing diatomaceous earth to chitosan film resulted in improvement of various important physicochemical properties compared to control such as; enhanced film wettability, increase elongation at break and improved thermal stability (264-277°C). The microstructure of the film was observed to haveconsisted of homogeneously distributed blister-shaped structures arised due to the incorporation of diatomite. The incorporation of diatomite did not influence the overall antioxidant activity of the composite films, which can be ascribe to the difficulty radicals formation. Chitosan film incorporated with increasing fraction of diatomite revealed a notable enhancement in the antimicrobial activity. Additionally with the present study, for the first time possible interactions between chitosan/diatomite were determined via quantum chemical calculations. Current study will be helpful in giving a new biotechnological perspective to diatom in terms of its successful application in hydrophobic composite film production. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Influence of Epicuticular Physicochemical Properties on Porcine Rotavirus Adsorption to 24 Leafy Green Vegetables and Tomatoes

    PubMed Central

    Palma-Salgado, Sindy Paola; Storm, Andrew Page; Feng, Hao; Juvik, John A.; Nguyen, Thanh H.

    2015-01-01

    Foodborne diseases are a persistent problem in the United States and worldwide. Fresh produce, especially those used as raw foods like salad vegetables, can be contaminated, causing illness. In this study, we determined the number of rotaviruses adsorbed on produce surfaces using group A porcine rotaviruses and 24 cultivars of leafy vegetables and tomato fruits. We also characterized the physicochemical properties of each produce’s outermost surface layer, known as the epicuticle. The number of rotaviruses found on produce surfaces varied among cultivars. Three-dimensional crystalline wax structures on the epicuticular surfaces were found to significantly contribute to the inhibition of viral adsorption to the produce surfaces (p = 0.01). We found significant negative correlations between the number of rotaviruses adsorbed on the epicuticular surfaces and the concentrations of alkanes, fatty acids, and total waxes on the epicuticular surfaces. Partial least square model fitting results suggest that alkanes, ketones, fatty acids, alcohols, contact angle and surface roughness together can explain 60% of the variation in viral adsorption. The results suggest that various fresh produce surface properties need to be collectively considered for efficient sanitation treatments. Up to 10.8% of the originally applied rotaviruses were found on the produce surfaces after three washing treatments, suggesting a potential public health concern regarding rotavirus contamination. PMID:26181904

  3. Physicochemical Properties of Dietary Fibers from Artocarpus camansi Fruit

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Kusumaningsih, T.; Rumingtyas, Y. S.

    2017-04-01

    The objective of this work was to investigate the dietary fiber (DF) contents of Artocorpus camansi (breadnut) fruit and examine their physicochemical properties, such as water-holding capacity (WAC), oil-holding capacity (OHC) and water absorption capacity (WAC). This fruit flour contained of both water soluble fibers (SDF), such as pectin (1.95%) and gum (0.4%), and water insoluble fibers (IDF) (89.25%). The IDF content of this fruit was significantly high in respect to other DF sources. The WHC, OHC and WAC of IDF were 4.10, 2.60 and 4.0%, respectively. Moreover, the WHC, OHC and WHC of total dietary fibers (TDF) were 4.2, 4.3 and 4.6%, respectively. The results showed that the DF of fruit flour had good physicochemical properties. The findings suggested that there is a potential application of A. camansi of fruit as functional ingredients in the food industry.

  4. Effect of egg albumen protein addition on physicochemical properties and nanostructure of gelatin from fish skin.

    PubMed

    Cai, Luyun; Feng, Jianhui; Peng, Xichun; Regenstein, Joe M; Li, Xiuxia; Li, Jianrong; Zhao, Wei

    2016-12-01

    The physicochemical properties and nanostructure of mixtures of egg albumen protein (EAP) and gelatin from under-utilised grass carp ( Ctenopharyngodon idella ) skins were studied. The gelatin with 1% EAP had an acceptable gel strength. The addition of 5% EAP significantly increased the melting and gelling temperatures of gelatin gels. Additionally, the colour turned white and the crystallinity was higher in gelatin gels with gradient concentrations of EAP (1, 3, and 5%). Gelatin with 5% EAP had the highest G' values while gelatin with 1% EAP had the lowest G' values. Atomic force microscopy showed the heterogeneous nanostructure of fish gelatin, and a simple coacervate with a homogeneous distribution was only observed with the addition of 1% EAP, indicating interaction between gelatin and EAP. These results showed that EAP effect fish gelatin's physicochemical and nanostructure properties and has potential applications in foods and pharmaceuticals.

  5. Effect of physicochemical action on the aggregative properties of detonation-synthesized nanodiamonds

    NASA Astrophysics Data System (ADS)

    Fan, Z. W.; Ilnitska, H.; Lysakovskyi, V.; Ivakhnenko, S.; Kovalenko, T.

    2018-01-01

    The results of researches of physicochemical action on aggregate properties of nanodiamond are presented. The kinetics of aggregation of nanodiamond powder was studied as a function of time, temperature, and pH of the solution. The effect of the sp2-sp3 hybridization ratio of carbon in nanodiamond powders on their aggregation was studied. It is shown that the presence of non-diamond carbon in detonation synthesis nanodiamond powders leads to the increase of the mean diameters of particles, i.e., their agglomeration. The theoretical justification of the aggregation mechanism is proposed. It is shown that it is possible to control aggregative properties of nanodiamond powders by physicochemical influences, e.g., gas-phase thermal treatment to reduce the size of agglomerates and to create a well-developed reconstructed surface of diamond particles with a low content of functional groups on their surface.

  6. Manganese in occupational arc welding fumes--aspects on physiochemical properties, with focus on solubility.

    PubMed

    Taube, Fabian

    2013-01-01

    Physicochemical properties, such as particle sizes, composition, and solubility of welding fumes are decisive for the bioaccessibility of manganese and thereby for the manganese cytotoxic and neurotoxic effects arising from various welding fumes. Because of the diverse results within the research on welding fume solubility, this article aims to review and discuss recent literature on physicochemical properties of gas metal arc welding, shielded metal arc welding, and flux-cored arc welding fumes, with focus on solubility properties. This article also presents a short introduction to the literature on arc welding techniques, health effects from manganese, and occupational exposure to manganese among welders.

  7. Effect of cream fermentation on microbiological, physicochemical and rheological properties of L. helveticus-butter.

    PubMed

    Ewe, Joo-Ann; Loo, Su-Yi

    2016-06-15

    The primary objective of this study was to evaluate the physicochemical and rheological properties of butter produced by Lactobacillus helveticus fermented cream. The incorporation of putative probiotic - the L. helveticus, to ferment cream prior to butter production was anticipated to alter the nutritional composition of butter. Changes in crude macronutrients and the resultant modification relating to textural properties of butter induced upon metabolic activities of L. helveticus in cream were focused in this research. Fermented butter (LH-butter) was produced by churning the cream that was fermented by lactobacilli at 37 °C for 24 h. Physicochemical analysis, proximate analysis and rheology properties of LH-butter were compared with butter produced using unfermented cream (control). LH-butter showed a significantly (P<0.05) higher fat content and acid value; lower moisture and ash; and was softer than the control. Cream fermentation modified nutritional and textural properties of butter in which LH-butter contained higher health beneficial unsaturated fatty acids than the control and thus rendered the product softer. Its enrichment with probiotics could thus further enhance its functional property. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Papulacandins, a new family of antibiotics with antifungal activity, I. Fermentation, isolation, chemical and biological characterization of papulacandins A, B, C, D and E.

    PubMed

    Traxler, P; Gruner, J; Auden, J A

    1977-04-01

    Papulacandin, a new antibiotic complex, active against Candida albicans and several other yeasts, was isolated from a strain of Papularia sphaerosperma. The fermentation, isolation, physico-chemical properties and biological activity of the five structurally related papulacandins A, B, C, D and E are reported. Papulacandin B, the main component, was assigned the formula of C47H64O17.

  9. Discovery and therapeutic promise of selective androgen receptor modulators.

    PubMed

    Chen, Jiyun; Kim, Juhyun; Dalton, James T

    2005-06-01

    Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects.

  10. Discovery AND Therapeutic Promise OF Selective Androgen Receptor Modulators

    PubMed Central

    Chen, Jiyun; Kim, Juhyun; Dalton, James T.

    2007-01-01

    Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects. PMID:15994457

  11. 3-Methoxylphenylpropyl amides as novel receptor subtype-selective melatoninergic ligands: characterization of physicochemical and pharmacokinetic properties.

    PubMed

    Zhu, Jing; Hu, Yueqing; Ho, Maurice K C; Wong, Yung H

    2011-01-01

    Developing subtype-selective melatoninergic ligands has been a subject of considerable interest in drug discovery. A series of 3-methoxyphenylpropyl amide derivatives showing selective binding capacity to type 2 melatonin receptor with subnanomolar range of affinities has been identified recently by our laboratory. In the present study, their physicochemical properties, Caco-2 cell and mdr1-MDCK cell permeability, plasma protein binding, and metabolic stability were investigated. The selected compounds are lipophilic in nature, exhibiting aqueous solubility ranging from 40 to 200 microg/mL. Cell permeability studies on Caco-2 and mdr1-MDCK model revealed that they were readily transported through intestinal epithelium and possessed high penetration potential through blood-brain barrier, implying good oral absorption and central nervous system (CNS) distribution potential. They also showed substantial binding to human plasma protein ranging from 78.5% to 92.3%. These compounds were, however, subjected to rapid cytochrome P450-mediated degradation in rat and human liver microsomes with in vitro half-life of 9.5-31.9 min in rat and 5.5-66.7 min in human, which were much shorter than that of melatonin (approximately 73 min). Metabolite profiling unveiled that C6-ether linkage and methoxy substituents were likely the major metabolic soft spots in their structures, which provided important information for further improvement of their structural stability.

  12. Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 3: optimization of [1,2,4]triazolo[1,5-a]pyrimidine core via structure-based and physicochemical property-driven approaches.

    PubMed

    Huang, Boshi; Li, Cuicui; Chen, Wenmin; Liu, Tao; Yu, Mingyan; Fu, Lu; Sun, Yueyue; Liu, Huiqing; De Clercq, Erik; Pannecouque, Christophe; Balzarini, Jan; Zhan, Peng; Liu, Xinyong

    2015-03-06

    In our arduous efforts to develop new potent HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs), novel piperidine-linked [1,2,4]triazolo[1,5-a]pyrimidine derivatives were designed, synthesized and evaluated for their antiviral activities in MT-4 cell cultures. Biological results showed that all of the title compounds displayed moderate to excellent activities against wild-type (wt) HIV-1 strain (IIIB) with EC50 values ranging from 8.1 nM to 2284 nM in a cell-based assay. Among them, the most promising analog 7d possessed an EC50 value of 8.1 nM against wt HIV-1, which was much more potent than the reference drugs DDI, 3 TC, NVP and DLV. Additionally, 7d demonstrated weak activity against the double mutant HIV-1 strain (K103N + Y181C), and was more efficient than NVP in a RT inhibition assay. Besides, some measured and calculated physicochemical properties of 7d, like log P and water solubility, as well as the structure-activity relationships (SARs) analysis have been discussed in detail. Furthermore, the binding mode of the active compound 7d was rationalized by molecular simulation studies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Cholesterol-based cationic lipids for gene delivery: contribution of molecular structure factors to physico-chemical and biological properties.

    PubMed

    Sheng, Ruilong; Luo, Ting; Li, Hui; Sun, Jingjing; Wang, Zhao; Cao, Amin

    2014-04-01

    In this work, we prepared a series of cholesterol-based cationic (Cho-cat) lipids bearing cholesterol hydrophobe, natural amino acid headgroups (lysine/histidine) and linkage (carbonate ester/ether) bonds. In which, the natural amino acid headgroups made dominant contribution to their physico-chemical and biological properties. Among the lipids, the l-lysine headgroup bearing lipids (Cho-es/et-Lys) showed higher pDNA binding affinity and were able to form larger sized and higher surface charged lipoplexes than that of l-histidine headgroup bearing lipids (Cho-es/et-His), they also demonstrated higher transfection efficacy and higher membrane disruption capacities than that of their l-histidine headgroup bearing counterparts. However, compared to the contributions of the headgroups, the (carbonate ester/ether) linkage bonds showed much less affects. Besides, it could be noted that, Cho-es/et-Lys lipids exhibited very high luciferase gene transfection efficiency that almost reached the transfection level of "gold standard" bPEI-25k, made them potential transfection reagents for practical application. Moreover, the results facilitated the understanding for the structure-activity relationship of the cholesterol-based cationic lipids, and also paved a simple and efficient way for achieving high transfection efficiency by modification of suitable headgroups on lipid gene carriers. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Novel hybrid materials for preparation of bone tissue engineering scaffolds.

    PubMed

    Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Łatkiewicz, Anna; Nowakowska, Maria

    2015-09-01

    The organic-inorganic hybrid systems based on biopolymer hydrogels with dispersed silica nanoparticles were obtained and characterized in terms of their physicochemical properties, cytocompatibility and bioactivity. The hybrid materials were prepared in a form of collagen and collagen-chitosan sols to which the silica nanoparticles of two different sizes were incorporated. The ability of these materials to undergo in situ gelation under physiological temperature was assessed by microviscosity and gelation time determination based on steady-state fluorescence anisotropy measurements. The effect of silica nanoparticles addition on the physicochemical properties (surface wettability, swellability) of hybrid materials was analyzed and compared with those characteristic for pristine collagen and collagen-chitosan hydrogels. Biological studies indicate that surface wettability determined in terms of contact angle for all of the hybrids prepared is optimal and thus can provide satisfactory adhesion of fibroblasts. Cytotoxicity test results showed high metabolic activity of mouse as well as human fibroblast cell lines cultured on hybrid materials. The composition of hybrids was optimized in terms of concentration of silica nanoparticles. The effect of silica on the formation of bone-like mineral structures on exposition to simulated body fluid was determined. SEM images revealed mineral phase formation not only at the surfaces but also in the whole volumes of all hybrid materials developed suggesting their usefulness for bone tissue engineering. EDS and FTIR analyses indicated that these mineral phases consist of apatite-like structures.

  15. Physicochemical properties and biodegradability of organically functionalized colloidal silica particles in aqueous environment.

    PubMed

    Schneider, Mandy; Meder, Fabian; Haiß, Annette; Treccani, Laura; Rezwan, Kurosch; Kümmerer, Klaus

    2014-03-01

    Engineered sub-micron particles are being used in many technical applications, leading to an increasing introduction into the aquatic environment. Only a few studies have dealt with the biodegradability of non-functionalized organic particles. In fact the knowledge of organically surface functionalized colloids is nearly non-existent. We have investigated the biodegradability of organically surface functionalized silica (SiO2) particles bearing technically relevant groups such as amino-, carboxyl-, benzyl-, sulfonate-, chloro-, and phosphatoethyl-derivatized alkyls. Essential physicochemical properties including zeta potential, isoelectric point, morphology, surface area, porosity, surface density, and elemental composition of the particles were investigated, followed by biodegradability testing using the Closed Bottle Test (OECD 301D). None of the particles met the biodegradability threshold value of 60%. Only a slight biodegradation was revealed for SiO2-Benzyl (13.7±6.7%) and for SiO2-3-Chlorpropane (10.8±1.5%). For the other particles biodegradability was below the normal background fluctuation of 5%. The results were different of those obtained from structurally similar chemicals not being functionalized on the particle surface and from general rules of structure-biodegradation prediction of organic molecules. Therefore, our results suggest that the attachment of the organic groups heavily reduces their biodegradability, increases their residence time and possibility for adverse effects to environmental species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Green synthesis of some novel dioxolane compounds from Indonesian essential oils as potential biogreases

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, Tutik Dwi; Kurniawan, Yehezkiel Steven

    2017-03-01

    Greases are mostly prepared from petroleum base stocks that make it toxic to the environment. The demand for green greases has led to in depth research of other renewable resources. Vegetable oils are promising candidates due to their renewability and low toxicity. However, it has poor oxidation stability and high total acid number. One way to solve this problem is chemical modification of its fatty acid structure. We report some novel dioxolane compounds from oleic acid and benzaldehyde derivates from some Indonesian essential oils via several steps, i.e: hydroxylation, esterification and acetalization. The esterification and acetalization reaction was carried out by green procedure using sonochemical method and montmorillonite KSF as a catalyst. Hydroxylation of Oleic acid was performed by KMnO4 to give 9,10-dihydroxyoctadecanoic (DHOA) in 47% yield. The esterification was done using methanol yielded methyl 9,10-dihydroxyoctadecanoate (MDHO) as white powder in 94%. Acetalization of the ester MDO with various benzaldehyde derivatives was carried out to give the dioxolan derivatives in the range of 17 - 60% yield. All of the structure was confirmed by FT-IR and GC-MS, meanwhile their physicochemical properties were determined using ASTM methods. From physicochemical properties, i.e: -TAN, TBN and IV-, it can be concluded that these novel compounds have the potential to be developed into biogrease.

  17. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials.

    PubMed

    Wanders, A J; van den Borne, J J G C; de Graaf, C; Hulshof, T; Jonathan, M C; Kristensen, M; Mars, M; Schols, H A; Feskens, E J M

    2011-09-01

    Dietary fibres are believed to reduce subjective appetite, energy intake and body weight. However, different types of dietary fibre may affect these outcomes differently. The aim of this review was to systematically investigate the available literature on the relationship between dietary fibre types, appetite, acute and long-term energy intake, and body weight. Fibres were grouped according to chemical structure and physicochemical properties (viscosity, solubility and fermentability). Effect rates were calculated as the proportion of all fibre-control comparisons that reduced appetite (n = 58 comparisons), acute energy intake (n = 26), long-term energy intake (n = 38) or body weight (n = 66). For appetite, acute energy intake, long-term energy intake and body weight, there were clear differences in effect rates depending on chemical structure. Interestingly, fibres characterized as being more viscous (e.g. pectins, β-glucans and guar gum) reduced appetite more often than those less viscous fibres (59% vs. 14%), which also applied to acute energy intake (69% vs. 30%). Overall, effects on energy intake and body weight were relatively small, and distinct dose-response relationships were not observed. Short- and long-term effects of dietary fibres appear to differ and multiple mechanisms relating to their different physicochemical properties seem to interplay. This warrants further exploration. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.

  18. Modeling the drugs' passive transfer in the body based on their chromatographic behavior.

    PubMed

    Kouskoura, Maria G; Kachrimanis, Kyriakos G; Markopoulou, Catherine K

    2014-11-01

    One of the most challenging aims in modern analytical chemistry and pharmaceutical analysis is to create models for drugs' behavior based on simulation experiments. Since drugs' effects are closely related to their molecular properties, numerous characteristics of drugs are used in order to acquire a model of passive absorption and transfer in the human body. Importantly, such direction in innovative bioanalytical methodologies is also of stressful need in the area of personalized medicine to implement nanotechnological and genomics advancements. Simulation experiments were carried out by examining and interpreting the chromatographic behavior of 113 analytes/drugs (400 observations) in RP-HPLC. The dataset employed for this purpose included 73 descriptors which are referring to the physicochemical properties of the mobile phase mixture in different proportions, the physicochemical properties of the analytes and the structural characteristics of their molecules. A series of different software packages was used to calculate all the descriptors apart from those referring to the structure of analytes. The correlation of the descriptors with the retention time of the analytes eluted from a C4 column with an aqueous mobile phase was employed as dataset to introduce the behavior models in the human body. Their evaluation with a Partial Least Squares (PLS) software proved that the chromatographic behavior of a drug on a lipophilic stationary and a polar mobile phase is directly related to its drug-ability. At the same time, the behavior of an unknown drug in the human body can be predicted with reliability via the Artificial Neural Networks (ANNs) software. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Impact of Sulfuric Acid Treatment of Halloysite on Physico-Chemic Property Modification

    PubMed Central

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H.; Nassir, Mohamed H.; Al-Amiery, Ahmed A.

    2016-01-01

    Halloysite (HNT) is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1), 3 h (H3), 8 h (H8), and 21 h (H21). The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD) spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO6 octahedral layers and induces the disintegration of SiO4 tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET) surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO6 octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO4. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites. PMID:28773741

  20. Linear and Branched PEIs (Polyethylenimines) and Their Property Space.

    PubMed

    Lungu, Claudiu N; Diudea, Mircea V; Putz, Mihai V; Grudziński, Ireneusz P

    2016-04-13

    A chemical property space defines the adaptability of a molecule to changing conditions and its interaction with other molecular systems determining a pharmacological response. Within a congeneric molecular series (compounds with the same derivatization algorithm and thus the same brute formula) the chemical properties vary in a monotonic manner, i.e., congeneric compounds share the same chemical property space. The chemical property space is a key component in molecular design, where some building blocks are functionalized, i.e., derivatized, and eventually self-assembled in more complex systems, such as enzyme-ligand systems, of which (physico-chemical) properties/bioactivity may be predicted by QSPR/QSAR (quantitative structure-property/activity relationship) studies. The system structure is determined by the binding type (temporal/permanent; electrostatic/covalent) and is reflected in its local electronic (and/or magnetic) properties. Such nano-systems play the role of molecular devices, important in nano-medicine. In the present article, the behavior of polyethylenimine (PEI) macromolecules (linear LPEI and branched BPEI, respectively) with respect to the glucose oxidase enzyme GOx is described in terms of their (interacting) energy, geometry and topology, in an attempt to find the best shape and size of PEIs to be useful for a chosen (nanochemistry) purpose.

  1. Linear and Branched PEIs (Polyethylenimines) and Their Property Space

    PubMed Central

    Lungu, Claudiu N.; Diudea, Mircea V.; Putz, Mihai V.; Grudziński, Ireneusz P.

    2016-01-01

    A chemical property space defines the adaptability of a molecule to changing conditions and its interaction with other molecular systems determining a pharmacological response. Within a congeneric molecular series (compounds with the same derivatization algorithm and thus the same brute formula) the chemical properties vary in a monotonic manner, i.e., congeneric compounds share the same chemical property space. The chemical property space is a key component in molecular design, where some building blocks are functionalized, i.e., derivatized, and eventually self-assembled in more complex systems, such as enzyme-ligand systems, of which (physico-chemical) properties/bioactivity may be predicted by QSPR/QSAR (quantitative structure-property/activity relationship) studies. The system structure is determined by the binding type (temporal/permanent; electrostatic/covalent) and is reflected in its local electronic (and/or magnetic) properties. Such nano-systems play the role of molecular devices, important in nano-medicine. In the present article, the behavior of polyethylenimine (PEI) macromolecules (linear LPEI and branched BPEI, respectively) with respect to the glucose oxidase enzyme GOx is described in terms of their (interacting) energy, geometry and topology, in an attempt to find the best shape and size of PEIs to be useful for a chosen (nanochemistry) purpose. PMID:27089324

  2. Cyclodextrins improving the physicochemical and pharmacological properties of antidepressant drugs: a patent review.

    PubMed

    Diniz, Tâmara Coimbra; Pinto, Tiago Coimbra Costa; Menezes, Paula Dos Passos; Silva, Juliane Cabral; Teles, Roxana Braga de Andrade; Ximenes, Rosana Christine Cavalcanti; Guimarães, Adriana Gibara; Serafini, Mairim Russo; Araújo, Adriano Antunes de Souza; Quintans Júnior, Lucindo José; Almeida, Jackson Roberto Guedes da Silva

    2018-01-01

    Depression is a serious mood disorder and is one of the most common mental illnesses. Despite the availability of several classes of antidepressants, a substantial percentage of patients are unresponsive to these drugs, which have a slow onset of action in addition to producing undesirable side effects. Some scientific evidence suggests that cyclodextrins (CDs) can improve the physicochemical and pharmacological profile of antidepressant drugs (ADDs). The purpose of this paper is to disclose current data technology prospects involving antidepressant drugs and cyclodextrins. Areas covered: We conducted a patent review to evaluate the antidepressive activity of the compounds complexed in CDs, and we analyzed whether these complexes improved their physicochemical properties and pharmacological action. The present review used 8 specialized patent databases for patent research, using the term 'cyclodextrin' combined with 'antidepressive agents' and its related terms. We found 608 patents. In the end, considering the inclusion criteria, 27 patents reporting the benefits of complexation of ADDs with CDs were included. Expert opinion: The use of CDs can be considered an important tool for the optimization of physicochemical and pharmacological properties of ADDs, such as stability, solubility and bioavailability.

  3. Does gamma irradiation affect physicochemical properties of honey?

    PubMed

    Hussein, S Z; Yusoff, K M; Makpol, S; Mohd Yusof, Y A

    2014-01-01

    Honey is a supersaturated solution of sugars, enriched with proteins, minerals, vitamins, organic acids and polyphenols. Gamma irradiation is a physical technique of food preservation which protects the honey from insects' and microbial contamination during storage. We investigated the effect of gamma irradiation on physicochemical properties in two types of Malaysian honey, Gelam and Nenas. Both honeys were irradiated at the dose 25 kGy in a cobalt-60 irradiator. The physicochemical properties pH, moisture, acidity, color, and sugar content as well as vitamins C and E, hydroxymethylfurfural (HMF) and mineral contents, for the irradiated and non-irradiated honeys were assessed. The results revealed that pH, acidity, minerals and sugar contents in both types of honey were not affected significantly by gamma irradiation, while moisture, vitamin E contents and HMF level decreased significantly with gamma irradiation. However, significant increased in color intensity and vitamin C were observed after gamma irradiation for both types of honey. In summary, gamma irradiation treatment of honey (in the dose mentioned above) did not cause significant changes in the physicochemical and mineral contents, except for significant alterations in color intensity, moisture, vitamins (C and E), and HMF contents.

  4. Key fuel properties and engine performances of diesel-ethanol blends, using tetrahydrofuran as surfactant additive

    NASA Astrophysics Data System (ADS)

    Molea, A.; Visuian, P.; Barabás, I.; Suciu, R. C.; Burnete, N. V.

    2017-10-01

    In this paper there were presented researches related to preparation and characterization of physicochemical properties of diesel-ethanol blends stabilized with tetrahydrofuran as surfactant, in order to be used as fuels in compression ignition engines. The main spray characteristics and engine performances of these blends were evaluated by using AVL Fire software. In the first stage of the studies, commercial diesel was mixed with ethanol, in different concentrations (between 2% and 15% v/v), followed by the addition of tetrahydrofuran (THF) until the blends were miscible, i.e. the blends were stabilized. The experiments were done at room temperature (22 °C). The obtained blends were characterized in order to determine the chemical composition and physicochemical properties, i.e. density, kinematic viscosity, surface tension. UV-Vis spectroscopy was utilized in order to determine a semi-quantitative evaluation regarding the chemical composition of the prepared blends and chemical interaction between diesel, ethanol and THF. Based on the determined properties, the fuel spray characteristics, engine performances and emission characteristics were evaluated by simulation using the AVL Fire software. The obtained results regarding physicochemical properties of blends were compared with diesel. Some improvements were observed when operating with the prepared blends compared to diesel with respect to engine performances and emission characteristics. Based on physicochemical evaluation and computer simulation, it was demonstrated that diesel-ethanol-tetrahydrofuran blends can be used as alternative fuel in compression ignition engines.

  5. Food grade microemulsion systems: Sunflower oil/castor oil derivative-ethanol/water. Rheological and physicochemical analysis.

    PubMed

    Mori Cortés, Noelia; Lorenzo, Gabriel; Califano, Alicia N

    2018-05-01

    Microemulsions are thermodynamically stable systems that have attracted considerable attention in the food industry as delivery systems for many hydrophobic nutrients. These spontaneous systems are highly dependent on ingredients and composition. In this work phase diagrams were constructed using two surfactants (Kolliphor RH40 and ELP), water, sunflower oil, and ethanol as cosurfactant, evaluating their physicochemical properties. Stability of the systems was studied at 25 and 60 °C, monitoring turbidity at 550 nm for over a month to identify the microemulsion region. Conductivity was measured to classify between water-in-oil and oil-in-water microemulsions. The phase diagram constructed with Kolliphor RH40 exhibited a larger microemulsion area than that formulated with Kolliphor ELP. All formulations showed a monomodal droplet size distribution with low polydispersity index (<0.30) and a mean droplet size below 20 nm. Systems with higher water content presented a Newtonian behavior; increasing the dispersed phase content produced a weak gel-like structure with pseudoplastic behavior under flow conditions that was satisfactorily modeled to obtain structural parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Extracting physicochemical features to predict protein secondary structure.

    PubMed

    Huang, Yin-Fu; Chen, Shu-Ying

    2013-01-01

    We propose a protein secondary structure prediction method based on position-specific scoring matrix (PSSM) profiles and four physicochemical features including conformation parameters, net charges, hydrophobic, and side chain mass. First, the SVM with the optimal window size and the optimal parameters of the kernel function is found. Then, we train the SVM using the PSSM profiles generated from PSI-BLAST and the physicochemical features extracted from the CB513 data set. Finally, we use the filter to refine the predicted results from the trained SVM. For all the performance measures of our method, Q 3 reaches 79.52, SOV94 reaches 86.10, and SOV99 reaches 74.60; all the measures are higher than those of the SVMpsi method and the SVMfreq method. This validates that considering these physicochemical features in predicting protein secondary structure would exhibit better performances.

  7. Extracting Physicochemical Features to Predict Protein Secondary Structure

    PubMed Central

    Chen, Shu-Ying

    2013-01-01

    We propose a protein secondary structure prediction method based on position-specific scoring matrix (PSSM) profiles and four physicochemical features including conformation parameters, net charges, hydrophobic, and side chain mass. First, the SVM with the optimal window size and the optimal parameters of the kernel function is found. Then, we train the SVM using the PSSM profiles generated from PSI-BLAST and the physicochemical features extracted from the CB513 data set. Finally, we use the filter to refine the predicted results from the trained SVM. For all the performance measures of our method, Q 3 reaches 79.52, SOV94 reaches 86.10, and SOV99 reaches 74.60; all the measures are higher than those of the SVMpsi method and the SVMfreq method. This validates that considering these physicochemical features in predicting protein secondary structure would exhibit better performances. PMID:23766688

  8. Semiconductor Nanomaterials-Based Fluorescence Spectroscopic and Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometric Approaches to Proteome Analysis

    PubMed Central

    Kailasa, Suresh Kumar; Cheng, Kuang-Hung; Wu, Hui-Fen

    2013-01-01

    Semiconductor quantum dots (QDs) or nanoparticles (NPs) exhibit very unusual physico-chemcial and optical properties. This review article introduces the applications of semiconductor nanomaterials (NMs) in fluorescence spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for biomolecule analysis. Due to their unique physico-chemical and optical properties, semiconductors NMs have created many new platforms for investigating biomolecular structures and information in modern biology. These semiconductor NMs served as effective fluorescent probes for sensing proteins and cells and acted as affinity or concentrating probes for enriching peptides, proteins and bacteria proteins prior to MALDI-MS analysis. PMID:28788422

  9. Polymersome Carriers: from Self-Assembly to siRNA and Protein Therapeutics

    PubMed Central

    Christian, David A.; Cai, Shenshen; Bowen, Diana M.; Kim, Younghoon; Pajerowski, J. David; Discher, Dennis E.

    2009-01-01

    Polymersomes are polymer-based vesicular shells that form upon hydration of amphiphilic block copolymers. These high molecular weight amphiphiles impart physicochemical properties that allow polymersomes to stably encapsulate or integrate a broad range of active molecules. This robustness together with recently described mechanisms for controlled breakdown of degradable polymersomes as well as escape from endolysosomes suggests that polymersomes might be usefully viewed as having structure/property/function relationships somewhere between lipid vesicles and viral capsids. Here we summarize the assembly and development of controlled release polymersomes to encapsulate therapeutics ranging from small molecule anti-cancer drugs to siRNA and therapeutic proteins. PMID:18977437

  10. Physicochemical Evaluations of Selected Solvents for Use in Decontaminating Agent: Multipurpose (DAM) Formulation

    DTIC Science & Technology

    1994-03-01

    PARAMETER FOR K-125 POLYMER Molar p, volume, Polymer g/co cc 8d 5p 8• PMMA 1.17 86.5 16.5 5.7 9.0 19.7 PnPrMA 1.08 118.7 16.6 4.1 7.7 18.8 PnBuMA 1.05 135.2...with an usable fluid range. The limited toxicological data (Ref. 2) shows that the compounds have low acute toxicity and are only mildly irritating...expected from the similarity in structure and the similarity in physical properties that its toxicological properties will be quite like those of sulfolane

  11. Fucoidans in Nanomedicine

    PubMed Central

    Chollet, Lucas; Saboural, Pierre; Chauvierre, Cédric; Villemin, Jean-Noël; Letourneur, Didier; Chaubet, Frédéric

    2016-01-01

    Fucoidans are widespread cost-effective sulfated marine polysaccharides which have raised interest in the scientific community over last decades for their wide spectrum of bioactivities. Unsurprisingly, nanomedicine has grasped these compounds to develop innovative therapeutic and diagnostic nanosystems. The applications of fucoidans in nanomedicine as imaging agents, drug carriers or for their intrinsic properties are reviewed here after a short presentation of the main structural data and biological properties of fucoidans. The origin and the physicochemical specifications of fucoidans are summarized in order to discuss the strategy of fucoidan-containing nanosystems in Human health. Currently, there is a need for reproducible, well characterized fucoidan fractions to ensure significant progress. PMID:27483292

  12. Surface modification of cellulose using silane coupling agent.

    PubMed

    Thakur, Manju Kumari; Gupta, Raju Kumar; Thakur, Vijay Kumar

    2014-10-13

    Recently there has been a growing interest in substituting traditional synthetic polymers with natural polymers for different applications. However, natural polymers such as cellulose suffer from few drawbacks. To become viable potential alternatives of synthetic polymers, cellulosic polymers must have comparable physico-chemical properties to that of synthetic polymers. So in the present work, cellulose polymer has been modified by a series of mercerization and silane functionalization to optimize the reaction conditions. Structural, thermal and morphological characterization of the cellulose has been done using FTIR, TGA and SEM, techniques. Surface modified cellulose polymers were further subjected to evaluation of their properties like swelling and chemical resistance behavior. Published by Elsevier Ltd.

  13. Effects of different radio-opacifying agents on physicochemical and biological properties of a novel root-end filling material

    PubMed Central

    Lü, Xiao-Ying; Liu, Gen-Di

    2018-01-01

    Background/Purpose Radio-opacity is an essential attribute of ideal root-end filling materials because it is important for clinicians to observe root canal filling and to facilitate the follow-up instructions. The novel root-end filling material (NRFM) has good cytocompatibility and physicochemical properties but low intrinsic radio-opacity value. To improve its radio-opacity value, three novel radio-opaque root-end filling materials (NRRFMs) were developed by adding barium sulphate (NRFM-Ba), bismuth trioxide (NRFM-Bi) and zirconium dioxide (NRFM-Zr) to NRFM, respectively. The purpose of this study was to identify the suitable radio-opacifier for NRFM through evaluating their physicochemical and biological properties, in comparison with NRFM and glass ionomer cement (GIC). Methods NRRFMs were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrophotometry (FTIR). Physicochemical properties including setting time, compressive strength, porosity, pH variation, solubility, washout resistance, contact angle and radiopacity were investigated. Cytocompatibility of both freshly mixed and set NRRFMs was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Alkaline phosphatase (ALP) activity assay and alizarin red staining were used to investigate the osteogenic differentiation potential of NRFM-Zr. Data were analyzed using two-way ANOVA (pH variation, solubility and ALP activity) and one-way ANOVA (for the other variables). Results (1) NRRFMs were primarily composed of hydroxyapatite, calcium carboxylate salt and the corresponding radio-opacity agents (barium sulphate, bismuth trioxide or zirconium dioxide). (2) Besides similar physicochemical properties in terms of setting time, pH variation, solubility, washout resistance and contact angle to NRFM, NRFM-Bi and NRFM-Zr exhibited lower porosity and greater compressive strength after being set for 7 days and their radio-opacity were greater than the 3 mm aluminium thickness specified in ISO 6876 (2001). (3) MTT assay revealed that freshly mixed and set NRFM-Zr presented better cell viability than NRFM-Ba and NRFM-Bi at 24 hours and 48 hours (P<0.05). (4) NRFM-Zr significantly enhanced ALP activity and calcium formation of human osteoblast-like Saos-2 cells when compared with negative group and GIC (P<0.05). Conclusion NRFM-Zr presents desirable physicochemical and biological properties, thus zirconium dioxide may be a suitable radio-opacifier for NRFM. PMID:29420559

  14. Effects of different radio-opacifying agents on physicochemical and biological properties of a novel root-end filling material.

    PubMed

    Chen, Yao-Zhong; Lü, Xiao-Ying; Liu, Gen-Di

    2018-01-01

    Radio-opacity is an essential attribute of ideal root-end filling materials because it is important for clinicians to observe root canal filling and to facilitate the follow-up instructions. The novel root-end filling material (NRFM) has good cytocompatibility and physicochemical properties but low intrinsic radio-opacity value. To improve its radio-opacity value, three novel radio-opaque root-end filling materials (NRRFMs) were developed by adding barium sulphate (NRFM-Ba), bismuth trioxide (NRFM-Bi) and zirconium dioxide (NRFM-Zr) to NRFM, respectively. The purpose of this study was to identify the suitable radio-opacifier for NRFM through evaluating their physicochemical and biological properties, in comparison with NRFM and glass ionomer cement (GIC). NRRFMs were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrophotometry (FTIR). Physicochemical properties including setting time, compressive strength, porosity, pH variation, solubility, washout resistance, contact angle and radiopacity were investigated. Cytocompatibility of both freshly mixed and set NRRFMs was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Alkaline phosphatase (ALP) activity assay and alizarin red staining were used to investigate the osteogenic differentiation potential of NRFM-Zr. Data were analyzed using two-way ANOVA (pH variation, solubility and ALP activity) and one-way ANOVA (for the other variables). (1) NRRFMs were primarily composed of hydroxyapatite, calcium carboxylate salt and the corresponding radio-opacity agents (barium sulphate, bismuth trioxide or zirconium dioxide). (2) Besides similar physicochemical properties in terms of setting time, pH variation, solubility, washout resistance and contact angle to NRFM, NRFM-Bi and NRFM-Zr exhibited lower porosity and greater compressive strength after being set for 7 days and their radio-opacity were greater than the 3 mm aluminium thickness specified in ISO 6876 (2001). (3) MTT assay revealed that freshly mixed and set NRFM-Zr presented better cell viability than NRFM-Ba and NRFM-Bi at 24 hours and 48 hours (P<0.05). (4) NRFM-Zr significantly enhanced ALP activity and calcium formation of human osteoblast-like Saos-2 cells when compared with negative group and GIC (P<0.05). NRFM-Zr presents desirable physicochemical and biological properties, thus zirconium dioxide may be a suitable radio-opacifier for NRFM.

  15. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, Czesława; Ślósarczyk, Anna; Pijocha, Dawid; Sitarz, Maciej; Bućko, Mirosław; Zima, Aneta; Chróścicka, Anna; Lewandowska-Szumieł, Małgorzata

    2010-07-01

    Hydroxyapatite (HA) - Ca 10(PO 4) 6(OH) 2 is a basic inorganic model component of hard biological tissues, such as bones and teeth. The significant property of HA is its ability to exchange Ca 2+ ions, which influences crystallinity, physico-chemical and biological properties of modified hydroxyapatite materials. In this work, FTIR, Raman spectroscopy, XRD, SEM and EDS techniques were used to determine thermal stability, chemical and phase composition of Mn containing hydroxyapatite (MnHA). Described methods confirmed thermal decomposition and phase transformation of MnHA to αTCP, βTCP and formation of Mn 3O 4 depending on sintering temperature and manganese content. In vitro biological evaluation of Mn-modified HA ceramics was also performed using human osteoblast cells.

  16. Applicability of effective fragment potential version 2 - Molecular dynamics (EFP2-MD) simulations for predicting excess properties of mixed solvents

    NASA Astrophysics Data System (ADS)

    Kuroki, Nahoko; Mori, Hirotoshi

    2018-02-01

    Effective fragment potential version 2 - molecular dynamics (EFP2-MD) simulations, where the EFP2 is a polarizable force field based on ab initio electronic structure calculations were applied to water-methanol binary mixture. Comparing EFP2s defined with (aug-)cc-pVXZ (X = D,T) basis sets, it was found that large sets are necessary to generate sufficiently accurate EFP2 for predicting mixture properties. It was shown that EFP2-MD could predict the excess molar volume. Since the computational cost of EFP2-MD are far less than ab initio MD, the results presented herein demonstrate that EFP2-MD is promising for predicting physicochemical properties of novel mixed solvents.

  17. Fragment-Based Discovery of Pyrimido[1,2-b]indazole PDE10A Inhibitors.

    PubMed

    Chino, Ayaka; Seo, Ryushi; Amano, Yasushi; Namatame, Ichiji; Hamaguchi, Wataru; Honbou, Kazuya; Mihara, Takuma; Yamazaki, Mayako; Tomishima, Masaki; Masuda, Naoyuki

    2018-01-01

    In this study, we report the identification of potent pyrimidoindazoles as phosphodiesterase10A (PDE10A) inhibitors by using the method of fragment-based drug discovery (FBDD). The pyrazolopyridine derivative 2 was found to be a fragment hit compound which could occupy a part of the binding site of PDE10A enzyme by using the method of the X-ray co-crystal structure analysis. On the basis of the crystal structure of compound 2 and PDE10A protein, a number of compounds were synthesized and evaluated, by means of structure-activity relationship (SAR) studies, which culminated in the discovery of a novel pyrimidoindazole derivative 13 having good physicochemical properties.

  18. On Topological Indices of Certain Dendrimer Structures

    NASA Astrophysics Data System (ADS)

    Aslam, Adnan; Bashir, Yasir; Ahmad, Safyan; Gao, Wei

    2017-05-01

    A topological index can be considered as transformation of chemical structure in to real number. In QSAR/QSPR study, physicochemical properties and topological indices such as Randić, Zagreb, atom-bond connectivity ABC, and geometric-arithmetic GA index are used to predict the bioactivity of chemical compounds. Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups. In this paper we determine generalised Randić, general Zagreb, general sum-connectivity indices of poly(propyl) ether imine, porphyrin, and zinc-Porphyrin dendrimers. We also compute ABC and GA indices of these families of dendrimers.

  19. Integrating structure-based and ligand-based approaches for computational drug design.

    PubMed

    Wilson, Gregory L; Lill, Markus A

    2011-04-01

    Methods utilized in computer-aided drug design can be classified into two major categories: structure based and ligand based, using information on the structure of the protein or on the biological and physicochemical properties of bound ligands, respectively. In recent years there has been a trend towards integrating these two methods in order to enhance the reliability and efficiency of computer-aided drug-design approaches by combining information from both the ligand and the protein. This trend resulted in a variety of methods that include: pseudoreceptor methods, pharmacophore methods, fingerprint methods and approaches integrating docking with similarity-based methods. In this article, we will describe the concepts behind each method and selected applications.

  20. Towards the discovery of drug-like RNA ligands?

    PubMed

    Foloppe, Nicolas; Matassova, Natalia; Aboul-Ela, Fareed

    2006-11-01

    Targeting RNA with small molecule drugs is an area of great potential for therapeutic treatment of infections and possibly genetic and autoimmune diseases. However, a mature set of precedents and established methodology is lacking. The physicochemical properties of RNA raise specific issues and obstacles to development, and contribute to explain the distinct characteristics of natural RNA ligands, including antibiotics. Yet, RNA-targeting strategies are being implemented to reinvigorate antibacterial discovery by using the ribosomal X-ray structures to modify known antibiotics. To exploit further these structures, we suggest the use of existing protein kinase-directed libraries of drug-like compounds to target the A-site of the bacterial ribosome, on the basis of a specific structural hypothesis.

  1. Thermal Oxidation Induces Lipid Peroxidation and Changes in the Physicochemical Properties and β-Carotene Content of Arachis Oil

    PubMed Central

    Falade, Ayodeji Osmund

    2015-01-01

    This study sought to investigate the effect of thermal oxidation on the physicochemical properties, malondialdehyde, and β-carotene content of arachis oil. Pure arachis oil was heated for 20 mins with a corresponding temperature of 220°C. Thereafter, changes in the physicochemical properties (acid, iodine, and peroxide values) of the oil samples were determined. Subsequently, the level of lipid peroxidation was determined using change in malondialdehyde content. Then, the total carotenoid and β-carotene contents were evaluated using spectrophotometric method and high performance liquid chromatography, respectively. The results of the study revealed a significant increase (P < 0.05) in the acid and peroxide values and malondialdehyde concentration of the heated oil when compared with the fresh arachis oil. In contrast, a significant decrease (P < 0.05) was observed in the iodine value, total carotenoid, 13-cis-, 15-cis-, trans-, and 9-cis-β-carotene, and total β-carotene content of the heated oil. Hence, thermal oxidation induced lipid peroxidation and caused changes in the physicochemical properties and carotenoid contents of arachis oil, thereby reducing its nutritive value and health benefit. Therefore, cooking and frying with arachis oil for a long period might not be appropriate as this might lead to a loss of significant amount of the insignificant β-carotene in arachis oil. PMID:26904665

  2. Study on biogenic amines in various dry salted fish consumed in China

    NASA Astrophysics Data System (ADS)

    Wu, Yanyan; Chen, Yufeng; Li, Laihao; Yang, Xianqing; Yang, Shaoling; Lin, Wanling; Zhao, Yongqiang; Deng, Jianchao

    2016-08-01

    This study was carried out to investigate the biogenic amines (BAs), physicochemical property and microorganisms in dry salted fish, a traditional aquatic food consumed in China. Forty three samples of dry salted fish were gathered from retail and wholesale markets and manufacturers, which had been produced in various regions in China. Cadaverine (CAD) and putrescine (PUT) were quantitatively the most common biogenic amines. About 14% of the samples exceeded the histamine content standards established by the FDA and/or EU. The highest histamine content was found in Silver pomfret ( Pampus argenteus) (347.79 mg kg-1). Five of forty three samples exceeded the acceptable content of TYR (100 mg kg-1), and 23.26% of dried-salted fish contained high contents of biogenic amines (above 600 mg kg-1). In addition, species, regions, pickling processes and drying methods made the physicochemical property, microorganisms and biogenic amines in dry salted fish to be different to some extents. The total plate count (TPC) was much higher than that of total halophilic bacteria in all samples. The biogenic amines, physicochemical property and microbiological counts exhibited large variations among samples. Furthermore, no significant correlation between biogenic amines and physicochemical property and TPC was observed. This study indicated that dry salted fish may still present healthy risk for BAs, depending on the processing methods, storage conditions among others.

  3. Selection of representative emerging micropollutants for drinking water treatment studies: a systematic approach.

    PubMed

    Jin, Xiaohui; Peldszus, Sigrid

    2012-01-01

    Micropollutants remain of concern in drinking water, and there is a broad interest in the ability of different treatment processes to remove these compounds. To gain a better understanding of treatment effectiveness for structurally diverse compounds and to be cost effective, it is necessary to select a small set of representative micropollutants for experimental studies. Unlike other approaches to-date, in this research micropollutants were systematically selected based solely on their physico-chemical and structural properties that are important in individual water treatment processes. This was accomplished by linking underlying principles of treatment processes such as coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration to compound characteristics and corresponding molecular descriptors. A systematic statistical approach not commonly used in water treatment was then applied to a compound pool of 182 micropollutants (identified from the literature) and their relevant calculated molecular descriptors. Principal component analysis (PCA) was used to summarize the information residing in this large dataset. D-optimal onion design was then applied to the PCA results to select structurally representative compounds that could be used in experimental treatment studies. To demonstrate the applicability and flexibility of this selection approach, two sets of 22 representative micropollutants are presented. Compounds in the first set are representative when studying a range of water treatment processes (coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration), whereas the second set shows representative compounds for ozonation and advanced oxidation studies. Overall, selected micropollutants in both lists are structurally diverse, have wide-ranging physico-chemical properties and cover a large spectrum of applications. The systematic compound selection approach presented here can also be adjusted to fit individual research needs with respect to type of micropollutants, treatment processes and number of compounds selected. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Jujube honey from China: physicochemical characteristics and mineral contents.

    PubMed

    Zhou, Juan; Suo, Zhirong; Zhao, Pinpin; Cheng, Ni; Gao, Hui; Zhao, Jing; Cao, Wei

    2013-03-01

    We investigated and compared the physicochemical properties (moisture, color, ash, pH, electrical conductivity, free acidity, lactonic acidity, total acidity, fructose, glucose, sucrose, diastase activity, and HMF) and mineral contents (Al, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, As, Cd, Pb, and Zn), as well as total proline and total protein contents of 23 jujube honey samples collected from different regions of China. The mineral content was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The physicochemical values were in the range of approved limits (conforming to EU legislation) in all 23 samples. The physicochemical properties of jujube honey showed significant variations among samples. The mean pH value of the jujube honeys was 6.71. The most abundant minerals were potassium, calcium, sodium, and magnesium, ranging between 1081.4 and 2642.9, 97.1 and 194.2, 7.79 and 127.8, and 10.36 and 24.67 mg/kg, respectively, and potassium made up 71% of the total mineral content. This study demonstrated remarkable variation in physicochemical parameters and mineral contents of jujube honey, mainly depending on its geographic source. © 2013 Institute of Food Technologists®

  5. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion.

    PubMed

    Rashid, Rehmana; Kim, Dong Wuk; Din, Fakhar Ud; Mustapha, Omer; Yousaf, Abid Mehmood; Park, Jong Hyuck; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2015-10-05

    The purpose of this research was to evaluate the effect of the HPC (hydroxypropylcellulose) and Tween 80 on the physicochemical properties and oral bioavailability of ezetimibe-loaded solid dispersions. The binary solid dispersions were prepared with drug and various amounts of HPC. Likewise, ternary solid dispersions were prepared with different ratios of drug, HPC and Tween 80. Both types of solid dispersions were prepared using the solvent evaporation method. Their aqueous solubility, physicochemical properties, dissolution and oral bioavailability were investigated in comparison with the drug powder. All the solid dispersions significantly improved the drug solubility and dissolution. As the amount of HPC increased in the binary solid dispersions to 10-fold, the drug solubility and dissolution were increased accordingly. However, further increase in HPC did not result in significant differences among them. Similarly, up to 0.1-fold, Tween 80 increased the drug solubility in the ternary solid dispersions followed by no significant change. However, Tween 80 hardly affected the drug dissolution. The physicochemical analysis proved that the drug in binary and ternary solid dispersion was existed in the amorphous form. The particle-size measurements of these formulations were also not significantly different from each other, which showed that Tween 80 had no impact on physicochemical properties. The ezetimibe-loaded binary and ternary solid dispersions gave 1.6- and 1.8-fold increased oral bioavailability in rats, respectively, as compared to the drug powder; however, these values were not significantly different from each other. Thus, HPC greatly affected the solubility, dissolution and oral bioavailability of drug, but Tween 80 hardly did. Furthermore, this ezetimibe-loaded binary solid dispersion prepared only with HPC would be suggested as a potential formulation for oral administration of ezetimibe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Influence of the extraction process on the rheological and structural properties of agars.

    PubMed

    Sousa, Ana M M; Borges, João; Silva, A Fernando; Gonçalves, Maria P

    2013-07-01

    Agars obtained by traditional hot-water (TWE) and microwave-assisted (MAE) extractions were compared in terms of their rheological and physicochemical properties and molecular self-association in solutions of low (0.05%, w/w) and high (1.5%, w/w) polymer concentrations. At low concentration, thin gelled layers were imaged by AFM. Slow or rapid cooling of the solutions influenced structure formation. In each case, TWE and MAE agar structures were different and apparently larger for MAE. At high concentration, progressive structural reinforcement was seen; while TWE agar showed a more open and irregular 3D network, MAE agar gel imaged by cryoSEM was denser and fairly uniform. The rheological (higher thermal stability and consistency) and mechanical (higher gel strength) behaviors of MAE agar seemed consistent with a positive effect of molecular mass and 3,6-anhydro-α-l-galactose content. MAE produced non-degraded agar comparable with commercial ones and if properly monitored, could be a promising alternative to TWE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The xylooligosaccharide addition and sodium reduction in requeijão cremoso processed cheese.

    PubMed

    Ferrão, Luana L; Ferreira, Marcus Vinícius S; Cavalcanti, Rodrigo N; Carvalho, Ana Flávia A; Pimentel, Tatiana C; Silva, Hugo L A; Silva, Ramon; Esmerino, Erick A; Neto, Roberto P C; Tavares, Maria Inês B; Freitas, Mônica Q; Menezes, Jaqueline C V; Cabral, Lúcio M; Moraes, Jeremias; Silva, Márcia C; Mathias, Simone P; Raices, Renata S L; Pastore, Gláucia M; Cruz, Adriano G

    2018-05-01

    The addition of xylooligosaccharide (XOS), sodium reduction and flavor enhancers (arginine and yeast extract) on the manufacture of requeijão cremoso processed cheese was investigated. The addition of XOS resulted in a denser and compact structure, with increased apparent viscosity, elasticity (G') and firmness (G*). The addition of XOS and yeast extract improved the rheological and physicochemical properties (decrease in viscosity and particle size and increase in melting rate) and sensory characteristics (improvement in salty and acid taste, greater homogeneity, and lower bitter taste). In addition, a positive effect of arginine was observed in the sensory characteristics of the requeijão cremoso processed cheese, but without improvements in the physicochemical and rheological characteristics. Overall, the XOS addition and sodium reduction proportionated the development of a healthier processed cheese formulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Factors contributing to the immunogenicity of meningococcal conjugate vaccines

    PubMed Central

    Bröker, Michael; Berti, Francesco; Costantino, Paolo

    2016-01-01

    ABSTRACT Various glycoprotein conjugate vaccines have been developed for the prevention of invasive meningococcal disease, having significant advantages over pure polysaccharide vaccines. One of the most important features of the conjugate vaccines is the induction of a T-cell dependent immune response, which enables both the induction of immune memory and a booster response after repeated immunization. The nature of the carrier protein to which the polysaccharides are chemically linked, is often regarded as the main component of the vaccine in determining its immunogenicity. However, other factors can have a significant impact on the vaccine's profile. In this review, we explore the physico-chemical properties of meningococcal conjugate vaccines, which can significantly contribute to the vaccine's immunogenicity. We demonstrate that the carrier is not the sole determining factor of the vaccine's profile, but, moreover, that the conjugate vaccine's immunogenicity is the result of multiple physico-chemical structures and characteristics. PMID:26934310

  9. How Proteins Bind Macrocycles

    PubMed Central

    Villar, Elizabeth A.; Beglov, Dmitri; Chennamadhavuni, Spandan; Porco, John A.; Kozakov, Dima; Vajda, Sandor; Whitty, Adrian

    2014-01-01

    The potential utility of synthetic macrocycles as drugs, particularly against low druggability targets such as protein-protein interactions, has been widely discussed. There is little information, however, to guide the design of macrocycles for good target protein-binding activity or bioavailability. To address this knowledge gap we analyze the binding modes of a representative set of macrocycle-protein complexes. The results, combined with consideration of the physicochemical properties of approved macrocyclic drugs, allow us to propose specific guidelines for the design of synthetic macrocycles libraries possessing structural and physicochemical features likely to favor strong binding to protein targets and also good bioavailability. We additionally provide evidence that large, natural product derived macrocycles can bind to targets that are not druggable by conventional, drug-like compounds, supporting the notion that natural product inspired synthetic macrocycles can expand the number of proteins that are druggable by synthetic small molecules. PMID:25038790

  10. Investigation on physicochemical properties of plasma-activated water for the application of medical device sterilization

    NASA Astrophysics Data System (ADS)

    Abuzairi, Tomy; Ramadhanty, Savira; Puspohadiningrum, Dini Fithriaty; Ratnasari, Anita; Poespawati, Nji Raden; Purnamaningsih, Retno Wigajatri

    2018-02-01

    Plasma activated water (PAW) is a new approach to bacterial inactivation while ensuring safety and maintaining the properties of the material sterilized. Reported research imply that PAW has been effective for inactivation of bacteria. In this paper, plasma treatment using atmospheric pressure plasma was demonstrated. Physicochemical properties such as pH, temperature, ORP, and nitrite concentration were assessed. The results suggest that plasma treatment causes acidification on water and generate reactive species, creating an environment suitable for killing bacteria. Therefore, plasma activated water is an assuring method for medical devices sterilization.

  11. Isolation and purification of wheat germ agglutinin and analysis of its properties

    NASA Astrophysics Data System (ADS)

    Wang, Han

    2017-12-01

    In this paper, the wheat germ agglutinin was isolated and purified by affinity chromatography of chicken ovomucoid as ligand. The physicochemical properties were analyzed. The chicken ovomucoid was isolated from egg white and conjugated to affinity chromatography column agarose gel to prepare affinity adsorbent. The crude extract of wheat germ was freezedried by affinity chromatography. The physicochemical properties were analyzed by SDSpolyacrylamide gel electrophoresis and isoelectric focusing electrophoresis. And the relative molecular mass and isoelectric point of wheat germ agglutinin were obtained, and the high efficiency of purification of wheat germ agglutinin was proved by affinity chromatography.

  12. Evaluation of SARs for the prediction of eye irritation/corrosion potential: structural inclusion rules in the BfR decision support system.

    PubMed

    Tsakovska, I; Saliner, A Gallegos; Netzeva, T; Pavan, M; Worth, A P

    2007-01-01

    The proposed REACH regulation within the European Union (EU) aims to minimise the number of laboratory animals used for human hazard and risk assessment while ensuring adequate protection of human health and the environment. One way to achieve this goal is to develop non-testing methods, such as (quantitative) structure-activity relationships ([Q]SARs), suitable for identifying toxicological hazard from chemical structure and physicochemical properties alone. A database containing data submitted within the EU New Chemicals Notification procedure was compiled by the German Bundesinstitut für Risikobewertung (BfR). On the basis of these data, the BfR built a decision support system (DSS) for the prediction of several toxicological endpoints. For the prediction of eye irritation and corrosion potential, the DSS contains 31 physicochemical exclusion rules evaluated previously by the European Chemicals Bureau (ECB), and 27 inclusion rules that define structural alerts potentially responsible for eye irritation and/or corrosion. This work summarises the results of a study carried out by the ECB to assess the performance of the BfR structural rulebase. The assessment included: (a) evaluation of the structural alerts by using the training set of 1341 substances with experimental data for eye irritation and corrosion; and (b) external validation by using an independent test set of 199 chemicals. Recommendations are made for the further development of the structural rules in order to increase the overall predictivity of the DSS.

  13. Effect of monospecific and mixed sea-buckthorn (Hippophae rhamnoides) plantations on the structure and activity of soil microbial communities.

    PubMed

    Yu, Xuan; Liu, Xu; Zhao, Zhong; Liu, Jinliang; Zhang, Shunxiang

    2015-01-01

    This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4(+)) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4(+) content, nitrate content (NH3(-)), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations.

  14. Structural Characterization of Melanin Pigments from Commercial Preparations of the Edible Mushroom Auricularia auricula

    PubMed Central

    Prados-Rosales, Rafael; Toriola, Stacy; Nakouzi, Antonio; Chatterjee, Subhasish; Stark, Ruth; Gerfen, Gary; Tumpowsky, Paul; Dadachova, Ekaterina; Casadevall, Arturo

    2016-01-01

    Many of the most widely consumed edible mushrooms are pigmented, and these have been associated with some beneficial health effects. Nevertheless, the majority of the reported compounds associated with these desirable properties are non-pigmented. We have previously reported that melanin pigment from the edible mushroom Auricularia auricula can protect mice against ionizing radiation, although no physicochemical characterization was reported. Consequently, in this study we have characterized commercial A. auricula mushroom preparations for melanin content and carried out structural characterization of isolated insoluble melanin materials using a panel of sophisticated spectroscopic and physical/imaging techniques. Our results show that approximately 10% of the dry mass of A. auricula is melanin and that the pigment has physicochemical properties consistent with those of eumelanins, including hosting a stable free radical population. Electron microscopy studies show that melanin is associated with the mushroom cell wall in a manner similar to that of melanin from the model fungus C. neoformans. Elemental analysis of melanin indicated C, H, and N ratios consistent with 5,6-dihydroxyindole-2-carboxylic acid/5,6-dihydroxyindole and 1,8-dihydroxynaphthalene eumelanin. Validation of the identity of the isolated product as melanin was achieved by EPR analysis. A. auricula melanin manifested structural differences, relative to the C. neoformans melanin, with regard to the variable proportions of alkyl chains or oxygenated carbons. Given the necessity for new oral and inexpensive radioprotective materials coupled with the commercial availability of A. auricula mushrooms, this product may represent an excellent source of edible melanin. PMID:26244793

  15. Effects of a nanoceria fuel additive on the physicochemical properties of diesel exhaust particles.

    PubMed

    Zhang, Junfeng Jim; Lee, Ki-Bum; He, Linchen; Seiffert, Joanna; Subramaniam, Prasad; Yang, Letao; Chen, Shu; Maguire, Pierce; Mainelis, Gediminas; Schwander, Stephan; Tetley, Teresa; Porter, Alexandra; Ryan, Mary; Shaffer, Milo; Hu, Sheng; Gong, Jicheng; Chung, Kian Fan

    2016-10-12

    Nanoceria (i.e., CeO 2 nanoparticles) fuel additives have been used in Europe and elsewhere to improve fuel efficiency. Previously we have shown that the use of a commercial fuel additive Envirox™ in a diesel-powered electricity generator reduced emissions of diesel exhaust particle (DEP) mass and other pollutants. However, such additives are currently not permitted for use in on-road vehicles in North America, largely due to limited data on the potential health impact. In this study, we characterized a variety of physicochemical properties of DEPs emitted from the same engine. Our methods include novel techniques such as Raman spectrometry for analyzing particle surface structure and an assay for DEP oxidative potential. Results show that with increasing Envirox™ concentrations in the fuel (0×, 0.1×, 1×, and 10× of manufacturer recommended 0.5 mL Envirox™ per liter fuel), DEP sizes decreased from 194.6 ± 20.1 to 116.3 ± 14.8 nm; the zeta potential changed from -28.4 mV to -22.65 mV; DEP carbon content decreased from 91.8% to 79.4%; cerium and nitrogen contents increased from 0.3% to 6.5% and 0.2% to 0.6%, respectively; the ratio of organic carbon (OC) to elemental carbon (EC) increased from 22.9% to 38.7%; and the ratio of the disordered carbon structure to the ordered carbon structure (graphitized carbon) in DEPs decreased. Compared to DEPs emitted from 0×, 0.1×, and 1× fuels, DEPs from the 10× fuel had a lower oxidative potential likely due to the increased ceria content because pure ceria nanoparticles exhibited the lowest oxidative potential compared to all the DEPs. Since the physicochemical parameters tested here are among the determinants of particle toxicity, our findings imply that adding ceria nanoparticles into diesel may alter the toxicity of DEPs. The findings from the present study, hence, can help future studies that will examine the impact of nanoceria additives on DEP toxicities.

  16. Static and transport properties of alkyltrimethylammonium cation-based room-temperature ionic liquids.

    PubMed

    Seki, Shiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Serizawa, Nobuyuki; Ono, Shimpei; Takei, Katsuhito; Doi, Hiroyuki; Umebayashi, Yasuhiro

    2014-05-01

    We have measured physicochemical properties of five alkyltrimethylammonium cation-based room-temperature ionic liquids and compared them with those obtained from computational methods. We have found that static properties (density and refractive index) and transport properties (ionic conductivity, self-diffusion coefficient, and viscosity) of these ionic liquids show close relations with the length of the alkyl chain. In particular, static properties obtained by experimental methods exhibit a trend complementary to that by computational methods (refractive index ∝ [polarizability/molar volume]). Moreover, the self-diffusion coefficient obtained by molecular dynamics (MD) simulation was consistent with the data obtained by the pulsed-gradient spin-echo nuclear magnetic resonance technique, which suggests that computational methods can be supplemental tools to predict physicochemical properties of room-temperature ionic liquids.

  17. The Effects of Molecular Properties on Ready Biodegradation of Aromatic Compounds in the OECD 301B CO2 Evolution Test.

    PubMed

    He, Mei; Mei, Cheng-Fang; Sun, Guo-Ping; Li, Hai-Bei; Liu, Lei; Xu, Mei-Ying

    2016-07-01

    Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds.

  18. Reuse of textile effluent treatment plant sludge in building materials.

    PubMed

    Balasubramanian, J; Sabumon, P C; Lazar, John U; Ilangovan, R

    2006-01-01

    This study examines the potential reuse of textile effluent treatment plant (ETP) sludge in building materials. The physico-chemical and engineering properties of a composite textile sludge sample from the southern part of India have been studied. The tests were conducted as per Bureau of Indian Standards (BIS) specification codes to evaluate the suitability of the sludge for structural and non-structural application by partial replacement of up to 30% of cement. The cement-sludge samples failed to meet the required strength for structural applications. The strength and other properties met the Bureau of Indian Standards for non-structural materials such as flooring tiles, solid and pavement blocks, and bricks. Results generally meet most ASTM standards for non-structural materials, except that the sludge-amended bricks do not meet the Grade NW brick standard. It is concluded that the substitution of textile ETP sludge for cement, up to a maximum of 30%, may be possible in the manufacturing of non-structural building materials. Detailed leachability and economic feasibility studies need to be carried out as the next step of research.

  19. Automatic classification of protein structures using physicochemical parameters.

    PubMed

    Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam

    2014-09-01

    Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.

  20. [Study on the chemical constituets in ethyl acetante extraction from semen litchi].

    PubMed

    Huang, Kai-Wen; Guo, Jie-Wen; Chen, Jian-Mei; Lin, Li-Jing; Xu, Feng

    2012-01-01

    To study the chemical constituents in ethyl acetate extraction of Semen Litchi. The compounds were isolated and purified by column chromatography on silica gel and Sephadex LH-20 coupled with preparative silica gel TLC, their structures were identified by physicochemical properties and spectrum analysis. Five compounds were isolated and identified as stigmasterol (1), P-hydroxy-benzaldehyde (2), protocatechuic acid (3), daucosterol (4) and kaempferol-3-O-beta-D-glucopyranoside (5). Compounds 2 and 5 are obtained from this plant for the first time.

Top