NASA Technical Reports Server (NTRS)
Ware, Jacqueline; Hammond, Ernest C., Jr.
1989-01-01
The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-03-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.
Scanning ultrafast electron microscopy.
Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H
2010-08-24
Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-11-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.
Writing silica structures in liquid with scanning transmission electron microscopy.
van de Put, Marcel W P; Carcouët, Camille C M C; Bomans, Paul H H; Friedrich, Heiner; de Jonge, Niels; Sommerdijk, Nico A J M
2015-02-04
Silica nanoparticles are imaged in solution with scanning transmission electron microscopy (STEM) using a liquid cell with silicon nitride (SiN) membrane windows. The STEM images reveal that silica structures are deposited in well-defined patches on the upper SiN membranes upon electron beam irradiation. The thickness of the deposits is linear with the applied electron dose. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrate that the deposited patches are a result of the merging of the original 20 nm-diameter nanoparticles, and that the related surface roughness depends on the electron dose rate used. Using this approach, sub-micrometer scale structures are written on the SiN in liquid by controlling the electron exposure as function of the lateral position. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar
2018-04-01
Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.
Scanning ultrafast electron microscopy
Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.
2010-01-01
Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability. PMID:20696933
You, Yun-Wen; Chang, Hsun-Yun; Liao, Hua-Yang; Kao, Wei-Lun; Yen, Guo-Ji; Chang, Chi-Jen; Tsai, Meng-Hung; Shyue, Jing-Jong
2012-10-01
Based on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged.
Subsurface examination of a foliar biofilm using scanning electron- and focused-ion-beam microscopy
USDA-ARS?s Scientific Manuscript database
The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB is capable of removing small cross sections to view the subsurface features and may be s...
Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří
2016-05-01
This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy
Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Yu.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Yu.; Glebovsky, V. G.; Bozhko, S. I.; Shvets, I. V.
2014-01-01
The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments. PMID:24434734
NASA Astrophysics Data System (ADS)
Smith, K. V.; Yu, E. T.; Elsass, C. R.; Heying, B.; Speck, J. S.
2001-10-01
Local electronic properties in a molecular-beam-epitaxy-grown AlxGa1-xN/GaN heterostructure field-effect transistor epitaxial layer structure are probed using depth-resolved scanning capacitance microscopy. Theoretical analysis of contrast observed in scanning capacitance images acquired over a range of bias voltages is used to assess the possible structural origins of local inhomogeneities in electronic structure, which are shown to be concentrated in areas where Ga droplets had formed on the surface during growth. Within these regions, there are significant variations in the local electronic structure that are attributed to variations in both AlxGa1-xN layer thickness and Al composition. Increased charge trapping is also observed in these regions.
Theoretical Study of tip apex electronic structure in Scanning Tunneling Microscope
NASA Astrophysics Data System (ADS)
Choi, Heesung; Huang, Min; Randall, John; Cho, Kyeongjae
2011-03-01
Scanning Tunneling Microscope (STM) has been widely used to explore diverse surface properties with an atomic resolution, and STM tip has played a critical role in controlling surface structures. However, detailed information of atomic and electronic structure of STM tip and the fundamental understanding of STM images are still incomplete. Therefore, it is important to develop a comprehensive understanding of the electronic structure of STM tip. We have studied the atomic and electronic structures of STM tip with various transition metals (TMs) by DFT method. The d-electrons of TM tip apex atoms show different orbital states near the Fermi level. We will present comprehensive data of STM tips from our DFT calculation. Verified quantification of the tip electronic structures will lead to fundamental understanding of STM tip structure-property relationship. This work is supported by the DARPA TBN Program and the Texas ETF. DARPA Tip Based Nanofabrication Program and the Emerging Technology Fund of the State of Texas.
Measurement of Strain and Stress Distributions in Structural Materials by Electron Moiré Method
NASA Astrophysics Data System (ADS)
Kishimoto, Satoshi; Xing, Yougming; Tanaka, Yoshihisa; Kagawa, Yutaka
A method for measuring the strain and stress distributions in structural materials has been introduced. Fine model grids were fabricated by electron beam lithography, and an electron beam scan by a scanning electron microscope (SEM) was used as the master grid. Exposure of the electron beam scan onto the model grid in an SEM produced the electron beam moiré fringes of bright and dark parts caused by the different amounts of the secondary electrons per a primary electron. For demonstration, the micro-creep deformation of pure copper was observed. The creep strain distribution and the grain boundary sliding were analyzed. The residual strain and stress at the interface between a fiber and a matrix of a fiber reinforced plastic (FRP) were measured using the pushing-out test and this electron moiré method. Also, a non-uniform deformation around the boundary of 3-point bended laminated steel was observed and the strain distribution analyzed.
NASA Astrophysics Data System (ADS)
Dagdeviren, Omur; Zhou, Chao; Zou, Ke; Simon, Georg; Albright, Stephen; Mandal, Subhasish; Morales-Acosta, Mayra; Zhu, Xiaodong; Ismail-Beigi, Sohrab; Walker, Frederick; Ahn, Charles; Schwarz, Udo; Altman, Eric
Revealing the local electronic properties of surfaces and their link to structural properties is an important problem for topological crystalline insulators (TCI) in which metallic surface states are protected by crystal symmetry. The microstructure and electronic properties of TCI SnTe film surfaces grown by molecular beam epitaxy were characterized using scanning probe microscopy. These results reveal the influence of various defects on the electronic properties: tilt boundaries leading to dislocation arrays that serve as periodic nucleation sites for pit growth; screw dislocations, and point defects. These features have varying length scale and display variations in the electronic structure of the surface, which are mapped with scanning tunneling microscopy images as standing waves superimposed on atomic scale images of the surface topography that consequently shape the wave patterns. Since the growth process results in symmetry breaking defects that patterns the topological states, we propose that the scanning probe tip can pattern the surface and electronic structure and enable the fabrication of topological devices on the SnTe surface. Financial support from the National Science Foundation through the Yale Materials Research Science and Engineering Center (Grant No. MRSEC DMR-1119826) and FAME.
Application of environmental scanning electron microscopy to determine biological surface structure.
Kirk, S E; Skepper, J N; Donald, A M
2009-02-01
The use of environmental scanning electron microscopy in biology is growing as more becomes understood about the advantages and limitations of the technique. These are discussed and we include new evidence about the effect of environmental scanning electron microscopy imaging on the viability of mammalian cells. We show that although specimen preparation for high-vacuum scanning electron microscopy introduces some artefacts, there are also challenges in the use of environmental scanning electron microscopy, particularly at higher resolutions. This suggests the two technologies are best used in combination. We have used human monocyte-derived macrophages as a test sample, imaging their complicated and delicate membrane ruffles and protrusions. We have also explored the possibility of using environmental scanning electron microscopy for dynamic experiments, finding that mammalian cells cannot be imaged and kept alive in the environmental scanning electron microscopy. The dehydration step in which the cell surface is exposed causes irreversible damage, probably via loss of membrane integrity during liquid removal in the specimen chamber. Therefore, mammalian cells should be imaged after fixation where possible to protect against damage as a result of chamber conditions.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography
NASA Astrophysics Data System (ADS)
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley
2015-06-01
Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites. Copyright © 2015 Elsevier Inc. All rights reserved.
Correction of image drift and distortion in a scanning electron microscopy.
Jin, P; Li, X
2015-12-01
Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Nondestructive determination of the depth of planar p-n junctions by scanning electron microscopy
NASA Technical Reports Server (NTRS)
Chi, J.-Y.; Gatos, H. C.
1977-01-01
A method was developed for measuring nondestructively the depth of planar p-n junctions in simple devices as well as in integrated-circuit structures with the electron-beam induced current (EBIC) by scanning parallel to the junction in a scanning electron microscope (SEM). The results were found to be in good agreement with those obtained by the commonly used destructive method of lapping at an angle to the junction and staining to reveal the junction.
Quasiparticle scattering in type-II Weyl semimetal MoTe2
NASA Astrophysics Data System (ADS)
Lin, Chun-Liang; Arafune, Ryuichi; Minamitani, Emi; Kawai, Maki; Takagi, Noriaki
2018-03-01
The electronic structure of type-II Weyl semimetal molybdenum ditelluride (MoTe2) is studied by using scanning tunneling microscopy and density functional theory calculations. Through measuring energy-dependent quasiparticle interference (QPI) patterns with a cryogenic scanning tunneling microscope, several characteristic features are found in the QPI patterns. Two of them arise from the Weyl semimetal nature; one is the topological Fermi arc surface state and the other can be assigned to be a Weyl point. The remaining structures are derived from the scatterings relevant to the bulk electronic states. The findings lead to further understanding of the topological electronic structure of type-II Weyl semimetal MoTe2.
Quasiparticle scattering in type-II Weyl semimetal MoTe2.
Lin, Chun-Liang; Arafune, Ryuichi; Minamitani, Emi; Kawai, Maki; Takagi, Noriaki
2018-02-15
The electronic structure of type-II Weyl semimetal molybdenum ditelluride (MoTe 2 ) is studied by using scanning tunneling microscopy and density functional theory calculations. Through measuring energy-dependent quasiparticle interference (QPI) patterns with a cryogenic scanning tunneling microscope, several characteristic features are found in the QPI patterns. Two of them arise from the Weyl semimetal nature; one is the topological Fermi arc surface state and the other can be assigned to be a Weyl point. The remaining structures are derived from the scatterings relevant to the bulk electronic states. The findings lead to further understanding of the topological electronic structure of type-II Weyl semimetal MoTe 2 .
Shi, Chun-Lin; Butenko, Melinka A
2018-01-01
Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.
Hiyoshi, Norihito
2018-05-17
Polyoxometalate nanosheets were synthesized at the gas/liquid interface of an aqueous solution of Keggin-type silicotungstic acid, cesium chloride, and n-octylamine. The structure of the nanosheets was elucidated via aberration-corrected scanning transmission electron microscopy at the atomic and molecular levels.
Ophus, Colin; Ciston, Jim; Pierce, Jordan; ...
2016-02-29
The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, makingmore » it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Ultimately, simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.« less
Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R; Chess, Jordan; McMorran, Benjamin J; Czarnik, Cory; Rose, Harald H; Ercius, Peter
2016-02-29
The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.
Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter
2016-01-01
The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483
NASA Astrophysics Data System (ADS)
Guo, Hongxuan; Gao, Jianhua; Ishida, Nobuyuki; Xu, Mingsheng; Fujita, Daisuke
2014-01-01
Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.
Yang, Zhi-Yong; Zhang, Hui-Min; Yan, Cun-Ji; Li, Shan-Shan; Yan, Hui-Juan; Song, Wei-Guo; Wan, Li-Jun
2007-03-06
Two alkyl-substituted dual oligothiophenes, quarterthiophene (4T)-trimethylene (tm)-octithiophene (8T) and 4T-tm-4T, were used to fabricate molecular structures on highly oriented pyrolytic graphite and Au(111) surfaces. The resulted structures were investigated by scanning tunneling microscopy. The 4T-tm-8T and 4T-tm-4T molecules self-organize into long-range ordered structures with linear and/or quasi-hexagonal patterns on highly oriented pyrolytic graphite at ambient temperature. Thermal annealing induced a phase transformation from quasi-hexagonal to linear in 4T-tm-8T adlayer. The molecules adsorbed on Au(111) surface in randomly folded and linear conformation. Based on scanning tunneling microscopy results, the structural models for different self-organizations were proposed. Scanning tunneling spectroscopy measurement showed the electronic property of individual molecules in the patterns. These results are significant in understanding the chemistry of molecular structure, including its formation, transformation, and electronic properties. They also help to fabricate oligothiophene assemblies with desired structures for future molecular devices.
Accurate Nanoscale Crystallography in Real-Space Using Scanning Transmission Electron Microscopy.
Dycus, J Houston; Harris, Joshua S; Sang, Xiahan; Fancher, Chris M; Findlay, Scott D; Oni, Adedapo A; Chan, Tsung-Ta E; Koch, Carl C; Jones, Jacob L; Allen, Leslie J; Irving, Douglas L; LeBeau, James M
2015-08-01
Here, we report reproducible and accurate measurement of crystallographic parameters using scanning transmission electron microscopy. This is made possible by removing drift and residual scan distortion. We demonstrate real-space lattice parameter measurements with <0.1% error for complex-layered chalcogenides Bi2Te3, Bi2Se3, and a Bi2Te2.7Se0.3 nanostructured alloy. Pairing the technique with atomic resolution spectroscopy, we connect local structure with chemistry and bonding. Combining these results with density functional theory, we show that the incorporation of Se into Bi2Te3 causes charge redistribution that anomalously increases the van der Waals gap between building blocks of the layered structure. The results show that atomic resolution imaging with electrons can accurately and robustly quantify crystallography at the nanoscale.
NASA Astrophysics Data System (ADS)
Zhang, Chendong; Li, Ming-Yang; Tersoff, Jerry; Han, Yimo; Su, Yushan; Li, Lain-Jong; Muller, David A.; Shih, Chih-Kang
2018-02-01
Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2-MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2-MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2-MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.
New modes of electron microscopy for materials science enabled by fast direct electron detectors
NASA Astrophysics Data System (ADS)
Minor, Andrew
There is an ongoing revolution in the development of electron detector technology that has enabled modes of electron microscopy imaging that had only before been theorized. The age of electron microscopy as a tool for imaging is quickly giving way to a new frontier of multidimensional datasets to be mined. These improvements in electron detection have enabled cryo-electron microscopy to resolve the three-dimensional structures of non-crystalized proteins, revolutionizing structural biology. In the physical sciences direct electron detectors has enabled four-dimensional reciprocal space maps of materials at atomic resolution, providing all the structural information about nanoscale materials in one experiment. This talk will highlight the impact of direct electron detectors for materials science, including a new method of scanning nanobeam diffraction. With faster detectors we can take a series of 2D diffraction patterns at each position in a 2D STEM raster scan resulting in a four-dimensional data set. For thin film analysis, direct electron detectors hold the potential to enable strain, polarization, composition and electrical field mapping over relatively large fields of view, all from a single experiment.
Configuration-specific electronic structure of strongly interacting interfaces: TiOPc on Cu(110)
NASA Astrophysics Data System (ADS)
Maughan, Bret; Zahl, Percy; Sutter, Peter; Monti, Oliver L. A.
2017-12-01
We use low-temperature scanning tunneling microscopy in combination with angle-resolved ultraviolet and two-photon photoemission spectroscopy to investigate the interfacial electronic structure of titanyl phthalocyanine (TiOPc) on Cu(110). We show that the presence of two unique molecular adsorption configurations is crucial for a molecular-level analysis of the hybridized interfacial electronic structure. Specifically, thermally induced self-assembly exposes marked adsorbate-configuration-specific contributions to the interfacial electronic structure. The results of this work demonstrate an avenue towards understanding and controlling interfacial electronic structure in chemisorbed films even for the case of complex film structure.
HÖHN, K.; FUCHS, J.; FRÖBER, A.; KIRMSE, R.; GLASS, B.; ANDERS‐ÖSSWEIN, M.; WALTHER, P.; KRÄUSSLICH, H.‐G.
2015-01-01
Summary In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV‐pulsed mature human dendritic cells. PMID:25786567
Tailoring Dirac Fermions in Molecular Graphene
NASA Astrophysics Data System (ADS)
Gomes, Kenjiro K.; Mar, Warren; Ko, Wonhee; Camp, Charlie D.; Rastawicki, Dominik K.; Guinea, Francisco; Manoharan, Hari C.
2012-02-01
The dynamics of electrons in solids is tied to the band structure created by a periodic atomic potential. The design of artificial lattices, assembled through atomic manipulation, opens the door to engineer electronic band structure and to create novel quantum states. We present scanning tunneling spectroscopic measurements of a nanoassembled honeycomb lattice displaying a Dirac fermion band structure. The artificial lattice is created by atomic manipulation of single CO molecules with the scanning tunneling microscope on the surface of Cu(111). The periodic potential generated by the assembled CO molecules reshapes the band structure of the two-dimensional electron gas, present as a surface state of Cu(111), into a ``molecular graphene'' system. We create local defects in the lattice to observe the quasiparticle interference patterns that unveil the underlying band structure. We present direct comparison between the tunneling data, first-principles calculations of the band structure, and tight-binding models.
Lee, H-P; Perozek, J; Rosario, L D; Bayram, C
2016-11-21
AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {Al x Ga 1-x N}/AlN, (b) Thin-GaN/3 × {Al x Ga 1-x N}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm 2 /V∙s) and 2DEG carrier concentration (>1.0 × 10 13 cm -2 ) on Si(111) substrates.
Lee, H.-P.; Perozek, J.; Rosario, L. D.; Bayram, C.
2016-01-01
AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1−xN}/AlN, (b) Thin-GaN/3 × {AlxGa1−xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V∙s) and 2DEG carrier concentration (>1.0 × 1013 cm−2) on Si(111) substrates. PMID:27869222
2011-09-01
glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,
Three-Dimensional Intercalated Porous Graphene on Si(111)
NASA Astrophysics Data System (ADS)
Pham, Trung T.; Sporken, Robert
2018-02-01
Three-dimensional intercalated porous graphene has been formed on Si(111) by electron beam evaporation under appropriate conditions and its structural and electronic properties investigated in detail by reflection high-energy electron diffraction, x-ray photoemission spectroscopy, Raman spectroscopy, high-resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The results show that the crystalline quality of the porous graphene depended not only on the substrate temperature but also on the SiC layer thickness during carbon atom deposition.
Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale
NASA Astrophysics Data System (ADS)
Hauptmann, Nadine; Dupé, Melanie; Hung, Tzu-Chao; Lemmens, Alexander K.; Wegner, Daniel; Dupé, Bertrand; Khajetoorians, Alexander A.
2018-03-01
We image simultaneously the geometric, the electronic, and the magnetic structures of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX) to independently characterize the geometric as well as the electronic and magnetic structures of nonflat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the electronic structure at the atomic level and the correlation with the resultant spin-spiral ground state. By additionally utilizing adatom manipulation, we reveal the chiral magnetic ground state of portions of the unit cell that were not previously imaged with spin-polarized scanning tunneling microscopy alone. Using density functional theory, we investigate the structural and electronic properties of the reconstructed bilayer and identify the favorable stoichiometry regime in agreement with our experimental result.
ERIC Educational Resources Information Center
Wang, Yue; Xu, Xinhua; Wu, Meifen; Hu, Huikang; Wang, Xiaogang
2015-01-01
Scanning electron microscopy (SEM) was introduced into undergraduate physical chemistry laboratory curriculum to help students observe the phase composition and morphology characteristics of tin-lead alloys and thus further their understanding of binary alloy phase diagrams. The students were captivated by this visual analysis method, which…
Katano, Satoshi; Wei, Tao; Sasajima, Takumi; Kasama, Ryuhei; Uehara, Yoichi
2018-06-21
We have used scanning tunneling microscopy (STM) to elucidate the nanoscale electronic structures of graphene oxide (GO). The unreduced GO layer was imaged using STM without reduction processes when deposited on a Au(111) surface covered with an octanethiolate self-assembled monolayer (C8S-SAM). The STM image of the GO sheet exhibits a grainy structure having a thickness of about 1 nm, which is in good agreement with the previous results obtained using atomic force microscopy (AFM). We found that the C8S-SAM suppresses the adsorption of water remaining on the substrate, which would be important to accomplish the nanoscale imaging of the unreduced GO by STM. Furthermore, we successfully detected the π and π* states localized in the GO sheet using scanning tunneling spectroscopy (STS). The π-π* gap energy and the gap center are not uniform within the GO sheet, indicating the existence of various sizes of the sp2 domain and evidence for the local electronic doping by the substituents.
Method for observation of deembedded sections of fish gonad by scanning electron microscopy
NASA Astrophysics Data System (ADS)
Mao, Lian-Ju
2000-09-01
This article reports a method for examining the intracellular structure of fish gonads using a scanning electron microscope(SEM). The specimen preparation procedure is similar to that for transmission electron microscopy wherein samples cut into semi-thin sections are fixed and embedded in plastic. The embedment matrix was removed by solvents. Risen-free specimens could be observed by SEM. The morphology of matured sperms in the gonad was very clear, and the oocyte internal structures appeared in three-dimensional images. Spheroidal nucleoli and yolk vesicles and several bundles of filaments adhered on the nucleoli could be viewed by SEM for the first time.
NASA Astrophysics Data System (ADS)
Chiu, Ya-Ping; Huang, Bo-Chao; Shih, Min-Chuan; Huang, Po-Cheng; Chen, Chun-Wei
2015-09-01
Interfacial science has received much attention recently based on the development of state-of-the-art analytical tools that can create and manipulate the charge, spin, orbital, and lattice degrees of freedom at interfaces. Motivated by the importance of nanoscale interfacial science that governs device operation, we present a technique to probe the electronic characteristics of heterointerfaces with atomic resolution. In this work, the interfacial characteristics of heteroepitaxial structures are investigated and the fundamental mechanisms that pertain in these systems are elucidated through cross-sectional scanning tunneling microscopy (XSTM). The XSTM technique is employed here to directly observe epitaxial interfacial structures and probe local electronic properties with atomic-level capability. Scanning tunneling microscopy and spectroscopy experiments with atomic precision provide insight into the origin and spatial distribution of electronic properties across heterointerfaces. The first part of this report provides a brief description of the cleavage technique and spectroscopy analysis in XSTM measurements. The second part addresses interfacial electronic structures of several model heterostructures in current condensed matter research using XSTM. Topics to be discussed include high-κ‘s/III-V’s semiconductors, polymer heterojunctions, and complex oxide heterostructures, which are all material systems whose investigation using this technique is expected to benefit the research community. Finally, practical aspects and perspectives of using XSTM in interface science are presented.
Crystal structure of stacking faults in InGaAs/InAlAs/InAs heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trunkin, I. N.; Presniakov, M. Yu.; Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com
Stacking faults and dislocations in InGaAs/InAlAs/InAs heterostructures have been studied by electron microscopy. The use of different techniques of transmission electron microscopy (primarily, highresolution dark-field scanning transmission electron microscopy) has made it possible to determine the defect structure at the atomic level.
Besserer, Hans-Bernward; Gerstein, Gregory; Maier, Hans Jürgen; Nürnberger, Florian
2016-04-01
To investigate ductile damage in parts made by cold sheet-bulk metal forming a suited specimen preparation is required to observe the microstructure and defects such as voids by electron microscopy. By means of ion beam slope cutting both a targeted material removal can be applied and mechanical or thermal influences during preparation avoided. In combination with scanning electron microscopy this method allows to examine voids in the submicron range and thus to analyze early stages of ductile damage. In addition, a relief structure is formed by the selectivity of the ion bombardment, which depends on grain orientation and microstructural defects. The formation of these relief structures is studied using scanning electron microscopy and electron backscatter diffraction and the use of this side effect to interpret the microstructural mechanisms of voids formation by plastic deformation is discussed. A comprehensive investigation of the suitability of ion beam milling to analyze ductile damage is given at the examples of a ferritic deep drawing steel and a dual phase steel. © 2016 Wiley Periodicals, Inc.
Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia
2015-04-24
The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.
NASA Astrophysics Data System (ADS)
Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.
2017-03-01
Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.
Sang, Xiahan; Lupini, Andrew R; Ding, Jilai; Kalinin, Sergei V; Jesse, Stephen; Unocic, Raymond R
2017-03-08
Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. "Archimedean" spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.
2016-01-09
studied in detail using scanning tunneling microscopy and angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the...angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the electron mobility at room temperature was comparable...scanning tunneling microscopy and angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the electron mobility at room
Microscopy image segmentation tool: Robust image data analysis
NASA Astrophysics Data System (ADS)
Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.
2014-03-01
We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.
On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons
Talirz, Leopold; Söde, Hajo; Dumslaff, Tim; ...
2017-01-27
The bottom-up approach to synthesize graphene nanoribbons strives not only to introduce a band gap into the electronic structure of graphene but also to accurately tune its value by designing both the width and edge structure of the ribbons with atomic precision. Within this paper, we report the synthesis of an armchair graphene nanoribbon with a width of nine carbon atoms on Au(111) through surface-assisted aryl–aryl coupling and subsequent cyclodehydrogenation of a properly chosen molecular precursor. By combining high-resolution atomic force microscopy, scanning tunneling microscopy, and Raman spectroscopy, we demonstrate that the atomic structure of the fabricated ribbons is exactlymore » as designed. Angle-resolved photoemission spectroscopy and Fourier-transformed scanning tunneling spectroscopy reveal an electronic band gap of 1.4 eV and effective masses of ≈0.1 m e for both electrons and holes, constituting a substantial improvement over previous efforts toward the development of transistor applications. We use ab initio calculations to gain insight into the dependence of the Raman spectra on excitation wavelength as well as to rationalize the symmetry-dependent contribution of the ribbons’ electronic states to the tunneling current. Lastly, we propose a simple rule for the visibility of frontier electronic bands of armchair graphene nanoribbons in scanning tunneling spectroscopy.« less
Quasiparticle Scattering in Type-II Weyl semimetal MoTe2.
Lin, Chun-Liang; Arafune, Ryuichi; Minamitani, Emi; Kawai, Maki; Takagi, Noriaki
2018-01-30
The electronic structure of type-II Weyl semimetal molybdenum ditelluride (MoTe<sub>2</sub>) is studied by using scanning tunneling microscopy and density functional theory calculations. Through measuring energy-dependent quasiparticle interference (QPI) patterns with a cryogenic scanning tunneling microscope, several characteristic features are found in the QPI patterns. Two of them arise from the Weyl semimetal nature; one is the topological Fermi arc surface state and the other can be assigned to be a Weyl point. The remaining structures are derived from the scatterings relevant to the bulk electronic states. The findings lead to thorough understanding of the topological electronic structure of type-II Weyl semimetal MoTe<sub>2</sub>. © 2018 IOP Publishing Ltd.
Miyai, K; Abraham, J L; Linthicum, D S; Wagner, R M
1976-10-01
Several methods of tissue preparation and different modes of operation of the scanning electron microscope were used to study the ultrastructure of rat liver. Rat livers were perfusion fixed with buffered 2 per cent paraformaldehyde or a mixture of 1.5 per cent paraformaldehyde and 1 per cent glutaraldehyde and processed as follows. Tissue blocks were postfixed in buffered 2 per cent osmium tetroxide followed sequentially by the ligand-mediated osmium binding technique, dehydration and cryofracture in ethanol, and critical point drying. They were then examined without metal coating in the scanning electron microscope operating in the secondary electron and backscattered electron modes. Fifty-micrometer sections were cut with a tissue sectioner, stained with lead citrate, postfixed with osmium, dehydrated, critical point dried, and examined in the secondary electron and back-scattered electron modes. Frozen sections (0.25 to 0.75 mum. thick) were cut by the method of Tokuyasu (Toluyasu KT: J Cell Biol 57:551, 1973) and their scanning transmission electron microscope images were examined either with a scanning transmission electron microscope detector or with a conversion stub using the secondary electron detector. Secondary electron images of the liver prepared by ligand-mediated osmium binding and subsequent cryofracture revealed such intracellular structures as cisternae of the endoplasmic reticulum, lysosomes, mitochondria, lipid droplets, nucleolus and nuclear chromatin, as well as the usual surface morphology, Lipocytes in the perisinusoidal space were readily identified. Backscattered electron images. Unembedded frozen sections had little drying artifact and were virtually free of freezing damage. The scanning transmission electron microscope image revealed those organelles visualized by the secondary electron mode in the ligand-mediated osmium binding-treated tissue.
A densitometric analysis of commercial 35mm films
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.; Ruffin, Christopher, III
1989-01-01
IIaO films have been subjected to various sensitometric tests. The have included thermal and aging effects and reciprocity failure studies. In order to compare the special IIaO film with popular brands of 35 mm films and their possible use in astrophotography, Agfa, Fuji and Kodak print and slide formats, as well as black and white and color formats, were subjected to sensitometric, as well as densitometric analysis. A scanning electron microscope was used to analyze grain structure size, and shape as a function of both speed and brand. Preliminary analysis of the grain structure using an ISI-SS40 scanning electron microscope indicates that the grain sizes for darker densities are much larger than the grain size for lighter densities. Researchers analyze the scanning electron microscope findings of the various grains versus densities as well as enhancement of the grains, using the IP-8500 Digital Image Processor.
Höhn, K; Fuchs, J; Fröber, A; Kirmse, R; Glass, B; Anders-Össwein, M; Walther, P; Kräusslich, H-G; Dietrich, C
2015-08-01
In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research.
Leser, Vladka; Milani, Marziale; Tatti, Francesco; Tkalec, Ziva Pipan; Strus, Jasna; Drobne, Damjana
2010-10-01
The focused ion beam (FIB) and scanning electron microscope (SEM) are commonly used in material sciences for imaging and analysis of materials. Over the last decade, the combined FIB/SEM system has proven to be also applicable in the life sciences. We have examined the potential of the focused ion beam/scanning electron microscope system for the investigation of biological tissues of the model organism Porcellio scaber (Crustacea: Isopoda). Tissue from digestive glands was prepared as for conventional SEM or as for transmission electron microscopy (TEM). The samples were transferred into FIB/SEM for FIB milling and an imaging operation. FIB-milled regions were secondary electron imaged, back-scattered electron imaged, or energy dispersive X-ray (EDX) analyzed. Our results demonstrated that FIB/SEM enables simultaneous investigation of sample gross morphology, cell surface characteristics, and subsurface structures. The same FIB-exposed regions were analyzed by EDX to provide basic compositional data. When samples were prepared as for TEM, the information obtained with FIB/SEM is comparable, though at limited magnification, to that obtained from TEM. A combination of imaging, micro-manipulation, and compositional analysis appears of particular interest in the investigation of epithelial tissues, which are subjected to various endogenous and exogenous conditions affecting their structure and function. The FIB/SEM is a promising tool for an overall examination of epithelial tissue under normal, stressed, or pathological conditions.
Distributions of methyl group rotational barriers in polycrystalline organic solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckmann, Peter A., E-mail: pbeckman@brynmawr.edu, E-mail: wangxianlong@uestc.edu.cn; Conn, Kathleen G.; Division of Education and Human Services, Neumann University, One Neumann Drive, Aston, Pennsylvania 19014-1298
We bring together solid state {sup 1}H spin-lattice relaxation rate measurements, scanning electron microscopy, single crystal X-ray diffraction, and electronic structure calculations for two methyl substituted organic compounds to investigate methyl group (CH{sub 3}) rotational dynamics in the solid state. Methyl group rotational barrier heights are computed using electronic structure calculations, both in isolated molecules and in molecular clusters mimicking a perfect single crystal environment. The calculations are performed on suitable clusters built from the X-ray diffraction studies. These calculations allow for an estimate of the intramolecular and the intermolecular contributions to the barrier heights. The {sup 1}H relaxation measurements,more » on the other hand, are performed with polycrystalline samples which have been investigated with scanning electron microscopy. The {sup 1}H relaxation measurements are best fitted with a distribution of activation energies for methyl group rotation and we propose, based on the scanning electron microscopy images, that this distribution arises from molecules near crystallite surfaces or near other crystal imperfections (vacancies, dislocations, etc.). An activation energy characterizing this distribution is compared with a barrier height determined from the electronic structure calculations and a consistent model for methyl group rotation is developed. The compounds are 1,6-dimethylphenanthrene and 1,8-dimethylphenanthrene and the methyl group barriers being discussed and compared are in the 2–12 kJ mol{sup −1} range.« less
Characterization of LiBC by phase-contrast scanning transmission electron microscopy.
Krumeich, Frank; Wörle, Michael; Reibisch, Philipp; Nesper, Reinhard
2014-08-01
LiBC was used as a model compound for probing the applicability of phase-contrast (PC) imaging in an aberration-corrected scanning transmission electron microscope (STEM) to visualize lithium distributions. In the LiBC structure, boron and carbon are arranged to hetero graphite layers between which lithium is incorporated. The crystal structure is reflected in the PC-STEM images recorded perpendicular to the layers. The experimental images and their defocus dependence match with multi-slice simulations calculated utilizing the reciprocity principle. The observation that a part of the Li positions is not occupied is likely an effect of the intense electron beam triggering Li displacement. Copyright © 2013 Elsevier Ltd. All rights reserved.
Application of scanning acoustic microscopy to advanced structural ceramics
NASA Technical Reports Server (NTRS)
Vary, Alex; Klima, Stanley J.
1987-01-01
A review is presentod of research investigations of several acoustic microscopy techniques for application to structural ceramics for advanced heat engines. Results obtained with scanning acoustic microscopy (SAM), scanning laser acoustic microscopy (SLAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM) are compared. The techniques were evaluated on research samples of green and sintered monolithic silicon nitrides and silicon carbides in the form of modulus-of-rupture bars containing deliberately introduced flaws. Strengths and limitations of the techniques are described with emphasis on statistics of detectability of flaws that constitute potential fracture origins.
NASA Astrophysics Data System (ADS)
Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.
2016-07-01
Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.
2012-12-19
remelted five times, being flipped for each melt, and was in a liquid state for about 5 min during each melting event. The pre- pared cigar -shaped...section surfaces using a 136 Vickers diamond pyramid under a 500 g load applied for 20 s. The micro- structure was analyzed by scanning electron ...microscopy (SEM) using a Quanta 600F scanning electron microscope (FEI, North America NanoPort, Hillsboro, OR) equipped with backscatter electron (BSE
Sherburne, R; Armstrong, G D
1989-01-01
We have used the scanning electron microscope to examine enterotoxigenic Escherichia coli H10407, which expresses colonization factor antigen I pili. The use of low accelerating voltages and conductive staining procedures allowed us to obtain images of colonization factor antigen I pili and other structural details which were obscured by conventional gold-coating techniques. Images PMID:2570062
The spatial coherence function in scanning transmission electron microscopy and spectroscopy.
Nguyen, D T; Findlay, S D; Etheridge, J
2014-11-01
We investigate the implications of the form of the spatial coherence function, also referred to as the effective source distribution, for quantitative analysis in scanning transmission electron microscopy, and in particular for interpreting the spatial origin of imaging and spectroscopy signals. These questions are explored using three different source distribution models applied to a GaAs crystal case study. The shape of the effective source distribution was found to have a strong influence not only on the scanning transmission electron microscopy (STEM) image contrast, but also on the distribution of the scattered electron wavefield and hence on the spatial origin of the detected electron intensities. The implications this has for measuring structure, composition and bonding at atomic resolution via annular dark field, X-ray and electron energy loss STEM imaging are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Rossi-Schneider, Tíssiana Rachel; Verli, Flaviana Dornela; Yurgel, Liliane Soares; De Souza, Maria Antonieta Lopes; Cherubini, Karen
2008-10-01
The study of anatomical structures in their normal state allows the identification of pathological changes that can occur in them. Angiogenesis and the vasculature have been widely studied, mainly because of their association with the development of neoplasms. One of the methods applied for such purposes is the corrosion cast technique, which provides a copy of the vessels with normal as well as pathological structures. The replica of the vasculature provided by this technique allows the three-dimensional analysis of vessels by means of scanning electron microscopy. The aim of the present study was to demonstrate, by means of corrosion casts, the angioarchitecture of the submandibular and sublingual glands and lymph nodes. Scanning electron microscopy showed that the three structures have distinct vascular patterns. The corrosion cast technique can be employed in the study of the angioarchitecture of the submandibular and sublingual glands and lymph nodes, but requires specific precautions. The removal of the structures en bloc and the handling of the replicas with the aid of a stereoscopic magnifier reduce the risk of fractures. (c) 2008 Wiley-Liss, Inc.
Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia
2015-01-01
The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738
Analytical and numerical analysis of imaging mechanism of dynamic scanning electron microscopy.
Schröter, M-A; Holschneider, M; Sturm, H
2012-11-02
The direct observation of small oscillating structures with the help of a scanning electron beam is a new approach to study the vibrational dynamics of cantilevers and microelectromechanical systems. In the scanning electron microscope, the conventional signal of secondary electrons (SE, dc part) is separated from the signal response of the SE detector, which is correlated to the respective excitation frequency for vibration by means of a lock-in amplifier. The dynamic response is separated either into images of amplitude and phase shift or into real and imaginary parts. Spatial resolution is limited to the diameter of the electron beam. The sensitivity limit to vibrational motion is estimated to be sub-nanometer for high integration times. Due to complex imaging mechanisms, a theoretical model was developed for the interpretation of the obtained measurements, relating cantilever shapes to interaction processes consisting of incident electron beam, electron-lever interaction, emitted electrons and detector response. Conclusions drawn from this new model are compared with numerical results based on the Euler-Bernoulli equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Qahtani, Hassan S.; Andersson, Gunther G., E-mail: gunther.andersson@flinders.edu.au, E-mail: nakayama.tomonobu@nims.go.jp; Kimoto, Koji
2016-03-21
Triphenylphosphine ligand-protected Au{sub 9} clusters deposited onto titania nanosheets show three different atomic configurations as observed by scanning transmission electron microscopy. The configurations observed are a 3-dimensional structure, corresponding to the previously proposed Au{sub 9} core of the clusters, and two pseudo-2-dimensional (pseudo-2D) structures, newly found by this work. With the help of density functional theory (DFT) calculations, the observed pseudo-2D structures are attributed to the low energy, de-ligated structures formed through interaction with the substrate. The combination of scanning transmission electron microscopy with DFT calculations thus allows identifying whether or not the deposited Au{sub 9} clusters have been de-ligatedmore » in the deposition process.« less
NASA Astrophysics Data System (ADS)
Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu
2017-11-01
A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.
Pluk, H; Stokes, D J; Lich, B; Wieringa, B; Fransen, J
2009-03-01
A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium-tin oxide (ITO)-coated glass slides, secondary electron (SE) and backscatter electron (BSE) images of uncoated cells can be obtained in high-vacuum SEM without charging artefacts. Interestingly, we observed that BSE imaging is influenced by both accelerating voltage and ITO coating thickness. By combining SE and BSE imaging with fluorescence light microscopy imaging, we were able to reveal detailed features of actin cytoskeletal and mitochondrial structures in mouse embryonic fibroblasts. We propose that the application of ITO glass as a substrate for cell culture can easily be extended and offers new opportunities for correlative light and electron microscopy studies of adherently growing cells.
Conformational Switching in PolyGln Amyloid Fibrils Resulting from a Single Amino Acid Insertion
Huang, Rick K.; Baxa, Ulrich; Aldrian, Gudrun; Ahmed, Abdullah B.; Wall, Joseph S.; Mizuno, Naoko; Antzutkin, Oleg; Steven, Alasdair C.; Kajava, Andrey V.
2014-01-01
The established correlation between neurodegenerative disorders and intracerebral deposition of polyglutamine aggregates motivates attempts to better understand their fibrillar structure. We designed polyglutamines with a few lysines inserted to overcome the hindrance of extreme insolubility and two D-lysines to limit the lengths of β-strands. One is 33 amino acids long (PolyQKd-33) and the other has one fewer glutamine (PolyQKd-32). Both form well-dispersed fibrils suitable for analysis by electron microscopy. Electron diffraction confirmed cross-β structures in both fibrils. Remarkably, the deletion of just one glutamine residue from the middle of the peptide leads to substantially different amyloid structures. PolyQKd-32 fibrils are consistently 10–20% wider than PolyQKd-33, as measured by negative staining, cryo-electron microscopy, and scanning transmission electron microscopy. Scanning transmission electron microscopy analysis revealed that the PolyQKd-32 fibrils have 50% higher mass-per-length than PolyQKd-33. This distinction can be explained by a superpleated β-structure model for PolyQKd-33 and a model with two β-solenoid protofibrils for PolyQKd-32. These data provide evidence for β-arch-containing structures in polyglutamine fibrils and open future possibilities for structure-based drug design. PMID:24853742
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai
Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with amore » constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.« less
Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; ...
2017-03-08
Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with amore » constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.« less
TU-F-18A-06: Dual Energy CT Using One Full Scan and a Second Scan with Very Few Projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T; Zhu, L
Purpose: The conventional dual energy CT (DECT) requires two full CT scans at different energy levels, resulting in dose increase as well as imaging errors from patient motion between the two scans. To shorten the scan time of DECT and thus overcome these drawbacks, we propose a new DECT algorithm using one full scan and a second scan with very few projections by preserving structural information. Methods: We first reconstruct a CT image on the full scan using a standard filtered-backprojection (FBP) algorithm. We then use a compressed sensing (CS) based iterative algorithm on the second scan for reconstruction frommore » very few projections. The edges extracted from the first scan are used as weights in the Objectives: function of the CS-based reconstruction to substantially improve the image quality of CT reconstruction. The basis material images are then obtained by an iterative image-domain decomposition method and an electron density map is finally calculated. The proposed method is evaluated on phantoms. Results: On the Catphan 600 phantom, the CT reconstruction mean error using the proposed method on 20 and 5 projections are 4.76% and 5.02%, respectively. Compared with conventional iterative reconstruction, the proposed edge weighting preserves object structures and achieves a better spatial resolution. With basis materials of Iodine and Teflon, our method on 20 projections obtains similar quality of decomposed material images compared with FBP on a full scan and the mean error of electron density in the selected regions of interest is 0.29%. Conclusion: We propose an effective method for reducing projections and therefore scan time in DECT. We show that a full scan plus a 20-projection scan are sufficient to provide DECT images and electron density with similar quality compared with two full scans. Our future work includes more phantom studies to validate the performance of our method.« less
Asensio, L; Lopez-Llorca, L V; López-Jiménez, J A
2005-01-01
We have evaluated the parasitism of the red scale insect of the date palm (Phoenicococcus marlatti) by entomopathogenic fungi, using light microscopy (LM), scanning electron microscopy (SEM) and low temperature scanning electron microscopy (LTSEM). Beauveria bassiana, Lecanicillium dimorphum and Lecanicillium cf. psalliotae, were inoculated directly on the scale insects or on insect infested plant material. We found that L. dimorphum and L. cf. psalliotae developed on plant material and on scale insects, making infection structures. B. bassiana was a bad colonizer of date palm leaves (Phoenix dactylifera L.) and did not parasite the scale insects.
Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konovalov, Sergey, E-mail: konovserg@gmail.com; Alsaraeva, Krestina, E-mail: gromov@physics.sibsiu.ru; Gromov, Victor, E-mail: gromov@physics.sibsiu.ru
By methods of scanning and transmission electron diffraction microscopy the analysis of structure-phase states and defect substructure of silumin subjected to high-intensity electron beam irradiation in various regimes and subsequent fatigue loading up to failure was carried out. It is revealed that the sources of fatigue microcracks are silicon plates of micron and submicron size are not soluble in electron beam processing. The possible reasons of the silumin fatigue life increase under electron-beam treatment are discussed.
Wong, Dillon; Velasco, Jairo; Ju, Long; Lee, Juwon; Kahn, Salman; Tsai, Hsin-Zon; Germany, Chad; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael F
2015-11-01
Defects play a key role in determining the properties and technological applications of nanoscale materials and, because they tend to be highly localized, characterizing them at the single-defect level is of particular importance. Scanning tunnelling microscopy has long been used to image the electronic structure of individual point defects in conductors, semiconductors and ultrathin films, but such single-defect electronic characterization remains an elusive goal for intrinsic bulk insulators. Here, we show that individual native defects in an intrinsic bulk hexagonal boron nitride insulator can be characterized and manipulated using a scanning tunnelling microscope. This would typically be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by using a graphene/boron nitride heterostructure, which exploits the atomically thin nature of graphene to allow the visualization of defect phenomena in the underlying bulk boron nitride. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunnelling spectroscopy we obtain charge and energy-level information for these boron nitride defect structures. We also show that it is possible to manipulate the defects through voltage pulses applied to the scanning tunnelling microscope tip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Singh, M. N.
The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating.more » The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure.« less
Secondary electron imaging of monolayer materials inside a transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cretu, Ovidiu, E-mail: cretu.ovidiu@nims.go.jp; Lin, Yung-Chang; Suenaga, Kazutomo
2015-08-10
A scanning transmission electron microscope equipped with a backscattered and secondary electron detector is shown capable to image graphene and hexagonal boron nitride monolayers. Secondary electron contrasts of the two lightest monolayer materials are clearly distinguished from the vacuum level. A signal difference between these two materials is attributed to electronic structure differences, which will influence the escape probabilities of the secondary electrons. Our results show that the secondary electron signal can be used to distinguish between the electronic structures of materials with atomic layer sensitivity, enhancing its applicability as a complementary signal in the analytical microscope.
NASA Astrophysics Data System (ADS)
Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas
2016-05-01
Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).
Visualization of carrier dynamics in p(n)-type GaAs by scanning ultrafast electron microscopy
Cho, Jongweon; Hwang, Taek Yong; Zewail, Ahmed H.
2014-01-01
Four-dimensional scanning ultrafast electron microscopy is used to investigate doping- and carrier-concentration-dependent ultrafast carrier dynamics of the in situ cleaved single-crystalline GaAs(110) substrates. We observed marked changes in the measured time-resolved secondary electrons depending on the induced alterations in the electronic structure. The enhancement of secondary electrons at positive times, when the electron pulse follows the optical pulse, is primarily due to an energy gain involving the photoexcited charge carriers that are transiently populated in the conduction band and further promoted by the electron pulse, consistent with a band structure that is dependent on chemical doping and carrier concentration. When electrons undergo sufficient energy loss on their journey to the surface, dark contrast becomes dominant in the image. At negative times, however, when the electron pulse precedes the optical pulse (electron impact), the dynamical behavior of carriers manifests itself in a dark contrast which indicates the suppression of secondary electrons upon the arrival of the optical pulse. In this case, the loss of energy of material’s electrons is by collisions with the excited carriers. These results for carrier dynamics in GaAs(110) suggest strong carrier–carrier scatterings which are mirrored in the energy of material’s secondary electrons during their migration to the surface. The approach presented here provides a fundamental understanding of materials probed by four-dimensional scanning ultrafast electron microscopy, and offers possibilities for use of this imaging technique in the study of ultrafast charge carrier dynamics in heterogeneously patterned micro- and nanostructured material surfaces and interfaces. PMID:24469803
Visualization of carrier dynamics in p(n)-type GaAs by scanning ultrafast electron microscopy.
Cho, Jongweon; Hwang, Taek Yong; Zewail, Ahmed H
2014-02-11
Four-dimensional scanning ultrafast electron microscopy is used to investigate doping- and carrier-concentration-dependent ultrafast carrier dynamics of the in situ cleaved single-crystalline GaAs(110) substrates. We observed marked changes in the measured time-resolved secondary electrons depending on the induced alterations in the electronic structure. The enhancement of secondary electrons at positive times, when the electron pulse follows the optical pulse, is primarily due to an energy gain involving the photoexcited charge carriers that are transiently populated in the conduction band and further promoted by the electron pulse, consistent with a band structure that is dependent on chemical doping and carrier concentration. When electrons undergo sufficient energy loss on their journey to the surface, dark contrast becomes dominant in the image. At negative times, however, when the electron pulse precedes the optical pulse (electron impact), the dynamical behavior of carriers manifests itself in a dark contrast which indicates the suppression of secondary electrons upon the arrival of the optical pulse. In this case, the loss of energy of material's electrons is by collisions with the excited carriers. These results for carrier dynamics in GaAs(110) suggest strong carrier-carrier scatterings which are mirrored in the energy of material's secondary electrons during their migration to the surface. The approach presented here provides a fundamental understanding of materials probed by four-dimensional scanning ultrafast electron microscopy, and offers possibilities for use of this imaging technique in the study of ultrafast charge carrier dynamics in heterogeneously patterned micro- and nanostructured material surfaces and interfaces.
High-resolution, high-throughput imaging with a multibeam scanning electron microscope
EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D
2015-01-01
Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873
Höhn, Katharina; Sailer, Michaela; Wang, Li; Lorenz, Myriam; Schneider, Marion E; Walther, Paul
2011-01-01
Scanning transmission electron tomography offers enhanced contrast compared to regular transmission electron microscopy, and thicker samples, up to 1 μm or more, can be analyzed, since the depth of focus and inelastic scattering are not limitations. In this study, we combine this novel imaging approach with state of the art specimen preparation by using novel light transparent sapphire specimen carrier for high-pressure freezing and a freeze substitution protocol for better contrast of membranes. This combination allows for imaging membranes and other subcellular structures with unsurpassed quality. This is demonstrated with mitochondria, where the inner and outer mitochondrial membranes as well as the membranes in the cristae appear in very close apposition with a minimal intermembrane space. These findings correspond well with old observations using freeze fracturing. In 880-nm thick sections of hemophagocytes, the three-dimensional structure of membrane sheets could be observed in the virtual sections of the tomogram. Microtubules, actin and intermediate filaments could be visualized within one sample. Intermediate filaments, however, could even be better observed in 3D using surface scanning electron tomography.
Three-dimensional imaging of adherent cells using FIB/SEM and STEM.
Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul
2014-01-01
In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.
Trépout, Sylvain; Bastin, Philippe; Marco, Sergio
2017-03-12
This report describes a protocol for preparing thick biological specimens for further observation using a scanning transmission electron microscope. It also describes an imaging method for studying the 3D structure of thick biological specimens by scanning transmission electron tomography. The sample preparation protocol is based on conventional methods in which the sample is fixed using chemical agents, treated with a heavy atom salt contrasting agent, dehydrated in a series of ethanol baths, and embedded in resin. The specific imaging conditions for observing thick samples by scanning transmission electron microscopy are then described. Sections of the sample are observed using a through-focus method involving the collection of several images at various focal planes. This enables the recovery of in-focus information at various heights throughout the sample. This particular collection pattern is performed at each tilt angle during tomography data collection. A single image is then generated, merging the in-focus information from all the different focal planes. A classic tilt-series dataset is then generated. The advantage of the method is that the tilt-series alignment and reconstruction can be performed using standard tools. The collection of through-focal images allows the reconstruction of a 3D volume that contains all of the structural details of the sample in focus.
Scanning tunnelling microscope for boron surface studies
NASA Astrophysics Data System (ADS)
Trenary, Michael
1990-10-01
The equipment purchased is to be used in an experimental study of the relationship between atomic structure and chemical reactivity for boron and carbon surfaces. This research is currently being supported by grant AFOSR-88-0111. A renewal proposal is currently pending with AFOSR to continue these studies. Carbon and boron are exceptionally stable, covalently bonded solids with highly unique crystal structures. The specific reactions to be studied are loosely related to the problems of oxidation and oxidation inhibition of carbon/carbon composites. The main experimental instrument to be used is a scanning tunneling microscope (STM) purchased under grant number AFSOR-89-0146. Other techniques to be used include Auger electron spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), low energy electron diffraction (LEED), temperature programmed desorption (TPD) and scanning tunneling microscopy (STM).
Scanning electron microscope fractography in failure analysis of steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wouters, R.; Froyen, L.
1996-04-01
For many failure cases, macroscopic examination of the fracture surface permits discrimination of fatigue fractures from overload fractures. For clarifying fatigue fractures, the practical significance of microfractography is limited to an investigation of the crack initiation areas. Scanning electron microscopy is successfully used in tracing local material abnormalities that act as fatigue crack initiators. The task for the scanning electron microscope, however, is much more substantial in failure analysis of overload fractures, especially for steels. By revealing specific fractographic characteristics, complemented by information about the material and the loading conditions, scanning electron microscopy provides a strong indication of the probablemore » cause of failure. A complete dimple fracture is indicative of acceptable bulk material properties; overloading, by subdimensioning or excessive external loading, has to be verified. The presence of cleavage fracture makes the material properties questionable if external conditions causing embrittlement are absent. Intergranular brittle fracture requires verification of grain-boundary weakening conditions--a sensitized structure, whether or not combined with a local stress state or a specific environment. The role of scanning electron microscopy in failure analysis is illustrated by case histories of the aforementioned fracture types.« less
Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques.
Bolker, Asaf; Saguy, Cecile; Kalish, Rafi
2014-09-26
The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.
Novel scanning electron microscope bulge test technique integrated with loading function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chuanwei; Xie, Huimin, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn; Liu, Zhanwei, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn
2014-10-15
Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplifiedmore » Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moiré method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.« less
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3
NASA Astrophysics Data System (ADS)
Ziatdinov, M.; Banerjee, A.; Maksov, A.; Berlijn, T.; Zhou, W.; Cao, H. B.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Baddorf, A. P.; Kalinin, S. V.
2016-12-01
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ~0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.
Near-field control and imaging of free charge carrier variations in GaN nanowires
NASA Astrophysics Data System (ADS)
Berweger, Samuel; Blanchard, Paul T.; Brubaker, Matt D.; Coakley, Kevin J.; Sanford, Norman A.; Wallis, Thomas M.; Bertness, Kris A.; Kabos, Pavel
2016-02-01
Despite their uniform crystallinity, the shape and faceting of semiconducting nanowires (NWs) can give rise to variations in structure and associated electronic properties. Here, we develop a hybrid scanning probe-based methodology to investigate local variations in electronic structure across individual n-doped GaN NWs integrated into a transistor device. We perform scanning microwave microscopy (SMM), which we combine with scanning gate microscopy to determine the free-carrier SMM signal contribution and image local charge carrier density variations. In particular, we find significant variations in free carriers across NWs, with a higher carrier density at the wire facets. By increasing the local carrier density through tip-gating, we find that the tip injects current into the NW with strongly localized current when positioned over the wire vertices. These results suggest that the strong variations in electronic properties observed within NWs have significant implications for device design and may lead to new paths to optimization.
Liu, Airong; Zhang, Wei-xian
2014-09-21
An angstrom-resolution physical model of nanoscale zero-valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) on the Fe L-edge. Bright-field (BF), high-angle annular dark-field (HAADF) and secondary electron (SE) imaging of nZVI acquired by a Hitachi HD-2700 STEM show near atomic resolution images and detailed morphological and structural information of nZVI. The STEM-EDS technique confirms that the fresh nZVI comprises of a metallic iron core encapsulated with a thin layer of iron oxides or oxyhydroxides. SAED patterns of the Fe core suggest the polycrystalline structure in the metallic core and amorphous nature of the oxide layer. Furthermore, Fe L-edge of EELS shows varied structural features from the innermost Fe core to the outer oxide shell. A qualitative analysis of the Fe L(2,3) edge fine structures reveals that the shell of nZVI consists of a mixed Fe(II)/Fe(III) phase close to the Fe (0) interface and a predominantly Fe(III) at the outer surface of nZVI.
Room temperature synthesis of Cu₂O nanospheres: optical properties and thermal behavior.
Nunes, Daniela; Santos, Lídia; Duarte, Paulo; Pimentel, Ana; Pinto, Joana V; Barquinha, Pedro; Carvalho, Patrícia A; Fortunato, Elvira; Martins, Rodrigo
2015-02-01
The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.
Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.
2013-01-01
A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508
Conductivity and local structure in LaNiO3
NASA Astrophysics Data System (ADS)
Fowlie, Jennifer; Gibert, Marta; Tieri, Giulio; Gloter, Alexandre; à+/-Iguez, Jorge; Filippetti, Alessio; Catalano, Sara; Gariglio, Stefano; StéPhan, Odile; Triscone, Jean-Marc
In this study we approach the thickness-dependence of the properties of LaNiO3 films along multiple, complementary avenues: sophisticated ab initio calculations, scanning transmission electron microscopy and electronic transport. Specifically, we find an unexpected maximum in conductivity in films of thickness 6 - 10 unit cells (3 nm) for several series of LaNiO3 films. Ab initio transport based on the detailed crystal structure also reveals a maximum in conductivity at the same thickness. In agreement with the structure obtained from scanning transmission electron microscopy (STEM), our simulated structures reveal that the substrate- and surface-induced distortions lead to three types of local structure (heterointerface, interior-layer, surface). Based on this observation, a 3-element parallel conductor model neatly reproduces the trend of conductivity with thickness. This study addresses the question of how structural distortions at the atomic scale evolve in a thin film under the influence of the substrate and the surface. This topic is key to the understanding of the physics of heterostructures and the design of functional oxides.
Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald
2015-01-01
Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Dholakia, Geetha R.; Fan, Wendy; Koehne, Jessica; Han, Jie; Meyyappan, M.
2003-01-01
Conjugated phenylene(ethynylene) molecular wires are of interest as potential candidates for molecular electronic devices. Scanning tunneling microscopic study of the topography and current-voltage (I-V) characteristics of self-assembled monolayers of two types of molecular wires are presented here. The study shows that the topography and I-Vs, for small scan voltages, of the two wires are quite similar and that the electronic and structural changes introduced by the substitution of an electronegative N atom in the central phenyl ring of these wires does not significantly alter the self-assembly or the transport properties.
Development of scanning electron and x-ray microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Tomokazu, E-mail: tomokzau.matsumura@etd.hpk.co.jp; Hirano, Tomohiko, E-mail: tomohiko.hirano@etd.hpk.co.jp; Suyama, Motohiro, E-mail: suyama@etd.hpk.co.jp
We have developed a new type of microscope possessing a unique feature of observing both scanning electron and X-ray images under one unit. Unlike former X-ray microscopes using SEM [1, 2], this scanning electron and X-ray (SELX) microscope has a sample in vacuum, thus it enables one to observe a surface structure of a sample by SEM mode, to search the region of interest, and to observe an X-ray image which transmits the region. For the X-ray observation, we have been focusing on the soft X-ray region from 280 eV to 3 keV to observe some bio samples and softmore » materials. The resolutions of SEM and X-ray modes are 50 nm and 100 nm, respectively, at the electron energy of 7 keV.« less
Ultrastructural Study of Some Pollen Grains of Prairie Flowers
ERIC Educational Resources Information Center
Kozar, Frank
1973-01-01
Discusses the importance of the electron microscope, and in particular the scanning electron microscope, in studying the surface topography, sectional substructures, and patterns of development of pollen grains. The production, dispersal methods, and structure of pollen grains are described and illustrated with numerous electron micrographs. (JR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buda, I. G.; Lane, C.; Barbiellini, B.
We discuss self-consistently obtained ground-state electronic properties of monolayers of graphene and a number of ’beyond graphene’ compounds, including films of transition-metal dichalcogenides (TMDs), using the recently proposed strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA results are compared with those based on the local density approximation (LDA) as well as the generalized gradient approximation (GGA). As expected, the GGA yields expanded lattices and softened bonds in relation to the LDA, but the SCAN meta-GGA systematically improves the agreement with experiment. Our study suggests the efficacy of the SCAN functionalmore » for accurate modeling of electronic structures of layered materials in high-throughput calculations more generally.« less
Buda, I. G.; Lane, C.; Barbiellini, B.; ...
2017-03-23
We discuss self-consistently obtained ground-state electronic properties of monolayers of graphene and a number of ’beyond graphene’ compounds, including films of transition-metal dichalcogenides (TMDs), using the recently proposed strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA results are compared with those based on the local density approximation (LDA) as well as the generalized gradient approximation (GGA). As expected, the GGA yields expanded lattices and softened bonds in relation to the LDA, but the SCAN meta-GGA systematically improves the agreement with experiment. Our study suggests the efficacy of the SCAN functionalmore » for accurate modeling of electronic structures of layered materials in high-throughput calculations more generally.« less
NASA Astrophysics Data System (ADS)
Everhart, Wesley; Dinardo, Joseph; Barr, Christian
2017-02-01
Electron beam melting (EBM) is a powder bed fusion-based additive manufacturing process in which selective areas of a layer of powder are melted with an electron beam and a part is built layer by layer. EBM scanning strategies within the Arcam AB® A2X EBM system rely upon governing relationships between the scan length of the beam path, the beam current, and speed. As a result, a large parameter process window exists for Ti-6Al-4V. Many studies have reviewed various properties of EBM materials without accounting for this effect. The work performed in this study demonstrates the relationship between scan length and the resulting density, microstructure, and mechanical properties of EBM-produced Ti-6Al-4V using the scanning strategies set by the EBM control software. This emphasizes the criticality of process knowledge and careful experimental design, and provides an alternate explanation for reported orientation-influenced strength differences.
A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans.
Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing; Meng, Wenjie; Lu, Qingyou
2017-01-01
A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY -scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.
NASA Astrophysics Data System (ADS)
Zheng, Lixin; Chen, Mohan; Sun, Zhaoru; Ko, Hsin-Yu; Santra, Biswajit; Dhuvad, Pratikkumar; Wu, Xifan
2018-04-01
We perform ab initio molecular dynamics (AIMD) simulation of liquid water in the canonical ensemble at ambient conditions using the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient approximation (GGA) functional approximation and carry out systematic comparisons with the results obtained from the GGA-level Perdew-Burke-Ernzerhof (PBE) functional and Tkatchenko-Scheffler van der Waals (vdW) dispersion correction inclusive PBE functional. We analyze various properties of liquid water including radial distribution functions, oxygen-oxygen-oxygen triplet angular distribution, tetrahedrality, hydrogen bonds, diffusion coefficients, ring statistics, density of states, band gaps, and dipole moments. We find that the SCAN functional is generally more accurate than the other two functionals for liquid water by not only capturing the intermediate-range vdW interactions but also mitigating the overly strong hydrogen bonds prescribed in PBE simulations. We also compare the results of SCAN-based AIMD simulations in the canonical and isothermal-isobaric ensembles. Our results suggest that SCAN provides a reliable description for most structural, electronic, and dynamical properties in liquid water.
Brown, M F; Brotzman, H G; Kinden, D A
1976-09-01
A procedure yielding sections of unembedded biological samples for observation by scanning electron microscopy is described. Sections of samples, fixed and hardened in OsO4, were obtained in quantity with a tissue sectioner. Subsequent treatments to osmium-coat cut surfaces were employed prior to critical point drying. The procedure yields cleanly cut surfaces through cells and cytoplasmic organelles which are retained in their normal position. Sections of apple leaf and mouse kidney are illustrated. Sections can be readily cut in a desired plane with less structural damage than is typically encountered by other sectioning or dissection techniques.
Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques
NASA Astrophysics Data System (ADS)
Bolker, Asaf; Saguy, Cecile; Kalish, Rafi
2014-09-01
The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.
Scanning Tunneling Microscope For Use In Vacuum
NASA Technical Reports Server (NTRS)
Abel, Phillip B.
1993-01-01
Scanning tunneling microscope with subangstrom resolution developed to study surface structures. Although instrument used in air, designed especially for use in vacuum. Scanning head is assembly of small, mostly rigid components made of low-outgassing materials. Includes coarse-positioning mechanical-translation stage, on which specimen mounted by use of standard mounting stub. Tunneling tip mounted on piezoelectric fine-positioning tube. Application of suitable voltages to electrodes on piezoelectric tube controls scan of tunneling tip across surface of specimen. Electronic subsystem generates scanning voltages and collects data.
Study of structural colour of Hebomoia glaucippe butterfly wing scales
NASA Astrophysics Data System (ADS)
Shur, V. Ya; Kuznetsov, D. K.; Pryakhina, V. I.; Kosobokov, M. S.; Zubarev, I. V.; Boymuradova, S. K.; Volchetskaya, K. V.
2017-10-01
Structural colours of Hebomoia glaucippe butterfly wing scales have been studied experimentally using high resolution scanning electron microscopy. Visualization of scales structures and computer simulation allowed distinguishing correlation between nanostructures on the scales and their colour.
Murata, Kazuyoshi; Esaki, Masatoshi; Ogura, Teru; Arai, Shigeo; Yamamoto, Yuta; Tanaka, Nobuo
2014-11-01
Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ~3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. Copyright © 2014 Elsevier B.V. All rights reserved.
Facile synthesis of silicon nanowire-nanopillar superhydrophobic structures
NASA Astrophysics Data System (ADS)
Roy, Abhijit; Satpati, Biswarup
2018-04-01
We have used metal assisted chemical etching (MACE) method to produce silicon (Si) nanowire-nanopillar array. Nanowire-nanopillar combined structures show higher degree of hydrophobicity compared to its nanowire (Si-NW) counterparts. The rate of etching is depended on initial metal deposition. The structural analysis was carried out using scanning electron microscopy (SEM) in combination with transmission electron microscopy (TEM) to determine different parameters like etching direction, crystallinity etc.
Vasudevan, Rama K.; Ziatdinov, Maxim; Jesse, Stephen; ...
2016-08-12
Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ~1–10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysismore » is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. Furthermore, this method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure–property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.« less
Integrated light and scanning electron microscopy of GFP-expressing cells.
Peddie, Christopher J; Liv, Nalan; Hoogenboom, Jacob P; Collinson, Lucy M
2014-01-01
Integration of light and electron microscopes provides imaging tools in which fluorescent proteins can be localized to cellular structures with a high level of precision. However, until recently, there were few methods that could deliver specimens with sufficient fluorescent signal and electron contrast for dual imaging without intermediate staining steps. Here, we report protocols that preserve green fluorescent protein (GFP) in whole cells and in ultrathin sections of resin-embedded cells, with membrane contrast for integrated imaging. Critically, GFP is maintained in a stable and active state within the vacuum of an integrated light and scanning electron microscope. For light microscopists, additional structural information gives context to fluorescent protein expression in whole cells, illustrated here by analysis of filopodia and focal adhesions in Madin Darby canine kidney cells expressing GFP-Paxillin. For electron microscopists, GFP highlights the proteins of interest within the architectural space of the cell, illustrated here by localization of the conical lipid diacylglycerol to cellular membranes. © 2014 Elsevier Inc. All rights reserved.
Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets
NASA Astrophysics Data System (ADS)
Sharma, Aditya; Varshney, Mayora; Nanda, Sitansu Sekhar; Shin, Hyun Joon; Kim, Namdong; Yi, Dong Kee; Chae, Keun-Hwa; Ok Won, Sung
2018-04-01
Correlation between the structural/electronic structure properties and bio-activity of graphene-based materials need to be thoroughly evaluated before their commercial implementation in the health and environment precincts. To better investigate the local hybridization of sp2/sp3 orbitals of the functional groups of graphene-oxide (GO) and their execution in the antimicrobial mechanism, we exemplify the antibacterial activity of GO sheets towards the Escherichia coli bacteria (E. coli) by applying the field-emission scanning electron microscopy (FESEM), near edge X-ray absorption fine structure (NEXAFS) and scanning transmission X-ray microscope (STXM) techniques. C K-edge and O K-edge NEXAFS spectra have revealed lesser sp2 carbon atoms in the aromatic ring and attachment of functional oxygen groups at GO sheets. Entrapment of E. coli bacteria by GO sheets is evidenced by FESEM investigations and has also been corroborated by nano-scale imaging of bacteria using the STXM. Spectroscopy evidence of functional oxygen moieties with GO sheets and physiochemical entrapment of E. coli bacteria have assisted us to elaborate the mechanism of cellular oxidative stress-induced disruption of bacterial membrane.
NASA Astrophysics Data System (ADS)
Kislitsyn, Dmitry Anatolevich
This dissertation presents results of a project bringing Scanning Tunneling Microscope (STM) into a regime of unlimited operational time at cryogenic conditions. Freedom from liquid helium consumption was achieved and technical characteristics of the instrument are reported, including record low noise for a scanning probe instrument coupled to a close-cycle cryostat, which allows for atomically resolved imaging, and record low thermal drift. Subsequent studies showed that the new STM opened new prospects in nanoscience research by enabling Scanning Tunneling Spectroscopic (STS) spatial mapping to reveal details of the electronic structure in real space for molecules and low-dimensional nanomaterials, for which this depth of investigation was previously prohibitively expensive. Quantum-confined electronic states were studied in single-walled carbon nanotubes (SWCNTs) deposited on the Au(111) surface. Localization on the nanometer-scale was discovered to produce a local vibronic manifold resulting from the localization-enhanced electron-vibrational coupling. STS showed the vibrational overtones, identified as D-band Kekule vibrational modes and K-point transverse out-of plane phonons. This study experimentally connected the properties of well-defined localized electronic states to the properties of associated vibronic states. Electronic structures of alkyl-substituted oligothiophenes with different backbone lengths were studied and correlated with torsional conformations assumed on the Au(111) surface. The molecules adopted distinct planar conformations with alkyl ligands forming cis- or trans-mutual orientations and at higher coverage self-assembled into ordered structures, binding to each other via interdigitated alkyl ligands. STS maps visualized, in real space, particle-in-a-box-like molecular orbitals. Shorter quaterthiophenes have substantially varying orbital energies because of local variations in surface reactivity. Different conformers of longer oligothiophenes with significant geometrical distortions of the oligothiophene backbones surprisingly exhibited similar electronic structures, indicating insensitivity of interaction with the surface to molecular conformation. Electronic states for annealed ligand-free lead sulfide nanocrystals were investigated, as well as hydrogen-passivated silicon nanocrystals, supported on the Au(111) surface. Delocalized quantum-confined states and localized defect-related states were identified, for the first time, via STS spatial mapping. Physical mechanisms, involving surface reconstruction or single-atom defects, were proposed for surface state formation to explain the observed spatial behavior of the electronic density of states. This dissertation includes previously published co-authored material.
Zečević, Jovana; Hermannsdörfer, Justus; Schuh, Tobias; de Jong, Krijn P; de Jonge, Niels
2017-01-01
Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of scanning TEM (STEM) brings about the dissolution of silica nanoparticles in water by a gradual reduction of their sizes, and that silica redeposites at the sides of the nanoparticles in the scanning direction of the electron beam, such that elongated nanoparticles are formed. Nanoparticles with an elongation in a different direction are obtained simply by changing the scan direction. Material is expelled from the center of the nanoparticles at higher electron dose, leading to the formation of doughnut-shaped objects. Nanoparticles assembled in an aggregate gradually fuse, and the electron beam exposed section of the aggregate reduces in size and is elongated. Under TEM conditions with a stationary electron beam, the nanoparticles dissolve but do not elongate. The observed phenomena are important to consider when conducting liquid-phase STEM experiments on silica-based materials and may find future application for controlled anisotropic manipulation of the size and the shape of nanoparticles in liquid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Missert, Nancy; Kotula, Paul G.; Rye, Michael; ...
2017-02-15
We used a focused ion beam to obtain cross-sectional specimens from both magnetic multilayer and Nb/Al-AlOx/Nb Josephson junction devices for characterization by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX). An automated multivariate statistical analysis of the EDX spectral images produced chemically unique component images of individual layers within the multilayer structures. STEM imaging elucidated distinct variations in film morphology, interface quality, and/or etch artifacts that could be correlated to magnetic and/or electrical properties measured on the same devices.
Time-resolved scanning electron microscopy with polarization analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frömter, Robert, E-mail: rfroemte@physik.uni-hamburg.de; Oepen, Hans Peter; The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg
2016-04-04
We demonstrate the feasibility of investigating periodically driven magnetization dynamics in a scanning electron microscope with polarization analysis based on spin-polarized low-energy electron diffraction. With the present setup, analyzing the time structure of the scattering events, we obtain a temporal resolution of 700 ps, which is demonstrated by means of imaging the field-driven 100 MHz gyration of the vortex in a soft-magnetic FeCoSiB square. Owing to the efficient intrinsic timing scheme, high-quality movies, giving two components of the magnetization simultaneously, can be recorded on the time scale of hours.
Characterization of non-conductive materials using field emission scanning electron microscopy
NASA Astrophysics Data System (ADS)
Cao, Cong; Gao, Ran; Shang, Huayan; Peng, Tingting
2016-01-01
With the development of science and technology, field emission scanning electron microscope (FESEM) plays an important role in nano-material measurements because of its advantages of high magnification, high resolution and easy operation. A high-quality secondary electron image is a significant prerequisite for accurate and precise length measurements. In order to obtain high-quality secondary electron images, the conventional treatment method for non-conductive materials is coating conductive films with gold, carbon or platinum to reduce charging effects, but this method will cover real micro structures of materials, change the sample composition properties and meanwhile introduce a relatively big error to nano-scale microstructure measurements. This paper discusses how to reduce or eliminate the impact of charging effects on image quality to the greatest extent by changing working conditions, such as voltage, stage bias, scanning mode and so on without treatment of coating, to obtain real and high-quality microstructure information of materials.
Low-Temperature Scanning Capacitance Probe for Imaging Electron Motion
NASA Astrophysics Data System (ADS)
Bhandari, S.; Westervelt, R. M.
2014-12-01
Novel techniques to probe electronic properties at the nanoscale can shed light on the physics of nanoscale devices. In particular, studying the scattering of electrons from edges and apertures at the nanoscale and imaging the electron profile in a quantum dot, have been of interest [1]. In this paper, we present the design and implementation of a cooled scanning capacitance probe that operates at liquid He temperatures to image electron waves in nanodevices. The conducting tip of a scanned probe microscope is held above the nanoscale structure, and an applied sample-to-tip voltage creates an image charge that is measured by a cooled charge amplifier [2] adjacent to the tip. The circuit is based on a low-capacitance, high- electron-mobility transistor (Fujitsu FHX35X). The input is a capacitance bridge formed by a low capacitance pinched-off HEMT transistor and tip-sample capacitance. We have achieved low noise level (0.13 e/VHz) and high spatial resolution (100 nm) for this technique, which promises to be a useful tool to study electronic behavior in nanoscale devices.
Structure and properties of parts produced by electron-beam additive manufacturing
NASA Astrophysics Data System (ADS)
Klimenov, Vasilii; Klopotov, Anatolii; Fedorov, Vasilii; Abzaev, Yurii; Batranin, Andrey; Kurgan, Kirill; Kairalapov, Daniyar
2017-12-01
The paper deals with the study of structure, microstructure, composition and microhardness of a tube processed by electron-beam additive manufacturing using optical and scanning electron microscopy. The structure and macrodefects of a tube made of Grade2 titanium alloy is studied using the X-ray computed tomography. The principles of layer-by-layer assembly and boundaries after powder sintering are set out in this paper. It is found that the titanium alloy has two phases. Future work will involve methods to improve properties of created parts.
NASA Astrophysics Data System (ADS)
Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong
2017-12-01
In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.
Veazey, Joshua P; Reguera, Gemma; Tessmer, Stuart H
2011-12-01
The metal-reducing bacterium Geobacter sulfurreducens produces conductive protein appendages known as "pilus nanowires" to transfer electrons to metal oxides and to other cells. These processes can be harnessed for the bioremediation of toxic metals and the generation of electricity in bioelectrochemical cells. Key to these applications is a detailed understanding of how these nanostructures conduct electrons. However, to the best of our knowledge, their mechanism of electron transport is not known. We used the capability of scanning tunneling microscopy (STM) to probe conductive materials with higher spatial resolution than other scanning probe methods to gain insights into the transversal electronic behavior of native, cell-anchored pili. Despite the presence of insulating cellular components, the STM topography resolved electronic molecular substructures with periodicities similar to those reported for the pilus shaft. STM spectroscopy revealed electronic states near the Fermi level, consistent with a conducting material, but did not reveal electronic states expected for cytochromes. Furthermore, the transversal conductance was asymmetric, as previously reported for assemblies of helical peptides. Our results thus indicate that the Geobacter pilus shaft has an intrinsic electronic structure that could play a role in charge transport.
Possible etiology of calculi formation in salivary glands: biophysical analysis of calculus.
Mimura, Masafumi; Tanaka, Nobuyuki; Ichinose, Shizuko; Kimijima, Yutaka; Amagasa, Teruo
2005-09-01
Sialolithiasis is one of the common diseases of the salivary glands. It was speculated that, in the process of calculi formation, degenerative substances are emitted by saliva and calcification then occurs around these substances, and finally calculi are formed. However, the exact mechanism of the formation of calculi is still unclear. In this study, we identify some possible etiologies of calculi formation in salivary glands through biophysical analysis. Calculi from 13 patients with submandibular sialolithiasis were investigated by transmission electron microscopy, scanning electron microscopy, X-ray microanalyzer, and electron diffraction. Transmission electron microscopic observation of calculi was performed in the submandibular gland (n = 13). In 3 of the 13 cases, a number of mitochondria-like structures and lysosomes were found near calcified materials. Scanning electron microscopic examination of these materials revealed that there were lamellar and concentric structures and that the degree of calcification was different among the calculi. X-ray microanalysis disclosed the component elements in the calculi to be Ca, P, S, Na, etc., and the main constituents were Ca and P. The calcium-to-phosphorus ratio was 1.60-1.89. Analysis of the area including mitochondria-like structures, lysosomes, and the fibrous structures by electron diffraction revealed the presence of hydroxyapatite and calcified materials. It is speculated that mitochondria and lysosomal bodies from the ductal system of the submandibular gland are an etiological source for calcification in the salivary gland.
Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires
Lin, Junhao; Zhang, Yuyang; Zhou, Wu; ...
2016-01-18
Metallic transition-metal chalcogenide (TMC) nanowires are an important building block for 2D electronics that may be fabricated within semiconducting transition-metal dichalcogenide (TMDC) monolayers. Tuning the geometric structure and electronic properties of such nanowires is a promising way to pattern diverse functional channels for wiring multiple units inside a 2D electronic circuit. Nevertheless, few experimental investigations have been reported exploring the structural and compositional tunability of these nanowires, due to difficulties in manipulating the structure and chemical composition of an individual nanowire. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we report that TMCmore » nanowires have substantial intrinsic structural flexibility and their chemical composition can be manipulated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T; Zhu, L
Purpose: Conventional dual energy CT (DECT) reconstructs CT and basis material images from two full-size projection datasets with different energy spectra. To relax the data requirement, we propose an iterative DECT reconstruction algorithm using one full scan and a second sparse-view scan by utilizing redundant structural information of the same object acquired at two different energies. Methods: We first reconstruct a full-scan CT image using filtered-backprojection (FBP) algorithm. The material similarities of each pixel with other pixels are calculated by an exponential function about pixel value differences. We assume that the material similarities of pixels remains in the second CTmore » scan, although pixel values may vary. An iterative method is designed to reconstruct the second CT image from reduced projections. Under the data fidelity constraint, the algorithm minimizes the L2 norm of the difference between pixel value and its estimation, which is the average of other pixel values weighted by their similarities. The proposed algorithm, referred to as structure preserving iterative reconstruction (SPIR), is evaluated on physical phantoms. Results: On the Catphan600 phantom, SPIR-based DECT method with a second 10-view scan reduces the noise standard deviation of a full-scan FBP CT reconstruction by a factor of 4 with well-maintained spatial resolution, while iterative reconstruction using total-variation regularization (TVR) degrades the spatial resolution at the same noise level. The proposed method achieves less than 1% measurement difference on electron density map compared with the conventional two-full-scan DECT. On an anthropomorphic pediatric phantom, our method successfully reconstructs the complicated vertebra structures and decomposes bone and soft tissue. Conclusion: We develop an effective method to reduce the number of views and therefore data acquisition in DECT. We show that SPIR-based DECT using one full scan and a second 10-view scan can provide high-quality DECT images and accurate electron density maps as conventional two-full-scan DECT.« less
Kim, Kyung-Il; Lee, Seonghyun; Jin, Xuelin; Kim, Su Ji; Jo, Kyubong; Lee, Jung Heon
2017-01-01
Synthesis of smooth and continuous DNA nanowires, preserving the original structure of native DNA, and allowing its analysis by scanning electron microscope (SEM), is demonstrated. Gold nanoparticles densely assembled on the DNA backbone via thiol-tagged DNA binding peptides work as seeds for metallization of DNA. This method allows whole analysis of DNA molecules with entangled 3D features. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A new method using Scanning Electron Microscopy (SEM) for preparation of anisopterous odonates.
Del Palacio, Alejandro; Sarmiento, Patricia Laura; Javier, Muzón
2017-10-01
Anisopterous odonate male's secondary genitalia is a complex of several structures, among them the vesica spermalis is the most informative with important specific characters. The observation of those characters, mostly of membranous nature, is difficult in the Scanning Electron Microscope due to dehydration and metallization processes. In this contribution, we discuss a new and low cost procedure for the observation of these characters in the SEM, compatible with the most common agents used for preserving specimens. © 2017 Wiley Periodicals, Inc.
Helix handedness of Leptospira interrogans as determined by scanning electron microscopy.
Carleton, O; Charon, N W; Allender, P; O'Brien, S
1979-01-01
Representative serovars and strains of the seven genetic groups of Leptospira interrogans, and two previously studied serovars, were all found to form exclusively right-handed helices as determined by scanning electron microscopy. No change in handedness occurred in cells grown in a minimal medium (Tween-80 albumin) compared to cells grown in a rich medium (rabbit serum). The right-handedness of the organisms was related to the evolution, cell wall structure, and the mechanism of motility of L. interrogans. Images PMID:438122
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesse, Stephen; He, Qian; Lupini, Andrew R.
2015-10-19
We demonstrate atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous layer in a scanning transmission electron microscope (STEM). Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. We further demonstrate fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulkmore » atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing.« less
Idrobo, Juan C; Walkosz, Weronika; Klie, Robert F; Oğüt, Serdar
2012-12-01
In silicon nitride structural ceramics, the overall mechanical and thermal properties are controlled by the atomic and electronic structures at the interface between the ceramic grains and the amorphous intergranular films (IGFs) formed by various sintering additives. In the last ten years the atomic arrangements of heavy elements (rare-earths) at the Si(3)N(4)/IGF interfaces have been resolved. However, the atomic position of light elements, without which it is not possible to obtain a complete description of the interfaces, has been lacking. This review article details the authors' efforts to identify the atomic arrangement of light elements such as nitrogen and oxygen at the Si(3)N(4)/SiO(2) interface and in bulk Si(3)N(4) using aberration-corrected scanning transmission electron microscopy. Published by Elsevier B.V.
Scanning Tunneling Microscopy Analysis of a Pentacene/Graphene/SiC(0001) system
NASA Astrophysics Data System (ADS)
Yost, Andrew; Suzer, Ozgun; Smerdon, Joseph; Chien, Teyu; Guest, Jeffrey
2014-03-01
A complete understanding of the structure of molecular assemblies, as well as an understanding of donor-acceptor interactions is crucial in the development of emergent molecular electronics technologies such as organic photovoltaics. The pentacene (C22H14) is a good electron donor in Pentacene-C60 system, which is a model system of an organic photovoltaic cell.. Here we present scanning tunneling microscopy studies of the pentacene(Pn) molecule on Graphene(G) that is epitaxially grown on SiC(0001). In addition to the morphologies reported in literature, several new structures of Pn on on G/SiC(0001) were observed with different periodicity and registry both in monolayer and bilayer coverages of molecules on the surface. Preliminary scanning tunneling spectroscopy of the molecular system is also discussed; well-isolated states and a large HOMO-LUMO gap indicate the Pn is weakly coupled to the grapheme and underlying substrate.
Cytocompatibility and uptake of halloysite clay nanotubes.
Vergaro, Viviana; Abdullayev, Elshad; Lvov, Yuri M; Zeitoun, Andre; Cingolani, Roberto; Rinaldi, Ross; Leporatti, Stefano
2010-03-08
Halloysite is aluminosilicate clay with hollow tubular structure of 50 nm external diameter and 15 nm diameter lumen. Halloysite biocompatibility study is important for its potential applications in polymer composites, bone implants, controlled drug delivery, and for protective coating (e.g., anticorrosion or antimolding). Halloysite nanotubes were added to different cell cultures for toxicity tests. Its fluorescence functionalization by aminopropyltriethosilane (APTES) and with fluorescently labeled polyelectrolyte layers allowed following halloysite uptake by the cells with confocal laser scanning microscopy (CLSM). Quantitative Trypan blue and MTT measurements performed with two neoplastic cell lines model systems as a function of the nanotubes concentration and incubation time indicate that halloysite exhibits a high level of biocompatibility and very low cytotoxicity, rendering it a good candidate for household materials and medicine. A combination of transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning force microscopy (SFM) imaging techniques have been employed to elucidate the structure of halloysite nanotubes.
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3
Ziatdinov, M.; Banerjee, A.; Maksov, A.; Berlijn, T.; Zhou, W.; Cao, H. B.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Baddorf, A. P.; Kalinin, S. V.
2016-01-01
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ≈0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface. PMID:27941761
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3.
Ziatdinov, M; Banerjee, A; Maksov, A; Berlijn, T; Zhou, W; Cao, H B; Yan, J-Q; Bridges, C A; Mandrus, D G; Nagler, S E; Baddorf, A P; Kalinin, S V
2016-12-12
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl 3 . Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl 3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ≈0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl 3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl 3
Ziatdinov, Maxim A.; Banerjee, Arnab; Maksov, Artem B.; ...
2016-12-12
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, -RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of -RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at themore » nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of 0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual -RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.« less
Electron beam irradiation effects on ethylene-tetrafluoroethylene copolymer films
NASA Astrophysics Data System (ADS)
Nasef, Mohamed Mahmoud; Saidi, Hamdani; Dahlan, Khairul Zaman M.
2003-12-01
The effects of electron beam irradiation on ethylene-tetrafluoroethylene copolymer (ETFE) films were studied. Samples were irradiated in air at room temperature by a universal electron beam accelerator for doses ranging from 100 to 1200 kGy. Irradiated samples were investigated with respect to their chemical structure, thermal characteristics, crystallinity and mechanical properties using FTIR, differential scanning calorimeter (DSC) and universal mechanical tester. The interaction of electron irradiation with ETFE films was found to induce dose-dependent changes in all the investigated properties. A mechanism for electron-induced reactions is proposed to explain the structure-property behaviour of irradiated ETFE films.
Mafra, A C; Lanfredi, R M
1998-06-01
This study was undertaken to clarify several aspects of morphological and taxonomic characters of Physaloptera bispiculata Vaz and Pereira, 1935, a parasite of the water rat, Nectomys squamipes. The cephalic structures (including lips, papillae, teeth, amphids, and porous areas) and details of the posterior end of male and female adult worms were examined by scanning electron microscopy, leading to the addition of new taxonomic characters for this species. We consider P. bispiculata a valid species, based on a comparative analysis of the specific characters for P. bispiculata and P. getula Seurat, 1917, including the morphology and morphometry of body structures as well as number and disposition of caudal papillae of the males.
NASA Astrophysics Data System (ADS)
Garvie, Laurence A. J.; Baumgardner, Grant; Buseck, Peter R.
2008-05-01
Carbonaceous nanoglobules are ubiquitous in carbonaceous chondrite (CC) meteorites. The Tagish Lake (C2) meteorite is particularly intriguing in containing an abundance of nanoglobules, with a wider range of forms and sizes than encountered in other CC meteorites. Previous studies by transmission electron microscopy (TEM) have provided a wealth of information on chemistry and structure. In this study low voltage scanning electron microscopy (SEM) was used to characterize the globule forms and external structures. The internal structure of the globules was investigated after sectioning by focused ion beam (FIB) milling. The FIB-SEM analysis shows that the globules range from solid to hollow. Some hollow globules show a central open core, with adjoining smaller cores. The FIB with an SEM is a valuable tool for the analysis of extraterrestrial materials, even of sub-micron-sized "soft" carbonaceous particles. The rapid site-specific cross-sectioning capabilities of the FIB allow the preservation of the internal morphology of the nanoglobules, with minimal damage or alteration of the unsectioned areas.
Wu, J S; Kim, A M; Bleher, R; Myers, B D; Marvin, R G; Inada, H; Nakamura, K; Zhang, X F; Roth, E; Li, S Y; Woodruff, T K; O'Halloran, T V; Dravid, Vinayak P
2013-05-01
A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. Copyright © 2013 Elsevier B.V. All rights reserved.
A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans
Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing
2017-01-01
A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown. PMID:29270242
NASA Technical Reports Server (NTRS)
1990-01-01
SPATE 900 Dynamic Stress Analyzer is an acronym for Stress Pattern Analysis by Thermal Emission. It detects stress-induced temperature changes in a structure and indicates the degree of stress. Ometron, Inc.'s SPATE 9000 consists of a scan unit and a data display. The scan unit contains an infrared channel focused on the test structure to collect thermal radiation, and a visual channel used to set up the scan area and interrogate the stress display. Stress data is produced by detecting minute temperature changes, down to one-thousandth of a degree Centigrade, resulting from the application to the structure of dynamic loading. The electronic data processing system correlates the temperature changes with a reference signal to determine stress level.
NASA Technical Reports Server (NTRS)
Toporski, Jan; Steele, Andrew; Westall, Frances; McKay, David S.
2000-01-01
The ongoing scientific debate as to whether or not the Martian meteorite ALH84001 contained evidence of possible biogenic activities showed the need to establish consistent methods to ascertain the origin of such evidence. To distinguish between terrestrial organic material/microbial contaminants and possible indigenous microbiota within meteorites is therefore crucial. With this in mind a depth profile consisting of four samples from a new sample allocation of Martian meteorite Nakhla was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray analysis. SEM imaging of freshly broken fractured chips revealed structures strongly recent terrestrial microorganisms, in some cases showing evidence of active growth. This conclusion was supported by EDX analysis, which showed the presence of carbon associated with these structures, we concluded that these structures represent recent terrestrial contaminants rather than structures indigenous to the meteorite. Page
NASA Astrophysics Data System (ADS)
Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.
2014-06-01
Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.
Serial sectioning methods for 3D investigations in materials science.
Zankel, Armin; Wagner, Julian; Poelt, Peter
2014-07-01
A variety of methods for the investigation and 3D representation of the inner structure of materials has been developed. In this paper, techniques based on slice and view using scanning microscopy for imaging are presented and compared. Three different methods of serial sectioning combined with either scanning electron or scanning ion microscopy or atomic force microscopy (AFM) were placed under scrutiny: serial block-face scanning electron microscopy, which facilitates an ultramicrotome built into the chamber of a variable pressure scanning electron microscope; three-dimensional (3D) AFM, which combines an (cryo-) ultramicrotome with an atomic force microscope, and 3D FIB, which delivers results by slicing with a focused ion beam. These three methods complement one another in many respects, e.g., in the type of materials that can be investigated, the resolution that can be obtained and the information that can be extracted from 3D reconstructions. A detailed review is given about preparation, the slice and view process itself, and the limitations of the methods and possible artifacts. Applications for each technique are also provided. Copyright © 2014 Elsevier Ltd. All rights reserved.
Highlighting material structure with transmission electron diffraction correlation coefficient maps.
Kiss, Ákos K; Rauch, Edgar F; Lábár, János L
2016-04-01
Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hus, Saban M.; Li, An-Ping
2017-08-01
Two-dimensional (2D) materials are intrinsically heterogeneous. Both localized defects, such as vacancies and dopants, and mesoscopic boundaries, such as surfaces and interfaces, give rise to compositional or structural heterogeneities. The presence of defects and boundaries can break lattice symmetry, modify the energy landscape, and create quantum confinement, leading to fascinating electronic properties different from the ;ideal; 2D sheets. This review summarizes recent progress in understanding the roles of defects and boundaries in electronic, magnetic, thermoelectric, and transport properties of 2D layered materials. The focus is on the understanding of correlation of atomic-scale structural information with electronic functions by interrogating heterogeneities individually. The materials concerned are graphene, transition metal dichalcogenides (TMDs), hexagonal boron nitride (hBN), and topological insulators (TIs). The experimental investigations benefit from new methodologies and techniques in scanning tunneling microscopy (STM), including spin-polarized STM, scanning tunneling potentiometry (STP), scanning tunneling thermopower microscopy, and multi-probe STM. The experimental effort is complemented by the computational and theoretical approaches, capable of discriminating between closely competing states and achieving the length scales necessary to bridge across features such as local defects and complex heterostructures. The goal is to provide a general view of current understanding and challenges in studying the heterogeneities in 2D materials and to evaluate the potential of controlling and exploiting these heterogeneities for novel functionalities and electron devices.
Environmental Scanning Electron Microscope Imaging of Vesicle Systems.
Perrie, Yvonne; Ali, Habib; Kirby, Daniel J; Mohammed, Afzal U R; McNeil, Sarah E; Vangala, Anil
2017-01-01
The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors which can influence this. However, there are few methods which all us to study these systems in their natural hydrated state; commonly the liposomes are visualized after drying, staining, and/or fixation of the vesicles. Environmental Scanning Electron Microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. Within our studies we were the first to use ESEM to study liposomes and niosomes and we have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses on to, or evaporates from, the sample in real time. This provides insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay of liposome formulation and stability.
Evolution of magnetism of Cr nanoclusters on a Au(111) surface
NASA Astrophysics Data System (ADS)
Gotsis, Harry; Kioussis, Nicholas; Papaconstantopoulos, Dimitri
2004-03-01
Advances in low-temperature scanning tunneling microscopy under ultrahigh vacuum have provided new opportunities for investigating the magnetic structures of nanoclusters adsorbed on surfaces. Recent STM studies of Cr trimers on the Au(111) surface suggest a switching between two distinct electronic states. We have carried out ab initio electronic structure calculations to investigate the structural, electronic and magnetic properties of isolated Cr atoms, Cr dimers and trimers in different geometry. We will present results for the evolution of magnetic behavior including noncollinear magnetism and provide insight in the connection between magnetism and geometry.
Postek, Michael T; Vladár, András E; Lowney, Jeremiah R; Keery, William J
2002-01-01
Traditional Monte Carlo modeling of the electron beam-specimen interactions in a scanning electron microscope (SEM) produces information about electron beam penetration and output signal generation at either a single beam-landing location, or multiple landing positions. If the multiple landings lie on a line, the results can be graphed in a line scan-like format. Monte Carlo results formatted as line scans have proven useful in providing one-dimensional information about the sample (e.g., linewidth). When used this way, this process is called forward line scan modeling. In the present work, the concept of image simulation (or the first step in the inverse modeling of images) is introduced where the forward-modeled line scan data are carried one step further to construct theoretical two-dimensional (2-D) micrographs (i.e., theoretical SEM images) for comparison with similar experimentally obtained micrographs. This provides an ability to mimic and closely match theory and experiment using SEM images. Calculated and/or measured libraries of simulated images can be developed with this technique. The library concept will prove to be very useful in the determination of dimensional and other properties of simple structures, such as integrated circuit parts, where the shape of the features is preferably measured from a single top-down image or a line scan. This paper presents one approach to the generation of 2-D simulated images and presents some suggestions as to their application to critical dimension metrology.
Establishing an Environmental Scanning System to Augment College and University Planning.
ERIC Educational Resources Information Center
Morrison, James L.
A plan to establish an environmental scanning and forecasting system for colleges and universities is discussed as a way to maximize long-range planning. After proposing a program structure, attention is directed to methods of gaining organizational acceptance, developing a comprehensive taxonomy with an electronic filing system, identifying and…
Lawrence, J R; Swerhone, G D W; Leppard, G G; Araki, T; Zhang, X; West, M M; Hitchcock, A P
2003-09-01
Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provided the highest-resolution structural imaging, CLSM provided detailed compositional information when used in conjunction with molecular probes, and STXM provided compositional mapping of macromolecule distributions without the addition of probes. By examining exactly the same region of a sample with combinations of these techniques (STXM with CLSM and STXM with TEM), we demonstrate that this combination of multimicroscopy analysis can be used to create a detailed correlative map of biofilm structure and composition. We are using these correlative techniques to improve our understanding of the biochemical basis for biofilm organization and to assist studies intended to investigate and optimize biofilms for environmental remediation applications.
Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...
2017-09-26
AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated for structures grown on ZrTi metallic alloy buffer layers, which provided lattice matching of the in-plane lattice parameter (“a-parameter”) to hexagonal GaN. The quality of the GaN buffer layer and HEMT structure were confirmed with X-ray 2θ and rocking scans as well as cross-section transmission electron microscopy (TEM) images. The X-ray 2θ scans showed full widths at half maximum (FWHM) of 0.06°, 0.05° and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM of the lower section of the HEMT structure containing the GaN buffer layer andmore » the AlN/ZrTi/AlN stack on the Si substrate showed that it was important to grow AlN on the top of ZrTi prior to growing the GaN buffer layer. Finally, the estimated threading dislocation (TD) density in the GaN channel layer of the HEMT structure was in the 10 8 cm -2 range.« less
Scanning capacitance microscopy of ErAs nanoparticles embedded in GaAs pn junctions
NASA Astrophysics Data System (ADS)
Park, K. W.; Nair, H. P.; Crook, A. M.; Bank, S. R.; Yu, E. T.
2011-09-01
Scanning capacitance microscopy is used to characterize the electronic properties of ErAs nanoparticles embedded in GaAs pn junctions grown by molecular beam epitaxy. Voltage-dependent capacitance images reveal localized variations in subsurface electronic structure near buried ErAs nanoparticles at lateral length scales of 20-30 nm. Numerical modeling indicates that these variations arise from inhomogeneities in charge modulation due to Fermi level pinning behavior associated with the embedded ErAs nanoparticles. Statistical analysis of image data yields an average particle radius of 6-8 nm—well below the direct resolution limit in scanning capacitance microscopy but discernible via analysis of patterns in nanoscale capacitance images.
Structural and electrical properties of conducting diamond nanowires.
Sankaran, Kamatchi Jothiramalingam; Lin, Yen-Fu; Jian, Wen-Bin; Chen, Huang-Chin; Panda, Kalpataru; Sundaravel, Balakrishnan; Dong, Chung-Li; Tai, Nyan-Hwa; Lin, I-Nan
2013-02-01
Conducting diamond nanowires (DNWs) films have been synthesized by N₂-based microwave plasma enhanced chemical vapor deposition. The incorporation of nitrogen into DNWs films is examined by C 1s X-ray photoemission spectroscopy and morphology of DNWs is discerned using field-emission scanning electron microscopy and transmission electron microscopy (TEM). The electron diffraction pattern, the visible-Raman spectroscopy, and the near-edge X-ray absorption fine structure spectroscopy display the coexistence of sp³ diamond and sp² graphitic phases in DNWs films. In addition, the microstructure investigation, carried out by high-resolution TEM with Fourier transformed pattern, indicates diamond grains and graphitic grain boundaries on surface of DNWs. The same result is confirmed by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Furthermore, the STS spectra of current-voltage curves discover a high tunneling current at the position near the graphitic grain boundaries. These highly conducting regimes of grain boundaries form effective electron paths and its transport mechanism is explained by the three-dimensional (3D) Mott's variable range hopping in a wide temperature from 300 to 20 K. Interestingly, this specific feature of high conducting grain boundaries of DNWs demonstrates a high efficiency in field emission and pave a way to the next generation of high-definition flat panel displays or plasma devices.
Electronic properties of epitaxial silicene: a LT-STM/STS study
NASA Astrophysics Data System (ADS)
Fleurence, Antoine; Lee, Chi-Cheng; Ozaki, Taisuke; Yamada-Takamura, Yukiko; Yoshida, Yasuo; Hasegawa, Yukio
2013-03-01
The astonishing properties of silicene, the Si-counterpart of graphene, together with pioneering experimental observations, triggered in the very recent years, an exponentially increasing interest for this atom-thick material, both at fundamental level and for applications in high-speed electronic devices. We demonstrated, that the spontaneous segregation of silicon on (0001) surface of zirconium diboride (ZrB2) thin films epitaxied on Si(111) wafers gives rise to a wide-scale uniform two-dimensional silicene sheet. The silicene nature of the honeycomb structure imaged by scanning tunneling microscopy is evidenced by the observation of gap-opened π-electronic bands. The band gap opening is primarily due the specifically imprinted buckling. Here, we present the results of a low-temperature scanning tunneling spectroscopy investigation, which evidences the n-doped nature of silicene. The mapping of the local density of states, together with density functional theory give precious insights into the microscopic origin of the electronic bands of silicene. In particular, it shows the correlation between the degree of sp2 hybridization of different Si atoms in the internal structure and the character of the electronic bands.
Jesse, Stephen; He, Qian; Lupini, Andrew R; Leonard, Donovan N; Oxley, Mark P; Ovchinnikov, Oleg; Unocic, Raymond R; Tselev, Alexander; Fuentes-Cabrera, Miguel; Sumpter, Bobby G; Pennycook, Stephen J; Kalinin, Sergei V; Borisevich, Albina Y
2015-11-25
The atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous films in a scanning transmission electron microscope (STEM) is demonstrated. Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. The fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam is further demonstrated. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulk atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pd-Ni-MWCNT nanocomposite thin films: preparation and structure
NASA Astrophysics Data System (ADS)
Kozłowski, Mirosław; Czerwosz, ElŻbieta; Sobczak, Kamil
2017-08-01
The properties of nanocomposite palladium-nickel-multi-walled (Pd-Ni-MWCNT) films deposited on aluminum oxide (Al2O3) substrate have been prepared and investigated. These films were obtained by 3 step process consisted of PVD/CVD/PVD methods. The morphology and structure of the obtained films were characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques at various stages of the film formation. EDX spectrometer was used to measurements of elements segregation in the obtained film. TEM and STEM (Scanning Transmission Electron Microscopy) observations showed MWCNTs decorated with palladium nanoparticles in the film obtained in the last step of film formation (final PVD process). The average size of the palladium nanoparticles observed both on MWCNTs and carbonaceous matrix does not exceed 5 nm. The research was conducted on the use of the obtained films as potential sensors of gases (e.g. H2, NH3, CO2) and bio-sensors or optical sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spurgeon, Steven R.; Chambers, Scott A.
Scanning transmission electron microscopy (STEM) has become one of the fundamental tools to characterize oxide interfaces and superlattices. Atomic-scale structure, chemistry, and composition mapping can now be conducted on a wide variety of materials systems thanks to the development of aberration-correctors and advanced detectors. STEM imaging and diffraction, coupled with electron energy loss (EELS) and energy-dispersive X-ray (EDS) spectroscopies, offer unparalleled, high-resolution analysis of structure-property relationships. In this chapter we highlight investigations into key phenomena, including interfacial conductivity in oxide superlattices, charge screening effects in magnetoelectric heterostructures, the design of high-quality iron oxide interfaces, and the complex physics governing atomic-scalemore » chemical mapping. These studies illustrate how unique insights from STEM characterization can be integrated with other techniques and first-principles calculations to develop better models for the behavior of functional oxides.« less
Coaxial carbon plasma gun deposition of amorphous carbon films
NASA Technical Reports Server (NTRS)
Sater, D. M.; Gulino, D. A.; Rutledge, S. K.
1984-01-01
A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.
NASA Astrophysics Data System (ADS)
Hwang, Sunghwan; Han, Chang Wan; Venkatakrishnan, Singanallur V.; Bouman, Charles A.; Ortalan, Volkan
2017-04-01
Scanning transmission electron microscopy (STEM) has been successfully utilized to investigate atomic structure and chemistry of materials with atomic resolution. However, STEM’s focused electron probe with a high current density causes the electron beam damages including radiolysis and knock-on damage when the focused probe is exposed onto the electron-beam sensitive materials. Therefore, it is highly desirable to decrease the electron dose used in STEM for the investigation of biological/organic molecules, soft materials and nanomaterials in general. With the recent emergence of novel sparse signal processing theories, such as compressive sensing and model-based iterative reconstruction, possibilities of operating STEM under a sparse acquisition scheme to reduce the electron dose have been opened up. In this paper, we report our recent approach to implement a sparse acquisition in STEM mode executed by a random sparse-scan and a signal processing algorithm called model-based iterative reconstruction (MBIR). In this method, a small portion, such as 5% of randomly chosen unit sampling areas (i.e. electron probe positions), which corresponds to pixels of a STEM image, within the region of interest (ROI) of the specimen are scanned with an electron probe to obtain a sparse image. Sparse images are then reconstructed using the MBIR inpainting algorithm to produce an image of the specimen at the original resolution that is consistent with an image obtained using conventional scanning methods. Experimental results for down to 5% sampling show consistency with the full STEM image acquired by the conventional scanning method. Although, practical limitations of the conventional STEM instruments, such as internal delays of the STEM control electronics and the continuous electron gun emission, currently hinder to achieve the full potential of the sparse acquisition STEM in realizing the low dose imaging condition required for the investigation of beam-sensitive materials, the results obtained in our experiments demonstrate the sparse acquisition STEM imaging is potentially capable of reducing the electron dose by at least 20 times expanding the frontiers of our characterization capabilities for investigation of biological/organic molecules, polymers, soft materials and nanostructures in general.
Keratitis-associated fungi form biofilms with reduced antifungal drug susceptibility.
Zhang, Xiaoyan; Sun, Xuguang; Wang, Zhiqun; Zhang, Yang; Hou, Wenbo
2012-11-21
To investigate the biofilm-forming capacity of Fusarium solani, Cladosporium sphaerospermum, and Acremonium implicatum, and the activities of antifungal agents against the three keratitis-associated fungi. The architecture of biofilms was analyzed using scanning electron microscopy and confocal scanning laser microscopy (CSLM). Susceptibility against six antifungal drugs was measured using the CLSI M38-A method and XTT reduction assay. Time course analyses of CSLM revealed that biofilm formation occurred in an organized fashion through four distinct developmental phases: adhesion, germling formation, microcolony formation, and biofilm maturation. Scanning electron microscopy revealed that mature biofilms displayed a complex three-dimensional structure, consisting of coordinated network of hyphal structures glued by the extracellular matrix (ECM). The antifungal susceptibility testing demonstrated a time-dependent decrease in efficacy for all six antifungal agents as the complexity of fungal hyphal structures developed. Natamycin (NAT), amphotericin B (AMB), and NAT were the most effective against F. solani, C. sphaerospermum, and A. implicatum biofilm, respectively. Corneal isolates of F. solani, C. sphaerospermum, and A. implicatum could produce biofilms that were resistant to antifungal agents in vitro.
Surface structures of L10-MnGa (001) by scanning tunneling microscopy and first-principles theory
NASA Astrophysics Data System (ADS)
Corbett, J. P.; Guerrero-Sanchez, J.; Richard, A. L.; Ingram, D. C.; Takeuchi, N.; Smith, A. R.
2017-11-01
We report on the surface reconstructions of L10-ordered MnGa (001) thin films grown by molecular beam epitaxy on a 50 nm Mn3N2 (001) layer freshly grown on a magnesium oxide (001) substrate. Scanning tunneling microscopy, Auger electron spectroscopy, and reflection high energy electron diffraction are combined with first-principles density functional theory calculations to determine the reconstructions of the L10-ordered MnGa (001) surface. We find two lowest energy reconstructions of the MnGa (001) face: a 1 × 1 Ga-terminated structure and a 1 × 2 structure with a Mn replacing a Ga in the 1 × 1 Ga-terminated surface. The 1 × 2 reconstruction forms a row structure along [100]. The manganese:gallium stoichiometry within the surface based on theoretical modeling is in good agreement with experiment. Magnetic moment calculations for the two lowest energy structures reveal important surface and bulk effects leading to oscillatory total magnetization for ultra-thin MnGa (001) films.
NASA Astrophysics Data System (ADS)
Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.
2018-05-01
Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.
Structural and morphological study of chemically synthesized CdSe thin films
NASA Astrophysics Data System (ADS)
Agrawal, P.; Singh, Randhir; Sharma, Jeewan; Sachdeva, M.; Singh, Anupinder; Bhargava, A.
2018-05-01
Nanocrystalline CdSe thin films were prepared by Chemical Bath Deposition (CBD) method using potassium nitrilo-triacetic acid cadmium complex and sodium selenosulphite. The as deposited films were red in color, uniform and well adherent to the glass substrate. These films were strongly dependent on the deposition parameters such as bath composition, deposition temperature and time. Films were annealed at 350 °C for four hours. The morphological, structural and optical properties were studied using X-ray diffraction (XRD), UV-VIS spectrophotometer measurements, scanning electron microscopy and atomic force microscopy. The XRD analysis confirmed that films are predominantly in hexagonal phase. Scanning electron micrograph shows that the grains are uniformly spread all over the film and each grain contains many nanocrystals with spherical shapes.
Timm, Rainer; Eisele, Holger; Lenz, Andrea; Ivanova, Lena; Vossebürger, Vivien; Warming, Till; Bimberg, Dieter; Farrer, Ian; Ritchie, David A; Dähne, Mario
2010-10-13
Combined cross-sectional scanning tunneling microscopy and spectroscopy results reveal the interplay between the atomic structure of ring-shaped GaSb quantum dots in GaAs and the corresponding electronic properties. Hole confinement energies between 0.2 and 0.3 eV and a type-II conduction band offset of 0.1 eV are directly obtained from the data. Additionally, the hole occupancy of quantum dot states and spatially separated Coulomb-bound electron states are observed in the tunneling spectra.
Characterization of the adsorption of water vapor and chlorine on microcrystalline silica
NASA Technical Reports Server (NTRS)
Skiles, J. A.; Wightman, J. P.
1979-01-01
The characterization of water adsorption on silica is necessary to an understanding of how hydrogen chloride interacts with silica. The adsorption as a function of outgas temperatures of silica and as a function of the isotherm temperature was studied. Characterization of the silica structure by infrared analysis, X-ray diffraction and differential scanning calorimetry, surface area determinations, characterization of the sample surface by electron spectroscopy for chemical analysis (ESCA), and determinations of the heat of immersion in water of silica were investigated. The silica with a scanning electron microscope was examined.
Scanning electron microscopy of the collodion membrane from a self-healing collodion baby*
de Almeida Jr., Hiram Larangeira; Isaacsson, Henrique; Guarenti, Isabelle Maffei; Silva, Ricardo Marques e; de Castro, Luis Antônio Suita
2015-01-01
Abstract Self-healing collodion baby is a well-established subtype of this condition. We examined a male newborn, who was covered by a collodion membrane. The shed membrane was examined with scanning electron microscopy. The outer surface showed a very compact keratin without the normal elimination of corneocytes. The lateral view of the specimen revealed a very thick, horny layer. The inner surface showed the structure of lower corneocytes with polygonal contour. With higher magnifications villous projections were seen in the cell membrane. PMID:26375232
Multi-signal FIB/SEM tomography
NASA Astrophysics Data System (ADS)
Giannuzzi, Lucille A.
2012-06-01
Focused ion beam (FIB) milling coupled with scanning electron microscopy (SEM) on the same platform enables 3D microstructural analysis of structures using FIB for serial sectioning and SEM for imaging. Since FIB milling is a destructive technique, the acquisition of multiple signals from each slice is desirable. The feasibility of collecting both an inlens backscattered electron (BSE) signal and an inlens secondary electron (SE) simultaneously from a single scan of the electron beam from each FIB slice is demonstrated. The simultaneous acquisition of two different SE signals from two different detectors (inlens vs. Everhart-Thornley (ET) detector) is also possible. Obtaining multiple signals from each FIB slice with one scan increases the acquisition throughput. In addition, optimization of microstructural and morphological information from the target is achieved using multi-signals. Examples of multi-signal FIB/SEM tomography from a dental implant will be provided where both material contrast from the bone/ceramic coating/Ti substrate phases and porosity in the ceramic coating will be characterized.
Andjelic, Sofija; Drašlar, Kazimir; Hvala, Anastazija; Hawlina, Marko
2016-02-01
Our purpose was to study the structure of the lens epithelial cells (LECs) of intumescent white cataracts (IC) in comparison with nuclear cataracts (NC) in order to investigate possible structural reasons for development of IC. The anterior lens capsule (aLC: basement membrane and associated LECs) were obtained from cataract surgery and prepared for scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We observed by SEM that in IC, LEC swelling was pronounced with the clefts surrounding the groups of LECs. Another structural feature was spherical formations, that were observed on the apical side of LEC's, towards the fibre cell layer, both by SEM and TEM. Development of these structures, bulging out from the apical cell membrane of the LEC's and disrupting it, could be followed in steps towards the sphere formation. The degeneration of the lens epithelium and the structures of the aLC in IC similar to Morgagnian globules were also observed. None of these structural changes were observed in NC. We show by SEM and TEM that, in IC, LECs have pronounced structural features not observed in NC. This supports the hypothesis that the disturbed structure of LECs plays a role in water accumulation in the IC lens. We also suggest that, in IC, LECs produce bulging spheres that represent unique structures of degenerated material, extruded from the LEC.
Nanoscale structural and electronic characterization of α-RuCl3 layered compound
NASA Astrophysics Data System (ADS)
Ziatdinov, Maxim; Maksov, Artem; Banerjee, Arnab; Zhou, Wu; Berlijn, Tom; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Baddorf, Arthur; Kalinin, Sergei
The exceptional interplay of spin-orbit effects, Coulomb interaction, and electron-lattice coupling is expected to produce an elaborate phase space of α-RuCl3 layered compound, which to date remains largely unexplored. Here we employ a combination of scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) for detailed evaluation of the system's microscopic structural and electronic orders with a sub-nanometer precision. The STM and STEM measurements are further supported by neutron scattering, X-Ray diffraction, density functional theory (DFT), and multivariate statistical analysis. Our results show a trigonal distortion of Cl octahedral ligand cage along the C3 symmetry axes in each RuCl3 layer. The lattice distortion is limited mainly to the Cl subsystem leaving the Ru honeycomb lattice nearly intact. The STM topographic and spectroscopic characterization reveals an intra unit cell electronic symmetry breaking in a spin-orbit coupled Mott insulating phase on the Cl-terminated surface of α-RuCl3. The associated long-range charge order (CO) pattern is linked to a surface component of Cl cage distortion. We finally discuss a fine structure of CO and its potential relation to variations of average unit cell geometries found in multivariate analysis of STEM data. The research was sponsored by the U.S. Department of Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachan, Ritesh; Zhang, Yanwen; Ou, Xin
Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd 2Ti 2O 7 and Gd 2TiZrO 7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performedmore » on the ion tracks. Finally, a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.« less
Sachan, Ritesh; Zhang, Yanwen; Ou, Xin; ...
2016-12-13
Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd 2Ti 2O 7 and Gd 2TiZrO 7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performedmore » on the ion tracks. Finally, a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.« less
Highly patterned growth of SnO2 nanowires using a sub-atmospheric vapor-liquid-solid deposition
NASA Astrophysics Data System (ADS)
Akbari, M.; Mohajerzadeh, S.
2017-08-01
We report the realization of tin-oxide nanowires on patterned structures using a vapor-liquid-solid (VLS) process. While gold acts as the catalyst for the growth of wires, a tin-oxide containing sol-gel solution is spin coated on silicon substrate to act as the source for SnO vapor. The growth of tin-oxide nano-structures occurs mostly at the vicinity of the pre-deposited solution. By patterning the gold as the catalyst material, one is able to observe the growth at desired places. The growth of nanowires is highly dense within 100 µm away from such in situ source and their length is of the order of 5 µm. By further distancing from the source, the growth becomes more limited and nanowires become shorter and more sparsely distributed. The growth of nanowires has been studied using scanning and transmission electron microscopy tools while their composition has been investigated using XRD and EDS analyses. As a novel application, we have employed the grown nanowires as electron detection elements to measure the emitted electrons from electron sources. This configuration can be further used as electron detectors for scanning electron microscopes.
NASA Astrophysics Data System (ADS)
Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki; Young Jeong, Hu; Galeano, Carolina; Schüth, Ferdi; Terasaki, Osamu
2014-11-01
Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO2, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.
Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope.
den Engelsen, Daniel; Harris, Paul G; Ireland, Terry G; Fern, George R; Silver, Jack
2015-10-01
Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziatdinov, Maxim A.; Fujii, Shintaro; Kiguchi, Manabu
The link between changes in the material crystal structure and its mechanical, electronic, magnetic, and optical functionalities known as the structure-property relationship is the cornerstone of the contemporary materials science research. The recent advances in scanning transmission electron and scanning probe microscopies (STEM and SPM) have opened an unprecedented path towards examining the materials structure property relationships on the single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based approaches for cross-correlation of structure and property variables obtained in different information channels of the STEM and SPM experiments. Here we have designed an approach based on a combination of sliding windowmore » Fast Fourier Transform, Pearson correlation matrix, linear and kernel canonical correlation, to study a relationship between lattice distortions and electron scattering from the SPM data on graphene with defects. Our analysis revealed that the strength of coupling to strain is altered between different scattering channels which can explain coexistence of several quasiparticle interference patterns in the nanoscale regions of interest. In addition, the application of the kernel functions allowed us extracting a non-linear component of the relationship between the lattice strain and scattering intensity in graphene. Lastly, the outlined approach can be further utilized to analyzing correlations in various multi-modal imaging techniques where the information of interest is spatially distributed and has usually a complex multidimensional nature.« less
Ziatdinov, Maxim A.; Fujii, Shintaro; Kiguchi, Manabu; ...
2016-11-09
The link between changes in the material crystal structure and its mechanical, electronic, magnetic, and optical functionalities known as the structure-property relationship is the cornerstone of the contemporary materials science research. The recent advances in scanning transmission electron and scanning probe microscopies (STEM and SPM) have opened an unprecedented path towards examining the materials structure property relationships on the single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based approaches for cross-correlation of structure and property variables obtained in different information channels of the STEM and SPM experiments. Here we have designed an approach based on a combination of sliding windowmore » Fast Fourier Transform, Pearson correlation matrix, linear and kernel canonical correlation, to study a relationship between lattice distortions and electron scattering from the SPM data on graphene with defects. Our analysis revealed that the strength of coupling to strain is altered between different scattering channels which can explain coexistence of several quasiparticle interference patterns in the nanoscale regions of interest. In addition, the application of the kernel functions allowed us extracting a non-linear component of the relationship between the lattice strain and scattering intensity in graphene. Lastly, the outlined approach can be further utilized to analyzing correlations in various multi-modal imaging techniques where the information of interest is spatially distributed and has usually a complex multidimensional nature.« less
Differences between Subjective Balanced Occlusion and Measurements Reported With T-Scan III
Lila-Krasniqi, Zana; Shala, Kujtim; Krasniqi, Teuta Pustina; Bicaj, Teuta; Ahmedi, Enis; Dula, Linda; Dragusha, Arlinda Tmava; Guguvcevski, Ljuben
2017-01-01
BACKGROUND: The aetiology of Temporomandibular disorder is multifactorial, and numerous studies have addressed that occlusion may be of great importance in the pathogenesis of Temporomandibular disorder. AIM: The aim of this study is to determine if any direct relationship exists between balanced occlusion and Temporomandibular disorder and to evaluate the differences between subjective balanced occlusion and measurements reported with T-scan III electronic system. MATERIAL AND METHODS: A total of 54 subjects were divided into three groups, selection based on anamnesis-responded to a Fonseca questionnaire and clinical measurements analysed with electronic system T-scan III. In the I study group were participants with fixed dentures with prosthetic ceramic restorations. In the II study group were symptomatic participants with TMD. In the third control group were healthy participants with full arch dentition that completed a subjective questionnaire that documented the absence of jaw pain, joint noise, locking and subjects without a history of TMD. The occlusal balance was reported subjectively through Fonseca questionnaire and compared with occlusion analysed with electronic system T-scan III. RESULTS: For attributive data were used percentage of the structure. Differences in P < 0.05 were considered significant. After distributing attributive data of occlusal balance subjectively reported and compared with measurements analysed with electronic system T-scan III were found significant difference P < 0.001 in all three groups. CONCLUSION: In our study, it was concluded that there were statistically significant differences of balanced occlusion in all three groups. Also it was concluded that subjective data are not exact with measurements reported with electronic device T-scan III. PMID:28932311
Correlating electronic transport to atomic structures in self-assembled quantum wires.
Qin, Shengyong; Kim, Tae-Hwan; Zhang, Yanning; Ouyang, Wenjie; Weitering, Hanno H; Shih, Chih-Kang; Baddorf, Arthur P; Wu, Ruqian; Li, An-Ping
2012-02-08
Quantum wires, as a smallest electronic conductor, are expected to be a fundamental component in all quantum architectures. The electronic conductance in quantum wires, however, is often dictated by structural instabilities and electron localization at the atomic scale. Here we report on the evolutions of electronic transport as a function of temperature and interwire coupling as the quantum wires of GdSi(2) are self-assembled on Si(100) wire-by-wire. The correlation between structure, electronic properties, and electronic transport are examined by combining nanotransport measurements, scanning tunneling microscopy, and density functional theory calculations. A metal-insulator transition is revealed in isolated nanowires, while a robust metallic state is obtained in wire bundles at low temperature. The atomic defects lead to electron localizations in isolated nanowire, and interwire coupling stabilizes the structure and promotes the metallic states in wire bundles. This illustrates how the conductance nature of a one-dimensional system can be dramatically modified by the environmental change on the atomic scale. © 2012 American Chemical Society
Morphological changes of the hair roots in alopecia areata: a scanning electron microscopic study.
Karashima, Tadashi; Tsuruta, Daisuke; Hamada, Takahiro; Ishii, Norito; Ono, Fumitake; Ueda, Akihiro; Abe, Toshifumi; Nakama, Takekuni; Dainichi, Teruki; Hashimoto, Takashi
2013-12-01
Alopecia areata is a chronic inflammatory condition causing non-scarring patchy hair loss. Diagnosis of alopecia areata is made by clinical observations, hair pluck test and dermoscopic signs. However, because differentiation from other alopecia diseases is occasionally difficult, an invasive diagnostic method using a punch biopsy is performed. In this study, to develop a reliable, less invasive diagnostic method for alopecia areata, we performed scanning electron microscopy of the hair roots of alopecia areata patients. This study identified four patterns of hair morphology specific to alopecia areata: (I) long tapering structure with no accumulation of scales; (II) club-shaped hair root with fine scales; (III) proximal accumulation of scales; and (IV) sharp tapering of the proximal end of hair. On the basis of these results, we can distinguish alopecia areata by scanning electron microscopic observation of the proximal end of the hair shafts. © 2013 Japanese Dermatological Association.
Maciel, A S; Araújo, J V; Campos, A K; Benjamin, L A; Freitas, L G
2009-06-01
The interaction between the nematode-trapping fungus Duddingtonia flagrans (isolate CG768) against Ancylostoma spp. dog infective larvae (L(3)) was evaluated by means of scanning electron microscopy. Adhesive network trap formation was observed 6h after the beginning of the interaction, and the capture of Ancylostoma spp. L(3) was observed 8h after the inoculation these larvae on the cellulose membranes colonized by the fungus. Scanning electron micrographs were taken at 0, 12, 24, 36 and 48 h, where 0 is the time when Ancylostoma spp. L(3) was first captured by the fungus. Details of the capture structure formed by the fungus were described. Nematophagous Fungus Helper Bacteria (NHB) were found at interactions points between the D. flagrans and Ancylostoma spp. L(3). The cuticle penetration by the differentiated fungal hyphae with the exit of nematode internal contents was observed 36 h after the capture. Ancylostoma spp. L(3) were completely destroyed after 48 h of interaction with the fungus. The scanning electron microscopy technique was efficient on the study of this interaction, showing that the nematode-trapping fungus D. flagrans (isolate CG768) is a potential exterminator of Ancylostoma spp. L(3).
Li, Chen; Poplawsky, Jonathan; Yan, Yanfa; ...
2017-07-01
Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.
NASA Astrophysics Data System (ADS)
Quan, Ying; Liu, Qinfu; Zhang, Shilong; Zhang, Shuai
2018-07-01
The structures of cryptocrystalline graphite (CG) and carbon black (CB) have been analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), organic elemental analysis (OEA), X-ray diffraction (XRD), RAMAN and high-resolution transmission electron microscopy (HRTEM). These results indicate that CG has the same elemental composition as CB, with carbon being the major element present. SL sample (CG with low graphitization degree) and CB exhibit similar microcrystalline structures. CG was shown to contain a layered graphitic structure that was significantly different to the primary spherical particles present in CB. It is proposed that these CG sheets may potentially be reduced and delaminated to afford multilayer graphene structures with improved material properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chen; Poplawsky, Jonathan; Yan, Yanfa
Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.
Iskander, Nagi M; El-Hennawi, Diaa M; Yousef, Tarek F; El-Tabbakh, Mohammed T; Elnahriry, Tarek A
2017-06-01
To detect ultra-structural changes of Rabbit's olfactory neuro-epithelium using scanning electron microscope after exposure to cigarette smoking. Sixty six rabbits (Pathogen free New Zealand white rabbits weighing 1-1.5 kg included in the study were randomly assigned into one of three groups: control group did not expose to cigarette smoking, study group 1 was exposed to cigarette smoking for 3 months and study group 2 was exposed to cigarette smoking 3 months and then stopped for 2 months. Olfactory neuro-epithelium from all rabbits were dissected and examined under Philips XL-30 scanning electron microscope. Changes that were found in the rabbits of study group 1 in comparison to control group were loss of microvilli of sustentacular cells (p = 0.016) and decreases in distribution of specialized cilia of olfactory receptor cells (p = 0.046). Also respiratory metaplasia was detected. These changes were reversible in study group 2. Cigarette smoking causes ultra-structural changes in olfactory neuro-epithelium which may explain why smell was affected in cigarette smokers. Most of these changes were reversible after 45 days of cessation of cigarette smoking to the rabbits.
Morphological classification of bioaerosols from composting using scanning electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamer Vestlund, A.; FIRA International Ltd., Maxwell Road, Stevenage, Herts SG1 2EW; Al-Ashaab, R.
2014-07-15
Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samplesmore » were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.« less
Zhang, Tao; Gao, Feng; Jiang, Xiangqian
2017-10-02
This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.
Ippolitov, E V; Didenko, L V; Tzarev, V N
2015-12-01
The study was carried out to analyze morphology of biofilm of periodontium and to develop electronic microscopic criteria of differentiated diagnostic of inflammatory diseases of gums. The scanning electronic microscopy was applied to analyze samples of bioflm of periodont from 70 patients. Including ten patients with every nosologic form of groups with chronic catarrhal periodontitis. of light, mean and severe degree, chronic catarrhal gingivitis, Candida-associated paroperiodontitis and 20 healthy persons with intact periodontium. The analysis was implemented using dual-beam scanning electronic microscope Quanta 200 3D (FEI company, USA) and walk-through electronic micJEM 100B (JEOL, Japan). To detect marker DNA of periodont pathogenic bacteria in analyzed samples the kit of reagentsfor polymerase chain reaction "MultiDent-5" ("GenLab", Russia). The scanning electronic microscopy in combination with transmission electronic microscopy and polymerase chain reaction permits analyzing structure, composition and degree of development of biofilm of periodontium and to apply differentiated diagnostic of different nosologic forms of inflammatory diseases of periodontium, including light form of chronic periodontitis and gingivitis. The electronic microscopical indications of diseases ofperiodontium of inflammatory character are established: catarrhal gingivitis, (coccal morphological alternate), chronic periodontitis (bacillary morphological alternate), Candida-associated periodontitis (Candida morphological alternate of biofilm ofperiodontium).
Imaging of surface spin textures on bulk crystals by scanning electron microscopy
NASA Astrophysics Data System (ADS)
Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru
2016-11-01
Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.
Pratebha, B; Jaikumar, N D; Sudhakar, R
2014-01-01
The cemento-dentinal junction (CDJ) is a structural and biologic link between cementum and dentin present in the roots of teeth. Conflicting reports about the origin, structure and composition of this layer are present in literature. The width of this junctional tissue is reported to be about 2-4 μm with adhesion of cementum and dentin by proteoglycans and by collagen fiber intermingling. The objective of this study is to observe and report the fibrous architecture of the CDJ of healthy tooth roots. A total of 15 healthy teeth samples were collected, sectioned into halves, demineralized in 5% ethylenediaminetetraacetic acid, processed using NaOH maceration technique and observed under a scanning electron microscope. The CDJ appeared to be a fibril poor groove with a width of 2-4 µm. Few areas of collagen fiber intermingling could be appreciated. A detailed observation of these tissues has been presented.
Jamroskovic, Jan; Shao, Paul P; Suvorova, Elena; Barak, Imrich; Bernier-Latmani, Rizlan
2014-09-01
Endospores (also referred to as bacterial spores) are bacterial structures formed by several bacterial species of the phylum Firmicutes. Spores form as a response to environmental stress. These structures exhibit remarkable resistance to harsh environmental conditions such as exposure to heat, desiccation, and chemical oxidants. The spores include several layers of protein and peptidoglycan that surround a core harboring DNA as well as high concentrations of calcium and dipicolinic acid (DPA). A combination of scanning transmission X-ray microscopy, scanning transmission electron microscopy, and energy dispersive spectroscopy was used for the direct quantitative characterization of bacterial spores. The concentration and localization of DPA, Ca(2+) , and other elements were determined and compared for the core and cortex of spores from two distinct genera: Bacillus subtilis and Desulfotomaculum reducens. This micro-spectroscopic approach is uniquely suited for the direct study of individual bacterial spores, while classical molecular and biochemical methods access only bulk characteristics. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Long, Zhong; Zeng, Rongguang; Hu, Yin; Liu, Jing; Wang, Wenyuan; Zhao, Yawen; Luo, Zhipeng; Bai, Bin; Wang, Xiaofang; Liu, Kezhao
2018-06-01
Oxide formation on surface of nitrogen-rich uranium nitride film/particles was investigated using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), aberration-corrected transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with electron energy-loss spectroscopy (EELS). XPS and AES studies indicated that the oxidized layer on UN2-x film is ternary compound uranium oxynitride (UNxOy) in 5-10 nm thickness. TEM/HAADF-STEM and EELS studies revealed the UNxOy crystallizes in the FCC CaF2-type structure with the lattice parameter close to the CaF2-type UN2-x matrix. The work can provide further information to the oxidation mechanism of uranium nitride.
Yang, Zhiqiang; Liu, Zhengdong; He, Xikou; Qiao, Shibin; Xie, Changsheng
2018-01-09
The effect of microstructure on the impact toughness and the temper embrittlement of a SA508Gr.4N steel was investigated. Martensitic and bainitic structures formed in this material were examined via scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy, and Auger electron spectroscopy (AES) analysis. The martensitic structure had a positive effect on both the strength and toughness. Compared with the bainitic structure, this structure consisted of smaller blocks and more high-angle grain boundaries (HAGBs). Changes in the ultimate tensile strength and toughness of the martensitic structure were attributed to an increase in the crack propagation path. This increase resulted from an increased number of HAGBs and refinement of the sub-structure (block). The AES results revealed that sulfur segregation is higher in the martensitic structure than in the bainitic structure. Therefore, the martensitic structure is more susceptible to temper embrittlement than the bainitic structure.
Comparison of electronic structure between monolayer silicenes on Ag (111)
NASA Astrophysics Data System (ADS)
Chun-Liang, Lin; Ryuichi, Arafune; Maki, Kawai; Noriaki, Takagi
2015-08-01
The electronic structures of monolayer silicenes (4 × 4 and ) grown on Ag (111) surface are studied by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states. The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations. Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (Grant Nos. 24241040 and 25110008) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.
NASA Astrophysics Data System (ADS)
Atwa, D. M.; Aboulfotoh, N.; El-magd, A. Abo; Badr, Y.
2013-10-01
Lead sulfide (PbS) nano-structured films have been grown on quartz substrates using PLD technique. The deposited films were characterized by several structural techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Selected-area electron diffraction patterns (SAED). The results prove the formation of cubic phase of PbS nanocrystals. Elemental analysis of the deposited films compared to the bulk target was obtained via laser induced fluorescence of the produced plasma particles and the energy dispersive X-ray "EDX" technique. The Hall coefficient measurements indicate an efficient performance of the deposited films as a magnetic sensor.
Scanning Electron Microscopy with Samples in an Electric Field
Frank, Ludĕk; Hovorka, Miloš; Mikmeková, Šárka; Mikmeková, Eliška; Müllerová, Ilona; Pokorná, Zuzana
2012-01-01
The high negative bias of a sample in a scanning electron microscope constitutes the “cathode lens” with a strong electric field just above the sample surface. This mode offers a convenient tool for controlling the landing energy of electrons down to units or even fractions of electronvolts with only slight readjustments of the column. Moreover, the field accelerates and collimates the signal electrons to earthed detectors above and below the sample, thereby assuring high collection efficiency and high amplification of the image signal. One important feature is the ability to acquire the complete emission of the backscattered electrons, including those emitted at high angles with respect to the surface normal. The cathode lens aberrations are proportional to the landing energy of electrons so the spot size becomes nearly constant throughout the full energy scale. At low energies and with their complete angular distribution acquired, the backscattered electron images offer enhanced information about crystalline and electronic structures thanks to contrast mechanisms that are otherwise unavailable. Examples from various areas of materials science are presented.
Dahlström, C; Allem, R; Uesaka, T
2011-02-01
We have developed a new method for characterizing microstructures of paper coating using argon ion beam milling technique and field emission scanning electron microscopy. The combination of these two techniques produces extremely high-quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method has been developed by using marker-controlled watershed segmentation technique of the secondary electron images. The high-quality secondary electron images with well-defined pores makes it possible to use this semi-automatic segmentation method. One advantage of using secondary electron images instead of backscattered electron images is being able to avoid possible overestimation of the porosity because of the signal depth. A comparison was made between the new method and the conventional method using greyscale histogram thresholding of backscattered electron images. The results showed that the conventional method overestimated the pore area by 20% and detected around 5% more pores than the new method. As examples of the application of the new method, we have investigated the distributions of coating binders, and the relationship between local coating porosity and base sheet structures. The technique revealed, for the first time with direct evidence, the long-suspected coating non-uniformity, i.e. binder migration, and the correlation between coating porosity versus base sheet mass density, in a straightforward way. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.
Monazami, Ehsan; McClimon, John B; Rondinelli, James; Reinke, Petra
2016-12-21
The understanding and control of molecule-metal interfaces is critical to the performance of molecular electronics and photovoltaics devices. We present a study of the interface between C 60 and W, which is a carbide-forming transition metal. The complex solid-state reaction at the interface can be exploited to adjust the electronic properties of the molecule layer. Scanning tunneling microscopy/spectroscopy measurements demonstrate the progression of this reaction from wide band gap (>2.5 eV) to metallic molecular surface during annealing from 300 to 800 K. Differential conduction maps with 10 4 scanning tunneling spectra are used to quantify the transition in the density of states and the reduction of the band gap during annealing with nanometer spatial resolution. The electronic transition is spatially homogeneous, and the surface band gap can therefore be adjusted by a targeted annealing step. The modified molecules, which we call nanospheres, are quite resistant to ripening and coalescence, unlike any other metallic nanoparticle of the same size. Densely packed C 60 and isolated C 60 molecules show the same transition in electronic structure, which confirms that the transformation is controlled by the reaction at the C 60 -W interface. Density functional theory calculations are used to develop possible reaction pathways in agreement with experimentally observed electronic structure modulation. Control of the band gap by the choice of annealing temperature is a unique route to tailoring molecular-layer electronic properties.
Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy
Goldsbury, Claire; Baxa, Ulrich; Simon, Martha N.; Steven, Alasdair C.; Engel, Andreas; Wall, Joseph S.; Aebi, Ueli; Müller, Shirley A.
2010-01-01
Amyloid fibrils are filamentous protein aggregates implicated in several common diseases like Alzheimer’s disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies like Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). PMID:20868754
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Yooun; Lee, Jin Hong; Xie, Lin
Enhanced properties in modern functional materials can often be found at structural transition regions, such as morphotropic phase boundaries (MPB), owing to the coexistence of multiple phases with nearly equivalent energies. Strain-engineered MPBs have emerged in epitaxially grown BiFeO 3 (BFO) thin films by precisely tailoring a compressive misfit strain, leading to numerous intriguing phenomena, such as a massive piezoelectric response, magnetoelectric coupling, interfacial magnetism and electronic conduction. Recently, an orthorhombic–rhombohedral (O–R) phase boundary has also been found in tensile-strained BFO. In this study, we characterise the crystal structure and electronic properties of the two competing O and R phasesmore » using X-ray diffraction, scanning probe microscope and scanning transmission electron microscopy (STEM). We observe the temperature evolution of R and O domains and find that the domain boundaries are highly conductive. Temperature-dependent measurements reveal that the conductivity is thermally activated for R–O boundaries. STEM observations point to structurally wide boundaries, significantly wider than in other systems. Furthermore, we reveal a strong correlation between the highly conductive domain boundaries and structural material properties. These findings provide a pathway to use phase boundaries in this system for novel nanoelectronic applications.« less
Complex Stoichiometry reordering of PTCDA on Ag(111) upon K Intercalation
NASA Astrophysics Data System (ADS)
Brivio, G. P.; Baby, A.; Zwick, C.; Gruenewald, M.; Forker, R.; Fritz, T.; Fratesi, G.; Hofmann, O. T.; Zojer, E.
Alkali metal atoms are a simple yet efficient n-type dopant of organic semiconductors. However, the molecular crystal structures need be controlled and well understood in order to optimize the electronic properties (charge carrier density and mobility) of the target material. Here, we report that potassium intercalation into PTCDA monolayer domains on a Ag(111) substrate induces distinct stoichiometry-dependent structural reordering processes, resulting in highly ordered and large KxPTCDA domains. The emerging structures are analyzed by low temperature scanning tunneling microscopy (STM), scanning tunneling hydrogen microscopy (STHM), and low-energy electron diffraction (LEED) as a function of the stoichiometry and by density functional theory (DFT) calculations. Large stable monolayer domains are found for x=2,4. The epitaxy types for all intercalated stages are determined as point-on-line. The K atoms adsorb in the vicinity of the oxygen atoms of the PTCDA molecules, and their positions are determined with sub-Angstrom precision. This is a crucial prerequisite for the prospective assessment of the electronic properties of such composite films, as they depend on the mutual alignment between donor atoms and acceptor molecules.
NASA Astrophysics Data System (ADS)
Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong
2015-05-01
The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications. Electronic supplementary information (ESI) available: Magnified TEM images, high resolution TEM images and the particle size distributions of the samples, the STXM results of a thick tube at different positions, XPS results, stability test. See DOI: 10.1039/c5nr01168j
Real-space visualization of conformation-independent oligothiophene electronic structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taber, Benjamen N.; Kislitsyn, Dmitry A.; Gervasi, Christian F.
2016-05-21
We present scanning tunneling microscopy and spectroscopy (STM/STS) investigations of the electronic structures of different alkyl-substituted oligothiophenes on the Au(111) surface. STM imaging showed that on Au(111), oligothiophenes adopted distinct straight and bent conformations. By combining STS maps with STM images, we visualize, in real space, particle-in-a-box-like oligothiophene molecular orbitals. We demonstrate that different planar conformers with significant geometrical distortions of oligothiophene backbones surprisingly exhibit very similar electronic structures, indicating a low degree of conformation-induced electronic disorder. The agreement of these results with gas-phase density functional theory calculations implies that the oligothiophene interaction with the Au(111) surface is generally insensitivemore » to molecular conformation.« less
Lubk, A; Rossell, M D; Seidel, J; He, Q; Yang, S Y; Chu, Y H; Ramesh, R; Hÿtch, M J; Snoeck, E
2012-07-27
Domain walls (DWs) substantially influence a large number of applications involving ferroelectric materials due to their limited mobility when shifted during polarization switching. The discovery of greatly enhanced conduction at BiFeO(3) DWs has highlighted yet another role of DWs as a local material state with unique properties. However, the lack of precise information on the local atomic structure is still hampering microscopical understanding of DW properties. Here, we examine the atomic structure of BiFeO(3) 109° DWs with pm precision by a combination of high-angle annular dark-field scanning transmission electron microscopy and a dedicated structural analysis. By measuring simultaneously local polarization and strain, we provide direct experimental proof for the straight DW structure predicted by ab initio calculations as well as the recently proposed theory of diffuse DWs, thus resolving a long-standing discrepancy between experimentally measured and theoretically predicted DW mobilities.
Ab initio theory and modeling of water.
Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C; Calegari Andrade, Marcos F; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L; Perdew, John P; Wu, Xifan
2017-10-10
Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice I h at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner.
Ab initio theory and modeling of water
Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C.; Calegari Andrade, Marcos F.; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L.; Perdew, John P.; Wu, Xifan
2017-01-01
Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice Ih at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner. PMID:28973868
Scanning electron microscope investigation of the structural growth in thick sputtered coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.
1975-01-01
Sputtered S-Monel, silver, and 304 stainless steel coatings and molybdenum disulfide coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface morphology of the nodules are characterized. Compositional changes within the coating were analyzed by energy dispersive X-ray analysis. Defects in the surface finish act as preferential nucleation sites and form isolated overlapping and complex nodules and various unusual surface overgrowths on the coating. The nodule boundaries are very vulnerable to chemical etching and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces.
Mikoshiba, K; Nishimura, Y; Tsukada, Y
The reeler mutant mouse is characterized by a derangement of the cerebral cortical structure due to abnormalities during the migration step at the embryonic stage. We have analyzed both the control and reeler cerebral cortex by means of scanning electron microscopic fractography. In the control cerebral cortex, the bundle formation was composed of fine fibers on which the migrating neuroblasts were attached perpendicular to the pial surface, whereas no bundle formation was observed in the reeler; instead, there was a fine meshwork of fibers surrounding the neuroblasts. The possible role of bundle formation in the normal cerebral cortex and the correlation between the inability of cells to migrate and the absence of bundle formation in the reeler is discussed.
Structural, optical and photoelectric properties of sprayed CdS thin films
NASA Astrophysics Data System (ADS)
Chandel, Tarun; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, P.
2018-05-01
In this study, CdS thin films were grown via a facile spray pyrolysis technique. The crystalline phase, morphological, compositional and optical properties of the CdS thin films have been studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and UV-vis absorption spectroscopy, respectively. XRD patterns show that the grown CdS films crystallized in the hexagonal structure. Scanning electron microscopy (SEM) study shows that the surfaces of the films are smooth and are uniformly covered with nanoparticles. EDAX results reveal that the grown films have good stochiometry. UV-vis spectroscopy shows that the grown films have transparency above 80% over the entire visible region. The photo-electric response of the CdS films grown on glass substrates has been observed.
Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas
2012-01-01
High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S3EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm3 volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S3EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S3EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation. PMID:22523574
Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas
2012-01-01
High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3)EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3) volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3)EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3)EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.
Aliscioni, Sandra S.; Torretta, Juan P.; Bello, Mariano E.; Galati, Beatriz G.
2009-01-01
Background and Aims Oils are an unusual floral reward in Orchidaceae, being produced by specialized glands called elaiophores. Such glands have been described in subtribe Oncidiinae for a few species. The aims of the present study were to identify the presence of elaiophores in Gomesa bifolia, to study their structure and to understand how the oil is secreted. Additionally, elaiophores of G. bifolia were compared with those of related taxa within the Oncidiinae. Methods Elaiophores were identified using Sudan III. Their structure was examined by using light, scanning electron and transmission electron microscopy. Key Results Secretion of oils was from the tips of callus protrusions. The secretory cells each had a large, centrally located nucleus, highly dense cytoplasm, abundant plastids containing lipid globules associated with starch grains, numerous mitochondria, an extensive system of rough and smooth endoplasmatic reticulum, and electron-dense dictyosomes. The outer tangential walls were thick, with a loose cellulose matrix and a few, sparsely distributed inconspicuous cavities. Electron-dense structures were observed in the cell wall and formed a lipid layer that covered the cuticle of the epidermal cells. The cuticle as viewed under the scanning electron microscope was irregularly rugose. Conclusions The elaiophores of G. bifolia are of the epithelial type. The general structure of the secretory cells resembles that described for other species of Oncidiinae, but some unique features were encountered for this species. The oil appears to pass through the outer tangential wall and the cuticle, covering the latter without forming cuticular blisters. PMID:19692391
Braet, Filip; Wisse, Eddie; Bomans, Paul; Frederik, Peter; Geerts, Willie; Koster, Abraham; Soon, Lilian; Ringer, Simon
2007-03-01
Correlative microscopy has become increasingly important for the analysis of the structure, function, and dynamics of cells. This is largely due to the result of recent advances in light-, probe-, laser- and various electron microscopy techniques that facilitate three-dimensional studies. Furthermore, the improved understanding in the past decade of imaging cell compartments in the third dimension has resulted largely from the availability of powerful computers, fast high-resolution CCD cameras, specifically developed imaging analysis software, and various probes designed for labeling living and or fixed cells. In this paper, we review different correlative high-resolution imaging methodologies and how these microscopy techniques facilitated the accumulation of new insights in the morpho-functional and structural organization of the hepatic sieve. Various aspects of hepatic endothelial fenestrae regarding their structure, origin, dynamics, and formation will be explored throughout this paper by comparing the results of confocal laser scanning-, correlative fluorescence and scanning electron-, atomic force-, and whole-mount electron microscopy. Furthermore, the recent advances of vitrifying cells with the vitrobot in combination with the glove box for the preparation of cells for cryo-electron microscopic investigation will be discussed. Finally, the first transmission electron tomography data of the liver sieve in three-dimensions are presented. The obtained data unambiguously show the involvement of special domains in the de novo formation and disappearance of hepatic fenestrae, and focuses future research into the (supra)molecular structure of the fenestrae-forming center, defenestration center and fenestrae-, and sieve plate cytoskeleton ring by using advanced cryo-electron tomography. (c) 2007 Wiley-Liss, Inc.
Q.Q. Wang; J.Y. Zhu; R. Gleisner; T.A. Kuster; U. Baxa; S.E. McNeil
2012-01-01
This study reports the production of cellulose nanofibrils (CNF) from a bleached eucalyptus pulp using a commercial stone grinder. Scanning electronic microscopy and transmission electronic microscopy imaging were used to reveal morphological development of CNF at micro and nano scales, respectively. Two major structures were identified (1) highly kinked, naturally...
The World as Viewed by and with Unpaired Electrons
Eaton, Sandra S.; Eaton, Gareth R.
2012-01-01
Recent advances in electron paramagnetic resonance (EPR) include capabilities for applications to areas as diverse as archeology, beer shelf life, biological structure, dosimetry, in vivo imaging, molecular magnets, and quantum computing. Enabling technologies include multifrequency continuous wave, pulsed, and rapid scan EPR. Interpretation is enhanced by increasingly powerful computational models. PMID:22975244
Three-dimensional nanoscale imaging by plasmonic Brownian microscopy
NASA Astrophysics Data System (ADS)
Labno, Anna; Gladden, Christopher; Kim, Jeongmin; Lu, Dylan; Yin, Xiaobo; Wang, Yuan; Liu, Zhaowei; Zhang, Xiang
2017-12-01
Three-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the super-resolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.
NASA Astrophysics Data System (ADS)
Astik, Nidhi; Jha, Prafulla K.; Pratap, Arun
2018-03-01
The ball milling route has been used to produce the La0.67Sr0.33Mn0.85Fe0.15O3 (LSMFO) nanocrystalline sample from oxide precursors. The sample was characterized using x-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDAX), differential scanning calorimetry (DSC) and thermogravimetric (TGA) measurements. The x-ray diffraction confirms the phase purity of sample and shows that the sample crystallizes in the rhombohedral perovskite structure with a R-3c space group. The scanning electron micrograph shows the presence of well-faceted crystallites of LSMFO. The EDAX spectrum demonstrates the molar ratio of different elements of nanocrystalline LSMFO. Furthermore, the crystallite size using the Debye-Scherrer formula and William-Hall analysis has been found as 24 nm and 29 nm, respectively. Our results support the idea that a good quality nanocrystalline LSMFO sample can be obtained using the ball milling route. We also discuss the DSC and TGA curves and analyse the results in terms of phase transition, calcination temperature and activation barrier energies.
NASA Astrophysics Data System (ADS)
Qiao, Shuang; Li, Xintong; Wang, Naizhou; Ruan, Wei; Ye, Cun; Cai, Peng; Hao, Zhenqi; Yao, Hong; Chen, Xianhui; Wu, Jian; Wang, Yayu; Liu, Zheng
2017-10-01
The layered transition-metal dichalcogenide 1 T -TaS2 has been recently found to undergo a Mott-insulator-to-superconductor transition induced by high pressure, charge doping, or isovalent substitution. By combining scanning tunneling microscopy measurements and first-principles calculations, we investigate the atomic scale electronic structure of the 1 T -TaS2 Mott insulator and its evolution to the metallic state upon isovalent substitution of S with Se. We identify two distinct types of orbital textures—one localized and the other extended—and demonstrate that the interplay between them is the key factor that determines the electronic structure. In particular, we show that the continuous evolution of the charge gap visualized by scanning tunneling microscopy is due to the immersion of the localized-orbital-induced Hubbard bands into the extended-orbital-spanned Fermi sea, featuring a unique evolution from a Mott gap to a charge-transfer gap. This new mechanism of Mottness collapse revealed here suggests an interesting route for creating novel electronic states and designing future electronic devices.
Nishiyama, Yayoi; Takahata, Sho; Abe, Shigeru
2017-01-01
The effects of ME1111, a novel antifungal agent, on the hyphal morphology and ultrastructure of Trichophyton mentagrophytes were investigated by using scanning and transmission electron microscopy. Structural changes, such as pit formation and/or depression of the cell surface, and degeneration of intracellular organelles and plasmolysis were observed after treatment with ME1111. Our results suggest that the inhibition of energy production by ME1111 affects the integrity and function of cellular membranes, leading to fungal cell death. Copyright © 2016 American Society for Microbiology.
Findlay, Scott David; Huang, Rong; Ishikawa, Ryo; Shibata, Naoya; Ikuhara, Yuichi
2017-02-08
Annular bright field (ABF) scanning transmission electron microscopy has proven able to directly image lithium columns within crystalline environments, offering much insight into the structure and properties of lithium-ion battery materials. We summarize the image formation mechanisms underpinning ABF imaging, review the experimental application of this technique to imaging lithium in materials and overview the conditions that help maximize the visibility of lithium columns. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Masaphy, Segula; Levanon, D.; Tchelet, R.; Henis, Y.
1987-01-01
Relationships between the hyphae of Agaricus bisporus (Lang) Sing and bacteria from the mushroom bed casing layer were examined with a scanning electron microscope. Hyphae growing in the casing layer differed morphologically from compost-grown hyphae. Whereas the compost contained thin single hyphae surrounded by calcium oxalate crystals, the casing layer contained mainly wide hyphae or mycelial strands without crystals. The bacterial population in the hyphal environment consisted of several types, some attached to the hyphae with filamentlike structures. This attachment may be important in stimulation of pinhead initiation. Images PMID:16347340
Schubert, M; Schaefer, H; Mayer, J; Laptev, A; Hettich, M; Merklein, M; He, C; Rummel, C; Ristow, O; Großmann, M; Luo, Y; Gusev, V; Samwer, K; Fonin, M; Dekorsy, T; Demsar, J
2015-08-14
The origin of the martensitic transition in the magnetic shape memory alloy Ni-Mn-Ga has been widely discussed. While several studies suggest it is electronically driven, the adaptive martensite model reproduced the peculiar nonharmonic lattice modulation. We used femtosecond spectroscopy to probe the temperature and doping dependence of collective modes, and scanning tunneling microscopy revealed the corresponding static modulations. We show that the martensitic phase can be described by a complex charge-density wave tuned by magnetic ordering and strong electron-lattice coupling.
NASA Astrophysics Data System (ADS)
Schubert, M.; Schaefer, H.; Mayer, J.; Laptev, A.; Hettich, M.; Merklein, M.; He, C.; Rummel, C.; Ristow, O.; Großmann, M.; Luo, Y.; Gusev, V.; Samwer, K.; Fonin, M.; Dekorsy, T.; Demsar, J.
2015-08-01
The origin of the martensitic transition in the magnetic shape memory alloy Ni-Mn-Ga has been widely discussed. While several studies suggest it is electronically driven, the adaptive martensite model reproduced the peculiar nonharmonic lattice modulation. We used femtosecond spectroscopy to probe the temperature and doping dependence of collective modes, and scanning tunneling microscopy revealed the corresponding static modulations. We show that the martensitic phase can be described by a complex charge-density wave tuned by magnetic ordering and strong electron-lattice coupling.
Ultra-small rhenium clusters supported on graphene.
Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J; Mariscal, Marcelo M; Yacaman, Miguel José
2015-03-28
The adsorption of very small rhenium clusters (2-13 atoms) supported on graphene was studied by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional theory calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones.
Ultra-small rhenium clusters supported on graphene
Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J.; Mariscal, Marcelo M.; Yacaman, Miguel José
2015-01-01
The adsorption of very small rhenium clusters (2 – 13 atoms) supported on graphene was studied with high annular dark field - scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones. PMID:25721176
Crimp, Martin A
2006-05-01
The imaging and characterization of dislocations is commonly carried out by thin foil transmission electron microscopy (TEM) using diffraction contrast imaging. However, the thin foil approach is limited by difficult sample preparation, thin foil artifacts, relatively small viewable areas, and constraints on carrying out in situ studies. Electron channeling imaging of electron channeling contrast imaging (ECCI) offers an alternative approach for imaging crystalline defects, including dislocations. Because ECCI is carried out with field emission gun scanning electron microscope (FEG-SEM) using bulk specimens, many of the limitations of TEM thin foil analysis are overcome. This paper outlines the development of electron channeling patterns and channeling imaging to the current state of the art. The experimental parameters and set up necessary to carry out routine channeling imaging are reviewed. A number of examples that illustrate some of the advantages of ECCI over thin foil TEM are presented along with a discussion of some of the limitations on carrying out channeling contrast analysis of defect structures. Copyright (c) 2006 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Khanal, Subarna; Bhattarai, Nabraj; Velázquez-Salazar, Jesus; Jose-Yacaman, Miguel; Subarna Khanal Team
2014-03-01
Multimetallic nanoparticles have been attracted greater attention both in materials science and nanotechnology due to its unique electronic, optical, biological, and catalytic properties lead by physiochemical interactions among different atoms and phases. The distinct features of multimetallic nanoparticles enhanced synergetic properties, large surface to volume ratio and quantum size effects ultimately lead to novel and wide range of possibilities for different applications than monometallic counterparts. For instance, PtPd, Pt/Cu, Au-Au3Cu, AgPd/Pt, AuCu/Pt and many other multimetallic nanoparticles have raised interest for their various applications in fuel cells, ethanol and methanol oxidation reactions, hydrogen storage, and so on. The nanostructures were analyzed by transmission electron microscopy (TEM) and by aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM), in combination with high angle annular dark field (HAADF), bright field (BF), energy dispersive X-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) detectors. These techniques allowed us to probe the structure at the atomic level of the nanoparticles revealing new structural information and elemental composition of the nanoparticles. The authors would like to acknowledge NSF grants DMR-1103730, ``Alloys at the Nanoscale: The Case of Nanoparticles Second Phase'' and NSF PREM Grant # DMR 0934218.
Lopes Torres, Eduardo José; de Souza, Wanderley; Miranda, Kildare
2013-09-23
The whipworm of the genus Trichuris Roederer, 1791, is a nematode of worldwide distribution and comprises species that parasitize humans and other mammals. Infections caused by Trichuris spp. in mammals can lead to various intestinal diseases of human and veterinary interest. The morphology of Trichuris spp. and other helminths has been mostly studied using conventional scanning electron microscopy of chemically fixed, dried and metal-coated specimens, although this kind of preparation has been shown to introduce a variety of artifacts such as sample shrinking, loss of secreted products and/or hiding of small structures due to sample coating. Low vacuum (LVSEM) and environmental scanning electron microscopy (ESEM) have been applied to a variety of insulator samples, also used in the visualization of hydrated and/or live specimens in their native state. In the present work, we used LVSEM and ESEM to analyze the surface of T. muris and analyze its interaction with the host tissue using freshly fixed or unfixed hydrated samples. Analysis of hydrated samples showed a set of new features on the surface of the parasite and the host tissue, including the presence of the secretory products of the bacillary glands on the surface of the parasite, and the presence of mucous material and eggs on the intestinal surface. Field emission scanning electron microscopy (FESEM) was also applied to reveal the detailed structure of the glandular chambers in fixed, dried and metal coated samples. Taken together, the results show that analysis of hydrated samples may provide new insights in the structural organization of the surface of helminth parasites and its interaction with the infected tissue, suggesting that the application of alternative SEM techniques may open new perspectives for analysis in taxonomy, morphology and host-parasite interaction fields. Copyright © 2013 Elsevier B.V. All rights reserved.
Kubo, Yugo; Yonezawa, Kazuhiro
2017-09-05
SiO 2 -based optical fibers are indispensable components of modern information communication technologies. It has recently become increasingly important to establish a technique for visualizing the nanoscale phase-separated structure inside SiO 2 -GeO 2 glass nanoparticles during the manufacturing of SiO 2 -GeO 2 fibers. This is because the rapidly increasing price of Ge has made it necessary to improve the Ge yield by clarifying the detailed mechanism of Ge diffusion into SiO 2 . However, direct observation of the internal nanostructure of glass particles has been extremely difficult, mainly due to electrostatic charging and the damage induced by electron and X-ray irradiation. In the present study, we used state-of-the-art scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDX) to examine cross-sectional samples of SiO 2 -GeO 2 particles embedded in an epoxy resin, which were fabricated using a broad Ar ion beam and a focused Ga ion beam. These advanced techniques enabled us to observe the internal phase-separated structure of the nanoparticles. We have for the first time clearly determined the SiO 2 -Si 1-x Ge x O 2 core-shell structure of such particles, the element distribution, the degree of crystallinity, and the quantitative chemical composition of microscopic regions, and we discuss the formation mechanism for the observed structure. The proposed imaging protocol is highly promising for studying the internal structure of various core-shell nanoparticles, which affects their catalytic, optical, and electronic properties.
NASA Astrophysics Data System (ADS)
Yoo, Hyobin; Yoon, Sangmoon; Chung, Kunook; Kang, Seoung-Hun; Kwon, Young-Kyun; Yi, Gyu-Chul; Kim, Miyoung
2018-03-01
We report our findings on the optical properties of grain boundaries in GaN films grown on graphene layers and discuss their atomistic origin. We combine electron backscatter diffraction with cathodoluminescence to directly correlate the structural defects with their optical properties, enabling the high-precision local luminescence measurement of the grain boundaries in GaN films. To further understand the atomistic origin of the luminescence properties, we carefully probed atomic core structures of the grain boundaries by exploiting aberration-corrected scanning transmission electron microscopy. The atomic core structures of grain boundaries show different ordering behaviors compared with those observed previously in threading dislocations. Energetics of the grain boundary core structures and their correlation with electronic structures were studied by first principles calculation.
Ribeiro, Ana R.; Barbaglio, Alice; Benedetto, Cristiano D.; Ribeiro, Cristina C.; Wilkie, Iain C.; Carnevali, Maria D. C.; Barbosa, Mário A.
2011-01-01
The mutable collagenous tissue (MCT) of echinoderms has the ability to undergo rapid and reversible changes in passive mechanical properties that are initiated and modulated by the nervous system. Since the mechanism of MCT mutability is poorly understood, the aim of this work was to provide a detailed morphological analysis of a typical mutable collagenous structure in its different mechanical states. The model studied was the compass depressor ligament (CDL) of a sea urchin (Paracentrotus lividus), which was characterized in different functional states mimicking MCT mutability. Transmission electron microscopy, histochemistry, cryo-scanning electron microscopy, focused ion beam/scanning electron microscopy, and field emission gun-environmental scanning electron microscopy were used to visualize CDLs at the micro- and nano-scales. This investigation has revealed previously unreported differences in both extracellular and cellular constituents, expanding the current knowledge of the relationship between the organization of the CDL and its mechanical state. Scanning electron microscopies in particular provided a three-dimensional overview of CDL architecture at the micro- and nano-scales, and clarified the micro-organization of the ECM components that are involved in mutability. Further evidence that the juxtaligamental cells are the effectors of these changes in mechanical properties was provided by a correlation between their cytology and the tensile state of the CDLs. PMID:21935473
2D scanning Rotman lens structure for smart collision avoidance sensors
NASA Astrophysics Data System (ADS)
Hall, Leonard T.; Hansen, Hedley J.; Abbott, Derek
2004-03-01
Although electronically scanned antenna arrays can provide effective mm-wave search radar sensors, their high cost and complexity are leading to the consideration of alternative beam-forming arrangements. Rotman lenses offer a compact, rugged, reliable, alternative solution. This paper considers the design of a microstrip based Rotman lens for high-resolution, frequency-controlled scanning applications. Its implementation in microstrip is attractive because this technology is low-cost, conformal, and lightweight. A sensor designed for operation at 77 GHz is presented and an ~80° azimuthal scan over a 30 GHz bandwidth is demonstrated.
Control electronics for a multi-laser/multi-detector scanning system
NASA Technical Reports Server (NTRS)
Kennedy, W.
1980-01-01
The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.
Direct-write liquid phase transformations with a scanning transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.
The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H 2PdCl 4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less
Direct-write liquid phase transformations with a scanning transmission electron microscope
Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; ...
2016-08-03
The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H 2PdCl 4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less
Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhu-Jun; Dong, Jichen; Cui, Yi
In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene graphene and graphene substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy andmore » density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.« less
Study of neoclassical effects on the pedestal structure in ELMy H-mode plasmas
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.; Snyder, P. B.
2009-11-01
The neoclassical effects on the H-mode pedestal structure are investigated in this study. First principles' kinetic simulations of the neoclassical pedestal dynamics are combined with the MHD stability conditions for triggering ELM crashes that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [1] is used to produce systematic scans over plasma parameters including plasma current, elongation, and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD stability ELITE code [2]. The scalings of the pedestal width and height are presented as a function of the scanned plasma parameters. Simulations with the XGC0 code, which include coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. Differences in the electron and ion pedestal scalings are investigated. [1] C.S. Chang et al, Phys. Plasmas 11 (2004) 2649. [2] P.B. Snyder et al, Phys. Plasmas, 9 (2002) 2037.
Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging
Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; ...
2016-10-19
In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene graphene and graphene substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy andmore » density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.« less
Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging
Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; Eres, Gyula; Timpe, Olaf; Fu, Qiang; Ding, Feng; Schloegl, R.; Willinger, Marc-Georg
2016-01-01
In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene–graphene and graphene–substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite. PMID:27759024
Kalani, Mahshid; Yunus, Robiah
2012-01-01
The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.
A Fast Response Ammonia Sensor Based on Coaxial PPy-PAN Nanofiber Yarn.
Liu, Penghong; Wu, Shaohua; Zhang, Yue; Zhang, Hongnan; Qin, Xiaohong
2016-06-23
Highly orientated polypyrrole (PPy)-coated polyacrylonitrile (PAN) (PPy-PAN) nanofiber yarn was prepared with an electrospinning technique and in-situ chemical polymerization. The morphology and chemical structure of PPy-PAN nanofiber yarn was characterized by scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FTIR), which indicated that the PPy as the shell layer was homogeneously and uniformly polymerized on the surface of PAN nanofiber. The effects of different concentration of doping acid on the responses of PPy-PAN nanofiber yarn sensor were investigated. The electrical responses of the gas sensor based on the PPy-PAN nanofiber yarn to ammonia were investigated at room temperature. The nanoyarn sensor composed of uniaxially aligned PPy-PAN nanofibers with a one-dimensional structure exhibited a transient response, and the response time was less than 1 s. The excellent sensing properties mentioned above give rise to good potential application prospects in the field of ammonia sensor.
Naden, A B; O'Shea, K J; MacLaren, D A
2018-04-20
Moiré patterns in scanning transmission electron microscopy (STEM) images of epitaxial perovskite oxides are used to assess strain and defect densities over fields of view extending over several hundred nanometers. The patterns arise from the geometric overlap of the rastered STEM electron beam and the samples' crystal periodicities and we explore the emergence and application of these moiré fringes for rapid strain analysis. Using the epitaxial functional oxide perovskites BiFeO 3 and Pr 1-x Ca x MnO 3 , we discuss the impact of large degrees of strain on the quantification of STEM moiré patterns, identify defects in the fringe patterns and quantify strain and lattice rotation. Such a wide-area analysis of crystallographic strain and defects is crucial for developing structure-function relations of functional oxides and we find the STEM moiré technique to be an attractive means of structural assessment that can be readily applied to low dose studies of damage sensitive crystalline materials.
NASA Astrophysics Data System (ADS)
Naden, A. B.; O'Shea, K. J.; MacLaren, D. A.
2018-04-01
Moiré patterns in scanning transmission electron microscopy (STEM) images of epitaxial perovskite oxides are used to assess strain and defect densities over fields of view extending over several hundred nanometers. The patterns arise from the geometric overlap of the rastered STEM electron beam and the samples’ crystal periodicities and we explore the emergence and application of these moiré fringes for rapid strain analysis. Using the epitaxial functional oxide perovskites BiFeO3 and Pr1-x Ca x MnO3, we discuss the impact of large degrees of strain on the quantification of STEM moiré patterns, identify defects in the fringe patterns and quantify strain and lattice rotation. Such a wide-area analysis of crystallographic strain and defects is crucial for developing structure-function relations of functional oxides and we find the STEM moiré technique to be an attractive means of structural assessment that can be readily applied to low dose studies of damage sensitive crystalline materials.
Constructing, connecting and soldering nanostructures by environmental electron beam deposition
NASA Astrophysics Data System (ADS)
Mølhave, Kristian; Nørgaard Madsen, Dorte; Dohn, Søren; Bøggild, Peter
2004-08-01
Highly conductive nanoscale deposits with solid gold cores can be made by electron beam deposition in an environmental scanning electron microscope (ESEM), suggesting the method to be used for constructing, connecting and soldering nanostructures. This paper presents a feasibility study for such applications. We identify several issues related to contamination and unwanted deposition, relevant for deposition in both vacuum (EBD) and environmental conditions (EEBD). We study relations between scan rate, deposition rate, angle and line width for three-dimensional structures. Furthermore, we measure the conductivity of deposits containing gold cores, and find these structures to be highly conductive, approaching the conductivity of solid gold and capable of carrying high current densities. Finally, we study the use of the technique for soldering nanostructures such as carbon nanotubes. Based on the presented results we are able to estimate limits for the applicability of the method for the various applications, but also demonstrate that it is a versatile and powerful tool for nanotechnology within these limits.
Kalani, Mahshid; Yunus, Robiah
2012-01-01
The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks. PMID:22619552
NASA Astrophysics Data System (ADS)
Peng, Edwin
In the recent decades, there has been much interest in functionalized surfaces produced by ultrafast laser processing. Using pulse lasers with nanosecond to femtosecond time scale, a wide range of micro/nanoscale structures can be produced on virtually all metal surfaces. These surface structures create special optoelectronic, wetting, and tribological properties with a diverse range of potential applications. The formation mechanisms of these surface structures, especially microscale, mound-like structures, are not fully understood. There has been wide study of ultrafast laser processing of metals. Yet, the proposed formation models present in current literature often lack sufficient experimental verification. Specifically, many studies are limited to surface characterization, e.g. scanning electron microscopy of the surfaces of these micro/nanoscale structures. Valuable insight into the physical processes responsible for formation can be obtained if standard material science characterization methods are performed across the entire mound. In our study, we examined mound-like structures formed on three metal alloys. Using cross section and 3D slice and view operations by a dual beam scanning electron microscope-focused ion beam, the interior microstructures of these mounds are revealed. Taking advantage of amorphous phase formation during laser processing of Ni60Nb40, we verified the fluence-dependent formation model: mounds formed at low fluence are primarily the result of ablation while mounds formed at high fluence are formed by both ablation and rapid resolidification by hydrodynamical fluid flow. For the first time, we revealed the cross section of a wide variety of mound-like structures on titanium surfaces. The increased contribution to mound formation by fluid flow with increasing fluence was observed. Finally, a 3D scanning electron microscopy technique was applied for mounds produced on silver surface by delayed-pulse laser processing. The interior microstructure demonstrated that most of the volume comprised of resolidified silver grains with 1% porosity.
Electromigration and morphological changes in Ag nanostructures
NASA Astrophysics Data System (ADS)
Chatterjee, A.; Bai, T.; Edler, F.; Tegenkamp, C.; Weide-Zaage, K.; Pfnür, H.
2018-02-01
Electromigration (EM) as a structuring tool was investigated in Ag nanowires (width 300 nm, thickness 25 nm) and partly in notched and bow-tie Ag structures on a Si(1 0 0) substrate in ultra-high vacuum using a four-tip scanning tunneling microscope in combination with a scanning electron microscope. From simulations of Ag nanowires we got estimates of temperature profiles, current density profiles, EM and thermal migration (TM) mass flux distributions within the nanowire induced by critical current densities of 108 A cm-2. At room temperature, the electron wind force at these current densities by far dominates over thermal diffusion, and is responsible for formation of voids at the cathode and hillocks at the anode side. For current densities that exceed the critical current densities necessary for EM, a new type of wire-like structure formation was found both at room temperature and at 100 K for notched and bow-tie structures. This suggests that the simultaneous action of EM and TM is structure forming, but with a very small influence of TM at low temperature.
Influence of carbon nanotubes on mechanical properties and structure of rigid polyurethane foam
NASA Astrophysics Data System (ADS)
Ciecierska, E.; Jurczyk-Kowalska, M.; Bazarnik, P.; Kulesza, M.; Lewandowska, M.; Kowalski, M.; Krauze, S.
2014-08-01
In this work, the influence of carbon nanotubes addition on foam structure and mechanical properties of rigid polyurethane foam/nanotube composites was investigated. Scanning electron microscopy was performed to reveal the foam porous structure and distribution of carbon nanotubes. To determine the mechanical properties, three point bending tests were carried out.
Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H
2011-11-01
In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics
Design of titania nanotube structures by focused laser beam direct writing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enachi, Mihai; Stevens-Kalceff, Marion A.; Sarua, Andrei
In this work, we report on electrochemical fabrication of titania films consisting of nanotubes (NTs) and their treatment by focused laser beam. The results of sample characterization by optical and scanning electron microscopy, cathodoluminescence imaging, and Raman scattering scanning spectroscopy are compared to those inherent to specimens subjected to thermal treatment in a furnace. The obtained data demonstrate possibilities for controlling crystallographic structure of TiO{sub 2} NTs by focused laser beam direct writing. These findings open new prospects for the design and fabrication of spatial architectures based on titania nanotubes.
Synthesis of zirconia (ZrO2) nanowires via chemical vapor deposition
NASA Astrophysics Data System (ADS)
Baek, M. K.; Park, S. J.; Choi, D. J.
2017-02-01
Monoclinic zirconia nanowires were synthesized by chemical vapor deposition using ZrCl4 powder as a starting material at 1200 °C and 760 Torr. Graphite was employed as a substrate, and an Au thin film was pre-deposited on the graphite as a catalyst. The zirconia nanostructure morphology was observed through scanning electron microscopy and transmission electron microscopy. Based on X-ray diffraction, selected area electron diffraction, and Raman spectroscopy data, the resulting crystal structure was found to be single crystalline monoclinic zirconia. The homogeneous distributions of Zr, O and Au were studied by scanning transmission electron microscopy with energy dispersive X-ray spectroscopy mapping, and there was no metal droplet at the nanowire tips despite the use of an Au metal catalyst. This result is apart from that of conventional metal catalyzed nanowires.
NASA Astrophysics Data System (ADS)
Kojima, Y.; Muto, S.; Tatsumi, K.; Kondo, H.; Oka, H.; Horibuchi, K.; Ukyo, Y.
We investigate the local structural changes in a positive electrode of a lithium ion secondary battery (LiNi 0.8Co 0.15Al 0.05O 2 (NCA) as the active material) associated with charge-discharge cycling at elevated temperatures by scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). STEM-EELS spectral imaging reveals the evolution of a NiO-like phase localized near the surface and grain boundary regions after many cycles. The amounts of capacity fading and resistance increase are discussed based on the results of the semiquantitative estimation of NiO-like and other product phases. We also identify the chemical state of lithium in the NiO-like phase substituting for Ni.
NASA Astrophysics Data System (ADS)
Suzuki, Makoto; Kameda, Toshimasa; Doi, Ayumi; Borisov, Sergey; Babin, Sergey
2018-03-01
The interpretation of scanning electron microscopy (SEM) images of the latest semiconductor devices is not intuitive and requires comparison with computed images based on theoretical modeling and simulations. For quantitative image prediction and geometrical reconstruction of the specimen structure, the accuracy of the physical model is essential. In this paper, we review the current models of electron-solid interaction and discuss their accuracy. We perform the comparison of the simulated results with our experiments of SEM overlay of under-layer, grain imaging of copper interconnect, and hole bottom visualization by angular selective detectors, and show that our model well reproduces the experimental results. Remaining issues for quantitative simulation are also discussed, including the accuracy of the charge dynamics, treatment of beam skirt, and explosive increase in computing time.
Pofelski, A; Woo, S Y; Le, B H; Liu, X; Zhao, S; Mi, Z; Löffler, S; Botton, G A
2018-04-01
A strain characterization technique based on Moiré interferometry in a scanning transmission electron microscope (STEM) and geometrical phase analysis (GPA) method is demonstrated. The deformation field is first captured in a single STEM Moiré hologram composed of multiple sets of periodic fringes (Moiré patterns) generated from the interference between the periodic scanning grating, fixing the positions of the electron probe on the sample, and the crystal structure. Applying basic principles from sampling theory, the Moiré patterns arrangement is then simulated using a STEM electron micrograph reference to convert the experimental STEM Moiré hologram into information related to the crystal lattice periodicities. The GPA method is finally applied to extract the 2D relative strain and rotation fields. The STEM Moiré interferometry enables the local information to be de-magnified to a large length scale, comparable to what can be achieved in dark-field electron holography. The STEM Moiré GPA method thus extends the conventional high-resolution STEM GPA capabilities by providing comparable quantitative 2D strain mapping with a larger field of view (up to a few microns). Copyright © 2017 Elsevier B.V. All rights reserved.
Iancu, Violeta; Hla, Saw-Wai
2006-01-01
Single chlorophyll-a molecules, a vital resource for the sustenance of life on Earth, have been investigated by using scanning tunneling microscope manipulation and spectroscopy on a gold substrate at 4.6 K. Chlorophyll-a binds on Au(111) via its porphyrin unit while the phytyl-chain is elevated from the surface by the support of four CH3 groups. By injecting tunneling electrons from the scanning tunneling microscope tip, we are able to bend the phytyl-chain, which enables the switching of four molecular conformations in a controlled manner. Statistical analyses and structural calculations reveal that all reversible switching mechanisms are initiated by a single tunneling-electron energy-transfer process, which induces bond rotation within the phytyl-chain. PMID:16954201
Isolated molecular dopants in pentacene observed by scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Ha, Sieu D.; Kahn, Antoine
2009-11-01
Doping is essential to the control of electronic structure and conductivity of semiconductor materials. Whereas doping of inorganic semiconductors is well established, doping of organic molecular semiconductors is still relatively poorly understood. Using scanning tunneling microscopy, we investigate, at the molecular scale, surface and subsurface tetrafluoro-tetracyanoquinodimethane p -dopants in the prototypical molecular semiconductor pentacene. Surface dopants diffuse to pentacene vacancies and appear as negatively charged centers, consistent with the standard picture of an ionized acceptor. Subsurface dopants, however, have the effect of a positive charge, evidence that the donated hole is localized by the parent acceptor counterion, in contrast to the model of doping in inorganic semiconductors. Scanning tunneling spectroscopy shows that the electron potential energy is locally lowered near a subsurface dopant feature, in agreement with the localized hole model.
One step synthesis of porous graphene by laser ablation: A new and facile approach
NASA Astrophysics Data System (ADS)
Kazemizadeh, Fatemeh; Malekfar, Rasoul
2018-02-01
Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.
Avilov, A; Kuligin, K; Nicolopoulos, S; Nickolskiy, M; Boulahya, K; Portillo, J; Lepeshov, G; Sobolev, B; Collette, J P; Martin, N; Robins, A C; Fischione, P
2007-01-01
We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession "Spinning Star" system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF(2) as revealed for the first time by precise electron diffractometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.
The macroscopic properties of many materials are controlled by the structure and chemistry at the grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. The high-resolution Z-contrast imaging technique in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition can be interpreted intuitively. This direct image allows the electron probe to be positioned over individual atomic columns for parallel detection electron energy loss spectroscopy (PEELS) at a spatial resolution approaching 0.22nm. The bonding information which can bemore » obtained from the fine structure within the PEELS edges can then be used in conjunction with the Z-contrast images to determine the structure at the grain boundary. In this paper we present 3 examples of correlations between the structural, chemical and electronic properties at materials interfaces in metal-semiconductor systems, superconducting and ferroelectric materials.« less
New advances in scanning microscopy and its application to study parasitic protozoa.
de Souza, Wanderley; Attias, Marcia
2018-07-01
Scanning electron microscopy has been used to observe and study parasitic protozoa for at least 40 years. However, field emission electron sources, as well as improvements in lenses and detectors, brought the resolution power of scanning electron microscopes (SEM) to a new level. Parallel to the refinement of instruments, protocols for preservation of the ultrastructure, immunolabeling, exposure of cytoskeleton and inner structures of parasites and host cells were developed. This review is focused on protozoan parasites of medical and veterinary relevance, e.g., Toxoplasma gondii, Tritrichomonas foetus, Giardia intestinalis, and Trypanosoma cruzi, compilating the main achievements in describing the fine ultrastructure of their surface, cytoskeleton and interaction with host cells. Two new resources, namely, Helium Ion Microscopy (HIM) and Slice and View, using either Focused Ion Beam (FIB) abrasion or Microtome Serial Sectioning (MSS) within the microscope chamber, combined to backscattered electron imaging of fixed (chemically or by quick freezing followed by freeze substitution and resin embedded samples is bringing an exponential amount of valuable information. In HIM there is no need of conductive coating and the depth of field is much higher than in any field emission SEM. As for FIB- and MSS-SEM, high resolution 3-D models of areas and volumes larger than any other technique allows can be obtained. The main results achieved with all these technological tools and some protocols for sample preparation are included in this review. In addition, we included some results obtained with environmental/low vacuum scanning microscopy and cryo-scanning electron microscopy, both promising, but not yet largely employed SEM modalities. Copyright © 2018. Published by Elsevier Inc.
DOT National Transportation Integrated Search
2013-01-01
The Florida Department of Transportation (FDOT) is responsible for the maintenance of thousands of concrete structures that are exposed to or situated in salt water. Considering the significant cost of each of these structures, FDOT would like a 75-y...
Mars Life? - Microscopic Tube-like Structures
1996-08-09
This high-resolution scanning electron microscope image shows an unusual tube-like structural form that is less than 1/100th the width of a human hair in size found in meteorite ALH84001, a meteorite believed to be of Martian origin. http://photojournal.jpl.nasa.gov/catalog/PIA00288
Holling, Nina; Dedi, Cinzia; Jones, Caroline E; Hawthorne, Joseph A; Hanlon, Geoffrey W; Salvage, Jonathan P; Patel, Bhavik A; Barnes, Lara M; Jones, Brian V
2014-01-01
Proteus mirabilis is a common cause of catheter-associated urinary tract infections and frequently leads to blockage of catheters due to crystalline biofilm formation. Scanning electron microscopy (SEM) has proven to be a valuable tool in the study of these unusual biofilms, but entails laborious sample preparation that can introduce artefacts, undermining the investigation of biofilm development. In contrast, environmental scanning electron microscopy (ESEM) permits imaging of unprocessed, fully hydrated samples, which may provide much insight into the development of P. mirabilis biofilms. Here, we evaluate the utility of ESEM for the study of P. mirabilis crystalline biofilms in situ, on urinary catheters. In doing so, we compare this to commonly used conventional SEM approaches for sample preparation and imaging. Overall, ESEM provided excellent resolution of biofilms formed on urinary catheters and revealed structures not observed in standard SEM imaging or previously described in other studies of these biofilms. In addition, we show that energy-dispersive X-ray spectroscopy (EDS) may be employed in conjunction with ESEM to provide information regarding the elemental composition of crystalline structures and demonstrate the potential for ESEM in combination with EDS to constitute a useful tool in exploring the mechanisms underpinning crystalline biofilm formation. PMID:24786314
ERIC Educational Resources Information Center
Galloway, Edward A.; Michalek, Gabrielle V.
1995-01-01
Discusses the conversion project of the congressional papers of Senator John Heinz into digital format and the provision of electronic access to these papers by Carnegie Mellon University. Topics include collection background, project team structure, document processing, scanning, use of optical character recognition software, verification…
The world as viewed by and with unpaired electrons.
Eaton, Sandra S; Eaton, Gareth R
2012-10-01
Recent advances in electron paramagnetic resonance (EPR) include capabilities for applications to areas as diverse as archeology, beer shelf life, biological structure, dosimetry, in vivo imaging, molecular magnets, and quantum computing. Enabling technologies include multifrequency continuous wave, pulsed, and rapid scan EPR. Interpretation is enhanced by increasingly powerful computational models. Copyright © 2012 Elsevier Inc. All rights reserved.
Sparsity-Based Super Resolution for SEM Images.
Tsiper, Shahar; Dicker, Or; Kaizerman, Idan; Zohar, Zeev; Segev, Mordechai; Eldar, Yonina C
2017-09-13
The scanning electron microscope (SEM) is an electron microscope that produces an image of a sample by scanning it with a focused beam of electrons. The electrons interact with the atoms in the sample, which emit secondary electrons that contain information about the surface topography and composition. The sample is scanned by the electron beam point by point, until an image of the surface is formed. Since its invention in 1942, the capabilities of SEMs have become paramount in the discovery and understanding of the nanometer world, and today it is extensively used for both research and in industry. In principle, SEMs can achieve resolution better than one nanometer. However, for many applications, working at subnanometer resolution implies an exceedingly large number of scanning points. For exactly this reason, the SEM diagnostics of microelectronic chips is performed either at high resolution (HR) over a small area or at low resolution (LR) while capturing a larger portion of the chip. Here, we employ sparse coding and dictionary learning to algorithmically enhance low-resolution SEM images of microelectronic chips-up to the level of the HR images acquired by slow SEM scans, while considerably reducing the noise. Our methodology consists of two steps: an offline stage of learning a joint dictionary from a sequence of LR and HR images of the same region in the chip, followed by a fast-online super-resolution step where the resolution of a new LR image is enhanced. We provide several examples with typical chips used in the microelectronics industry, as well as a statistical study on arbitrary images with characteristic structural features. Conceptually, our method works well when the images have similar characteristics, as microelectronics chips do. This work demonstrates that employing sparsity concepts can greatly improve the performance of SEM, thereby considerably increasing the scanning throughput without compromising on analysis quality and resolution.
NASA Technical Reports Server (NTRS)
Lindeman, H. H.; Ades, H. W.; West, R. W.
1973-01-01
The vestibular end organs, after chemical fixation, were freeze dried, coated with gold and palladium, and studied in the scanning microscope. Scanning microscopy gives a good three dimensional view of the sensory areas and allows study of both gross anatomy and microstructures. Cross anatomical features of the structure of the ampullae are demonstrated. The form of the statoconia in different species of animals is shown. New aspects of the structure of the sensory hairs are revealed. The hair bundles in the central areas of the cristae and in the striola of the maculae differ structurally from the hair bundles at the periphery of the sensory regions. Furthermore, some hair bundles consisting of very short stereocilia were observed. The relationship between the cupula and the statoconial membrane to the epithelial surface is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendall, Amy; Bian, Wen; Maris, Alexander
We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to confirm the symmetry of three potexviruses, potato virus X, papaya mosaic virus, and narcissus mosaic virus, and to determine their low-resolution structures. All three viruses have slightly less than nine subunits per turn of the viral helix. Our data strongly support the view that all potexviruses have approximately the same symmetry. The structures are dominated by a large domain at high radius in the virion, with a smaller domain, which includes the putative RNA-binding site, extending to low radius.
Molecular diodes based on conjugated diblock co-oligomers.
Ng, Man-Kit; Lee, Dong-Chan; Yu, Luping
2002-10-09
This report describes synthesis and characterization of a molecular diode based upon a diblock conjugated oligomer system. This system consists of two conjugated blocks with opposite electronic demand. The molecular structure exhibits a built-in electronic asymmetry, much like a semiconductor p-n junction. Electrical measurements by scanning tunneling spectroscopy (STS) clearly revealed a pronounced rectifying effect. Definitive proof for the molecular nature of the rectifying effect in this conjugated diblock molecule is provided by control experiments with a structurally similar reference compound.
Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001
NASA Technical Reports Server (NTRS)
Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R.
1998-01-01
A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.
NASA Astrophysics Data System (ADS)
Olkhov, A. A.; Karpova, S. G.; Staroverova, O. V.; Krutikova, A. A.; Orlov, N. A.; Kucherenko, E. L.; Iordanskii, A. L.
2016-11-01
The fibrous materials (the mats) based on poly-3-hydroxybutyrate (PHB) containing the drug, dipiridomole (DPD) were produced by electrospinning (ES). Thermophysical and dynamical properties of the single filaments and the mats were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and probe electron paramagnetic resonance spectroscopy (EPR). The effect of annealing temperature on the structure and crystallinity of the fibers was examined. It was shown that the loading of DPD influences on both the melting enthalpy and the morphology of the fibers. Besides the analysis of EPR spectra revealed that there are two populations of spin-probes distributed in the rigid and nonrigid amorphous regions of the PHB fibers respectively. For all fibrous materials with different content of DPD (0-5%) the correlation between thermophysical (DSC) and dynamic data (EPR) was observed.
Production and Structural Investigation of Polyethylene Composites with Modified Kaolin
NASA Astrophysics Data System (ADS)
Domka, L.; Malicka, A.; Stachowiak, N.
2008-08-01
The study was undertaken to evaluate the effect of the filler (kaolin) modification with silane coupling agents on the properties of the polyethylene (HDPE Hostalen ACP 5831) composites. Powder mineral fillers are added to polymers to modify the properties of the latter and to reduce the cost of their production. A very important factor is the filler dispersion in the polymer matrix. Kaolin modified with 3-methacryloxypropyltrimethoxysilane and pure kaolin were characterised by surface area, pore size, water absorbing capacity, paraffin oil absorbing capacity, bulk density, scanning electron microscopy observations and X-ray diffraction measurements. Their performance was characterised by determination of the mechanical resistance upon static stretching and tearing, and their structure was observed in scanning electron microscopy images. The results were compared to those obtained for the composites with unmodified filler and pure HDPE.
NASA Astrophysics Data System (ADS)
Daud, D.; Abd. Rahman, A.; Shamsuddin, A. H.
2016-03-01
In this work, palm oil biomass consisting of empty fruit bunch (EFB), mesocarp fibre and palm kernel shell (PKS) were chosen as raw material for torrefaction process. Torrefaction process was conducted at various temperatures of 240 °C, 270 °C and 300 °C with a residence time of 60 minutes. The morphology of the raw and torrefied biomass was then observed through Scanning Electron Microscopy (SEM) images. Also, through this experiment the correlation between the torrefaction temperatures with the volatile gases released were studied. From the observation, the morphology structure of the biomass exhibited inter-particle gaps due to the release of volatile gases and it is obviously seen more at higher temperatures. Moreover, the change of the biomass structure is influenced by the alteration of the lignocellulose biomass.
Mestres, Pedro; Pütz, Norbert; Garcia Gómez de Las Heras, Soledad; García Poblete, Eduardo; Morguet, Andrea; Laue, Michael
2011-05-01
Environmental scanning electron microscopy (ESEM) allows the examination of hydrated and dried specimens without a conductive metal coating which could be advantageous in the imaging of biological and medical objects. The aim of this study was to assess the performance and benefits of wet-mode and low vacuum ESEM in comparison to high vacuum scanning electron microscopy (SEM) using the choroid plexus of chicken embryos as a model, an organ of the brain involved in the formation of cerebrospinal fluid in vertebrates. Specimens were fixed with or without heavy metals and examined directly or after critical point drying with or without metal coating. For wet mode ESEM freshly excised specimens without any pre-treatment were also examined. Conventional high vacuum SEM revealed the characteristic morphology of the choroid plexus cells at a high resolution and served as reference. With low vacuum ESEM of dried but uncoated samples the structure appeared well preserved but charging was a problem. It could be reduced by a short beam dwell time and averaging of images or by using the backscattered electron detector instead of the gaseous secondary electron detector. However, resolution was lower than with conventional SEM. Wet mode imaging was only possible with tissue that had been stabilized by fixation. Not all surface details (e.g. microvilli) could be visualized and other structures, like the cilia, were deformed. In summary, ESEM is an additional option for the imaging of bio-medical samples but it is problematic with regard to resolution and sample stability during imaging. Copyright © 2011 Elsevier GmbH. All rights reserved.
Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph
2010-01-01
The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.
Influence of electron irradiation on the structural and thermal properties of silk fibroin films
NASA Astrophysics Data System (ADS)
Asha, S.; Sangappa, Sanjeev, Ganesh
2015-06-01
Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.
Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices
2015-06-01
either Co– or MnSi– initiated films on c(4x4) GaAs. Studies using x - ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy...Co– or MnSi– initiated films on c(4x4) GaAs. Studies using x - ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy (TEM...diagram of the Palmstrøm lab in-situ growth and char- acterization setup, with 6 MBE growth chambers, 3 scanning probe microscopes, an x - ray
Synthesis of nanocrystalline diamonds by microwave plasma
NASA Astrophysics Data System (ADS)
Purohit, V. S.; Jain, Deepti; Sathe, V. G.; Ganesan, V.; Bhoraskar, S. V.
2007-03-01
Nanocrystalline diamonds, varying in size from 40 to 400 nm, with random faceting were grown without the help of initial nucleation sites on nickel substrates as seen by scanning electron micrographs. These carbonaceous films were deposited in a microwave plasma reactor using hexane/nitrogen based chemical vapour deposition. The substrate temperatures during deposition were varied from 400 to 600 °C. The morphological investigations obtained by scanning electron micrographs and atomic force microscopy revealed the presence of nanocrystallites with multifaceted structures. Micro Raman investigations were carried out on the deposited films, which conclusively inferred that the growth of nanodiamond crystallites seen in the scanning electron micrographs correlate with clear Raman peaks appearing at 1120 and 1140 cm-1. Nanoindentation analysis with atomic force microscopy has revealed that the carbonaceous deposition identified by the Raman line at ~1140 cm-1, in fact, is related to nanodiamond on account of its hardness which was ~30 GPa. X-ray diffraction data supported this fact.
Sabel, Nina; Klingberg, Gunilla; Dietz, Wolfram; Nietzsche, Sandor; Norén, Jörgen G
2010-01-01
Enamel hypoplasia is a developmental disturbance during enamel formation, defined as a macroscopic defect in the enamel, with a reduction of the enamel thickness with rounded, smooth borders. Information on the microstructural level is still limited, therefore further studies are of importance to better understand the mechanisms behind enamel hypoplasia. To study enamel hypoplasia in primary teeth by means of polarized light microscopy and scanning electron microscopy. Nineteen primary teeth with enamel hypoplasia were examined in a polarized light microscope and in a scanning electron microscope. The cervical and incisal borders of the enamel hypoplasia had a rounded appearance, as the prisms in the rounded cervical area of the hypoplasia were bent. The rounded borders had a normal surface structure whereas the base of the defects appeared rough and porous. Morphological findings in this study indicate that the aetiological factor has a short duration and affects only certain ameloblasts. The bottom of the enamel hypoplasia is porous and constitutes possible pathways for bacteria into the dentin.
Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging
NASA Astrophysics Data System (ADS)
Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung
2016-12-01
Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.
Research and application on imaging technology of line structure light based on confocal microscopy
NASA Astrophysics Data System (ADS)
Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen
2009-11-01
In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.
Analysis of Local Structure, Chemistry and Bonding by Electron Energy Loss Spectroscopy
NASA Astrophysics Data System (ADS)
Mayer, Joachim
In the present chapter, the reader will first be introduced briefly to the basic principles of analytical transmission electron microscopy (ATEM) with special emphasis on electron energy-loss spectroscopy (EELS) and energy-filtering TEM. The quantification of spectra to obtain chemical information and the origin and interpretation of near-edge fine structures in EELS (ELNES) are discussed. Special attention will be given to the characterization of internal interfaces and the literature in this area will be reviewed. Selected examples of the application of ATEM in the investigation of internal interfaces will be given. These examples include both EELS in the energy-filtering TEM and in the scanning transmission electron microscope (STEM).
Micro-Structural Study of Fretting Contact Caused by the Difference of the Tin Plating Thickness
NASA Astrophysics Data System (ADS)
Ito, Tetsuya; Sawada, Shigeru; Hattori, Yasuhiro; Saitoh, Yasushi; Tamai, Terutaka; Iida, Kazuo
In recent years, there has been increasing demand to miniaturize wiring harness connectors in automobiles due to the increasing volume of electronic equipment and the reduction of the installation space allocated for the electronic equipment in automobiles for the comfort of the passengers. With this demand, contact failure caused by the fretting corrosion is expected to become a serious problem. In this report, we examined micro-structural observations of fretting contacts of two different tin plating thicknesses using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) and so on. Based on the results, we compared the microstructure difference of fretting contact caused by the difference of the tin plating thickness.
NASA Astrophysics Data System (ADS)
Asundi, Anand K.; Shang, Haixia; Xie, Huimin; Li, Biao
2003-10-01
Two novel micro/nano moire method, SEM scanning moiré and AFM scanning moire techniques are discussed in this paper. The principle and applications of two scanning moire methods are described in detail. The residual deformation in a polysilicon MEMS cantilever structure with a 5000 lines/mm grating after removing the SiO2 sacrificial layer is accurately measured by SEM scanning moire method. While AFM scanning moire method is used to detect thermal deformation of electronic package components, and formation of nano-moire on a freshly cleaved mica crystal. Experimental results demonstrate the feasibility of these two moire methods, and also show they are effective methods to measure the deformation from micron to nano-scales.
Enhanced conductivity at orthorhombic–rhombohedral phase boundaries in BiFeO 3 thin films
Heo, Yooun; Lee, Jin Hong; Xie, Lin; ...
2016-08-26
Enhanced properties in modern functional materials can often be found at structural transition regions, such as morphotropic phase boundaries (MPB), owing to the coexistence of multiple phases with nearly equivalent energies. Strain-engineered MPBs have emerged in epitaxially grown BiFeO 3 (BFO) thin films by precisely tailoring a compressive misfit strain, leading to numerous intriguing phenomena, such as a massive piezoelectric response, magnetoelectric coupling, interfacial magnetism and electronic conduction. Recently, an orthorhombic–rhombohedral (O–R) phase boundary has also been found in tensile-strained BFO. In this study, we characterise the crystal structure and electronic properties of the two competing O and R phasesmore » using X-ray diffraction, scanning probe microscope and scanning transmission electron microscopy (STEM). We observe the temperature evolution of R and O domains and find that the domain boundaries are highly conductive. Temperature-dependent measurements reveal that the conductivity is thermally activated for R–O boundaries. STEM observations point to structurally wide boundaries, significantly wider than in other systems. Furthermore, we reveal a strong correlation between the highly conductive domain boundaries and structural material properties. These findings provide a pathway to use phase boundaries in this system for novel nanoelectronic applications.« less
Hieckmann, Ellen; Nacke, Markus; Allardt, Matthias; Bodrov, Yury; Chekhonin, Paul; Skrotzki, Werner; Weber, Jörg
2016-05-28
Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared.
Hieckmann, Ellen; Nacke, Markus; Allardt, Matthias; Bodrov, Yury; Chekhonin, Paul; Skrotzki, Werner; Weber, Jörg
2016-01-01
Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared. PMID:27285177
Scanning tunneling microscopy of atomically precise graphene nanoribbons exfoliated onto H:Si(100)
NASA Astrophysics Data System (ADS)
Radocea, Adrian; Mehdi Pour, Mohammad; Vo, Timothy; Shekhirev, Mikhail; Sinitskii, Alexander; Lyding, Joseph
Atomically precise graphene nanoribbons (GNRs) are promising materials for next generation transistors due to their well-controlled bandgaps and the high thermal conductivity of graphene. The solution synthesis of graphene nanoribbons offers a pathway towards scalable manufacturing. While scanning tunneling microscopy (STM) can access size scales required for characterization, solvent residue increases experimental difficulty and precludes band-gap determination via scanning tunneling spectroscopy (STS). Our work addresses this challenge through a dry contact transfer method that cleanly transfers solution-synthesized GNRs onto H:Si(100) under UHV using a fiberglass applicator. The semiconducting silicon surface avoids problems with image charge screening enabling intrinsic bandgap measurements. We characterize the nanoribbons using STM and STS. For chevron GNRs, we find a 1.6 eV bandgap, in agreement with computational modeling, and map the electronic structure spatially with detailed spectra lines and current imaging tunneling spectroscopy. Mapping the electronic structure of graphene nanoribbons is an important step towards taking advantage of the ability to form atomically precise nanoribbons and finely tune their properties.
Sang, Xiahan; LeBeau, James M
2014-03-01
We report the development of revolving scanning transmission electron microscopy--RevSTEM--a technique that enables characterization and removal of sample drift distortion from atomic resolution images without the need for a priori crystal structure information. To measure and correct the distortion, we acquire an image series while rotating the scan coordinate system between successive frames. Through theory and experiment, we show that the revolving image series captures the information necessary to analyze sample drift rate and direction. At atomic resolution, we quantify the image distortion using the projective standard deviation, a rapid, real-space method to directly measure lattice vector angles. By fitting these angles to a physical model, we show that the refined drift parameters provide the input needed to correct distortion across the series. We demonstrate that RevSTEM simultaneously removes the need for a priori structure information to correct distortion, leads to a dramatically improved signal-to-noise ratio, and enables picometer precision and accuracy regardless of drift rate. Copyright © 2013 Elsevier B.V. All rights reserved.
Presciutti, Federica; Capitani, Donatella; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni; Costantino, Ferdinando; Viel, Stéphane; Segre, Annalaura
2005-12-01
The aim of this study is to clarify the structure of an iron-rich clay and the structural changes involved in the firing process as a preliminary step to get information on ancient ceramic technology. To this purpose, illite-rich clay samples fired at different temperatures were characterized using a multitechnique approach, i.e., by electron paramagnetic resonance, scanning electron microscopy with electron dispersion X-ray spectrometry, X-ray powder diffraction, magic angle spinning and multiple quantum magic angle spinning NMR. During firing, four main reaction processes occur: dehydration, dehydroxylation, structural breakdown, and recrystallization. When the results are combined from all characterization methods, the following conclusions could be obtained. Interlayer H2O is located close to aluminum in octahedral sites and is driven off at temperatures lower than 600 degrees C. Between 600 and 700 degrees C dehydroxylation occurs whereas, between 800 and 900 degrees C, the aluminum in octahedral sites disappears, due to the breakdown of the illite structure, and all iron present is oxidized to Fe3+. In samples fired at 1000 and 1100 degrees C iron clustering was observed as well as large single crystals of iron with the occurrence of ferro- or ferrimagnetic effects. Below 900 degrees C the aluminum in octahedral sites presents a continuous distribution of chemical shift, suggesting the presence of slightly distorted sites. Finally, over the whole temperature range, the presence of at least two tetrahedral aluminum sites was revealed, characterized by different values of the quadrupolar coupling constant.
Feng, Pin; Jiang, Lan; Li, Xin; Rong, Wenlong; Zhang, Kaihu; Cao, Qiang
2015-02-20
A simple, repeatable approach is proposed to fabricate large-area, uniform periodic surface structures by a femtosecond laser. 20 nm gold films are coated on semiconductor surfaces on which large-area, uniform structures are fabricated. In the case study of silicon, cross-links and broken structures of laser induced periodic surface structures (LIPSSs) are significantly reduced on Au-coated silicon. The good consistency between the scanning lines facilitates the formation of large-area, uniform LIPSSs. The diffusion of hot electrons in the Au films increases the interfacial carrier densities, which significantly enhances interfacial electron-phonon coupling. High and uniform electron density suppresses the influence of defects on the silicon and further makes the coupling field more uniform and thus reduces the impact of laser energy fluctuations, which homogenizes and stabilizes large-area LIPSSs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mahesh; Roul, Basanta; Central Research Laboratory, Bharat Electronics, Bangalore-560013
InN quantum dots (QDs) were grown on Si (111) by epitaxial Stranski-Krastanow growth mode using plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN QDs was verified by the x-ray diffraction and transmission electron microscopy. Scanning tunneling microscopy has been used to probe the structural aspects of QDs. A surface bandgap of InN QDs was estimated from scanning tunneling spectroscopy (STS) I-V curves and found that it is strongly dependent on the size of QDs. The observed size-dependent STS bandgap energy shifts with diameter and height were theoretical explained based on an effective mass approximation with finite-depth square-well potential model.
NASA Astrophysics Data System (ADS)
Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.
2014-12-01
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.
Imaging quasiperiodic electronic states in a synthetic Penrose tiling
NASA Astrophysics Data System (ADS)
Collins, Laura C.; Witte, Thomas G.; Silverman, Rochelle; Green, David B.; Gomes, Kenjiro K.
2017-06-01
Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.
Imaging quasiperiodic electronic states in a synthetic Penrose tiling.
Collins, Laura C; Witte, Thomas G; Silverman, Rochelle; Green, David B; Gomes, Kenjiro K
2017-06-22
Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Gordon, E-mail: Gordon.Schmidt@ovgu.de; Müller, Marcus; Veit, Peter
2014-07-21
Using cathodoluminescence spectroscopy directly performed in a scanning transmission electron microscope at liquid helium temperatures, the optical and structural properties of a 62 InGaN/GaN multiple quantum well embedded in an AlInN/GaN based microcavity are investigated at the nanometer scale. We are able to spatially resolve a spectral redshift between the individual quantum wells towards the surface. Cathodoluminescence spectral linescans allow directly visualizing the critical layer thickness in the quantum well stack resulting in the onset of plastic relaxation of the strained InGaN/GaN system.
Miyata, Tomohiro; Mizoguchi, Teruyasu
2018-03-01
Understanding structures and spatial distributions of molecules in liquid phases is crucial for the control of liquid properties and to develop efficient liquid-phase processes. Here, real-space mapping of molecular distributions in a liquid was performed. Specifically, the ionic liquid 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C2mimTFSI) was imaged using atomic-resolution scanning transmission electron microscopy. Simulations revealed network-like bright regions in the images that were attributed to the TFSI- anion, with minimal contributions from the C2mim+ cation. Simple visualization of the TFSI- distribution in the liquid sample was achieved by binarizing the experimental image.
NASA Astrophysics Data System (ADS)
Hunt, Steven R.; Collins, Phillip G.
2010-03-01
The electronic properties of graphitic carbon devices are primarily determined by the contact metal and the carbon band structure. However, inhomogeneities such as substrate imperfections, surface defects, and mobile contaminants also contribute and can lead to transistor-like behaviors. We experimentally investigate this phenomena in the 1-D limit using metallic single-walled carbon nanotubes (SWCNTs) before and after the electrochemical creation of sidewall defects. While scanning gate microscopy readily identifies the defect sites, the energy-dependence of the technique allows quantitative analysis of the defects and discrimination of different defect types. This research is partly supported by the NSF (DMR 08-xxxx).
Stoffers, Andreas; Barthel, Juri; Liebscher, Christian H; Gault, Baptiste; Cojocaru-Mirédin, Oana; Scheu, Christina; Raabe, Dierk
2017-04-01
In the course of a thorough investigation of the performance-structure-chemistry interdependency at silicon grain boundaries, we successfully developed a method to systematically correlate aberration-corrected scanning transmission electron microscopy and atom probe tomography. The correlative approach is conducted on individual APT and TEM specimens, with the option to perform both investigations on the same specimen in the future. In the present case of a Σ9 grain boundary, joint mapping of the atomistic details of the grain boundary topology, in conjunction with chemical decoration, enables a deeper understanding of the segregation of impurities observed at such grain boundaries.
Iwano, M; Fukui, K; Takaichi, S; Isogai, A
1997-08-01
Barley chromosomes were prepared for high-resolution scanning electron microscopy using a combination of enzyme maceration, treatment in acetic acid and osmium impregnation using thiocarbohydrazide. Using this technique, the three-dimensional ultrastructure of interphase nuclei and mitotic chromosomes was examined. In Interphase, different levels of chromatin condensation were observed, consisting of fibrils 10 nm in diameter, 20- to 40-nm fibres and a higher order complex. In prophase, globular and strand-like structures composed of 20- to 40-nm fibres were dominant. As the cells progressed through the cell cycle and the chromatin condensed, globular and strand-like structures (chromomeres) were coiled and packed to form chromosomes. Chromomeres were observed as globular protuberances on the surface of metaphase chromosomes. These findings indicate that the chromomere is a fundamental substructure of the higher order architecture of the chromosome. In the centromeric region, there were no globular protuberances, but 20- to 40-nm fibres were folded compactly to form a higher level organization surrounding the chromosomal axia.
Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation
NASA Astrophysics Data System (ADS)
Naranjo, D. I.; García-Vergara, S. J.; Blanco, S.
2017-12-01
Scanning electron microscopy was used to investigate the anatase-rutile transformation of self-organized TiO2 nanotubes obtained on titanium foil by anodizing and subsequent heat treatment. The anodizing was carried out at 20V in an 1% v/v HF acid and ethylene glycol:water (50:50) electrolyte at room temperature. The anodized samples were initially pre-heat treated at 450°C for 4 hours to modify the amorphous structure of TiO2 nanotubes into anatase structure. Then, the samples were heated between 600 to 800°C for different times, in order to promote the transformation to rutile structure. The formation of TiO2 nanotubes is evident by SEM images. Notably, when the samples are treated at high temperature, the formation of rutile crystals starts to become evident at the nanotubes located on the originally grain boundaries of the titanium. Thus, the anatase - rutile transformation has a close relationship with the microstructure of the titanium, more exactly with grain boundaries.
NASA Astrophysics Data System (ADS)
Ghimpu, L.; Ursaki, V. V.; Pantazi, A.; Mesterca, R.; Brâncoveanu, O.; Shree, Sindu; Adelung, R.; Tiginyanu, I. M.; Enachescu, M.
2018-04-01
We report the fabrication and characterization of SnO2/CdTe and SnO2/GaAs core/shell microstructures. CdTe or GaAs shell layers were deposited by radio-frequency (RF) magnetron sputtering on core SnO2 microwires synthesized by a flame-based thermal oxidation method. The produced structures were characterized by scanning electron microscopy (SEM), high-resolution scanning transmission electron microscope (HR-STEM), X-ray diffraction (XRD), Raman scattering and FTIR spectroscopy. It was found that the SnO2 core is of the rutile type, while the shells are composed of CdTe or GaAs nanocrystallites of zincblende structure with the dimensions of crystallites in the range of 10-20 nm. The Raman scattering investigations demonstrated that the quality of the porous nanostructured shell is improved by annealing at temperatures of 420-450 °C. The prospects of implementing these microstructures in intrinsic type fiber optic sensors are discussed.
ENVIRONMENTALLY FRIENDLY LEATHER TANNING USING ENZYMES
The effectiveness of the leather tanning will be evaluated by measuring shrinkage temperature, and analyzing leather structure using Scan Electron Microscope (SEM). The team will also measure leather physical/mechanical properties, including softness, tensile strength, elon...
NASA Astrophysics Data System (ADS)
Domke, Matthias; Egle, Bernadette; Piredda, Giovanni; Stroj, Sandra; Fasching, Gernot; Bodea, Marius; Schwarz, Elisabeth
2016-11-01
High power electronic chips are usually fabricated on about 50 µm thin Si wafers to improve heat dissipation. At these chip thicknesses mechanical dicing becomes challenging. Chippings may occur at the cutting edges, which reduce the mechanical stability of the die. Thermal load changes could then lead to sudden chip failure. Ultrashort pulsed lasers are a promising tool to improve the cutting quality, because thermal side effects can be reduced to a minimum. However, laser-induced periodic surface structures occur at the sidewalls and at the trench bottom during scribing. The goal of this study was to investigate the influence of these periodic structures on the backside breaking strength of the die. An ultrafast laser with a pulse duration of 380 fs and a wavelength of 1040 nm was used to cut a wafer into single chips. The pulse energy and the number of scans was varied. The cuts in the wafer were investigated using transmitted light microscopy, the sidewalls of the cut chips were investigated using scanning electron and confocal microscopy, and the breaking strength was evaluated using the 3-point bending test. The results indicated that periodic holes with a distance of about 20-30 µm were formed at the bottom of the trench, if the number of scans was set too low to completely cut the wafer; the wafer was only perforated. Mechanical breaking of the bridges caused 5 µm deep kerfs in the sidewall. These kerfs reduced the breaking strength at the backside of the chip to about 300 MPa. As the number of scans was increased, the bridges were ablated and the wafer was cut completely. Periodic structures were observed on the sidewall; the roughness was below 1 µm. The surface roughness remained on a constant level even when the number of scans was doubled. However, the periodic structures on the sidewall seemed to vanish and the probability to remove local flaws increases with the number of scans. As a consequence, the breaking strength was increased to about 700 MPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idrobo Tapia, Juan Carlos; Zhou, Wu
Here we present a short historical account of when single adatom impurities where first identified in two-dimensional materials by scanning transmission electron microscopy (STEM). We also present a study of the graphene low-loss (below 50 eV) response as a function of number of layers using electron energy-loss spectroscopy (EELS). The study shows that as few as three layers of graphene behave as bulk graphite for losses above 10 eV We also show examples of how point and extended defects can easily be resolved and structural dynamics can be readily capture by using aberration-corrected STEM imaging. Lastly, we show that themore » new generation of monochromators has opened up possibilities to explore new physics with an electron microscope. All these capabilities were enabled by the development of spherical aberration correctors and monochromators, where Ondrej Krivanek has played a key role.« less
Idrobo Tapia, Juan Carlos; Zhou, Wu
2017-03-01
Here we present a short historical account of when single adatom impurities where first identified in two-dimensional materials by scanning transmission electron microscopy (STEM). We also present a study of the graphene low-loss (below 50 eV) response as a function of number of layers using electron energy-loss spectroscopy (EELS). The study shows that as few as three layers of graphene behave as bulk graphite for losses above 10 eV We also show examples of how point and extended defects can easily be resolved and structural dynamics can be readily capture by using aberration-corrected STEM imaging. Lastly, we show that themore » new generation of monochromators has opened up possibilities to explore new physics with an electron microscope. All these capabilities were enabled by the development of spherical aberration correctors and monochromators, where Ondrej Krivanek has played a key role.« less
Isotope analysis in the transmission electron microscope.
Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani
2016-10-10
The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.
Electric field effect on the electronic structure of 2D Y2C electride
NASA Astrophysics Data System (ADS)
Oh, Youngtek; Lee, Junsu; Park, Jongho; Kwon, Hyeokshin; Jeon, Insu; Wng Kim, Sung; Kim, Gunn; Park, Seongjun; Hwang, Sung Woo
2018-07-01
Electrides are ionic compounds in which electrons confined in the interstitial spaces serve as anions and are attractive owing to their exotic physical and chemical properties in terms of their low work function and efficient charge-transfer characteristics. Depending on the topology of the anionic electrons, the surface electronic structures of electrides can be significantly altered. In particular, the electronic structures of two-dimensional (2D) electride surfaces are of interest because the localized anionic electrons at the interlayer space can be naturally exposed to cleaved surfaces. In this paper, we report the electronic structure of 2D Y2C electride surface using scanning tunneling microscopy (STM) and first-principles calculations, which reveals that anionic electrons at a cleaved surface are absorbed by the surface and subsequently resurged onto the surface due to an applied electric field. We highlight that the estranged anionic electrons caused by the electric field occupy the slightly shifted crystallographic site compared with a bulk Y2C electride. We also measure the work function of the Y2C single crystal, and it shows a slightly lower value than the calculated one, which appears to be due to the electric field from the STM junction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
Kübel, Christian; Voigt, Andreas; Schoenmakers, Remco; Otten, Max; Su, David; Lee, Tan-Chen; Carlsson, Anna; Bradley, John
2005-10-01
Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.
The macroscopic properties of many materials are controlled by the structure and chemistry at grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. High-resolution Z-contrast imaging in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition across an interface can be interpreted directly without the need for preconceived atomic structure models. Since the Z-contrast image is formed by electrons scattered through high angles, parallel detection electron energy loss spectroscopy (PEELS) can be used simultaneously to provide complementarymore » chemical information on an atomic scale. The fine structure in the PEEL spectra can be used to investigate the local electronic structure and the nature of the bonding across the interface. In this paper we use the complimentary techniques of high resolution Z-contrast imaging and PEELS to investigate the atomic structure and chemistry of a 25{degree} symmetric tilt boundary in a bicrystal of the electroceramic SrTiO{sub 3}.« less
Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel
NASA Astrophysics Data System (ADS)
Yasavol, N.; Abdollah-zadeh, A.; Ganjali, M.; Alidokht, S. A.
2013-01-01
D2 cold work tool steel (CWTS) was subjected to pulse laser surface melting (PLSM) at constant frequency of 20 Hz Nd: YAG laser with different energies, scanning rate and pulse durations radiated to the surface. Characterizing the PLSM, with optical and field emission scanning electron microscopy, electron backscattered diffraction and surface hardness mapping technique was used to evaluate the microhardness and mechanical behavior of different regions of melting pool. Increasing laser energy and reducing the laser scanning rate results in deeper melt pool formation. Moreover, PLSM has led to entirely dissolution of the carbides and re-solidification of cellular/dendritic structure of a fine scale surrounded by a continuous interdendritic network. This caused an increase in surface microhardness, 2-4 times over that of the base metal.
Software electron counting for low-dose scanning transmission electron microscopy.
Mittelberger, Andreas; Kramberger, Christian; Meyer, Jannik C
2018-05-01
The performance of the detector is of key importance for low-dose imaging in transmission electron microscopy, and counting every single electron can be considered as the ultimate goal. In scanning transmission electron microscopy, low-dose imaging can be realized by very fast scanning, however, this also introduces artifacts and a loss of resolution in the scan direction. We have developed a software approach to correct for artifacts introduced by fast scans, making use of a scintillator and photomultiplier response that extends over several pixels. The parameters for this correction can be directly extracted from the raw image. Finally, the images can be converted into electron counts. This approach enables low-dose imaging in the scanning transmission electron microscope via high scan speeds while retaining the image quality of artifact-free slower scans. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline
2017-12-01
Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.
Zhou, Z X; Wei, D F; Guan, Y; Zheng, A N; Zhong, J J
2010-03-01
The purpose of this study was to provide micrographic evidences for the damaged membrane structure and intracellular structure change of Escherichia coli strain 8099, induced by polyhexamethylene guanidine hydrochloride (PHMG). The bactericidal effect of PHMG on E. coli was investigated based on beta-galactosidase activity assay, fluorescein-5-isothiocyanate confocal laser scanning microscopy, field emission scanning electron microscopy and transmission electron microscopy. The results revealed that a low dose (13 microg ml(-1)) of PHMG slightly damaged the outer membrane structure of the treated bacteria and increased the permeability of the cytoplasmic membrane, while no significant damage was observed to the morphological structure of the cells. A high dose (23 microg ml(-1)) of PHMG collapsed the outer membrane structure, led to the formation of a local membrane pore across the membrane and badly damaged the internal structure of the cells. Subsequently, intracellular components were leaked followed by cell inactivation. Dose-dependent membrane disruption was the main bactericidal mechanism of PHMG. The formation of the local membrane pores was probable after exposure to a high dose (23 microg ml(-1)) of PHMG. Micrographic evidences were provided about the damaged membrane structure and intracellular structure change of E. coli. The presented information helps understand the bactericidal mechanism of PHMG by membrane damage.
Kiraly, Brian T.; Jacobberger, Robert M.; Mannix, Andrew J.; ...
2015-10-27
Epitaxially oriented wafer-scale graphene grown directly on semiconducting Ge substrates is of high interest for both fundamental science and electronic device applications. To date, however, this material system remains relatively unexplored structurally and electronically, particularly at the atomic scale. To further understand the nature of the interface between graphene and Ge, we utilize ultrahigh vacuum scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) along with Raman and X-ray photoelectron spectroscopy to probe interfacial atomic structure and chemistry. STS reveals significant differences in electronic interactions between graphene and Ge(110)/Ge(111), which is consistent with a model of stronger interaction on Ge(110)more » leading to epitaxial growth. Raman spectra indicate that the graphene is considerably strained after growth, with more point-to-point variation on Ge(111). Furthermore, this native strain influences the atomic structure of the interface by inducing metastable and previously unobserved Ge surface reconstructions following annealing. These nonequilibrium reconstructions cover >90% of the surface and, in turn, modify both the electronic and mechanical properties of the graphene overlayer. Finally, graphene on Ge(001) represents the extreme strain case, where graphene drives the reorganization of the Ge surface into [107] facets. From this study, it is clear that the interaction between graphene and the underlying Ge is not only dependent on the substrate crystallographic orientation, but is also tunable and strongly related to the atomic reconfiguration of the graphene–Ge interface.« less
Moiduddin, Khaja
2018-02-01
The traditional methods of metallic bone implants are often dense and suffer from adverse reactions, biomechanical mismatch and lack of adequate space for new bone tissue to grow into the implant. The objective of this study is to evaluate the customized porous cranial implant with mechanical properties closer to that of bone and to improve the aesthetic outcome in cranial surgery with precision fitting for a better quality of life. Two custom cranial implants (bulk and porous) are digitally designed based on the Digital Imaging and Communications in Medicine files and fabricated using additive manufacturing. Initially, the defective skull model and the implant were fabricated using fused deposition modeling for the purpose of dimensional validation. Subsequently, the implant was fabricated using titanium alloy (Ti6Al4V extra low interstitial) by electron beam melting technology. The electron beam melting-produced body diagonal node structure incorporated in cranial implant was evaluated based on its mechanical strength and structural characterization. The results show that the electron beam melting-produced porous cranial implants provide the necessary framework for the bone cells to grow into the pores and mimic the architecture and mechanical properties closer to the region of implantation. Scanning electron microscope and micro-computed tomography scanning confirm that the produced porous implants have a highly regular pattern of porous structure with a fully interconnected network channel without any internal defect and voids. The physical properties of the titanium porous structure, containing the compressive strength of 61.5 MPa and modulus of elasticity being 1.20 GPa, represent a promising means of reducing stiffness and stress-shielding effect on the surrounding bone. This study reveals that the use of porous structure in cranial reconstruction satisfies the need of lighter implants with an adequate mechanical strength and structural characteristics, thus restoring better functionality and aesthetic outcomes for the patients.
NASA Astrophysics Data System (ADS)
Sugimoto, Akira; Ekino, Toshikazu; Gabovich, Alexander M.
2014-12-01
Nanoscale stripe structures of the parent iron-11 superconductor Fe1.033Te were investigated using low-temperature scanning tunnel microscopy-scanning tunnel spectroscopy (STM-STS). STM topographies and d I /d V maps show clear stripe structures with the bias-dependent multiple periods 2 ×a0 and a0, where a0 is the lattice constant ˜0.38 nm. The form of the stripe structures seen on d I /d V maps strongly depends on the bias voltage. Varying stripe structures are apparently driven by magnetic order appearing below the transition temperature Ts˜72 K, that is defined by the noticeable drop in the temperature dependence of resistivity, and are strongly influenced by the underlying excess Fe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Dipendra, E-mail: d-11sharma@rediffmail.com; Tiwari, S. N., E-mail: sntiwari123@rediffmail.com; Dwivedi, M. K., E-mail: dwivedi-ji@gmail.com
2016-05-06
Electronic structure properties of 4-n-methoxy-4′-cyanobiphenyl, a pure nematic liquid crystal have been examined using an ab‒initio, HF/6‒31G(d,p) technique with GAMESS program. Conformational and charge distribution analysis have been carried out. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the liquid crystal molecule have been calculated. Further, stacking, side by side and end to end interactions between a molecular pair have been evaluated. Results have been used to elucidate the physico-chemical and liquid crystalline properties of the system.
Doping of the step-edge Si chain: Ag on a Si(557)-Au surface
NASA Astrophysics Data System (ADS)
Krawiec, M.; Jałochowski, M.
2010-11-01
Structural and electronic properties of monatomic Ag chains on the Au-induced, highly ordered Si(557) surface are investigated by scanning tunneling microscopy (STM)/spectroscopy and first-principles density functional theory (DFT) calculations. The STM topography data show that a small amount of Ag (0.25 ML) very weakly modifies the one-dimensional structure induced by Au atoms. However, the bias-dependent STM topography and spectroscopy point to the importance of the electronic effects in this system, which are further corroborated by the DFT calculations. The obtained results suggest that Ag atoms act as electron donors leaving the geometry of the surface almost unchanged.
Enhancement of Curie temperature of barium hexaferrite by dense electronic excitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Manju; Kashyap, Subhash C.; Gupta, Hem C.
2014-07-15
Curie temperature of polycrystalline barium hexaferrite (BaFe{sub 12}O{sub 19}), prepared by conventional solid state technique, is anomalously and significantly enhanced (by nearly 15%) by energetic heavy ion irradiation (150 MeV, Ag{sup 12+}) at ambient temperature due to dense electronic excitations Moderate fluence (1 × 10{sup 12} ions/cm{sup 2}) induces structural defects giving rise to above enhancement. As established by X-ray diffraction, scanning electron microscopy and Raman studies, higher fluence (1 × 10{sup 13} ions/cm{sup 2}) has structurally transformed the sample to amorphous phase with marginal change in magnetization and Curie temperature.
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.
1990-01-01
The Microvax 2 computer, the basic software in VMS, and the Mitsubishi High Speed Disk were received and installed. The digital scanning tunneling microscope is fully installed and operational. A new technique was developed for pseudocolor analysis of the line plot images of a scanning tunneling microscope. Computer studies and mathematical modeling of the empirical data associated with many of the film calibration studies were presented. A gas can follow-up experiment which will be launched in September, on the Space Shuttle STS-50, was prepared and loaded. Papers were presented on the structure of the human hair strand using scanning electron microscopy and x ray analysis and updated research on the annual rings produced by the surf clam of the ocean estuaries of Maryland. Scanning electron microscopic work was conducted by the research team for the study of the Mossbauer and Magnetic Susceptibility Studies on NmNi(4.25)Fe(.85) and its Hydride.
Fracture modes in notched angleplied composite laminates
NASA Technical Reports Server (NTRS)
Irvine, T. B.; Ginty, C. A.
1984-01-01
The Composite Durability Structural Analysis (CODSTRAN) computer code is used to determine composite fracture. Fracture modes in solid and notched, unidirectional and angleplied graphite/epoxy composites were determined by using CODSTRAN. Experimental verification included both nondestructive (ultrasonic C-Scanning) and destructive (scanning electron microscopy) techniques. The fracture modes were found to be a function of ply orientations and whether the composite is notched or unnotched. Delaminations caused by stress concentrations around notch tips were also determined. Results indicate that the composite mechanics, structural analysis, laminate analysis, and fracture criteria modules embedded in CODSTRAN are valid for determining composite fracture modes.
Unconventional molecule-resolved current rectification in diamondoid–fullerene hybrids
Randel, Jason C.; Niestemski, Francis C.; Botello-Mendez, Andrés R.; Mar, Warren; Ndabashimiye, Georges; Melinte, Sorin; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Butova, Ekaterina D.; Fokin, Andrey A.; Schreiner, Peter R.; Charlier, Jean-Christophe; Manoharan, Hari C.
2014-01-01
The unimolecular rectifier is a fundamental building block of molecular electronics. Rectification in single molecules can arise from electron transfer between molecular orbitals displaying asymmetric spatial charge distributions, akin to p–n junction diodes in semiconductors. Here we report a novel all-hydrocarbon molecular rectifier consisting of a diamantane–C60 conjugate. By linking both sp3 (diamondoid) and sp2 (fullerene) carbon allotropes, this hybrid molecule opposingly pairs negative and positive electron affinities. The single-molecule conductances of self-assembled domains on Au(111), probed by low-temperature scanning tunnelling microscopy and spectroscopy, reveal a large rectifying response of the molecular constructs. This specific electronic behaviour is postulated to originate from the electrostatic repulsion of diamantane–C60 molecules due to positively charged terminal hydrogen atoms on the diamondoid interacting with the top electrode (scanning tip) at various bias voltages. Density functional theory computations scrutinize the electronic and vibrational spectroscopic fingerprints of this unique molecular structure and corroborate the unconventional rectification mechanism. PMID:25202942
Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy
Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.
2013-01-01
Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024
Study of nano-architecture of the wings of Paris Peacock butterfly
NASA Astrophysics Data System (ADS)
Ghate, Ekata; Bhoraskar, S. V.; Kulkarni, G. R.
Butterflies are one of the most colorful creatures in animal Kingdom. Wings of the male butterfly are brilliantly colored to attract females. Color of the wings plays an important role in camouflage. Study of structural colors in case of insects and butterflies are important for their biomimic and biophotonic applications. Structural color is the color which is produced by physical structures and their interaction with light. Paris Peacock or Papilio paris butterfly belongs to the family Papilionidae. The basis of structural color of this butterfly is investigated in the present study. The upper surface of the wings in this butterfly is covered with blue, green and brown colored scales. Nano-architecture of these scales was investigated with scanning electron microscope (SEM) and environmental scanning electron microscope (ESEM). Photomicrographs were analyzed using image analysis software. Goniometric color or iridescence in blue and green colored scales of this butterfly was observed and studied with the help of gonio spectrophotometer in the visible range. No iridescence was observed in brown colored scales of the butterfly. Hues of the blue and green color were measured with spectrophotometer and were correlated with nano-architecture of the wing. Results of electron microscopy and reflection spectroscopy are used to explain the iridescent nature of blue and green scales. Sinusoidal grating like structures of these scales were prominently seen in the blue scales. It is possible that the structure of these wings can act as a template for the fabrication of sinusoidal gratings using nano-imprint technology.
Xue, Yanhong; Zhao, Wei; Du, Wen; Zhang, Xiang; Ji, Gang; Ying, Wang; Xu, Tao
2012-07-01
Insulin granule trafficking is a key step in the secretion of glucose-stimulated insulin from pancreatic β-cells. The main feature of type 2 diabetes (T2D) is the failure of pancreatic β-cells to secrete sufficient amounts of insulin to maintain normal blood glucose levels. In this work, we developed and applied tomography based on scanning transmission electron microscopy (STEM) to image intact insulin granules in the β-cells of mouse pancreatic islets. Using three-dimensional (3D) reconstruction, we found decreases in both the number and the grey level of insulin granules in db/db mouse pancreatic β-cells. Moreover, insulin granules were closer to the plasma membrane in diabetic β-cells than in control cells. Thus, 3D ultra-structural tomography may provide new insights into the pathology of insulin secretion in T2D.
Fukuda, Muneyuki; Tomimatsu, Satoshi; Nakamura, Kuniyasu; Koguchi, Masanari; Shichi, Hiroyasu; Umemura, Kaoru
2004-01-01
A new method to prepare micropillar specimens with a high aspect ratio that is suitable for three-dimensional scanning transmission electron microscopy (3D-STEM) was developed. The key features of the micropillar fabrication are: first, microsampling to extract a small piece including the structure of interest in an IC chip, and second, an ion-beam with an incident direction of 60 degrees to the pillar's axis that enables the parallel sidewalls of the pillar to be produced with a high aspect ratio. A memory-cell structure (length: 6 microm; width: 300 x 500 nm) was fabricated in the micropillar and observed from various directions with a 3D-STEM. A planiform capacitor covered with granular surfaces and a solid crossing gate and metal lines was successfully observed threedimensionally at a resolution of approximately 5 nm.
NASA Astrophysics Data System (ADS)
Gupta, Vandana; Raina, Bindu; Verma, Seema; Bamzai, K. K.
2018-05-01
Samarium manganite doped with cadmium having general formula Sm1-xCdxMnO3 for x = 0.05, 0.15 were synthesized by solid state reaction technique. These compositions were characterized by various techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and dielectric. XRD analysis confirms the single phase formation with pervoskites structure having orthorhombic phase. Densities were determined and compared with the results obtained by Archimedes principle. The scanning electron micrograph shows that the particle size distribution is almost homogeneous and spherical in shape. FTIR analysis confirms the presence of various atomic bonds within a molecule. A very large value of dielectric constant was observed at low frequencies due to the presence of grains and interfaces. The dielectric constant value decreases with increase in cadmium doping at samarium site.
Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong
2015-06-07
The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.
He, Qianping; Chen, Jihua; Keffer, David J; Joy, David C
2014-01-01
Electron microscopy is an essential tool for the evaluation of microstructure and properties of the catalyst layer (CL) of proton exchange membrane fuel cells (PEMFCs). However, electron microscopy has one unavoidable drawback, which is radiation damage. Samples suffer temporary or permanent change of the surface or bulk structure under radiation damage, which can cause ambiguity in the characterization of the sample. To better understand the mechanism of radiation damage of CL samples and to be able to separate the morphological features intrinsic to the material from the consequences of electron radiation damage, a series of experiments based on high-angle annular dark-field-scanning transmission scanning microscope (HAADF-STEM), energy filtering transmission scanning microscope (EFTEM), and electron energy loss spectrum (EELS) are conducted. It is observed that for thin samples (0.3-1 times λ), increasing the incident beam energy can mitigate the radiation damage. Platinum nanoparticles in the CL sample facilitate the radiation damage. The radiation damage of the catalyst sample starts from the interface of Pt/C or defective thin edge and primarily occurs in the form of mass loss accompanied by atomic displacement and edge curl. These results provide important insights on the mechanism of CL radiation damage. Possible strategies of mitigating the radiation damage are provided. © 2013 Wiley Periodicals, Inc.
Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam
Lin, Feng; Markus, Isaac M.; Doeff, Marca M.; ...
2014-07-16
Our investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. But, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi 0.4Mn 0.4Co 0.18Ti 0.02O 2 particles, repeated electron beam irradiation induced a phase transition from an Rmore » $$\\bar{3}$$m layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from R$$\\bar{3}$$m 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, in using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results.« less
Brodusch, Nicolas; Trudeau, Michel; Michaud, Pierre; Rodrigue, Lisa; Boselli, Julien; Gauvin, Raynald
2012-12-01
Aluminum-lithium alloys are widespread in the aerospace industry. The new 2099 and 2199 alloys provide improved properties, but their microstructure and texture are not well known. This article describes how state-of-the-art field-emission scanning electron microscopy (FE-SEM) can contribute to the characterization of the 2099 aluminum-lithium alloy and metallic alloys in general. Investigations were carried out on bulk and thinned samples. Backscattered electron imaging at 3 kV and scanning transmission electron microscope imaging at 30 kV along with highly efficient microanalysis permitted correlation of experimental and expected structures. Although our results confirm previous studies, this work points out possible substitutions of Mg and Zn with Li, Al, and Cu in the T1 precipitates. Zinc and magnesium are also present in "rice grain"-shaped precipitates at the grain boundaries. The versatility of the FE-SEM is highlighted as it provides information in the macro- and microscales with relevant details. Its ability to probe the distribution of precipitates from nano- to microsizes throughout the matrix makes FE-SEM an essential technique for the characterization of metallic alloys.
NASA Technical Reports Server (NTRS)
Sturm, R. E.; Ritman, E. L.; Wood, E. H.
1975-01-01
The background for, and design of a third generation, general purpose, all electronic spatial scanning system, the DSR is described. Its specified performance capabilities provide dynamic and stop action three dimensional spatial reconstructions of any portion of the body based on a minimum exposure time of 0.01 second for each 28 multiplanar 180 deg scanning set, a maximum scan repetition rate of sixty 28 multiplane scan sets per second, each scan set consisting of a maximum of 240 parallel cross sections of a minimum thickness of 0.9 mm, and encompassing a maximum cylindrical volume about 23 cm in length and up to 38 cm in diameter.
NASA Astrophysics Data System (ADS)
Bürck, Jochen; Aras, Onur; Bertinetti, Luca; Ilhan, Caner A.; Ermeydan, Mahmut A.; Schneider, Reinhard; Ulrich, Anne S.; Kazanci, Murat
2018-01-01
Collagen is a very popular natural biomaterial due to its high biocompatibility and bioactivity. Electrospinning is currently the only technique that allows the fabrication of continuous fibers with diameters down to a few nanometers. In order to regenerate collagen in the forms of nanofibers, it is necessary to dissolve it in suitable solvents. The solvents and electrospinning process cause unfolding of collagen nanofibers. It is proposed that acidic solvents preserve better the natural structure of collagen fibers. In this paper, the structures of collagen nanofibers were examined by using circular dichroism (CD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, differential scanning calorimetry (DSC) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) methods in order to test this hypothesis. The increase in PP-II fraction, representing the triple helix structure in collagen, that was observed in CD analysis of HAc derived collagen nanofibers, for the first time was successfully confirmed and illustrated by using SEM and TEM methods. Furthermore, CD revealed the mostly detrimental effect of stabilization conditions such as heat, vacuum and UV treatment on the secondary structure of the collagen nanofibers.
NASA Astrophysics Data System (ADS)
Zhou, Hui
In this thesis, we present our findings on two major topics, both of which are studies of molecules on metal surfaces by scanning tunneling microscopy (STM). The first topic is on adsorption of a model amine compound, 1,4-benzenediamine (BDA), on the reconstructed Au(111) surface, chosen for its potential application as a molecular electronic device. The molecules were deposited in the gas phase onto the substrate in the vacuum chamber. Five different patterns of BDA molecules on the surface at different coverages, and the preferred adsorption sites of BDA molecules on reconstructed Au(111) surface, were observed. In addition, BDA molecules were susceptible to tip-induced movement, suggesting that BDA molecules on metal surfaces can be a potential candidate in STM molecular manipulations. We also studied graphene nanoislands on Co(0001) in the hope of understanding interaction of expitaxially grown graphene and metal substrates. This topic can shed a light on the potential application of graphene as an electronic device, especially in spintronics. The graphene nanoislands were formed by annealing contorted hexabenzocoronene (HBC) on the Co(0001) surface. In our experiments, we have determined atop registry of graphene atoms with respect to the underlying Co surface. We also investigated the low-energy electronic structures of graphene nanoislands by scanning tunneling spectroscopy. The result was compared with a first-principle calculation using density functional theory (DFT) which suggested strong coupling between graphene pi-bands and cobalt d-electrons. We also observed that the islands exhibit zigzag edges, which exhibits unique electronic structures compared with the center areas of the islands.
Nakano, Hiromi; Kamimoto, Konatsu; Yamamoto, Takahisa; Furuta, Yoshio
2018-06-11
We first successfully synthesized Li 1+ x − y Nb 1− x −3 y Ti x +4 y O₃ (LNT) solid solutions (0.13 ≤ x ≤ 0.18, 0 ≤ y ≤ 0.06) rapidly at 1373 K for one hour under 0.35 MPa by the controlling of air pressure using an air-pressure control atmosphere furnace. The composition is a formation area of a superstructure for LNT, in which the periodical intergrowth layer was formed in the matrix, and where it can be controlled by Ti content. Therefore, the sintering time depended on Ti content, and annealing was repeated for over 24 h until a homogeneous structure was formed using a conventional electric furnace. We clarified the mechanism of the rapid sintering using various microscale to nanoscale characterization techniques: X-ray diffraction, a scanning electron microscope, a transmission electron microscope (TEM), a Cs-corrected scanning TEM equipped with electron energy-loss spectroscopy, and X-ray absorption fine structure spectroscopy.
NASA Astrophysics Data System (ADS)
Blau, P. J.; Howe, J. Y.; Coffey, D. W.; Trejo, R. M.; Kenik, E. D.; Jolly, B. C.; Yang, N.
2012-08-01
Fine holes in metal alloys are employed for many important technological purposes, including cooling and the precise atomization of liquids. For example, they play an important role in the metering and delivery of fuel to the combustion chambers in energy-efficient, low-emission diesel engines. Electro-discharge machining (EDM) is one process employed to produce such holes. Since the hole shape and bore morphology can affect fluid flow, and holes also represent structural discontinuities in the tips of the spray nozzles, it is important to understand the microstructures adjacent to these holes, the features of the hole walls, and the nanomechanical properties of the material that was in some manner altered by the EDM hole-making process. Several techniques were used to characterize the structure and properties of spray-holes in a commercial injector nozzle. These include scanning electron microscopy, cross sectioning and metallographic etching, bore surface roughness measurements by optical interferometry, scanning electron microscopy, and transmission electron microscopy of recast EDM layers extracted with the help of a focused ion beam.
Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea
2017-10-23
Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.
Prestat, Eric; Kulzick, Matthew A; Dietrich, Paul J; Smith, Mr Matthew; Tien, Mr Eu-Pin; Burke, M Grace; Haigh, Sarah J; Zaluzec, Nestor J
2017-08-18
We have developed a new experimental platform for in situ scanning transmission electron microscope (STEM) energy dispersive X-ray spectroscopy (EDS) which allows real time, nanoscale, elemental and structural changes to be studied at elevated temperature (up to 1000 °C) and pressure (up to 1 atm). Here we demonstrate the first application of this approach to understand complex structural changes occurring during reduction of a bimetallic catalyst, PdCu supported on TiO 2 , synthesized by wet impregnation. We reveal a heterogeneous evolution of nanoparticle size, distribution, and composition with large differences in reduction behavior for the two metals. We show that the data obtained is complementary to in situ STEM electron energy loss spectroscopy (EELS) and when combined with in situ X-ray absorption spectroscopy (XAS) allows correlation of bulk chemical state with nanoscale changes in elemental distribution during reduction, facilitating new understanding of the catalytic behavior for this important class of materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Garcia, Carlos B W; Zhang, Yuanming; Mahajan, Surbhi; DiSalvo, Francis; Wiesner, Ulrich
2003-11-05
In the present study poly(isoprene-block-ethylene oxide), PI-b-PEO, block copolymers are used to structure iron oxide and silica precursors into reverse mesophases, which upon dissolution of the organic matrix lead to well-defined nanoparticles of spheres, cylinders, and plates based on the original structure of the mesophase prepared. The hybrid mesophases with sphere, cylinder, and lamellar morphologies containing the inorganic components in the minority phases are characterized through a combination of small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). After heat treatments the respective nanoparticles on mica surfaces are characterized by scanning force microscopy (SFM). X-ray diffraction (XRD) and superconducting quantum interference device (SQUID) magnetometer measurements are performed to demonstrate that the heat treatment leads to the formation of a magnetic gamma-Fe2O3 crystalline phase within the amorphous aluminosilicate. The results pave the way to functional, i.e., magnetic nanoparticles where the size, shape, and iron oxide concentration can be controlled opening a range of possible applications.
Shih, Min-Chuan; Li, Shao-Sian; Hsieh, Cheng-Hua; Wang, Ying-Chiao; Yang, Hung-Duen; Chiu, Ya-Ping; Chang, Chia-Seng; Chen, Chun-Wei
2017-02-08
The presence of the PbI 2 passivation layers at perovskite crystal grains has been found to considerably affect the charge carrier transport behaviors and device performance of perovskite solar cells. This work demonstrates the application of a novel light-modulated scanning tunneling microscopy (LM-STM) technique to reveal the interfacial electronic structures at the heterointerfaces between CH 3 NH 3 PbI 3 perovskite crystals and PbI 2 passivation layers of individual perovskite grains under light illumination. Most importantly, this technique enabled the first observation of spatially resolved mapping images of photoinduced interfacial band bending of valence bands and conduction bands and the photogenerated electron and hole carriers at the heterointerfaces of perovskite crystal grains. By systematically exploring the interfacial electronic structures of individual perovskite grains, enhanced charge separation and reduced back recombination were observed when an optimal design of interfacial PbI 2 passivation layers consisting of a thickness less than 20 nm at perovskite crystal grains was applied.
NASA Astrophysics Data System (ADS)
Sciambi, A.; Pelliccione, M.; Bank, S. R.; Gossard, A. C.; Goldhaber-Gordon, D.
2010-09-01
We propose a probe technique capable of performing local low-temperature spectroscopy on a two-dimensional electron system (2DES) in a semiconductor heterostructure. Motivated by predicted spatially-structured electron phases, the probe uses a charged metal tip to induce electrons to tunnel locally, directly below the tip, from a "probe" 2DES to a "subject" 2DES of interest. We test this concept with large-area (nonscanning) tunneling measurements, and predict a high spatial resolution and spectroscopic capability, with minimal influence on the physics in the subject 2DES.
NASA Astrophysics Data System (ADS)
Gorbyk, P. P.; Dubrovin, I. V.; Demchenko, Yu. A.
The main principles and methods of synthesis of hollow structures with inorganic nanomaterials are described. Synthesis of hollow spherical silica particles was based on hydrolysis of Si(CH3)2Cl2 and SiCl4 in nonpolar solvents at a surface of aerosol drops. To synthesise hollow magnetite nano- and microparticles with magnetite, saturated solution of iron chlorides in acetone was used. Phase and element composition, morphology and structure of samples were studied using XRD, Auger electron spectroscopy, scanning electron and atom force microscopies.
Electronic structure of metal-semiconductor nanojunctions in gold CdSe nanodumbbells.
Steiner, D; Mokari, T; Banin, U; Millo, O
2005-07-29
The electronic properties of metal-semiconductor nanojunctions are investigated by scanning tunneling spectroscopy of gold-tipped CdSe rods. A gap similar to that in bare CdSe nanorods is observed near the nanodumbbell center, while subgap structure emerges near the metal-semiconductor nanocontact. This behavior is attributed to the formation of subgap interface states that vanish rapidly towards the center of the rod, consistent with theoretical predictions. These states lead also to modified Coulomb staircase, and in some cases to negative differential conductance, on the gold tips.
Investigation of Properties of Nanocomposite Polyimide Samples Obtained by Fused Deposition Modeling
NASA Astrophysics Data System (ADS)
Polyakov, I. V.; Vaganov, G. V.; Yudin, V. E.; Ivan'kova, E. M.; Popova, E. N.; Elokhovskii, V. Yu.
2018-03-01
Nanomodified polyimide samples were obtained by fused deposition modeling (FDM) using an experimental setup for 3D printing of highly heat-resistant plastics. The mechanical properties and structure of these samples were studied by viscosimetry, differential scanning calorimetry, and scanning electron microscopy. A comparative estimation of the mechanical properties of laboratory samples obtained from a nanocomposite based on heat-resistant polyetherimide by FDM and injection molding is presented.
Holling, Nina; Dedi, Cinzia; Jones, Caroline E; Hawthorne, Joseph A; Hanlon, Geoffrey W; Salvage, Jonathan P; Patel, Bhavik A; Barnes, Lara M; Jones, Brian V
2014-06-01
Proteus mirabilis is a common cause of catheter-associated urinary tract infections and frequently leads to blockage of catheters due to crystalline biofilm formation. Scanning electron microscopy (SEM) has proven to be a valuable tool in the study of these unusual biofilms, but entails laborious sample preparation that can introduce artefacts, undermining the investigation of biofilm development. In contrast, environmental scanning electron microscopy (ESEM) permits imaging of unprocessed, fully hydrated samples, which may provide much insight into the development of P. mirabilis biofilms. Here, we evaluate the utility of ESEM for the study of P. mirabilis crystalline biofilms in situ, on urinary catheters. In doing so, we compare this to commonly used conventional SEM approaches for sample preparation and imaging. Overall, ESEM provided excellent resolution of biofilms formed on urinary catheters and revealed structures not observed in standard SEM imaging or previously described in other studies of these biofilms. In addition, we show that energy-dispersive X-ray spectroscopy (EDS) may be employed in conjunction with ESEM to provide information regarding the elemental composition of crystalline structures and demonstrate the potential for ESEM in combination with EDS to constitute a useful tool in exploring the mechanisms underpinning crystalline biofilm formation. © 2014 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.
Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy.
Nicotra, Giuseppe; Ramasse, Quentin M; Deretzis, Ioannis; La Magna, Antonino; Spinella, Corrado; Giannazzo, Filippo
2013-04-23
Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization of a hexagonal SiC(0001) substrate by high temperature annealing. This growth technique is known to result in a pronounced electron-doping (∼10(13) cm(-2)) of graphene, which is thought to originate from an interface carbon buffer layer strongly bound to the substrate. The scanning transmission electron microscopy analysis, carried out at an energy below the knock-on threshold for carbon to ensure no damage is imparted to the film by the electron beam, demonstrates that the buffer layer present on the planar SiC(0001) face delaminates from it on the (112n) facets of SiC surface steps. In addition, electron energy loss spectroscopy reveals that the delaminated layer has a similar electronic configuration to purely sp2-hybridized graphene. These observations are used to explain the local increase of the graphene sheet resistance measured around the surface steps by conductive atomic force microscopy, which we suggest is due to significantly lower substrate-induced doping and a resonant scattering mechanism at the step regions. A first-principles-calibrated theoretical model is proposed to explain the structural instability of the buffer layer on the SiC facets and the resulting delamination.
Mapping the magnetic and crystal structure in cobalt nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantu-Valle, Jesus; Betancourt, Israel; Sanchez, John E.
2015-07-14
Using off-axis electron holography under Lorentz microscopy conditions to experimentally determine the magnetization distribution in individual cobalt (Co) nanowires, and scanning precession-electron diffraction to obtain their crystalline orientation phase map, allowed us to directly visualize with high accuracy the effect of crystallographic texture on the magnetization of nanowires. The influence of grain boundaries and disorientations on the magnetic structure is correlated on the basis of micromagnetic analysis in order to establish the detailed relationship between magnetic and crystalline structure. This approach demonstrates the applicability of the method employed and provides further understanding on the effect of crystalline structure on magneticmore » properties at the nanometric scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shuning; Roy, Amitava; Lichtenberg, Henning
The micro-segmented flow technique was applied for continuous synthesis of ZnO micro- and nanoparticles with short residence times of 9.4 s and 21.4 s, respectively. The obtained particles were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Small angle X-ray scattering (SAXS) and photoluminescence spectroscopy were used to determine the size and optical properties of ZnO nanoparticles. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to investigate local structural properties. The EXAFS measurements reveal a larger degree of structural disorder in the nanoparticles than the microparticles. These structural changes should be taken into considerationmore » while evaluating the size-dependent visible emission of ZnO nanoparticles.« less
Morphology of LDPE-poly(3-hydroxybutyrate) films
NASA Astrophysics Data System (ADS)
Ol'khov, A. A.; Vlasov, S. V.; Shibryaeva, L. S.; Kosenko, R. Yu.; Iordanskii, A. L.
2012-07-01
The structure and morphology of biodegradable extruded polymeric films based on LDPE and (PHB) were studied by a combination of methods including polarization IR spectroscopy, DSC, and scanning electron microscopy (SEM). The components of LDPE-PHB blends containing 1-32% PHB are immiscible and form morphological structures (phases) with well distinguishable phase boundaries between dispersed phase and dispersion matrix.
Physical disintegration of biochar: An overlooked process
USDA-ARS?s Scientific Manuscript database
Data collected from both artificially and field (naturally) weathered biochar suggest that a potentially significant pathway of biochar disappearance is through physical breakdown of the biochar structure. Through scanning electron microscopy (SEM) we characterized this physical weathering which inc...
NASA Astrophysics Data System (ADS)
Gorokh, G. G.; Zakhlebayeva, A. I.; Metla, A. I.; Zhilinskiy, V. V.; Murashkevich, A. N.; Bogomazova, N. V.
2017-11-01
The metal oxide films of SnxZnyOz and SnxMoyOz systems deposited onto anodic alumina matrixes by chemical and ion layering from an aqueous solutions were characterized by scanning electron microscopy, Raman spectroscopy, electron probe X-ray microanalysis and IR spectroscopy. The obtained matrix films had reproducible composition and structure and possessed certain morphological characteristics and properties.
Resizing metal-coated nanopores using a scanning electron microscope.
Chansin, Guillaume A T; Hong, Jongin; Dusting, Jonathan; deMello, Andrew J; Albrecht, Tim; Edel, Joshua B
2011-10-04
Electron beam-induced shrinkage provides a convenient way of resizing solid-state nanopores in Si(3) N(4) membranes. Here, a scanning electron microscope (SEM) has been used to resize a range of different focussed ion beam-milled nanopores in Al-coated Si(3) N(4) membranes. Energy-dispersive X-ray spectra and SEM images acquired during resizing highlight that a time-variant carbon deposition process is the dominant mechanism of pore shrinkage, although granular structures on the membrane surface in the vicinity of the pores suggest that competing processes may occur. Shrinkage is observed on the Al side of the pore as well as on the Si(3) N(4) side, while the shrinkage rate is observed to be dependent on a variety of factors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
De Backer, A; Martinez, G T; MacArthur, K E; Jones, L; Béché, A; Nellist, P D; Van Aert, S
2015-04-01
Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. Copyright © 2014 Elsevier B.V. All rights reserved.
A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.
Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan
2015-06-01
In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.
Riedel, Damien; Bocquet, Marie-Laure; Lesnard, Hervé; Lastapis, Mathieu; Lorente, Nicolas; Sonnet, Philippe; Dujardin, Gérald
2009-06-03
Selective electron-induced reactions of individual biphenyl molecules adsorbed in their weakly chemisorbed configuration on a Si(100) surface are investigated by using the tip of a low-temperature (5 K) scanning tunnelling microscope (STM) as an atomic size source of electrons. Selected types of molecular reactions are produced, depending on the polarity of the surface voltage during STM excitation. At negative surface voltages, the biphenyl molecule diffuses across the surface in its weakly chemisorbed configuration. At positive surface voltages, different types of molecular reactions are activated, which involve the change of adsorption configuration from the weakly chemisorbed to the strongly chemisorbed bistable and quadristable configurations. Calculated reaction pathways of the molecular reactions on the silicon surface, using the nudge elastic band method, provide evidence that the observed selectivity as a function of the surface voltage polarity cannot be ascribed to different activation energies. These results, together with the measured threshold surface voltages and the calculated molecular electronic structures via density functional theory, suggest that the electron-induced molecular reactions are driven by selective electron detachment (oxidation) or attachment (reduction) processes.
Dunlop, Iain E.; Zorn, Stefan; Richter, Gunther; Srot, Vesna; Kelsch, Marion; van Aken, Peter A.; Skoda, Maximilian; Gerlach, Alexander; Spatz, Joachim P.; Schreiber, Frank
2010-01-01
We present a titanium-silicon oxide film structure that permits polarization modulated infrared reflection absorption spectroscopy on silicon oxide surfaces. The structure consists of a ~6 nm sputtered silicon oxide film on a ~200 nm sputtered titanium film. Characterization using conventional and scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy and X-ray reflectometry is presented. We demonstrate the use of this structure to investigate a selectively protein-resistant self-assembled monolayer (SAM) consisting of silane-anchored, biotin-terminated poly(ethylene glycol) (PEG). PEG-associated IR bands were observed. Measurements of protein-characteristic band intensities showed that this SAM adsorbed streptavidin whereas it repelled bovine serum albumin, as had been expected from its structure. PMID:20418963
Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.
Johnston-Peck, Aaron C; DuChene, Joseph S; Roberts, Alan D; Wei, Wei David; Herzing, Andrew A
2016-11-01
Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO 2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. Published by Elsevier B.V.
Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope
Johnston-Peck, Aaron C.; DuChene, Joseph S.; Roberts, Alan D.; Wei, Wei David; Herzing, Andrew A.
2016-01-01
Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300 keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. PMID:27469265
NASA Astrophysics Data System (ADS)
Raschke, Markus
2015-03-01
To understand and ultimately control the properties of most functional materials, from molecular soft-matter to quantum materials, requires access to the structure, coupling, and dynamics on the elementary time and length scales that define the microscopic interactions in these materials. To gain the desired nanometer spatial resolution with simultaneous spectroscopic specificity we combine scanning probe microscopy with different optical, including coherent, nonlinear, and ultrafast spectroscopies. The underlying near-field interaction mediated by the atomic-force or scanning tunneling microscope tip provides the desired deep-sub wavelength nano-focusing enabling few-nm spatial resolution. I will introduce our generalization of the approach in terms of the near-field impedance matching to a quantum system based on special optical antenna-tip designs. The resulting enhanced and qualitatively new forms of light-matter interaction enable measurements of quantum dynamics in an interacting environment or to image the electromagnetic local density of states of thermal radiation. Other applications include the inter-molecular coupling and dynamics in soft-matter hetero-structures, surface plasmon interferometry as a probe of electronic structure and dynamics in graphene, and quantum phase transitions in correlated electron materials. These examples highlight the general applicability of the new near-field microscopy approach, complementing emergent X-ray and electron imaging tools, aiming towards the ultimate goal of probing matter on its most elementary spatio-temporal level.
Insight in the 3D morphology of silica-based nanotubes using electron microscopy.
Dennenwaldt, Teresa; Wisnet, Andreas; Sedlmaier, Stefan J; Döblinger, Markus; Schnick, Wolfgang; Scheu, Christina
2016-11-01
Amorphous silica-based nanotubes (SBNTs) were synthesized from phosphoryl triamide, OP(NH 2 ) 3 , thiophosphoryl triamide, SP(NH 2 ) 3 , and silicon tetrachloride, SiCl 4 , at different temperatures and with varying amount of the starting material SiCl 4 using a recently developed template-free synthesis approach. Diameter and length of the SBNTs are tunable by varying the synthesis parameters. The 3D mesocrystals of the SBNTs were analyzed with focused ion beam sectioning and electron tomography in the transmission electron microscope showing the hollow tubular structure of the SBNTs. The reconstruction of a small SBNT assembly was achieved from a high-angle annular-dark field scanning transmission electron microscopy tilt series containing only thirteen images allowing analyzing beam sensitive material without altering the structure. The reconstruction revealed that the individual nanotubes are forming an interconnected array with an open channel structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Auger electron diffraction in thin CoO films on Au(1 1 1)
NASA Astrophysics Data System (ADS)
Chassé, A.; Niebergall, L.; Heiler, M.; Neddermeyer, H.; Schindler, K.-M.
The local structure of thin CoO films grown on a single crystal Au(1 1 1) surface has been studied by Auger electron diffraction (AED). Therefore, the angular dependence of the Auger electron intensity of Co-LMM and O-KLL Auger electrons was recorded in the total half-space above the film. Such 2 π-scans immediately reflect the symmetry of the surface and the local structure of the film. The experimental data are compared to multiple-scattering cluster calculations, where both the influence of multiple-scattering effects and effects of Auger transition matrix elements have been investigated. We have found that the AED patterns of a CoO film in forward-scattering conditions do not always provide straightforward information on the local structure of the film, whereas the multiple-scattering approximation applied gives very good agreement between experimental and theoretical results.
NASA Astrophysics Data System (ADS)
Hendrana, S.; Pryliana, R. F.; Natanael, C. L.; Rahayu, I.
2018-03-01
Phosphoric acid is one agents used in membrane fuel cell to modify ionic conductivity. Therefore, its distribution in membrane is a key parameter to gain expected conductivity. Efforts have been made to distribute phosphoric acid in a supramolecular-structured membrane prepared with a matrix. To achieve even distribution across bulk of the membrane, the inclusion of the polyacid is carried out under pressurized chamber. Image of scanning electron microscopy (SEM) shows better phosphoric acid distribution for one prepared in pressurized state. It also leads in better performing in ionic conductivity. Moreover, data from differential scanning calorimetry (DSC) indicate that the addition of phosphoric acid is prominent in the change of membrane structure, while morphological changes are captured in SEM images.
Sivasankaran, T G; Udayakumar, R; Elanchezhiyan, C; Sabhanayakam, Selvi
2008-02-01
The effects of sildenafil citrate with ethanol on the rat testis was studied using scanning electron microscopy. Male Albino rats were divided into 8 groups, each being treated for a maximum of 45 days as follows. In the 4 short-term treatment groups, control rats were administered normal saline orally, whereas experimental animals were fed sildenafil citrate (Viagra) 1 microg/g with 18% ethanol (5 g/kg body weight), which was given orally as a single dose. After 1, 2.5, 4 and 24h the rats were killed. In the 4 long-term treatment groups, daily continuous doses of drug and ethanol with a single dosage were given for 15, 30 and 45 days and the animals killed 4h after the last dosage. Changes in the testis were compared with the normal healthy rat testis. The use of a scanning electron microscope for evaluation of the changes in the testis is more suitable for observation of the surface and morphological shapes of the tissue structures.
Micro-wrinkling and delamination-induced buckling of stretchable electronic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyewole, O. K.; Department of Materials Science and Engineering, Kwara State University, Malete, P.M.B 1530, Ilorin, Kwara State; Yu, D.
This paper presents the results of experimental and theoretical/computational micro-wrinkles and buckling on the surfaces of stretchable poly-dimethylsiloxane (PDMS) coated with nano-scale Gold (Au) layers. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. The critical stresses required for wrinkling and buckling are analyzed using analytical models. The possible interfacial cracking that can occur along with film buckling is also studied using finite element simulations of the interfacial crack growth. The implications of the results are discussedmore » for potential applications of micro-wrinkles and micro-buckles in stretchable electronic structures and biomedical devices.« less
NASA Astrophysics Data System (ADS)
Craco, L.; Laad, M. S.; Müller-Hartmann, E.
2003-12-01
Motivated by a study of various experiments describing the electronic and magnetic properties of the diluted magnetic semiconductor Ga1-xMnxAs, we investigate its physical response in detail using a combination of first-principles band structure with methods based on dynamical mean field theory to incorporate strong, dynamical correlations, and intrinsic as well as extrinsic disorder in one single theoretical picture. We show how ferromagnetism is driven by double exchange (DE), in agreement with very recent observations, along with a good quantitative description of the details of the electronic structure, as probed by scanning tunneling microscopy and optical conductivity. Our results show how ferromagnetism can be driven by DE even in diluted magnetic semiconductors with small carrier concentration.
Kuwajima, Masaaki; Mendenhall, John M.; Lindsey, Laurence F.; Harris, Kristen M.
2013-01-01
Transmission-mode scanning electron microscopy (tSEM) on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm2 (65.54 µm per side) at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM) system, which were only 66.59 µm2 (8.160 µm per side) at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm). Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems. PMID:23555711
Kegelmann, Lukas; Wolff, Christian M; Awino, Celline; Lang, Felix; Unger, Eva L; Korte, Lars; Dittrich, Thomas; Neher, Dieter; Rech, Bernd; Albrecht, Steve
2017-05-24
Solar cells made from inorganic-organic perovskites have gradually approached market requirements as their efficiency and stability have improved tremendously in recent years. Planar low-temperature processed perovskite solar cells are advantageous for possible large-scale production but are more prone to exhibiting photocurrent hysteresis, especially in the regular n-i-p structure. Here, a systematic characterization of different electron selective contacts with a variety of chemical and electrical properties in planar n-i-p devices processed below 180 °C is presented. The inorganic metal oxides TiO 2 and SnO 2 , the organic fullerene derivatives C 60 , PCBM, and ICMA, as well as double-layers with a metal oxide/PCBM structure are used as electron transport materials (ETMs). Perovskite layers deposited atop the different ETMs with the herein applied fabrication method show a similar morphology according to scanning electron microscopy. Further, surface photovoltage spectroscopy measurements indicate comparable perovskite absorber qualities on all ETMs, except TiO 2 , which shows a more prominent influence of defect states. Transient photoluminescence studies together with current-voltage scans over a broad range of scan speeds reveal faster charge extraction, less pronounced hysteresis effects, and higher efficiencies for devices with fullerene compared to those with metal oxide ETMs. Beyond this, only double-layer ETM structures substantially diminish hysteresis effects for all performed scan speeds and strongly enhance the power conversion efficiency up to a champion stabilized value of 18.0%. The results indicate reduced recombination losses for a double-layer TiO 2 /PCBM contact design: First, a reduction of shunt paths through the fullerene to the ITO layer. Second, an improved hole blocking by the wide band gap metal oxide. Third, decreased transport losses due to an energetically more favorable contact, as implied by photoelectron spectroscopy measurements. The herein demonstrated improvements of multilayer selective contacts may serve as a general design guideline for perovskite solar cells.
Martínez-González, Eduardo; Frontana, Carlos
2014-05-07
In this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates. Electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level for metronidazole, including the solvent effect by the Cramer/Truhlar model, suggested that the minimum energy conformer is stabilized by intramolecular hydrogen bonding. In this structure, the inner reorganization energy, λi,j, contributes significantly (0.5 eV) to the total reorganization energy of electron transfer, thus leading to a diminishment of the experimental k.
Heidelmann, Markus; Barthel, Juri; Cox, Gerhard; Weirich, Thomas E
2014-10-01
The atomic structure of Cs0.44[Nb2.54W2.46O14] closely resembles the structure of the most active catalyst for the synthesis of acrylic acid, the M1 phase of Mo10V2(4+)Nb2TeO42-x. Consistently with observations made for the latter compound, the high-angle electron scattering signal recorded by scanning transmission electron microscopy shows a significant intensity variation, which repeats periodically with the projected crystallographic unit cell. The occupation factors for the individual mixed Nb/W atomic columns are extracted from the observed intensity variations. For this purpose, experimental images and simulated images are compared on an identical intensity scale, which enables a quantification of the cation distribution. According to our analysis specific sites possess low tungsten concentrations of 25%, whereas other sites have tungsten concentrations above 70%. These findings allow us to refine the existing structure model of the target compound, which has until now described a uniform distribution of the niobium and tungsten atoms in the unit cell, showing that the similarity between Cs0.44[Nb2.54W2.46O14] and the related catalytic compounds also extends to the level of the cation segregation.
Xu, Tao; Dick, Kimberly A; Plissard, Sébastien; Nguyen, Thanh Hai; Makoudi, Younes; Berthe, Maxime; Nys, Jean-Philippe; Wallart, Xavier; Grandidier, Bruno; Caroff, Philippe
2012-03-09
III-V antimonide nanowires are among the most interesting semiconductors for transport physics, nanoelectronics and long-wavelength optoelectronic devices due to their optimal material properties. In order to investigate their complex crystal structure evolution, faceting and composition, we report a combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning tunneling microscopy (STM) study of gold-nucleated ternary InAs/InAs(1-x)Sb(x) nanowire heterostructures grown by molecular beam epitaxy. SEM showed the general morphology and faceting, TEM revealed the internal crystal structure and ternary compositions, while STM was successfully applied to characterize the oxide-free nanowire sidewalls, in terms of nanofaceting morphology, atomic structure and surface composition. The complementary use of these techniques allows for correlation of the morphological and structural properties of the nanowires with the amount of Sb incorporated during growth. The addition of even a minute amount of Sb to InAs changes the crystal structure from perfect wurtzite to perfect zinc blende, via intermediate stacking fault and pseudo-periodic twinning regimes. Moreover, the addition of Sb during the axial growth of InAs/InAs(1-x)Sb(x) heterostructure nanowires causes a significant conformal lateral overgrowth on both segments, leading to the spontaneous formation of a core-shell structure, with an Sb-rich shell.
Advanced electron microscopy characterization of tri-layer rare-earth oxide superlattices
NASA Astrophysics Data System (ADS)
Phillips, Patrick; Disa, Ankit; Ismail-Beigi, Sohrab; Klie, Robert; University of Illinois-Chicago Team; Yale University Team
2015-03-01
Rare-earth nickelates are known to display complex electronic and magnetic behaviors owed to a very localized and sensitive Ni-site atomic and electronic structure. Toward realizing the goal of manipulating of the energetic ordering of Ni d orbitals and 2D conduction, the present work focuses on the experimental characterization of thin film superlattice structures consisting of alternating layers of LaTiO3 and LaNiO3 sandwiched between a dull insulator, LaAlO3. Using advanced scanning transmission electron microscopy (STEM)-based methods, properties such as interfacial sharpness, electron transfer, O presence, and local electronic structure can be probed at the atomic scale, and will be discussed at length. By combining both energy dispersive X-ray (EDX) and electronic energy loss (EEL) spectroscopies in an aberration-corrected STEM, it is possible to attain energy and spatial resolutions of 0.35 eV and 100 pm, respectively. Focus of the talk will remain not only on the aforementioned properties, but will also include details and parameters of the acquisitions to facilitate future characterization at this level.
B-site cation order/disorder and their valence states in Ba3MnNb2O9 perovskite oxide
NASA Astrophysics Data System (ADS)
Xin, Yan; Huang, Qing; Shafieizadeh, Zahra; Zhou, Haidong
2018-06-01
Polycrystalline samples Ba3MnNb2O9 synthesized by solid state reaction and single crystal samples grown by optical floating zone have been characterized using scanning transmission electron microscopy and electron energy loss spectroscopy. Three types of B-site Mn and Nb ordering phase are observed: fully ordered 1Mn:2Nb; fully disordered; nano-sized 1Mn:1Nb ordered. No electronic structure change for crystals with different ordering/disordering. The Mn valence is determined to be 2+, and Nb valence is 5+. Oxygen 2p orbitals hybridize with Mn 3d and Nb 4d orbitals. Factors that affect the electron energy loss near edge structures of transition metal white-lines in electron energy loss spectroscopy are explicitly illustrated and discussed.
Feng, Jiagui; Wagner, Sean R; Zhang, Pengpeng
2015-06-18
Freestanding silicene, a monolayer of Si arranged in a honeycomb structure, has been predicted to give rise to massless Dirac fermions, akin to graphene. However, Si structures grown on a supporting substrate can show properties that strongly deviate from the freestanding case. Here, combining scanning tunneling microscopy/spectroscopy and differential conductance mapping, we show that the electrical properties of the (√3 x √3) phase of few-layer Si grown on Ag(111) strongly depend on film thickness, where the electron phase coherence length decreases and the free-electron-like surface state gradually diminishes when approaching the interface. These features are presumably attributable to the inelastic inter-band electron-electron scattering originating from the overlap between the surface state, interface state and the bulk state of the substrate. We further demonstrate that the intrinsic electronic structure of the as grown (√3 x √3) phase is identical to that of the (√3 x √3)R30° reconstructed Ag on Si(111), both of which exhibit the parabolic energy-momentum dispersion relation with comparable electron effective masses. These findings highlight the essential role of interfacial coupling on the properties of two-dimensional Si structures grown on supporting substrates, which should be thoroughly scrutinized in pursuit of silicene.
NASA Astrophysics Data System (ADS)
Suganya, N.; Jaisankar, V.; Sivakumar, E. K. T.
Conducting polymer hydrogels represent a unique class of materials that possess enormous application in flexible electronic devices. In the present work, conducting carboxymethylcellulose (CMC)-co-polyacrylamide (PAAm)/polyaniline was synthesized by a two-step interpenetrating network solution polymerization technique. The synthesized CMC-co-PAAm/polyaniline with interpenetrating network structure was prepared by in situ polymerization of aniline to enhance conductivity. The molecular structure and morphology of the copolymer hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The novel conducting polymer hydrogels show good electrical and electrochemical behavior, which makes them potentially useful in electronic devices such as supercapacitors, biosensors, bioelectronics, solar cells and memory devices.
Electronic structure probed with positronium: Theoretical viewpoint
NASA Astrophysics Data System (ADS)
Kuriplach, Jan; Barbiellini, Bernardo
2018-05-01
We inspect carefully how the positronium can be used to study the electronic structure of materials. Recent combined experimental and computational study [A.C.L. Jones et al., Phys. Rev. Lett. 117, 216402 (2016)] has shown that the positronium affinity can be used to benchmark the exchange-correlation approximations in copper. Here we investigate whether an improvement can be achieved by increasing the numerical precision of calculations and by employing the strongly constrained and appropriately normed (SCAN) scheme, and extend the study to other selected systems like aluminum and high entropy alloys. From the methodological viewpoint, the computations of the positronium affinity are further refined and an alternative way of determining the electron chemical potential using charged supercells is examined.
NASA Astrophysics Data System (ADS)
Maksov, Artem; Ziatdinov, Maxim; Li, Li; Sefat, Athena; Maksymovych, Petro; Kalinin, Sergei
Crystalline matter on the nanoscale level often exhibits strongly inhomogeneous structural and electronic orders, which have a profound effect on macroscopic properties. This may be caused by subtle interplay between chemical disorder, strain, magnetic, and structural order parameters. We present a novel approach based on combination of high resolution scanning tunneling microscopy/spectroscopy (STM/S) and deep data style analysis for automatic separation, extraction, and correlation of structural and electronic behavior which might lead us to uncovering the underlying sources of inhomogeneity in in iron-based family of superconductors (FeSe, BaFe2As2) . We identify STS spectral features using physically robust Bayesian linear unmixing, and show their direct relevance to the fundamental physical properties of the system, including electronic states associated with individual defects and impurities. We collect structural data from individual unit cells on the crystalline lattice, and calculate both global and local indicators of spatial correlation with electronic features, demonstrating, for the first time, a direct quantifiable connection between observed structural order parameters extracted from the STM data and electronic order parameters identified within the STS data. This research was sponsored by the Division of Materials Sciences and Engineering, Office of Science, Basic Energy Sciences, US DOE.
The Beauty and Biology of Pollen.
ERIC Educational Resources Information Center
Clay-Poole, Scott T.; Slesnick, Irwin L.
1983-01-01
Describes: basic features of pollen grains (shapes, apertures, layering of wall, exine sculpturing); strategies for pollination (anemophily--wind transported, zoophily--animal transported); and the structures specialized for each process. Gives instructions for using scanning electron microscope photographs and for collecting, identifying, and…
Floral morphology of Gonocaryum with emphasis on the gynoecium
USDA-ARS?s Scientific Manuscript database
We investigated the floral development of Gonocaryum, a genus of Cardiopteridaceae that was segregated from Icacinaceae s.l., using scanning electron microscopy to clarify its gynoecial structure and facilitate morphological comparisons of Cardiopteridaceae. The key floral developmental characters i...
Lees, Robert M; Peddie, Christopher J; Collinson, Lucy M; Ashby, Michael C; Verkade, Paul
2017-01-01
Linking cellular structure and function has always been a key goal of microscopy, but obtaining high resolution spatial and temporal information from the same specimen is a fundamental challenge. Two-photon (2P) microscopy allows imaging deep inside intact tissue, bringing great insight into the structural and functional dynamics of cells in their physiological environment. At the nanoscale, the complex ultrastructure of a cell's environment in tissue can be reconstructed in three dimensions (3D) using serial block face scanning electron microscopy (SBF-SEM). This provides a snapshot of high resolution structural information pertaining to the shape, organization, and localization of multiple subcellular structures at the same time. The pairing of these two imaging modalities in the same specimen provides key information to relate cellular dynamics to the ultrastructural environment. Until recently, approaches to relocate a region of interest (ROI) in tissue from 2P microscopy for SBF-SEM have been inefficient or unreliable. However, near-infrared branding (NIRB) overcomes this by using the laser from a multiphoton microscope to create fiducial markers for accurate correlation of 2P and electron microscopy (EM) imaging volumes. The process is quick and can be user defined for each sample. Here, to increase the efficiency of ROI relocation, multiple NIRB marks are used in 3D to target ultramicrotomy. A workflow is described and discussed to obtain a data set for 3D correlated light and electron microscopy, using three different preparations of brain tissue as examples. Copyright © 2017 Elsevier Inc. All rights reserved.
Synthesis and characterization of bulk metallic glasses prepared by laser direct deposition
NASA Astrophysics Data System (ADS)
Ye, Xiaoyang
Fe-based and Zr-based metallic glasses have attracted extensive interest for structural applications due to their excellent glass forming ability, superior mechanical properties, unique thermal and corrosion properties. In this study, the feasibility of synthesizing metallic glasses with good ductility by laser direct deposition is explored. Both in-situ synthesis with elemental powder mixture and ex-situ synthesis with prealloyed powder are discussed. Microstructure and properties of laser direct deposited metallic glass composites are analyzed. Synthesis of Fe-Cr-Mo-W-Mn-C-Si-B metallic glass composite with a large fraction of amorphous phase was accomplished using laser direct deposition. X-ray diffraction (XRD) and transmission electron microscopy investigations revealed the existence of amorphous structure. Microstructure analyses by optical microscopy and scanning electron microscopy (SEM) indicated the periodically repeated microstructures of amorphous and crystalline phases. Partially crystallized structure brought by laser reheating and remelting during subsequent laser scans aggregated in the overlapping area between each scan. XRD analysis showed that the crystalline particle embedded in the amorphous matrix was Cr 1.07Fe18.93 phase. No significant microstructural differences were found from the first to the last layer. Microhardness of the amorphous phase (HV0.2 1591) showed a much higher value than that of the crystalline phase (HV0.2 947). Macrohardness of the top layer had a value close to the microhardness of the amorphous region. Wear resistance property of deposited layers showed a significant improvement with the increased fraction of amorphous phase. Zr65Al10Ni10Cu15 amorphous composites with a large fraction of amorphous phase were in-situ synthesized by laser direct deposition. X-ray diffraction confirmed the existence of both amorphous and crystalline phases. Laser parameters were optimized in order to increase the fraction of amorphous phase. The microstructure analysis by scanning electron microscopy revealed the deposited structure was composed of periodically repeated amorphous and crystalline phases. Overlapping regions with nanoparticles aggregated were crystallized by laser reheating and remelting processes during subsequent laser scans. Vickers microhardness of the amorphous region showed around 35% higher than that of crystalline region. Average hardness obtained by a Rockwell macrohardness tester was very close to the microhardness of the amorphous region. The compression test showed that the fracture strain of Zr65Al10Ni10Cu15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass. Differential scanning calorimetry test results further revealed the amorphous structure and glass transition temperature Tg was observed to be around 655K. In 3 mol/L NaCl solution, laser direct deposited amorphous composites exhibited distinctly improved corrosion resistance, compared with fully-crystallized samples.
Learning surface molecular structures via machine vision
NASA Astrophysics Data System (ADS)
Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.
2017-08-01
Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (`read out') all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds and thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. The method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.
NASA Astrophysics Data System (ADS)
Yao, Cheng-Bao; Wen, Xin; Li, Qiang-Hua; Yan, Xiao-Yan; Li, Jin; Zhang, Ke-Xin; Sun, Wen-Jun; Bai, Li-Na; Yang, Shou-Bin
2017-03-01
We present the structure and nonlinear absorption (NLA) properties of Cu-doped ZnO (CZO) films prepared by magnetron sputtering. The films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the CZO films can maintain a wurtzite structure. Furthermore, the open-aperture (OA) Z-scan measurements of the film were carried out by nanosecond laser pulse. A transition from saturable absorption (SA) to reverse saturable absorption (RSA) was observed as the excitation intensity increasing. With good excellent nonlinear optical coefficient, the samples were expected to be the potential applications in optical devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Sanjoy; Ellman, Brett, E-mail: bellman@kent.edu; Singh, Gautam
We describe a tool for studying the two-dimensional spatial variation in electronic properties of organic semiconductors: the scanning time-of-flight microscope (STOFm). The STOFm simultaneously measures the transmittance of polarized light and time-of-flight current transients with a pixel size <30 μm, making it especially valuable for studies of the correlations of structure with charge generation and transport in liquid crystalline organic semiconductors (LC OSCs). Adapting a previously developed photopolymerization technique, we characterize the instrument using patterned samples of a LC OSC bounded by a non-semiconducting polymer matrix.
Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface
Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.
2016-01-01
Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis. PMID:27255415
Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; ...
2014-12-02
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signaturemore » and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belianinov, Alex, E-mail: belianinova@ornl.gov; Ganesh, Panchapakesan; Lin, Wenzhi
2014-12-01
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe{sub 0.55}Se{sub 0.45} (T{sub c} = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe{sub 1−x}Se{sub x} structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified bymore » their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less
Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface
Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; ...
2016-06-03
Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/ (110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocationmore » cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. In conclusion, this report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.« less
Identifying local structural states in atomic imaging by computer vision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laanait, Nouamane; Ziatdinov, Maxim; He, Qian
The availability of atomically resolved imaging modalities enables an unprecedented view into the local structural states of materials, which manifest themselves by deviations from the fundamental assumptions of periodicity and symmetry. Consequently, approaches that aim to extract these local structural states from atomic imaging data with minimal assumptions regarding the average crystallographic configuration of a material are indispensable to advances in structural and chemical investigations of materials. Here, we present an approach to identify and classify local structural states that is rooted in computer vision. This approach introduces a definition of a structural state that is composed of both localmore » and non-local information extracted from atomically resolved images, and is wholly untethered from the familiar concepts of symmetry and periodicity. Instead, this approach relies on computer vision techniques such as feature detection, and concepts such as scale-invariance. We present the fundamental aspects of local structural state extraction and classification by application to simulated scanning transmission electron microscopy images, and analyze the robustness of this approach in the presence of common instrumental factors such as noise, limited spatial resolution, and weak contrast. Finally, we apply this computer vision-based approach for the unsupervised detection and classification of local structural states in an experimental electron micrograph of a complex oxides interface, and a scanning tunneling micrograph of a defect engineered multilayer graphene surface.« less
Identifying local structural states in atomic imaging by computer vision
Laanait, Nouamane; Ziatdinov, Maxim; He, Qian; ...
2016-11-02
The availability of atomically resolved imaging modalities enables an unprecedented view into the local structural states of materials, which manifest themselves by deviations from the fundamental assumptions of periodicity and symmetry. Consequently, approaches that aim to extract these local structural states from atomic imaging data with minimal assumptions regarding the average crystallographic configuration of a material are indispensable to advances in structural and chemical investigations of materials. Here, we present an approach to identify and classify local structural states that is rooted in computer vision. This approach introduces a definition of a structural state that is composed of both localmore » and non-local information extracted from atomically resolved images, and is wholly untethered from the familiar concepts of symmetry and periodicity. Instead, this approach relies on computer vision techniques such as feature detection, and concepts such as scale-invariance. We present the fundamental aspects of local structural state extraction and classification by application to simulated scanning transmission electron microscopy images, and analyze the robustness of this approach in the presence of common instrumental factors such as noise, limited spatial resolution, and weak contrast. Finally, we apply this computer vision-based approach for the unsupervised detection and classification of local structural states in an experimental electron micrograph of a complex oxides interface, and a scanning tunneling micrograph of a defect engineered multilayer graphene surface.« less
Chemes, Hector E
2013-01-01
Transmission electron microscopy (TEM) studies have provided the basis for an in-depth understanding of the cell biology and normal functioning of the testis and male gametes and have opened the way to characterize the functional role played by specific organelles in spermatogenesis and sperm function. The development of the scanning electron microscope (SEM) extended these boundaries to the recognition of cell and organ surface features and the architectural array of cells and tissues. The merging of immunocytochemical and histochemical approaches with electron microscopy has completed a series of technical improvements that integrate structural and functional features to provide a broad understanding of cell biology in health and disease. With these advances the detailed study of the intricate structural and molecular organization as well as the chemical composition of cellular organelles is now possible. Immunocytochemistry is used to identify proteins or other components and localize them in specific cells or organelles with high specificity and sensitivity, and histochemistry can be used to understand their function (i.e., enzyme activity). When these techniques are used in conjunction with electron microscopy their resolving power is further increased to subcellular levels. In the present chapter we will describe in detail various ultrastructural techniques that are now available for basic or translational research in reproductive biology and reproductive medicine. These include TEM, ultrastructural immunocytochemistry, ultrastructural histochemistry, and SEM.
Transport mirages in single-molecule devices
NASA Astrophysics Data System (ADS)
Gaudenzi, R.; Misiorny, M.; Burzurí, E.; Wegewijs, M. R.; van der Zant, H. S. J.
2017-03-01
Molecular systems can exhibit a complex, chemically tailorable inner structure which allows for targeting of specific mechanical, electronic, and optical properties. At the single-molecule level, two major complementary ways to explore these properties are molecular quantum-dot structures and scanning probes. This article outlines comprehensive principles of electron-transport spectroscopy relevant to both these approaches and presents a new, high-resolution experiment on a high-spin single-molecule junction exemplifying these principles. Such spectroscopy plays a key role in further advancing our understanding of molecular and atomic systems, in particular, the relaxation of their spin. In this joint experimental and theoretical analysis, particular focus is put on the crossover between the resonant regime [single-electron tunneling] and the off-resonant regime [inelastic electron (co)tunneling spectroscopy (IETS)]. We show that the interplay of these two processes leads to unexpected mirages of resonances not captured by either of the two pictures alone. Although this turns out to be important in a large fraction of the possible regimes of level positions and bias voltages, it has been given little attention in molecular transport studies. Combined with nonequilibrium IETS—four-electron pump-probe excitations—these mirages provide crucial information on the relaxation of spin excitations. Our encompassing physical picture is supported by a master-equation approach that goes beyond weak coupling. The present work encourages the development of a broader connection between the fields of molecular quantum-dot and scanning probe spectroscopy.
NASA Astrophysics Data System (ADS)
Johnson, Donald L.; DeAngelis, Robert J.; Medlin, Dana J.; Carr, James D.; Conlin, David L.
2014-05-01
The Weins number model and concretion equivalent corrosion rate methodology were developed as potential minimum-impact, cost-effective techniques to determine corrosion damage on submerged steel structures. To apply the full potential of these technologies, a detailed chemical and structural characterization of the concretion (hard biofouling) that transforms into iron bearing minerals is required. The fractions of existing compounds and the quantitative chemistries are difficult to determine from x-ray diffraction. Environmental scanning electron microscopy was used to present chemical compositions by means of energy-dispersive spectroscopy (EDS). EDS demonstrates the chemical data in mapping format or in point or selected area chemistries. Selected-area EDS data collection at precise locations is presented in terms of atomic percent. The mechanism of formation and distribution of the iron-bearing mineral species at specific locations will be presented. Based on water retention measurements, porosity in terms of void volume varies from 15 v/o to 30 v/o (vol.%). The void path displayed by scanning electron microscopy imaging illustrates the tortuous path by which oxygen migrates in the water phase within the concretion from seaside to metalside.
Unusual behavior in magnesium-copper cluster matter produced by helium droplet mediated deposition.
Emery, S B; Xin, Y; Ridge, C J; Buszek, R J; Boatz, J A; Boyle, J M; Little, B K; Lindsay, C M
2015-02-28
We demonstrate the ability to produce core-shell nanoclusters of materials that typically undergo intermetallic reactions using helium droplet mediated deposition. Composite structures of magnesium and copper were produced by sequential condensation of metal vapors inside the 0.4 K helium droplet baths and then gently deposited onto a substrate for analysis. Upon deposition, the individual clusters, with diameters ∼5 nm, form a cluster material which was subsequently characterized using scanning and transmission electron microscopies. Results of this analysis reveal the following about the deposited cluster material: it is in the un-alloyed chemical state, it maintains a stable core-shell 5 nm structure at sub-monolayer quantities, and it aggregates into unreacted structures of ∼75 nm during further deposition. Surprisingly, high angle annular dark field scanning transmission electron microscopy images revealed that the copper appears to displace the magnesium at the core of the composite cluster despite magnesium being the initially condensed species within the droplet. This phenomenon was studied further using preliminary density functional theory which revealed that copper atoms, when added sequentially to magnesium clusters, penetrate into the magnesium cores.
NASA Astrophysics Data System (ADS)
Stam, C. N.; Neal, A.; Park, S.; Mielke, R.; Tsapin, A. I.; Bhartia, R.; Salas, E.; Hug, W.; Behar, A. E.; Nadeau, J. L.
2011-12-01
Microbial interactions with synthetic polymers in open ocean is poorly understood. Plastics are a major and persistent contaminant of ocean waters. Many of these plastics are contaminated with toxic and synthetic chemicals that persist in the environment with minimal degradation. The purpose of this study is to look at the effects that microbial biofilm communities have on both surface and chemical structures of pre-production resin pellets (PRPs). Pseudomonas aeruignosa was grown with PRPs under multiple growth and nutrient conditions. These conditions were combined with varying lengths of UV exposures common to ocean environments. Material degradation of the PRPs and the changing surface and chemical structures of these synthetic polymers was evaluated using a combination of Fourier transform infrared spectroscopy, environmental scanning electron microscopy, scanning transmission electron microscopy, X-ray microtomography, and ArcGIS mapping. This study correlates with previous studies conducted on environmental PRP's , collected on the 2009 Project Kaisei expedition in the Subtropical Convergence Zone of the North Pacific Gyre. Further studies are needed to develop a full understanding of degradation rates of synthetic polymers in oceanic environments.
System and method for compressive scanning electron microscopy
Reed, Bryan W
2015-01-13
A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.
Mainprize, Iain L; Beniac, Daniel R; Falkovskaia, Elena; Cleverley, Robert M; Gierasch, Lila M; Ottensmeyer, F Peter; Andrews, David W
2006-12-01
Structural studies on various domains of the ribonucleoprotein signal recognition particle (SRP) have not converged on a single complete structure of bacterial SRP consistent with the biochemistry of the particle. We obtained a three-dimensional structure for Escherichia coli SRP by cryoscanning transmission electron microscopy and mapped the internal RNA by electron spectroscopic imaging. Crystallographic data were fit into the SRP reconstruction, and although the resulting model differed from previous models, they could be rationalized by movement through an interdomain linker of Ffh, the protein component of SRP. Fluorescence resonance energy transfer experiments determined interdomain distances that were consistent with our model of SRP. Docking our model onto the bacterial ribosome suggests a mechanism for signal recognition involving interdomain movement of Ffh into and out of the nascent chain exit site and suggests how SRP could interact and/or compete with the ribosome-bound chaperone, trigger factor, for a nascent chain during translation.
Silicene on Ag(1 1 1): Geometric and electronic structures of a new honeycomb material of Si
NASA Astrophysics Data System (ADS)
Takagi, Noriaki; Lin, Chun-Liang; Kawahara, Kazuaki; Minamitani, Emi; Tsukahara, Noriyuki; Kawai, Maki; Arafune, Ryuichi
2015-02-01
Silicene, a two-dimensional honeycomb sheet consisting of Si atoms, has attracted much attention as a new low-dimensional material because it gains various fascinating characteristics originating from the combination of Dirac fermion features with spin-orbit coupling. The novel properties such as the quantum spin Hall effect and the compatibility with the current Si device technologies have fueled competition to realize the silicene. This review article focuses on the geometric and electronic structures of silicene grown on Ag(1 1 1) investigated by scanning tunneling microcopy (STM), low energy electron diffraction (LEED) and density functional theory (DFT) calculations. The silicene on Ag(1 1 1) takes locally-buckled structure in which the Si atoms are displaced perpendicularly to the basal plane. As a result, several superstructures such as 4 × 4,√{ 13 } ×√{ 13 } R 13.9 °, 4 /√{ 3 } × 4 /√{ 3 } , and etc. emerge. The atomic arrangement of the 4 × 4 silicene has been determined by STM, DFT calculations and LEED dynamical analysis, while the other superstructures remain to be fully-resolved. In the 4 × 4 silicene, Si atoms are arranged to form a buckled honeycomb structure where six Si atoms of 18 Si atoms in the unit cell are displaced vertically. The displacements lead to the vertical shift of the substrate Ag atoms, indicating the non-negligible coupling at the interface between the silicene layer and the substrate. The interface coupling significantly modifies the electronic structure of the 4 × 4 silicene. No Landau level sequences were observed by scanning tunneling spectroscopy (STS) with magnetic fields applied perpendicularly to the sample surface. The DFT calculations showed that the π and π∗ bands derived from the Si 3pz are hybridized with the Ag electronic states, leading to the drastic modification in the band structure and then the absence of Dirac fermion features together with the two-dimensionality in the electronic states. These findings demonstrate that the strong coupling at the interface causes the symmetry breaking for the 4 × 4 silicene and as a result the disappearance of Dirac fermion features. The geometric and electronic structures of other superstructures are also discussed.
Anisotropic high-harmonic generation in bulk crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yong Sing; Reis, David A.; Ghimire, Shambhu
2016-11-21
The microscopic valence electron density determines the optical, electronic, structural and thermal properties of materials. However, current techniques for measuring this electron charge density are limited: for example, scanning tunnelling microscopy is confined to investigations at the surface, and electron diffraction requires very thin samples to avoid multiple scattering. Therefore, an optical method is desirable for measuring the valence charge density of bulk materials. Since the discovery of high-harmonic generation (HHG) in solids, there has been growing interest in using HHG to probe the electronic structure of solids. Here, using single-crystal MgO, we demonstrate that high-harmonic generation in solids ismore » sensitive to interatomic bonding. We find that harmonic efficiency is enhanced (diminished) for semi-classical electron trajectories that connect (avoid) neighbouring atomic sites in the crystal. Finally, these results indicate the possibility of using materials’ own electrons for retrieving the interatomic potential and thus the valence electron density, and perhaps even wavefunctions, in an all-optical setting.« less
Liang, Jiyuan; Yang, Jie; Cao, Weiguo; Guo, Xiangke; Guo, Xuefeng; Ding, Weiping
2015-09-01
Coaxial-line and hollow Mn2O3 nanofibers have been synthesized by a simple single-nozzle electrospinning method without using a complicated coaxial jet head, combined with final calcination. The crystal structure and morphology of the Mn2O3 nanofibers were investigated by using the X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results indicate that the electrospinning distance has important influence on the morphology and structure of the obtained Mn2O3 nanofibers, which changes from hollow fibers for short electrospinning distance to coaxial-line structure for long electrospinning distance after calcination in the air. The formation mechanisms of different structured Mn2O3 fibers are discussed in detail. This facile and effective method is easy to scale up and may be versatile for constructing coaxial-line and hollow fibers of other metal oxides. The catalytic activity of the obtained Mn2O3 nanofibers on thermal decomposition of ammonium perchlorate (AP) was studied by differential scanning calorimetry (DSC). The results show that the hollow Mn2O3 nanofibers have good catalytic activity to promote the thermal decomposition of AP.
Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes
NASA Astrophysics Data System (ADS)
Markoulidis, F.; Lei, C.; Lekakou, C.
2013-04-01
High-performance supercapacitors with organic electrolyte 1 M TEABF4 (tetraethyl ammonium tetrafluoroborate) in PC (propylene carbonate) were fabricated and tested, based on multiwall carbon nanotubes (MWNTs) deposited by electrophoresis on three types of alternative substrates: aluminium foil, ITO (indium tin oxide) coated PET (polyethylene terephthalate) film and PET film. In all cases, SEM (scanning electron microscopy) and STEM (scanning transmission electron microscopy) micrographs demonstrated that protruding, transversely oriented MWNT structures were formed, which should increase the transverse conductivity of these MWNT electrodes. The best supercapacitor cell of MWNT electrodes deposited on aluminium foil displayed good transverse orientation of the MWNT structures as well as an in-plane MWNT network at the feet of the protruding structures, which ensured good in-plane conductivity. Capacitor cells with MWNT electrodes deposited either on ITO-coated PET film or on PET film demonstrated lower but still very good performance due to the high density of transversely oriented MWNT structures (good transverse conductivity) but some in-plane inhomogeneities. Capacitor cells with drop-printed MWNTs on aluminium foil, without any transverse orientation, had 16-30 times lower specific capacitance and 5-40 times lower power density than the capacitor cells with the electrophoretically deposited MWNT electrodes.
NASA Astrophysics Data System (ADS)
Ma, Yao; Gao, Bo; Gong, Min; Willis, Maureen; Yang, Zhimei; Guan, Mingyue; Li, Yun
2017-04-01
In this work, a study of the structure modification, induced by high fluence swift heavy ion radiation, of the SiO2/Si structures and gate oxide interface in commercial 65 nm MOSFETs is performed. A key and novel point in this study is the specific use of the transmission electron microscopy (TEM) technique instead of the conventional atomic force microscope (AFM) or scanning electron microscope (SEM) techniques which are typically performed following the chemical etching of the sample to observe the changes in the structure. Using this method we show that after radiation, the appearance of a clearly visible thin layer between the SiO2 and Si is observed presenting as a variation in the TEM intensity at the interface of the two materials. Through measuring the EDX line scans we reveal that the Si:O ratio changed and that this change can be attributed to the migration of the Si towards interface after the Si-O bond is destroyed by the swift heavy ions. For the 65 nm MOSFET sample, the silicon substrate, the SiON insulator and the poly-silicon gate interfaces become blurred under the same irradiation conditions.
Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D
2017-05-01
The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. Copyright © 2016 Elsevier B.V. All rights reserved.
Hrabe, Nikolas W.; Heinl, Peter; Bordia, Rajendra K.; Körner, Carolin; Fernandes, Russell J.
2013-01-01
Regular 3D periodic porous Ti-6Al-4 V structures were fabricated by the selective electron beam melting method (EBM) over a range of relative densities (0.17–0.40) and pore sizes (500–1500 μm). Structures were seeded with human osteoblast-like cells (SAOS-2) and cultured for four weeks. Cells multiplied within these structures and extracellular matrix collagen content increased. Type I and type V collagens typically synthesized by osteoblasts were deposited in the newly formed matrix with time in culture. High magnification scanning electron microscopy revealed cells attached to surfaces on the interior of the structures with an increasingly fibrous matrix. The in-vitro results demonstrate that the novel EBM-processed porous structures, designed to address the effect of stress-shielding, are conducive to osteoblast attachment, proliferation and deposition of a collagenous matrix characteristic of bone. PMID:23869614
Near-field scanning magneto-optical spectroscopy of Wigner molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mintairov, A. M., E-mail: amintair@nd.edu; Rouvimov, S.; Ioffe Physical-Technical Institute of the Russian Academy of Sciences, Saint Petersburg, 194021
We study the emission spectra of single self-organized InP/GaInP QDs (size 100-220 nm) using high-spatial-resolution, low-temperature (5 K) near-field scanning optical microscope (NSOM) operating at magnetic field strength B=0-10 T. The dots contain up to twenty electrons and represent natural Wigner molecules (WM). We observed vibronic-type shake-up structure in single electron QDs manifesting formation of two electron (2e) WM in photo-excited state. We found that relative intensities of the shake-up components described well by vibronic Frank-Condon factors giving for dots having parabolic confinement energy ħω{sub 0}=1.2-4 meV molecule bond lengths 40-140 nm. We used measurements of magnetic-field-induced shifts to distinguishmore » emission of 2e-WM and singly charged exciton (trion). We also observed magnetic-field-induced molecular-droplet transition for two electron dot, emitting through doubly charge exciton (tetron) at zero magnetic field.« less
Imaging electronic states on topological semimetals using scanning tunneling microscopy
Gyenis, András; Inoue, Hiroyuki; Jeon, Sangjun; ...
2016-10-18
Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a condensed matter realization of various relativistic particles and phenomena previously discussed mainly in high energy physics. Weyl semimetals host massless, chiral, low-energy excitations in the bulk electronic band structure, whereas a symmetry protected pair of Weyl fermions gives rise to massless Dirac fermions.Weemployed scanning tunneling microscopy/spectroscopy to explore the behavior of electronic states both on the surface and in the bulk of topological semimetal phases. Bymore » mapping the quasiparticle interference (QPI) and emerging Landau levels at high magnetic field in Dirac semimetals Cd 3As 2 and Na 3Bi, we observed extended Dirac-like bulk electronic bands. QPI imaged on Weyl semimetal TaAs demonstrated the predicted momentum dependent delocalization of Fermi arc surface states in the vicinity of the surface projected Weyl nodes.« less
Idrobo, Juan C; Zhou, Wu
2017-09-01
Here we present a short historical account of when single adatom impurities where first identified in two-dimensional materials by scanning transmission electron microscopy (STEM). We also present a study of the graphene low-loss (below 50eV) response as a function of number of layers using electron energy-loss spectroscopy (EELS). The study shows that as few as three layers of graphene behave as bulk graphite for losses above 10eV We also show examples of how point and extended defects can easily be resolved and structural dynamics can be readily capture by using aberration-corrected STEM imaging. Finally, we show that the new generation of monochromators has opened up possibilities to explore new physics with an electron microscope. All these capabilities were enabled by the development of spherical aberration correctors and monochromators, where Ondrej Krivanek has played a key role. Copyright © 2017. Published by Elsevier B.V.
Walker, G.K.; Black, M.G.; Edwards, C.A.
1996-01-01
Adult zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels were induced to release large quantities of live spermatozoa by the administration of 5-hydroxytryptamine (serotonin). Sperm were photographed alive using phase-contrast microscopy and were fixed subsequently with glutaraldehyde followed by osmium tetroxide for eventual examination by transmission or scanning electron microscopy. The sperm of both genera are of the ect-aquasperm type. Their overall dimensions and shape allow for easy discrimination at the light and scanning electron microscopy level. Transmission electron microscopy of the cells reveals a barrel-shaped nucleus in zebra mussel sperm and an elongated nucleus in quagga mussel sperm. In both species, an acrosome is cradled in a nuclear fossa. The ultrastructure of the acrosome and axial body, however, is distinctive for each species. The structures of the midpiece are shown, including a unique mitochondrial "skirt" that includes densely packed parallel cristae and extends in a narrow sheet from the mitochondria.
Ramos, Glenda Quaresma; Cotta, Eduardo Adriano; da Fonseca Filho, Henrique Duarte
2016-07-01
Leaves surfaces have various structures with specific functions and contribute to the relationship with the environment. On morphological studies are analyzed various parameters, ranging from macro scale through the micro scale to the nanometer scale, which contribute to the study of taxonomy, pharmacognosy, and ecology, among others. Functional structures found in leaves are responsible for the wide variety of surfaces and some behaviors are given in terms of cellular adaptation and the presence or absence of wax. This study reports the characterization of Anacardium occidentale L. leaf surface and the techniques used therein. A set of scanning electron microscope (SEM) and atomic force microscope (AFM) images performed on fresh leaf allowed observation of textured and heterogeneous profiles on both sides. SCANNING 38:329-335, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Lafontant, Pascal J; Behzad, Ali R; Brown, Evelyn; Landry, Paul; Hu, Norman; Burns, Alan R
2013-01-01
The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart.
NASA Astrophysics Data System (ADS)
Hinsdale, Taylor; Malik, Bilal; Olsovsky, Cory; Jo, Javier A.; Maitland, Kristen C.
2016-03-01
We present a volumetric imaging method for biological tissue that is free of mechanically scanning components. The optical sectioning in the system is obtained by structured illumination microscopy (SIM) with the depth of focus being varied by the use of an electronic tunable-focus lens (ETL). The performance of the axial scanning mechanism was evaluated and characterized in conjunction with SIM to ensure volumetric images could be recorded and reconstructed without significant losses in optical section thickness and lateral resolution over the full desired scan range. It was demonstrated that sub-cellular image resolutions were obtainable in both microsphere films and in ex vivo oral mucosa, spanning multiple cell layers, without significant losses in image quality. The mechanism proposed here has the ability to be integrated into any wide-field microscopy system to convert it into a three-dimensional imaging platform without the need for axial scanning of the sample or imaging optics. The ability to axially scan independent of mechanical movement also provides the opportunity for the development of endoscopic systems which can create volumetric images of tissue in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuerbanjiang, Balati; Nedelkoski, Zlatko; Ghasemi, Arsham
2016-04-25
We show that Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} film deposited on Si(111) has a single crystal structure and twin related epitaxial relationship with the substrate. Sub-nanometer electron energy loss spectroscopy shows that in a narrow interface region there is a mutual inter-diffusion dominated by Si and Co. Atomic resolution aberration-corrected scanning transmission electron microscopy reveals that the film has B2 ordering. The film lattice structure is unaltered even at the interface due to the substitutional nature of the intermixing. First-principles calculations performed using structural models based on the aberration corrected electron microscopy show that the increased Si incorporation in the filmmore » leads to a gradual decrease of the magnetic moment as well as significant spin-polarization reduction. These effects can have significant detrimental role on the spin injection from the Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} film into the Si substrate, besides the structural integrity of this junction.« less
NASA Astrophysics Data System (ADS)
Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro
2012-02-01
We have performed low temperature scanning tunneling microscopy/spectroscopy (STM/STS) measurements on TiO2-terminated SrTiO3(001) thin film surfaces. The conductance map exhibited electronic modulations that were completely different from the surface structure. We also found that the electronic modulations were strongly dependent on temperature and the density of atomic defects associated with oxygen vacancies. These results suggest the existence of strongly correlated two-dimensional electronic states near the SrTiO3 surface, implying the importance of electron correlation at the interfaces of SrTiO3-related heterostructures.
Néel, Nicolas; Lattelais, Marie; Bocquet, Marie-Laure; Kröger, Jörg
2016-02-23
Single-molecule chemistry with a scanning tunneling microscope has preponderantly been performed on metal surfaces. The molecule-metal hybridization, however, is often detrimental to genuine molecular properties and obscures their changes upon chemical reactions. We used graphene on Ir(111) to reduce the coupling between Ir(111) and adsorbed phthalocyanine molecules. By local electron injection from the tip of a scanning tunneling microscope the two pyrrolic H atoms were removed from single phthalocyanines. The detachment of the H atom pair induced a strong modification of the molecular electronic structure, albeit with no change in the adsorption geometry. Spectra and maps of the differential conductance combined with density functional calculations unveiled the entire depopulation of the highest occupied molecular orbital upon H abstraction. Occupied π states of intact molecules are proposed to be emptied via intramolecular electron transfer to dangling σ states of H-free N atoms.
Synthesis, structural and optical properties of nanocrystalline vanadium doped zinc oxide aerogel
NASA Astrophysics Data System (ADS)
El Ghoul, J.; Barthou, C.; El Mir, L.
2012-06-01
We report the synthesis of vanadium-doped ZnO nanoparticles prepared by a sol-gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at% has been investigated. After treatment in air at different temperatures, the obtained nanopowder was characterized by various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). Analysis by scanning electron microscopy at high resolution shows that the grain size increases with increasing temperature. Thus, in the case of thermal treatment at 500 °C in air, the powder with an average particle size of 25 nm shows a strong luminescence band in the visible range. The intensity and energy position of the obtained PL band depends on the temperature measurement increase. The mechanism of this emission band is discussed.
Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB 2
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; ...
2017-02-17
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
Langewisch, Gernot; Falter, Jens; Schirmeisen, André; Fuchs, Harald
2014-01-01
Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) adsorbed on a metal surface is a prototypical organic-anorganic interface. In the past, scanning tunneling microscopy and scanning tunneling spectroscopy studies of PTCDA adsorbed on Ag(111) have revealed differences in the electronic structure of the molecules depending on their adsorption geometry. In the work presented here, high-resolution 3D force spectroscopy measurements at cryogenic temperatures were performed on a surface area that contained a complete PTCDA unit cell with the two possible geometries. At small tip-molecule separations, deviations in the tip-sample forces were found between the two molecule orientations. These deviations can be explained by a different electron density in both cases. This result demonstrates the capability of 3D force spectroscopy to detect even small effects in the electronic properties of organic adsorbates.
NASA Astrophysics Data System (ADS)
Hamers, M. F.; Pennock, G. M.; Drury, M. R.
2017-04-01
The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.
Rizzo, N W; Duncan, K E; Bourett, T M; Howard, R J
2016-08-01
We have refined methods for biological specimen preparation and low-voltage backscattered electron imaging in the scanning electron microscope that allow for observation at continuous magnifications of ca. 130-70 000 X, and documentation of tissue and subcellular ultrastructure detail. The technique, based upon early work by Ogura & Hasegawa (1980), affords use of significantly larger sections from fixed and resin-embedded specimens than is possible with transmission electron microscopy while providing similar data. After microtomy, the sections, typically ca. 750 nm thick, were dried onto the surface of glass or silicon wafer and stained with heavy metals-the use of grids avoided. The glass/wafer support was then mounted onto standard scanning electron microscopy sample stubs, carbon-coated and imaged directly at an accelerating voltage of 5 kV, using either a yttrium aluminum garnet or ExB backscattered electron detector. Alternatively, the sections could be viewed first by light microscopy, for example to document signal from a fluorescent protein, and then by scanning electron microscopy to provide correlative light/electron microscope (CLEM) data. These methods provide unobstructed access to ultrastructure in the spatial context of a section ca. 7 × 10 mm in size, significantly larger than the typical 0.2 × 0.3 mm section used for conventional transmission electron microscopy imaging. Application of this approach was especially useful when the biology of interest was rare or difficult to find, e.g. a particular cell type, developmental stage, large organ, the interface between cells of interacting organisms, when contextual information within a large tissue was obligatory, or combinations of these factors. In addition, the methods were easily adapted for immunolocalizations. © 2015 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society.
Flower-like NiO structures: Controlled hydrothermal synthesis and electrochemical characteristic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Hui; Chen, Xuan; Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang
Graphical abstract: Flower-like porous NiO was obtained via thermal decomposition of the precursor prepared by a hydrothermal process using hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of electrochemical measurements demonstrated that the flower-like porous NiO has high capacity (340 F g{sup −1}) with excellent cycling performance as electrode materials of electrochemical capacitors (ECs), which may be attributed to the unique microstrcture of NiO. Data analyses indicated that NiO with novel porousmore » structure attractive for practical and large-scale applications in electrochemical capacitors. Display Omitted Highlights: ► Synthesis and characterization of NiO with novel porous structure is presented in this work. ► The electrochemical performance of product was examined. ► NiO with excellent performance as electrode materials may be due to the unique microstrcture. ► NiO with novel porous structure attractive for practical with high capacity (340 F g{sup −1}). -- Abstract: Flower-like porous NiO was obtained by thermal decomposition of the precursor prepared by a hydrothermal process with hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resulting structures of NiO exhibited porous like petal building blocks. The electrochemical measurements’ results demonstrated that flower-like porous NiO has high capacity (340 F g{sup −1}) with excellent cycling performance as electrode materials for electrochemical capacitors, which may be attributed to the unique structure of NiO. The results indicated that NiO with novel porous structure has been attractive for practical and large-scale applications in electrochemical capacitors.« less
Scanning transmission ion micro-tomography (STIM-T) of biological specimens.
Schwertner, Micheal; Sakellariou, Arthur; Reinert, Tilo; Butz, Tilman
2006-05-01
Computed tomography (CT) was applied to sets of Scanning Transmission Ion Microscopy (STIM) projections recorded at the LIPSION ion beam laboratory (Leipzig) in order to visualize the 3D-mass distribution in several specimens. Examples for a test structure (copper grid) and for biological specimens (cartilage cells, cygospore) are shown. Scanning Transmission Micro-Tomography (STIM-T) at a resolution of 260 nm was demonstrated for the first time. Sub-micron features of the Cu-grid specimen were verified by scanning electron microscopy. The ion energy loss measured during a STIM-T experiment is related to the mass density of the specimen. Typically, biological specimens can be analysed without staining. Only shock freezing and freeze-drying is required to preserve the ultra-structure of the specimen. The radiation damage to the specimen during the experiment can be neglected. This is an advantage compared to other techniques like X-ray micro-tomography. At present, the spatial resolution is limited by beam position fluctuations and specimen vibrations.
On the structural origins of ferroelectricity in HfO{sub 2} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Xiahan; Grimley, Everett D.; LeBeau, James M.
2015-04-20
Here, we present a structural study on the origin of ferroelectricity in Gd doped HfO{sub 2} thin films. We apply aberration corrected high-angle annular dark-field scanning transmission electron microscopy to directly determine the underlying lattice type using projected atom positions and measured lattice parameters. Furthermore, we apply nanoscale electron diffraction methods to visualize the crystal symmetry elements. Combined, the experimental results provide unambiguous evidence for the existence of a non-centrosymmetric orthorhombic phase that can support spontaneous polarization, resolving the origin of ferroelectricity in HfO{sub 2} thin films.
Magnetic Ordering in Sr 3YCo 4O 10+x
Kishida, Takayoshi; Kapetanakis, Myron D.; Yan, Jiaqiang; ...
2016-01-28
Transition-metal oxides often exhibit complex magnetic behavior due to the strong interplay between atomic-structure, electronic and magnetic degrees of freedom. Cobaltates, especially, exhibit complex behavior because of cobalt’s ability to adopt various valence and spin state configurations. The case of the oxygen-deficient perovskite Sr 3YCo 4O 10+x (SYCO) has gained considerable attention because of persisting uncertainties about its structure and the origin of the observed room temperature ferromagnetism. Here we report a combined investigation of SYCO using aberration-corrected scanning transmission electron microscopy and density functional theory calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendall, Amy; McDonald, Michele; Bian, Wen
Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits permore » helical turn.« less
Interfacial scanning tunneling spectroscopy (STS) of chalcogenide/metal hybrid nanostructure
NASA Astrophysics Data System (ADS)
Saad, Mahmoud M.; Abdallah, Tamer; Easawi, Khalid; Negm, Sohair; Talaat, Hassan
2015-05-01
The electronic structure at the interface of chalcogenide/metal hybrid nanostructure (CdSe-Au tipped) had been studied by UHV scanning tunneling spectroscopy (STS) technique at room temperature. This nanostructure was synthesized by a phase transfer chemical method. The optical absorption of this hybrid nanostructure was recorded, and the application of the effective mass approximation (EMA) model gave dimensions that were confirmed by the direct measurements using the scanning tunneling microscopy (STM) as well as the high-resolution transmission electron microscope (HRTEM). The energy band gap obtained by STS agrees with the values obtained from the optical absorption. Moreover, the STS at the interface of CdSe-Au tipped hybrid nanostructure between CdSe of size about 4.1 ± 0.19 nm and Au tip of size about 3.5 ± 0.29 nm shows a band bending about 0.18 ± 0.03 eV in CdSe down in the direction of the interface. Such a result gives a direct observation of the electron accumulation at the interface of CdSe-Au tipped hybrid nanostructure, consistent with its energy band diagram. The presence of the electron accumulation at the interface of chalcogenides with metals has an important implication for hybrid nanoelectronic devices and the newly developed plasmon/chalcogenide photovoltaic solar energy conversion.
NASA Astrophysics Data System (ADS)
An, Lingling; Jing, Min; Xiao, Bo; Bai, Xiao-Yan; Zeng, Qing-Dao; Zhao, Ke-Qing
2016-09-01
Disk-like liquid crystals (DLCs) can self-assemble to ordered columnar mesophases and are intriguing one-dimensional organic semiconductors with high charge carrier mobility. To improve their applicable property of mesomorphic temperature ranges, we exploit the binary mixtures of electronic donor-acceptor DLC materials. The electron-rich 2,3,6,7,10,11-hexakis(alkoxy)triphenylenes (C4, C6, C8, C10, C12) and an electron-deficient tetrapentyl triphenylene-2,3,6,10-tetracarboxylate have been prepared and their binary mixtures have been investigated. The mesomorphism of the 1:1 (molar ratio) mixtures has been characterized by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and small angel x-ray scattering (SAXS). The self-assembled monolayer structure of a discogen on a solid-liquid interface has been imaged by the high resolution scanning tunneling microscopy (STM). The match of peripheral chain length has important influence on the mesomorphism of the binary mixtures. Project supported by the National Natural Science Foundation of China (Grant Nos. 51273133 and 51443004).
Liu, Jingyue
2005-06-01
Scanning transmission electron microscopy (STEM) techniques can provide imaging, diffraction and spectroscopic information, either simultaneously or in a serial manner, of the specimen with an atomic or a sub-nanometer spatial resolution. High-resolution STEM imaging, when combined with nanodiffraction, atomic resolution electron energy-loss spectroscopy and nanometer resolution X-ray energy dispersive spectroscopy techniques, is critical to the fundamental studies of importance to nanoscience and nanotechnology. The availability of sub-nanometer or sub-angstrom electron probes in a STEM instrument, due to the use of a field emission gun and aberration correctors, ensures the greatest capabilities for studies of sizes, shapes, defects, crystal and surface structures, and compositions and electronic states of nanometer-size regions of thin films, nanoparticles and nanoparticle systems. The various imaging, diffraction and spectroscopy modes available in a dedicated STEM or a field emission TEM/STEM instrument are reviewed and the application of these techniques to the study of nanoparticles and nanostructured catalysts is used as an example to illustrate the critical role of the various STEM techniques in nanotechnology and nanoscience research.
NASA Astrophysics Data System (ADS)
Crozet, C.; Verdier, M.; Lay, S.; Antoni-Zdziobek, A.
2018-07-01
α/γ phase transformations occurring in Fe-10Cu-xNi alloys (0 ≤ x ≤ 15 in mass%) were studied using X-ray diffraction, scanning electron microscopy, electron back scattered diffraction, transmission electron microscopy and chemical analysis, combining X-ray microanalysis with energy dispersive spectrometry in the scanning electron microscope and electron microprobe analysis with wavelength dispersive spectrometry. The influence of cooling rate on the microstructure was investigated using ice-brine quenching and 2 °C/min slow cooling rate performed with dilatometry. Ni addition induces metastable transformations on cooling: massive and bainitic ferrite are formed depending on the alloy composition and cooling rate. Moreover, most of the Cu phase precipitates on cooling giving rise to a fine distribution of Cu particles in the ferrite grains. For both cooling conditions, the hardness increases with increasing Ni content and a higher hardness is obtained in the quenched alloy for each composition. The change in hardness is correlated to the effect of Ni solid solution, transformation structure and size of Cu particles.
Synchronized voltage contrast display analysis system
NASA Technical Reports Server (NTRS)
Johnston, M. F.; Shumka, A.; Miller, E.; Evans, K. C. (Inventor)
1982-01-01
An apparatus and method for comparing internal voltage potentials of first and second operating electronic components such as large scale integrated circuits (LSI's) in which voltage differentials are visually identified via an appropriate display means are described. More particularly, in a first embodiment of the invention a first and second scanning electron microscope (SEM) are configured to scan a first and second operating electronic component respectively. The scan pattern of the second SEM is synchronized to that of the first SEM so that both simultaneously scan corresponding portions of the two operating electronic components. Video signals from each SEM corresponding to secondary electron signals generated as a result of a primary electron beam intersecting each operating electronic component in accordance with a predetermined scan pattern are provided to a video mixer and color encoder.
Visualization of bacterial polysaccharides by scanning transmission electron microscopy.
Wolanski, B S; McAleer, W J; Hilleman, M R
1983-04-01
Highly purified capsular polysaccharides of Neisseria meningitidis groups A, B, and C have been visualized by high resolution Scanning Transmission Electron Microscopy (STEM). Spheroidal macromolecules approximately 200 A in diameter are characteristic of the Meningococcus A and C polysaccharides whereas filaments that are 400-600 A in length are found in Meningococcus B polysaccharide preparations. Filaments are occasionally found associated with the spheroidal Meningococcus A and C polysaccharides and it is proposed that these structures are composed of a long (1-4 microns) filament or filaments that are arranged in spheroidal molecules or micelles of high molecular weight. The Meningococcus B polysaccharide, by contrast, is a short flexuous filament or strand of relatively low molecular weight. A relationship between morphology and antigenicity is proposed.
Tziveleka, Leto-Aikaterini; Ioannou, Efstathia; Tsiourvas, Dimitris; Berillis, Panagiotis; Foufa, Evangelia; Roussis, Vassilios
2017-05-29
In search of alternative and safer sources of collagen for biomedical applications, the marine demosponges Axinella cannabina and Suberites carnosus , collected from the Aegean and the Ionian Seas, respectively, were comparatively studied for their insoluble collagen, intercellular collagen, and spongin-like collagen content. The isolated collagenous materials were morphologically, physicochemically, and biophysically characterized. Using scanning electron microscopy and transmission electron microscopy the fibrous morphology of the isolated collagens was confirmed, whereas the amino acid analysis, in conjunction with infrared spectroscopy studies, verified the characteristic for the collagen amino acid profile and its secondary structure. Furthermore, the isoelectric point and thermal behavior were determined by titration and differential scanning calorimetry, in combination with circular dichroism spectroscopic studies, respectively.
Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng
2015-05-01
Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.
Scanning tunneling microscopy studies of Si donors (Si[sub Ga]) in GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, J.F.; Liu, X.; Newman, N.
1994-03-07
We report scanning tunneling microscopy (STM) studies of Si substitutional donors (Si[sub Ga]) in GaAs that reveal delocalized and localized electronic features corresponding to Si[sub Ga] in the top few layers of the (110) cleavage surface. The delocalized features appear as protrusions a few nm in size, superimposed on the background lattice. These features are attributed to enhanced tunneling due to the local perturbation of the band bending by the Coulomb potential of subsurface Si[sub Ga]. In contrast, STM images of surface Si[sub Ga] show very localized electronic structures, in good agreement with a recent theoretical prediction [J. Wang [italmore » et] [ital al]., Phys. Rev. B 47, 10 329 (1993)].« less
Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.
1982-07-01
of my research to the mainstream of technology. The techniques used for beam processing are distinguished by their * ~.* beam source and method by...raster scanned CW lasers (CWL), pulsed ion beams (PI), area pulsed electron beams (PEE), raster scanned (RSEB) or multi - scanned electron beams (MSEB...where high quality or tailored profiles are required. Continuous wave lasers and multi -scanned or swept-line electron beams are the most likely candidates
Dynamic probe of ZnTe(110) surface by scanning tunneling microscopy
Kanazawa, Ken; Yoshida, Shoji; Shigekawa, Hidemi; Kuroda, Shinji
2015-01-01
The reconstructed surface structure of the II–VI semiconductor ZnTe (110), which is a promising material in the research field of semiconductor spintronics, was studied by scanning tunneling microscopy/spectroscopy (STM/STS). First, the surface states formed by reconstruction by the charge transfer of dangling bond electrons from cationic Zn to anionic Te atoms, which are similar to those of IV and III–V semiconductors, were confirmed in real space. Secondly, oscillation in tunneling current between binary states, which is considered to reflect a conformational change in the topmost Zn–Te structure between the reconstructed and bulk-like ideal structures, was directly observed by STM. Third, using the technique of charge injection, a surface atomic structure was successfully fabricated, suggesting the possibility of atomic-scale manipulation of this widely applicable surface of ZnTe. PMID:27877752
Unusual inhomogeneous microstructures in charge glass state of PbCrO3
NASA Astrophysics Data System (ADS)
Kurushima, Kosuke; Tsukasaki, Hirofumi; Ogata, Takahiro; Sakai, Yuki; Azuma, Masaki; Ishii, Yui; Mori, Shigeo
2018-05-01
We investigated the microstructures and local structures of perovskite PbCrO3, which shows a metal-to-insulator transition and a 9.8% volume collapse, by electron diffraction, high-resolution transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). It is revealed that the charge glass state is characterized by the unique coexistence of the crystalline state with a cubic symmetry on average and the noncrystalline state. HAADF-STEM observation at atomic resolution revealed that Pb ions were displaced from the ideal A site position of the cubic perovskite structure, which gives rise to characteristic diffuse scatterings around the fundamental Bragg reflections. These structural inhomogeneities are crucial to the understanding of the unique physical properties in the charge glass state of PbCrO3.
Atomic resolution study of the interfacial bonding at Si3N4/CeO2-δ grain boundaries
NASA Astrophysics Data System (ADS)
Walkosz, W.; Klie, R. F.; Öǧüt, S.; Borisevich, A.; Becher, P. F.; Pennycook, S. J.; Idrobo, J. C.
2008-08-01
Using a combination of atomic-resolution Z-contrast imaging and electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope, we examine the atomic and electronic structures at the interface between Si3N4 (101¯0) and CeO2-d intergranular film (IGF). Ce atoms are observed to segregate to the interface in a two-layer periodic arrangement, which is significantly different from the structure observed in a previous study. Our EELS experiments show (i) oxygen in direct contact with the terminating Si3N4 open-ring structures, (ii) a change in the Ce valence from a nominal oxidation state of +3 to almost +4 moving from the interface into the IGF, and (iii) a uniform concentration of Si in the film.
Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi
2017-07-18
The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can now be realized through very fast data acquisition, processing, and reconstruction algorithms. If we use DPC STEM for atomic-resolution imaging using a sub-angstrom size electron probe, it has been shown that we can directly observe the atomic electric field inside atoms within crystals and even inside single atoms, the field between the atomic nucleus and the surrounding electron cloud, which possesses information about the atomic species, local chemical bonding and charge redistribution between bonded atoms. This possibility may open an alternative way for directly visualizing atoms and nanostructures, that is, seeing atoms as an entity of electromagnetic fields that reflect the intra- and interatomic electronic structures. In this Account, the current status of aberration-corrected DPC STEM is highlighted, along with some applications in real material and device studies.
NASA Astrophysics Data System (ADS)
Larramendi, S.; Vaillant Roca, Lidice; Saint-Gregoire, Pierre; Ferraz Dias, Johnny; Behar, Moni
2017-10-01
A ZnO nanorod structure was grown by the hydrothermal method and interpenetrated with CdTe using the isothermal closed space sublimation technique. The obtained structure was studied by using the Rutherford backscattering spectrometry (RBS), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM). The X-ray Diffraction (XRD) technique confirmed the presence of CdTe nanocrystals (NCs) of very small size formed on the surface and in the interspaces between the ZnO nanorods. The RBS observations together with the SEM observations give information on the obtained structure. Finally the photoluminescence studies show a strong energy confinement effect on the grown CdTe NCs.
Wing scale microstructures and nanostructures in butterflies--natural photonic crystals.
Vértesy, Z; Bálint, Zs; Kertész, K; Vigneron, J P; Lousse, V; Biró, L P
2006-10-01
The aim of our study was to investigate the correlation between structural colour and scale morphology in butterflies. Detailed correlations between blue colour and structure were investigated in three lycaenid subfamilies, which represent a monophylum in the butterfly family Lycaenidae (Lepidoptera): the Coppers (Lycaeninae), the Hairstreaks (Theclinae) and the Blues (Polyommatinae). Complex investigations such as spectral measurements and characterization by means of light microscopy, scanning electron microscopy and transmission electron microscopy enabled us to demonstrate that: (i) a wide array of nanostructures generate blue colours; (ii) monophyletic groups use qualitatively similar structures; and (iii) the hue of the blue colour is characteristic for the microstructure and nanostructure of the body of the scales.
Pb chains on reconstructed Si(335) surface
NASA Astrophysics Data System (ADS)
Krawiec, Mariusz
2009-04-01
The structural and electronic properties of Si(335)-Au surface decorated with Pb atoms are studied by means of density-functional theory. The resulting structural model features Pb atoms bonded to neighboring Si and Au surface atoms, forming monoatomic chain located 0.2 nm above the surface. The presence of Pb chain leads to a strong rebonding of Si atoms at the step edge. The fact that Pb atoms occupy positions in the middle of terrace is consistent with scanning tunneling microscopy (STM) data and also confirmed by simulated STM images. The calculated band structure clearly shows one-dimensional metallic character. The calculated electronic bands remain in very good agreement with photoemission data.
Correlation of doping, structure, and carrier dynamics in a single GaN nanorod
NASA Astrophysics Data System (ADS)
Zhou, Xiang; Lu, Ming-Yen; Lu, Yu-Jung; Gwo, Shangjr; Gradečak, Silvija
2013-06-01
We report the nanoscale optical investigation of a single GaN p-n junction nanorod by cathodoluminescence (CL) in a scanning transmission electron microscope. CL emission characteristic of dopant-related transitions was correlated to doping and structural defect in the nanorod, and used to determine p-n junction position and minority carrier diffusion lengths of 650 nm and 165 nm for electrons and holes, respectively. Temperature-dependent CL study reveals an activation energy of 19 meV for non-radiative recombination in Mg-doped GaN nanorods. These results directly correlate doping, structure, carrier dynamics, and optical properties of GaN nanostructure, and provide insights for device design and fabrication.
Progressive fracture of fiber composites
NASA Technical Reports Server (NTRS)
Irvin, T. B.; Ginty, C. A.
1983-01-01
Refined models and procedures are described for determining progressive composite fracture in graphite/epoxy angleplied laminates. Lewis Research Center capabilities are utilized including the Real Time Ultrasonic C Scan (RUSCAN) experimental facility and the Composite Durability Structural Analysis (CODSTRAN) computer code. The CODSTRAN computer code is used to predict the fracture progression based on composite mechanics, finite element stress analysis, and fracture criteria modules. The RUSCAN facility, CODSTRAN computer code, and scanning electron microscope are used to determine durability and identify failure mechanisms in graphite/epoxy composites.
Periodic scarred States in open quantum dots as evidence of quantum Darwinism.
Burke, A M; Akis, R; Day, T E; Speyer, Gil; Ferry, D K; Bennett, B R
2010-04-30
Scanning gate microscopy (SGM) is used to image scar structures in an open quantum dot, which is created in an InAs quantum well by electron-beam lithography and wet etching. The scanned images demonstrate periodicities in magnetic field that correlate to those found in the conductance fluctuations. Simulations have shown that these magnetic transform images bear a strong resemblance to actual scars found in the dot that replicate through the modes in direct agreement with quantum Darwinism.
Periodic Scarred States in Open Quantum Dots as Evidence of Quantum Darwinism
NASA Astrophysics Data System (ADS)
Burke, A. M.; Akis, R.; Day, T. E.; Speyer, Gil; Ferry, D. K.; Bennett, B. R.
2010-04-01
Scanning gate microscopy (SGM) is used to image scar structures in an open quantum dot, which is created in an InAs quantum well by electron-beam lithography and wet etching. The scanned images demonstrate periodicities in magnetic field that correlate to those found in the conductance fluctuations. Simulations have shown that these magnetic transform images bear a strong resemblance to actual scars found in the dot that replicate through the modes in direct agreement with quantum Darwinism.
Mapping atomic contact between pentacene and a Au surface using scanning tunneling spectroscopy.
Song, Young Jae; Lee, Kyuho; Kim, Seong Heon; Choi, Byoung-Young; Yu, Jaejun; Kuk, Young
2010-03-10
We mapped spatially varying intramolecular electronic structures on a pentacene-gold interface using scanning tunneling spectroscopy. Along with ab initio calculations based on density functional theory, we found that the directional nature of the d orbitals of Au atoms plays an important role in the interaction at the pentacene-gold contact. The gold-induced interface states are broadened and shifted by various pentacene-gold distances determined by the various registries of a pentacene molecule on a gold substrate.
Scanning Transmission Electron Microscopy | Materials Science | NREL
mode by collecting the EDS and EELS signals point-by-point as one scans the electron probe across the . Examples of Scanning Transmission Electron Microscopy Capabilities Z-contrast image microphoto taken by
Electronically decoupled stacking fault tetrahedra embedded in Au(111) films
Schouteden, Koen; Amin-Ahmadi, Behnam; Li, Zhe; Muzychenko, Dmitry; Schryvers, Dominique; Van Haesendonck, Chris
2016-01-01
Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well-decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers. PMID:28008910
Electronically decoupled stacking fault tetrahedra embedded in Au(111) films.
Schouteden, Koen; Amin-Ahmadi, Behnam; Li, Zhe; Muzychenko, Dmitry; Schryvers, Dominique; Van Haesendonck, Chris
2016-12-23
Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well-decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, G.M.; School of Materials Science and Engineering, The University of New South Wales, NSW 2052; Yang, C.C., E-mail: ccyang@unsw.edu.a
2009-12-15
In this work, the tree-like carbon nanotubes (CNTs) with branches of different diameters and the wing-like CNTs with graphitic-sheets of different densities were synthesized by using plasma enhanced chemical vapor deposition. The nanostructures of the as-prepared hybrid carbon materials were characterized by scanning electron microscopy and transmission electron microscopy. The structural dependence of field electron emission (FEE) property was also investigated. It is found that both of the tree- and wing-like CNTs exhibit a lower turn-on field and higher emission current density than the pristine CNTs, which can be ascribed to the effects of branch size, crystal orientation, and graphitic-sheetmore » density. - Graphical abstract: Tree-like carbon nanotubes (CNTs) with branches and the wing-like CNTs with graphitic-sheets were synthesized by using plasma enhanced chemical vapor deposition. The structural dependence of field electron emission property was also investigated.« less
Bradley, Aaron J; Ugeda, Miguel M; da Jornada, Felipe H; Qiu, Diana Y; Ruan, Wei; Zhang, Yi; Wickenburg, Sebastian; Riss, Alexander; Lu, Jiong; Mo, Sung-Kwan; Hussain, Zahid; Shen, Zhi-Xun; Louie, Steven G; Crommie, Michael F
2015-04-08
Despite the weak nature of interlayer forces in transition metal dichalcogenide (TMD) materials, their properties are highly dependent on the number of layers in the few-layer two-dimensional (2D) limit. Here, we present a combined scanning tunneling microscopy/spectroscopy and GW theoretical study of the electronic structure of high quality single- and few-layer MoSe2 grown on bilayer graphene. We find that the electronic (quasiparticle) bandgap, a fundamental parameter for transport and optical phenomena, decreases by nearly one electronvolt when going from one layer to three due to interlayer coupling and screening effects. Our results paint a clear picture of the evolution of the electronic wave function hybridization in the valleys of both the valence and conduction bands as the number of layers is changed. This demonstrates the importance of layer number and electron-electron interactions on van der Waals heterostructures and helps to clarify how their electronic properties might be tuned in future 2D nanodevices.
NASA Astrophysics Data System (ADS)
Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.
2017-10-01
Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.
Jin, Chun; Jin, Li-Na; Guo, Mei-Xia; Liu, Ping; Zhang, Jia-Nan; Bian, Shao-Wei
2017-12-15
A three-dimensional (3D) electrode material was successfully synthesized through a facile ZnO-assisted hydrothermal process in which vertical MnO 2 nanotube arrays were in situ grown on the conductive graphene/polyester composite fabric. The morphology and structure of MnO 2 nanotubes/graphene/polyester textile electrode were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The 3D electrode structure facilitates to achieve the maximum number of active sites for the pesudocapacitance redox reaction, fast electrolyte ion transportation and short ion diffusion path. The electrochemical measurements showed that the electrode possesses good capacitance capacity which reached 498F/g at a scan rate of 2mV/s in Na 2 SO 4 electrolyte solution. The electrode also showed stable electrochemical performances under the conditions of long-term cycling, and mechanical bending and twisting. Copyright © 2017 Elsevier Inc. All rights reserved.
Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution
NASA Astrophysics Data System (ADS)
Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.
2018-02-01
A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.
Belianinov, Alex; Vasudevan, Rama K; Strelcov, Evgheni; ...
2015-05-13
The development of electron, and scanning probe microscopies in the second half of the twentieth century have produced spectacular images of internal structure and composition of matter with, at nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition and analysis. The progress in imaging technologies in the beginning of the twenty first century has opened the proverbial floodgates of high-veracity information on structure and functionality. High resolution imaging now allows information on atomic positions with picometer precision, allowing for quantitative measurements of individual bond length and angles. Functional imaging often leadsmore » to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this data into physically and chemically relevant information from imaging data.« less
NASA Astrophysics Data System (ADS)
Wulandari, A. P.; Septarini, D.; Zainuddin, A.
2017-05-01
Ramie is a natural fiber that is very potential to be developed in Indonesia. Decorticated-fiber which has been known as china grass produce different structures irregular part but shows a long straight section in the middle. This study aims to determine differences in chemical components, morphology and microstructure of two different parties after biodegumming process. China grass has been processed to remove gum using pectinolytic fungus. The microstructure of the treated was further tested by Fourier Transform InfraRed (FTIR), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM). The FTIR study indicated that during the biodegumming process, chemical bonding of non-cellulose components most removed by the activity of pectinase from the fungus. XRD analysis reflects an increase in the crystallinity of the fiber after biodegumming. Scanning electron microscopy (SEM) was used to confirm a reduction in the size of the fiber after biodegumming either in the irregular and regular part of the fiber after biodegumming.
NASA Astrophysics Data System (ADS)
Wong, Meng Fei; Heng, Xiangxin; Zeng, Kaiyang
2008-10-01
Domain structures of [001]T and [011]T-cut Pb(Zn1/3Nb2/3)O3-(6%-7%)PbTiO3 (PZN-PT) single crystals are studied using scanning electron acoustic microscope (SEAM) technique. The observation of the orientation of domain walls agree reasonably well with the trigonometric projection of rhombohedral and orthorhombic dipoles on the (001) and (011) surfaces, respectively. After mechanical loading with microindentation, domain switching is also observed to form a hyperbolic butterfly shape and extend preferentially along four diagonal directions, i.e., ⟨110⟩ on (001) surface and ⟨111¯⟩ on (011) surface. The critical shear stress to cause domain switching for PZN-PT crystal is estimated to be approximately 49 MPa for both {110} and {111¯} planes based on theoretical analysis. Generally, the SEAM technique has been successfully demonstrated to be a valid technique for observation of domain structures in single crystal PZN-PTs.
Structural and electrical properties of LiCo3/5Cu2/5VO4 ceramics
NASA Astrophysics Data System (ADS)
Ram, Moti
2010-05-01
The LiCo3/5Cu2/5VO4 compound is prepared by a solution-based chemical method and characterized by the techniques of X-ray diffraction, scanning electron microscopy and complex impedance spectroscopy. The X-ray diffraction study shows an orthorhombic unit cell structure of the material with lattice parameters a=13.8263 (30) Å, b=8.7051 (30) Å and c=3.1127 (30) Å. The nature of scanning electron micrographs of a sintered pellet of the material reveals that grains of unequal sizes (˜0.2-3 μm) present an average grain size with a polydisperse distribution on the surface of the sample. Complex plane diagrams indicate grain interior and grain boundary contributions to the electrical response in the material. The electrical conductivity study reveals that electrical conduction in the material is a thermally activated process. The frequency dependence of the a.c. conductivity obeys Jonscher’s universal law.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belianinov, Alex; Vasudevan, Rama K; Strelcov, Evgheni
The development of electron, and scanning probe microscopies in the second half of the twentieth century have produced spectacular images of internal structure and composition of matter with, at nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition and analysis. The progress in imaging technologies in the beginning of the twenty first century has opened the proverbial floodgates of high-veracity information on structure and functionality. High resolution imaging now allows information on atomic positions with picometer precision, allowing for quantitative measurements of individual bond length and angles. Functional imaging often leadsmore » to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this data into physically and chemically relevant information from imaging data.« less
Castiglia, Marcello Teixeira; da Silva, Juliano Voltarelli F.; Frezarim Thomazini, José Armendir; Volpon, José Batista
2015-01-01
To evaluate, under microscopic examination, the structural changes displayed by the trabecular and cortical bones after being processed chemically and sterilized by ethylene oxide. Methods: Samples of cancellous and cortical bones obtained from young female albinus rats (Wistar) were assigned to four groups according to the type of treatment: Group I- drying; Group II- drying and ethylene oxide sterilization; III- chemical treatment; IV- chemical treatment and ethylene oxide sterilization. Half of this material was analyzed under ordinary light microscope and the other half using scanning electron microscopy. Results: In all the samples, regardless the group, there was good preservation of the general morphology. For samples submitted to the chemical processing there was better preservation of the cellular content, whereas there was amalgamation of the fibres when ethylene oxide was used. Conclusion: Treatment with ethylene oxide caused amalgamation of the fibers, possibly because of heating and the chemical treatment contributed to a better cellular preservation of the osseous structure. PMID:26998450
Synthesis of porous SnO2 nanocubes via selective leaching and enhanced gas-sensing properties
NASA Astrophysics Data System (ADS)
Li, Yining; Wei, Qi; Song, Peng; Wang, Qi
2016-01-01
Porous micro-/nanostructures are of great interest in many current and emerging areas of technology. In this paper, porous SnO2 nanocubes have been successfully fabricated via a selective leaching strategy using CoSn(OH)6 as precursor. The structure and morphology of as-prepared samples were investigated by several techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric and differential scanning calorimeter analysis (TGDSC), transmission electron microscopy (TEM) and N2 adsorptiondesorption analyses. On the basis of those characterizations, the mechanism for the formation of porous SnO2 nanocubes has been proposed. Owing to the well-defined and uniform porous structures, porous SnO2 nanocubes possessing more adsorbent amount of analytic gas and accelerate the transmission speed so as to enhance the gas-sensing properties. Gas sensing investigation showed that the sensor based on porous SnO2 nanocubes exhibited high response, short responserecovery times and good selectivity to ethanol gas.
Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges
NASA Astrophysics Data System (ADS)
Wu, Shuang; Liu, Bing; Shen, Cheng; Li, Si; Huang, Xiaochun; Lu, Xiaobo; Chen, Peng; Wang, Guole; Wang, Duoming; Liao, Mengzhou; Zhang, Jing; Zhang, Tingting; Wang, Shuopei; Yang, Wei; Yang, Rong; Shi, Dongxia; Watanabe, Kenji; Taniguchi, Takashi; Yao, Yugui; Wang, Weihua; Zhang, Guangyu
2018-05-01
The determination of the electronic structure by edge geometry is unique to graphene. In theory, an evanescent nonchiral edge state is predicted at the zigzag edges of graphene. Up to now, the approach used to study zigzag-edged graphene has mostly been limited to scanning tunneling microscopy. The transport properties have not been revealed. Recent advances in hydrogen plasma-assisted "top-down" fabrication of zigzag-edged graphene nanoribbons (Z-GNRs) have allowed us to investigate edge-related transport properties. In this Letter, we report the magnetotransport properties of Z-GNRs down to ˜70 nm wide on an h -BN substrate. In the quantum Hall effect regime, a prominent conductance peak is observed at Landau ν =0 , which is absent in GNRs with nonzigzag edges. The conductance peak persists under perpendicular magnetic fields and low temperatures. At a zero magnetic field, a nonlocal voltage signal, evidenced by edge conduction, is detected. These prominent transport features are closely related to the observable density of states at the hydrogen-etched zigzag edge of graphene probed by scanning tunneling spectroscopy, which qualitatively matches the theoretically predicted electronic structure for zigzag-edged graphene. Our study gives important insights for the design of new edge-related electronic devices.
Ultrafast Carrier dynamics of InxGa1-xN nanostructures grown directly on Si(111)
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Devi, Pooja; Rodriguez, P. E. D. S.; Kumar, Manish; Shivling, V. D.; Noetzel, Richard; Sharma, Chhavi; Sinha, R. K.; Kumar, Mahesh
2018-05-01
We show a flux dependence changes in structural, optical and electronic properties of InxGa1-xN nanostructures (NSs) namely nanocolumns (NCs), nanoflakes (NFs) and nanowall network (NWN) grown directly on Si(111) surface. Field emission scanning electron microscopy (FESEM) images were recorded to see morphological changes from NFs to NCs and NWNc etc, while high-resolution X-ray diffraction (HRXRD) ω-2θ scans were used to determine In incorporation. The maximum In incorporation was observed to be 20, 33 and 38% for the sharp transition from NFs to NCs and NWNs, respectively. The charge carrier dynamics of these grown NSs were probed using Ultrafast Femtosecond Transient Absorption Spectroscopy (UFTAS) with excitation at 350 nm pump wavelength. The UFTAS studies show the comparative charge carriers dynamics of the NWS, NCs and NFs. The charge carrier studies show a higher lifetime in NWNs as compare to NCs and NFs. Further, to examine electronic structure and level of degeneracy of these NSs, core-level and valence band spectra were analyzed by X-ray photoelectron spectroscopy (XPS), which manifest the upward band bending ranging from 0.2 eV to 0.4 eV.
Theory of scanning tunneling spectroscopy: from Kondo impurities to heavy fermion materials
NASA Astrophysics Data System (ADS)
Morr, Dirk K.
2017-01-01
Kondo systems ranging from the single Kondo impurity to heavy fermion materials present us with a plethora of unconventional properties whose theoretical understanding is still one of the major open problems in condensed matter physics. Over the last few years, groundbreaking scanning tunneling spectroscopy (STS) experiments have provided unprecedented new insight into the electronic structure of Kondo systems. Interpreting the results of these experiments—the differential conductance and the quasi-particle interference spectrum—however, has been complicated by the fact that electrons tunneling from the STS tip into the system can tunnel either into the heavy magnetic moment or the light conduction band states. In this article, we briefly review the theoretical progress made in understanding how quantum interference between these two tunneling paths affects the experimental STS results. We show how this theoretical insight has allowed us to interpret the results of STS experiments on a series of heavy fermion materials providing detailed knowledge of their complex electronic structure. It is this knowledge that is a conditio sine qua non for developing a deeper understanding of the fascinating properties exhibited by heavy fermion materials, ranging from unconventional superconductivity to non-Fermi-liquid behavior in the vicinity of quantum critical points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massote, Daniel V. P.; Liang, Liangbo; Kharche, Neerav
Compared to graphene, the synthesis of large area atomically thin boron materials is particularly challenging, owing to the electronic shell structure of B, which does not lend itself to the straightforward assembly of pure B materials. This difficulty is evidenced by the fact that the first synthesis of a pure two-dimensional boron was only very recently reported, using silver as a growing substrate. In addition to experimentally observed 2D boron allotropes, a number of other stable and metastable 2D boron materials are predicted to exist, depending on growth conditions and the use of a substrate during growth. This first-principles studymore » based on density functional theory aims at providing guidelines for the identification of these materials. To this end, this report presents a comparative description of a number of possible 2D B allotropes. Electronic band structures, phonon dispersion curves, Raman scattering spectra, and scanning tunneling microscopy images are simulated to highlight the differences between five distinct realizations of these B systems. In conclusion, this study demonstrates the existence of clear experimental signatures that constitute a solid basis for the unambiguous experimental identification of layered B materials.« less
Sun, Yuliang; Juzenas, Kevin
2017-01-01
Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585
Massote, Daniel V. P.; Liang, Liangbo; Kharche, Neerav; ...
2016-11-11
Compared to graphene, the synthesis of large area atomically thin boron materials is particularly challenging, owing to the electronic shell structure of B, which does not lend itself to the straightforward assembly of pure B materials. This difficulty is evidenced by the fact that the first synthesis of a pure two-dimensional boron was only very recently reported, using silver as a growing substrate. In addition to experimentally observed 2D boron allotropes, a number of other stable and metastable 2D boron materials are predicted to exist, depending on growth conditions and the use of a substrate during growth. This first-principles studymore » based on density functional theory aims at providing guidelines for the identification of these materials. To this end, this report presents a comparative description of a number of possible 2D B allotropes. Electronic band structures, phonon dispersion curves, Raman scattering spectra, and scanning tunneling microscopy images are simulated to highlight the differences between five distinct realizations of these B systems. In conclusion, this study demonstrates the existence of clear experimental signatures that constitute a solid basis for the unambiguous experimental identification of layered B materials.« less
The quest for four-dimensional imaging in plant cell biology: it's just a matter of time
Domozych, David S.
2012-01-01
Background Analysis of plant cell dynamics over time, or four-dimensional imaging (4-DI), represents a major goal of plant science. The ability to resolve structures in the third dimension within the cell or tissue during developmental events or in response to environmental or experimental stresses (i.e. 4-DI) is critical to our understanding of gene expression, post-expression modulations of macromolecules and sub-cellular system interactions. Scope Microscopy-based technologies have been profoundly integral to this type of investigation, and new and refined microscopy technologies now allow for the visualization of cell dynamics with unprecedented resolution, contrast and experimental versatility. However, certain realities of light and electron microscopy, choice of specimen and specimen preparation techniques limit the scope of readily attaining 4-DI. Today, the plant microscopist must use a combinatorial strategy whereby multiple microscopy-based investigations are used. Modern fluorescence, confocal laser scanning, transmission electron and scanning electron microscopy provide effective conduits for synthesizing data detailing live cell dynamics and highly resolved snapshots of specific cell structures that will ultimately lead to 4-DI. This review provides a synopsis of such technologies available. PMID:22628381
Electronic fingerprints of DNA bases on graphene.
Ahmed, Towfiq; Kilina, Svetlana; Das, Tanmoy; Haraldsen, Jason T; Rehr, John J; Balatsky, Alexander V
2012-02-08
We calculate the electronic local density of states (LDOS) of DNA nucleotide bases (A,C,G,T), deposited on graphene. We observe significant base-dependent features in the LDOS in an energy range within a few electronvolts of the Fermi level. These features can serve as electronic fingerprints for the identification of individual bases in scanning tunneling spectroscopy (STS) experiments that perform image and site dependent spectroscopy on biomolecules. Thus the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS. © 2012 American Chemical Society
Microstructural and wear properties of sputtered carbides and silicides
NASA Technical Reports Server (NTRS)
Spalvins, T.
1977-01-01
Sputtered Cr3C2, Cr3Si2, and MoSi2 wear-resistant films (0.05 to 3.5 microns thick) were deposited on metal and glass surfaces. Electron transmission, electron diffraction, and scanning electron microscopy were used to determine the microstructural appearance. Strong adherence was obtained with these sputtered films. Internal stresses and defect crystallographic growth structures of various configurations within the film have progressively more undesirable effects for film thicknesses greater than 1.5 microns. Sliding contact and rolling-element bearing tests were also performed with these sputtered films.
2017-06-29
Accurate Virus Quantitation Using a Scanning Transmission Electron Microscopy (STEM) Detector in a Scanning Electron Microscope Candace D Blancett1...L Norris2, Cynthia A Rossi4 , Pamela J Glass3, Mei G Sun1,* 1 Pathology Division, United States Army Medical Research Institute of Infectious...Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland, 21702 2Biostatistics Division, United States Army Medical Research Institute of
Tylko, G; Karasiński, J; Wróblewski, R; Roomans, G M; Kilarski, W M
2000-01-01
Heterogeneity of the elemental content of myogenic C2C12 cultured cells was studied by electron probe X-ray microanalysis (EPXMA) with scanning (SEM EPXMA) and scanning transmission electron microscopy (STEM EPXMA). The best plastic substrate for growing cells was Thermanox. For STEM EPXMA, a Formvar film coated with carbon was found to be suitable substrate. The cells examined by scanning transmission electron microscopy showed great heterogeneity in their elemental content in comparison with the cells examined in the scanning electron microscope despite of an almost identical preparation procedure for EPXMA. Nevertheless the K/Na ratios obtained from both methods of EPXMA were very close (4.1 and 4.3). We conclude that the observed discrepancy in the elemental content obtained by the two methods may be due to differences in instrumentation and this must be taken into account when planning a comparative study.
In vitro model for Campylobacter pylori adherence properties.
Neman-Simha, V; Mégraud, F
1988-01-01
The adherence of 12 strains of Campylobacter pylori was studied on four cell lines. Immunofluorescence and scanning and transmission electron microscopy were used to visualize the bacteria. A heavy adherence to the epithelial cell line HEp-2 and to the intestinal cell line Int-407 was noted. By transmission electron microscopy, a close association between bacteria and cells in the form of cup-like structures was observed, but pedestals were not present. Images PMID:3182085
Synthesis and structural characterization of CZTS nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydia, R.; Reddy, P. Sreedhara
2013-06-03
The CZTS nanoparticles were successfully synthesized by Chemical co-precipitation method with different pH values in the range of 6 to 8. The synthesized nanoparticles were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. XRD studies revealed that the CZTS nanoparticles exhibited Kesterite Structure with preferential orientation along the (112) direction. Sample at pH value of 7 reached the nearly stoichiometric ratio.
Coverage induced structural transformations of tetracene on Ag(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takasugi, Kazushiro; Yokoyama, Takashi, E-mail: tyoko@yokohama-cu.ac.jp
2016-03-14
Self-assembly of tetracene on an anisotropic surface of Ag(110) has been investigated using scanning tunneling microscopy and low-energy electron diffraction. We observe multistage structural transformations of the self-assembled tetracene on Ag(110) as a function of molecular coverages, which are accompanied by the changes in molecular orientations. They are analyzed by a balance between multiple molecule-molecule and anisotropic substrate-molecule interactions.
Soares Medeiros, Lia Carolina; De Souza, Wanderley; Jiao, Chengge; Barrabin, Hector; Miranda, Kildare
2012-01-01
Different methods for three-dimensional visualization of biological structures have been developed and extensively applied by different research groups. In the field of electron microscopy, a new technique that has emerged is the use of a focused ion beam and scanning electron microscopy for 3D reconstruction at nanoscale resolution. The higher extent of volume that can be reconstructed with this instrument represent one of the main benefits of this technique, which can provide statistically relevant 3D morphometrical data. As the life cycle of Plasmodium species is a process that involves several structurally complex developmental stages that are responsible for a series of modifications in the erythrocyte surface and cytoplasm, a high number of features within the parasites and the host cells has to be sampled for the correct interpretation of their 3D organization. Here, we used FIB-SEM to visualize the 3D architecture of multiple erythrocytes infected with Plasmodium chabaudi and analyzed their morphometrical parameters in a 3D space. We analyzed and quantified alterations on the host cells, such as the variety of shapes and sizes of their membrane profiles and parasite internal structures such as a polymorphic organization of hemoglobin-filled tubules. The results show the complex 3D organization of Plasmodium and infected erythrocyte, and demonstrate the contribution of FIB-SEM for the obtainment of statistical data for an accurate interpretation of complex biological structures. PMID:22432024
NASA Astrophysics Data System (ADS)
Walrath, Jenna Cherie
Low-dimensional semiconductor structures are important for a wide variety of applications, and recent advances in nanoscale fabrication are paving the way for increasingly precise nano-engineering of a wide range of materials. It is therefore essential that the physics of materials at the nanoscale are thoroughly understood to unleash the full potential of nanotechnology, requiring the development of increasingly sophisticated instrumentation and modeling. Of particular interest is the relationship between the local density of states (LDOS) of low-dimensional structures and the band structure and local electronic properties. This dissertation presents the investigation of the band structure, LDOS, and local electronic properties of nanostructures ranging from zero-dimensional (0D) quantum dots (QDs) to two-dimensional (2D) thin films, synthesizing computational and experimental approaches including Poisson-Schrodinger band structure calculations, scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and scanning thermoelectric microscopy (SThEM). A method is presented for quantifying the local Seebeck coefficient (S) with SThEM, using a quasi-3D conversion matrix approach to directly convert temperature gradient-induced voltages S. For a GaAs p-n junction, the resulting S-profile is consistent with that computed using the free carrier concentration profile. This combined computational-experimental approach is expected to enable nanoscale measurements of S across a wide variety of heterostructure interfaces. The local carrier concentration, n, is profiled across epitaxial InAs/GaAs QDs, where SThEM is used to profile the temperature gradient-induced voltage, which is converted to a profile of the local S and finally to an n profile. The S profile is converted to a conduction band-edge profile and compared with Poisson-Schrodinger band-edge simulations. The combined computational-experimental approach suggests a reduced n in the QD center in comparison to that of the 2D alloy layer. The surface composition and band structure of ordered horizontal Sb2Te3 nanowires induced by femtosecond laser irradiation of a thin film are investigated, revealing a band gap modulation between buried Sb2Te3 nanowires and the surrounding insulating material. Finally, STM and STS are used to investigate the band structure of BiSbTe alloys at room temperature, revealing both the Fermi level and Dirac point located inside the bulk bandgap, indicating bulk-like insulating behavior with accessible surface states.
Quantitative Cryo-Scanning Transmission Electron Microscopy of Biological Materials.
Elbaum, Michael
2018-05-11
Electron tomography provides a detailed view into the 3D structure of biological cells and tissues. Physical fixation by vitrification of the aqueous medium provides the most faithful preservation of biological specimens in the native, fully hydrated state. Cryo-microscopy is challenging, however, because of the sensitivity to electron irradiation and due to the weak electron scattering of organic material. Tomography is even more challenging because of the dependence on multiple exposures of the same area. Tomographic imaging is typically performed in wide-field transmission electron microscopy (TEM) mode with phase contrast generated by defocus. Scanning transmission electron microscopy (STEM) is an alternative mode based on detection of scattering from a focused probe beam, without imaging optics following the specimen. While careful configuration of the illumination and detectors is required to generate useful contrast, STEM circumvents the major restrictions of phase contrast TEM to very thin specimens and provides a signal that is more simply interpreted in terms of local composition and density. STEM has gained popularity in recent years for materials science. The extension of STEM to cryomicroscopy and tomography of cells and macromolecules is summarized herein. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Information or resolution: Which is required from an SEM to study bulk inorganic materials?
Xing, Q
2016-11-01
Significant technological advances in scanning electron microscopy (SEM) have been achieved over the past years. Different SEMs can have significant differences in functionality and performance. This work presents the perspectives on selecting an SEM for research on bulk inorganic materials. Understanding materials demands quantitative composition and orientation information, and informative and interpretable images that reveal subtle differences in chemistry, orientation/structure, topography, and electronic structure. The capability to yield informative and interpretable images with high signal-to-noise ratios and spatial resolutions is an overall result of the SEM system as a whole, from the electron optical column to the detection system. The electron optical column determines probe performance. The roles of the detection system are to capture, filter or discriminate, and convert signal electrons to imaging information. The capability to control practical operating parameters including electron probe size and current, acceleration voltage or landing voltage, working distance, detector selection, and signal filtration is inherently determined by the SEM itself. As a platform for various accessories, e.g. an energy-dispersive spectrometer and an electron backscatter diffraction detector, the properties of the electron optical column, specimen chamber, and stage greatly affect the performance of accessories. Ease-of-use and ease-of-maintenance are of practical importance. It is practically important to select appropriate test specimens, design suitable imaging conditions, and analyze the specimen chamber geometry and dimensions to assess the overall functionality and performance of an SEM. For an SEM that is controlled/operated with a computer, the stable software and user-friendly interface significantly improve the usability of the SEM. SCANNING 38:864-879, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath
2014-09-30
The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jiagui; Wagner, Sean R.; Zhang, Pengpeng
Freestanding silicene, a monolayer of Si arranged in a honeycomb structure, has been predicted to give rise to massless Dirac fermions, akin to graphene. However, Si structures grown on a supporting substrate can show properties that strongly deviate from the freestanding case. Here, combining scanning tunneling microscopy/spectroscopy and differential conductance mapping, we show that the electrical properties of the (√3 x √3) phase of few-layer Si grown on Ag(111) strongly depend on film thickness, where the electron phase coherence length decreases and the free-electron-like surface state gradually diminishes when approaching the interface. These features are presumably attributable to the inelasticmore » inter-band electron-electron scattering originating from the overlap between the surface state, interface state and the bulk state of the substrate. We further demonstrate that the intrinsic electronic structure of the as grown (√3 x √3) phase is identical to that of the (√3 x √3) R30° reconstructed Ag on Si(111), both of which exhibit the parabolic energy-momentum dispersion relation with comparable electron effective masses. Lastly, these findings highlight the essential role of interfacial coupling on the properties of two-dimensional Si structures grown on supporting substrates, which should be thoroughly scrutinized in pursuit of silicene.« less
Rapid fibroblast activation in mammalian cells induced by silicon nanowire arrays
NASA Astrophysics Data System (ADS)
Ha, Qing; Yang, Gao; Ao, Zhuo; Han, Dong; Niu, Fenglan; Wang, Shutao
2014-06-01
Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of their substrates by filling inter-wire cavities via filopodia in contrast to cells cultured on flat silicon which spread freely. We further illustrated that the expression of FAP was rarely detected in activated cells after being re-cultured in Petri dishes, suggesting that the unique structure of SiNWs may have a certain influence on FAP activation.Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of their substrates by filling inter-wire cavities via filopodia in contrast to cells cultured on flat silicon which spread freely. We further illustrated that the expression of FAP was rarely detected in activated cells after being re-cultured in Petri dishes, suggesting that the unique structure of SiNWs may have a certain influence on FAP activation. Electronic supplementary information (ESI) available: (1) ESEM cross-sectional view images of the flat silicon and SiNW substrates. (2) Bright field morphology images of fibroblasts cultured in Petri dishes. (3) FIB/SEM 52° tilt images of fibroblasts cultured on SiNW 2 and SiNW 3. (4) Immunofluorescence images of FAP expression in fibroblasts re-cultured in Petri dishes after detachment from flat silicon and a series of SiNW substrates. (5) ESEM images of cells re-cultured in Petri dishes after detachment from each group. See DOI: 10.1039/c4nr01415d
NASA Astrophysics Data System (ADS)
Yang, K.; Park, H.; Baik, H.; Kim, J.; Park, K. R.; Yoon, J.; Kim, J. W.
2016-12-01
Understanding the biogeochemical process in the Fe-Mn crust layer is important to reconstruct the paleo-environment when the Fe-Mn crust layer forms. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Electron Energy Loss Spectroscopy (EELS), and Polymerase Chain Reaction (PCR) were utilized to determine the redox states of Fe/Mn and microbial diversity at each layer. Samples were dredged from the western Pacific Magellan Seamount (OSM11) that consists of five well-defined layers from the rim (L1) to the core (L5). Some microbial like structures of sheath-like with filaments (L1 - L3), capsule-shaped (L2), fossilized coccolith mounds with phosphatized globules (L4), and bean-shaped (L4) were detected in entire layers. The cross sectional observation of bean-shaped microbe like structures encrusted with Fe-vernadite (L3) by Scanning Transmission Electron Microscopy (STEM) and Focused Ion Beam (FIB) technique revealed 1-μm diameter cavity in the center and porous structures of encrusting Fe-vernadite in periphery. Moreover, the organic carbon in the center cavity compared with inorganic C (from carbonate) in periphery was differentiated by C-K edge EELS spectra, suggesting that the microbe used to occupy. Indeed, the PCR analysis indicated the presence of functional gene (cumA; 1056bp & coxC; 810bp) association with Mn & Fe oxidizer that promote the formation of the crust. The cloning and sequencing of DNA PCR fragments revealed the appearance of geobacter species in L3 (G. sulfurreducens and G. lovleyi). The DNA molecular biological analysis and SEM direct observations suggest the evidence of biotic process in the formation of Fe-Mn crust.
Thompson, Helen; Shimeld, Sebastian M
2015-06-01
Spawned ascidian oocytes are surrounded by a membrane called the chorion (or vitelline coat) and associated with two populations of maternally-supplied cells. Outside the chorion are follicle cells, which may affect the buoyancy of eggs. Inside the chorion are test cells, which during oogenesis provision the egg and which after fertilisation contribute to the larval tunic. The structure of maternal cells may vary between species. The model ascidian Ciona intestinalis has been recently split into two species, currently named type A and type B. The ultrastructure of extraembryonic cells and structures from type A embryos has been reported. Here we describe the ultrastructure of follicle and test cells from C. intestinalis type B embryos. Test cells are about 5 µm in diameter and line the inside of the chorion of developing embryos in a dense sheet. Follicle cells are large (> 100 µm long) and spike-shaped, with many large vesicles. Terminal electron dense granules are found towards the tips of spikes, adjacent to cytoplasm containing numerous small electron dense bodies connected by filaments. These are probably vesicles containing material for the terminal granules. Removal of maternal structures and cells just after fertilisation, as commonly used in many experiments manipulating C. intestinalis development, has been reported to affect embryonic patterning. We examined the impact of this on embryonic ectoderm cells by scanning electron microscopy. Cells of embryos that developed without maternal structures still developed cilia, but had indistinct cell boundaries and a more flattened appearance than those that developed within the chorion.
Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM).
Schaudinn, C; Carr, G; Gorur, A; Jaramillo, D; Costerton, J W; Webster, P
2009-08-01
Scanning electron microscopy is a useful imaging approach for the visualization of bacterial biofilms in their natural environments including their medical and dental habitats, because it allows for the exploration of large surfaces with excellent resolution of topographic features. Most biofilms in nature, however, are embedded in a thick layer of extracellular matrix that prevents a clear identification of individual bacteria by scanning electron microscopy. The use of confocal laser scanning microscopy on the other hand in combination with fluorescence in situ hybridization enables the visualization of matrix embedded bacteria in multi-layered biofilms. In our study, fluorescence in situ hybridization/confocal laser scanning microscopy and scanning electron microscopy were applied to visualize bacterial biofilm in endodontic root canals. The resulting fluorescence in situ hybridization /confocal laser scanning microscopy and scanning electron microscopy and pictures were subsequently combined into one single image to provide high-resolution information on the location of hidden bacteria. The combined use of scanning electron microscopy and fluorescence in situ hybridization / confocal laser scanning microscopy has the potential to overcome the limits of each single technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fayomi, O. S. I., E-mail: ojosundayfayomi3@gmail.com; Department of Mechanical Engineering, Covenant University, P.M.B. 1023, Canaanland, Ota; Popoola, A. P. I.
This paper studies effects of the composite particle infringement of ZnO/Cr{sub 2}O{sub 3} on zinc rich ternary based coating. The corrosion-degradation property in 3.5% NaCl was investigatedusing polarization technique. The structural characteristics of the multilayer produce coatings were evaluated by scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). The mechanical response of the coated samples was studied using a diamond base Dura –Scan) micro-hardness tester and a MTR-300 dry abrasive wear tester. The combined effect of the coatings gave highly-improved performance on microhardness, corrosion and wear damage. This also implies that protection of wind-energy structures in marinemore » environments can be achieved by composite strengthening capacity.« less
Cappa, Carola; Lucisano, Mara; Barbosa-Cánovas, Gustavo V; Mariotti, Manuela
2016-07-01
The impact of high pressure (HP) processing on corn starch, rice flour and waxy rice flour was investigated as a function of pressure level (400MPa; 600MPa), pressure holding time (5min; 10min), and temperature (20°C; 40°C). Samples were pre-conditioned (final moisture level: 40g/100g) before HP treatments. Both the HP treated and the untreated raw materials were evaluated for pasting properties and solvent retention capacity, and investigated by differential scanning calorimetry, X-ray diffractometry and environmental scanning electron microscopy. Different pasting behaviors and solvent retention capacities were evidenced according to the applied pressure. Corn starch presented a slower gelatinization trend when treated at 600MPa. Corn starch and rice flour treated at 600MPa showed a higher retention capacity of carbonate and lactic acid solvents, respectively. Differential scanning calorimetry and environmental scanning electron microscopy investigations highlighted that HP affected the starch structure of rice flour and corn starch. Few variations were evidenced in waxy rice flour. These results can assist in advancing the HP processing knowledge, as the possibility to successfully process raw samples in a very high sample-to-water concentration level was evidenced. This work investigates the effect of high pressure as a potential technique to modify the processing characteristics of starchy materials without using high temperature. In this case the starches were processed in the powder form - and not as a slurry as in previously reported studies - showing the flexibility of the HP treatment. The relevance for industrial application is the possibility to change the structure of flour starches, and thus modifying the processability of the mentioned products. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Kumar Vasa, Suresh; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G.
2014-09-01
We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.
Solution and surface effects on plasma fibronectin structure
1983-01-01
As assessed by electron microscopy, the reported shape of the plasma fibronectin molecule ranges from that of a compact particle to an elongated, rod-like structure. In this study, we evaluated the effects of solution and surface conditions on fibronectin shape. Freeze-dried, unstained human plasma fibronectin molecules deposited at pH 7.0-7.4 onto carbon films and examined by scanning transmission electron microscopy appeared relatively compact and pleiomorphic, with approximate average dimensions of 24 nm X 16 nm. Negatively stained molecules also had a similar shape but revealed greater detail in that we observed irregular, yarn-like structures. Glutaraldehyde-induced intramolecular cross-linking did not alter the appearance of plasma fibronectin. Molecules deposited at pH 2.8, pH 9.3, or after succinylation were less compact than those deposited at neutral pH. In contrast, fibronectin molecules sprayed onto mica surfaces at pH 7, rotary shadowed, and examined by transmission electron microscopy were elongated and nodular with a contour length of 120-130 nm. Sedimentation velocity experiments and electron microscopic observations indicate that fibronectin unfolds when it is succinylated, when the ionic strength is raised at pH 7, or when the pH is adjusted to 9.3 or 2.8. Greater unfolding is observed at pH 2.8 at low ionic strength (less than 0.01) compared with material at that pH in 0.15 M NaCl solution. We conclude that (a) the shape assumed by the fibronectin molecule can be strongly affected by solution conditions and by deposition onto certain surfaces; and that (b) the images of fibronectin seen by scanning transmission electron microscopy at neutral pH on carbon film are representative of molecules in physiologic solution. PMID:6417145
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawat, Kusum; Department of Electronic Science, University of Delhi South Campus, Delhi 110021; Kim, Hee-Joon
Highlights: • Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique. • First report on the effect of using polyethylene glycol as a structure directing agent on Cu{sub 2}ZnSnS{sub 4} nanoparticles. • The morphology of Cu{sub 2}ZnSnS{sub 4} nanoparticles changes into nanoflakes and nanorods structures with polyethylene glycol concentration. • Polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle film exhibits optical bandgap of 1.5 eV which is suitable for the application in solar cells. - Abstract: Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique using metal thiourea precursor at 250 °C. The structural and morphological properties of asmore » grown nanoparticles have been characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The influence of different concentration of polyethylene glycol as structure directing agent on the morphologies of Cu{sub 2}ZnSnS{sub 4} nanoparticles are investigated on thin films deposited by spin coating technique. The mean crystallite size of the Cu{sub 2}ZnSnS{sub 4} nanoparticles was found to improve with polyethylene glycol concentration. Scanning electron microscopy images of Cu{sub 2}ZnSnS{sub 4} revealed aggregated spherical shaped nanoparticles whereas the polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle films show nanoflakes and nanorods structures with increasing concentration of polyethylene glycol. Transmission electron microscopy analysis has also been performed to determine the size and structure of nanorods. UV–vis absorption spectroscopy shows the broad band absorption with optical bandgap of 1.50 eV for polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} films.« less
Kasaboğlu, Oğuzcan; Er, Nuray; Tümer, Celal; Akkocaoğlu, Murat
2004-10-01
Sialoliths are common in the submandibular gland and its duct system. The exact cause of formation of a sialolith is still a matter of debate. The aim of this study was to analyze 6 sialoliths ultrastructurally to determine their development mechanism in the submandibular salivary glands. Six sialoliths retrieved from the hilus and duct of the submandibular salivary glands of 6 patients with sialadenitis were analyzed ultrastructurally by scanning electron microscope and x-ray diffractometer. Scanning electron microscope revealed mainly irregular, partly rudely hexagonal, needle-like and plate-shaped crystals. The cross-section from the surface to the inner part of the sialoliths showed no organic material. X-ray diffraction showed that the sialoliths were composed of hydroxyapatite crystals. Energy dispersive x-ray microanalysis showed that all of the samples contained high levels of Ca and P, and small amounts of Mg, Na, Cl, Si, Fe, and K. The main structures of the submandibular sialoliths were found to be hydroxyapatite crystals. No organic cores were observed in the central parts of the sialoliths. In accordance with these preliminary results, sialoliths in the submandibular salivary glands may arise secondary to sialadenitis, but not via a luminal organic nidus.
Brilhante, Raimunda Sâmia Nogueira; Correia, Edmilson Emanuel Monteiro; Guedes, Glaucia Morgana de Melo; Pereira, Vandbergue Santos; Oliveira, Jonathas Sales de; Bandeira, Silviane Praciano; Alencar, Lucas Pereira de; Andrade, Ana Raquel Colares de; Castelo-Branco, Débora de Souza Collares Maia; Cordeiro, Rossana de Aguiar; Pinheiro, Adriana de Queiroz; Chaves, Lúcio Jackson Queiroz; Pereira Neto, Waldemiro de Aquino; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha
2017-07-01
The aim of this study was to evaluate the in vitro and ex vivo biofilm-forming ability of dermatophytes on a nail fragment. Initially, four isolates of Trichophyton rubrum, six of Trichophyton tonsurans, three of Trichophyton mentagrophytes, ten of Microsporum canis and three of Microsporum gypseum were tested for production biomass by crystal violet assay. Then, one strain per species presenting the best biofilm production was chosen for further studies by optical microscopy (Congo red staining), confocal laser scanning (LIVE/DEAD staining) and scanning electron (secondary electron) microscopy. Biomass quantification by crystal violet assay, optical microscope images of Congo red staining, confocal microscope and scanning electron microscope images revealed that all species studied are able to form biofilms both in vitro and ex vivo, with variable density and architecture. M. gypseum, T. rubrum and T. tonsurans produced robust biofilms, with abundant matrix and biomass, while M. canis produced the weakest biofilms compared to other species. This study sheds light on biofilms of different dermatophyte species, which will contribute to a better understanding of the pathophysiology of dermatophytosis. Further studies of this type are necessary to investigate the processes involved in the formation and composition of dermatophyte biofilms.
Jung, Han Sae; Tsai, Hsin-Zon; Wong, Dillon; Germany, Chad; Kahn, Salman; Kim, Youngkyou; Aikawa, Andrew S.; Desai, Dhruv K.; Rodgers, Griffin F.; Bradley, Aaron J.; Velasco, Jairo; Watanabe, Kenji; Taniguchi, Takashi; Wang, Feng; Zettl, Alex; Crommie, Michael F.
2015-01-01
Owing to its relativistic low-energy charge carriers, the interaction between graphene and various impurities leads to a wealth of new physics and degrees of freedom to control electronic devices. In particular, the behavior of graphene’s charge carriers in response to potentials from charged Coulomb impurities is predicted to differ significantly from that of most materials. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) can provide detailed information on both the spatial and energy dependence of graphene's electronic structure in the presence of a charged impurity. The design of a hybrid impurity-graphene device, fabricated using controlled deposition of impurities onto a back-gated graphene surface, has enabled several novel methods for controllably tuning graphene’s electronic properties.1-8 Electrostatic gating enables control of the charge carrier density in graphene and the ability to reversibly tune the charge2 and/or molecular5 states of an impurity. This paper outlines the process of fabricating a gate-tunable graphene device decorated with individual Coulomb impurities for combined STM/STS studies.2-5 These studies provide valuable insights into the underlying physics, as well as signposts for designing hybrid graphene devices. PMID:26273961
Ogura, Toshihiko; Okada, Tomoko
2017-09-30
Recently, aqueous nanoparticles have been used in drug-delivery systems for new type medicines. In particular, milk-casein micelles have been used as drug nanocarriers for targeting cancer cells. Therefore, nanostructure observation of particles and micelles in their native liquid condition is indispensable for analysing their function and mechanisms. However, traditional optical and scanning electron microscopy have difficulty observing the nanostructures of aqueous micelles. Recently, we developed a novel imaging technique called scanning electron-assisted dielectric microscopy (SE-ADM) that enables observation of various biological specimens in water with very little radiation damage and high-contrast imaging without staining or fixation at an 8-nm spatial resolution. In this study, for the first time, we show that the SE-ADM system is capable of high-resolution observation of whole-milk specimens in their natural state. Moreover, we successfully observe the casein micelles and milk-fat globules in an intact liquid condition. Our SE-ADM system can be applied to various biological particles and micelles in a native liquid state. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Electronic Interfacial Effects in Epitaxial Heterostructures based on LaMnO3.
NASA Astrophysics Data System (ADS)
Christen, Hans M.; Varela, M.; Lee, H. N.; Kim, D. H.; Chisholm, M. F.; Cantoni, C.; Petit, L.; Schulthess, T. C.; Lowndes, D. H.
2006-03-01
Studies of chemically abrupt interfaces provide an ideal platform to study the effects of discontinuities and asymmetries of the electronic configuration on the transport and magnetic properties of complex oxides. In addition, the behavior of complex materials near interfaces plays the most crucial role not only in devices and nanostructures but also in complex structures in the form of composites and superlattices, including artificial multiferroics. Interfaces in the ABO3 perovskite system are particularly attractive because structurally similar oxides with fundamentally different physical properties can be integrated epitaxially. To explore the electronic effects at interfaces and to probe the physical properties that result from local electronic changes, we have synthesized structures containing LaMnO3 and insulating perovskites using pulsed laser deposition. The local electron energy loss spectroscopy (EELS) capability of a scanning transmission electron microscope (STEM) is used to probe the electronic configuration in the LaMnO3 films as a function of the distance from the interfaces. The results are compared to macroscopic measurements and theoretical predictions. Research sponsored by the U.S. Department of Energy under contract DE-AC05-00OR22725 with the Oak Ridge National Laboratory, managed by UT-Battelle, LLC.
Learning surface molecular structures via machine vision
Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.
2017-08-10
Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (‘read out’) all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds andmore » thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. Here, the method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.« less