Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini).
Nunes, L A; Passos, G B; Carvalho, C A L; Araújo, E D
2013-11-01
This study aimed to identify differences in wing shape among populations of Melipona quadrifasciata anthidioides obtained in 23 locations in the semi-arid region of Bahia state (Brazil). Analysis of the Procrustes distances among mean wing shapes indicated that population structure did not determine shape variation. Instead, populations were structured geographically according to wing size. The Partial Mantel Test between morphometric (shape and size) distance matrices and altitude, taking geographic distances into account, was used for a more detailed understanding of size and shape determinants. A partial Mantel test between morphometris (shape and size) variation and altitude, taking geographic distances into account, revealed that size (but not shape) is largely influenced by altitude (r = 0.54 p < 0.01). These results indicate greater evolutionary constraints for the shape variation, which must be directly associated with aerodynamic issues in this structure. The size, however, indicates that the bees tend to have larger wings in populations located at higher altitudes.
Measuring the X-shaped structures in edge-on galaxies
NASA Astrophysics Data System (ADS)
Savchenko, S. S.; Sotnikova, N. Ya.; Mosenkov, A. V.; Reshetnikov, V. P.; Bizyaev, D. V.
2017-11-01
We present a detailed photometric study of a sample of 22 edge-on galaxies with clearly visible X-shaped structures. We propose a novel method to derive geometrical parameters of these features, along with the parameters of their host galaxies based on the multi-component photometric decomposition of galactic images. To include the X-shaped structure into our photometric model, we use the imfit package, in which we implement a new component describing the X-shaped structure. This method is applied for a sample of galaxies with available Sloan Digital Sky Survey and Spitzer IRAC 3.6 μm observations. In order to explain our results, we perform realistic N-body simulations of a Milky Way-type galaxy and compare the observed and the model X-shaped structures. Our main conclusions are as follows: (1) galaxies with strong X-shaped structures reside in approximately the same local environments as field galaxies; (2) the characteristic size of the X-shaped structures is about 2/3 of the bar size; (3) there is a correlation between the X-shaped structure size and its observed flatness: the larger structures are more flattened; (4) our N-body simulations qualitatively confirm the observational results and support the bar-driven scenario for the X-shaped structure formation.
Crystallography of rare galactic honeycomb structure near supernova 1987a
NASA Technical Reports Server (NTRS)
Noever, David A.
1994-01-01
Near supernova 1987a, the rare honeycomb structure of 20-30 galactic bubbles measures 30 x 90 light years. Its remarkable regularity in bubble size suggests a single-event origin which may correlate with the nearby supernova. To test the honeycomb's regularity in shape and size, the formalism of statistical crystallography is developed here for bubble sideness. The standard size-shape relations (Lewis's law, Desch's law, and Aboav-Weaire's law) govern area, perimeter and nearest neighbor shapes. Taken together, they predict a highly non-equilibrium structure for the galactic honeycomb which evolves as a bimodal shape distribution without dominant bubble perimeter energy.
Structure and Growth of Rod-Shaped Mn Ultrafine Particle
NASA Astrophysics Data System (ADS)
Kido, Osamu; Suzuki, Hitoshi; Saito, Yoshio; Kaito, Chihiro
2003-09-01
The structure of rod-shaped Mn ultrafine particles was elucidated by electron microscopy. Mn ultrafine particles have characteristic tristetrahedron (α-Mn), rhombic dodecahedron (β-Mn) and rod-shape crystal habits. It was found that the rod-shaped particle resulted from the parallel coalescence of β-Mn particles with the size of 50 nm. Detailed analysis of the defects seen in large rod-shaped particles with the width of 100 nm indicated a mixture of α- and β-phases. A size effect on the phase transition from β to α was observed throughout the rod-shaped crystal structure. The structure and growth of Mn particles were discussed based on the outline of the smoke and the temperature distribution in the smoke.
Monodisperse Block Copolymer Particles with Controllable Size, Shape, and Nanostructure
NASA Astrophysics Data System (ADS)
Shin, Jae Man; Kim, Yongjoo; Kim, Bumjoon; PNEL Team
Shape-anisotropic particles are important class of novel colloidal building block for their functionality is more strongly governed by their shape, size and nanostructure compared to conventional spherical particles. Recently, facile strategy for producing non-spherical polymeric particles by interfacial engineering received significant attention. However, achieving uniform size distribution of particles together with controlled shape and nanostructure has not been achieved. Here, we introduce versatile system for producing monodisperse BCP particles with controlled size, shape and morphology. Polystyrene-b-polybutadiene (PS-b-PB) self-assembled to either onion-like or striped ellipsoid particle, where final structure is governed by amount of adsorbed sodium dodecyl sulfate (SDS) surfactant at the particle/surrounding interface. Further control of molecular weight and particle size enabled fine-tuning of aspect ratio of ellipsoid particle. Underlying physics of free energy for morphology formation and entropic penalty associated with bending BCP chains strongly affects particle structure and specification.
Macagno, Anna L. M.; Pizzo, Astrid; Parzer, Harald F.; Palestrini, Claudia; Rolando, Antonio; Moczek, Armin P.
2011-01-01
Genitalia are among the fastest evolving morphological traits in arthropods. Among the many hypotheses aimed at explaining this observation, some explicitly or implicitly predict concomitant male and female changes of genital traits that interact during copulation (i.e., lock and key, sexual conflict, cryptic female choice and pleiotropy). Testing these hypotheses requires insights into whether male and female copulatory structures that physically interact during mating also affect each other's evolution and patterns of diversification. Here we compare and contrast size and shape evolution of male and female structures that are known to interact tightly during copulation using two model systems: (a) the sister species O. taurus (1 native, 3 recently established populations) and O. illyricus, and (b) the species-complex O. fracticornis-similis-opacicollis. Partial Least Squares analyses indicated very little to no correlation between size and shape of copulatory structures, both in males and females. Accordingly, comparing shape and size diversification patterns of genitalia within each sex showed that the two components diversify readily - though largely independently of each other - within and between species. Similarly, comparing patterns of divergence across sexes showed that relative sizes of male and female copulatory organs diversify largely independent of each other. However, performing this analysis for genital shape revealed a signature of parallel divergence. Our results therefore suggest that male and female copulatory structures that are linked mechanically during copulation may diverge in concert with respect to their shapes. Furthermore, our results suggest that genital divergence in general, and co-divergence of male and female genital shape in particular, can evolve over an extraordinarily short time frame. Results are discussed in the framework of the hypotheses that assume or predict concomitant evolutionary changes in male and female copulatory organs. PMID:22194942
NASA Astrophysics Data System (ADS)
Rodríguez-López, J. L.; Montejano-Carrizales, J. M.; José-Yacamán, M.
Modern nanoparticle research in the field of small metallic systems has confirmed that many nanoparticles take on some Platonic and Archimedean solids related shapes. A Platonic solid looks the same from any vertex, and intuitively they appear as good candidates for atomic equilibrium shapes. A very clear example is the icosahedral (Ih) particle that only shows {111} faces that contribute to produce a more rounded structure. Indeed, many studies report the Ih as the most stable particle at the size range r≤20 Å for noble gases and for some metals. In this review, we report on the structure and shape of mono- and bimetallic nanoparticles in the wide size range from 1-300 nm. First, we present AuPd nanoparticles in the 1-2 nm size range that show dodecahedral atomic growth packing, one of the Platonic solid shapes that have not been identified before in this small size range for metallic particles. Next, with particles in the size range of 2-5 nm, we present an energetic surface reconstruction phenomenon observed also on bimetallic nanoparticle systems of AuPd and AuCu, similar to a re-solidification effect observed during cooling process in lead clusters. These binary alloy nanoparticles show the fivefold edges truncated, resulting in {100} faces on decahedral structures, an effect largely envisioned and reported theoretically, with no experimental evidence in the literature before. Next nanostructure we review is a monometallic system in the size range of ≈5 nm that we termed the decmon. We present here some detailed geometrical analysis and experimental evidence that supports our models. Finally, in the size range of 100-300 nm, we present icosahedrally derived star gold nanocrystals which resembles the great stellated dodechaedron, which is a Kepler-Poisont solid. We conclude then that the shape or morphology of some mono- and bimetallic particles evolves with size following the sequence from atoms to the Platonic solids, and with a slightly greater particle's size, they tend to adopt Archimedean related shapes. If the particle's size is still greater, they tend to adopt shapes beyond the Archimedean (Kepler-Poisont) solids, reaching at the very end the bulk structure of solids. We demonstrate both experimentally and by means of computational simulations for each case that this structural atomic growth sequence is followed in such mono- and bimetallic nanoparticles.
A theoretical prediction of the paradoxical surface free energy for FCC metallic nanosolids
NASA Astrophysics Data System (ADS)
Abdul-Hafidh, Esam H.; Aïssa, Brahim
2016-08-01
We report on the development of an efficient and simple method to calculate the surface free energy (surface tension) of a general-shaped metallic nanosolid. Both nanoparticles and nanostructures that account for the crystal structure and size were considered. The surface free energy of a face-centered cubic structure of a metallic nanoparticles was found to decrease as the size decreases, for a shape factor equal to 1.0 (i.e., spherical). However, when the shape factor exceeds this value, which includes disk-like, regular tetrahedral, regular hexahedral, regular octahedral, nanorod, and regular quadrangular structures, the behavior of the surface free energy was found to reverse, especially for small nanoparticles and then increases as the size decreases. Moreover, this behavior was systematically recorded for large nanoparticles when the mechanical distortion was appreciable. As a matter of fact, this model was also applied to the noble transition metals, including gold and silver nanoparticles. This work is a clear step forward establishing a systematic mechanism for controlling the mechanical properties of nanoscale particles by controlling the shape, size and structure.
Oval Window Size and Shape: a Micro-CT Anatomical Study With Considerations for Stapes Surgery.
Zdilla, Matthew J; Skrzat, Janusz; Kozerska, Magdalena; Leszczyński, Bartosz; Tarasiuk, Jacek; Wroński, Sebastian
2018-06-01
The oval window is an important structure with regard to stapes surgeries, including stapedotomy for the treatment of otosclerosis. Recent study of perioperative imaging of the oval window has revealed that oval window niche height can indicate both operative difficulty and subjective discomfort during otosclerosis surgery. With regard to shape, structures incorporated into the oval window niche, such as cartilage grafts, must be compatible with the shape of the oval window. Despite the clinical importance of the oval window, there is little information regarding its size and shape. This study assessed oval window size and shape via micro-computed tomography paired with modern morphometric methodology in the fetal, infant, child, and adult populations. Additionally, the study compared oval window size and shape between sexes and between left- and right-sided ears. No significant differences were found among traditional morphometric parameters among age groups, sides, or sexes. However, geometric morphometric methods revealed shape differences between age groups. Further, geometric morphometric methods provided the average oval window shape and most-likely shape variance. Beyond demonstrating oval window size and shape variation, the results of this report will aid in identifying patients among whom anatomical variation may contribute to surgical difficulty and surgeon discomfort, or otherwise warrant preoperative adaptations for the incorporation of materials into and around the oval window.
Integrated topology and shape optimization in structural design
NASA Technical Reports Server (NTRS)
Bremicker, M.; Chirehdast, M.; Kikuchi, N.; Papalambros, P. Y.
1990-01-01
Structural optimization procedures usually start from a given design topology and vary its proportions or boundary shapes to achieve optimality under various constraints. Two different categories of structural optimization are distinguished in the literature, namely sizing and shape optimization. A major restriction in both cases is that the design topology is considered fixed and given. Questions concerning the general layout of a design (such as whether a truss or a solid structure should be used) as well as more detailed topology features (e.g., the number and connectivities of bars in a truss or the number of holes in a solid) have to be resolved by design experience before formulating the structural optimization model. Design quality of an optimized structure still depends strongly on engineering intuition. This article presents a novel approach for initiating formal structural optimization at an earlier stage, where the design topology is rigorously generated in addition to selecting shape and size dimensions. A three-phase design process is discussed: an optimal initial topology is created by a homogenization method as a gray level image, which is then transformed to a realizable design using computer vision techniques; this design is then parameterized and treated in detail by sizing and shape optimization. A fully automated process is described for trusses. Optimization of two dimensional solid structures is also discussed. Several application-oriented examples illustrate the usefulness of the proposed methodology.
NASA Astrophysics Data System (ADS)
Hakuta, Y.; Nagai, N.; Suzuki, Y.-H.; Kodaira, T.; Bando, K. K.; Takashima, H.; Mizukami, F.
2013-12-01
Alumina (Al2O3) fine particles are widely used as industrial materials including fillers for metal or plastics, paints, polisher, cosmetics and electric substrates, due to its high hardness, chemical stability, and high thermal conductivity. The performance of those industrial products is closely related to the particle size or shape of the alumina particles used, and thus a new synthetic method to control size, shape, and crystal structure of the aluminum oxide is desired for the improvement of the performance. Hydrothermal phase transformation using various aluminum compounds such as oxide, hydroxide, and salt as a staring material, is known as one of the synthetic methods for producing alumina fine particles; however, the influence about the size and shape of the starting aluminum compounds has been little mentioned, although they strongly affect the size and shape of the final products. In this study, we investigated the influence of the shape, size and crystal structure of the starting aluminum compounds on those of the products, and newly succeeded in the production of rod-like α-Al2O3 nanoparticles from fibrous boehmite nanoparticles using hydrothermal phase transformation under supercritical water conditions.
Investigation of thermal conduction in symmetric and asymmetric nanoporous structures
NASA Astrophysics Data System (ADS)
Yu, Ziqi; Ferrer-Argemi, Laia; Lee, Jaeho
2017-12-01
Nanoporous structures with a critical dimension comparable to or smaller than the phonon mean free path have demonstrated significant thermal conductivity reductions that are attractive for thermoelectric applications, but the presence of various geometric parameters complicates the understanding of governing mechanisms. Here, we use a ray tracing technique to investigate phonon boundary scattering phenomena in Si nanoporous structures of varying pore shapes, pore alignments, and pore size distributions, and identify mechanisms that are primarily responsible for thermal conductivity reductions. Our simulation results show that the neck size, or the smallest distance between nearest pores, is the key parameter in understanding nanoporous structures of varying pore shapes and the same porosities. When the neck size and the porosity are both identical, asymmetric pore shapes provide a lower thermal conductivity compared with symmetric pore shapes, due to localized heat fluxes. Asymmetric nanoporous structures show possibilities of realizing thermal rectification even with fully diffuse surface boundaries, in which optimal arrangements of triangular pores show a rectification ratio up to 13 when the injection angles are optimally controlled. For symmetric nanoporous structures, hexagonal-lattice pores achieve larger thermal conductivity reductions than square-lattice pores due to the limited line of sight for phonons. We also show that nanoporous structures of alternating pore size distributions from large to small pores yield a lower thermal conductivity compared with those of uniform pore size distributions in the given porosity. These findings advance the understanding of phonon boundary scattering phenomena in complex geometries and enable optimal designs of artificial nanostructures for thermoelectric energy harvesting and solid-state cooling systems.
A scalable and deformable stylized model of the adult human eye for radiation dose assessment
NASA Astrophysics Data System (ADS)
El Basha, Daniel; Furuta, Takuya; Iyer, Siva S. R.; Bolch, Wesley E.
2018-05-01
With recent changes in the recommended annual limit on eye lens exposures to ionizing radiation, there is considerable interest in predictive computational dosimetry models of the human eye and its various ocular structures including the crystalline lens, ciliary body, cornea, retina, optic nerve, and central retinal artery. Computational eye models to date have been constructed as stylized models, high-resolution voxel models, and polygon mesh models. Their common feature, however, is that they are typically constructed of nominal size and of a roughly spherical shape associated with the emmetropic eye. In this study, we present a geometric eye model that is both scalable (allowing for changes in eye size) and deformable (allowing for changes in eye shape), and that is suitable for use in radiation transport studies of ocular exposures and radiation treatments of eye disease. The model allows continuous and variable changes in eye size (axial lengths from 20 to 26 mm) and eye shape (diopters from ‑12 to +6). As an explanatory example of its use, five models (emmetropic eyes of small, average, and large size, as well as average size eyes of ‑12D and +6D) were constructed and subjected to normally incident beams of monoenergetic electrons and photons, with resultant energy-dependent dose coefficients presented for both anterior and posterior eye structures. Electron dose coefficients were found to vary with changes to both eye size and shape for the posterior eye structures, while their values for the crystalline lens were found to be sensitive to changes in only eye size. No dependence upon eye size or eye shape was found for photon dose coefficients at energies below 2 MeV. Future applications of the model can include more extensive tabulations of dose coefficients to all ocular structures (not only the lens) as a function of eye size and shape, as well as the assessment of x-ray therapies for ocular disease for patients with non-emmetropic eyes.
Nursing Unit Design, Nursing Staff Communication Networks, and Patient Falls: Are They Related?
Brewer, Barbara B; Carley, Kathleen M; Benham-Hutchins, Marge; Effken, Judith A; Reminga, Jeffrey
2018-01-01
The purpose of this research is to (1) investigate the impact of nursing unit design on nursing staff communication patterns and, ultimately, on patient falls in acute care nursing units; and (2) evaluate whether differences in fall rates, if found, were associated with the nursing unit physical structure (shape) or size. Nursing staff communication and nursing unit design are frequently linked to patient safety outcomes, yet little is known about the impact of specific nursing unit designs on nursing communication patterns that might affect patient falls. An exploratory longitudinal correlational design was used to measure nursing unit communication structures using social network analysis techniques. Data were collected 4 times over a 7-month period. Floor plans were used to determine nursing unit design. Fall rates were provided by hospital coordinators. An analysis of covariance controlling for hospitals resulted in a statistically significant interaction of unit shape and size (number of beds). The interaction occurred when medium- and large-sized racetrack-shaped units intersected with medium- and large-sized cross-shaped units. The results suggest that nursing unit design shape impacts nursing communication patterns, and the interaction of shape and size may impact patient falls. How those communication patterns affect patient falls should be considered when planning hospital construction of nursing care units.
Effect of finite size in magnetic properties of BaFe12O19
NASA Astrophysics Data System (ADS)
Kumar, A. Sendil; Bhatnagar, Anil K.
2018-05-01
BaFe12O19 Nanoparticles are prepared through auto ignition method and structure, microstructure and magnetic properties are characterized. Samples having spherical shapes and elongated nanorods are chosen to investigate the role of finite size effect in magnetic properties. Magnetization studies show superparamagnetic, antiferromagnetic and ferrimagnetic behaviors depending on the size and shape. Very small coercive field of around 200 Oe is observed for spherical nanoparticles and a large coercive field of around 7000 Oe for nanorods is found. The shape and size plays an important role in magnetic properties of BaFe12O19 nanoparticles. Shape anisotropy has significant value compared to other anisotropies. Therefore shape of nanoparticles influences the magnetic order.
Arrested of coalescence of emulsion droplets of arbitrary size
NASA Astrophysics Data System (ADS)
Mbanga, Badel L.; Burke, Christopher; Blair, Donald W.; Atherton, Timothy J.
2013-03-01
With applications ranging from food products to cosmetics via targeted drug delivery systems, structured anisotropic colloids provide an efficient way to control the structure, properties and functions of emulsions. When two fluid emulsion droplets are brought in contact, a reduction of the interfacial tension drives their coalescence into a larger droplet of the same total volume and reduced exposed area. This coalescence can be partially or totally hindered by the presence of nano or micron-size particles that coat the interface as in Pickering emulsions. We investigate numerically the dependance of the mechanical stability of these arrested shapes on the particles size, their shape anisotropy, their polydispersity, their interaction with the solvent, and the particle-particle interactions. We discuss structural shape changes that can be induced by tuning the particles interactions after arrest occurs, and provide design parameters for the relevant experiments.
Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka
2013-07-01
In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next PEMFCs, and DMFCs.
Surface-structured diffuser by iterative down-size molding with glass sintering technology.
Lee, Xuan-Hao; Tsai, Jung-Lin; Ma, Shih-Hsin; Sun, Ching-Cherng
2012-03-12
In this paper, a down-size sintering scheme for making high-performance diffusers with micro structure to perform beam shaping is presented and demonstrated. By using down-size sintering method, a surface-structure film is designed and fabricated to verify the feasibility of the sintering technology, in which up to 1/8 dimension reduction has been achieved. Besides, a special impressing technology has been applied to fabricate diffuser film with various materials and the transmission efficiency is as high as 85% and above. By introducing the diffuser into possible lighting applications, the diffusers have been shown high performance in glare reduction, beam shaping and energy saving.
Recent advances in understanding nuclear size and shape
Mukherjee, Richik N.; Chen, Pan; Levy, Daniel L.
2016-01-01
ABSTRACT Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells. PMID:26963026
Stegemann, Sven; Riedl, Regina; Sourij, Harald
2017-01-30
The clear identification of drug products by the patients is essential for a safe and effective medication management. In order to understand the impact of shape, size and color on medication identification a study was performed in subjects with type 2 diabetes mellitus (T2D). Ten model drugs differentiated by shape, size and color were evaluated using a mixed method of medication schedule preparation by the participants followed by a semi-structured interview. Detection times were fastest for the large round tablet shape and the bi-chromatic forms. Larger size was easier to identify than the smaller sizes except for the bi-chromatic forms. The shape was the major source of errors, followed by the size and the color dimension. The results from this study suggests that color as a single dimension are perceived more effectively by subjects with T2D compared to shape and size, which requires a more demanding processing of three dimension and is dependent on the perspective. Copyright © 2016 Elsevier B.V. All rights reserved.
Almécija, Sergio; Orr, Caley M; Tocheri, Matthew W; Patel, Biren A; Jungers, William L
2015-01-01
Three-dimensional geometric morphometrics (3DGM) is a powerful tool for capturing and visualizing the "pure" shape of complex structures. However, these shape differences are sometimes difficult to interpret from a functional viewpoint, unless specific approaches (mostly based on biomechanical modeling) are employed. Here, we use 3DGM to explore the complex shape variation of the hamate, the disto-ulnar wrist bone, in anthropoid primates. Major trends of shape variation are explored using principal components analysis along with analyses of shape and size covariation. We also evaluate the phylogenetic patterning of hamate shape by plotting an anthropoid phylogenetic tree onto the shape space (i.e., phylomorphospace) and test against complete absence of phylogenetic signal using posterior permutation. Finally, the covariation of hamate shape and locomotor categories is explored by means of 2-block partial least squares (PLS) using shape coordinates and a matrix of data on arboreal locomotor behavior. Our results show that 3DGM is a valuable and versatile tool for characterizing the shape of complex structures such as wrist bones in anthropoids. For the hamate, a significant phylogenetic pattern is found in both hamate shape and size, indicating that closely related taxa are typically the most similar in hamate form. Our allometric analyses show that major differences in hamate shape among taxa are not a direct consequence of differences in hamate size. Finally, our PLS indicates a significant covariation of hamate shape and different types of arboreal locomotion, highlighting the relevance of this approach in future 3DGM studies seeking to capture a functional signal from complex biological structures. © 2014 Wiley Periodicals, Inc.
Lifting clamp positively grips structural shapes
NASA Technical Reports Server (NTRS)
Reinhardt, E. C.
1966-01-01
Welded steel clamps securely grip structural shapes of various sizes for crane operations. The clamp has adjustable clamping jaws and screw-operated internal v-jaws and provides greater safety than hoisting slings presently used. The structural member can be rotated in any manner, angle, or direction without being released by the clamp.
Vidal-García, Marta; Bandara, Lashi; Keogh, J Scott
2018-05-01
The quantification of complex morphological patterns typically involves comprehensive shape and size analyses, usually obtained by gathering morphological data from all the structures that capture the phenotypic diversity of an organism or object. Articulated structures are a critical component of overall phenotypic diversity, but data gathered from these structures are difficult to incorporate into modern analyses because of the complexities associated with jointly quantifying 3D shape in multiple structures. While there are existing methods for analyzing shape variation in articulated structures in two-dimensional (2D) space, these methods do not work in 3D, a rapidly growing area of capability and research. Here, we describe a simple geometric rigid rotation approach that removes the effect of random translation and rotation, enabling the morphological analysis of 3D articulated structures. Our method is based on Cartesian coordinates in 3D space, so it can be applied to any morphometric problem that also uses 3D coordinates (e.g., spherical harmonics). We demonstrate the method by applying it to a landmark-based dataset for analyzing shape variation using geometric morphometrics. We have developed an R tool (ShapeRotator) so that the method can be easily implemented in the commonly used R package geomorph and MorphoJ software. This method will be a valuable tool for 3D morphological analyses in articulated structures by allowing an exhaustive examination of shape and size diversity.
Parking simulation of three-dimensional multi-sized star-shaped particles
NASA Astrophysics Data System (ADS)
Zhu, Zhigang; Chen, Huisu; Xu, Wenxiang; Liu, Lin
2014-04-01
The shape and size of particles may have a great impact on the microstructure as well as the physico-properties of particulate composites. However, it is challenging to configure a parking system of particles to a geometrical shape that is close to realistic grains in particulate composites. In this work, with the assistance of x-ray tomography and a spherical harmonic series, we present a star-shaped particle that is close to realistic arbitrary-shaped grains. To realize such a hard particle parking structure, an inter-particle overlapping detection algorithm is introduced. A serial sectioning approach is employed to visualize the particle parking structure for the purpose of justifying the reliability of the overlapping detection algorithm. Furthermore, the validity of the area and perimeter of solids in any arbitrary section of a plane calculated using a numerical method is verified by comparison with those obtained using an image analysis approach. This contribution is helpful to further understand the dependence of the micro-structure and physico-properties of star-shaped particles on the realistic geometrical shape.
Self-folding with shape memory composites at the millimeter scale
NASA Astrophysics Data System (ADS)
Felton, S. M.; Becker, K. P.; Aukes, D. M.; Wood, R. J.
2015-08-01
Self-folding is an effective method for creating 3D shapes from flat sheets. In particular, shape memory composites—laminates containing shape memory polymers—have been used to self-fold complex structures and machines. To date, however, these composites have been limited to feature sizes larger than one centimeter. We present a new shape memory composite capable of folding millimeter-scale features. This technique can be activated by a global heat source for simultaneous folding, or by resistive heaters for sequential folding. It is capable of feature sizes ranging from 0.5 to 40 mm, and is compatible with multiple laminate compositions. We demonstrate the ability to produce complex structures and mechanisms by building two self-folding pieces: a model ship and a model bumblebee.
NASA Astrophysics Data System (ADS)
A, Kamalianfar; S, A. Halim; Mahmoud Godarz, Naseri; M, Navasery; Fasih, Ud Din; J, A. M. Zahedi; Kasra, Behzad; K, P. Lim; A Lavari, Monghadam; S, K. Chen
2013-08-01
Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.
ERIC Educational Resources Information Center
Hillis, R. K.
1982-01-01
Describes how teaching secondary art students to perceive negative shape improved their drawings of a bicycle, a visually complex mechanical structure. Concentrating on negative shape forces students to work with the relationships between shapes and their relative sizes. (AM)
NASA Astrophysics Data System (ADS)
Huo, Fangjun; Guo, Weihua; Wu, Hao; Wang, Yueting; He, Gang; Xie, Li; Tian, Weidong
2018-04-01
Biomimetic specific surface structure could improve biological behaviors of specific cells and eventual tissue integration. Featuring titanium surface with structures resembling bone resorption lacunae (RL) can be a promising approach to improve the osteoblast responses and osseointegration of implants. As a most common used dental implant surface, sandblasting and acid etching (SLA) surface has micro-sized structures with dimensions similar to RL, but great differences exist when it comes to shape and contour. In this work, by anodizing titanium substrate in a novel HCOONa/CH3COONa electrolyte, RL-like crater structures were fabricated with highly similar size, shape and contour. Compared with SLA, it was much more similar to RL structure in shape and contour. Furthermore, through subsequent alkali-heat treatment, nano-sized structures that overlaid the whole surface were obtained, which further mimic undercuts features inside the RL. The as-prepared surface was consisted of crystalline titania and exhibited super-hydrophilicity with good stability. In vitro evaluation results showed that the surface could significantly improve adhesion, proliferation and differentiation of MG63 cells in comparison with SLA. This new method may be a promising candidate for biomimetic modification of titanium implant to promote osseointegration.
Influence of Nanopore Shapes on Thermal Conductivity of Two-Dimensional Nanoporous Material.
Huang, Cong-Liang; Huang, Zun; Lin, Zi-Zhen; Feng, Yan-Hui; Zhang, Xin-Xin; Wang, Ge
2016-12-01
The influence of nanopore shapes on the electronic thermal conductivity (ETC) was studied in this paper. It turns out that with same porosity, the ETC will be quite different for different nanopore shapes, caused by the different channel width for different nanopore shapes. With same channel width, the influence of different nanopore shapes can be approximately omitted if the nanopore is small enough (smaller than 0.5 times EMFP in this paper). The ETC anisotropy was discovered for triangle nanopores at a large porosity with a large nanopore size, while there is a similar ETC for small pore size. It confirmed that the structure difference for small pore size may not be seen by electrons in their moving.
Foveal shape and structure in a normal population.
Tick, Sarah; Rossant, Florence; Ghorbel, Itebeddine; Gaudric, Alain; Sahel, José-Alain; Chaumet-Riffaud, Philippe; Paques, Michel
2011-07-29
The shape of the human fovea presents important but still poorly characterized variations. In this study, the variability of the shape and structure of normal foveae were examined. In a group of 110 eyes of 57 healthy adults, the shape and structure of the fovea were analyzed by automated segmentation of retinal layer on high-resolution optical coherence tomography scans. In an additional group of 10 normal eyes of 10 patients undergoing fluorescein angiography, the size of the foveal avascular zone (FAZ) was correlated to foveal shape. From the thickest to the thinnest fovea, there was a structural continuum ranging from a shallow pit with continuity of the inner nuclear layer (INL) over the center (seven eyes; 6.7%), to a complete separation of inner layers overlying a flat and thinner central outer nuclear layer (ONL; eight eyes; 7.3%). Central foveal thickness correlated inversely to the degree of inner layer separation and to the surface of the FAZ. Foveal structure strongly correlates with its neurovascular organization. The findings support a developmental model in which the size of the FAZ determines the extent of centrifugal migration of inner retinal layers, which counteracts in some way the centripetal packing of cone photoreceptors.
NASA Astrophysics Data System (ADS)
Graettinger, A. H.
2018-05-01
A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.
Self-assembled indium arsenide quantum dots: Structure, formation dynamics, optical properties
NASA Astrophysics Data System (ADS)
Lee, Hao
1998-12-01
In this dissertation, we investigate the properties of InAs/GaAs quantum dots grown by molecular beam epitaxy. The structure and formation dynamics of InAs quantum dots are studied by a variety of structural characterization techniques. Correlations among the growth conditions, the structural characteristics, and the observed optical properties are explored. The most fundamental structural characteristic of the InAs quantum dots is their shape. Through detailed study of the reflection high energy electron diffraction patterns, we determined that self-assembled InAs islands possess a pyramidal shape with 136 bounding facets. Cross-sectional transmission electron microscopy images and atomic force microscopy images strongly support this model. The 136 model we proposed is the first model that is consistent with all reported shape features determined using different methods. The dynamics of coherent island formation is also studied with the goal of establishing the factors most important in determining the size, density, and the shape of self- organized InAs quantum dots. Our studies clearly demonstrate the roles that indium diffusion and desorption play in InAs island formation. An unexpected finding (from atomic force microscopy images) was that the island size distribution bifurcated during post- growth annealing. Photoluminescence spectra of the samples subjected to in-situ annealing prior to the growth of a capping layer show a distinctive double-peak feature. The power-dependence and temperature-dependence of the photoluminescence spectra reveals that the double- peak emission is associated with the ground-state transition of islands in two different size branches. These results confirm the island size bifurcation observed from atomic force microscopy images. The island size bifurcation provides a new approach to the control and manipulation of the island size distribution. Unexpected dependence of the photoluminescence line-shape on sample temperature and pump intensity was observed for samples grown at relatively high substrate temperatures. The behavior is modeled and explained in terms of competition between two overlapping transitions. The study underscores that the growth conditions can have a dramatic impact on the optical properties of the quantum dots. This dissertation includes both my previously published and unpublished authored materials.
Fourier analysis of human soft tissue facial shape: sex differences in normal adults.
Ferrario, V F; Sforza, C; Schmitz, J H; Miani, A; Taroni, G
1995-01-01
Sexual dimorphism in human facial form involves both size and shape variations of the soft tissue structures. These variations are conventionally appreciated using linear and angular measurements, as well as ratios, taken from photographs or radiographs. Unfortunately this metric approach provides adequate quantitative information about size only, eluding the problems of shape definition. Mathematical methods such as the Fourier series allow a correct quantitative analysis of shape and of its changes. A method for the reconstruction of outlines starting from selected landmarks and for their Fourier analysis has been developed, and applied to analyse sex differences in shape of the soft tissue facial contour in a group of healthy young adults. When standardised for size, no sex differences were found between both cosine and sine coefficients of the Fourier series expansion. This shape similarity was largely overwhelmed by the very evident size differences and it could be measured only using the proper mathematical methods. PMID:8586558
ERIC Educational Resources Information Center
Bachman, C. H.
1988-01-01
Presents examples to show the ubiquitous nature of geometry. Illustrates the relationship between the perimeter and area of two-dimensional objects and between the area and volume of three-dimensional objects. Provides examples of distribution systems, optimum shapes, structural strength, biological heat engines, man's size, and reflection and…
Complex pattern of variation in neurocranial ontogeny revealed by CT-scanning.
Anzelmo, Marisol; Ventrice, Fernando; Kelmansky, Diana; Sardi, Marina
2018-05-01
The neurocranium of hominid species has been largely studied with reference to the midsagittal plane, with variations being attributed to brain evolution. By contrast, there is limited information on variation in non-midsagittal regions, which are the points of insertion of muscles and bony structures related to mastication. This work aims to analyze ontogenetic changes and sexual dimorphism (SD) in midsagittal and non-midsagittal neurocranial structures from a contemporary human sample comprising 138 computed tomography (CT) cranial images of individuals ranging from infants to adults. Morphology of the vault and the base was assessed by registering landmarks and semilandmarks, which were analyzed by geometric morphometrics, and the endocranial volume (EV). The results of regressions and Kruskal-Wallis test indicate that the major size and shape changes in both midsagittal and non-midsagittal regions occur during infancy and juvenility; shape changes are also associated with an increase in EV. The size of the midsagittal vault, the shape of the non-midsagittal vault and the size of the base show an extension of ontogenetic trajectories. Sexes show similar changes in shape but different changes in size. We conclude that brain growth appears to be an important factor influencing the morphology of the neurocranium, at least during infancy and childhood. Subsequent changes may be attributed to osteogenic activity and the differential growth of the brain lobes. Masticatory-related bony structures and muscles may not be strong enough factors to induce independent modifications in non-midsagittal structures. The small influence of the cranial muscles would explain why the human neurocranium is a quite integrated structure.
Exceptional body sizes but typical trophic structure in a Pleistocene food web.
Segura, Angel M; Fariña, Richard A; Arim, Matías
2016-05-01
In this study, we focused on the exceptionally large mammals inhabiting the Americas during the Quaternary period and the paramount role of body size in species ecology. We evaluated two main features of Pleistocene food webs: the relationship between body size and (i) trophic position and (ii) vulnerability to predation. Despite the large range of species sizes, we found a hump-shaped relationship between trophic position and body size. We also found a negative trend in species vulnerability similar to that observed in modern faunas. The largest species lived near the boundary of energetic constraints, such that any shift in resource availability could drive these species to extinction. Our results reinforce several features of megafauna ecology: (i) the negative relationship between trophic position and body size implies that large-sized species were particularly vulnerable to changes in energetic support; (ii) living close to energetic imbalance could favour the incorporation of additional energy sources, for example, a transition from a herbivorous to a scavenging diet in the largest species (e.g. Megatherium) and (iii) the interactions and structure of Quaternary megafauna communities were shaped by similar forces to those shaping modern fauna communities. © 2016 The Author(s).
Zelditch, Miriam Leah; Ye, Ji; Mitchell, Jonathan S; Swiderski, Donald L
2017-03-01
Convergence is widely regarded as compelling evidence for adaptation, often being portrayed as evidence that phenotypic outcomes are predictable from ecology, overriding contingencies of history. However, repeated outcomes may be very rare unless adaptive landscapes are simple, structured by strong ecological and functional constraints. One such constraint may be a limitation on body size because performance often scales with size, allowing species to adapt to challenging functions by modifying only size. When size is constrained, species might adapt by changing shape; convergent shapes may therefore be common when size is limiting and functions are challenging. We examine the roles of size and diet as determinants of jaw shape in Sciuridae. As expected, size and diet have significant interdependent effects on jaw shape and ecomorphological convergence is rare, typically involving demanding diets and limiting sizes. More surprising is morphological without ecological convergence, which is equally common between and within dietary classes. Those cases, like rare ecomorphological convergence, may be consequences of evolving on an adaptive landscape shaped by many-to-many relationships between ecology and function, many-to-one relationships between form and performance, and one-to-many relationships between functionally versatile morphologies and ecology. On complex adaptive landscapes, ecological selection can yield different outcomes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Optical properties of graphene nanoflakes: Shape matters.
Mansilla Wettstein, Candela; Bonafé, Franco P; Oviedo, M Belén; Sánchez, Cristián G
2016-06-14
In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNFs) or graphene quantum dots (GQDs) are relevant for their electronic structure, thermal stability, and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNF size, which shows three very distinct trends for different shapes and edge geometries.
Optical properties of graphene nanoflakes: Shape matters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansilla Wettstein, Candela; Bonafé, Franco P.; Sánchez, Cristián G., E-mail: cgsanchez@fcq.unc.edu.ar
In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNFs) or graphene quantum dots (GQDs) are relevant for their electronic structure, thermal stability, and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNFmore » size, which shows three very distinct trends for different shapes and edge geometries.« less
Capillary Origami Inspired Fabrication of Complex 3D Hydrogel Constructs.
Li, Moxiao; Yang, Qingzhen; Liu, Hao; Qiu, Mushu; Lu, Tian Jian; Xu, Feng
2016-09-01
Hydrogels have found broad applications in various engineering and biomedical fields, where the shape and size of hydrogels can profoundly influence their functions. Although numerous methods have been developed to tailor 3D hydrogel structures, it is still challenging to fabricate complex 3D hydrogel constructs. Inspired by the capillary origami phenomenon where surface tension of a droplet on an elastic membrane can induce spontaneous folding of the membrane into 3D structures along with droplet evaporation, a facile strategy is established for the fabrication of complex 3D hydrogel constructs with programmable shapes and sizes by crosslinking hydrogels during the folding process. A mathematical model is further proposed to predict the temporal structure evolution of the folded 3D hydrogel constructs. Using this model, precise control is achieved over the 3D shapes (e.g., pyramid, pentahedron, and cube) and sizes (ranging from hundreds of micrometers to millimeters) through tuning membrane shape, dimensionless parameter of the process (elastocapillary number Ce ), and evaporation time. This work would be favorable to multiple areas, such as flexible electronics, tissue regeneration, and drug delivery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction.
Shi, Handuo; Bratton, Benjamin P; Gitai, Zemer; Huang, Kerwyn Casey
2018-03-08
Cell shape matters across the kingdoms of life, and cells have the remarkable capacity to define and maintain specific shapes and sizes. But how are the shapes of micron-sized cells determined from the coordinated activities of nanometer-sized proteins? Here, we review general principles that have surfaced through the study of rod-shaped bacterial growth. Imaging approaches have revealed that polymers of the actin homolog MreB play a central role. MreB both senses and changes cell shape, thereby generating a self-organizing feedback system for shape maintenance. At the molecular level, structural and computational studies indicate that MreB filaments exhibit tunable mechanical properties that explain their preference for certain geometries and orientations along the cylindrical cell body. We illustrate the regulatory landscape of rod-shape formation and the connectivity between cell shape, cell growth, and other aspects of cell physiology. These discoveries provide a framework for future investigations into the architecture and construction of microbes. Copyright © 2018 Elsevier Inc. All rights reserved.
Strain-Detecting Composite Materials
NASA Technical Reports Server (NTRS)
Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)
2016-01-01
A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.
Manipulating the transmission through valve structure composed of zero-index metamaterial
NASA Astrophysics Data System (ADS)
Wang, Yongxing; Sun, Zhouzhou; Xu, Ping
2017-11-01
We propose a valve structure composed of zero-index metamaterial to manipulate the electromagnetic wave conveniently and effectively through regulating the phase of reflected waves. Both the structure and characteristics of zero-index metamaterial need not to be changed when manipulating the transmission, which maintains the stability of zero-index metamaterial. Moreover, the good performance of tuning the electromagnetic wave is not limited by the shape and size of our proposed structure. By using our proposed valve structure, we demonstrate the realization of the tunable curved anisotropic ɛ-near-zero material waveguide with irregular shape, arbitrarily sized isotropic ɛ-near-zero material waveguide with high transmittance and the curved isotropic impedance matched ɛ-near-zero material waveguide without polarization limitations.
Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu
2017-10-19
The self-assembly of a reformed symmetric H-shaped copolymer with four hydrophilic branches and one hydrophobic stem was systematically investigated. The existence of vacancies is vital to regulate the sizes of self-assembled cylinders to be able to form a hexagonal arrangement. With the introduction of horizontal-orientated confinement, a micellar structure is formed through a coalescence mechanism. The short acting distance and large influencing area of the confinement produces numerous small-sized micelles. Additionally, the cycled "contraction-expansion" change helps achieve hexagonal arrangement. In contrast, the introduction of lateral-oriented confinement with long acting distance and small influencing area cannot change the cylindrical structure. Under the fission mechanism, in which the larger cylinder splits into smaller ones, it is quite efficient to generate hierarchical-sized cylinders from larger-sized cylinders in the middle region and smaller-sized cylinders near both walls. The results indicate the possibility of regulating the characteristics of a nanomaterial by tuning the molecular structure of the copolymer and the parameters of the introduced confinement, which are closely related to the self-assembly structure.
Tarabout, Christophe; Roux, Stéphane; Gobeaux, Frédéric; Fay, Nicolas; Pouget, Emilie; Meriadec, Cristelle; Ligeti, Melinda; Thomas, Daniel; IJsselstijn, Maarten; Besselievre, François; Buisson, David-Alexandre; Verbavatz, Jean-Marc; Petitjean, Michel; Valéry, Céline; Perrin, Lionel; Rousseau, Bernard; Artzner, Franck; Paternostre, Maité; Cintrat, Jean-Christophe
2011-01-01
Supramolecular self-assembly is an attractive pathway for bottom-up synthesis of novel nanomaterials. In particular, this approach allows the spontaneous formation of structures of well-defined shapes and monodisperse characteristic sizes. Because nanotechnology mainly relies on size-dependent physical phenomena, the control of monodispersity is required, but the possibility of tuning the size is also essential. For self-assembling systems, shape, size, and monodispersity are mainly settled by the chemical structure of the building block. Attempts to change the size notably by chemical modification usually end up with the loss of self-assembly. Here, we generated a library of 17 peptides forming nanotubes of monodisperse diameter ranging from 10 to 36 nm. A structural model taking into account close contacts explains how a modification of a few Å of a single aromatic residue induces a fourfold increase in nanotube diameter. The application of such a strategy is demonstrated by the formation of silica nanotubes of various diameters. PMID:21518895
Getting Things Sorted With Lagrangian Coherent Structures
NASA Astrophysics Data System (ADS)
Atis, Severine; Peacock, Thomas; Environmental Dynamics Laboratory Team
2014-11-01
The dispersion of a tracer in a fluid flow is influenced by the Lagrangian motion of fluid elements. Even in laminar regimes, the irregular chaotic behavior of a fluid flow can lead to effective stirring that rapidly redistributes a tracer throughout the domain. For flows with arbitrary time-dependence, the modern approach of Lagrangian Coherent Structures (LCSs) provide a method for identifying the key material lines that organize flow transport. When the advected tracer particles possess a finite size and nontrivial shape, however, their dynamics can differ markedly from passive tracers, thus affecting the dispersion phenomena. We present details of numerical simulations and laboratory experiments that investigate the behavior of finite size particles in 2-dimensional chaotic flows. We show that the shape and the size of the particles alter the underlying LCSs, facilitating segregation between tracers of different shape in the same flow field.
Ye, Jongpil
2015-05-08
Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes.
Ye, Jongpil
2015-01-01
Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes. PMID:25951816
Robust and adjustable C-shaped electron vortex beams
NASA Astrophysics Data System (ADS)
Mousley, M.; Thirunavukkarasu, G.; Babiker, M.; Yuan, J.
2017-06-01
Wavefront engineering is an important quantum technology, often applied to the production of states carrying orbital angular momentum (OAM). Here, we demonstrate the design and production of robust C-shaped beam states carrying OAM, in which the usual doughnut-shaped transverse intensity structure of the vortex beam contains an adjustable gap. We find that the presence of the vortex lines in the core of the beam is crucial for maintaining the stability of the C-shape structure during beam propagation. The topological charge of the vortex core controls mainly the size of the C-shape, while its opening angle is related to the presence of vortex-anti-vortex loops. We demonstrate the generation and characterisation of C-shaped electron vortex beams, although the result is equally applicable to other quantum waves. C-shaped electron vortex beams have potential applications in nanoscale fabrication of planar split-ring structures and three-dimensional chiral structures as well as depth sensing and magnetic field determination through rotation of the gap in the C-shape.
Chazot, Nicolas; Panara, Stephen; Zilbermann, Nicolas; Blandin, Patrick; Le Poul, Yann; Cornette, Raphaël; Elias, Marianne; Debat, Vincent
2016-01-01
Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Controllable synthesis of Co3O4 nanocrystals as efficient catalysts for oxygen reduction reaction
NASA Astrophysics Data System (ADS)
Li, Baoying; Zhang, Yihe; Du, Ruifeng; Liu, Lei; Yu, Xuelian
2018-03-01
The electrochemical oxygen reduction reaction (ORR) has received great attention due to its importance in fuel cells and metal-air batteries. Here, we present a simple approach to prepare non-noble metal catalyst-Co3O4 nanocrystals (NCs). The particle size and shape were simply controlled by different types and concentrations of metal precursor. Furthermore, different sizes and shapes of Co3O4 NCs are explored as electrocatalysts for ORR, and it has been observed that particles with a similar shape, and smaller particle size led to greater catalytic current densities because of the greater surface area. For particles with a comparable size, the shape or crystalline structure governed the activity of the electrocatalytic reactions. Most importantly, the 9 nm-Co3O4 were demonstrated to act as low-cost catalysts for the ORR with a similar performance to that of Pt catalysts.
NASA Astrophysics Data System (ADS)
Li, Yanrong; Zhang, Tao; Zhang, Yongbo; Xu, Qiang
2018-06-01
Loess, as one of the main Quaternary deposits, covers approximately 6% of the land surface of the Earth. Although loess is loose and fragile, loess columns are popular and they can stand stably for hundreds of years, thereby forming a spectacular landform. The formation of such special column-shaped soil structures is puzzling, and the underlying fundamentals remain unclear. The present study focuses on quantifying and examining the geometrical shape and spatial alignment of structural blocks of the Malan loess at different locations in the Loess Plateau of China. The structural blocks under investigation include clay- and silt-sized particles, aggregates, fragments, lumps, and columns, which vary in size from microns to tens of meters. Regardless of their size, the structural blocks of the Malan loess are found to be similar in shape, i.e., elongated with a length-to-width ratio of approximately 2.6. The aggregates, fragments, lumps, columns, and macropores between aggregates exhibit strong concentration in the vertical or subvertical alignment. These phenomena imply that the Malan loess is anisotropic and it is composed of a combination of vertically aligned strong units and vertically aligned weak segments. Based on this, "vertiloess" structure is proposed to denote this combination. The vertiloess structure prevents horizontal erosion, but favors spalling, peeling, toppling, falling and cracking-sliding of vertical loess pieces, thereby forming loess columns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L Whittaker; J Velazquez; S Banerjee
2011-12-31
Obtaining shape and size control of strongly correlated materials is imperative to obtain a fundamental understanding of the influence of finite size and surface restructuring on electronic instabilities in the proximity of the Fermi level. We present here a novel synthetic approach that takes advantage of the intrinsic octahedral symmetry of rock-salt-structured VO to facilitate the growth of six-armed nanocrystallites of related, technologically important binary vanadium oxides VO2 and V2O5. The prepared nanostructures exhibit clear six-fold symmetry and most notably show remarkable retention of electronic structure. The latter has been evidenced through extensive X-ray absorption spectroscopy measurements.
Goncalves-Filho, Antonio Jg; Moda, Larissa B; Oliveira, Roberta P; Ribeiro, Andre Luis Ribeiro; Pinheiro, João Jv; Alver-Junior, S Rgio M
2014-01-01
Dental anomalies (DAs) are the result of disorders that are able to modify the shape, number, size, and structure of teeth. This study aimed to evaluate the prevalence of DAs using panoramic radiographs in a population of the City of Belém, northern Brazil. In this study, 487 panoramic radiographs were evaluated searching for DAs. Dental records were reviewed for diagnostic confirmation. DAs related to the shape, number, size, and structure of teeth were investigated. Our results showed a DA prevalence of 56.9%. The most prevalent DA was taurodontism, which was present in 27.19% of cases. Root dilaceration was the second most prevalent DA in adults, whereas hypodontia was the second most prevalent DA in children. A total of 13 DAs were found. Dental anomalies were present in over half of the sample, and most of them were related to the shape of the teeth. Although there was a high prevalence of shape-related DAs, these alterations are generally of lower severity, and most do not require specific treatment. However, in 19.25% of cases, DAs were found involving the number, size and structure of the teeth. These DAs should be diagnosed and treated early, avoiding thus more serious complications.
NASA Astrophysics Data System (ADS)
Yildizhan, Gulsum; Caliskan, Serkan; Ozturk, Ramazan
2018-04-01
Nanoparticles composed of palladium and platinum are particularly interesting for catalytic purposes, for instance, selective hydrogenation and alcohol oxidation. The reactivity and selectivity of nanostructures are mostly based on the size and shape of the nanocrystals in catalytic reactions. In this work, we studied the structural stabilities of Pd and Pt based nanocubes and nanocages and adsorption strength of chemisorbed species on these nanostructures to investigate their structure dependent catalytic activities. Solid cubic and hollow cage like nanostructures of different sizes were designed with Pd and Pt atoms. The volume of the crystal cavity in nanocage structures was tuned by removing of atoms from solid cubic structure. The effect of size and shape on the formation energies and HOMO-LUMO energy gap of nanostructures were elucidated and correlated to structural stabilities, hardness-softness, electronegativity and electrophilicity index. The relationship between size and chemical reactivity clearly showed that increasing the number of atoms participating in a catalyst enhances the activity. For further understanding of the catalytic activity we employed 4-nitro thiophenol, as an S-donor representative molecule, to evaluate the adsorption characteristics of the nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guo-Bo; Key Laboratory for Laser Plasmas; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com
2016-03-14
The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam aremore » simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.« less
Diffractive optics for particle velocimetry and sizing
NASA Technical Reports Server (NTRS)
Wilson, D. W.; Gogna, P. K.; Chacon, R. J.; Muller, R. E.; Fourguette, D.; Modarress, D.; Taugwalder, F.; Svitek, P.; Gharib, M.
2002-01-01
Beam-shaping diffractive optical elements are used to create structured light patterns in fluid flows. Particle scattering results in detected signals that can be used to determine the particle size and velocity.
Incorporating structural analysis in a quantum dot Monte-Carlo model
NASA Astrophysics Data System (ADS)
Butler, I. M. E.; Li, Wei; Sobhani, S. A.; Babazadeh, N.; Ross, I. M.; Nishi, K.; Takemasa, K.; Sugawara, M.; Peyvast, Negin; Childs, D. T. D.; Hogg, R. A.
2018-02-01
We simulate the shape of the density of states (DoS) of the quantum dot (QD) ensemble based upon size information provided by high angle annular dark field scanning transmission electron microscopy (HAADF STEM). We discuss how the capability to determined the QD DoS from micro-structural data allows a MonteCarlo model to be developed to accurately describe the QD gain and spontaneous emission spectra. The QD DoS shape is then studied, with recommendations made via the effect of removing, and enhancing this size inhomogeneity on various QD based devices is explored.
Preparation and characterization of chain-like and peanut-like Fe3O4@SiO2 core-shell structure.
Shi, Haowei; Huang, Yan; Cheng, Chao; Ji, Guoyuan; Yang, Yuxiang; Yuan, Hongming
2013-10-01
The size- and shape-controlled Fe3O4@SiO2 nanocomposites were successfully synthesized via the sol-gel method. The results showed that the size, shape, and property of the products were directly influenced by the amount of TEOS, and the concentration of water-based magnetic fluid in the coating process. The morphology and properties of the products were characterized by TEM, SEM, X-ray powder diffraction, IR and EDS. The Fe3O4@SiO2 composites with easily-controlled size arranged from 58 to 835 nm could be synthesized by adjusting the experimental parameters. When TEOS amount is 1 mL and the concentration of magnetic fluid were 30.0 and 10.0 mg/mL respectively, chain-like and peanuts-like well-dispersed Fe3O4@SiO2 particles with clear core-shell structure were obtained. These size- and shape-controlled Fe3O4@SiO2 composites may have potential application in the field of targeted drug delivery and MRI contrast agent.
Thompson, Amanda L; Adair, Linda; Bentley, Margaret E
2014-06-01
Biomedical researchers have raised concerns that mothers' inability to recognize infant and toddler overweight poses a barrier to stemming increasing rates of overweight and obesity, particularly among low-income or minority mothers. Little anthropological research has examined the sociocultural, economic or structural factors shaping maternal perceptions of infant and toddler size or addressed biomedical depictions of maternal misperception as a "socio-cultural problem." We use qualitative and quantitative data from 237 low-income, African-American mothers to explore how they define 'normal' infant growth and infant overweight. Our quantitative results document that mothers' perceptions of infant size change with infant age, are sensitive to the size of other infants in the community, and are associated with concerns over health and appetite. Qualitative analysis documents that mothers are concerned with their children's weight status and assess size in relation to their infants' cues, local and societal norms of appropriate size, interactions with biomedicine, and concerns about infant health and sufficiency. These findings suggest that mothers use multiple models to interpret and respond to child weight. An anthropological focus on the complex social and structural factors shaping what is considered 'normal' and 'abnormal' infant weight is critical for shaping appropriate and successful interventions.
Liu, Lifeng; Ding, Xiangdong; Li, Ju; Lookman, Turab; Sun, Jun
2014-02-21
Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ transmission electron microscopy (TEM), we directly observe the nucleation of the level-2 superstructure in a Cu-Al-Ni single crystal under compression, with critical super-nuclei size L2c around 500 nm. When the sample size D decreases below L2c, the superelasticity behavior changes from a flat stress plateau to a continuously rising stress-strain curve. Such size dependence definitely would impact the application of shape memory alloys in miniaturized MEMS/NEMS devices.
Mars Life? - Microscopic Tubular Structures
1996-08-09
This electron microscope image shows tubular structures of likely Martian origin. These structures are very similar in size and shape to extremely tiny microfossils found in some Earth rocks. http://photojournal.jpl.nasa.gov/catalog/PIA00287
Basic properties of full-size st ructural flakeboards fabricated with flakes on a shaping lathe
Eddie W. Prie
1977-01-01
Structural exterior flakeboards manufactured in 4 by 8 ft (1.22 by 2.44 m ) size with phenolic resin and flakes produced on a shaping-lathe headrig were evaluated for plate shear modulus, internal bond, bending properties, and 24-hour water soak stability. Both mixed and single species flakeboards were produced. Panels with mixed flakes had 20% by weight of hickory,...
UV Polymerization of Hydrodynamically Shaped Fibers
2011-01-01
using passive wall structures was used to shape a prepolymer stream, which was subsequently polymerized using UV exposure. The shape designed using flow...simulations was maintained, and the size of the fibers was controlled using the ratio of the flow rates of the sheath and the prepolymer . The fibers... prepolymer fluids. This microfluidic approach for production of fibers with defined cross-sectional shape can produce fibers for further development
Simulating the Structural Response of a Preloaded Bolted Joint
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.
2008-01-01
The present paper describes the structural analyses performed on a preloaded bolted-joint configuration. The joint modeled was comprised of two L-shaped structures connected together using a single bolt. Each L-shaped structure involved a vertical flat segment (or shell wall) welded to a horizontal segment (or flange). Parametric studies were performed using elasto-plastic, large-deformation nonlinear finite element analyses to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, washer-surface-bearing size, edge boundary conditions, joint segment length, and loading history. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted-joint response; however, the washer-bearing-surface size affected the response significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somorjai, Gabor A.; Park, Jeong Y.
2008-02-13
Recent breakthroughs in synthesis in nanosciences have achieved control of size and shapes of nanoparticles that are relevant for catalyst design. In this article, we review the advance of synthesis of nanoparticles, fabrication of two and three dimensional model catalyst system, characterization, and studies of activity and selectivity. The ability to synthesize monodispersed platinum and rhodium nanoparticles in the 1-10 nm range permitted us to study the influence of composition, structure, and dynamic properties of monodispersed metal nanoparticle on chemical reactivity and selectivity. We review the importance of size and shape of nanoparticles to determine the reaction selectivity in multi-pathmore » reactions. The influence of metal-support interaction has been studied by probing the hot electron flows through the metal-oxide interface in catalytic nanodiodes. Novel designs of nanoparticle catalytic systems are discussed.« less
Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions.
Bharti, Bhuvnesh; Velev, Orlin D
2015-07-28
Field-directed colloidal assembly has shown remarkable recent progress in increasing the complexity, degree of control, and multiscale organization of the structures. This has largely been achieved by using particles of complex shapes and polarizabilites (Janus, patchy, shaped, and faceted). We review the fundamentals of the interactions leading to the directed assembly of such structures, the ways to simulate the dynamics of the process, and the effect of particle size, shape, and properties on the type of structure obtained. We discuss how directional polarization interactions induced by external electric and magnetic fields can be used to assemble complex particles or particle mixtures into lattices of tailored structure. Examples of such systems include isotropic and anisotropic shaped particles with surface patches, which form networks and crystals of unusual symmetry by dipolar, quadrupolar, and multipolar interactions in external fields. The emerging trends in making reconfigurable and dynamic structures are discussed.
Size and shape dependence of electronic and optical excitations in TiO2 nanocrystals
NASA Astrophysics Data System (ADS)
Baishya, Kopinjol; Ogut, Serdar
2013-03-01
We present results for the electronic structures, quasi-particle gaps, and the absorption spectra of TiO2 nanocrystals of both rutile and anatase phases with various shapes, sizes, and surfaces exposed. We study the size and shape dependences of these electronic and optical properties, computed both within time-dependent density functional theory and many-body perturbation methods such as the GW-BSE, using appropriately passivated nanocrystals to mimic bulk termination. Surface effects are examined by using nanocrystals of various sizes with particular surfaces, such as (110) in rutile and (101) in anatase phases, exposed. We interpret the resulting optical absorption spectra of these nanocrystals in terms of the bulk spectra and compare them with predictions from classical Mie-Gans theory. This work was supported by the DOE Grant No. DE-FG02-09ER16072.
Size, Shape and Impurity Effects on Superconducting critical temperature.
NASA Astrophysics Data System (ADS)
Umeda, Masaki; Kato, Masaru; Sato, Osamu
Bulk superconductors have their own critical temperatures Tc. However, for a nano-structured superconductor, Tc depends on size and shape of the superconductor. Nishizaki showed that the high pressure torsion on bulks of Nb makes Tc higher, because the torsion makes many nano-sized fine grains in the bulks. However the high pressure torsion on bulks of V makes Tc lower, and Nishizaki discussed that the decrease of Tc is caused by impurities in the bulks of V. We studied size, shape, and impurity effects on Tc, by solving the Gor'kov equations, using the finite element method. We found that smaller and narrower superconductors show higher Tc. We found how size and shape affects Tc by studying spacial order parameter distributions and quasi-particle eigen-energies. Also we studied the impurity effects on Tc, and found that Tc decreases with increase of scattering rate by impurities. This work was supported in part of KAKENHI Grant Number JP26400367 and JP16K05460, and program for leading graduate schools of ministry of education, culture, sports, science and technology-Japan.
Brazil Nuts on Eros: Size-Sorting of Asteroid Regolith
NASA Technical Reports Server (NTRS)
Asphaug, E.; King, P. J.; Swift, M. R.; Merrifield, M. R.
2001-01-01
We consider the hypothesis that frequent cratering produces size- or compositionally-sorted asteroid regolith, affecting the structure, texture, and in extreme cases the shape of asteroids. Additional information is contained in the original extended abstract.
2009-01-01
An important part of characterizing any protein molecule is to determine its size and shape. Sedimentation and gel filtration are hydrodynamic techniques that can be used for this medium resolution structural analysis. This review collects a number of simple calculations that are useful for thinking about protein structure at the nanometer level. Readers are reminded that the Perrin equation is generally not a valid approach to determine the shape of proteins. Instead, a simple guideline is presented, based on the measured sedimentation coefficient and a calculated maximum S, to estimate if a protein is globular or elongated. It is recalled that a gel filtration column fractionates proteins on the basis of their Stokes radius, not molecular weight. The molecular weight can be determined by combining gradient sedimentation and gel filtration, techniques available in most biochemistry laboratories, as originally proposed by Siegel and Monte. Finally, rotary shadowing and negative stain electron microscopy are powerful techniques for resolving the size and shape of single protein molecules and complexes at the nanometer level. A combination of hydrodynamics and electron microscopy is especially powerful. PMID:19495910
Why do shape aftereffects increase with eccentricity?
Gheorghiu, Elena; Kingdom, Frederick A A; Bell, Jason; Gurnsey, Rick
2011-12-20
Studies have shown that spatial aftereffects increase with eccentricity. Here, we demonstrate that the shape-frequency and shape-amplitude aftereffects, which describe the perceived shifts in the shape of a sinusoidal-shaped contour following adaptation to a slightly different sinusoidal-shaped contour, also increase with eccentricity. Why does this happen? We first demonstrate that the perceptual shift increases with eccentricity for stimuli of fixed sizes. These shifts are not attenuated by variations in stimulus size; in fact, at each eccentricity the degree of perceptual shift is scale-independent. This scale independence is specific to the aftereffect because basic discrimination thresholds (in the absence of adaptation) decrease as size increases. Structural aspects of the displays were found to have a modest effect on the degree of perceptual shift; the degree of adaptation depends modestly on distance between stimuli during adaptation and post-adaptation testing. There were similar temporal rates of decline of adaptation across the visual field and higher post-adaptation discrimination thresholds in the periphery than in the center. The observed results are consistent with greater sensitivity reduction in adapted mechanisms following adaptation in the periphery or an eccentricity-dependent increase in the bandwidth of the shape-frequency- and shape-amplitude-selective mechanisms.
NASA Astrophysics Data System (ADS)
Kopnichev, Yu. F.; Sokolova, I. N.
2017-12-01
Some characteristics of seismicity in Southern California are studied. It is found that ring-shaped seismicity structures with threshold magnitudes M th of 4.1, 4.1, and 3.8 formed prior to three large ( M w > 7.0) earthquakes in 1992, 1999, and 2010, respectively. The sizes of these structures are several times smaller than for intracontinental strike-slip events with similar magnitudes. Two ring-shaped structures are identified in areas east of the city of Los Angeles, where relatively large earthquakes have not occurred for at least 150 years. The magnitudes of large events which can occur in the areas of these structures are estimated on the basis of the previously obtained correlation dependence of ring sizes on magnitudes of the strike-slip earthquakes. Large events with magnitudes of M w = 6.9 ± 0.2 and M w = 8.6 ± 0.2 can occur in the area to the east of the city of Los Angeles and in the rupture zone of the 1857 great Fort Tejon earthquake, respectively. We believe that ring-structure formation, similarly to the other regions, is connected with deep-seated fluid migration.
Steenbergen, Krista G; Gaston, Nicola
2015-02-09
Finite temperature analysis of cluster structures is used to identify signatures of the low-temperature polymorphs of gallium, based on the results of first-principle Born-Oppenheimer molecular dynamics simulations. Pre-melting structural transitions proceed from either the β- and/or the δ-phase to the γ- or δ-phase, with a size- dependent phase progression. We relate the stability of each isomer to the electronic structures of the different phases, giving new insight into the origin of polymorphism in this complicated element. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure formation in grade 20 steel during equal-channel angular pressing and subsequent heating
NASA Astrophysics Data System (ADS)
Dobatkin, S. V.; Odesskii, P. D.; Raab, G. I.; Tyutin, M. R.; Rybalchenko, O. V.
2016-11-01
The structure formation and the mechanical properties of quenched and tempered grade 20 steel after equal-channel angular pressing (ECAP) at various true strains and 400°C are studied. Electron microscopy analysis after ECAP shows a partially submicrocrystalline and partially subgrain structure with a structural element size of 340-375 nm. The structural element size depends on the region in which the elements are formed (polyhedral ferrite, needle-shaped ferrite, tempered martensite, and pearlite). Heating of the steel after ECAP at 400 and 450°C increases the fraction of high-angle boundaries and the structural ferrite element size to 360-450 nm. The fragmentation and spheroidization of cementite lamellae of pearlite and subgrain coalescence in the regions of needle-shaped ferrite and tempered martensite take place at a high ECAP true strain and heating temperature. Structural refinement ensures considerable strengthening, namely, UTS 742-871 MPa at EL 11-15.3%. The strength slightly increases, whereas the plasticity slightly decreases when the true strain increases during ECAP. After ECAP and heating, the strength and plastic properties of the grade 20 steel remain almost the same.
Configuration-shape-size optimization of space structures by material redistribution
NASA Technical Reports Server (NTRS)
Vandenbelt, D. N.; Crivelli, L. A.; Felippa, C. A.
1993-01-01
This project investigates the configuration-shape-size optimization (CSSO) of orbiting and planetary space structures. The project embodies three phases. In the first one the material-removal CSSO method introduced by Kikuchi and Bendsoe (KB) is further developed to gain understanding of finite element homogenization techniques as well as associated constrained optimization algorithms that must carry along a very large number (thousands) of design variables. In the CSSO-KB method an optimal structure is 'carved out' of a design domain initially filled with finite elements, by allowing perforations (microholes) to develop, grow and merge. The second phase involves 'materialization' of space structures from the void, thus reversing the carving process. The third phase involves analysis of these structures for construction and operational constraints, with emphasis in packaging and deployment. The present paper describes progress in selected areas of the first project phase and the start of the second one.
NASA Astrophysics Data System (ADS)
Wan, Yi
2011-06-01
Chinese wines can be classification or graded by the micrographs. Micrographs of Chinese wines show floccules, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. Shape and structure of wines' particles in microstructure is the most important feature for recognition and classification of wines. So we introduce a feature extraction method which can describe the structure and region shape of micrograph efficiently. First, the micrographs are enhanced using total variation denoising, and segmented using a modified Otsu's method based on the Rayleigh Distribution. Then features are extracted using proposed method in the paper based on area, perimeter and traditional shape feature. Eight kinds total 26 features are selected. Finally, Chinese wine classification system based on micrograph using combination of shape and structure features and BP neural network have been presented. We compare the recognition results for different choices of features (traditional shape features or proposed features). The experimental results show that the better classification rate have been achieved using the combinational features proposed in this paper.
Constraints on the size of Asteroid (216) Kleopatra using stress analysis
NASA Astrophysics Data System (ADS)
Hirabayashi, M.; Scheeres, D. J.
2013-12-01
We investigate the stable size of Asteroid (216) Kleopatra by considering structural constraints on this body. Comprehensive radar observations (Ostro et al. 2000, Science) were used to estimate a shape model for this asteroid. Their estimation revealed that the shape looks like a dog-bone, the mean radius is 54.3 km (with uncertainty as large as 25%), and the surface seems similar to lunar surface regolith. However, 10 years later, Descamps et al. (2011, Icarus) performed near-infrared adaptive optics (AO) imaging with the W.M. Keck II telescope and found that although the shape may be consistent with their observation result, their size appeared to be larger than the Ostro size (by a factor of about 1.24). Our motivation in this study is to investigate structural stability constraints on the size of this asteroid. Across the stated range of uncertainty we find significant differences in the necessary angle of friction and cohesion for the body to avoid plastic deformation. We use the following physical parameters as fixed: a mass of 4.64e18 kg (Descamps et al. 2011, Icarus), a rotation period of 5.385 hr (Magnusson 1990, Icarus), and the Ostro et al. shape. We use the Drucker-Prager criterion to describe the rheology of the asteroid's material. Furthermore, we determine the friction angle from the fact that the surface of this asteroid is similar to lunar surface regolith, whose porosity ranges from 33% to 55%. According to Scott (1963), a soil with porosity of 44% (the mean value of the lunar surface porosity) has a friction angle of 32 degrees (which we use as our nominal value). Since the interior structure is unknown, we assume that the body is homogeneous. We first analyze the stable size by using the upper bound theorem from limit analysis on the assumption that this asteroid's materials are cohesionless. Based on this theorem, for any static surface traction and body force, the yield due to a smooth and convex yield envelope associated with the volume average is identical to the upper bound (Holsapple 2008, INT J NONLINEAR MECH). For the average stress, we give total volume (Holsapple, 2008, Icarus) and partial volume (Hirabayashi et al., 2013, ApJ, submitted). This method gives a conservative condition for structural failure. The result shows that if the size is between 1.18 and 1.32 (a scaling factor defined such that the Ostro shape's size has a value of 1.0), (216) Kleopatra is structurally stable, which is consistent with Descamps et al. (2011, Icaurus). Next, we calculate plastic stress solutions to determine possible actual structural failure regimes. For this computation, we use commercial finite element analysis software (ANSYS Academic Teaching Introductory 14.0). To determine structural failure, we search for the condition where a plastic region propagates over the majority of a cross section. Since the zero-cohesion condition leads to large plastic deformations, we evaluate the stable size as a function of cohesion under the constant friction angle 32 degree. The result shows that if the size is 1.24, the necessary cohesion required is 90000 Pa; otherwise, the value dramatically increases up to 1e6 Pa. This technique is robust; therefore, once we obtain accurate physical parameters from more detail observations, our methodology will be able to give stronger constraints (216) Kleopatra, as well as other rubble pile asteroids.
Computer simulation of formation and decomposition of Au13 nanoparticles
NASA Astrophysics Data System (ADS)
Stishenko, P.; Svalova, A.
2017-08-01
To study the Ostwald ripening process of Au13 nanoparticles a two-scale model is constructed: analytical approximation of average nanoparticle energy as function of nanoparticle size and structural motive, and the Monte Carlo model of 1000 particles ensemble. Simulation results show different behavior of particles of different structural motives. The change of the distributions of atom coordination numbers during the Ostwald ripening process was observed. The nanoparticles of the equal size and shape with the face-centered cubic structure of the largest sizes appeared to be the most stable.
Bottom-up approach for microstructure optimization of sound absorbing materials.
Perrot, Camille; Chevillotte, Fabien; Panneton, Raymond
2008-08-01
Results from a numerical study examining micro-/macrorelations linking local geometry parameters to sound absorption properties are presented. For a hexagonal structure of solid fibers, the porosity phi, the thermal characteristic length Lambda('), the static viscous permeability k(0), the tortuosity alpha(infinity), the viscous characteristic length Lambda, and the sound absorption coefficient are computed. Numerical solutions of the steady Stokes and electrical equations are employed to provide k(0), alpha(infinity), and Lambda. Hybrid estimates based on direct numerical evaluation of phi, Lambda('), k(0), alpha(infinity), Lambda, and the analytical model derived by Johnson, Allard, and Champoux are used to relate varying (i) throat size, (ii) pore size, and (iii) fibers' cross-section shapes to the sound absorption spectrum. The result of this paper tends to demonstrate the important effect of throat size in the sound absorption level, cell size in the sound absorption frequency selectivity, and fibers' cross-section shape in the porous material weight reduction. In a hexagonal porous structure with solid fibers, the sound absorption level will tend to be maximized with a 48+/-10 microm throat size corresponding to an intermediate resistivity, a 13+/-8 microm fiber radius associated with relatively small interfiber distances, and convex triangular cross-section shape fibers allowing weight reduction.
NASA Astrophysics Data System (ADS)
Liu, Chao; Yang, Guigeng; Zhang, Yiqun
2015-01-01
The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.
Ultimate Atomic Bling: Nanotechnology of Diamonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahl, Jeremy
2010-05-25
Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman-Smith, Christopher; Müller, Berndt, E-mail: mueller@phy.duke.edu; Brookhaven National Laboratory, Upton, NY 11973
We argue that high-multiplicity events in proton–proton or proton–nucleus collisions originate from large-size fluctuations of the nucleon shape. We discuss a pair of simple models of such proton shape fluctuations. A “fat” proton with a size of 3 fm occurs with observable frequency. In light of this result, collective flow behavior in the ensuing nuclear interaction seems feasible. We discuss the influence of these models on the parton structure of the proton.
Scaling Laws for Shapes of Food Fragments by Human Mastication
NASA Astrophysics Data System (ADS)
Kobayashi, Naoki; Kohyama, Kaoru; Sasaki, Yo; Matsushita, Mitsugu
2007-04-01
Scaling property of the shape of fragments which were produced by masticating raw carrots has been studied experimentally and theoretically. Mastication experiments showed that most fragments have more or less isotropic shapes which are independent of the number of chewing strokes, whereas larger fragments than a crossover size have complicated shapes. Since the crossover size had the structure which was dependent on the number of chewing strokes, we have tried to propose dynamic scaling hypothesis analogous to the case of growing self-affine interface. It was found that the dynamic scaling yields fairly accurate values of the scaling exponents. Our results will provide a new observation and insight of not only sequential fragmentation but also construction for physiological measurement.
Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution
Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan
2016-01-01
Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root point, and the length between the inner root point and the dent point. The species on M. buchanani evolved larger, more robust anchors; those on L. subviridis evolved smaller, more delicate anchors. Anchor shape and size were significantly correlated, suggesting constraints in anchor evolution. Tight integration between the root and the point compartments within anchors confirms the anchor as a single, fully integrated module. The correlation between male copulatory organ morphology and size with anchor shape was consistent with predictions from the Rohde-Hobbs hypothesis. Conclusions. Monogenean anchors are tightly integrated structures, and their shape variation correlates strongly with phylogeny, thus underscoring their value for systematic and evolutionary biology studies. Our MonogeneaGM R package provides tools for researchers to mine biological insights from geometric morphometric data of speciose monogenean genera. PMID:26966649
Finite-sized one-dimensional silica microstructures (rods): Synthesis, assembly, and applications
Sharma, Jaswinder
2017-01-28
Colloidal silica structures are highly important for applications ranging from surface modifications such as superhydrophobic, oleophobic, icephobic, and anti-biofouling coatings, as reinforcements in polymer-ceramic or metal-matrix composites, and phonon management. In addition to various types of silica structures, a unique structure silica rods has been synthesized by employing the emulsion droplets made by dissolving polyvinlypyrrolidone in pentanol. While a significant progress has been made in further modifying their shape and chemistry, in their assembly, and in their applications, however, no review article compiled the progress in this field. Furthermore, this minireview intends to highlight the development in the synthesis, assembly,more » and application of these rods, and discuss the remaining challenges for precise control of size and shape, possible solutions, and potential applications.« less
Interspecific analysis of covariance structure in the masticatory apparatus of galagos.
Vinyard, Christopher J
2007-01-01
The primate masticatory apparatus (MA) is a functionally integrated set of features, each of which performs important functions in biting, ingestive, and chewing behaviors. A comparison of morphological covariance structure among species for these MA features will help us to further understand the evolutionary history of this region. In this exploratory analysis, the covariance structure of the MA is compared across seven galago species to investigate 1) whether there are differences in covariance structure in this region, and 2) if so, how has this covariation changed with respect to size, MA form, diet, and/or phylogeny? Ten measurements of the MA functionally related to bite force production and load resistance were obtained from 218 adults of seven galago species. Correlation matrices were generated for these 10 dimensions and compared among species via matrix correlations and Mantel tests. Subsequently, pairwise covariance disparity in the MA was estimated as a measure of difference in covariance structure between species. Covariance disparity estimates were correlated with pairwise distances related to differences in body size, MA size and shape, genetic distance (based on cytochrome-b sequences) and percentage of dietary foods to determine whether one or more of these factors is linked to differences in covariance structure. Galagos differ in MA covariance structure. Body size appears to be a major factor correlated with differences in covariance structure among galagos. The largest galago species, Otolemur crassicaudatus, exhibits large differences in body mass and covariance structure relative to other galagos, and thus plays a primary role in creating this association. MA size and shape do not correlate with covariance structure when body mass is held constant. Diet also shows no association. Genetic distance is significantly negatively correlated with covariance disparity when body mass is held constant, but this correlation appears to be a function of the small body size and large genetic distance for Galagoides demidoff. These exploratory results indicate that changing body size may have been a key factor in the evolution of the galago MA.
Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi
2013-01-01
We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.
Synthetic control of the size, shape, and polydispersity of anisotropic silica colloids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Ryan P.; Hong, Kunlun; Wagner, Norman J.
The particle size and shape determine the microstructure and rheological properties of colloidal suspensions. This work aims to further control the size, shape, and polydispersity of anisotropic silica colloids, to reduce particle size, and to provide additional mechanistic insights on a prevalent, water-in-oil emulsion synthesis method. Key findings show that the dimensions of anisotropic silica particles can be systematically varied by approximately fivefold, with a limiting minimum particle size (D ≈ 60 nm, L ≈ 300 nm) obtained from emulsions with excess polyvinylpyrrolidone (PVP) and sodium citrate. The synthesis conditions are identified and discussed for which the emulsion composition, temperature,more » sonication, polymer entanglements, mixing, and other perturbations may induce or mitigate emulsion instabilities, citrate precipitation, a competing mechanism of templated growth, termination of anisotropic growth, irregular silica structures, and fiber formation. An improved mechanistic understanding will expand the roadmap for rational design and synthetic control of anisotropic colloids using sol-gel silica chemistry confined within water-in-oil emulsions.« less
Synthetic control of the size, shape, and polydispersity of anisotropic silica colloids
Murphy, Ryan P.; Hong, Kunlun; Wagner, Norman J.
2017-09-01
The particle size and shape determine the microstructure and rheological properties of colloidal suspensions. This work aims to further control the size, shape, and polydispersity of anisotropic silica colloids, to reduce particle size, and to provide additional mechanistic insights on a prevalent, water-in-oil emulsion synthesis method. Key findings show that the dimensions of anisotropic silica particles can be systematically varied by approximately fivefold, with a limiting minimum particle size (D ≈ 60 nm, L ≈ 300 nm) obtained from emulsions with excess polyvinylpyrrolidone (PVP) and sodium citrate. The synthesis conditions are identified and discussed for which the emulsion composition, temperature,more » sonication, polymer entanglements, mixing, and other perturbations may induce or mitigate emulsion instabilities, citrate precipitation, a competing mechanism of templated growth, termination of anisotropic growth, irregular silica structures, and fiber formation. An improved mechanistic understanding will expand the roadmap for rational design and synthetic control of anisotropic colloids using sol-gel silica chemistry confined within water-in-oil emulsions.« less
Paula Menéndez, Lumila
2018-02-01
The aim of this study is to analyze the association between cranial variation and climate in order to discuss their role during the diversification of southern South American populations. Therefore, the specific objectives are: (1) to explore the spatial pattern of cranial variation with regard to the climatic diversity of the region, and (2) to evaluate the differential impact that the climatic factors may have had on the shape and size of the diverse cranial structures studied. The variation in shape and size of 361 crania was studied, registering 62 3D landmarks that capture shape and size variation in the face, cranial vault, and base. Mean, minimum, and maximum annual temperature, as well as mean annual precipitation, but also diet and altitude, were matched for each population sample. A PCA, as well as spatial statistical techniques, including kriging, regression, and multimodel inference were employed. The facial skeleton size presents a latitudinal pattern which is partially associated with temperature diversity. Both diet and altitude are the variables that mainly explain the skull shape variation, although mean annual temperature also plays a role. The association between climate factors and cranial variation is low to moderate, mean annual temperature explains almost 40% of the entire skull, facial skeleton and cranial vault shape variation, while annual precipitation and minimum annual temperature only contribute to the morphological variation when considered together with maximum annual temperature. The cranial base is the structure less associated with climate diversity. These results suggest that climate factors may have had a partial impact on the facial and vault shape, and therefore contributed moderately to the diversification of southern South American populations, while diet and altitude might have had a stronger impact. Therefore, cranial variation at the southern cone has been shaped both by random and nonrandom factors. Particularly, the influence of climate on skull shape has probably been the result of directional selection. This study supports that, although cranial vault is the cranial structure more associated to mean annual temperature, the impact of climate signature on morphology decreases when populations from extreme cold environments are excluded from the analysis. Additionally, it shows that the extent of the geographical scales analyzed, as well as differential sampling may lead to different results regarding the role of ecological factors and evolutionary processes on cranial morphology. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Krishnan, Gopi; Verheijen, Marcel A.; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.
2013-05-01
Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still remains a formidable challenge. Hence, we present here a general methodology for gas phase synthesis of bimetallic NPs with distinctively different structural motifs ranging at a single particle level from a fully mixed alloy to core-shell, to onion (multi-shell), and finally to a Janus/dumbbell, with the same overall particle composition. These concepts are illustrated for Mo-Cu NPs, where the precise control of the bimetallic NPs with various degrees of chemical ordering, including different shapes from spherical to cube, is achieved by tailoring the energy and thermal environment that the NPs experience during their production. The initial state of NP growth, either in the liquid or in the solid state phase, has important implications for the different structural motifs and shapes of synthesized NPs. Finally we demonstrate that we are able to tune the alloying regime, for the otherwise bulk immiscible Mo-Cu, by achieving an increase of the critical size, below which alloying occurs, closely up to an order of magnitude. It is discovered that the critical size of the NP alloy is not only affected by controlled tuning of the alloying temperature but also by the particle shape.Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still remains a formidable challenge. Hence, we present here a general methodology for gas phase synthesis of bimetallic NPs with distinctively different structural motifs ranging at a single particle level from a fully mixed alloy to core-shell, to onion (multi-shell), and finally to a Janus/dumbbell, with the same overall particle composition. These concepts are illustrated for Mo-Cu NPs, where the precise control of the bimetallic NPs with various degrees of chemical ordering, including different shapes from spherical to cube, is achieved by tailoring the energy and thermal environment that the NPs experience during their production. The initial state of NP growth, either in the liquid or in the solid state phase, has important implications for the different structural motifs and shapes of synthesized NPs. Finally we demonstrate that we are able to tune the alloying regime, for the otherwise bulk immiscible Mo-Cu, by achieving an increase of the critical size, below which alloying occurs, closely up to an order of magnitude. It is discovered that the critical size of the NP alloy is not only affected by controlled tuning of the alloying temperature but also by the particle shape. Electronic supplementary information (ESI) available: Experimental details including schematics of the gas phase synthesis set up, target arrangement, synthesis condition for various structures, and TEM images of alloy, core-shell and Mo-Cu-Mo onion nanoparticles. See DOI: 10.1039/c3nr00565h
Truncation Without Shape Constraints: The Latter Stages of Prosodic Acquisition.
ERIC Educational Resources Information Center
Kehoe, Margaret M.
2000-01-01
Evaluates the claim of uniform size and shape restrictions in prosodic development using a cross-sectional database of English-speaking children's multisyllabic word productions. Suggests children's increasing faithfulness to unstressed syllables can be explained by different constraint rankings that relate to edge alignment, syllable structure,…
Zhi, Keke; Wang, Lulu; Zhang, Yagang; Jiang, Yingfang; Zhang, Letao; Yasin, Akram
2018-05-11
The influence of various silica gel supports with different shapes and sizes on the recognition properties of surface molecular imprinted polymers (MIPs) was investigated. MIPs for selective recognition and adsorption of gossypol were synthesized via the sol⁻gel process with a surface imprinting technique on silica gel substrates. 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were chosen as the functional monomer and the cross-linker. The morphology and structure of the gossypol-MIPs were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a standard Brunauer⁻Emett⁻Teller (BET) analysis. Results indicated that the surface imprinted polymer layer facilitated the removal and rebinding of the template, and thus, achieved fast binding kinetics. Compared with the MIPs prepared on irregularly shaped silica with a broad particle size distribution, the MIPs using regularly-shaped silica of uniform size showed higher imprinting factor (IF), and the MIP made with a relatively larger sized (60 μm) spherical silica, demonstrated higher adsorption capacity compared to the MIPs made with smaller sized, spherical silica. The MIP prepared with 60 μm spherically shaped silica, featured a fast adsorption kinetic of 10 min, and a saturated adsorption capacity of 204 mg·g −1 . The gossypol-MIP had higher selectivity (IF = 2.20) for gossypol over its structurally-similar analogs ellagic acid (IF = 1.13) and quercetin (IF = 1.20). The adsorption data of the MIP correlated well with the pseudo-second-order kinetic model and the Freundlich isotherm model, which implied that chemical adsorption dominated, and that multilayer adsorption occurred. Furthermore, the MIP exhibited an excellent regeneration performance, and the adsorption capacity of the MIP for gossypol only decreased by 6% after six reused cycles, indicating good application potential for selective adsorption of gossypol.
NASA Astrophysics Data System (ADS)
Ahmed, A. S.; Christopher, W.
2018-03-01
Nanocrystalline semiconductors exhibit different properties due to two basic factors. They possess high surface to volume ratio and the actual size of particle can determine the electronic and physical properties of the material. The small size results in an observable quantum confinement effect, defined by the increasing bandgap accompanied by the quantization of the energy levels to discrete values. In present work we have synthesized the series of cadmium selenide/cadmium telluride (CdSe/CdTe) core/shell and CdSe/CdTe/CdS core/shell/shell to investigate the biexciton energy through transient absorption measurements. These structures are type II nanocrystals are with a hole in the shell and the electron confined to the core. We specifically investigate the effect of nanoparticle shape on the electronic structure and ultrafast electronic dynamics in the band-edge exciton states of CdSe quantum dots, nanorods, and nanoplatelets. Particle size was chosen to enable straightforward comparisons of the effects of particle shape on the spectra and dynamics without retuning the laser source. In our results the Uv-vis showed only a mild redshift in the first excitonic an elongated tail with increasing shell thickness. High resolution Transmission Electron Microscopy (HRTEM) shows the slight agglomeration of the nanocrystals but still the size distribution was calculate able. Spherical small crystals ranging from 5.9 nm to 10 nm are observed. CdTe/CdSe structures were quasi spherical with a rough diameter 6 nm with some little agglomerated structure. . The spherical nanocrystals could be peanut shaped oriented along the c axis or the spherical only, which could explain the two peak emission. p-XRD results indicate the predominant wurtzite structure throughout.
Cytological studies of lunar treated tissue cultures
NASA Technical Reports Server (NTRS)
Halliwell, R. S.
1972-01-01
An electron microscopic study was made of botanical materials, particularly pine tissues, treated with lunar materials collected by Apollo 12 quarantine mission. Results show unusual structural changes within several of the treated tissues. The bodies, as yet unidentified, resemble virus particles observed within infected plant cells. Although the size and shape of the structures are comparable to rod shaped virus particles such as Tobacco mosaic, the numerical distribution, affinity for stains, and intercellular location are different.
Gómez, Giovan F.; Márquez, Edna J.; Gutiérrez, Lina A.; Conn, Jan E.; Correa, Margarita M.
2015-01-01
Anopheles albimanus is a major malaria mosquito vector in Colombia. In the present study, wing variability (size and shape) in An. albimanus populations from Colombian Maracaibo and Chocó bio-geographical eco-regions and the relationship of these phenotypic traits with environmental factors were evaluated. Microsatellite and morphometric data facilitated a comparison of the genetic and phenetic structure of this species. Wing size was influenced by elevation and relative humidity, whereas wing shape was affected by these two variables and also by rainfall, latitude, temperature and eco-region. Significant differences in mean shape between populations and eco-regions were detected, but they were smaller than those at the intra-population level. Correct assignment based on wing shape was low at the population level (<58%) and only slightly higher (>70%) at the eco-regional level, supporting the low population structure inferred from microsatellite data. Wing size was similar among populations with no significant differences between eco-regions. Population relationships in the genetic tree did not agree with those from the morphometric data; however, both datasets consistently reinforced a panmictic population of An. albimanus. Overall, site-specific population differentiation is not strongly supported by wing traits or genotypic data. We hypothesize that the metapopulation structure of An. albimanus throughout these Colombian eco-regions is favoring plasticity in wing traits, a relevant characteristic of species living under variable environmental conditions and colonizing new habitats. PMID:24704285
NASA Astrophysics Data System (ADS)
Wu, Yu-Chun; Tai, Yu-Chuen
2013-06-01
The effects of solvents on the anatase crystallite size prepared by sol-gel microwave-assisted solvothermal method were investigated in this study. Eight different alcohol solvents classified into two groups, i.e. primary and secondary/ternary alcohols, were used as reaction media and the effects of solvent properties, such as dielectric constant, boiling point, and internal pressure during the solvothermal process, on the crystallite size and shape were analyzed. According to the experimental results, selecting the solvent type allowed not only the alteration of the crystallite size but also the crystallite shape without the need of any additives. The boiling point of solvent was determined as the major factor influencing the crystallite size. Among the solvents with similar boiling points, the solvent with a higher carbon number produced the smaller crystallite size because of steric hindrance effect. In addition, the carboxyl groups dissociated from the alcohol solvent can play a role as a structural capping agent to retard the anatase crystal growth along the [001] direction and led to a rectangular crystallite shape with preferred development in {001} facets. On the other hand, the alcoholysis reaction was found easily occurred between the primary alcohol and isopropoxide that effectively limited the hydrolysis and condensation processes but also suppressed the structural capping effect. Therefore, the anatase crystals prepared in the primary alcohols became exceptionally small and showed spherical shape. Finally, the anatase crystals prepared using isopropanol demonstrated the highest photocatalytic activity due to its evident preferred crystallization in the {001} facets.
Advances in synthesis of calcium phosphate crystals with controlled size and shape.
Lin, Kaili; Wu, Chengtie; Chang, Jiang
2014-10-01
Calcium phosphate (CaP) materials have a wide range of applications, including biomaterials, adsorbents, chemical engineering materials, catalysts and catalyst supports and mechanical reinforcements. The size and shape of CaP crystals and aggregates play critical roles in their applications. The main inorganic building blocks of human bones and teeth are nanocrystalline CaPs; recently, much progress has been made in the application of CaP nanocrystals and their composites for clinical repair of damaged bone and tooth. For example, CaPs with special micro- and nanostructures can better imitate the biomimetic features of human bone and tooth, and this offers significantly enhanced biological performances. Therefore, the design of CaP nano-/microcrystals, and the shape and hierarchical structures of CaPs, have great potential to revolutionize the field of hard tissue engineering, starting from bone/tooth repair and augmentation to controlled drug delivery devices. Previously, a number of reviews have reported the synthesis and properties of CaP materials, especially for hydroxyapatite (HAp). However, most of them mainly focused on the characterizations and physicochemical and biological properties of HAp particles. There are few reviews about the control of particle size and size distribution of CaPs, and in particular the control of nano-/microstructures on bulk CaP ceramic surfaces, which is a big challenge technically and may have great potential in tissue engineering applications. This review summarizes the current state of the art for the synthesis of CaP crystals with controlled sizes from the nano- to the macroscale, and the diverse shapes including the zero-dimensional shapes of particles and spheres, the one-dimensional shapes of rods, fibers, wires and whiskers, the two-dimensional shapes of sheets, disks, plates, belts, ribbons and flakes and the three-dimensional (3-D) shapes of porous, hollow, and biomimetic structures similar to biological bone and tooth. In addition, this review will also summarize studies on the controlled formation of nano-/microstructures on the surface of bulk ceramics, and the preparation of macroscopical bone grafts with 3-D architecture nano-/microstructured surfaces. Moreover, the possible directions of future research and development in this field, such as the detailed mechanisms behind the size and shape control in various strategies, the importance of theoretical simulation, self-assembly, biomineralization and sacrificial precursor strategies in the fabrication of biomimetic bone-like and enamel-like CaP materials are proposed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
De Nardo, Luigi; Bertoldi, Serena; Cigada, Alberto; Tanzi, Maria Cristina; Haugen, Håvard Jostein; Farè, Silvia
2012-09-27
Porous Shape Memory Polymers (SMPs) are ideal candidates for the fabrication of defect fillers, able to support tissue regeneration via minimally invasive approaches. In this regard, control of pore size, shape and interconnection is required to achieve adequate nutrient transport and cell ingrowth. Here, we assessed the feasibility of the preparation of SMP porous structures and characterized their chemico-physical properties and in vitro cell response. SMP scaffolds were obtained via solvent casting/particulate leaching of gelatin microspheres, prepared via oil/water emulsion. A solution of commercial polyether-urethane (MM-4520, Mitsubishi Heavy Industries) was cast on compacted microspheres and leached-off after polymer solvent evaporation. The obtained structures were characterized in terms of morphology (SEM and micro-CT), thermo-mechanical properties (DMTA), shape recovery behavior in compression mode, and in vitro cytocompatibility (MG63 Osteoblast-like cell line). The fabrication process enabled easy control of scaffold morphology, pore size, and pore shape by varying the gelatin microsphere morphology. Homogeneous spherical and interconnected pores have been achieved together with the preservation of shape memory ability, with recovery rate up to 90%. Regardless of pore dimensions, MG63 cells were observed adhering and spreading onto the inner surface of the scaffolds obtained for up to seven days of static in vitro tests. A new class of SMP porous structures has been obtained and tested in vitro: according to these preliminary results reported, SMP scaffolds can be further exploited in the design of a new class of implantable devices.
Synthesis of multimetallic nanoparticles by seeded methods
NASA Astrophysics Data System (ADS)
Weiner, Rebecca Gayle
This dissertation focuses on the synthesis of metal nanocrystals (NCs) by seeded methods, in which preformed seeds serve as platforms for growth. Metal NCs are of interest due to their tunable optical and catalytic properties, which arise from their composition and crystallite size and shape. Moreover, multimetallic NCs are potentially multifunctional due to the integration of the properties of each metal within one structure. However, such structures are difficult to synthesize with structural definition due to differences in precursor reduction rates and the size-dependent solubility of bimetallic phases. Seed-mediated co-reduction (SMCR) is a method developed in the Skrabalak Laboratory that couples the advantages of a seeded method with co-reduction methods to achieve multimetallic nanomaterials with defined shape and architecture. This approach was originally demonstrated in a model Au-Pd system in which Au and Pd precursors were simultaneously reduced to deposit metal onto shape-controlled Au or Pd NC seeds. Using SMCR, uniformly branched core shell Au Au-Pd and Pd Au-Pd NCs were synthesized, with the shape of the seeds directing the symmetry of the final structures. By varying the seed shape and the temperature at which metal deposition occurs, the roles of adatom diffusion and seed shape on final NC morphology were decoupled. Moreover, by selecting seeds of a composition (Ag) different than the depositing metals (Au and Pd), trimetallic nanostructures are possible, including shape-controlled Ag Au-Pd NCs and hollow Au-Pd-Ag nanoparticles (NPs). The latter architecture arises through galvanic replacement. Shape-controlled core shell NCs with trimetallic shells are also possible by co-reducing three metal precursors (Ag, Au, and Pd) with shape-controlled Au seeds; for example, convex octopods, concave cubes, and truncated octahedra were achieved in this initial demonstration and was enabled by varying the ratio of Ag to Au/Pd in the overgrowth step as well as reaction pH. Ultimately, the final multimetallic nanostructure depends on the kinetics of metal deposition as well as seed composition, shape, reactivity, and crystallinity. In elucidating the roles of these parameters in nanomaterial synthesis, the rational design of new functional NCs becomes possible, which capitalize on the unique optical and catalytic properties of structurally defined multimetallic structures. In fact, branched Au-Pd NCs with high symmetry were found to be effective refractive index-based hydrogen sensors.
Recent Advances in Near-Net-Shape Fabrication of Al-Li Alloy 2195 for Launch Vehicles
NASA Technical Reports Server (NTRS)
Wagner, John; Domack, Marcia; Hoffman, Eric
2007-01-01
Recent applications in launch vehicles use 2195 processed to Super Lightweight Tank specifications. Potential benefits exist by tailoring heat treatment and other processing parameters to the application. Assess the potential benefits and advocate application of Al-Li near-net-shape technologies for other launch vehicle structural components. Work with manufacturing and material producers to optimize Al-Li ingot shape and size for enhanced near-net-shape processing. Examine time dependent properties of 2195 critical for reusable applications.
Nanoforging - Innovation in three-dimensional processing and shaping of nanoscaled structures.
Landefeld, Andreas; Rösler, Joachim
2014-01-01
This paper describes the shaping of freestanding objects out of metallic structures in the nano- and submicron size. The technique used, called nanoforging, is very similar to the macroscopic forging process. With spring actuated tools produced by focused ion beam milling, controlled forging is demonstrated. With only three steps, a conical bar stock is transformed to a flat- and semicircular bent bar stock. Compared with other forming techniques in the reduced scale, nanoforging represents a beneficial approach in forming freestanding metallic structures, due to its simplicity, and supplements other forming techniques.
de Camargo, Nícholas Ferreira; Corrêa, Danilo do Carmo Vieira; de Camargo, Amabílio J. Aires; Diniz, Ivone Rezende
2015-01-01
Sexual dimorphism is a pronounced pattern of intraspecific variation in Lepidoptera. However, moths of the family Sphingidae (Lepidoptera: Bombycoidea) are considered exceptions to this rule. We used geometric morphometric techniques to detect shape and size sexual dimorphism in the fore and hindwings of seven hawkmoth species. The shape variables produced were then subjected to a discriminant analysis. The allometric effects were measured with a simple regression between the canonical variables and the centroid size. We also used the normalized residuals to assess the nonallometric component of shape variation with a t-test. The deformations in wing shape between sexes per species were assessed with a regression between the nonreduced shape variables and the residuals. We found sexual dimorphism in both wings in all analyzed species, and that the allometric effects were responsible for much of the wing shape variation between the sexes. However, when we removed the size effects, we observed shape sexual dimorphism. It is very common for females to be larger than males in Lepidoptera, so it is expected that the shape of structures such as wings suffers deformations in order to preserve their function. However, sources of variation other than allometry could be a reflection of different reproductive flight behavior (long flights in search for sexual mates in males, and flight in search for host plants in females). PMID:26206895
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.
2012-01-01
We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).
On the shape of giant soap bubbles.
Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe
2017-03-07
We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.
Computed tomography-guided tissue engineering of upper airway cartilage.
Brown, Bryan N; Siebenlist, Nicholas J; Cheetham, Jonathan; Ducharme, Norm G; Rawlinson, Jeremy J; Bonassar, Lawrence J
2014-06-01
Normal laryngeal function has a large impact on quality of life, and dysfunction can be life threatening. In general, airway obstructions arise from a reduction in neuromuscular function or a decrease in mechanical stiffness of the structures of the upper airway. These reductions decrease the ability of the airway to resist inspiratory or expiratory pressures, causing laryngeal collapse. We propose to restore airway patency through methods that replace damaged tissue and improve the stiffness of airway structures. A number of recent studies have utilized image-guided approaches to create cell-seeded constructs that reproduce the shape and size of the tissue of interest with high geometric fidelity. The objective of the present study was to establish a tissue engineering approach to the creation of viable constructs that approximate the shape and size of equine airway structures, in particular the epiglottis. Computed tomography images were used to create three-dimensional computer models of the cartilaginous structures of the larynx. Anatomically shaped injection molds were created from the three-dimensional models and were seeded with bovine auricular chondrocytes that were suspended within alginate before static culture. Constructs were then cultured for approximately 4 weeks post-seeding and evaluated for biochemical content, biomechanical properties, and histologic architecture. Results showed that the three-dimensional molded constructs had the approximate size and shape of the equine epiglottis and that it is possible to seed such constructs while maintaining 75%+ cell viability. Extracellular matrix content was observed to increase with time in culture and was accompanied by an increase in the mechanical stiffness of the construct. If successful, such an approach may represent a significant improvement on the currently available treatments for damaged airway cartilage and may provide clinical options for replacement of damaged tissue during treatment of obstructive airway disease.
USDA-ARS?s Scientific Manuscript database
Sensors that can accurately measure canopy structures are prerequisites for development of advanced variable-rate sprayers. A 270° radial range laser sensor was evaluated for its accuracy to measure dimensions of target surfaces with complex shapes and sizes. An algorithm for data acquisition and 3-...
Wei, Ning-Ning; Hamza, Adel
2014-01-27
We present an efficient and rational ligand/structure shape-based virtual screening approach combining our previous ligand shape-based similarity SABRE (shape-approach-based routines enhanced) and the 3D shape of the receptor binding site. Our approach exploits the pharmacological preferences of a number of known active ligands to take advantage of the structural diversities and chemical similarities, using a linear combination of weighted molecular shape density. Furthermore, the algorithm generates a consensus molecular-shape pattern recognition that is used to filter and place the candidate structure into the binding pocket. The descriptor pool used to construct the consensus molecular-shape pattern consists of four dimensional (4D) fingerprints generated from the distribution of conformer states available to a molecule and the 3D shapes of a set of active ligands computed using SABRE software. The virtual screening efficiency of SABRE was validated using the Database of Useful Decoys (DUD) and the filtered version (WOMBAT) of 10 DUD targets. The ligand/structure shape-based similarity SABRE algorithm outperforms several other widely used virtual screening methods which uses the data fusion of multiscreening tools (2D and 3D fingerprints) and demonstrates a superior early retrieval rate of active compounds (EF(0.1%) = 69.0% and EF(1%) = 98.7%) from a large size of ligand database (∼95,000 structures). Therefore, our developed similarity approach can be of particular use for identifying active compounds that are similar to reference molecules and predicting activity against other targets (chemogenomics). An academic license of the SABRE program is available on request.
Food web structure shaped by habitat size and climate across a latitudinal gradient.
Romero, Gustavo Q; Piccoli, Gustavo C O; de Omena, Paula M; Gonçalves-Souza, Thiago
2016-10-01
Habitat size and climate are known to affect the trophic structure and dynamics of communities, but their interactive effects are poorly understood. Organisms from different trophic levels vary in terms of metabolic requirements and heat dissipation. Indeed, larger species such as keystone predators require more stable climatic conditions than their prey. Likewise, habitat size disproportionally affects large-sized predators, which require larger home ranges and are thus restricted to larger habitats. Therefore, food web structure in patchy ecosystems is expected to be shaped by habitat size and climate variations. Here we investigate this prediction using natural aquatic microcosm (bromeliad phytotelmata) food webs composed of litter resources (mainly detritus), detritivores, mesopredators, and top predators (damselflies). We surveyed 240 bromeliads of varying sizes (water retention capacity) across 12 open restingas in SE Brazil spread across a wide range of tropical latitudes (-12.6° to -27.6°, ca. 2,000 km) and climates (Δ mean annual temperature = 5.3°C). We found a strong increase in predator-to-detritivore mass ratio with habitat size, which was representative of a typical inverted trophic pyramid in larger ecosystems. However, this relationship was contingent among the restingas; slopes of linear models were steeper in more stable and favorable climates, leading to inverted trophic pyramids (and top-down control) being more pronounced in environments with more favorable climatic conditions. By contrast, detritivore-resource and mesopredator-detritivore mass ratios were not affected by habitat size or climate variations across latitudes. Our results highlight that the combined effects of habitat size, climate and predator composition are pivotal to understanding the impacts of multiple environmental factors on food web structure and dynamics. © 2016 by the Ecological Society of America.
The potential influence of morphology on the evolutionary divergence of an acoustic signal
Pitchers, W. R.; Klingenberg, C.P.; Tregenza, Tom; Hunt, J.; Dworkin, I.
2014-01-01
The evolution of acoustic behaviour and that of the morphological traits mediating its production are often coupled. Lack of variation in the underlying morphology of signalling traits has the potential to constrain signal evolution. This relationship is particularly likely in field crickets, where males produce acoustic advertisement signals to attract females by stridulating with specialized structures on their forewings. In this study, we characterise the size and geometric shape of the forewings of males from six allopatric populations of the black field cricket (Teleogryllus commodus) known to have divergent advertisement calls. We sample from each of these populations using both wild-caught and common-garden reared cohorts, allowing us to test for multivariate relationships between wing morphology and call structure. We show that the allometry of shape has diverged across populations. However, there was a surprisingly small amount of covariation between wing shape and call structure within populations. Given the importance of male size for sexual selection in crickets, the divergence we observe among populations has the potential to influence the evolution of advertisement calls in this species. PMID:25223712
The Impact of Fish Predation and Cyanobacteria on Zooplankton Size Structure in 96 Subtropical Lakes
Zhang, Jing; Xie, Ping; Tao, Min; Guo, Longgen; Chen, Jun; Li, Li; XueZhen Zhang; Zhang, Lu
2013-01-01
Zooplankton are relatively small in size in the subtropical regions. This characteristic has been attributed to intense predation pressure, high nutrient loading and cyanobacterial biomass. To provide further information on the effect of predation and cyanobacteria on zooplankton size structure, we analyzed data from 96 shallow aquaculture lakes along the Yangtze River. Contrary to former studies, both principal components analysis and multiple regression analysis showed that the mean zooplankton size was positively related to fish yield. The studied lakes were grouped into three types, namely, natural fishing lakes with low nutrient loading (Type1), planktivorous fish-dominated lakes (Type 2), and eutrophic lakes with high cyanobacterial biomass (Type 3). A marked difference in zooplankton size structure was found among these groups. The greatest mean zooplankton size was observed in Type 2 lakes, but zooplankton density was the lowest. Zooplankton abundance was highest in Type 3 lakes and increased with increasing cyanobacterial biomass. Zooplankton mean size was negatively correlated with cyanobacterial biomass. No obvious trends were found in Type 1 lakes. These results were reflected by the normalized biomass size spectrum, which showed a unimodal shape with a peak at medium sizes in Type 2 lakes and a peak at small sizes in Type 3 lakes. These results indicated a relative increase in medium-sized and small-sized species in Types 2 and 3 lakes, respectively. Our results suggested that fish predation might have a negative effect on zooplankton abundance but a positive effect on zooplankton size structure. High cyanobacterial biomass most likely caused a decline in the zooplankton size and encouraged the proliferation of small zooplankton. We suggest that both planktivorous fish and cyanobacteria have substantial effects on the shaping of zooplankton community, particularly in the lakes in the eastern plain along the Yangtze River where aquaculture is widespread and nutrient loading is high. PMID:24124552
Zhang, Jing; Xie, Ping; Tao, Min; Guo, Longgen; Chen, Jun; Li, Li; Xuezhen Zhang; Zhang, Lu
2013-01-01
Zooplankton are relatively small in size in the subtropical regions. This characteristic has been attributed to intense predation pressure, high nutrient loading and cyanobacterial biomass. To provide further information on the effect of predation and cyanobacteria on zooplankton size structure, we analyzed data from 96 shallow aquaculture lakes along the Yangtze River. Contrary to former studies, both principal components analysis and multiple regression analysis showed that the mean zooplankton size was positively related to fish yield. The studied lakes were grouped into three types, namely, natural fishing lakes with low nutrient loading (Type1), planktivorous fish-dominated lakes (Type 2), and eutrophic lakes with high cyanobacterial biomass (Type 3). A marked difference in zooplankton size structure was found among these groups. The greatest mean zooplankton size was observed in Type 2 lakes, but zooplankton density was the lowest. Zooplankton abundance was highest in Type 3 lakes and increased with increasing cyanobacterial biomass. Zooplankton mean size was negatively correlated with cyanobacterial biomass. No obvious trends were found in Type 1 lakes. These results were reflected by the normalized biomass size spectrum, which showed a unimodal shape with a peak at medium sizes in Type 2 lakes and a peak at small sizes in Type 3 lakes. These results indicated a relative increase in medium-sized and small-sized species in Types 2 and 3 lakes, respectively. Our results suggested that fish predation might have a negative effect on zooplankton abundance but a positive effect on zooplankton size structure. High cyanobacterial biomass most likely caused a decline in the zooplankton size and encouraged the proliferation of small zooplankton. We suggest that both planktivorous fish and cyanobacteria have substantial effects on the shaping of zooplankton community, particularly in the lakes in the eastern plain along the Yangtze River where aquaculture is widespread and nutrient loading is high.
Sexual dimorphism in the human face assessed by euclidean distance matrix analysis.
Ferrario, V F; Sforza, C; Pizzini, G; Vogel, G; Miani, A
1993-01-01
The form of any object can be viewed as a combination of size and shape. A recently proposed method (euclidean distance matrix analysis) can differentiate between size and shape differences. It has been applied to analyse the sexual dimorphism in facial form in a sample of 108 healthy young adults (57 men, 51 women). The face was wider and longer in men than in women. A global shape difference was demonstrated, the male face being more rectangular and the female face more square. Gender variations involved especially the lower third of the face and, in particular, the position of the pogonion relative to the other structures. PMID:8300436
The shapes of bird beaks are highly controlled by nondietary factors
Bright, Jen A.; Marugán-Lobón, Jesús; Cobb, Samuel N.
2016-01-01
Bird beaks are textbook examples of ecological adaptation to diet, but their shapes are also controlled by genetic and developmental histories. To test the effects of these factors on the avian craniofacial skeleton, we conducted morphometric analyses on raptors, a polyphyletic group at the base of the landbird radiation. Despite common perception, we find that the beak is not an independently targeted module for selection. Instead, the beak and skull are highly integrated structures strongly regulated by size, with axes of shape change linked to the actions of recently identified regulatory genes. Together, size and integration account for almost 80% of the shape variation seen between different species to the exclusion of morphological dietary adaptation. Instead, birds of prey use size as a mechanism to modify their feeding ecology. The extent to which shape variation is confined to a few major axes may provide an advantage in that it facilitates rapid morphological evolution via changes in body size, but may also make raptors especially vulnerable when selection pressures act against these axes. The phylogenetic position of raptors suggests that this constraint is prevalent in all landbirds and that breaking the developmental correspondence between beak and braincase may be the key novelty in classic passerine adaptive radiations. PMID:27125856
The shapes of bird beaks are highly controlled by nondietary factors.
Bright, Jen A; Marugán-Lobón, Jesús; Cobb, Samuel N; Rayfield, Emily J
2016-05-10
Bird beaks are textbook examples of ecological adaptation to diet, but their shapes are also controlled by genetic and developmental histories. To test the effects of these factors on the avian craniofacial skeleton, we conducted morphometric analyses on raptors, a polyphyletic group at the base of the landbird radiation. Despite common perception, we find that the beak is not an independently targeted module for selection. Instead, the beak and skull are highly integrated structures strongly regulated by size, with axes of shape change linked to the actions of recently identified regulatory genes. Together, size and integration account for almost 80% of the shape variation seen between different species to the exclusion of morphological dietary adaptation. Instead, birds of prey use size as a mechanism to modify their feeding ecology. The extent to which shape variation is confined to a few major axes may provide an advantage in that it facilitates rapid morphological evolution via changes in body size, but may also make raptors especially vulnerable when selection pressures act against these axes. The phylogenetic position of raptors suggests that this constraint is prevalent in all landbirds and that breaking the developmental correspondence between beak and braincase may be the key novelty in classic passerine adaptive radiations.
Certification Testing Methodology for Composite Structure. Volume 2. Methodology Development
1986-10-01
parameter, sample size and fa- tigue test duration. The required input are 1. Residual strength Weibull shape parameter ( ALPR ) 2. Fatigue life Weibull shape...INPUT STRENGTH ALPHA’) READ(*,*) ALPR ALPRI = 1.O/ ALPR WRITE(*, 2) 2 FORMAT( 2X, ’PLEASE INPUT LIFE ALPHA’) READ(*,*) ALPL ALPLI - 1.0/ALPL WRITE(*, 3...3 FORMAT(2X,’PLEASE INPUT SAMPLE SIZE’) READ(*,*) N AN - N WRITE(*,4) 4 FORMAT(2X,’PLEASE INPUT TEST DURATION’) READ(*,*) T RALP - ALPL/ ALPR ARGR - 1
NASA Astrophysics Data System (ADS)
Zhao, Bo; Liu, Jinhu; Song, Junjie; Cao, Liang; Dou, Shuozeng
2017-11-01
Removal of the length effect in otolith shape analysis for stock identification using length scaling is an important issue; however, few studies have attempted to investigate the effectiveness or weakness of this methodology in application. The aim of this study was to evaluate whether commonly used size scaling methods and normalized elliptic Fourier descriptors (NEFDs) could effectively remove the size effect of fish in stock discrimination. To achieve this goal, length groups from two known geographical stocks of yellow croaker, Larimichthys polyactis, along the Chinese coast (five groups from the Changjiang River estuary of the East China Sea and three groups from the Bohai Sea) were subjected to otolith shape analysis. The results indicated that the variation of otolith shape caused by intra-stock fish length might exceed that due to inter-stock geographical separation, even when otolith shape variables are standardized with length scaling methods. This variation could easily result in misleading stock discrimination through otolith shape analysis. Therefore, conclusions about fish stock structure should be carefully drawn from otolith shape analysis because the observed discrimination may primarily be due to length effects, rather than differences among stocks. The application of multiple methods, such as otoliths shape analysis combined with elemental fingering, tagging or genetic analysis, is recommended for sock identification.
Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes
Brangwynne, Clifford P.; Mitchison, Timothy J.; Hyman, Anthony A.
2011-01-01
For most intracellular structures with larger than molecular dimensions, little is known about the connection between underlying molecular activities and higher order organization such as size and shape. Here, we show that both the size and shape of the amphibian oocyte nucleolus ultimately arise because nucleoli behave as liquid-like droplets of RNA and protein, exhibiting characteristic viscous fluid dynamics even on timescales of < 1 min. We use these dynamics to determine an apparent nucleolar viscosity, and we show that this viscosity is ATP-dependent, suggesting a role for active processes in fluidizing internal contents. Nucleolar surface tension and fluidity cause their restructuring into spherical droplets upon imposed mechanical deformations. Nucleoli exhibit a broad distribution of sizes with a characteristic power law, which we show is a consequence of spontaneous coalescence events. These results have implications for the function of nucleoli in ribosome subunit processing and provide a physical link between activity within a macromolecular assembly and its physical properties on larger length scales. PMID:21368180
Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes.
Brangwynne, Clifford P; Mitchison, Timothy J; Hyman, Anthony A
2011-03-15
For most intracellular structures with larger than molecular dimensions, little is known about the connection between underlying molecular activities and higher order organization such as size and shape. Here, we show that both the size and shape of the amphibian oocyte nucleolus ultimately arise because nucleoli behave as liquid-like droplets of RNA and protein, exhibiting characteristic viscous fluid dynamics even on timescales of < 1 min. We use these dynamics to determine an apparent nucleolar viscosity, and we show that this viscosity is ATP-dependent, suggesting a role for active processes in fluidizing internal contents. Nucleolar surface tension and fluidity cause their restructuring into spherical droplets upon imposed mechanical deformations. Nucleoli exhibit a broad distribution of sizes with a characteristic power law, which we show is a consequence of spontaneous coalescence events. These results have implications for the function of nucleoli in ribosome subunit processing and provide a physical link between activity within a macromolecular assembly and its physical properties on larger length scales.
Qiu, Peiyu; Sun, Rongjin; Gao, Guo; Zhang, Chunlei; Chen, Bin; Yan, Naishun; Yin, Ting; Liu, Yanlei; Zhang, Jingjing; Yang, Yao; Cui, Daxiang
2015-01-01
Rare-earth (RE)-doped upconversion nanocrystals (UCNCs) are deemed as the promising candidates of luminescent nanoprobe for biological imaging and labeling. A number of methods have been used for the fabrication of UCNCs, but their assembly into porous architectures with desired size, shape and crystallographic phase remains a long-term challenging task. Here we report a facile, anion-induced hydrothermal oriented-explosive method to simultaneously control size, shape and phase of porous UCNCs. Our results confirmed the anion-induced hydrothermal oriented-explosion porous structure, size and phase transition for the cubic/hexagonal phase of NaLuF4 and NaGdF4 nanocrystals with various sizes and shapes. This general method is very important not only for successfully preparing lanthanide doped porous UCNCs, but also for clarifying the formation process of porous UCNCs in the hydrothermal system. The synthesized UCNCs were used for in vitro and in vivo CT imaging, and could be acted as the potential CT contrast agents. PMID:25767613
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourabh K.
Although geometric imperfections have a detrimental effect on buckling, imperfection sensitivity has not been well studied in the past during design of sinusoidal micro and nano-scale structures via wrinkling of supported thin films. This is likely because one is more interested in predicting the shape/size of the resultant patterns than the buckling bifurcation onset strain during fabrication of such wrinkled structures. Herein, I have demonstrated that even modest geometric imperfections alter the final wrinkled mode shapes via the mode locking phenomenon wherein the imperfection mode grows in exclusion to the natural mode of the system. To study the effect ofmore » imperfections on mode locking, I have (i) developed a finite element mesh perturbation scheme to generate arbitrary geometric imperfections in the system and (ii) performed a parametric study via finite element methods to link the amplitude and period of the sinusoidal imperfections to the observed wrinkle mode shape and size. Based on this, a non-dimensional geometric parameter has been identified that characterizes the effect of imperfection on the mode locking phenomenon – the equivalent imperfection size. An upper limit for this equivalent imperfection size has been identified via a combination of analytical and finite element modeling. During compression of supported thin films, the system gets “locked” into the imperfection mode if its equivalent imperfection size is above this critical limit. For the polydimethylsiloxane/glass bilayer with a wrinkle period of 2 µm, this mode lock-in limit corresponds to an imperfection amplitude of 32 nm for an imperfection period of 5 µm and 8 nm for an imperfection period of 0.8 µm. Interestingly, when the non-dimensional critical imperfection size is scaled by the bifurcation onset strain, the scaled critical size depends solely on the ratio of the imperfection to natural periods. Furthermore, the computational data generated here can be generalized beyond the specific natural periods and bilayer systems studied to enable deterministic design of a variety of wrinkled micro and nano-scale structures.« less
Gigadalton-scale shape-programmable DNA assemblies
NASA Astrophysics Data System (ADS)
Wagenbauer, Klaus F.; Sigl, Christian; Dietz, Hendrik
2017-12-01
Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.
Gigadalton-scale shape-programmable DNA assemblies.
Wagenbauer, Klaus F; Sigl, Christian; Dietz, Hendrik
2017-12-06
Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.
Kinship-based politics and the optimal size of kin groups
Hammel, E. A.
2005-01-01
Kin form important political groups, which change in size and relative inequality with demographic shifts. Increases in the rate of population growth increase the size of kin groups but decrease their inequality and vice versa. The optimal size of kin groups may be evaluated from the marginal political product (MPP) of their members. Culture and institutions affect levels and shapes of MPP. Different optimal group sizes, from different perspectives, can be suggested for any MPP schedule. The relative dominance of competing groups is determined by their MPP schedules. Groups driven to extremes of sustainability may react in Malthusian fashion, including fission and fusion, or in Boserupian fashion, altering social technology to accommodate changes in size. The spectrum of alternatives for actors and groups, shaped by existing institutions and natural and cultural selection, is very broad. Nevertheless, selection may result in survival of particular kinds of political structures. PMID:16091466
Kinship-based politics and the optimal size of kin groups.
Hammel, E A
2005-08-16
Kin form important political groups, which change in size and relative inequality with demographic shifts. Increases in the rate of population growth increase the size of kin groups but decrease their inequality and vice versa. The optimal size of kin groups may be evaluated from the marginal political product (MPP) of their members. Culture and institutions affect levels and shapes of MPP. Different optimal group sizes, from different perspectives, can be suggested for any MPP schedule. The relative dominance of competing groups is determined by their MPP schedules. Groups driven to extremes of sustainability may react in Malthusian fashion, including fission and fusion, or in Boserupian fashion, altering social technology to accommodate changes in size. The spectrum of alternatives for actors and groups, shaped by existing institutions and natural and cultural selection, is very broad. Nevertheless, selection may result in survival of particular kinds of political structures.
NASA Astrophysics Data System (ADS)
Detsi, Eric; Petrissans, Xavier; Yan, Yan; Cook, John B.; Deng, Ziling; Liang, Yu-Lun; Dunn, Bruce; Tolbert, Sarah H.
2018-05-01
Control over the morphology of nanostructured materials is of primary importance in structure-property relationship studies. Although the size of ligaments and pores in dealloyed nanoporous metals can be controlled by thermal and/or (electro)chemical treatments, tuning the shape of those ligaments is much harder. In the present work, we use corroding media with different reactivity to effectively tailor the ligament shape in nanoporous tin (NP-Sn) during dealloying by free corrosion. NP-Sn architectures with nanowire and granular ligament shapes were made by controlling the pH of the corroding solution, and thus the rate of Sn oxidation relative to the etching rate of the sacrificial component. The standard nanowire structure was formed under acidic conditions where oxidation was slow, but a hierarchical granular structure was formed when fusion of the Sn nanocrystals was inhibited by surface oxidation. To demonstrate the advantages of this architectural control, these two materials systems were investigated as electrodes for Na-ion battery anodes. Similar initial Na storage capacities of ˜500 and 550 mAh/g were achieved in the nanowire and granular materials, respectively, but the cycle life of the two materials was quite different. NP-Sn with a granular ligament shape showed enhanced stability with a capacity retention of ˜55 % over 95 cycles at a specific current of 40 mA/g. By contrast, NP-Sn with a nanowire ligament shape showed very fast capacity fading within the first 10 cycles. This work thus demonstrates the dramatic impact of the nanoscale morphology on the electrochemical performance of nanoporous materials and highlights the need for both shape and size control in dealloyed nanoporous metals.
Kaatz, Forrest H; Bultheel, Adhemar
2018-08-24
Au-Cu and Pt-M (M = Fe, Co, and Ni) nanocluster alloys are currently being investigated world-wide by many researchers for their interesting catalytic and nanophase properties. The low temperature behavior of the phase diagrams is not well understood for alloys with nanometer sizes and shapes. We consider two models for low temperature ordering in the phase diagrams of Au-Cu and Pt-M nanocluster alloys. These models are valid for sizes ∼5 nm and approach bulk values for sizes ∼20 nm. We study the phase transitions in nanoclusters with cubic, octahedral, and cuboctahedral shapes, covering the compositions of interest. These models are based on studying the melting temperatures in nanoclusters using the regular solution, mixing model for alloys. From our data, experiments on nanocubes about 5 nm in size, of stoichiometric AuCu and PtM composition, could help differentiate between the models. Dispersion data shows that for the three shapes considered, octahedra have the highest percentage of surface atoms for the same relative diameter. We summarize the effects of structural ordering on the catalytic activity and suggest a method to avoid sintering during annealing of Pt-M alloys.
Garzón, Maximiliano J; Schweigmann, Nicolás
2018-05-16
Gene flow restrictions between populations of Aedes albifasciatus, the vector of Western equine encephalitis and Dirophilaria immitis, have been described in the central region of Argentina. Genetic and eco-physiological variations usually result in local forms reflecting the climatic regions. Mosquito wings and their different parts have ecological functions in flight and communication. Therefore, wing shape could be considered an aspect of sexual dimorphism, and its eco-physiological responses can be expressed as morphological changes induced by the environment. To compare the geographical and sexual variations with respect to wing shape and size in two Ae. albifasciatus populations from contrasting climates of Argentina (temperate: Buenos Aires, and the arid steppe of Patagonia: Sarmiento), the wings of adults reared in thermal trays at different constant temperatures (10-29 °C) were analyzed. The wing size of Ae. albifasciatus showed inverse linear relationships with the rearing thermal condition and higher slope for Buenos Aires. In the cool range (10-17 °C), geographical size variations responded to the converse Bergmann's rule, where Buenos Aires individuals were larger than those from Sarmiento. Sexual shape dimorphism occurred in both populations while geographical variation in shape was observed in both sexes. Buenos Aires individuals showed greater response sensitivity with respect to the size-temperature relation than those from Sarmiento. The converse Bergmann's rule in size variation could be due to a higher development rate in Sarmiento to produce more cohorts in the limited favorable season. The shape could be more relevant with respect to the size in the study of population structures due to the size being more liable to vary due to changes in the environment. The geographical variations with respect to morphology could be favored by the isolation between populations and adaptations to the environmental conditions. Our results demonstrate that the shape and size of wing provide useful phenotypic information for studies related to sexual and environmental adaptations.
Proteins as sponges: a statistical journey along protein structure organization principles.
Paola, Luisa Di; Paci, Paola; Santoni, Daniele; Ruvo, Micol De; Giuliani, Alessandro
2012-02-27
The analysis of a large database of protein structures by means of topological and shape indexes inspired by complex network and fractal analysis shed light on some organizational principles of proteins. Proteins appear much more similar to "fractal" sponges than to closely packed spheres, casting doubts on the tenability of the hydrophobic core concept. Principal component analysis highlighted three main order parameters shaping the protein universe: (1) "size", with the consequent generation of progressively less dense and more empty structures at an increasing number of residues, (2) "microscopic structuring", linked to the existence of a spectrum going from the prevalence of heterologous (different hydrophobicity) to the prevalence of homologous (similar hydrophobicity) contacts, and (3) "fractal shape", an organizing protein data set along a continuum going from approximately linear to very intermingled structures. Perhaps the time has come for seriously taking into consideration the real relevance of time-honored principles like the hydrophobic core and hydrophobic effect.
Superlattices assembled through shape-induced directional binding
NASA Astrophysics Data System (ADS)
Lu, Fang; Yager, Kevin G.; Zhang, Yugang; Xin, Huolin; Gang, Oleg
2015-04-01
Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks--cubes and octahedrons--when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block's facets, while structural order depends on DNA-tuned interactions and particle size ratio. The presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.
Superlattices assembled through shape-induced directional binding
Lu, Fang; Yager, Kevin G.; Zhang, Yugang; ...
2015-04-23
Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks—cubes and octahedrons—when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined bymore » the spatial symmetry of the block’s facets, while structural order depends on DNA-tuned interactions and particle size ratio. Lastly, the presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.« less
Children's Concepts of the Shape and Size of the Earth, Sun and Moon
NASA Astrophysics Data System (ADS)
Bryce, T. G. K.; Blown, E. J.
2013-02-01
Children's understandings of the shape and relative sizes of the Earth, Sun and Moon have been extensively researched and in a variety of ways. Much is known about the confusions which arise as young people try to grasp ideas about the world and our neighbouring celestial bodies. Despite this, there remain uncertainties about the conceptual models which young people use and how they theorise in the process of acquiring more scientific conceptions. In this article, the relevant published research is reviewed critically and in-depth in order to frame a series of investigations using semi-structured interviews carried out with 248 participants aged 3-18 years from China and New Zealand. Analysis of qualitative and quantitative data concerning the reasoning of these subjects (involving cognitive categorisations and their rank ordering) confirmed that (a) concepts of Earth shape and size are embedded in a 'super-concept' or 'Earth notion' embracing ideas of physical shape, 'ground' and 'sky', habitation of and identity with Earth; (b) conceptual development is similar in cultures where teachers hold a scientific world view and (c) children's concepts of shape and size of the Earth, Sun and Moon can be usefully explored within an ethnological approach using multi-media interviews combined with observational astronomy. For these young people, concepts of the shape and size of the Moon and Sun were closely correlated with their Earth notion concepts and there were few differences between the cultures despite their contrasts. Analysis of the statistical data used Kolmogorov-Smirnov Two-Sample Tests with hypotheses confirmed at K-S alpha level 0.05; rs : p < 0.01.
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.
Engineering the architectural diversity of heterogeneous metallic nanocrystals.
Yu, Yue; Zhang, Qingbo; Xie, Jianping; Lee, Jim Yang
2013-01-01
Similar to molecular engineering where structural diversity is used to create more property variations for application explorations, the architectural engineering of heterogeneous metallic nanocrystals (HMNCs) can likewise increase the versatility of metallic nanocrystals (NCs). Here we present a synthesis strategy capable of engineering the architectural diversity of HMNCs through rational and independent programming of every architecture-determining element, that is, the shape and size of the component NCs and their spatial arrangement. The strategy is based on the galvanic replacement reaction of a self-sustaining layer formed by underpotential deposition on a polyhedral NC. The selective deposition of satellite NCs on specific site of the central NC is realized by creating a geometry-dependent heterogeneous electron distribution. This site-selective deposition approach is applicable to central NCs in various polyhedral shapes and sizes. The satellite NCs can further develop their own shape and size through crystal growth kinetics control.
NASA Astrophysics Data System (ADS)
Yadavali, S.; Sandireddy, V. P.; Kalyanaraman, R.
2016-05-01
The ability to easily manufacture nanostructures with a desirable attribute, such as well-defined size and shape, especially from any given initial shapes or sizes of the material, will be helpful towards accelerating the use of nanomaterials in various applications. In this work we report the transformation of discontinuous irregular nanostructures (DIN) of silver metal by rapid heating under a bulk fluid layer. Ag films were changed into DIN by dewetting in air and subsequently heated by nanosecond laser pulses under water. Our findings show that the DIN first ripens into elongated structures and then breaks up into nanoparticles. From the dependence of this behavior on laser fluence we found that under water irradiation reduced the rate of ripening and also decreased the characteristic break-up length scale of the elongated structures. This latter result was qualitatively interpreted as arising from a Rayleigh-Plateau instability modified to yield significantly smaller length scales than the classical process due to pressure gradients arising from the rapid evaporation of water during laser melting. These results demonstrate that it is possible to fabricate a dense collection of monomodally sized Ag nanoparticles with significantly enhanced plasmonic quality starting from the irregular shaped materials. This can be beneficial towards transforming discontinuous Ag films into nanostructures with useful plasmonic properties, that are relevant for biosensing applications.
Modeling cometary photopolarimetric characteristics with Sh-matrix method
NASA Astrophysics Data System (ADS)
Kolokolova, L.; Petrov, D.
2017-12-01
Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.
Steenbergen, Krista G; Gaston, Nicola
2016-01-13
Melting in finite-sized materials differs in two ways from the solid-liquid phase transition in bulk systems. First, there is an inherent scaling of the melting temperature below that of the bulk, known as melting point depression. Second, at small sizes changes in melting temperature become nonmonotonic and show a size-dependence that is sensitive to the structure of the particle. Melting temperatures that exceed those of the bulk material have been shown to occur for a very limited range of nanoclusters, including gallium, but have still never been ascribed a convincing physical explanation. Here, we analyze the structure of the liquid phase in gallium clusters based on molecular dynamics simulations that reproduce the greater-than-bulk melting behavior observed in experiments. We observe persistent nonspherical shape distortion indicating a stabilization of the surface, which invalidates the paradigm of melting point depression. This shape distortion suggests that the surface acts as a constraint on the liquid state that lowers its entropy relative to that of the bulk liquid and thus raises the melting temperature.
Screening actuator locations for static shape control
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.
1990-01-01
Correction of shape distortion due to zero-mean normally distributed errors in structural sizes which are random variables is examined. A bound on the maximum improvement in the expected value of the root-mean-square shape error is obtained. The shape correction associated with the optimal actuators is also characterized. An actuator effectiveness index is developed and shown to be helpful in screening actuator locations in the structure. The results are specialized to a simple form for truss structures composed of nominally identical members. The bound and effectiveness index are tested on a 55-m radiometer antenna truss structure. It is found that previously obtained results for optimum actuators had a performance close to the bound obtained here. Furthermore, the actuators associated with the optimum design are shown to have high effectiveness indices. Since only a small fraction of truss elements tend to have high effectiveness indices, the proposed screening procedure can greatly reduce the number of truss members that need to be considered as actuator sites.
de Camargo, Willian Rogers Ferreira; de Camargo, Nícholas Ferreira; Corrêa, Danilo do Carmo Vieira; de Camargo, Amabílio J Aires; Diniz, Ivone Rezende
2015-01-01
Sexual dimorphism is a pronounced pattern of intraspecific variation in Lepidoptera. However, moths of the family Sphingidae (Lepidoptera: Bombycoidea) are considered exceptions to this rule. We used geometric morphometric techniques to detect shape and size sexual dimorphism in the fore and hindwings of seven hawkmoth species. The shape variables produced were then subjected to a discriminant analysis. The allometric effects were measured with a simple regression between the canonical variables and the centroid size. We also used the normalized residuals to assess the nonallometric component of shape variation with a t-test. The deformations in wing shape between sexes per species were assessed with a regression between the nonreduced shape variables and the residuals. We found sexual dimorphism in both wings in all analyzed species, and that the allometric effects were responsible for much of the wing shape variation between the sexes. However, when we removed the size effects, we observed shape sexual dimorphism. It is very common for females to be larger than males in Lepidoptera, so it is expected that the shape of structures such as wings suffers deformations in order to preserve their function. However, sources of variation other than allometry could be a reflection of different reproductive flight behavior (long flights in search for sexual mates in males, and flight in search for host plants in females). © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
A unifying theory for top-heavy ecosystem structure in the ocean.
Woodson, C Brock; Schramski, John R; Joye, Samantha B
2018-01-02
Size generally dictates metabolic requirements, trophic level, and consequently, ecosystem structure, where inefficient energy transfer leads to bottom-heavy ecosystem structure and biomass decreases as individual size (or trophic level) increases. However, many animals deviate from simple size-based predictions by either adopting generalist predatory behavior, or feeding lower in the trophic web than predicted from their size. Here we show that generalist predatory behavior and lower trophic feeding at large body size increase overall biomass and shift ecosystems from a bottom-heavy pyramid to a top-heavy hourglass shape, with the most biomass accounted for by the largest animals. These effects could be especially dramatic in the ocean, where primary producers are the smallest components of the ecosystem. This approach makes it possible to explore and predict, in the past and in the future, the structure of ocean ecosystems without biomass extraction and other impacts.
A green chemical approach for synthesis of shape anisotropic gold nanoparticles
NASA Astrophysics Data System (ADS)
Kalyan Kamal, S. S.; Vimala, J.; Sahoo, P. K.; Ghosal, P.; Ram, S.; Durai, L.
2014-06-01
A complete green chemical reaction between aurochloric acid and tea polyphenols resulted in the reduction of Au3+ → Au0. The reaction was carried out in a Teflon-coated bomb digestion vessel at 200 °C. It was observed that with increasing the reaction time from 1 to 5 h, the shape of the nanoparticles changed from spherical- to rod-like structures. The reaction was followed with the help of UV-vis spectrometer, which showed a single absorption peak at 548 nm for 1-h reaction product and two peaks for a 5-h reaction product at 533 and 745 nm corresponding to the transverse and longitudinal surface plasmon resonance bands. Microstructures obtained from transmission electron microscope revealed that the samples obtained after 1-h reaction are predominantly spherical in shape with an average size of 15 nm. Whereas samples obtained after 5 h of reaction exhibited rod-like structures with an average size of 45 nm.
Nanoforging – Innovation in three-dimensional processing and shaping of nanoscaled structures
Rösler, Joachim
2014-01-01
Summary Background: This paper describes the shaping of freestanding objects out of metallic structures in the nano- and submicron size. The technique used, called nanoforging, is very similar to the macroscopic forging process. Results: With spring actuated tools produced by focused ion beam milling, controlled forging is demonstrated. With only three steps, a conical bar stock is transformed to a flat- and semicircular bent bar stock. Conclusion: Compared with other forming techniques in the reduced scale, nanoforging represents a beneficial approach in forming freestanding metallic structures, due to its simplicity, and supplements other forming techniques. PMID:25161840
NASA Astrophysics Data System (ADS)
Xiao, Xueliang; Hu, Jinlian
2016-05-01
Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.
Xiao, Xueliang; Hu, Jinlian
2016-01-01
Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials. PMID:27230823
Cyclodextrin-assisted synthesis of tailored mesoporous silica nanoparticles
2018-01-01
Mesoporous silica nanoparticles (MSNs) have sparked considerable interest in drug/gene delivery, catalysis, adsorption, separation, sensing, antireflection coatings and bioimaging because of their tunable structural properties. The shape, size and pore structure of MSNs are greatly influenced by the type of additives used, e.g., solvent and pore-templating agent. Here, we studied the influence of cyclodextrin (CD) molecules on the formation of MSNs. The nanoparticles over 100 nm in diameter were synthesized by surfactant-templated, hydrolysis–polycondensation reactions in the presence of pristine CD (β-CD) or hydroxypropyl-functionalized CDs (HP-γ-CD and HP-β-CD). Depending on the formulation conditions, differently shaped MSNs, such as bean-like, spherical, ellipsoid, aggregate and faceted were generated. The morphology and size of MSNs varied with the CD-type used. Generally, spherical particles were obtained with β-CD, while a faceted morphology was observed for the particles synthesized using HP-CDs. The particle size could be tuned by adjusting the amount of CD used; increasing the CD concentration led to larger particles. MSNs synthesized in the presence of β-CD displayed a smaller particle size than those produced with HP-functional CDs. FTIR, TGA and solid-state 13C NMR demonstrated the adsorption of CDs on the particle surfaces. The proposed concept allows for the synthesis of silica nanoparticles with control over particle shape and size by adjusting the concentration of additives in a simple, one-pot reaction system for a wide range of applications. PMID:29527443
Size Variation under Domestication: Conservatism in the inner ear shape of wolves, dogs and dingoes.
Schweizer, Anita V; Lebrun, Renaud; Wilson, Laura A B; Costeur, Loïc; Schmelzle, Thomas; Sánchez-Villagra, Marcelo R
2017-10-17
A broad sample of wolves, dingoes, and domesticated dogs of different kinds and time periods was used to identify changes in size and shape of the organs of balance and hearing related to domestication and to evaluate the potential utility of uncovered patterns as markers of domestication. Using geometric morphometrics coupled with non-invasive imaging and three-dimensional reconstructions, we exposed and compared complex structures that remain largely conserved. There is no statistically significant difference in the levels of shape variation between prehistoric and modern dogs. Shape variance is slightly higher for the different components of the inner ear in modern dogs than in wolves, but these differences are not significant. Wolves express a significantly greater level of variance in the angle between the lateral and the posterior canal than domestic dog breeds. Wolves have smaller levels of size variation than dogs. In terms of the shape of the semicircular canals, dingoes reflect the mean shape in the context of variation in the sample. This mirrors the condition of feral forms in other organs, in which there is an incomplete return to the characteristics of the ancestor. In general, morphological diversity or disparity in the inner ear is generated by scaling.
Raza, Muhammad Akram; Kanwal, Zakia; Rauf, Anum; Sabri, Anjum Nasim; Riaz, Saira; Naseem, Shahzad
2016-01-01
Silver nanoparticles (AgNPs) of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC) and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP) was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM), UV-visible spectroscopy (UV-VIS), and X-ray diffraction (XRD) techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR) peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs. PMID:28335201
NASA Astrophysics Data System (ADS)
Hussein, M. T.; Kasim, T.; Abdulsattar, M. A.
2013-11-01
In present work, we investigate electronic properties of alloying percentage of In x Ga1- x P compound with different sizes of superlattice large unit cell (LUC) method with 8, 16, 54, and 64 nanocrystals core atoms. The size and type of alloying compound are varied so that it can be tuned to a required application. To determine properties of indium gallium phosphide nanocrystals density functional theory at the generalized-gradient approximation level coupled with LUC method is used to simulate electronic structure of zinc blende indium gallium phosphide nanocrystals that have dimensions around 2-2.8 nm. The calculated properties include lattice constant, energy gap, valence band width, cohesive energy, density of states (DOS) etc. Results show that laws that are applied at microscale alloying percentage are no more applicable at the present nanoscale. Results also show that size, shape and quantum effects are strong. Many properties fluctuate at nanoscale while others converge to definite values. DOS summarizes many of the above quantities.
ERIC Educational Resources Information Center
Casanova, Manuel F.; El-Baz, Ayman; Elnakib, Ahmed; Switala, Andrew E.; Williams, Emily L.; Williams, Diane L.; Minshew, Nancy J.; Conturo, Thomas E.
2011-01-01
Multiple studies suggest that the corpus callosum in patients with autism is reduced in size. This study attempts to elucidate the nature of this morphometric abnormality by analyzing the shape of this structure in 17 high-functioning patients with autism and an equal number of comparison participants matched for age, sex, IQ, and handedness. The…
Vutukuri, Hanumantha Rao; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
Particle shape is a critical parameter that plays an important role in self-assembly, for example, in designing targeted complex structures with desired properties. Over the last decades, an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micrometer-sized colloidal building blocks of particles with flat facets, that is, particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that in contrast to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. It is now shown that a very simple building block, such as a micrometer-sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self-assembly studies, the formation of three-dimensional rotator phases of fluorescently labelled, micrometer-sized, and charged rhombic dodecahedron particles was demonstrated. This method for fabricating polyhedral particles opens a new avenue for designing new materials. PMID:25366869
Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes.
Xu, Lin; Jiang, Zhe; Qing, Quan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M
2013-02-13
Functional kinked nanowires (KNWs) represent a new class of nanowire building blocks, in which functional devices, for example, nanoscale field-effect transistors (nanoFETs), are encoded in geometrically controlled nanowire superstructures during synthesis. The bottom-up control of both structure and function of KNWs enables construction of spatially isolated point-like nanoelectronic probes that are especially useful for monitoring biological systems where finely tuned feature size and structure are highly desired. Here we present three new types of functional KNWs including (1) the zero-degree KNW structures with two parallel heavily doped arms of U-shaped structures with a nanoFET at the tip of the "U", (2) series multiplexed functional KNW integrating multi-nanoFETs along the arm and at the tips of V-shaped structures, and (3) parallel multiplexed KNWs integrating nanoFETs at the two tips of W-shaped structures. First, U-shaped KNWs were synthesized with separations as small as 650 nm between the parallel arms and used to fabricate three-dimensional nanoFET probes at least 3 times smaller than previous V-shaped designs. In addition, multiple nanoFETs were encoded during synthesis in one of the arms/tip of V-shaped and distinct arms/tips of W-shaped KNWs. These new multiplexed KNW structures were structurally verified by optical and electron microscopy of dopant-selective etched samples and electrically characterized using scanning gate microscopy and transport measurements. The facile design and bottom-up synthesis of these diverse functional KNWs provides a growing toolbox of building blocks for fabricating highly compact and multiplexed three-dimensional nanoprobes for applications in life sciences, including intracellular and deep tissue/cell recordings.
The echinoderm collagen fibril: a hero in the connective tissue research of the 1990s.
Szulgit, Greg
2007-07-01
Collagen fibrils are some of the most-abundant and important extracellular structures in our bodies, yet we are unsure of their shape and size. This is largely due to an inherent difficulty in isolating them from their surrounding tissues. Echinoderms have collagenous tissues that are similar to ours in many ways, yet they can be manipulated to easily relinquish their collagen fibrils, providing an excellent opportunity to study native fibrillar structure. In the early 1990s, they were found to defy the commonly accepted fibrillar model of the time in that they were much shorter, they were shaped like double-ended spindles, and their centers exhibited a reversal in molecular polarity. Realization of these features helped to reform the questions that were being asked about vertebrate fibrils, shifting the focus toward shape and size. Since then, researchers working with both groups (echinoderms and vertebrates) have worked together to find the structure of native fibrils. This information will be fundamental in understanding what holds collagenous tissues together at the fibrillar level, and could have important implications for people with Ehlers-Danlos syndrome. (c) 2007 Wiley Periodicals, Inc.
An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans.
Reardon, Paul Kirkpatrick; Clasen, Liv; Giedd, Jay N; Blumenthal, Jonathan; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin
2016-02-24
Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. Copyright © 2016 the authors 0270-6474/16/362438-11$15.00/0.
The quintuple-shape memory effect in electrospun nanofiber membranes
NASA Astrophysics Data System (ADS)
Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong
2013-08-01
Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.
Sexual selection and the evolution of genital shape and complexity in water striders.
Rowe, Locke; Arnqvist, Göran
2012-01-01
Animal genitalia show two striking but incompletely understood evolutionary trends: a great evolutionary divergence in the shape of genitalic structures, and characteristic structural complexity. Both features are thought to result from sexual selection, but explicit comparative tests are hampered by the fact that it is difficult to quantify both morphological complexity and divergence in shape. We undertake a comparative study of multiple nongenitalic and male genital traits in a clade of 15 water strider species to quantify complexity and shape divergence. We show that genital structures are more complex and their shape more divergent among species than nongenital traits. Further, intromittent genital traits are more complex and have evolved more divergently than nonintromittent genital traits. More importantly, shape and complexity of nonintromittent genital traits show correlated evolution with indices of premating sexual selection and intromittent genital traits with postmating sexual selection, suggesting that the evolution of different components of genital morphology are shaped independently by distinct forms of sexual selection. Our quantitative results provide direct comparative support for the hypothesis that sexual selection is associated with morphological complexity in genitalic traits and highlight the importance of quantifying morphological shape and complexity, rather than size in studies of genital evolution. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.
Yong, Robin; Ranjitkar, Sarbin; Lekkas, Dimitra; Halazonetis, Demetrios; Evans, Alistair; Brook, Alan; Townsend, Grant
2018-06-01
This study aimed to investigate size and shape variation of human premolars between Indigenous Australians and Australians of European ancestry, and to assess whether sex and ancestry could be differentiated between these groups using 3D geometric morphometrics. Seventy dental casts from each group, equally subdivided by sex, were scanned using a structured-light scanner. The 3D meshes of upper and lower premolars were processed using geometric morphometric methods. Seventy-two landmarks were recorded for upper premolars and 50 landmarks for lower premolars. For each tooth type, two-way ANOVA was used to assess group differences in centroid size. Shape variations were explored using principal component analysis and visualized using 3D morphing. Two-way Procrustes ANOVA was applied to test group differences for ancestry and sex, and a "leave-one-out" discriminant function was applied to assess group assignment. Centroid size and shape did not display significant difference between the sexes. Centroid size was larger in Indigenous Australians for upper premolars and lower second premolars compared to the Australians of European ancestry. Significant shape variation was noted between the two ancestral groups for upper premolars and the lower first premolar. Correct group assignment of individual teeth to their ancestral groups ranged between 80.0 and 92.8% for upper premolars and 60.0 and 75.7% for lower premolars. Our findings provide evidence of significant size and shape variation in human premolars between the two ancestral groups. High classification rates based on shape analysis of upper premolars highlight potential application of geometric morphometrics in anthropological, bioarcheological and forensic contexts. © 2018 Wiley Periodicals, Inc.
Food Web Structure Shapes the Morphology of Teleost Fish Brains.
Edmunds, Nicholas B; McCann, Kevin S; Laberge, Frédéric
2016-01-01
Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron. Intriguingly, the results revealed two potential evolutionary trade-offs: (i) relative olfactory bulb size increased, while relative optic tectum size decreased, across a trophic position gradient, and (ii) the telencephalon was relatively larger in fish using more littoral-based carbon, while the cerebellum was relatively larger in fish using more pelagic-based carbon. Additionally, evidence for a within-species effect on the telencephalon was found, where it increased in size with trophic position. Collectively, these results suggest that food web structure has fundamentally contributed to the shaping of teleost brain morphology. © 2016 S. Karger AG, Basel.
Apparatus for assembling space structure
NASA Technical Reports Server (NTRS)
Johnston, J. D.; Tuggle, R. H., Jr.; Burch, J. L.; Clark, K. H. (Inventor)
1978-01-01
An apparatus for producing a structure in outer space from rolls of prepunched ribbon or sheet material that are transported from the earth to the apparatus located in outer space is described. The apparatus spins the space structure similar to a spider spinning a web utilizing the prepunched ribbon material. The prepunched ribbon material is fed through the apparatus and is shaped into a predetermined channel-shaped configuration. Trusses are punched out of the ribbon and are bent downwardly and attached to a track which normally is a previously laid sheet of material. The size of the overall space structure may be increased by merely attaching an additional roll of sheet material to the apparatus.
Efficient Tuning of Optical Properties and Morphology of Mesoscopic CdS via a Facile Route
NASA Astrophysics Data System (ADS)
Aslam, Samia; Mustafa, Faiza; Jamil, Ayesha; Abbas, Ghazanfar; Raza, Rizwan; Ahmad, Muhammad Ashfaq
2018-03-01
A facile and simple synthetic route has been employed to synthesize rod-shaped optically efficient cadmium sulfide (CdS) mesoscopic structures using high concentrations of cetyl trimethyl ammonium bromide (CTAB) as the stabilizing agent. The mesoscopic structures were characterized using x-ray diffaractometer (XRD), scanning electron microscopy, UV-visible, photoluminescence (PL), and Fourier transform and infrared (FTIR) spectroscopy. It was found that, if the concentration of CTAB is significantly higher than its critical micelle concentration, the nucleation of CdS mesoscopic structures resulted in rod-like structures. The size of the mesoscopic structures initially increased and then decreased with band gaps 2.5-2.7 eV. XRD analysis showed that the samples had a pure cubic phase confirming the particle size. The values of Urbach energy for the absorption tail states were determined and found to be in agreement with the single crystal. PL spectra showed sharp green emission peaks in the 530-nm to 560-nm wavelength range. FTIR spectra showed the adsorption mode of CTAB onto the CdS mesoscopic structures. A possible mechanism of formation of rod-shaped CdS mesoscopic structures is also elucidated.
Mars Life? - Microscopic Egg-shaped Structures
NASA Technical Reports Server (NTRS)
1996-01-01
This electron microscope image shows egg-shaped structures, some of which may be possible microscopic fossils of Martian origin as discussed by NASA research published in the Aug. 16, 1996, issue of the journal Science. A two-year investigation found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.
Microbial synthesis of Flower-shaped gold nanoparticles.
Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok Chun
2016-09-01
The shape of nanoparticles has been recognized as an important attribute that determines their applicability in various fields. The flower shape (F-shape) has been considered and is being focused on, because of its enhanced properties when compared to the properties of the spherical shape. The present study proposed the microbial synthesis of F-shaped gold nanoparticles within 48 h using the Bhargavaea indica DC1 strain. The F-shaped gold nanoparticles were synthesized extracellularly by the reduction of auric acid in the culture supernatant of B. indica DC1. The shape, size, purity, and crystalline nature of F-shaped gold nanoparticles were revealed by various instrumental techniques including UV-Vis, FE-TEM, EDX, elemental mapping, XRD, and DLS. The UV-Vis absorbance showed a maximum peak at 536 nm. FE-TEM revealed the F-shaped structure of nanoparticles. The EDX peak obtained at 2.3 keV indicated the purity. The peaks obtained on XRD analysis corresponded to the crystalline nature of the gold nanoparticles. In addition, the results of elemental mapping indicated the maximum distribution of gold elements in the nanoproduct obtained. Particle size analysis revealed that the average diameter of the F-shaped gold nanoparticles was 106 nm, with a polydispersity index (PDI) of 0.178. Thus, the methodology developed for the synthesis of F-shaped gold nanoparticles is completely green and economical.
How Community Has Shaped the Protein Data Bank
Berman, Helen M.; Kleywegt, Gerard J.; Nakamura, Haruki; Markley, John L.
2015-01-01
Following several years of community discussion, the Protein Data Bank (PDB) was established in 1971 as a public repository for the coordinates of three-dimensional models of biological macromolecules. Since then, the number, size, and complexity of structural models have continued to grow, reflecting the productivity of structural biology. Managed by the Worldwide PDB organization, the PDB has been able to meet increasing demands for the quantity of structural information and of quality. In addition to providing unrestricted access to structural information, the PDB also works to promote data standards and to raise the profile of structural biology with broader audiences. In this perspective, we describe the history of PDB and the many ways in which the community continues to shape the archive. PMID:24010707
Kulkarni, Amol A; Sebastian Cabeza, Victor
2017-12-19
Continuous segmented flow interfacial synthesis of Au nanostructures is demonstrated in a microchannel reactor. This study brings new insights into the growth of nanostructures at continuous interfaces. The size as well as the shape of the nanostructures showed significant dependence on the reactant concentrations, reaction time, temperature, and surface tension, which actually controlled the interfacial mass transfer. The microchannel reactor assisted in achieving a high interfacial area, as well as uniformity in mass transfer effects. Hexagonal nanostructures were seen to be formed in synthesis times as short as 10 min. The wettability of the channel showed significant effect on the particle size as well as the actual shape. The hydrophobic channel yielded hexagonal structures of relatively smaller size than the hydrophilic microchannel, which yielded sharp hexagonal bipyramidal particles (diagonal distance of 30 nm). The evolution of particle size and shape for the case of hydrophilic microchannel is also shown as a function of the residence time. The interfacial synthesis approach based on a stable segmented flow promoted an excellent control on the reaction extent, reduction in axial dispersion as well as the particle size distribution.
Bose, A P H; Adragna, J B; Balshine, S
2017-01-01
In this study, the morphology of sagittal otoliths of the plainfin midshipman fish Porichthys notatus was compared between populations, sexes and male alternative reproductive phenotypes (known as 'type I males or guarders' and 'type II males or sneakers'). Sagitta size increased with P. notatus size and changes in shape were also detected with increasing body size. Porichthys notatus sagittae begin as simple rounded structures, but then elongate as they grow and take on a more triangular and complex shape with several prominent notches and indentations along the dorsal and caudal edges. Moreover, the sagittae of the two geographically and genetically distinct populations of P. notatus (northern and southern) differed in shape. Porichthys notatus from the north possessed taller sagittae with deeper caudal indentations compared to P. notatus from the south. Sagitta shape also differed between females and males of the conventional guarder tactic. Furthermore, guarder males had smaller sagittae for their body size than did sneaker males or females. These differences in sagittal otolith morphology are discussed in relation to ecological and life history differences between the sexes and male tactics of this species. This is the first study to investigate teleost otolith morphology from the perspective of alternative reproductive tactics. © 2016 The Fisheries Society of the British Isles.
Structural changes of deposited casein micelles induced by membrane filtration.
Gebhardt, R; Steinhauer, T; Meyer, P; Sterr, J; Perlich, J; Kulozik, U
2012-01-01
Casein micelles undergo shape changes when subjected to frontal filtration forces. Grazing incidence small angle X-ray scattering (GISAXS) and atomic force microscopy (AFM) allow a quantification of such structural changes on filtration cakes deposited on smooth silicon micro-sieves. A trans-membrane pressure of deltap = 400 mbar across the micro-sieve leads to an immediate film formation after deposition of casein solution. We observe significant changes in the GISAXS pattern depending on how many layers are stacked on top of each other. Compared to a deposit formed by one layer, GISAXS on a deposit formed by three layers of casein micelles leads to less scattering in the vertical and more scattering in the horizontal direction. Simulations show that the experimental results can be interpreted by a structural transformation from an originally spherical micelle shape to an ellipsoidal-deformed shape. The results are supported by AFM measurements showing a reduced lateral size of casein micelles deposited on top of a membrane pore. The observed shape changes could be due to filtration forces acting on densely packed deposits confining the micelles into ellipsoidal shapes.
Ostwald ripening of clays and metamorphic minerals
Eberl, D.D.; Srodon, J.; Kralik, M.; Taylor, B.E.; Peterman, Z.E.
1990-01-01
Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.
Formation of amorphous metal alloys by chemical vapor deposition
Mullendore, Arthur W.
1990-01-01
Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.
NASA Astrophysics Data System (ADS)
Peymanfar, Reza; Javanshir, Shahrzad
2017-06-01
In this paper, the design and characterization of a radar absorbing material (RAM) was investigated at microwave frequency. Ba0.2Sr0.2La0.6MnO3 magnetic nanoparticles was synthesized thru a facile hydrothermal method in the presence of polymethyl methacrylate (PMMA) and the possibility of shape and size-controlled synthesis of nanoparticles (NPs) over the range 15-50 Nm was also explored. Afterward, the effect of shape and size of the synthesized Ba0.2Sr0.2La0.6MnO3 NPs on microwave absorption properties was investigated in KU-band. The crystal structures and morphology of as-synthesized nanoparticles were characterized and confirmed by FESEM, XRD, VSM, FTIR analysis. The RAM samples were prepared by dispersion of magnetic NPs in silicone rubber in an ultrasonic bath. The maximum reflection loss (RL) values NPs were 12.04 dB at 14.82 GHz and a broad absorption band (over 1.22 GHz) with RL values <-10 dB are obtained and the maximum reflection loss (RL) values of decrease and shaped NPs were 22.36 dB at 14.78 GHz and a broad absorption band (over 2.67 GHz) with RL values <-10 dB are obtained. The results indicated that the particle size and shape play a major role on the absorption properties of the composites in the 12.4-18 GHz frequency range. It is observed that microwave absorption properties increased with the decrease in average particle size of NPs.
Universal size properties of a star-ring polymer structure in disordered environments
NASA Astrophysics Data System (ADS)
Haydukivska, K.; Blavatska, V.
2018-03-01
We consider the complex polymer system, consisting of a ring polymer connected to the f1-branched starlike structure, in a good solvent in the presence of structural inhomogeneities. In particular cases f1=1 and f1=2 , such a system restores the synthesized tadpole-shaped polystyrenes [Doi et al., Macromolecules 46, 1075 (2013), 10.1021/ma302511j]. We assume that structural defects are correlated at large distances x according to a power law x-a. Applying the direct polymer renormalization approach, we evaluate the universal size characteristics such as the ratio of the radii of gyration of star-ring and star topologies, and compare the effective sizes of single arms in complex structures and isolated polymers of the same total molecular weight. The nontrivial impact of disorder on these quantities is analyzed.
The shape of contention: adaptation, history, and contingency in ungulate mandibles.
Raia, Pasquale; Carotenuto, Francesco; Meloro, Carlo; Piras, Paolo; Pushkina, Diana
2010-05-01
Mandibles and teeth of ungulates have been extensively studied to discern the functional significance of their design. Grazing ungulates have deeper mandibles, longer coronoid processes, flatter incisor arcades, and more hypsodont molars in comparison to browsers. If the functional significance of both mandible and teeth shapes is well-established, it remains uncertain to what extent mandible shapes are really adapted to grazing, meaning that they evolved either to serve their current biological function or just as a structural requirement to accommodate higher crowned molars. Here, we address this question by studying the contribution of phylogeny, hypsodonty, and body size to mandibular shape variation. The mandible shape appeared to be significantly influenced by hypsodonty but not by body size. Interestingly, hypsodonty-related changes influenced the tooth row in artiodactyls and perissodactyls significantly but in the opposite directions, which is ultimately related to their different digestive strategies. Yet, we obtained a strong phylogenetic effect in perissodactyls, suggesting that their mandible shape should be strongly inherited. The strength of this effect was not significant within artiodactyls (where hypsodonty explained much more variance in mandible shape). Digestive strategy is deemed to interplay with hypsodonty to produce different paths of adaptation to particular diets in ungulates.
Functional Performances of CuZnAl Shape Memory Alloy Open-Cell Foams
NASA Astrophysics Data System (ADS)
Biffi, C. A.; Casati, R.; Bassani, P.; Tuissi, A.
2018-01-01
Shape memory alloys (SMAs) with cellular structure offer a unique mixture of thermo-physical-mechanical properties. These characteristics can be tuned by changing the pore size and make the shape memory metallic foams very attractive for developing new devices for structural and functional applications. In this work, CuZnAl SMA foams were produced through the liquid infiltration of space holder method. In comparison, a conventional CuZn brass alloy was foamed trough the same method. Functional performances were studied on both bulk and foamed SMA specimens. Calorimetric response shows similar martensitic transformation (MT) below 0 °C. Compressive response of CuZnAl revealed that mechanical behavior is strongly affected by sample morphology and that damping capacity of metallic foam is increased above the MT temperatures. The shape memory effect was detected in the CuZnAl foams. The conventional brass shows a compressive response similar to that of the martensitic CuZnAl, in which plastic deformation accumulation occurs up to the cellular structure densification after few thermal cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gafner, Yu. Ya., E-mail: ygafner@khsu.ru; Gafner, S. L.; Chepkasov, I. V.
2010-10-15
The condensation of 85000 Cu or Ni atoms from the high-temperature gas phase has been simulated by molecular dynamics with the tight binding potential. The efect of the subsequent thermal treatment on the shape and structure of synthesized particles was studied by simulating their gradual heating in a range of 100-1200 K. Some tendencies are revealed that are characteristic of the influence of heat treatment on the nanoparticles synthesized from the gas phase. It is concluded that short-term heating leads to significant ordering of the internal structure in 70% of agglomerated nanoparticles with the predominant formation of spherical shapes. Inmore » order to explain this result, the main mechanisms of cluster formation from the gas phase have been analyzed and it is found that the agglomeration temperature plays the main role in the formation of clusters with unified shape and structure. This opens the fundamental possibility of obtaining Cu and Ni nanoclusters with preset size, shape, and structure and, hence, predictable physical properties.« less
CHEM-Based Self-Deploying Spacecraft Radar Antennas
NASA Technical Reports Server (NTRS)
Sokolowski, Witold; Huang, John; Ghaffarian, Reza
2004-01-01
A document proposes self-deploying spacecraft radar antennas based on cold hibernated elastic memory (CHEM) structures. Described in a number of prior NASA Tech Briefs articles, the CHEM concept is one of utilizing open-cell shape-memory-polymer (SMP) foams to make lightweight structures that can be compressed for storage and can later be expanded, then rigidified for use. A CHEM-based antenna according to the proposal would comprise three layers of microstrip patches and transmission lines interspersed with two flat layers of SMP foam, which would serve as both dielectric spacers and as means of deployment. The SMP foam layers would be fabricated at full size at a temperature below the SMP glass-transition temperature (Tg). The layers would be assembled into a unitary structure, which, at temperature above Tg, would be compacted to much smaller thickness, then rolled up for storage. Next, the structure would be cooled to below Tg and kept there during launch. Upon reaching the assigned position in outer space, the structure would be heated above Tg to make it rebound to its original size and shape. The structure as thus deployed would then be rigidified by natural cooling to below Tg
Gruen, Dieter M [Downers Grove, IL; Busmann, Hans-Gerd [Bremen, DE; Meyer, Eva-Maria [Bremen, DE; Auciello, Orlando [Bolingbrook, IL; Krauss, Alan R [late of Naperville, IL; Krauss, Julie R [Naperville, IL
2004-11-02
MEMS structure and a method of fabricating them from ultrananocrystalline diamond films having average grain sizes of less than about 10 nm and feature resolution of less than about one micron . The MEMS structures are made by contacting carbon dimer species with an oxide substrate forming a carbide layer on the surface onto which ultrananocrystalline diamond having average grain sizes of less than about 10 nm is deposited. Thereafter, microfabrication process are used to form a structure of predetermined shape having a feature resolution of less than about one micron.
Carey, Robert I; Kyle, Christopher C; Carey, Donna L; Leveillee, Raymond J
2008-01-01
To prepare artificial kidney stones of defined shape, size, mass, and material composition via precision injection molding of Ultracal 30 cement slurries into an inexpensive biodegradable mold. A calcium alginate and silica-based mold was used to prepare casts of varying shapes in a reproducible manner. Ultracal 30 cement slurries mixed 1:1 with water were injected into these casts and allowed to harden. The artificial stones were recovered and their physical properties determined. Ex-vivo and in-vivo responses to holmium laser lithotripsy were examined. Spheres, half spheres, cylinders, cubes, tapered conical structures, and flat angulated structures were prepared with high precision without post-molding manipulations. Large spheres of average mass 0.661 g (+/- 0.037), small spheres of average mass 0.046 g (+/- 0.0026), and hexagons of average mass 0.752 g (+/- 0.0180) were found to have densities (1610-1687 kg/m(3)) within the expected range for Ultracal 30 cement stones. Ex-vivo holmium laser lithotripsy of small spheres in saline showed uniformly reproducible efficiencies of comminution. Implantation of a tapered conical stone into the ureter of a porcine model demonstrated stone comminution in vivo consistent with that seen in the ex-vivo models. We present an environmentally safe, technically simple procedure for the formation of artificial kidney stones of predetermined size and shape. The technique does not require the use of hazardous solvents or postprocedural processing of the stones. These stones are intended for use in standardized experiments of lithotripsy efficiency in which the shape of the stone as well as the mass can be predetermined and precisely controlled.
Synthesis of Zinc Oxide Nanoparticles using Anthocyanin as a Capping Agent
NASA Astrophysics Data System (ADS)
Septiani, N. L. W.; Yuliarto, B.; Iqbal, M.; Nugraha
2017-05-01
Zinc Oxide nanoparticles have been successfully synthesized by utilizing anthocyanin as a capping agent by thermal decomposition of precursor route. The influence of the high and low concentrations of the anthocyanin to the shape and size of ZnO was investigated in this work. The anthocyanin was obtained from Indonesia black rice extract with methanol as a solvent. The crystallinity and morphology properties were characterized by X-Ray Diffractometer (XRD), and Scanning Electron Microscope (SEM), respectively. XRD result showed that ZnO was formed with good crystallinity without any second phase and had a hexagonal wurtzite crystal structure. SEM result revealed that ZnO with a low concentration of anthocyanin has a spherical shape with a uniform size of about 16 nm while ZnO with a high concentration of anthocyanin has a rod-like shape. The size of spherical ZnO in this work is smaller than ZnO from the same method of synthesis without anthocyanin (~30 nm).
Predation risk suppresses the positive feedback between size structure and cannibalism.
Kishida, Osamu; Trussell, Geoffrey C; Ohno, Ayaka; Kuwano, Shinya; Ikawa, Takuya; Nishimura, Kinya
2011-11-01
1. Cannibalism can play a prominent role in the structuring and dynamics of ecological communities. Previous studies have emphasized the importance of size structure and density of cannibalistic species in shaping short- and long-term cannibalism dynamics, but our understanding of how predators influence cannibalism dynamics is limited. This is despite widespread evidence that many prey species exhibit behavioural and morphological adaptations in response to predation risk. 2. This study examined how the presence and absence of predation risk from larval dragonflies Aeshna nigroflava affected cannibalism dynamics in its prey larval salamanders Hynobius retardatus. 3. We found that feedback dynamics between size structure and cannibalism depended on whether dragonfly predation risk was present. In the absence of dragonfly risk cues, a positive feedback between salamander size structure and cannibalism through time occurred because most of the replicates in this treatment contained at least one salamander larvae having an enlarged gape (i.e. cannibal). In contrast, this feedback and the emergence of cannibalism were rarely observed in the presence of the dragonfly risk cues. Once salamander size divergence occurred, experimental reversals of the presence or absence of dragonfly risk cues did not alter existing cannibalism dynamics as the experiment progressed. Thus, the effects of risk on the mechanisms driving cannibalism dynamics likely operated during the early developmental period of the salamander larvae. 4. The effects of dragonfly predation risk on behavioural aspects of cannibalistic interactions among hatchlings may prohibit the initiation of dynamics between size structure and cannibalism. Our predation trials clearly showed that encounter rates among hatchlings and biting and ingestion rates of prospective prey by prospective cannibals were significantly lower in the presence vs. absence of dragonfly predation risk even though the size asymmetry between cannibals and victims was similar in both risk treatments. These results suggest that dragonfly risk cues first suppress cannibalism among hatchlings and then prevent size variation from increasing through time. 5. We suggest that the positive feedback dynamics between size structure and cannibalism and their modification by predation risk may also operate in other systems to shape the population dynamics of cannibalistic prey species as well as overall community dynamics. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Scaling law and enhancement of lift generation of an insect-size hovering flexible wing
Kang, Chang-kwon; Shyy, Wei
2013-01-01
We report a comprehensive scaling law and novel lift generation mechanisms relevant to the aerodynamic functions of structural flexibility in insect flight. Using a Navier–Stokes equation solver, fully coupled to a structural dynamics solver, we consider the hovering motion of a wing of insect size, in which the dynamics of fluid–structure interaction leads to passive wing rotation. Lift generated on the flexible wing scales with the relative shape deformation parameter, whereas the optimal lift is obtained when the wing deformation synchronizes with the imposed translation, consistent with previously reported observations for fruit flies and honeybees. Systematic comparisons with rigid wings illustrate that the nonlinear response in wing motion results in a greater peak angle compared with a simple harmonic motion, yielding higher lift. Moreover, the compliant wing streamlines its shape via camber deformation to mitigate the nonlinear lift-degrading wing–wake interaction to further enhance lift. These bioinspired aeroelastic mechanisms can be used in the development of flapping wing micro-robots. PMID:23760300
Fast 3D shape screening of large chemical databases through alignment-recycling
Fontaine, Fabien; Bolton, Evan; Borodina, Yulia; Bryant, Stephen H
2007-01-01
Background Large chemical databases require fast, efficient, and simple ways of looking for similar structures. Although such tasks are now fairly well resolved for graph-based similarity queries, they remain an issue for 3D approaches, particularly for those based on 3D shape overlays. Inspired by a recent technique developed to compare molecular shapes, we designed a hybrid methodology, alignment-recycling, that enables efficient retrieval and alignment of structures with similar 3D shapes. Results Using a dataset of more than one million PubChem compounds of limited size (< 28 heavy atoms) and flexibility (< 6 rotatable bonds), we obtained a set of a few thousand diverse structures covering entirely the 3D shape space of the conformers of the dataset. Transformation matrices gathered from the overlays between these diverse structures and the 3D conformer dataset allowed us to drastically (100-fold) reduce the CPU time required for shape overlay. The alignment-recycling heuristic produces results consistent with de novo alignment calculation, with better than 80% hit list overlap on average. Conclusion Overlay-based 3D methods are computationally demanding when searching large databases. Alignment-recycling reduces the CPU time to perform shape similarity searches by breaking the alignment problem into three steps: selection of diverse shapes to describe the database shape-space; overlay of the database conformers to the diverse shapes; and non-optimized overlay of query and database conformers using common reference shapes. The precomputation, required by the first two steps, is a significant cost of the method; however, once performed, querying is two orders of magnitude faster. Extensions and variations of this methodology, for example, to handle more flexible and larger small-molecules are discussed. PMID:17880744
NASA Astrophysics Data System (ADS)
Schmitt, Oliver; Steinmann, Paul
2018-06-01
We introduce a manufacturing constraint for controlling the minimum member size in structural shape optimization problems, which is for example of interest for components fabricated in a molding process. In a parameter-free approach, whereby the coordinates of the FE boundary nodes are used as design variables, the challenging task is to find a generally valid definition for the thickness of non-parametric geometries in terms of their boundary nodes. Therefore we use the medial axis, which is the union of all points with at least two closest points on the boundary of the domain. Since the effort for the exact computation of the medial axis of geometries given by their FE discretization highly increases with the number of surface elements we use the distance function instead to approximate the medial axis by a cloud of points. The approximation is demonstrated on three 2D examples. Moreover, the formulation of a minimum thickness constraint is applied to a sensitivity-based shape optimization problem of one 2D and one 3D model.
NASA Astrophysics Data System (ADS)
Schmitt, Oliver; Steinmann, Paul
2017-09-01
We introduce a manufacturing constraint for controlling the minimum member size in structural shape optimization problems, which is for example of interest for components fabricated in a molding process. In a parameter-free approach, whereby the coordinates of the FE boundary nodes are used as design variables, the challenging task is to find a generally valid definition for the thickness of non-parametric geometries in terms of their boundary nodes. Therefore we use the medial axis, which is the union of all points with at least two closest points on the boundary of the domain. Since the effort for the exact computation of the medial axis of geometries given by their FE discretization highly increases with the number of surface elements we use the distance function instead to approximate the medial axis by a cloud of points. The approximation is demonstrated on three 2D examples. Moreover, the formulation of a minimum thickness constraint is applied to a sensitivity-based shape optimization problem of one 2D and one 3D model.
Saha, Sourabh K.
2017-01-11
Although geometric imperfections have a detrimental effect on buckling, imperfection sensitivity has not been well studied in the past during design of sinusoidal micro and nano-scale structures via wrinkling of supported thin films. This is likely because one is more interested in predicting the shape/size of the resultant patterns than the buckling bifurcation onset strain during fabrication of such wrinkled structures. Herein, I have demonstrated that even modest geometric imperfections alter the final wrinkled mode shapes via the mode locking phenomenon wherein the imperfection mode grows in exclusion to the natural mode of the system. To study the effect ofmore » imperfections on mode locking, I have (i) developed a finite element mesh perturbation scheme to generate arbitrary geometric imperfections in the system and (ii) performed a parametric study via finite element methods to link the amplitude and period of the sinusoidal imperfections to the observed wrinkle mode shape and size. Based on this, a non-dimensional geometric parameter has been identified that characterizes the effect of imperfection on the mode locking phenomenon – the equivalent imperfection size. An upper limit for this equivalent imperfection size has been identified via a combination of analytical and finite element modeling. During compression of supported thin films, the system gets “locked” into the imperfection mode if its equivalent imperfection size is above this critical limit. For the polydimethylsiloxane/glass bilayer with a wrinkle period of 2 µm, this mode lock-in limit corresponds to an imperfection amplitude of 32 nm for an imperfection period of 5 µm and 8 nm for an imperfection period of 0.8 µm. Interestingly, when the non-dimensional critical imperfection size is scaled by the bifurcation onset strain, the scaled critical size depends solely on the ratio of the imperfection to natural periods. Furthermore, the computational data generated here can be generalized beyond the specific natural periods and bilayer systems studied to enable deterministic design of a variety of wrinkled micro and nano-scale structures.« less
Correlates across the Structural, Functional, and Molecular Phenotypes of Fragile X Syndrome
ERIC Educational Resources Information Center
Beckel-Mitchener, Andrea; Greenough, William T.
2004-01-01
Fragile X syndrome (FXS) is characterized by a pattern of morphological, functional, and molecular characteristics with, in at least some cases, apparent relationships among phenotypic features at different levels. Gross morphology differences in the sizes of some human brain regions are accompanied by fine structural alterations in the shapes and…
Firefighter Hand Anthropometry and Structural Glove Sizing: A New Perspective.
Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Hildreth, Brooke
2015-12-01
We evaluated the current use and fit of structural firefighting gloves and developed an improved sizing scheme that better accommodates the U.S. firefighter population. Among surveys, 24% to 30% of men and 31% to 62% of women reported experiencing problems with the fit or bulkiness of their structural firefighting gloves. An age-, race/ethnicity-, and gender-stratified sample of 863 male and 88 female firefighters across the United States participated in the study. Fourteen hand dimensions relevant to glove design were measured. A cluster analysis of the hand dimensions was performed to explore options for an improved sizing scheme. The current national standard structural firefighting glove-sizing scheme underrepresents firefighter hand size range and shape variation. In addition, mismatch between existing sizing specifications and hand characteristics, such as hand dimensions, user selection of glove size, and the existing glove sizing specifications, is significant. An improved glove-sizing plan based on clusters of overall hand size and hand/finger breadth-to-length contrast has been developed. This study presents the most up-to-date firefighter hand anthropometry and a new perspective on glove accommodation. The new seven-size system contains narrower variations (standard deviations) for almost all dimensions for each glove size than the current sizing practices. The proposed science-based sizing plan for structural firefighting gloves provides a step-forward perspective (i.e., including two women hand model-based sizes and two wide-palm sizes for men) for glove manufacturers to advance firefighter hand protection. © 2015, Human Factors and Ergonomics Society.
Design of Janus nanoparticles with atomic precision: tungsten-doped gold nanostructures.
Sun, Qiang; Wang, Qian; Jena, Puru; Kawazoe, Yoshiyuki
2008-02-01
Janus nanoparticles, characterized by their anisotropic structure and interactions, have added a new dimension to nanoscience because of their potential applications in biomedicine, sensors, catalysis, and assembled materials. The technological applications of these nanoparticles, however, have been limited as the current chemical, physical, and biosynthetic methods lack sufficient size and shape selectivity. We report a technique where gold clusters doped with tungsten can serve as a seed that facilitates the natural growth of anisotropic nanostructures whose size and shape can be controlled with atomic precision. Using ab initio simulated annealing and molecular dynamics calculations on AunW (n > 12) clusters, we discovered that the W@Au12 cage cluster forms a very stable core with the remaining Au atoms forming patchy structures on its surface. The anisotropic geometry gives rise to anisotropies in vibrational spectra, charge distributions, electronic structures, and reactivity, thus making it useful to have dual functionalities. In particular, the core-patch structure is shown to possess a hydrophilic head and a hydrophobic tail. The W@Au12 clusters can also be used as building blocks of a nanoring with novel properties.
Study of Electron Gas on a Neutron-Rich Nuclear Pasta
NASA Astrophysics Data System (ADS)
Ramirez-Homs, Enrique
This study used a classical molecular dynamics model to observe the role of electron gas on the formation of nuclear structures at subsaturation densities (rho < 0.015 fm-3) and low temperatures (T < 1MeV ). The simulations were performed by varying the Coulomb interaction strength on systems of isospin symmetric and asymmetric matter with periodic boundary conditions. The effect was quantified on the fragment size multiplicity, the inter-particle distance, the isospin content of the clusters, the nucleon mobility and cluster persistence, and on the nuclear structure shapes. The existence of the nuclear pasta structures was observed even with the absence of the Coulomb interaction but with a modication of the shapes formed. It was found that the presence of the electron gas tends to distribute matter more evenly, forms less compact objects, decreases the isospin content of clusters, modies the nucleon mobility, reduces the persistence and the fragment size multiplicity, but does not alter the inter-particle distance in clusters. The degree of these effects also varied on the nuclear structures and depended on their isospin content, temperature, and density.
Preliminary Sizing of Vertical Take-off Rocket-based Combined-cycle Powered Launch Vehicles
NASA Technical Reports Server (NTRS)
Roche, Joseph M.; McCurdy, David R.
2001-01-01
The task of single-stage-to-orbit has been an elusive goal due to propulsion performance, materials limitations, and complex system integration. Glenn Research Center has begun to assemble a suite of relationships that tie Rocket-Based Combined-Cycle (RBCC) performance and advanced material data into a database for the purpose of preliminary sizing of RBCC-powered launch vehicles. To accomplish this, a near optimum aerodynamic and structural shape was established as a baseline. The program synthesizes a vehicle to meet the mission requirements, tabulates the results, and plots the derived shape. A discussion of the program architecture and an example application is discussed herein.
Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles
NASA Astrophysics Data System (ADS)
Xia, Yunsheng; Nguyen, Trung Dac; Yang, Ming; Lee, Byeongdu; Santos, Aaron; Podsiadlo, Paul; Tang, Zhiyong; Glotzer, Sharon C.; Kotov, Nicholas A.
2011-09-01
Nanoparticles are known to self-assemble into larger structures through growth processes that typically occur continuously and depend on the uniformity of the individual nanoparticles. Here, we show that inorganic nanoparticles with non-uniform size distributions can spontaneously assemble into uniformly sized supraparticles with core-shell morphologies. This self-limiting growth process is governed by a balance between electrostatic repulsion and van der Waals attraction, which is aided by the broad polydispersity of the nanoparticles. The generic nature of the interactions creates flexibility in the composition, size and shape of the constituent nanoparticles, and leads to a large family of self-assembled structures, including hierarchically organized colloidal crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abellan Baeza, Patricia; Parent, Lucas R.; Al Hasan, Naila M.
2016-01-07
Synthesizing nanomaterials of uniform shape and size is of critical importance to access and manipulate the novel structure-property relationships arising at the nanoscale. In this work we synthesize Pd nanoparticles with well-controlled size using in situ liquid-stage scanning transmission electron microscopy (STEM) and demonstrate a match between the reaction kinetics and products of the radiolytic and chemical syntheses of size-stabilized Pd nanoparticles. We quantify the effect of electron dose on the nucleation kinetics, and compare these results with in situ small angle X-ray scattering (SAXS) experiments investigating the effect of temperature during chemical synthesis. This work introduces methods for precisemore » control of nanoparticle synthesis in the STEM and provides a means to uncover the fundamental processes behind the size and shape stabilization of nanoparticles.« less
How community has shaped the Protein Data Bank.
Berman, Helen M; Kleywegt, Gerard J; Nakamura, Haruki; Markley, John L
2013-09-03
Following several years of community discussion, the Protein Data Bank (PDB) was established in 1971 as a public repository for the coordinates of three-dimensional models of biological macromolecules. Since then, the number, size, and complexity of structural models have continued to grow, reflecting the productivity of structural biology. Managed by the Worldwide PDB organization, the PDB has been able to meet increasing demands for the quantity of structural information and of quality. In addition to providing unrestricted access to structural information, the PDB also works to promote data standards and to raise the profile of structural biology with broader audiences. In this perspective, we describe the history of PDB and the many ways in which the community continues to shape the archive. Copyright © 2013 Elsevier Ltd. All rights reserved.
Formation of amorphous metal alloys by chemical vapor deposition
Mullendore, A.W.
1988-03-18
Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.
Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration.
Brown, Joseph E; Moreau, Jodie E; Berman, Alison M; McSherry, Heather J; Coburn, Jeannine M; Schmidt, Daniel F; Kaplan, David L
2017-01-01
Porous silk protein scaffolds are designed to display shape memory characteristics and volumetric recovery following compression. Two strategies are utilized to realize shape recovery: addition of hygroscopic plasticizers like glycerol, and tyrosine modifications with hydrophilic sulfonic acid chemistries. Silk sponges are evaluated for recovery following 80% compressive strain, total porosity, pore size distribution, secondary structure development, in vivo volume retention, cell infiltration, and inflammatory responses. Glycerol-modified sponges recover up to 98.3% of their original dimensions following compression, while sulfonic acid/glycerol modified sponges swell in water up to 71 times their compressed volume, well in excess of their original size. Longer silk extraction times (lower silk molecular weights) and higher glycerol concentrations yielded greater flexibility and shape fidelity, with no loss in modulus following compression. Sponges are over 95% porous, with secondary structure analysis indicating glycerol-induced β-sheet physical crosslinking. Tyrosine modifications with sulfonic acid interfere with β-sheet formation. Glycerol-modified sponges exhibit improved rates of cellular infiltration at subcutaneous implant sites with minimal immune response in mice. They also degrade more rapidly than unmodified sponges, a result posited to be cell-mediated. Overall, this work suggests that silk sponges may be useful for minimally invasive deployment in soft tissue augmentation procedures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of composition, morphology and size of nanozeolite on its in vitro cytotoxicity.
Kihara, Takanori; Zhang, Yahong; Hu, Yuanyuan; Mao, Qiaofan; Tang, Yi; Miyake, Jun
2011-06-01
The extensive applications of nanoparticle materials in biomedical and biotechnological fields trigger the rapid development of nanotoxicology, because nanoparticles are reported to cause more damage than larger ones when human exposure to them. In the present manuscript, we prepared a series of zeolite nanocrystals with different frameworks, sizes, compositions and shapes, and provided the first report on their toxic difference. As our results, the toxicities of zeolite nanoparticles depend on their size, composition and shape when they are exposed to HeLa cells. The pure-silica nanozeolite silicalite-1 displays nontoxicity, but aluminum-containing nanozeolites, such as ZSM-5, LTL, and LTA, show a dose-dependent toxic manner. The different shapes of nanozeolites can lead to different cytotoxicities, while the influences of the surface charge differences of various nanozeolites on their toxicities are unconspicuous. More importantly, caspase-3 activity and LDH released assays showed that the toxic nanozeolites seem to induce cell necrosis rather than cell apoptosis by the damnification for the cell membranes. These results are expected to direct the applications of nanozeolites with different structures and shapes in biomedicine and clinic science. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dunnick, Katherine
Nanoparticles, which are defined as a structure with at least one dimension between 1 and 100 nm, have the potential to be used in a variety of consumer products due to their improved functionality compared to similar particles of larger size. Their small size is associated with increased strength, improved catalytic properties, and increased reactivity; however, their size is also associated with increased toxicity in vitro and in vivo. Numerous toxicological studies have been conducted to determine the properties of nanomaterials that increase their toxicity in order to manufacture new nanomaterials with decreased toxicity. Data indicates that size, shape, chemical composition, and valence state of nanomaterials can dramatically alter their toxicity profile. Therefore, the purpose of this dissertation was to determine how altering the shape, size, and chemical composition of various metal oxide nanoparticles would affect their toxicity. Metal oxides are used in variety of consumer products, from spray-sun screens, to food coloring agents; thus, understanding the toxicity of metal oxides and determining which aspects affect their toxicity may provide safe alternatives nanomaterials for continued use in manufacturing. Tungstate nanoparticles toxicity was assessed in an in vitro model using RAW 264.7 cells. The size, shape, and chemical composition of these nanomaterials were altered and the effect on reactive oxygen species and general cytotoxicity was determined using a variety of techniques. Results demonstrate that shape was important in reactive oxygen species production as wires were able to induce significant reactive oxygen species compared to spheres. Shape, size, and chemical composition did not have much effect on the overall toxicity of these nanoparticles in RAW 264.7 cells over a 72 hour time course, implicating that the base material of the nanoparticles was not toxic in these cells. To further assess how chemical composition can affect toxicity, cerium oxide nanoparticles were chemically modified using a process known as doping, to alter their valence state. The size and shape of the cerium oxide nanoparticles remained constant. Overall, results indicated that cerium oxide was not toxic in both RLE-6TN and NR8383 pulmonary rat cells, however, chemically modifying the valence state of the nanomaterial did affect the antioxidant potential. To determine if this trend was measureable in vivo, rats were exposed to various cerium oxide nanoparticles via intratracheal instillation and damage, changes in pulmonary cell differentials, and phagocytic cell activity were assessed. Results implicate that chemically modifying the nanoparticles had an effect on the overall damage induced by the material but did not dramatically affect inflammatory potential or phagocytic cell activity. Overall the data from these studies imply that size, shape, chemical composition, and valence state of nanomaterials can be manipulated to alter their toxicity.
NASA Astrophysics Data System (ADS)
Terada, T.; Sato, M.; Mochizuki, N.; Yamamoto, Y.; Tsunakawa, H.
2013-12-01
Magnetic properties of ferromagnetic minerals generally depend on their chemical composition, crystal structure, size, and shape. In the usual paleomagnetic study, we use a bulk sample which is the assemblage of magnetic minerals showing broad distributions of various magnetic properties. Microscopic and Curie-point observations of the bulk sample enable us to identify the constituent magnetic minerals, while other measurements, for example, stepwise thermal and/or alternating field demagnetizations (ThD, AFD) make it possible to estimate size, shape and domain state of the constituent magnetic grains. However, estimation based on stepwise demagnetizations has a limitation that magnetic grains with the same coercivity Hc (or blocking temperature Tb) can be identified as the single population even though they could have different size and shape. Dunlop and West (1969) carried out mapping of grain size and coercivity (Hc) using pTRM. However, it is considered that their mapping method is basically applicable to natural rocks containing only SD grains, since the grain sizes are estimated on the basis of the single domain theory (Neel, 1949). In addition, it is impossible to check thermal alteration due to laboratory heating in their experiment. In the present study we propose a new experimental method which makes it possible to estimate distribution of size and shape of magnetic minerals in a bulk sample. The present method is composed of simple procedures: (1) imparting ARM to a bulk sample, (2) ThD at a certain temperature, (3) stepwise AFD on the remaining ARM, (4) repeating the steps (1) ~ (3) with ThD at elevating temperatures up to the Curie temperature of the sample. After completion of the whole procedures, ARM spectra are calculated and mapped on the HC-Tb plane (hereafter called HC-Tb diagram). We analyze the Hc-Tb diagrams as follows: (1) For uniaxial SD populations, theoretical curve for a certain grain size (or shape anisotropy) is drawn on the Hc-Tb diagram. The curves are calculated using the single domain theory, since coercivity and blocking temperature of uniaxial SD grains can be expressed as a function of size and shape. (2) Boundary between SD and MD grains are calculated and drawn on the Hc-Tb diagram according to the theory by Butler and Banerjee (1975). (3) Theoretical predictions by (1) and (2) are compared with the obtained ARM spectra to estimate quantitive distribution of size, shape and domain state of magnetic grains in the sample. This mapping method has been applied to three samples: Hawaiian basaltic lava extruded in 1995, Ueno basaltic lava formed during Matsuyama chron, and Oshima basaltic lava extruded in 1986. We will discuss physical states of magnetic grains (size, shape, domain state, etc.) and their possible origins.
Revkova, Tatiana N
2017-11-07
Two new species of the family Microlaimidae Micoletzky, 1922 are described and illustrated from the Black Sea. Aponema pontica sp. n. is morphologically closest to A. torosum in the shape of the body and spicules, size of amphids, but differs in having small and triangular cardia, absence of constriction in head region, shape of gubernaculum apophyses, rounded and weakly sclerotised lumen of pharyngeal bulb and longer spicules. Microlaimus paraglobiceps sp. n. morphologically resembles M. globiceps de Man, 1880 in the shape of the body, structure of the male sexual organs and presence of precloacal pore, but the main difference is a shorter body, cuticle finely annulated all over the body and absence of sexual dimorphism in the size of amphideal fovea.
Ni-Mn-Ga shape memory nanoactuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohl, M., E-mail: manfred.kohl@kit.edu; Schmitt, M.; Krevet, B.
2014-01-27
To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.
Ni-Mn-Ga shape memory nanoactuation
NASA Astrophysics Data System (ADS)
Kohl, M.; Schmitt, M.; Backen, A.; Schultz, L.; Krevet, B.; Fähler, S.
2014-01-01
To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.
Laser-induced forward transfer (LIFT) of congruent voxels
NASA Astrophysics Data System (ADS)
Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric
2016-06-01
Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.
Structure of potato tubers formed during spaceflight
NASA Technical Reports Server (NTRS)
Croxdale, J.; Cook, M.; Tibbitts, T. W.; Brown, C. S.; Wheeler, R. M.
1997-01-01
Potato (Solanum tuberosum L. cv. Norland) explants, consisting of a leaf, axillary bud, and small stem segment, were used as a model system to study the influence of spaceflight on the formation of sessile tubers from axillary buds. The explants were flown on the space shuttle Columbia (STS-73, 20 October to 5 November 1995) in the ASTROCULTURE (TM) flight package, which provided a controlled environment for plant growth. Light and scanning electron microscopy were used to compare the precisely ordered tissues of tubers formed on Earth with those formed during spaceflight. The structure of tubers produced during spaceflight was similar to that of tubers produced in a control experiment. The size and shape of tubers, the geometry of tuber tissues, and the distribution of starch grains and proteinaceous crystals were comparable in tubers formed in both environments. The shape, surface texture, and size range of starch grains from both environments were similar, but a greater percentage of smaller starch grains formed in spaceflight than on Earth. Since explant leaves must be of given developmental age before tubers form, instructions regarding the regular shape and ordered tissue geometry of tubers may have been provided in the presence of gravity. Regardless of when the signalling occurred, gravity was not required to produce a tuber of typical structure.
Visualization of the wake behind a sliding bubble
NASA Astrophysics Data System (ADS)
O'Reilly Meehan, R.; Grennan, K.; Davis, I.; Nolan, K.; Murray, D. B.
2017-10-01
In this work, Schlieren measurements are presented for the wake of an air bubble sliding under a heated, inclined surface in quiescent water to provide new insights into the intricate sliding bubble wake structure and the associated convective cooling process. This is a two-phase flow configuration that is pertinent to thermal management solutions, where the fundamental flow physics have yet to be fully described. In this work, we present an experimental apparatus that enables high-quality Schlieren images for different bubble sizes and measurement planes. By combining these visualizations with an advanced bubble tracking technique, we can simultaneously quantify the symbiotic relationship that exists between the sliding bubble dynamics and its associated wake. An unstable, dynamic wake structure is revealed, consisting of multiple hairpin-shaped vortex structures interacting within the macroscopic area affected by the bubble. As vorticity is generated in the near wake, the bubble shape is observed to recoil and rebound. This also occurs normal to the surface and is particularly noticeable for larger bubble sizes, with a periodic ejection of material from the near wake corresponding to significant shape changes. These findings, along with their implications from a thermal management perspective, provide information on the rich dynamics of this natural flow that cannot be obtained using alternate experimental techniques.
NASA Technical Reports Server (NTRS)
Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)
1999-01-01
A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 microns, a density of about I to about 6 pounds/ft3 and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bounded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cu ft and a compression strength of about 100 to about 1400 pounds/sq in.
NASA Technical Reports Server (NTRS)
Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)
2001-01-01
A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 micrometers, a density of about 1 to about 6 pounds/cubic foot and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cubic feet and a compression strength of about 100 to about 1400 pounds/sq inch.
Tunable Shape-Shifting Structures for Military Applications
2014-01-01
autonomous (also self - healing and fault-tolerant) systems that can provide multifunctionality whilst minimising weight/size, particularly in extreme...The proof-of-concept approach was successfully demonstrated. It is possible to deform the surface of a multilayer soft structure with a high level...biological systems found in Nature (e.g. adaptive skin texture of cephalopods), active soft structures producing large deformations offer attractive ways to
Structure-Preserving Smoothing of Biomedical Images
NASA Astrophysics Data System (ADS)
Gil, Debora; Hernàndez-Sabaté, Aura; Burnat, Mireia; Jansen, Steven; Martínez-Villalta, Jordi
Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood.
NASA Astrophysics Data System (ADS)
Takamura, Yuzuru; Ueno, Kunimitsu; Nagasaka, Wako; Tomizawa, Yuichi; Tamiya, Eiichi
2007-03-01
We have discovered a phenomenon of accumulation of DNA near the constricted position of a microfluidic chip with taper shaped channel when both hydro pressure and electric field are applied in opposite directions. However, RNA has not been able to trap so far, unlike huge and uniformly double stranded DNA molecules, RNAs are smaller in size and single stranded with complicated conformation like blocks in lysed cell solution. In this paper, we will report not only large but also small RNA (100˜10b) are successfully trapped in relatively large microfluidic taper shape channel (width >10um). RNA are trapped in circular motion near the constricted position of taper shape channel, and the position and shape of the trapped RNA are controlled and make mode transition by changing the hydraulic and the electric force. Using this technique, smaller size molecule can be trapped in larger micro fluidic structure compared to the trap using dielectrophoresis. This technique is expected to establish easy and practical device as a direct total RNA extraction tool from living cells or tissues.
Effect of Graphene Addition on Shape Memory Behavior of Epoxy Resins
NASA Technical Reports Server (NTRS)
Williams, Tiffany; Meador, Michael; Miller, Sandi; Scheiman, Daniel
2011-01-01
Shape memory polymers (SMPs) and composites are a special class of smart materials known for their ability to change size and shape upon exposure to an external stimulus (e.g. light, heat, pH, or magnetic field). These materials are commonly used for biomedical applications; however, recent attempts have been made towards developing SMPs and composites for use in aircraft and space applications. Implementing SMPs and composites to create a shape change effect in some aircraft structures could potentially reduce drag, decrease fuel consumption, and improve engine performance. This paper discusses the development of suitable materials to use in morphing aircraft structures. Thermally responsive epoxy SMPs and nanocomposites were developed and the shape memory behavior and thermo-mechanical properties were studied. Overall, preliminary results from dynamic mechanical analysis (DMA) showed that thermally actuated shape memory epoxies and nanocomposites possessed Tgs near approximately 168 C. When graphene nanofiller was added, the storage modulus and crosslinking density decreased. On the other hand, the addition of graphene enhanced the recovery behavior of the shape memory nanocomposites. It was assumed that the addition of graphene improved shape memory recovery by reducing the crosslinking density and increasing the elasticity of the nanocomposites.
Crystal-Packing Trends for a Series of 6,9,12,15,18-Pentaaryl-1-hydro[60]fullerenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Robert D.; Halim, Merissa; Khan, Saeed I.
2012-06-11
The relationship between the size of the substituents of aryl groups in a series of fifteen 6,9,12,15,18-pentaaryl-1-hydro[60]fullerenes and the solid-state structures and packing motifs of these compounds has been analyzed. Pentaarylfullerenes have a characteristic “badminton shuttlecock” shape that causes several derivatives to crystallize into columnar stacks. However, many pentaarylfullerenes form non-stacked structures with, for example, dimeric, layered, diamondoid, or feather-in-cavity relationships between molecules. Computational modeling gave a qualitative estimate of the best shape match between the ball and socket surfaces of each pentaarylfullerene. The best match was for pentaarylfullerenes with large, spherically shaped para-substituents on the aryl groups. The seriesmore » of pentaarylfullerenes was characterized by single-crystal X-ray diffraction. A total of 34 crystal structures were obtained as various solvates and were categorized by their packing motifs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Fang; Yager, Kevin G.; Zhang, Yugang
Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks—cubes and octahedrons—when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined bymore » the spatial symmetry of the block’s facets, while structural order depends on DNA-tuned interactions and particle size ratio. Lastly, the presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.« less
Anderson, Patrick L; Mahoney, Arthur W; Webster, Robert J
2017-07-01
This paper examines shape sensing for a new class of surgical robot that consists of parallel flexible structures that can be reconfigured inside the human body. Known as CRISP robots, these devices provide access to the human body through needle-sized entry points, yet can be configured into truss-like structures capable of dexterous movement and large force application. They can also be reconfigured as needed during a surgical procedure. Since CRISP robots are elastic, they will deform when subjected to external forces or other perturbations. In this paper, we explore how to combine sensor information with mechanics-based models for CRISP robots to estimate their shapes under applied loads. The end result is a shape sensing framework for CRISP robots that will enable future research on control under applied loads, autonomous motion, force sensing, and other robot behaviors.
CHARACTERISTICS OF THERMOLUMINESCENCE LiF:Mg,Cu,Ag NANOPHOSPHOR.
Yahyaabadi, A; Torkzadeh, F; Rezaei-Ochbelagh, D
2018-04-23
A nanophosphor of LiF:Mg,Cu,Ag was prepared by planetary ball milling for the first time in the laboratory. The size and shape of the nanophosphor were confirmed by XRD and SEM, which showed that it was cubic in shape and ~53 nm in size. The thermoluminescence (TL) characteristics of this nanophosphor were then investigated. It was found that the optimum annealing condition was 250°C for 10 min. The TL sensitivity of the prepared nanopowder was less than that of its micropowder counterpart and the TL glow curve structure exhibited several peaks. The LiF:Mg,Cu,Ag nanophosphor exhibited a linear response over a range of doses from 1 Gy to ~10 kGy. From this study, it appears that LiF:Mg,Cu,Ag nanophosphor is a good candidate for dosimetry because of its linearity over a range of doses, low tendency to fade, good repeatability and simple glow curve structure.
Morphological and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys
NASA Astrophysics Data System (ADS)
Rajan, Sandeep; Kumar, Anil; Vyas, Anupam; Brajpuriya, Ranjeet
2018-05-01
The paper presents mechanical and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys. The author prepared the solid solution of Fe(Al) with different composition of Al by using mechanical alloying (MA) technique. The MA process induces a progressive dissolution of Al into Fe, resulted in the formation of an extended Fe(Al) solid solution with the bcc structure after 5 hr of milling. The SEM Images shows that the initial shape of particles disappeared completely, and their structure became a mixture of small and large angular-shaped crystallites with different sizes. The TEM micrograph also confirms the reduction in crystallite size and alloy formation. XPS study shows the shift in the binding energy position of both Fe and Al Peaks provide strong evidence of Fe(Al) phase formation after milling.
Free-standing supramolecular hydrogel objects by reaction-diffusion
Lovrak, Matija; Hendriksen, Wouter E. J.; Maity, Chandan; Mytnyk, Serhii; van Steijn, Volkert; Eelkema, Rienk; van Esch, Jan H.
2017-01-01
Self-assembly provides access to a variety of molecular materials, yet spatial control over structure formation remains difficult to achieve. Here we show how reaction–diffusion (RD) can be coupled to a molecular self-assembly process to generate macroscopic free-standing objects with control over shape, size, and functionality. In RD, two or more reactants diffuse from different positions to give rise to spatially defined structures on reaction. We demonstrate that RD can be used to locally control formation and self-assembly of hydrazone molecular gelators from their non-assembling precursors, leading to soft, free-standing hydrogel objects with sizes ranging from several hundred micrometres up to centimeters. Different chemical functionalities and gradients can easily be integrated in the hydrogel objects by using different reactants. Our methodology, together with the vast range of organic reactions and self-assembling building blocks, provides a general approach towards the programmed fabrication of soft microscale objects with controlled functionality and shape. PMID:28580948
Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles.
Liu, Zhi; Qiao, Jing; Niu, Zhongwei; Wang, Qian
2012-09-21
Viruses belong to a fascinating class of natural supramolecular structures, composed of multiple copies of coat proteins (CPs) that assemble into different shapes with a variety of sizes from tens to hundreds of nanometres. Because of their advantages including simple/economic production, well-defined structural features, unique shapes and sizes, genetic programmability and robust chemistries, recently viruses and virus-like nanoparticles (VLPs) have been used widely in biomedical applications and materials synthesis. In this critical review, we highlight recent advances in the use of virus coat proteins (VCPs) and viral nanoparticles (VNPs) as building blocks in self-assembly studies and materials development. We first discuss the self-assembly of VCPs into VLPs, which can efficiently incorporate a variety of different materials as cores inside the viral protein shells. Then, the self-assembly of VNPs at surfaces or interfaces is summarized. Finally, we discuss the co-assembly of VNPs with different functional materials (178 references).
Penin, Xavier; Berge, Christine; Baylac, Michel
2002-05-01
Heterochronic studies compare ontogenetic trajectories of an organ in different species: here, the skulls of common chimpanzees and modern humans. A growth trajectory requires three parameters: size, shape, and ontogenetic age. One of the great advantages of the Procrustes method is the precise definition of size and shape for whole organs such as the skull. The estimated ontogenetic age (dental stages) is added to the plot to give a graphical representation to compare growth trajectories. We used the skulls of 41 Homo sapiens and 50 Pan troglodytes at various stages of growth. The Procrustes superimposition of all specimens was completed by statistical procedures (principal component analysis, multivariate regression, and discriminant function) to calculate separately size-related shape changes (allometry common to chimpanzees and humans), and interspecific shape differences (discriminant function). The results confirm the neotenic theory of the human skull (sensu Gould [1977] Ontogeny and Phylogeny, Cambridge: Harvard University Press; Alberch et al. [1979] Paleobiology 5:296-317), but modify it slightly. Human growth is clearly retarded in terms of both the magnitude of changes (size-shape covariation) and shape alone (size-shape dissociation) with respect to the chimpanzees. At the end of growth, the adult skull in humans reaches an allometric shape (size-related shape) which is equivalent to that of juvenile chimpanzees with no permanent teeth, and a size which is equivalent to that of adult chimpanzees. Our results show that human neoteny involves not only shape retardation (paedomorphosis), but also changes in relative growth velocity. Before the eruption of the first molar, human growth is accelerated, and then strongly decelerated, relative to the growth of the chimpanzee as a reference. This entails a complex process, which explains why these species reach the same overall (i.e., brain + face) size in adult stage. The neotenic traits seem to concern primarily the function of encephalization, but less so other parts of the skull. Our results, based on the discriminant function, reveal that additional structural traits (corresponding to the nonallometric part of the shape which is specific to humans) are rather situated in the other part of the skull. They mainly concern the equilibrium of the head related to bipedalism, and the respiratory and masticatory functions. Thus, the reduced prognathism, the flexed cranial base (forward position of the foramen magnum which is brought closer to the palate), the reduced anterior portion of the face, the reduced glabella, and the prominent nose mainly correspond to functional innovations which have nothing to do with a neotenic process in human evolution. The statistical analysis used here gives us the possibility to point out that some traits, which have been classically described as paedomorphic because they superficially resemble juvenile traits, are in reality independent of growth. Copyright 2002 Wiley-Liss, Inc.
Zheng, Shuanghao; Tang, Xingyan; Wu, Zhong-Shuai; Tan, Yuan-Zhi; Wang, Sen; Sun, Chenglin; Cheng, Hui-Ming; Bao, Xinhe
2017-02-28
The emerging smart power source-unitized electronics represent an utmost innovative paradigm requiring dramatic alteration from materials to device assembly and integration. However, traditional power sources with huge bottlenecks on the design and performance cannot keep pace with the revolutionized progress of shape-confirmable integrated circuits. Here, we demonstrate a versatile printable technology to fabricate arbitrary-shaped, printable graphene-based planar sandwich supercapacitors based on the layer-structured film of electrochemically exfoliated graphene as two electrodes and nanosized graphene oxide (lateral size of 100 nm) as a separator on one substrate. These monolithic planar supercapacitors not only possess arbitrary shapes, e.g., rectangle, hollow-square, "A" letter, "1" and "2" numbers, circle, and junction-wire shape, but also exhibit outstanding performance (∼280 F cm -3 ), excellent flexibility (no capacitance degradation under different bending states), and applicable scalability, which are far beyond those achieved by conventional technologies. More notably, such planar supercapacitors with superior integration can be readily interconnected in parallel and series, without use of metal interconnects and contacts, to modulate the output current and voltage of modular power sources for designable integrated circuits in various shapes and sizes.
Maga, A. Murat; Navarro, Nicolas; Cunningham, Michael L.; Cox, Timothy C.
2015-01-01
We describe the first application of high-resolution 3D micro-computed tomography, together with 3D landmarks and geometric morphometrics, to map QTL responsible for variation in skull shape and size using a backcross between C57BL/6J and A/J inbred strains. Using 433 animals, 53 3D landmarks, and 882 SNPs from autosomes, we identified seven QTL responsible for the skull size (SCS.qtl) and 30 QTL responsible for the skull shape (SSH.qtl). Size, sex, and direction-of-cross were all significant factors and included in the analysis as covariates. All autosomes harbored at least one SSH.qtl, sometimes up to three. Effect sizes of SSH.qtl appeared to be small, rarely exceeding 1% of the overall shape variation. However, they account for significant amount of variation in some specific directions of the shape space. Many QTL have stronger effect on the neurocranium than expected from a random vector that will parcellate uniformly across the four cranial regions. On the contrary, most of QTL have an effect on the palate weaker than expected. Combined interval length of 30 SSH.qtl was about 315 MB and contained 2476 known protein coding genes. We used a bioinformatics approach to filter these candidate genes and identified 16 high-priority candidates that are likely to play a role in the craniofacial development and disorders. Thus, coupling the QTL mapping approach in model organisms with candidate gene enrichment approaches appears to be a feasible way to identify high-priority candidates genes related to the structure or tissue of interest. PMID:25859222
Analysis of Crystallographic Structure of a Japanese Sword by the Pulsed Neutron Transmission Method
NASA Astrophysics Data System (ADS)
Kino, K.; Ayukawa, N.; Kiyanagi, Y.; Uchida, T.; Uno, S.; Grazzi, F.; Scherillo, A.
We measured two-dimensional transmission spectra of pulsed neutron beams for a Japanese sword sample. Atom density, crystalline size, and preferred orientation of crystals were obtained using the RITS code. The position dependence of the atomic density is consistent with the shape of the sample. The crystalline size is very small and shows position dependence, which is understood by the unique structure of Japanese swords. The preferred orientation has strong position dependence. Our study shows the usefulness of the pulsed neutron transmission method for cultural metal artifacts.
3D printed hierarchical honeycombs with shape integrity under large compressive deformations
Chen, Yanyu; Li, Tiantian; Jia, Zian; ...
2017-10-12
Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less
3D printed hierarchical honeycombs with shape integrity under large compressive deformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanyu; Li, Tiantian; Jia, Zian
Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less
NASA Astrophysics Data System (ADS)
Loginova, I. S.; Solonin, A. N.; Prosviryakov, A. S.; Adisa, S. B.; Khalil, A. M.; Bykovskiy, D. P.; Petrovskiy, V. N.
2017-12-01
In this work the morphology, the size and the chemical composition of the powders of steel 316L received by the two methods was studied: fusion dispersion by a gas stream and reduction of metal chlorides with the subsequent plasma atomization of the received powder particles. The powder particles received by the first method have a spherical shape (aspect ratio 1,0-1,2) with an average size of 77 μm and are characterized by the absence of internal porosity. Particles of the powder received by the second method also have a spherical shape and faultless structure, however, their chemical composition may vary in different particles. The average size of particles is 32 μm. Though the obtained powders had different properties, the experimental samples received by DLD technology demonstrated by equally high durability (Ultimate strength is 623±5 and of 623±18 MPa respectively) and plasticity (38 and 41% respectively). It is established that mechanical properties of DLD samples increase for 7-10% after treatment of the surface.
Dynamics of nanoparticle morphology under low energy ion irradiation.
Holland-Moritz, Henry; Graupner, Julia; Möller, Wolfhard; Pacholski, Claudia; Ronning, Carsten
2018-08-03
If nanostructures are irradiated with energetic ions, the mechanism of sputtering becomes important when the ion range matches about the size of the nanoparticle. Gold nanoparticles with diameters of ∼50 nm on top of silicon substrates with a native oxide layer were irradiated by gallium ions with energies ranging from 1 to 30 keV in a focused ion beam system. High resolution in situ scanning electron microscopy imaging permits detailed insights in the dynamics of the morphology change and sputter yield. Compared to bulk-like structures or thin films, a pronounced shaping and enhanced sputtering in the nanostructures occurs, which enables a specific shaping of these structures using ion beams. This effect depends on the ratio of nanoparticle size and ion energy. In the investigated energy regime, the sputter yield increases at increasing ion energy and shows a distinct dependence on the nanoparticle size. The experimental findings are directly compared to Monte Carlo simulations obtained from iradina and TRI3DYN, where the latter takes into account dynamic morphological and compositional changes of the target.
The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction
Hoshyar, Nazanin; Gray, Samantha; Han, Hongbin; Bao, Gang
2016-01-01
Nanoparticle-based technologies offer exciting new approaches to disease diagnostics and therapeutics. To take advantage of unique properties of nanoscale materials and structures, the size, shape and/or surface chemistry of nanoparticles need to be optimized, allowing their functionalities to be tailored for different biomedical applications. Here we review the effects of nanoparticle size on cellular interaction and in vivo pharmacokinetics, including cellular uptake, biodistribution and circulation half-life of nanoparticles. Important features of nanoparticle probes for molecular imaging and modeling of nanoparticle size effects are also discussed. PMID:27003448
A thin-plate spline analysis of the face and tongue in obstructive sleep apnea patients.
Pae, E K; Lowe, A A; Fleetham, J A
1997-12-01
The shape characteristics of the face and tongue in obstructive sleep apnea (OSA) patients were investigated using thin-plate (TP) splines. A relatively new analytic tool, the TP spline method, provides a means of size normalization and image analysis. When shape is one's main concern, various sizes of a biologic structure may be a source of statistical noise. More seriously, the strong size effect could mask underlying, actual attributes of the disease. A set of size normalized data in the form of coordinates was generated from cephalograms of 80 male subjects. The TP spline method envisioned the differences in the shape of the face and tongue between OSA patients and nonapneic subjects and those between the upright and supine body positions. In accordance with OSA severity, the hyoid bone and the submental region positioned inferiorly and the fourth vertebra relocated posteriorly with respect to the mandible. This caused a fanlike configuration of the lower part of the face and neck in the sagittal plane in both upright and supine body positions. TP splines revealed tongue deformations caused by a body position change. Overall, the new morphometric tool adopted here was found to be viable in the analysis of morphologic changes.
NASA Astrophysics Data System (ADS)
Nopwinyuwong, Atchareeya; Kitaoka, Takuya; Boonsupthip, Waraporn; Pechyen, Chiravoot; Suppakul, Panuwat
2014-09-01
Polydiacetylene (PDA)/silica nanocomposites were synthesized by self-assembly method using polymerizable amphiphilic diacetylene monomers, 10,12-pentacosadiynoic acid (PCDA). Addition of cationic surfactants (PDADMAC and CTAB) to PDA/SiO2 nanocomposites induced higher intermolecular force which affected their size, shape and color transition. Pure PDA, PDA/SiO2, PDA/SiO2/PDADMAC and PDA/SiO2/CTAB were investigated by particle size analysis, TEM, SEM, UV-vis spectroscopy and FT-IR. It was found that the PDA/SiO2 nanocomposites exhibited slightly larger particle sizes than those of other samples. The PDA/SiO2 nanocomposites with a core-shell structure were almost regarded as spherical-shaped particles. Cationic surfactants, especially CTAB, presumably affected the particle size and shape of PDA/SiO2 nanocomposites due to the disruption of hydrogen bonding between PDA head group and ammonium group. The colorimetric response of both PDA/SiO2/surfactant and surfactant-free PDA/SiO2 aqueous solutions directly changed in relation to time and temperature; thus they were expected to be applied as a new polymer-based time-temperature indicator (TTI).
NASA Astrophysics Data System (ADS)
Lukyanov, A. V.; Pushin, V. G.; Kuranova, N. N.; Svirid, A. E.; Uksusnikov, A. N.; Ustyugov, Yu. M.; Gunderov, D. V.
2018-04-01
The possibilities of controlling the structure and properties of a Cu-Al-Ni shape memory alloy due to the use of different schemes of the thermomechanical treatment, including forging, homogenizing in the austenitic state and subsequent quenching, and high-pressure torsion have been found. For the first time, an ultrafine-grain structure has been produced in this alloy via severe plastic deformation using high-pressure torsion. It has been detected that high-pressure torsion using ten revolutions of the anvils leads to the formation of a nanocrystalline structure with a grain size of less than 100 nm. The subsequent short-term heating of the alloy to 800°C (10 s) in the temperature region of the existence of the homogeneous β phase made it possible to form an ultrafine-grain structure with predominant sizes of recrystallized grains of 1 and 8 μm. The quenching after heating prevented the decomposition of the solid solution. The refinement of the grain structure changed the deformation behavior of the alloy, having provided the possibility of the significant plastic deformation upon mechanical tensile tests. The coarse-grained hot-forged quenched alloy was brittle, and fracture occurred along the boundaries of former austenite grains and martensite packets. The highstrength ultrafine-grained alloy also experienced mainly the intercrystalline fracture along the high-angle boundaries of elements of the structure, the grain size of which was less by two orders than that in the initial alloy. This determined an increase in its relative elongation upon mechanical tests.
Fabricating Composite-Material Structures Containing SMA Ribbons
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Cano, Roberto J.; Lach, Cynthia L.
2003-01-01
An improved method of designing and fabricating laminated composite-material (matrix/fiber) structures containing embedded shape-memory-alloy (SMA) actuators has been devised. Structures made by this method have repeatable, predictable properties, and fabrication processes can readily be automated. Such structures, denoted as shape-memory-alloy hybrid composite (SMAHC) structures, have been investigated for their potential to satisfy requirements to control the shapes or thermoelastic responses of themselves or of other structures into which they might be incorporated, or to control noise and vibrations. Much of the prior work on SMAHC structures has involved the use SMA wires embedded within matrices or within sleeves through parent structures. The disadvantages of using SMA wires as the embedded actuators include (1) complexity of fabrication procedures because of the relatively large numbers of actuators usually needed; (2) sensitivity to actuator/ matrix interface flaws because voids can be of significant size, relative to wires; (3) relatively high rates of breakage of actuators during curing of matrix materials because of sensitivity to stress concentrations at mechanical restraints; and (4) difficulty of achieving desirable overall volume fractions of SMA wires when trying to optimize the integration of the wires by placing them in selected layers only.
Mars Life? - Microscopic Tubular Structures
NASA Technical Reports Server (NTRS)
1996-01-01
This electron microscope image shows tubular structures of likely Martian origin. These structures are very similar in size and shape to extremely tiny microfossils found in some Earth rocks. This photograph is part of a report by a NASA research team published in the Aug. 16, 1996, issue of the journal Science. A two-year investigation by the team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.
NASA Astrophysics Data System (ADS)
Hanus, Josef; Viikinkoski, Matti; Marchis, Franck; Durech, Josef
2015-11-01
A reliable bulk density of an asteroid can be determined from the knowledge of its volume and mass. This quantity provides hints on the internal structure of asteroids and their origin. We compute volume of several asteroids by scaling sizes of their 3D shape models to fit the disk-resolved images, which are available in the Keck Observatory Archive (KOA) and the Virtual Observatory Binary Asteroids Database (VOBAD). The size of an asteroid is optimized together with its shape by the All-Data Asteroid Modelling inversion algorithm (ADAM, Viikinkoski et al., 2015, A&A, 576, A8), while the spin state of the original convex shape model from the DAMIT database is only used as an initial guess for the modeling. Updated sets of optical lightcurves are usually employed. Thereafter, we combine obtained volume with mass estimates available in the literature and derive bulk densities for tens of asteroids with a typical accuracy of 20-50%.On top of that, we also provide a list of asteroids, for which (i) there are already mass estimates with reported uncertainties better than 20% or their masses will be most likely determined in the future from Gaia astrometric observations, and (ii) their 3D shape models are currently unknown. Additional optical lightcurves are necessary in order to determine convex shape models of these asteroids. Our web page (https://asteroid-obs.oca.eu/foswiki/bin/view/Main/Photometry) contains additional information about this observation campaign.
The peculiar shapes of Saturn's small inner moons as evidence of mergers of similar-sized moonlets
NASA Astrophysics Data System (ADS)
Leleu, A.; Jutzi, M.; Rubin, M.
2018-05-01
The Cassini spacecraft revealed the spectacular, highly irregular shapes of the small inner moons of Saturn1, ranging from the unique 'ravioli-like' forms of Pan and Atlas2,3 to the highly elongated structure of Prometheus. Closest to Saturn, these bodies provide important clues regarding the formation process of small moons in close orbits around their host planet4, but their range of irregular shapes has not been explained yet. Here, we show that the spectrum of shapes among Saturn's small moons is a natural outcome of merging collisions among similar-sized moonlets possessing physical properties and orbits that are consistent with those of the current moons. A significant fraction of such merging collisions take place either at the first encounter or after 1-2 hit-and-run events, with impact velocities in the range of 1-5 times the mutual escape velocity. Close to head-on mergers result in flattened objects with large equatorial ridges, as observed on Atlas and Pan. With slightly more oblique impact angles, collisions lead to elongated, Prometheus-like shapes. These results suggest that the current forms of the small moons provide direct evidence of the processes at the final stages of their formation, involving pairwise encounters of moonlets of comparable size4-6. Finally, we show that this mechanism may also explain the formation of Iapetus' equatorial ridge7, as well as its oblate shape8.
Beyond the sniffer: frontal sinuses in Carnivora.
Curtis, Abigail A; Van Valkenburgh, Blaire
2014-11-01
Paranasal sinuses are some of the most poorly understood features of mammalian cranial anatomy. They are highly variable in presence and form among species, but their function is not well understood. The best-supported explanations for the function of sinuses is that they opportunistically fill mechanically unnecessary space, but that in some cases, sinuses in combination with the configuration of the frontal bone may improve skull performance by increasing skull strength and dissipating stresses more evenly. We used CT technology to investigate patterns in frontal sinus size and shape disparity among three families of carnivores: Canidae, Felidae, and Hyaenidae. We provide some of the first quantitative data on sinus morphology for these three families, and employ a novel method to quantify the relationship between three-dimensional sinus shape and skull shape. As expected, frontal sinus size and shape were more strongly correlated with frontal bone size and shape than with the morphology of the skull as a whole. However, sinus morphology was also related to allometric differences among families that are linked to biomechanical function. Our results support the hypothesis that frontal sinuses most often opportunistically fill space that is mechanically unnecessary, and they can facilitate cranial shape changes that reduce stress during feeding. Moreover, we suggest that the ability to form frontal sinuses allows species to modify skull function without compromising the performance of more functionally constrained regions such as the nasal chamber (heat/water conservation, olfaction), and braincase (housing the brain and sensory structures). © 2014 Wiley Periodicals, Inc.
Development of antifouling surfaces to reduce bacterial attachment
NASA Astrophysics Data System (ADS)
Graham, Mary Viola
Bacteria are exceptionally good at adhering to surfaces and forming complex structures known as biofilms. This process, known as biofouling, can cause problems for infrastructure (eg, clogging and damaging pipes), for the food industry (eg, contamination of processing surfaces and equipment, and for the medical industry (eg, contamination of indwelling medical devices). Accordingly, multiple strategies have been explored to combat biofouling, including chemical modification of surfaces, development of antibiotic coatings, and more recently, the use of engineered surface topography. When designed properly, engineered surface topographies can significantly reduce bacterial surface attachment, ultimately limiting surface colonization. In this work, we hypothesized that the morphology, size, spacing, and surface pre-treatment of topographical features should directly correlate with the size and shape of target organisms, in order to reduce biofouling. Topographical features with size and spacing from 0.25 to 2 mum were fabricated in silicone elastomer and tested against rod shaped bacteria with an average size of 0.5 x 2 mum and spherical bacteria (cocci) ranging from 0.5 - 1 μm in diameter. Antifouling properties of the different topographical features were tested in both static and flow-based assays, and under oxygen plasma-treated (hydrophilic) and untreated (hydrophobic) surface conditions. We found that surface pre-treatment universally affects the ability bacteria to attach to surfaces, while surface topography limits attachment in a manner dependent on the bacterial size/shape and the size/spacing of the topography.
Net-Shape HIP Powder Metallurgy Components for Rocket Engines
NASA Technical Reports Server (NTRS)
Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve
2005-01-01
True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.
Sharifi, Hamid; Larouche, Daniel
2014-01-01
To study the variation of the mechanical behavior of binary aluminum copper alloys with respect to their microstructure, a numerical simulation of their granular structure was carried out. The microstructures are created by a repeated inclusion of some predefined basic grain shapes into a representative volume element until reaching a given volume percentage of the α-phase. Depending on the grain orientations, the coalescence of the grains can be performed. Different granular microstructures are created by using different basic grain shapes. Selecting a suitable set of basic grain shapes, the modeled microstructure exhibits a realistic aluminum alloy microstructure which can be adapted to a particular cooling condition. Our granular models are automatically converted to a finite element model. The effect of grain shapes and sizes on the variation of elastic modulus and plasticity of such a heterogeneous domain was investigated. Our results show that for a given α-phase fraction having different grain shapes and sizes, the elastic moduli and yield stresses are almost the same but the ultimate stress and elongation are more affected. Besides, we realized that the distribution of the θ phases inside the α phases is more important than the grain shape itself. PMID:28788607
Filippova, N A; Panova, I V
1986-01-01
Study of the apron in 9 species of the genus Dermacentor from the fauna of the USSR has revealed differencies in its structure. The subgenus Dermacentor (s. str.) differs from two other subgenera both in the shape of the apron itself and in the shape of the postgenital sclerite and setae of perigenital area. Close species within each of two other subgenera differ in apron proportion, shape and size of denticles along its hind edge, and sometimes in their number. Inspite of the statistically reliable interspecific differences in apron structure a wide range of individual variability of some details and geographical specificity of samples from various places of the area were observed in species with a vast area.
Tunable Porosities and Shapes of Fullerene-Like Spheres
Dielmann, Fabian; Fleischmann, Matthias; Heindl, Claudia; Peresypkina, Eugenia V; Virovets, Alexander V; Gschwind, Ruth M; Scheer, Manfred
2015-01-01
The formation of reversible switchable nanostructures monitored by solution and solid-state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with CuI halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene-like assemblies possessing an Ih-C80 topology at one side and to a tetrahedral-structured aggregate at the other. In the solid state, the formed nano-sized aggregates reach an outer diameter of 3.14 and 3.56 nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution. PMID:25759976
An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans
Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin
2016-01-01
Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover, regional brain allometry (nonlinear scaling) poses largely unaddressed methodological and theoretical challenges for such research. We build the first set of allometric norms for global and regional subcortical anatomy, and use these to dissect out the complex, distributed and topologically organized patterns of areal contraction and expansion, which characterize sex and SCD effects on subcortical anatomy. Our data inform basic research into the patterning of neuroanatomical variation, and the clinical neuroscience of sex-chromosome aneuploidy. PMID:26911691
Firefighter Hand Anthropometry and Structural Glove Sizing: A New Perspective
Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Hildreth, Brooke
2015-01-01
Objective We evaluated the current use and fit of structural firefighting gloves and developed an improved sizing scheme that better accommodates the U.S. firefighter population. Background Among surveys, 24% to 30% of men and 31% to 62% of women reported experiencing problems with the fit or bulkiness of their structural firefighting gloves. Method An age-, race/ethnicity-, and gender-stratified sample of 863 male and 88 female firefighters across the United States participated in the study. Fourteen hand dimensions relevant to glove design were measured. A cluster analysis of the hand dimensions was performed to explore options for an improved sizing scheme. Results The current national standard structural firefighting glove-sizing scheme underrepresents firefighter hand size range and shape variation. In addition, mismatch between existing sizing specifications and hand characteristics, such as hand dimensions, user selection of glove size, and the existing glove sizing specifications, is significant. An improved glove-sizing plan based on clusters of overall hand size and hand/finger breadth-to-length contrast has been developed. Conclusion This study presents the most up-to-date firefighter hand anthropometry and a new perspective on glove accommodation. The new seven-size system contains narrower variations (standard deviations) for almost all dimensions for each glove size than the current sizing practices. Application The proposed science-based sizing plan for structural firefighting gloves provides a step-forward perspective (i.e., including two women hand model–based sizes and two wide-palm sizes for men) for glove manufacturers to advance firefighter hand protection. PMID:26169309
Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff.
Anwar, Mohammad F; Yadav, Deepak; Jain, Swati; Kapoor, Sumeet; Rastogi, Shweta; Arora, Indu; Samim, Mohammed
2016-01-01
Dandruff is a prominent scalp problem caused by the growth of fungus Malassezia furfur, potentially cascading into dermal inflammation, itching, and tissue damage. The present work outlines a detailed analysis of the treatment of scalp infection using silver nanomaterials (Ag NMs), and focuses on biocidal activity owing to manipulation of size, shape, and structure. Monodisperse silver spherical nanoparticles (NPs) and nanorods (NRs) were synthesized by chemical routes that were characterized using analytical and spectroscopic techniques. Ag NMs demonstrated enhanced biocidal tendencies compared to market available drugs, itracanozole and ketoconazole, showing greater zones of inhibition. The obtained 20 nm and 50 nm spherical-shaped NPs and 50 nm NRs showed concentration-, size-, and shape-dependent antifungal activity, with 20 nm spherical-shaped NPs exhibiting excellent potency. Minimum inhibitory concentration for 20 nm was lowest at 0.2 mg/mL in comparison to 0.3 mg/mL for NRs. Primary irritation index was 0.33 and 0.16 for 20 nm and 50 nm spherical-shaped NPs, respectively, while 50 nm rod-shaped NMs exhibited negligible redness. An in vivo model for M. furfur infection was generated by passing fungi subcutaneously in rats' skin. Again, 20 nm particles showed best normalization of skin after 10 days on regular dosing, in comparison with bigger and rod-shaped particles. The statistical clinical score was highest for Ag nanorods, followed by 50 nm Ag NPs-treated animals. It was observed that 20 nm spherical particles exhibited the lowest score (0) compared with others as well as with antifungal drugs. Biochemical analysis performed by checking antioxidant enzymatic activities indicated tissue repair and normalization of enzymes and protein concentration by Ag NPs.
Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff
Anwar, Mohammad F; Yadav, Deepak; Jain, Swati; Kapoor, Sumeet; Rastogi, Shweta; Arora, Indu; Samim, Mohammed
2016-01-01
Dandruff is a prominent scalp problem caused by the growth of fungus Malassezia furfur, potentially cascading into dermal inflammation, itching, and tissue damage. The present work outlines a detailed analysis of the treatment of scalp infection using silver nanomaterials (Ag NMs), and focuses on biocidal activity owing to manipulation of size, shape, and structure. Monodisperse silver spherical nanoparticles (NPs) and nanorods (NRs) were synthesized by chemical routes that were characterized using analytical and spectroscopic techniques. Ag NMs demonstrated enhanced biocidal tendencies compared to market available drugs, itracanozole and ketoconazole, showing greater zones of inhibition. The obtained 20 nm and 50 nm spherical-shaped NPs and 50 nm NRs showed concentration-, size-, and shape-dependent antifungal activity, with 20 nm spherical-shaped NPs exhibiting excellent potency. Minimum inhibitory concentration for 20 nm was lowest at 0.2 mg/mL in comparison to 0.3 mg/mL for NRs. Primary irritation index was 0.33 and 0.16 for 20 nm and 50 nm spherical-shaped NPs, respectively, while 50 nm rod-shaped NMs exhibited negligible redness. An in vivo model for M. furfur infection was generated by passing fungi subcutaneously in rats’ skin. Again, 20 nm particles showed best normalization of skin after 10 days on regular dosing, in comparison with bigger and rod-shaped particles. The statistical clinical score was highest for Ag nanorods, followed by 50 nm Ag NPs-treated animals. It was observed that 20 nm spherical particles exhibited the lowest score (0) compared with others as well as with antifungal drugs. Biochemical analysis performed by checking antioxidant enzymatic activities indicated tissue repair and normalization of enzymes and protein concentration by Ag NPs. PMID:26792991
NASA Astrophysics Data System (ADS)
Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.
2018-04-01
Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.
NASA Astrophysics Data System (ADS)
Nurfadhilah, M.; Nolia, I.; Handayani, W.; Imawan, C.
2018-05-01
The silver nanoparticles generated by biosynthesis have a quite diverse result, both in size and shape. Structures of silver nanoparticles can be controlled by modifying the parameters of the biosynthesis such as the ratio between the precursors and reducing agents, as well as pH of the solution. In this study, the pH of Diospyros discolor (Bisbul) leaves aqueous extract was varied to 4, 7, 9, and 11. The extract then was added to 1 mM AgNO3 precursor (1:2; v/v ratio). The result of the silver nanoparticles characterized using spectrophotometer UV-Vis to find if there was any absorbance peak formed between 400 nm to 500 nm. TEM characterization was used to determine the size and shape of silver nanoparticles, and PSA was used to see their size distribution and stability. The higher pH tends to produce smaller silver nanoparticles rapidly. The synthesis parameters that were varied in this research have affected the size, size distribution patterns, and stability of silver nanoparticles.
Electrosynthesis and characterization of zinc tungstate nanoparticles
NASA Astrophysics Data System (ADS)
Rahimi-Nasrabadi, Mehdi; Pourmortazavi, Seied Mahdi; Ganjali, Mohammad Reza; Hajimirsadeghi, Seiedeh Somayyeh; Zahedi, Mir Mahdi
2013-09-01
Zinc tungstate nanoparticles with different sizes are produced through an electrolysis process including a zinc plate anode in sodium tungstate solution. The shape and size of the product was found to be controlled by varying reaction parameters such as electrolysis voltage, stirring rate of electrolyte solution and temperature. The morphological (SEM) characterization analysis was performed on the product and UV-Vis spectrophotometry and FT-IR spectroscopy was utilized to characterize the electrodeposited nanoparticles. Study of the particle size of the product versus the electrolysis voltage showed that, increasing the voltage from 4 to 8 V, led to the particle size of zinc tungstate to decrease, but further increasing the voltage from 8 to 12 V, the particle size of the produced particles increased. The size and shape of the product was also found to be dependent on the stirring rate and temperature of the electrolyte solution. X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR spectroscopy, and photoluminescence, were used to study the structure as well as composition of the nano-material prepared under optimum conditions.
Total systems design analysis of high performance structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1993-01-01
Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.
Challinor, Kirsten L; Mond, Jonathan; Stephen, Ian D; Mitchison, Deborah; Stevenson, Richard J; Hay, Phillipa; Brooks, Kevin R
2017-12-01
Although body size and shape misperception (BSSM) is a common feature of anorexia nervosa, bulimia nervosa and muscle dysmorphia, little is known about its underlying neural mechanisms. Recently, a new approach has emerged, based on the long-established non-invasive technique of perceptual adaptation, which allows for inferences about the structure of the neural apparatus responsible for alterations in visual appearance. Here, we describe several recent experimental examples of BSSM, wherein exposure to "extreme" body stimuli causes visual aftereffects of biased perception. The implications of these studies for our understanding of the neural and cognitive representation of human bodies, along with their implications for clinical practice are discussed.
Pass-Band Characteristics of an L-Shaped Waveguide in a Diamond Structure Photonic Crystal
NASA Astrophysics Data System (ADS)
Chen, Shibin; Ma, Jingcun; Yao, Yunshi; Liu, Xin; Lin, Ping
2018-06-01
The conduction characteristics of a L-shaped waveguide in a diamond structure photonic crystal is investigated in this paper. The waveguides were fabricated with titanium dioxide ceramic via 3-D printing and sintering. The effects of the position and size of line defects on the transmission characteristics are first simulated using a finite-difference time-domain method. The simulated results show that, when the length of the rectangular defect equals the lattice constant, multiple extended modes are generated. When the centers of the single unit cell of the diamond structure and the line defect waveguide coincide, higher transmission efficiency in the line defect can be achieved. In addition, the corner of the L-shaped waveguide was optimized to reduce reflection loss at the turning point using the arc transition of the large diameter. Our experimental results indicate that L-shaped waveguides with an optimized photonic band gap structure and high-K materials can produce a pass-band between 13.8 GHz and 14.4 GHz and increase transmission efficiency. The computed results agree with the experimental results. Our results may help the integration of microwave devices in the future and possibly enable new applications of photonic crystals.
Disentangling the phylogenetic and ecological components of spider phenotypic variation.
Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo
2014-01-01
An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure.
Disentangling the Phylogenetic and Ecological Components of Spider Phenotypic Variation
Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo
2014-01-01
An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure. PMID:24651264
DOE R&D Accomplishments Database
Chambers, E. E.; Hofstadter, R.
1956-04-01
The structure and size of the proton have been studied by means of the methods of high-energy electron scattering. The elastic scattering of electrons from protons in polyethylene has been investigated at the following energies in the laboratory system: 200, 300, 400, 500, 550 Mev. The range of laboratory angles examined has been 30 degrees to 135 degrees. At the largest angles and the highest energy, the cross section for scattering shows a deviation below that expected from a point proton by a factor of about nine. The magnitude and variation with angle of the deviations determine a structure factor for the proton, and thereby determine the size and shape of the charge and magnetic-moment distributions within the proton. An interpretation, consistent at all energies and angles and agreeing with earlier results from this laboratory, fixes the rms radius at 0.77 {plus or minus} 0.10 x 10{sup -13} cm for each of the charge and moment distributions. The shape of the density function is not far from a Gaussian with rms radius 0.70 x 10{sup -13} cm or an exponential with rms radius 0.80 x 10 {sup -13} cm. An equivalent interpretation of the experiments would ascribe the apparent size to a breakdown of the Coulomb law and the conventional theory of electromagnetism.
Simulation of controllable permeation in PNIPAAm coated membranes
NASA Astrophysics Data System (ADS)
Ehrenhofer, Adrian; Wallmersperger, Thomas; Richter, Andreas
2016-04-01
Membranes separate fluid compartments and can comprise transport structures for selective permeation. In biology, channel proteins are specialized in their atomic structure to allow transport of specific compounds (selectivity). Conformational changes in protein structure allow the control of the permeation abilities by outer stimuli (gating). In polymeric membranes, the selectivity is due to electrostatic or size-exclusion. It can thus be controlled by size variation or electric charges. Controllable permeation can be useful to determine particle-size distributions in continuous flow, e.g. in microfluidics and biomedicine to gain cell diameter profiles in blood. The present approach uses patterned polyethylene terephthalate (PET) membranes with hydrogel surface coating for permeation control by size-exclusion. The thermosensitive hydrogel poly(N-isopropylacrylamide) (PNIPAAm) is structured with a cross-shaped pore geometry. A change in the temperature of the water flow through the membrane leads to a pore shape variation. The temperature dependent behavior of PNIPAAm can be numerically modeled with a temperature expansion model, where the swelling and deswelling is depicted by temperature dependent expansion coefficients. In the present study, the free swelling behavior was implemented to the Finite Element tool ABAQUS for the complex composite structure of the permeation control membrane. Experimental values of the geometry characteristics were derived from microscopy images with the tool Image J and compared to simulation results. Numerical simulations using the derived thermo-mechanical model for different pore geometries (circular, rectangle, cross and triangle) were performed. With this study, we show that the temperature expansion model with values from the free swelling behavior can be used to adequately predict the deformation behavior of the complex membrane system. The predictions can be used to optimize the behavior of the membrane pores and the overall performance of the smart membrane.
Janjua, Muhammad Ramzan Saeed Ashraf; Jamil, Saba; Jahan, Nazish; Khan, Shanza Rauf; Mirza, Saima
2017-05-31
Morphologically controlled synthesis of ferric oxide nano/micro particles has been carried out by using solvothermal route. Structural characterization displays that the predominant morphologies are porous hollow spheres, microspheres, micro rectangular platelets, octahedral and irregular shaped particles. It is also observed that solvent has significant effect on morphology such as shape and size of the particles. All the morphologies obtained by using different solvents are nearly uniform with narrow size distribution range. The values of full width at half maxima (FWHM) of all the products were calculated to compare their size distribution. The FWHM value varies with size of the particles for example small size particles show polydispersity whereas large size particles have shown monodispersity. The size of particles increases with decrease in polarity of the solvent whereas their shape changes from spherical to rectangular/irregular with decrease in polarity of the solvent. The catalytic activities of all the products were investigated for both dry and wet processes such as thermal decomposition of ammonium per chlorate (AP) and reduction of 4-nitrophenol in aqueous media. The results indicate that each product has a tendency to act as a catalyst. The porous hollow spheres decrease the thermal decomposition temperature of AP by 140 °C and octahedral Fe 3 O 4 particles decrease the decomposition temperature by 30 °C. The value of apparent rate constant (k app ) of reduction of 4-NP has also been calculated.
NASA Astrophysics Data System (ADS)
Jeong, K.; Jeong, H.; Ji, M.; Kim, J.; Park, J.; Chung, H.
2015-09-01
With the increase in the size and speed of recently built vessels, the output and speed (rpm) of propulsion or generation engines have continuously increased, and the high-output, highspeed engine has become a major cause of excessive vessel noise and vibration. Accordingly, resonance occurs in the equipment and other outfitting equipment installed in a vessel, and thus, periodic requests for correction are received from ship owners or officers. In this study, to resolve this problem, supports that stably fix the outfitting equipment installed in the engine room of a very large crude oil tanker and provide protection from physical or external shock were classified into seven types for three kinds of widely used standard shapes, and an optimized shape was developed and suggested by analyzing the structural characteristics of the shapes of the supports (the maximum bending moment, maximum bending stress, and maximum deformation) using DNV NATICUS HULL 3D BEAM, a structural analysis program, so that it could be used for the outfitting design of a vessel.
NASA Astrophysics Data System (ADS)
Afrooz, A. R. M. Nabiul; Hussain, Saber M.; Saleh, Navid B.
2014-12-01
Most in vitro nanotoxicological assays are performed after 24 h exposure. However, in determining size and shape effect of nanoparticles in toxicity assays, initial characterization data are generally used to describe experimental outcome. The dynamic size and structure of aggregates are typically ignored in these studies. This brief communication reports dynamic evolution of aggregation characteristics of gold nanoparticles. The study finds that gradual increase in aggregate size of gold nanospheres (AuNS) occurs up to 6 h duration; beyond this time period, the aggregation process deviates from gradual to a more abrupt behavior as large networks are formed. Results of the study also show that aggregated clusters possess unique structural conformation depending on nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples likely occurred due to geometric differences, causing larger packing propensities for smaller sized particles. Both such observations can have profound influence on dosimetry for in vitro nanotoxicity analyses.
Matsui, Katsuma; Segawa, Yasutomo; Itami, Kenichiro
2014-11-19
The design and synthesis of a series of carbon nanocages consisting solely of benzene rings are described. Carbon nanocages are appealing molecules not only because they represent junction unit structures of branched carbon nanotubes, but also because of their potential utilities as unique optoelectronic π-conjugated materials and guest-encapsulating hosts. Three sizes of strained, conjugated [n.n.n]carbon nanocages (1, n = 4; 2, n = 5; 3, n = 6) were synthesized with perfect size-selectivity. Cyclohexane-containing units and 1,3,5-trisubstituted benzene-containing units were assembled to yield the minimally strained bicyclic precursors, which were successfully converted into the corresponding carbon nanocages via acid-mediated aromatization. X-ray crystallography of 1 confirmed the cage-shaped structure with an approximately spherical void inside the cage molecule. The present studies revealed the unique properties of carbon nanocages, including strain energies, size-dependent absorption and fluorescence, as well as unique size-dependency for the electronic features of 1-3.
On the Feedback Phenomenon of an Impinging Jet
1979-09-01
the double-structured nature of turbulent flows: time dependent quasi- ordered large scale structures, and fine-scale random structures. Numerous ...downstream and upstream waves d Nozzle diameter f Frequency (Hz) Gf Normalized power si.c ,ur’ of i G ,(f) Normalized cr,- tr bee -en i(t) and J(t) I ,j xiv...1975) suggested that these quasi- ordered structures are deterministic, in the sense that they have a characteristic shape, size and convection motion
Zhao, Jingxin; Yang, Qiucheng; Wang, Tao; Wang, Lian; You, Jichun; Li, Yongjin
2017-12-20
An effective strategy to tailor the microporous structures has been developed based on the shape memory effect in porous poly(l-lactic acid) membranes in which tiny crystals and amorphous matrix play the roles of shape-fixed phase and reversible-phase, respectively. Our results indicate that not only PLLA membranes but micropores exhibit shape memory properties. The proportional deformations on two scales have been achieved by uniaxial or biaxial tension, providing a facile way to manipulate continuously the size and the orientation degree of pores on microscale. The enhanced separation performance has been validated by taking polystyrene colloids with varying diameters as an example.
Mills, Amanda J; Wilkie, John; Britton, Melanie M
2014-09-11
The size, shape, and composition of reverse micelles (RMs) in a cetyltrimethylammonium bromide (CTAB)/pentanol/n-hexane/water microemulsion were investigated using pulsed gradient stimulated echo (PGSTE) nuclear magnetic resonance (NMR) measurements and molecular modeling. PGSTE data were collected at observation times (Δ) of 10, 40, and 450 ms. At long observation times, CTAB and pentanol exhibited single diffusion coefficients. However, at short (Δ ≤ 40 ms) observation times both CTAB and pentanol exhibited slow and fast diffusion coefficients. These NMR data indicate that both CTAB and pentanol molecules reside in different environments within the microemulsion and that there is exchange between regions on the millisecond time scale. Molecular dynamic simulations of the CTAB RM, in a solvent box containing n-hexane and pentanol, produced an ellipsoid shaped RM. Using structural parameters from these simulations and the Stokes-Einstein relation, the structure factor and dimensions of the reverse micelle were determined. Analysis of the composition of the interphase also showed that there was a variation in the ratio of surfactant to cosurfactant molecules depending on the curvature of the interphase.
The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity.
El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E; Riboulleau, Armelle; Rollion Bard, Claire; Macchiarelli, Roberto; Ngombi Pemba, Lauriss; Hammarlund, Emma; Meunier, Alain; Moubiya Mouele, Idalina; Benzerara, Karim; Bernard, Sylvain; Boulvais, Philippe; Chaussidon, Marc; Cesari, Christian; Fontaine, Claude; Chi-Fru, Ernest; Garcia Ruiz, Juan Manuel; Gauthier-Lafaye, François; Mazurier, Arnaud; Pierson-Wickmann, Anne Catherine; Rouxel, Olivier; Trentesaux, Alain; Vecoli, Marco; Versteegh, Gerard J M; White, Lee; Whitehouse, Martin; Bekker, Andrey
2014-01-01
The Paleoproterozoic Era witnessed crucial steps in the evolution of Earth's surface environments following the first appreciable rise of free atmospheric oxygen concentrations ∼2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation. While most sedimentary successions deposited during this time interval have experienced thermal overprinting from burial diagenesis and metamorphism, the ca. 2.1 Ga black shales of the Francevillian B Formation (FB2) cropping out in southeastern Gabon have not. The Francevillian Formation contains centimeter-sized structures interpreted as organized and spatially discrete populations of colonial organisms living in an oxygenated marine ecosystem. Here, new material from the FB2 black shales is presented and analyzed to further explore its biogenicity and taphonomy. Our extended record comprises variably sized, shaped, and structured pyritized macrofossils of lobate, elongated, and rod-shaped morphologies as well as abundant non-pyritized disk-shaped macrofossils and organic-walled acritarchs. Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis. The emergence of this biota follows a rise in atmospheric oxygen, which is consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.
Computer program for determining mass properties of a rigid structure
NASA Technical Reports Server (NTRS)
Hull, R. A.; Gilbert, J. L.; Klich, P. J.
1978-01-01
A computer program was developed for the rapid computation of the mass properties of complex structural systems. The program uses rigid body analyses and permits differences in structural material throughout the total system. It is based on the premise that complex systems can be adequately described by a combination of basic elemental shapes. Simple geometric data describing size and location of each element and the respective material density or weight of each element were the only required input data. From this minimum input, the program yields system weight, center of gravity, moments of inertia and products of inertia with respect to mutually perpendicular axes through the system center of gravity. The program also yields mass properties of the individual shapes relative to component axes.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-10
...] Draft Guidance for Industry on Size, Shape, and Other Physical Attributes of Generic Tablets and... ``Size, Shape, and Other Physical Attributes of Generic Tablets and Capsules.'' This guidance discusses FDA recommendations for the size, shape, and other physical attributes of generic tablets intended to...
NASA Technical Reports Server (NTRS)
Logan, T. L.; Huning, J. R.; Glackin, D. L.
1983-01-01
The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.
Physical and chemical stability of marine lipid-based liposomes under acid conditions.
Nacka, F; Cansell, M; Gouygou, J P.; Gerbeaud, C; Méléard, P; Entressangles, B
2001-03-01
Liposomes made from a marine lipid extract containing a high polyunsaturated fatty lipid ratio were submitted to large pH variations, ranging from 1 to 8. Shape transformations were followed by video microscopy using giant liposomes and micromanipulation experiments. Acidification induced a decrease of the vesicle size simultaneous to the appearance of invaginations. These pH-dependent structural rearrangements were interpreted in terms of osmotic shocks and chemical modifications of the membranes. Liposomes produced by direct filtration were studied using turbidity measurements and optical microscopy observations. A low pH led to an instantaneous vesicle aggregation and to complex supramolecular and/or morphological changes as a function of time. The subsequent buffer neutralization of the liposome suspensions induced a partial reversion of the aggregation phenomenon while the structural membrane rearrangements were persisting. Furthermore, weak chemical degradations (oxidation and hydrolysis) were evidenced when the vesicles were incubated at low pH up to a 24-h incubation time. Thus, although acidification revealed liposome size and shape changes, the bilayer structure was maintained indicating that marine lipid-based liposomes could be used as oral administration vectors.
Yakimov, A I; Nikiforov, A I; Dvurechenskii, A V; Ulyanov, V V; Volodin, V A; Groetzschel, R
2006-09-28
The effect of Ge deposition rate on the morphology and structural properties of self-assembled Ge/Si(001) islands was studied. Ge/Si(001) layers were grown by solid-source molecular-beam epitaxy at 500 °C. We adjusted the Ge coverage, 6 monolayers (ML), and varied the Ge growth rate by a factor of 100, R = 0.02-2 ML s(-1), to produce films consisting of hut-shaped Ge islands. The samples were characterized by scanning tunnelling microscopy, Raman spectroscopy, and Rutherford backscattering measurements. The mean lateral size of Ge nanoclusters decreases from 14.1 nm at R = 0.02 ML s(-1) to 9.8 nm at R = 2 ML s(-1). The normalized width of the size distribution shows non-monotonic behaviour as a function of R and has a minimum value of 19% at R = 2 ML s(-1). Ge nanoclusters fabricated at the highest deposition rate demonstrate the best structural quality and the highest Ge content (∼0.9).
Transparent Large Strain Thermoplastic Polyurethane Magneto-Active Nanocomposites
NASA Technical Reports Server (NTRS)
Yoonessi, Mitra; Carpen, Ileana; Peck, John; Sola, Francisco; Bail, Justin; Lerch, Bradley; Meador, Michael
2010-01-01
Smart adaptive materials are an important class of materials which can be used in space deployable structures, morphing wings, and structural air vehicle components where remote actuation can improve fuel efficiency. Adaptive materials can undergo deformation when exposed to external stimuli such as electric fields, thermal gradients, radiation (IR, UV, etc.), chemical and electrochemical actuation, and magnetic field. Large strain, controlled and repetitive actuation are important characteristics of smart adaptive materials. Polymer nanocomposites can be tailored as shape memory polymers and actuators. Magnetic actuation of polymer nanocomposites using a range of iron, iron cobalt, and iron manganese nanoparticles is presented. The iron-based nanoparticles were synthesized using the soft template (1) and Sun's (2) methods. The nanoparticles shape and size were examined using TEM. The crystalline structure and domain size were evaluated using WAXS. Surface modifications of the nanoparticles were performed to improve dispersion, and were characterized with IR and TGA. TPU nanocomposites exhibited actuation for approximately 2wt% nanoparticle loading in an applied magnetic field. Large deformation and fast recovery were observed. These nanocomposites represent a promising potential for new generation of smart materials.
Durable wood bonding with epoxy adhesives
Charles R. Frihart
2003-01-01
Although wood was one of the earliest materials to be adhesively bonded, the factors that contribute to strong wood bonds are still not well understood. Wood is a very complex substrate in that it is non-uniform in most aspects. On the macro scale, it is a porous structure with different sized and shaped voids for fluid flow. The structural cells contain four different...
Linguistic Effects on Children's Encoding and Decoding Performance in Japan and the United States.
ERIC Educational Resources Information Center
Foorman, Barbara R.; Kinoshita, Yoshiko
The role of linguistic structure in a referential communication task was examined by comparing encoding and decoding performance of 80 five- and seven-year-old children from Japan and the United States. The linguist structure demanded by the task was the simultaneous encoding and decoding of attributes of size, color, pattern, and shape. (In…
ERIC Educational Resources Information Center
Easterday, Shelece Michelle
2017-01-01
The syllable is a natural unit of organization in spoken language. Strong cross-linguistic tendencies in syllable size and shape are often explained in terms of a universal preference for the CV structure, a type which is also privileged in abstract models of the syllable. Syllable patterns such as those found in Itelmen "qsa?txt??"…
Changing Structures of the Higher Education Systems: The Increasing Complexity of Underlying Forces
ERIC Educational Resources Information Center
Teichler, Ulrich
2006-01-01
Changes of the shape and the size of higher education systems have been a key issue of both higher education policy and higher education research for more than four decades. It is widely assumed that the expansion of student enrolment was the most powerful factor in evoking structural change and has caused increasing diversification. This article…
Kim, Minseong; Kim, WonJin; Kim, GeunHyung
2017-12-20
Optimally designed three-dimensional (3D) biomedical scaffolds for skeletal muscle tissue regeneration pose significant research challenges. Currently, most studies on scaffolds focus on the two-dimensional (2D) surface structures that are patterned in the micro-/nanoscales with various repeating sizes and shapes to induce the alignment of myoblasts and myotube formation. The 2D patterned surface clearly provides effective analytical results of pattern size and shape of the myoblast alignment and differentiation. However, it is inconvenient in terms of the direct application for clinical usage due to the limited thickness and 3D shapeability. Hence, the present study suggests an innovative hydrogel or synthetic structure that consists of uniaxially surface-patterned cylindrical struts for skeleton muscle regeneration. The alignment of the pattern on the hydrogel (collagen) and poly(ε-caprolactone) struts was attained with the fibrillation of poly(vinyl alcohol) and the leaching process. Various cell culture results indicate that the C2C12 cells on the micropatterned collagen structure were fully aligned, and that a significantly high level of myotube formation was achieved when compared to the collagen structures that were not treated with the micropatterning process.
Gap formation following climatic events in spatially structured plant communities
Liao, Jinbao; De Boeck, Hans J.; Li, Zhenqing; Nijs, Ivan
2015-01-01
Gaps play a crucial role in maintaining species diversity, yet how community structure and composition influence gap formation is still poorly understood. We apply a spatially structured community model to predict how species diversity and intraspecific aggregation shape gap patterns emerging after climatic events, based on species-specific mortality responses. In multispecies communities, average gap size and gap-size diversity increased rapidly with increasing mean mortality once a mortality threshold was exceeded, greatly promoting gap recolonization opportunity. This result was observed at all levels of species richness. Increasing interspecific difference likewise enhanced these metrics, which may promote not only diversity maintenance but also community invasibility, since more diverse niches for both local and exotic species are provided. The richness effects on gap size and gap-size diversity were positive, but only expressed when species were sufficiently different. Surprisingly, while intraspecific clumping strongly promoted gap-size diversity, it hardly influenced average gap size. Species evenness generally reduced gap metrics induced by climatic events, so the typical assumption of maximum evenness in many experiments and models may underestimate community diversity and invasibility. Overall, understanding the factors driving gap formation in spatially structured assemblages can help predict community secondary succession after climatic events. PMID:26114803
Chemical Control of Lead Sulfide Quantum Dot Shape, Self-Assembly, and Charge Transport
NASA Astrophysics Data System (ADS)
McPhail, Martin R.
Lead(II) sulfide quantum dots (PbS QDs) are a promising excitonic material for numerous application that require that control of fluxes of charge and energy at nanoscale interfaces, such as solar energy conversion, photo- and electrocatalysis, light emitting diodes, chemical sensing, single-electron logic elements, field effect transistors, and photovoltaics. PbS QDs are particularly suitable for photonics applications because they exhibit size-tunable band-edge absorption and fluorescence across the entire near-infrared spectrum, undergo efficient multi-exciton generation, exhibit a long radiative lifetime, and possess an eight-fold degenerate ground-state. The effective integration of PbS QDs into these applications requires a thorough understanding of how to control their synthesis, self-assembly, and charge transport phenomena. In this document, I describe a series of experiments to elucidate three levels of chemical control on the emergent properties of PbS QDs: (1) the role of surface chemistry in controlling PbS QD shape during solvothermal synthesis, (2) the role of QD shape and ligand functionalization in self-assembly at a liquid-air interface, and (3) the role of QD packing structure on steady-state conductivity and transient current dynamics. At the synthetic level (1), I show that the final shape and surface chemistry of PbS QDs is highly sensitive to the formation of organosulfur byproducts by commonly used sulfur reagents. The insight into PbS QD growth gained from this work is then developed to controllably tune PbS QD shape from cubic to octahedral to hexapodal while maintaining QD size. At the following level of QD self-assembly (2), I show how QD size and shape dictate packing geometry in extended 2D arrays and how this packing can be controllably interrupted in mixed monolayers. I also study the role of ligand structure on the reorganization of QD arrays at a liquid-air interface and find that the specific packing defects in QD arrays vary depending on exchange kinetics and ligand binding geometry. At the final level of emergent macroscopic properties (3), I show that while the size-dependent conductivity of quasi-2D PbS QD arrays can be explained by a simple diffusional hopping model that only accounts for nearest-neighbor interactions, the transient photocurrent dynamics are extremely sensitive to the morphology of the entire percolation network formed by the QDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bin; Ren, Xuefeng; Neville, Tracey
2009-05-18
Human high-density lipoprotein (HDL) plays a key role in the reverse cholesterol transport pathway that delivers excess cholesterol back to the liver for clearance. In vivo, HDL particles vary in size, shape and biological function. The discoidal HDL is a 140-240 kDa, disk-shaped intermediate of mature HDL. During mature spherical HDL formation, discoidal HDLs play a key role in loading cholesterol ester onto the HDL particles by activating the enzyme, lecithin:cholesterol acyltransferase (LCAT). One of the major problems for high-resolution structural studies of discoidal HDL is the difficulty in obtaining pure and, foremost, homogenous sample. We demonstrate here that themore » commonly used cholate dialysis method for discoidal HDL preparation usually contains 5-10% lipid-poor apoAI that significantly interferes with the high-resolution structural analysis of discoidal HDL using biophysical methods. Using an ultracentrifugation method, we quickly removed lipid-poor apoAI. We also purified discoidal reconstituted HDL (rHDL) into two pure discoidal HDL species of different sizes that are amendable for high-resolution structural studies. A small rHDL has a diameter of 7.6 nm, and a large rHDL has a diameter of 9.8 nm. We show that these two different sizes of discoidal HDL particles display different stability and phospholipid-binding activity. Interestingly, these property/functional differences are independent from the apoAI -helical secondary structure, but are determined by the tertiary structural difference of apoAI on different discoidal rHDL particles, as evidenced by two-dimensional NMR and negative stain electron microscopy data. Our result further provides the first high-resolution NMR data, demonstrating a promise of structural determination of discoidal HDL at atomic resolution using a combination of NMR and other biophysical techniques.« less
LIGSIFT: an open-source tool for ligand structural alignment and virtual screening.
Roy, Ambrish; Skolnick, Jeffrey
2015-02-15
Shape-based alignment of small molecules is a widely used approach in computer-aided drug discovery. Most shape-based ligand structure alignment applications, both commercial and freely available ones, use the Tanimoto coefficient or similar functions for evaluating molecular similarity. Major drawbacks of using such functions are the size dependence of the score and the fact that the statistical significance of the molecular match using such metrics is not reported. We describe a new open-source ligand structure alignment and virtual screening (VS) algorithm, LIGSIFT, that uses Gaussian molecular shape overlay for fast small molecule alignment and a size-independent scoring function for efficient VS based on the statistical significance of the score. LIGSIFT was tested against the compounds for 40 protein targets available in the Directory of Useful Decoys and the performance was evaluated using the area under the ROC curve (AUC), the Enrichment Factor (EF) and Hit Rate (HR). LIGSIFT-based VS shows an average AUC of 0.79, average EF values of 20.8 and a HR of 59% in the top 1% of the screened library. LIGSIFT software, including the source code, is freely available to academic users at http://cssb.biology.gatech.edu/LIGSIFT. Supplementary data are available at Bioinformatics online. skolnick@gatech.edu. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min
2016-01-01
Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.
NASA Astrophysics Data System (ADS)
Hacker, Silke; Handels, Heinz
2006-03-01
Computer-based 3D atlases allow an interactive exploration of the human body. However, in most cases such 3D atlases are derived from one single individual, and therefore do not regard the variability of anatomical structures concerning their shape and size. Since the geometric variability across humans plays an important role in many medical applications, our goal is to develop a framework of an anatomical atlas for representation and visualization of the variability of selected anatomical structures. The basis of the project presented is the VOXEL-MAN atlas of inner organs that was created from the Visible Human data set. For modeling anatomical shapes and their variability we utilize "m-reps" which allow a compact representation of anatomical objects on the basis of their skeletons. As an example we used a statistical model of the kidney that is based on 48 different variants. With the integration of a shape description into the VOXEL-MAN atlas it is now possible to query and visualize different shape variations of an organ, e.g. by specifying a person's age or gender. In addition to the representation of individual shape variants, the average shape of a population can be displayed. Besides a surface representation, a volume-based representation of the kidney's shape variants is also possible. It results from the deformation of the reference kidney of the volume-based model using the m-rep shape description. In this way a realistic visualization of the shape variants becomes possible, as well as the visualization of the organ's internal structures.
NASA Astrophysics Data System (ADS)
Pretzer, Lori A.
Transition metal nanomaterials are used to catalyze many chemical reactions, including those key to environmental, medicinal, and petrochemical fields. Improving their catalytic properties and lifetime would have significant economic and environmental rewards. Potentially expedient options to make such advancements are to alter the shape, size, or composition of transition metal nanocatalysts. This work investigates the relationships between structure and catalytic properties of synthesized Au, Pd-on-Au, and Au-enzyme model transition metal nanocatalysts. Au and Pd-on-Au nanomaterials were studied due to their wide-spread application and structure-dependent electronic and geometric properties. The goal of this thesis is to contribute design procedures and synthesis methods that enable the preparation of more efficient transition metal nanocatalysts. The influence of the size and composition of Pd-on-Au nanoparticles (NPs) was systematically investigated and each was found to affect the catalyst's surface structure and catalytic properties. The catalytic hydrodechlorination of trichloroethene and reduction of 4-nitrophenol by Pd-on-Au nanoparticles were investigated as these reactions are useful for environmental and pharmaceutical synthesis applications, respectively. Structural characterization revealed that the dispersion and oxidation state of surface Pd atoms are controlled by the Au particle size and concentration of Pd. These structural changes are correlated with observed Pd-on-Au NP activities for both probe reactions, providing new insight into the structure-activity relationships of bimetallic nanocatalysts. Using the structure-dependent electronic properties of Au NPs, a new type of light-triggered biocatalyst was prepared and used to remotely control a model biochemical reaction. This biocatalyst consists of a model thermophilic glucokinase enzyme covalently attached to the surface of Au nanorods. The rod-like shape of the Au nanoparticles made the thermophilic-enzyme complexes responsive to near infrared electromagnetic radiation, which is absorbed minimally by biological tissues. When enzyme-Au nanorod complexes are illuminated with a near-infrared laser, thermal energy is generated which activates the thermophilic enzyme. Enzyme-Au nanorod complexes encapsulated in calcium alginate are reusable and stable for several days, making them viable for industrial applications. Lastly, highly versatile Au nanoparticles with diameters of ~3-12 nm were prepared using carbon monoxide (CO) to reduce a Au salt precursor onto preformed catalytic Au particles. Compared to other reducing agents used to generate metallic NPs, CO can be used at room temperature and its oxidized form does not interfere with the colloidal stability of NPs suspended in water. Controlled synthesis of different sized particles was verified through detailed ultraviolet-visible spectroscopy, small angle X-ray scattering, and transmission electron microscopy measurements. This synthesis method should be extendable to other monometallic and multimetallic compositions and shapes, and can be improved by using preformed particles with a narrower size distribution.
Microbial shaping of wrinkle structures in siliciclastic deposits
NASA Astrophysics Data System (ADS)
Bosak, T.; Mariotti, G.; Pruss, S. B.; Perron, J.; O'Grady, M.
2013-12-01
Wrinkle structures are millimeter- to centimeter-scale elongated or reticulate sedimentary structures that resemble symmetric ripples. Sharp-crested and flat-topped wrinkle structures up to 1 cm wide occur on numerous bedding planes in the Neoproterozoic and Cambrian, as well as in some Archean and Phanerozoic siliciclastic deposits. Because similar, but unlithified structures occur in some modern, microbially-colonized sands, wrinkle structures are typically interpreted as microbially induced sedimentary structures. However, it is unclear if physical processes, such as the motion of suspended sand grains, can produce similar features in sand even before microbial colonization. We introduced mat fragments to the surface of silica sand in wave tanks and generated sharp-crested, flat-topped and pitted wrinkle structures. The abrasion of the sandy surface by rolling, low density, millimeter-size fragments of microbial mats produces wrinkle structures at extremely weak orbital velocities that cannot move sand grains in the absence of light particles. Wrinkle structures form in a few hours and can become colonized by microbial mats within weeks. Thus, wrinkle structures are patterns formed by microbially mediated sand motion at low orbital velocities in the absence of bioturbation. Once formed, wrinkle structures can be colonized and stabilized by microbial mats, but the shape of these mats does not dictate the shape of wrinkle structures. These experiments bolster the interpretation of wrinkle structures as morphological signatures of organic particles and early life in Archean and Proterozoic siliciclastic deposits.
ERIC Educational Resources Information Center
Lange, Catherine
2008-01-01
In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…
Theoretical Prediction of Si 2–Si 33 Absorption Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei
Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less
Theoretical Prediction of Si 2–Si 33 Absorption Spectra
Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei; ...
2017-07-07
Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less
NASA Astrophysics Data System (ADS)
Chandekar, Kamlesh V.; Kant, K. Mohan
2017-09-01
Superparamagnetic cobalt ferrite (CoFe2O4) spherical nanoparticles and rhomboidal nanoplatelets were synthesized by co-precipitation at 80 °C (S1) and hydrothermal route at 150 °C (S2). X-ray diffraction (XRD) pattern confirms formation of cubic inverse spinel structure of as prepared cobalt ferrite samples (S1 and S2) with average crystallite size of 13 nm and 18.7 nm for S1 and S2 respectively. Transmission electron microscopy (TEM) reveals spherical and rhomboidal shaped with average particle size 16.7 nm (S1) and 19.8 nm (S2). The zero field cooled magnetization MZFCvs. T exhibit a broad maxima at 400 K and 510 K for S1 and S2 respectively. The blocking temperature TB is obtained as 310 K and 341 K for S1 and S2 respectively, by fitting coercive field at different temperatures to T 1 / 2 law. The morphology of S1 and S2 corresponds to shape dependence of continuum approach. The effective demagnetization factors estimated as ΔN1 = 0 and ΔN2 = 0 . 749 for S1 and S2 samples respectively. The uniaxial anisotropy and shape anisotropy observed to be dominant in spherical shaped and rhomboidal shaped CoFe2O4 nanoparticles respectively. The uniaxial anisotropy constant of S1 sample is estimated as 56 (kJ/m3) at TB = 310 K whereas the effective anisotropy constant for S2 sample is 627 (kJ/m3) at TB = 341 K , in which shape anisotropy constant 605 (kJ/m3) dominates over contribution from uniaxial anisotropy constant 22 (kJ/m3) in S2 sample.
NASA Astrophysics Data System (ADS)
He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi; Yang, Ping; Qi, Ling; Chen, Fei
2018-01-01
We quantify the effects of grain shape and multiple black carbon (BC)-snow internal mixing on snow albedo by explicitly resolving shape and mixing structures. Nonspherical snow grains tend to have higher albedos than spheres with the same effective sizes, while the albedo difference due to shape effects increases with grain size, with up to 0.013 and 0.055 for effective radii of 1,000 μm at visible and near-infrared bands, respectively. BC-snow internal mixing reduces snow albedo at wavelengths < 1.5 μm, with negligible effects at longer wavelengths. Nonspherical snow grains show less BC-induced albedo reductions than spheres with the same effective sizes by up to 0.06 at ultraviolet and visible bands. Compared with external mixing, internal mixing enhances snow albedo reduction by a factor of 1.2-2.0 at visible wavelengths depending on BC concentration and snow shape. The opposite effects on albedo reductions due to snow grain nonsphericity and BC-snow internal mixing point toward a careful investigation of these two factors simultaneously in climate modeling. We further develop parameterizations for snow albedo and its reduction by accounting for grain shape and BC-snow internal/external mixing. Combining the parameterizations with BC-in-snow measurements in China, North America, and the Arctic, we estimate that nonspherical snow grains reduce BC-induced albedo radiative effects by up to 50% compared with spherical grains. Moreover, BC-snow internal mixing enhances the albedo effects by up to 30% (130%) for spherical (nonspherical) grains relative to external mixing. The overall uncertainty induced by snow shape and BC-snow mixing state is about 21-32%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar; Rajasthan Technical University, Kota, Rajasthan
In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 andmore » 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.« less
NASA Technical Reports Server (NTRS)
Kitchen, J. C.
1977-01-01
Various methods of presenting and mathematically describing particle size distribution are explained and evaluated. The hyperbolic distribution is found to be the most practical but the more complex characteristic vector analysis is the most sensitive to changes in the shape of the particle size distributions. A method for determining onshore-offshore flow patterns from the distribution of particulates was presented. A numerical model of the vertical structure of two size classes of particles was developed. The results show a close similarity to the observed distributions but overestimate the particle concentration by forty percent. This was attributed to ignoring grazing by zooplankton. Sensivity analyses showed the size preference was most responsive to the maximum specific growth rates and nutrient half saturation constants. The verical structure was highly dependent on the eddy diffusivity followed closely by the growth terms.
NASA Astrophysics Data System (ADS)
Pearson, E.; Smith, M. W.; Klaar, M. J.; Brown, L. E.
2017-09-01
High resolution topographic surveys such as those provided by Structure-from-Motion (SfM) contain a wealth of information that is not always exploited in the generation of Digital Elevation Models (DEMs). In particular, several authors have related sub-metre scale topographic variability (or 'surface roughness') to sediment grain size by deriving empirical relationships between the two. In fluvial applications, such relationships permit rapid analysis of the spatial distribution of grain size over entire river reaches, providing improved data to drive three-dimensional hydraulic models, allowing rapid geomorphic monitoring of sub-reach river restoration projects, and enabling more robust characterisation of riverbed habitats. However, comparison of previously published roughness-grain-size relationships shows substantial variability between field sites. Using a combination of over 300 laboratory and field-based SfM surveys, we demonstrate the influence of inherent survey error, irregularity of natural gravels, particle shape, grain packing structure, sorting, and form roughness on roughness-grain-size relationships. Roughness analysis from SfM datasets can accurately predict the diameter of smooth hemispheres, though natural, irregular gravels result in a higher roughness value for a given diameter and different grain shapes yield different relationships. A suite of empirical relationships is presented as a decision tree which improves predictions of grain size. By accounting for differences in patch facies, large improvements in D50 prediction are possible. SfM is capable of providing accurate grain size estimates, although further refinement is needed for poorly sorted gravel patches, for which c-axis percentiles are better predicted than b-axis percentiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Dingjie; Xie, Yi Min; Huang, Xiaodong
Analytical studies on the size effects of a simply-shaped beam fixed at both ends have successfully explained the sudden changes of effective Young's modulus as its diameter decreases below 100 nm. Yet they are invalid for complex nanostructures ubiquitously existing in nature. In accordance with a generalized Young-Laplace equation, one of the representative size effects is transferred to non-uniformly distributed pressure against an external surface due to the imbalance of inward and outward loads. Because the magnitude of pressure depends on the principal curvatures, iterative steps have to be adopted to gradually stabilize the structure in finite element analysis. Computational resultsmore » are in good agreement with both experiment data and theoretical prediction. Furthermore, the investigation on strengthened and softened Young's modulus for two complex nanostructures demonstrates that the proposed computational method provides a general and effective approach to analyze the size effects for nanostructures in arbitrary shape.« less
NASA Astrophysics Data System (ADS)
Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio
2017-04-01
The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub-rounded), and (2) very fine-grained gouges (< 1 mm) localized along major and minor mirror-like slip surfaces. Damage zones mostly consist of fractured rocks and, locally, pulverized rocks. Collectively, field observations and laboratory analyses indicate that within the fault cores of the studied fault zones, grain size progressively decreases approaching the master slip surfaces. Furthermore, grain shape changes from very angular to sub-rounded clasts moving toward the master slip surfaces. These features suggest that the progressive evolution of grain size and shape distributions within fault cores may have determined the development of strain localization by the softening and cushioning effects of smaller particles in loose fault rocks.
Koyama, Takashi; Mendes, Cláudia C.; Mirth, Christen K.
2013-01-01
Nutrition, via the insulin/insulin-like growth factor (IIS)/Target of Rapamycin (TOR) signaling pathway, can provide a strong molding force for determining animal size and shape. For instance, nutrition induces a disproportionate increase in the size of male horns in dung and rhinoceros beetles, or mandibles in staghorn or horned flour beetles, relative to body size. In these species, well-fed male larvae produce adults with greatly enlarged horns or mandibles, whereas males that are starved or poorly fed as larvae bear much more modest appendages. Changes in IIS/TOR signaling plays a key role in appendage development by regulating growth in the horn and mandible primordia. In contrast, changes in the IIS/TOR pathway produce minimal effects on the size of other adult structures, such as the male genitalia in fruit flies and dung beetles. The horn, mandible and genitalia illustrate that although all tissues are exposed to the same hormonal environment within the larval body, the extent to which insulin can induce growth is organ specific. In addition, the IIS/TOR pathway affects body size and shape by controlling production of metamorphic hormones important for regulating developmental timing, like the steroid molting hormone ecdysone and sesquiterpenoid hormone juvenile hormone. In this review, we discuss recent results from Drosophila and other insects that highlight mechanisms allowing tissues to differ in their sensitivity to IIS/TOR and the potential consequences of these differences on body size and shape. PMID:24133450
Maestri, R; Fornel, R; Freitas, T R O; Marinho, J R
2015-05-01
Ontogenetic allometry is the study of how the size or shape of certain structures changes over the course of an animal's development. In this study, using Huxley's formula of allometric growth (1932), we assessed the changes in the rate of growth of the feet size of the sigmodontine rodent Oligoryzomys flavescens during its ontogeny and compared differences between males and females. We find evidence of a change of polarity during the ontogenetic development of the species, with the presence of positive allometry during pregnancy and negative allometry in adulthood. Moreover, we note the presence of sexual dimorphism in the size of the feet, in which males of the species have a higher rate of growth than females. This growth pattern is positively related to escape from predators in childhood in both sexes and, in adulthood, provides a higher encounter rate of females by males, due to the larger displacement of the latter. We suggest that both the forces of natural selection and sexual selection have acted to shape the evolution of foot size in this species.
Shape-memory NiTi foams produced by replication of NaCl space-holders.
Bansiddhi, A; Dunand, D C
2008-11-01
NiTi foams were created with a structure (32-36% open pores 70-400 microm in size) and mechanical properties (4-25 GPa stiffness, >1000 MPa compressive strength, >42% compressive ductility, and shape-memory strains up to 4%) useful for bone implant applications. A mixture of NiTi and NaCl powders was hot-isostatically pressed at 950 and 1065 degrees C and the NaCl phase was then dissolved in water. The resulting NiTi foams show interconnected pores that replicate the shape and size of the NaCl powders, indicating that NiTi powders densified significantly before NaCl melted at 801 degrees C. Densifying NiTi or other metal powders above the melting point of the space-holder permits the use of NaCl, with the following advantages compared with higher-melting, solid space-holders such as oxides and fluorides used to date: (i) no temperature limit for densification; (ii) lower cost; (iii) greater flexibility in powder (and thus pore) shape; (iv) faster dissolution; (v) reduced metal corrosion during dissolution; (vi) lower toxicity if space-holder residues remain in the foam.
Assembly of silver nanowire ring induced by liquid droplet
NASA Astrophysics Data System (ADS)
Seong, Baekhoon; Park, Hyun Sung; Chae, Ilkyeong; Lee, Hyungdong; Wang, Xiaofeng; Jang, Hyung-Seok; Jung, Jaehyuck; Lee, Changgu; Lin, Liwei; Byun, Doyoung
2017-11-01
Several forces in the liquid droplet drive the nanomaterials to naturally form an assembled structure. During evaporation of a liquid droplet, nanomaterials can move to the rim of the droplet by convective flow and capillary flow, due to the difference in temperature between the top and contact line of the droplet. Here, we demonstrate a new, simple and scalable technology for the fabrication of ring-shaped Ag NWs by a spraying method. We experimentally identify the compressive force of the droplet driven by surface tension as the key mechanism for the self-assembly of ring structures. We investigated the progress of ring shape formation of Ag NWs according to the droplet size with theoretically calculated optimal conditions. As such, this self-assembly technique of making ring-shaped structures from Ag NWs could be applied to other nanomaterials. This work was supported by the New & Renewable Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry of Trade, Industry and Energy. (No. 20163010071630).
NASA Astrophysics Data System (ADS)
Ahmadivand, Arash; Golmohammadi, Saeed
2014-01-01
With the purpose of guiding and splitting of optical power at C-band spectrum, we studied Y-shape splitters based on various shapes of nanoparticles as a plasmon waveguide. We applied different configurations of Gold (Au) and Silver (Ag) nanoparticles including spheres, rods and rings, to optimize the efficiency and losses of two and four-branch splitters. The best performance in light transportation specifically at telecom wavelength (λ≈1550 nm) is achieved by nanorings, due to an extra degree of freedom in their geometrical components. In addition, comparisons of several values for offset distance (doffset) of examined structures shows that Au nanoring splitters with feasible lower doffset have high quality in guiding and splitting of light through the structure. Finally, we studied four-branch Y-splitters based on Au and Ag nanorings with least possible offset distances to optimize the splitter performance. The power transmission as a key element is calculated for examined structures.
Kumari, Madhuree; Mishra, Aradhana; Pandey, Shipra; Singh, Satyendra Pratap; Chaudhry, Vasvi; Mudiam, Mohana Krishna Reddy; Shukla, Shatrunajay; Kakkar, Poonam; Nautiyal, Chandra Shekhar
2016-01-01
Biosynthesis of nanoparticles has gained great attention in making the process cost-effective and eco-friendly, but there are limited reports which describe the interdependency of physical parameters for tailoring the dimension and geometry of nanoparticles during biological synthesis. In the present study, gold nanoparticles (GNPs) of various shapes and sizes were obtained by modulating different physical parameters using Trichoderma viride filtrate. The particles were characterized on the basis of visual observation, dynamic light scattering, UV-visible spectroscopy, transmission electron microscopy, fourier transform infrared spectroscopy, and X ray diffraction. While the size varied from 2–500 nm, the shapes obtained were nanospheres, nanotriangles, nanopentagons, nanohexagons, and nanosheets. Changing the parameters such as pH, temperature, time, substrate, and culture filtrate concentration influenced the size and geometry of nanoparticles. Catalytic activity of the biosynthesized GNP was evaluated by UV-visible spectroscopy and confirmed by gas chromatography-mass spectrometric analysis for the conversion of 4-nitrophenol into 4-aminophenol which was strongly influenced by their structure and dimension. Common practices for biodegradation are traditional, expensive, require large amount of raw material, and time taking. Controlling shapes and sizes of nanoparticles could revolutionize the process of biodegradation that can remove all the hurdles in current scenario. PMID:27273371
Size and habit evolution of PETN crystals - a lattice Monte Carlo study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zepeda-Ruiz, L A; Maiti, A; Gee, R
2006-02-28
Starting from an accurate inter-atomic potential we develop a simple scheme of generating an ''on-lattice'' molecular potential of short range, which is then incorporated into a lattice Monte Carlo code for simulating size and shape evolution of nanocrystallites. As a specific example, we test such a procedure on the morphological evolution of a molecular crystal of interest to us, e.g., Pentaerythritol Tetranitrate, or PETN, and obtain realistic facetted structures in excellent agreement with experimental morphologies. We investigate several interesting effects including, the evolution of the initial shape of a ''seed'' to an equilibrium configuration, and the variation of growth morphologymore » as a function of the rate of particle addition relative to diffusion.« less
Hollow nanotubular toroidal polymer microrings.
Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon
2014-02-01
Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.
NASA Astrophysics Data System (ADS)
Núñez, Sara; López, José M.; Aguado, Andrés
2012-09-01
We report the putative Global Minimum (GM) structures and electronic properties of GaN+, GaN and GaN- clusters with N = 13-37 atoms, obtained from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ an exchange-correlation functional which accounts for van der Waals dispersion interactions (vdW-DFT). We find a wide diversity of structural motifs within the located GM, including decahedral, polyicosahedral, polytetrahedral and layered structures. The GM structures are also extremely sensitive to the number of electrons in the cluster, so that the structures of neutral and charged clusters differ for most sizes. The main magic numbers (clusters with an enhanced stability) are identified and interpreted in terms of electronic and geometric shell closings. The theoretical results are consistent with experimental abundance mass spectra of GaN+ and with photoelectron spectra of GaN-. The size dependence of the latent heats of melting, the shape of the heat capacity peaks, and the temperature dependence of the collision cross-sections, all measured for GaN+ clusters, are properly interpreted in terms of the calculated cohesive energies, spectra of configurational excitations, and cluster shapes, respectively. The transition from ``non-melter'' to ``magic-melter'' behaviour, experimentally observed between Ga30+ and Ga31+, is traced back to a strong geometry change. Finally, the higher-than-bulk melting temperatures of gallium clusters are correlated with a more typically metallic behaviour of the clusters as compared to the bulk, contrary to previous theoretical claims.We report the putative Global Minimum (GM) structures and electronic properties of GaN+, GaN and GaN- clusters with N = 13-37 atoms, obtained from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ an exchange-correlation functional which accounts for van der Waals dispersion interactions (vdW-DFT). We find a wide diversity of structural motifs within the located GM, including decahedral, polyicosahedral, polytetrahedral and layered structures. The GM structures are also extremely sensitive to the number of electrons in the cluster, so that the structures of neutral and charged clusters differ for most sizes. The main magic numbers (clusters with an enhanced stability) are identified and interpreted in terms of electronic and geometric shell closings. The theoretical results are consistent with experimental abundance mass spectra of GaN+ and with photoelectron spectra of GaN-. The size dependence of the latent heats of melting, the shape of the heat capacity peaks, and the temperature dependence of the collision cross-sections, all measured for GaN+ clusters, are properly interpreted in terms of the calculated cohesive energies, spectra of configurational excitations, and cluster shapes, respectively. The transition from ``non-melter'' to ``magic-melter'' behaviour, experimentally observed between Ga30+ and Ga31+, is traced back to a strong geometry change. Finally, the higher-than-bulk melting temperatures of gallium clusters are correlated with a more typically metallic behaviour of the clusters as compared to the bulk, contrary to previous theoretical claims. Electronic supplementary information (ESI) available: Atomic coordinates (in xyz format and Å units) and point group symmetries for the global minimum structures reported in this paper. See DOI: 10.1039/c2nr31222k
Beak and skull shapes of human commensal and non-commensal house sparrows Passer domesticus
2013-01-01
Background The granivorous house sparrow Passer domesticus is thought to have developed its commensal relationship with humans with the rise of agriculture in the Middle East some 10,000 years ago, and to have expanded with the spread of agriculture in Eurasia during the last few thousand years. One subspecies, P. d. bactrianus, residing in Central Asia, has apparently maintained the ancestral ecology, however. This subspecies is not associated with human settlements; it is migratory and lives in natural grass- and wetland habitats feeding on wild grass seeds. It is well documented that the agricultural revolution was associated with an increase in grain size and changes in seed structure in cultivated cereals, the preferred food source of commensal house sparrow. Accordingly, we hypothesize that correlated changes may have occurred in beak and skull morphology as adaptive responses to the change in diet. Here, we test this hypothesis by comparing the skull shapes of 101 house sparrows from Iran, belonging to five different subspecies, including the non-commensal P. d. bactrianus, using geometric morphometrics. Results The various commensal house sparrow subspecies share subtle but consistent skeletal features that differ significantly from those of the non-commensal P. d. bactrianus. Although there is a marked overall size allometry in the data set, the shape difference between the ecologically differentiated sparrows cannot be explained by differences in size alone. Relative to the size allometry commensal house sparrows exhibit a skull shape consistent with accelerated development (heterochrony), resulting in a more robust facial cranium and a larger, more pointed beak. Conclusion The difference in skull shape and robustness of the beak between commensal and non-commensal house sparrows is consistent with adaptations to process the larger and rachis encapsulated seeds of domesticated cereals among human associated populations. PMID:24044497
Packaging of electronic modules
NASA Technical Reports Server (NTRS)
Katzin, L.
1966-01-01
Study of design approaches that are taken toward optimizing the packaging of electronic modules with respect to size, shape, component orientation, interconnections, and structural support. The study does not present a solution to specific packaging problems, but rather the factors to be considered to achieve optimum packaging designs.
NASA Technical Reports Server (NTRS)
Divecha, A. P.
1974-01-01
Attempts made to develop processes capable of producing metal composites in structural shapes and sizes suitable for space applications are described. The processes must be continuous and promise to lower fabrication costs. Special attention was given to the aluminum boride (Al/b) composite system. Results show that despite adequate temperature control, the consolidation characteristics did not improve as expected. Inadequate binder removal was identified as the cause responsible. An Al/c (aluminum-graphite) composite was also examined.
Watts, Adam C.; Kobziar, Leda N.; Snyder, James R.
2012-01-01
Fire periodically affects wetland forests, particularly in landscapes with extensive fire-prone uplands. Rare occurrence and difficulty of access have limited efforts to understand impacts of wildfires fires in wetlands. Following a 2009 wildfire, we measured tree mortality and structural changes in wetland forest patches. Centers of these circular landscape features experienced lower fire severity, although no continuous patch-size or edge effect was evident. Initial survival of the dominant tree, pondcypress (Taxodium distichum var. imbricarium), was high (>99%), but within one year of the fire approximately 23% of trees died. Delayed mortality was correlated with fire severity, but unrelated to other hypothesized factors such as patch size or edge distance. Tree diameter and soil elevation were important predictors of mortality, with smaller trees and those in areas with lower elevation more likely to die following severe fire. Depressional cypress forests typically exhibit increasing tree size towards their interiors, and differential mortality patterns were related to edge distance. These patterns result in the exaggeration of a dome-shaped profile. Our observations quantify roles of fire and hydrology in determining cypress mortality in these swamps, and imply the existence of feedbacks that maintain the characteristic shape of cypress domes.
Zhou, Jia-Heng; Zhang, Zhi-Ming; Zhao, Hang; Yu, Hai-Tian; Alvarez, Pedro J J; Xu, Xiang-Yang; Zhu, Liang
2016-09-01
A novel funnel-shaped internals was proposed to enhance the stability and pollutant removal performance of an aerobic granular process by optimizing granule size distribution. Results showed up to 68.3±1.4% of granules in novel reactor (R1) were situated in optimal size range (700-1900μm) compared to less than 29.7±1.1% in conventional reactor (R2), and overgrowth of large granules was effectively suppressed without requiring additional energy. Consequently, higher total nitrogen (TN) removal (81.6±2.1%) achieved in R1 than in R2 (48.1±2.7%). Hydraulic analysis revealed the existence of selectively assigning hydraulic pressure in R1. The total shear rate (τtotal) on large granules was 3.07±0.14 times higher than that of R2, while τtotal of small granules in R1 was 70.7±4.6% in R2. Furthermore, large granules in R1 with intact extracellular polymeric substances (EPS) outer layer structure entrapped hydroxyapatite at center, which formed a core structure and further enhanced the stability of aerobic granules. Copyright © 2016 Elsevier Ltd. All rights reserved.
Veschgini, Mariam; Abuillan, Wasim; Inoue, Shigeto; Yamamoto, Akihisa; Mielke, Salomé; Liu, Xianhe; Konovalov, Oleg; Krafft, Marie Pierre; Tanaka, Motomu
2017-10-06
The shape and size of self-assembled mesoscopic surface domains of fluorocarbon-hydrocarbon (FnHm) diblocks and the lateral correlation between these domains were quantitatively determined from grazing incidence small-angle X-ray scattering (GISAXS). The full calculation of structure and form factors unravels the influence of fluorocarbon and hydrocarbon block lengths on the diameter and height of the domains, and provides the inter-domain correlation length. The diameter of the domains, as determined from the form factor analysis, exhibits a monotonic increase in response to the systematic lengthening of each block, which can be attributed to the increase in van der Waals attraction between molecules. The pair correlation function in real space calculated from the structure factor implies that the inter-domain correlation can reach a distance that is over 25 times larger than the domain's size. The full calculation of the GISAXS signals introduced here opens a potential towards the hierarchical design of mesoscale domains of self-assembled small organic molecules, covering several orders of magnitude in space. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Motor pathway convergence predicts syllable repertoire size in oscine birds
Moore, Jordan M.; Székely, Tamás; Büki, József; DeVoogd, Timothy J.
2011-01-01
Behavioral specializations are frequently associated with expansions of the brain regions controlling them. This principle of proper mass spans sensory, motor, and cognitive abilities and has been observed in a wide variety of vertebrate species. Yet, it is unknown if this concept extrapolates to entire neural pathways or how selection on a behavioral capacity might otherwise shape circuit structure. We investigate these questions by comparing the songs and neuroanatomy of 49 species from 17 families of songbirds, which vary immensely in the number of unique song components they produce and possess a conserved neural network dedicated to this behavior. We find that syllable repertoire size is strongly related to the degree of song motor pathway convergence. Repertoire size is more accurately predicted by the number of neurons in higher motor areas relative to that in their downstream targets than by the overall number of neurons in the song motor pathway. Additionally, the convergence values along serial premotor and primary motor projections account for distinct portions of the behavioral variation. These findings suggest that selection on song has independently shaped different components of this hierarchical pathway, and they elucidate how changes in pathway structure could have underlain elaborations of this learned motor behavior. PMID:21918109
Sarkar, Debasish; Mandal, Kalyan; Mandal, Madhuri
2014-03-01
Here solvo-thermal technique has been used to synthesize hollow-nanospheres of magnetite. We have shown that PVP plays an important role to control the particle size and also helps the particles to take the shape of hollow spheres. Structural analysis was done by XRD measurement and morphological measurements like SEM and TEM were performed to confirm the hollow type spherical particles formation and their shape and sizes were also investigated. The detail ac-dc magnetic measurements give an idea about the application of these nano spheres for hyperthermia therapy and spontaneous dye adsorption properties (Gibbs free energy deltaG0 = -0.526 kJ/mol for Eosin and -1.832 kJ/mol for MB) of these particles indicate its use in dye manufacturing company. Being hollow in structure and magnetic in nature such materials will also be useful in other application fields like in drug delivery, arsenic and heavy metal removal by adsorption technique, magnetic separation etc.
Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots.
Bertolotti, Federica; Dirin, Dmitry N; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H; Kovalenko, Maksym V; Guagliardi, Antonietta; Masciocchi, Norberto
2016-09-01
Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.
Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots
NASA Astrophysics Data System (ADS)
Bertolotti, Federica; Dirin, Dmitry N.; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H.; Kovalenko, Maksym V.; Guagliardi, Antonietta; Masciocchi, Norberto
2016-09-01
Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.
Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO
NASA Astrophysics Data System (ADS)
Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.
2013-03-01
Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.
Zhao, Zhongqiu; Wang, Lianhua; Bai, Zhongke; Pan, Ziguan; Wang, Yun
2015-07-01
Afforestation of native tree species is often recommended for ecological restoration in mining areas, but the understanding of the ecological processes of restored vegetation is quite limited. In order to provide insight of the ecological processes of restored vegetation, in this study, we investigate the development of the population structure and spatial distribution patterns of restored Robinia pseudoacacia (ROPS) and Pinus tabuliformis (PITA) mixed forests during the 17 years of the mine spoil period of the Pingshuo opencast mine, Shanxi Province, China. After a 17-year succession, apart from the two planted species, Ulmus pumila (ULPU), as an invasive species, settled in the plot along with a large number of small diameter at breast height (DBH) size. In total, there are 10,062 living individual plants, much more than that at the plantation (5105), and ROPS had become the dominant species with a section area with a breast height of 9.40 m(2) hm(-2) and a mean DBH of 6.72 cm, much higher than both PITA and ULPU. The DBH size classes of all the total species showed inverted J-shaped distributions, which may have been a result of the large number of small regenerated ULPU trees. The DBH size classes of both ROPS and PITA showed peak-type structures with individuals mainly gathering in the moderate DBH size class, indicating a relatively healthy DBH size class structure. Meanwhile, invasive ULPU were distributed in a clear L shape, concentrating on the small DBH size class, indicating a relatively low survival rate for adult trees. Both ROPS and PITA species survival in the plantation showed uniform and aggregated distribution at small scales and random with scales increasing. ULPU showed a strong aggregation at small scales as well as random with scales increasing. Both the population structure and spatial distribution indicated that ROPS dominates and will continue to dominate the community in the future succession, which should be continuously monitored.
NASA Astrophysics Data System (ADS)
Kang, Dong-Uk; Cho, Minsik; Lee, Dae Hee; Yoo, Hyunjun; Kim, Myung Soo; Bae, Jun Hyung; Kim, Hyoungtaek; Kim, Jongyul; Kim, Hyunduk; Cho, Gyuseong
2012-05-01
Recently, large-size 3-transistors (3-Tr) active pixel complementary metal-oxide silicon (CMOS) image sensors have been being used for medium-size digital X-ray radiography, such as dental computed tomography (CT), mammography and nondestructive testing (NDT) for consumer products. We designed and fabricated 50 µm × 50 µm 3-Tr test pixels having a pixel photodiode with various structures and shapes by using the TSMC 0.25-m standard CMOS process to compare their optical characteristics. The pixel photodiode output was continuously sampled while a test pixel was continuously illuminated by using 550-nm light at a constant intensity. The measurement was repeated 300 times for each test pixel to obtain reliable results on the mean and the variance of the pixel output at each sampling time. The sampling rate was 50 kHz, and the reset period was 200 msec. To estimate the conversion gain, we used the mean-variance method. From the measured results, the n-well/p-substrate photodiode, among 3 photodiode structures available in a standard CMOS process, showed the best performance at a low illumination equivalent to the typical X-ray signal range. The quantum efficiencies of the n+/p-well, n-well/p-substrate, and n+/p-substrate photodiodes were 18.5%, 62.1%, and 51.5%, respectively. From a comparison of pixels with rounded and rectangular corners, we found that a rounded corner structure could reduce the dark current in large-size pixels. A pixel with four rounded corners showed a reduced dark current of about 200fA compared to a pixel with four rectangular corners in our pixel sample size. Photodiodes with round p-implant openings showed about 5% higher dark current, but about 34% higher sensitivities, than the conventional photodiodes.
Photoacoustic imaging optimization with raw signal deconvolution and empirical mode decomposition
NASA Astrophysics Data System (ADS)
Guo, Chengwen; Wang, Jing; Qin, Yu; Zhan, Hongchen; Yuan, Jie; Cheng, Qian; Wang, Xueding
2018-02-01
Photoacoustic (PA) signal of an ideal optical absorb particle is a single N-shape wave. PA signals of a complicated biological tissue can be considered as the combination of individual N-shape waves. However, the N-shape wave basis not only complicates the subsequent work, but also results in aliasing between adjacent micro-structures, which deteriorates the quality of the final PA images. In this paper, we propose a method to improve PA image quality through signal processing method directly working on raw signals, which including deconvolution and empirical mode decomposition (EMD). During the deconvolution procedure, the raw PA signals are de-convolved with a system dependent point spread function (PSF) which is measured in advance. Then, EMD is adopted to adaptively re-shape the PA signals with two constraints, positive polarity and spectrum consistence. With our proposed method, the built PA images can yield more detail structural information. Micro-structures are clearly separated and revealed. To validate the effectiveness of this method, we present numerical simulations and phantom studies consist of a densely distributed point sources model and a blood vessel model. In the future, our study might hold the potential for clinical PA imaging as it can help to distinguish micro-structures from the optimized images and even measure the size of objects from deconvolved signals.
Sharp and round shapes of seen objects have distinct influences on vowel and consonant articulation.
Vainio, L; Tiainen, M; Tiippana, K; Rantala, A; Vainio, M
2017-07-01
The shape and size-related sound symbolism phenomena assume that, for example, the vowel [i] and the consonant [t] are associated with sharp-shaped and small-sized objects, whereas [ɑ] and [m] are associated with round and large objects. It has been proposed that these phenomena are mostly based on the involvement of articulatory processes in representing shape and size properties of objects. For example, [i] might be associated with sharp and small objects, because it is produced by a specific front-close shape of articulators. Nevertheless, very little work has examined whether these object properties indeed have impact on speech sound vocalization. In the present study, the participants were presented with a sharp- or round-shaped object in a small or large size. They were required to pronounce one out of two meaningless speech units (e.g., [i] or [ɑ]) according to the size or shape of the object. We investigated how a task-irrelevant object property (e.g., the shape when responses are made according to size) influences reaction times, accuracy, intensity, fundamental frequency, and formant 1 and formant 2 of vocalizations. The size did not influence vocal responses but shape did. Specifically, the vowel [i] and consonant [t] were vocalized relatively rapidly when the object was sharp-shaped, whereas [u] and [m] were vocalized relatively rapidly when the object was round-shaped. The study supports the view that the shape-related sound symbolism phenomena might reflect mapping of the perceived shape with the corresponding articulatory gestures.
Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction
Abdallah, Bahige G.; Zatsepin, Nadia A.; Roy-Chowdhury, Shatabdi; Coe, Jesse; Conrad, Chelsie E.; Dörner, Katerina; Sierra, Raymond G.; Stevenson, Hilary P.; Camacho-Alanis, Fernanda; Grant, Thomas D.; Nelson, Garrett; James, Daniel; Calero, Guillermo; Wachter, Rebekka M.; Spence, John C. H.; Weierstall, Uwe; Fromme, Petra; Ros, Alexandra
2015-01-01
The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles can be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ∼4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. This method will also permit an analysis of the dependence of crystal quality on crystal size. PMID:26798818
Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction
Abdallah, Bahige G.; Zatsepin, Nadia A.; Roy-Chowdhury, Shatabdi; ...
2015-08-19
We report that the advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles canmore » be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ~4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. Ultimately, this method will also permit an analysis of the dependence of crystal quality on crystal size.« less
Brazilian Soybean Yields and Yield Gaps Vary with Farm Size
NASA Astrophysics Data System (ADS)
Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.
2017-12-01
Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.
Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean
Acevedo-Trejos, Esteban; Brandt, Gunnar; Bruggeman, Jorn; Merico, Agostino
2015-01-01
The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing ‘pushes’ the community towards larger cell sizes, whereas nutrient uptake and sinking ‘pull’ the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients. PMID:25747280
Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications
Kalomiraki, Marina; Thermos, Kyriaki; Chaniotakis, Nikos A
2016-01-01
Dendrimers are large polymeric structures with nanosize dimensions (1–10 nm) and unique physicochemical properties. The major advantage of dendrimers compared with linear polymers is their spherical-shaped structure. During synthesis, the size and shape of the dendrimer can be customized and controlled, so the finished macromolecule will have a specific “architecture” and terminal groups. These characteristics will determine its suitability for drug delivery, diagnostic imaging, and as a genetic material carrier. This review will focus initially on the unique properties of dendrimers and their use in biomedical applications, as antibacterial, antitumor, and diagnostic agents. Subsequently, emphasis will be given to their use in drug delivery for ocular diseases. PMID:26730187
Grid sensitivity capability for large scale structures
NASA Technical Reports Server (NTRS)
Nagendra, Gopal K.; Wallerstein, David V.
1989-01-01
The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.
Simultaneous Aerodynamic and Structural Design Optimization (SASDO) for a 3-D Wing
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Hou, Gene J.-W.; Newman, Perry A.
2001-01-01
The formulation and implementation of an optimization method called Simultaneous Aerodynamic and Structural Design Optimization (SASDO) is shown as an extension of the Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) method. It is extended by the inclusion of structure element sizing parameters as design variables and Finite Element Method (FEM) analysis responses as constraints. The method aims to reduce the computational expense. incurred in performing shape and sizing optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, FEM structural analysis and sensitivity analysis tools. SASDO is applied to a simple. isolated, 3-D wing in inviscid flow. Results show that the method finds the saine local optimum as a conventional optimization method with some reduction in the computational cost and without significant modifications; to the analysis tools.
NASA Astrophysics Data System (ADS)
Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Therese, H. A.
2018-02-01
We report the effect of sputtering power (200 W - 350 W) on the structural, topographical and magnetic properties of Co2FeSi (CFS) films deposited at ambient temperatures as compared to the films which were either annealed at 300 °C or were subjected to Electron beam Rapid Thermal Annealed (ERTA) treatment. The structural and morphological analyses reveal changes in their crystalline phases and particle sizes. All the as-deposited and annealed CFS films showed A2 phase crystal structure. Whereas the CFS film sputtered at 350 W followed by ERTA displayed the fully ordered L21 structure. The particles are spherical in shape and their sizes increased gradually with increase in the sputtering power of the as-deposited and annealed CFS films. However, ERTA CFS films had spherical as well as columnar (elongated) shaped grains and their grain sizes increased nonlinearly with sputtering power. M-H studies on as-deposited, annealed and ERTA CFS films show ferromagnetic responses. The comparatively stronger ferromagnetic response was observed for the ERTA samples with low saturation field which depends on the enrichment of fine crystallites in these films. This indicates that, apart from higher sputtering powers used for deposition of CFS films, ERTA process plays a significant role in the enhancement of their magnetic responses. 350 W ERTA film has the considerable saturation magnetization (∼816 emu/cc), coercivity (∼527 Oe) and a good squareness values at 100 K than at 300 K, which could originate from the spin wave excitation effect. Further, the optimized parameters to achieve a CFS film with good structural and magnetic properties are discussed from the perspective of spintronics.
Continuously differentiable PIC shape functions for triangular meshes
Barnes, D. C.
2018-03-21
In this study, a new class of continuously-differentiable shape functions is developed and applied to two-dimensional electrostatic PIC simulation on an unstructured simplex (triangle) mesh. It is shown that troublesome aliasing instabilities are avoided for cold plasma simulation in which the Debye length is as small as 0.01 cell sizes. These new shape functions satisfy all requirements for PIC particle shape. They are non-negative, have compact support, and partition unity. They are given explicitly by cubic expressions in the usual triangle logical (areal) coordinates. The shape functions are not finite elements because their structure depends on the topology of themore » mesh, in particular, the number of triangles neighboring each mesh vertex. Nevertheless, they may be useful as approximations to solution of other problems in which continuity of derivatives is required or desired.« less
Continuously differentiable PIC shape functions for triangular meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, D. C.
In this study, a new class of continuously-differentiable shape functions is developed and applied to two-dimensional electrostatic PIC simulation on an unstructured simplex (triangle) mesh. It is shown that troublesome aliasing instabilities are avoided for cold plasma simulation in which the Debye length is as small as 0.01 cell sizes. These new shape functions satisfy all requirements for PIC particle shape. They are non-negative, have compact support, and partition unity. They are given explicitly by cubic expressions in the usual triangle logical (areal) coordinates. The shape functions are not finite elements because their structure depends on the topology of themore » mesh, in particular, the number of triangles neighboring each mesh vertex. Nevertheless, they may be useful as approximations to solution of other problems in which continuity of derivatives is required or desired.« less
The Impact Of Surface Shape Of Chip-Breaker On Machined Surface
NASA Astrophysics Data System (ADS)
Šajgalík, Michal; Czán, Andrej; Martinček, Juraj; Varga, Daniel; Hemžský, Pavel; Pitela, David
2015-12-01
Machined surface is one of the most used indicators of workpiece quality. But machined surface is influenced by several factors such as cutting parameters, cutting material, shape of cutting tool or cutting insert, micro-structure of machined material and other known as technological parameters. By improving of these parameters, we can improve machined surface. In the machining, there is important to identify the characteristics of main product of these processes - workpiece, but also the byproduct - the chip. Size and shape of chip has impact on lifetime of cutting tools and its inappropriate form can influence the machine functionality and lifetime, too. This article deals with elimination of long chip created when machining of shaft in automotive industry and with impact of shape of chip-breaker on shape of chip in various cutting conditions based on production requirements.
Genetic diversity, population structure, and heritability of fruit traits in Capsicum annuum
USDA-ARS?s Scientific Manuscript database
Cultivated pepper (Capsicum annuum) is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungenc...
Process Makes Thermoplastic Prepreg Ribbon
NASA Technical Reports Server (NTRS)
Wilson, Maywood L.; Johnson, Gary S.
1995-01-01
Manufacturing process produces ribbon of composite material (prepreg) consisting of continuous lengthwise fibers impregnated with thermoplastic resin. Ribbon can later be cut into sheets of required sizes and shapes, stacked, then heated under pressure to form composite-material structural components. Process accommodates variety of thermoplastic resins and variety of fibers.
Engineering Encounters: Building a Spaghetti Structure
ERIC Educational Resources Information Center
Llewellyn, Douglas; Pray, Sandra; DeRose, Rob; Ottman, William
2016-01-01
This column presents ideas and techniques to enhance science teaching. In this month's issue an upper elementary Science, technology, engineering, and math (STEM) challenge brings an engineer into the classroom while emphasizing cooperation, communication, and creativity. STEM activities come in various shapes and sizes. Some are quite involved…
The three-dimensional structure of cumulus clouds over the ocean. 1: Structural analysis
NASA Technical Reports Server (NTRS)
Kuo, Kwo-Sen; Welch, Ronald M.; Weger, Ronald C.; Engelstad, Mark A.; Sengupta, S. K.
1993-01-01
Thermal channel (channel 6, 10.4-12.5 micrometers) images of five Landsat thematic mapper cumulus scenes over the ocean are examined. These images are thresholded using the standard International Satellite Cloud Climatology Project (ISCCP) thermal threshold algorithm. The individual clouds in the cloud fields are segmented to obtain their structural statistics which include size distribution, orientation angle, horizontal aspect ratio, and perimeter-to-area (PtA) relationship. The cloud size distributions exhibit a double power law with the smaller clouds having a smaller absolute exponent. The cloud orientation angles, horizontal aspect ratios, and PtA exponents are found in good agreement with earlier studies. A technique also is developed to recognize individual cells within a cloud so that statistics of cloud cellular structure can be obtained. Cell structural statistics are computed for each cloud. Unicellular clouds are generally smaller (less than or equal to 1 km) and have smaller PtA exponents, while multicellular clouds are larger (greater than or equal to 1 km) and have larger PtA exponents. Cell structural statistics are similar to those of the smaller clouds. When each cell is approximated as a quadric surface using a linear least squares fit, most cells have the shape of a hyperboloid of one sheet, but about 15% of the cells are best modeled by a hyperboloid of two sheets. Less than 1% of the clouds are ellipsoidal. The number of cells in a cloud increases slightly faster than linearly with increasing cloud size. The mean nearest neighbor distance between cells in a cloud, however, appears to increase linearly with increasing cloud size and to reach a maximum when the cloud effective diameter is about 10 km; then it decreases with increasing cloud size. Sensitivity studies of threshold and lapse rate show that neither has a significant impact upon the results. A goodness-of-fit ratio is used to provide a quantitative measure of the individual cloud results. Significantly improved results are obtained after applying a smoothing operator, suggesting the eliminating subresolution scale variations with higher spatial resolution may yield even better shape analyses.
The biogeodynamics of microbial landscapes
NASA Astrophysics Data System (ADS)
Battin, T. J.; Hödl, I.; Bertuzzo, E.; Mari, L.; Suweis, S. S.; Rinaldo, A.
2011-12-01
Spatial configuration is fundamental in defining the structural and functional properties of biological systems. Biofilms, surface-attached and matrix-enclosed microorganisms, are a striking example of spatial organisation. Coupled biotic and abiotic processes shape the spatial organisation across scales of the landscapes formed by these benthic biofilms in streams and rivers. Experimenting with such biofilms in streams, we found that, depending on the streambed topography and the related hydrodynamic microenvironment, biofilm landscapes form increasingly diverging spatial patterns as they grow. Strikingly, however, cluster size distributions tend to converge even in contrasting hydrodynamic microenvironments. To reproduce the observed cluster size distributions we used a continuous, size-structured population model. The model accounts for the formation, growth, erosion and merging of biofilm clusters. Our results suggest not only that hydrodynamic forcing induce the diverging patterning of the microbial landscape, but also that microorganisms have developed strategies to equally exploit spatial resources independently of the physical structure of the microenvironment where they live.
NASA Astrophysics Data System (ADS)
Ivanov, Roman A.; Melkikh, Alexey V.
2017-09-01
It has been experimentally proved that it is possible to produce a metal capillary structure with significant capillary action and free shape configuration using selective laser melting. Capillaries are created by dividing the solid detail volume into micro-sized parallel walls with roughness as a result of SLM 3D printing. Experiments are conducted on aluminum powder with particle size in the range of 10-40 µm (,) and distances in 3D model between surfaces incapillary generation zone in the range of 50-200 µm. It is showed that products produced from model with 100 µm gaps have the greatest efficiency of fluid lifting as a result of obtaining stable arrays of capillaries of 20-40 µm in size. Change in the direction of (growing) printingthe product doesn't significantly influence on capillary geometry, but it affects on safety of the structure.
Pan, Liang-Yu; Chiang, Tung-Chuan; Weng, Yu-Chu; Chen, Wen-Neng; Hsiao, Shu-Chuan; Tokuda, Makoto; Tsai, Cheng-Lung; Yang, Man-Miao
2015-05-05
Recent field surveys show that galls induced by Daphnephila spp. (Cecidomyiidae) on Machilus spp. (Lauraceae) are common in Taiwan, yet only five species, four leaf-gall inducers and one stem-gall inducer on M. thunbergii, have been named in the past. Here we describe a new species, Daphnephila urnicola sp. nov. Chiang, Yang & Tokuda, inducing urn-shaped galls on leaves of both M. zuihoensis and M. mushaensis. Comparisons of D. urnicola populations on M. zuihoensis and on M. mushaensis, indicate that they belong to one species, a result supported by gall midge morphology, life-history traits, gall shape and structure, the developmental process of gall tissues, fungal associations, and DNA-sequencing data. Size and structure of the gall operculum was found to differ between M. zuihoensis and M. mushahaensis.
NASA Astrophysics Data System (ADS)
Devaprakasam, D.; Hatton, P. V.; Möbus, G.; Inkson, B. J.
2008-08-01
In this work we have investigated the influence of nanoscale and microscale structure on the tribo-mechanical performance and failure mechanisms of two biocompatible dental polymer composites, with different reinforcing particulates, using advanced microscopy techniques. Nano- and micro structural analysis reveals the shape, size and distribution of the particles in the composites. In the microparticle filled polymer composite (microcomposite), the particles are of irregular shape with sharp edges with non-uniform distribution in the matrix. However, in the nanoparticle filled composites (nanocomposite), filler particles are spherical in shape with uniform distribution in the matrix. From nanoindentation measurements, hardness and reduced modulus of the microcomposite were found to be heterogeneous. However, the hardness and reduced modulus of the nanocomposite were found to be homogeneous. The nanocomposite shows better tribo-mechanical performance compared to that of the microcomposite.
Understanding Galaxy Shapes Across Cosmic Time Using The IllustrisTNG Simulation
NASA Astrophysics Data System (ADS)
Genel, Shy
2017-08-01
Legacy HST observations have enabled groundbreaking measurements of galaxy structure over cosmic time, measurements that still require theoretical interpretation in the context of a comprehensive galaxy evolution model. This proposed research aims at significantly promoting our understanding of the shapes of galaxies as quantified by their principal axes ratios. The main tool we propose to use is IllustrisTNG, a suite consisting of two of the largest cosmological hydrodynamical simulations run to date, which contain resolved galaxy populations (thousands of L* galaxies) that represent a state-of-the-art match to observed galaxies. In Part I of the program, we will use the simulations to create mock images and study the dependence of projected shape measurements on various factors: shape estimator, observed band, the presence of dust, radial and surface brightness cuts, and noise. We will then perform apples-to-apples comparison with observations (including HST), and provide predictions for archival as well as future observations. Further, we will quantify the intrinsic, three-dimensional, shape distribution of galaxies as a function of various galaxy parameters: redshift, mass, color, and size. In Part II of the program, we will develop theoretical insights into the physical mechanisms driving these results. We will study how galaxy shapes relate to angular momentum and merger history, and will follow the shape evolution of individual galaxies over time, looking for correlations to the evolution of other galaxy properties, e.g. size and SFR. We will also study galaxy shape relations to dark matter halo shape, thereby providing input for high-precision cosmic shear models.
NiMnGa/Si Shape Memory Bimorph Nanoactuation
NASA Astrophysics Data System (ADS)
Lambrecht, Franziska; Lay, Christian; Aseguinolaza, Iván R.; Chernenko, Volodymyr; Kohl, Manfred
2016-12-01
The size dependences of thermal bimorph and shape memory effect of nanoscale shape memory alloy (SMA)/Si bimorph actuators are investigated in situ in a scanning electron microscope and by finite element simulations. By combining silicon nanomachining and magnetron sputtering, freestanding NiMnGa/Si bimorph cantilever structures with film/substrate thickness of 200/250 nm and decreasing lateral dimensions are fabricated. Electrical resistance and mechanical beam bending tests upon direct Joule heating demonstrate martensitic phase transformation and reversible thermal bimorph effect, respectively. Corresponding characteristics are strongly affected by the large temperature gradient in the order of 50 K/µm forming along the nano bimorph cantilever upon electro-thermal actuation, which, in addition, depends on the size-dependent heat conductivity in the Si nano layer. Furthermore, the martensitic transformation temperatures show a size-dependent decrease by about 40 K for decreasing lateral dimensions down to 200 nm. The effects of heating temperature and stress distribution on the nanoactuation performance are analyzed by finite element simulations revealing thickness ratio of SMA/Si of 90/250 nm to achieve an optimum SME. Differential thermal expansion and thermo-elastic effects are discriminated by comparative measurements and simulations on Ni/Si bimorph reference actuators.
Stereoscopic shape discrimination is well preserved across changes in object size.
Norman, J Farley; Swindle, Jessica M; Jennings, L RaShae; Mullins, Elizabeth M; Beers, Amanda M
2009-06-01
A single experiment evaluated human observers' ability to discriminate the shape of solid objects that varied in size and orientation in depth. The object shapes were defined by binocular disparity, Lambertian shading, and texture. The object surfaces were smoothly curved and had naturalistic shapes, resembling those of water-smoothed granite rocks. On any given trial, two objects were presented that were either the same or different in terms of shape. When the "same" objects were presented, they differed in their orientation in depth by 25 degrees , 45 degrees , or 65 degrees . The observers were required to judge whether any given pair of objects was the "same" or "different" in terms of shape. The size of the objects was also varied by amounts up to +/-40% relative to the standard size. The observers' shape discrimination performance was strongly affected by the magnitude of the orientation changes in depth - thus, their performance was viewpoint dependent. In contrast, the observers' shape discrimination abilities were only slightly affected by changes in the overall size of the objects. It appears that human observers can recognize the three-dimensional shape of objects in a manner that is relatively independent of size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S.; Diwakar, P. K.; Polek, M. P.
We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present resultsmore » clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.« less
Hearing capacities and otolith size in two ophidiiform species (Ophidion rochei and Carapus acus).
Kéver, Loïc; Colleye, Orphal; Herrel, Anthony; Romans, Pascal; Parmentier, Eric
2014-07-15
Numerous studies have highlighted the diversity of fish inner ear morphology. However, the function of the shape, size and orientation of the different structures remains poorly understood. The saccule (otolithic endorgan) is considered to be the principal hearing organ in fishes and it has been hypothesized that sagitta (saccular otolith) shape and size affect hearing capacities: large sagittae are thought to increase sensitivity. The sagittae of many ophidiids and carapids occupy a large volume inside the neurocranium. Hence they are a good structure with which to test the size hypothesis. The main aim of this study was to investigate hearing capacities and inner ear morphology in two ophidiiform species: Ophidion rochei and Carapus acus. We used a multidisciplinary approach that combines dissections, μCT-scan examinations and auditory evoked potential techniques. Carapus acus and O. rochei sagittae have similar maximal diameters; both species have larger otoliths than many non-ophidiiform species, especially compared with the intra-neurocranium volume. Both species are sensitive to sounds up to 2100 Hz. Relative to the skull, O. rochei has smaller sagittae than the carapid, but better hearing capacities from 300 to 900 Hz and similar sensitivities at 150 Hz and from 1200 to 2100 Hz. Results show that hearing capacities of a fish species cannot be predicted only based on sagitta size. Larger otoliths (in size relative to the skull) may have evolved mainly for performing vestibular functions in fishes, especially those species that need to execute precise and complex movements. © 2014. Published by The Company of Biologists Ltd.
Tuning the structure and habit of iron oxide mesocrystals
Wetterskog, Erik; Klapper, Alice; Disch, Sabrina; ...
2016-07-11
A precise control over the meso- and microstructure of ordered and aligned nanoparticle assemblies, i.e., mesocrystals, is essential in the quest for exploiting the collective material properties for potential applications. In this work, we produced evaporation-induced self-assembled mesocrystals with different mesostructures and crystal habits based on iron oxide nanocubes by varying the nanocube size and shape and by applying magnetic fields. A full 3D characterization of the mesocrystals was performed using image analysis, high-resolution scanning electron microscopy and Grazing Incidence Small Angle X-ray Scattering (GISAXS). This enabled the structural determination of e.g. multi-domain mesocrystals with complex crystal habits and themore » quantification of interparticle distances with sub-nm precision. Mesocrystals of small nanocubes (l = 8.6 12.6 nm) are isostructural with a body centred tetragonal (bct ) lattice whereas assemblies of the largest nanocubes in this study (l = 13.6 nm) additionally form a simple cubic (sc) lattice. The mesocrystal habit can be tuned from a square, hexagonal to star-like and pillar shapes depending on the particle size and shape and the strength of the applied magnetic field. Finally, we outline a qualitative phase diagram of the evaporation-induced self-assembled superparamagnetic iron oxide nanocube mesocrystals based on nanocube edge length and magnetic field strength.« less
Park, Peter J; Bell, M A
2010-06-01
We tested the hypothesis that increased telencephalon size has evolved in threespine stickleback fish (Gasterosteus aculeatus) from structurally complex habitats using field-caught samples from one sea-run (ancestral) and 18 ecologically diverse freshwater (descendant) populations. Freshwater habitats ranged from shallow, structurally complex lakes with benthic-foraging stickleback (benthics), to deeper, structurally simple lakes in which stickleback depend more heavily on plankton for prey (generalists). Contrary to our expectations, benthics had smaller telencephala than generalists, but the shape of the telencephalon of the sea-run and benthic populations were more convex laterally. Convex telencephalon shape may indicate enlargement of the dorsolateral region, which is homologous with the tetrapod hippocampus. Telencephalon morphology is also sexually dimorphic, with larger, less convex telencephala in males. Freshwater stickleback from structurally complex habitats have retained the ancestral telencephalon morphology, but populations that feed more in open habitats on plankton have evolved larger, laterally concave telencephala.
Merchan-Merchan, Wilson; Saveliev, Alexei V; Taylor, Aaron M
2009-12-01
The growth and morphological evolution of molybdenum-oxide microstructures formed in the high temperature environment of a counter-flow oxy-fuel flame using molybdenum probes is studied. Experiments conducted using various probe retention times show the sequence of the morphological changes. The morphological row begins with micron size objects exhibiting polygonal cubic shape, develops into elongated channels, changes to large structures with leaf-like shape, and ends in dendritic structures. Time of probe-flame interaction is found to be a governing parameter controlling the wide variety of morphological patterns; a molecular level growth mechanism is attributed to their development. This study reveals that the structures are grown in several consecutive stages: material "evaporation and transportation", "transformation", "nucleation", "initial growth", "intermediate growth", and "final growth". XRD analysis shows that the chemical compositions of all structures correspond to MoO(2).
NASA Astrophysics Data System (ADS)
Mueller, Sebastian B.; Kueppers, Ulrich; Huber, Matthew S.; Hess, Kai-Uwe; Poesges, Gisela; Ruthensteiner, Bernhard; Dingwell, Donald B.
2018-04-01
Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 μm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.
Mueller, Sebastian B; Kueppers, Ulrich; Huber, Matthew S; Hess, Kai-Uwe; Poesges, Gisela; Ruthensteiner, Bernhard; Dingwell, Donald B
2018-01-01
Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 μm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.
NASA Astrophysics Data System (ADS)
Herega, Alexander; Sukhanov, Volodymyr; Vyrovoy, Valery
2017-12-01
It is known that the multifocal mechanism of genesis of structure of heterogeneous materials provokes intensive formation of internal boundaries. In the present papers, the dependence of the structure and properties of material on the characteristic size and shape, the number and size distribution, and the character of interaction of individual internal boundaries and their clusters is studied. The limitation on the applicability of the material damage coefficient is established; the effective information descriptor of internal boundaries is proposed. An idea of the effect of long-range interaction in irradiated solids on the realization of the second-order phase transition is introduced; a phenomenological percolation model of the effect is proposed.
Size-Sensitive Perceptual Representations Underlie Visual and Haptic Object Recognition
Craddock, Matt; Lawson, Rebecca
2009-01-01
A variety of similarities between visual and haptic object recognition suggests that the two modalities may share common representations. However, it is unclear whether such common representations preserve low-level perceptual features or whether transfer between vision and haptics is mediated by high-level, abstract representations. Two experiments used a sequential shape-matching task to examine the effects of size changes on unimodal and crossmodal visual and haptic object recognition. Participants felt or saw 3D plastic models of familiar objects. The two objects presented on a trial were either the same size or different sizes and were the same shape or different but similar shapes. Participants were told to ignore size changes and to match on shape alone. In Experiment 1, size changes on same-shape trials impaired performance similarly for both visual-to-visual and haptic-to-haptic shape matching. In Experiment 2, size changes impaired performance on both visual-to-haptic and haptic-to-visual shape matching and there was no interaction between the cost of size changes and direction of transfer. Together the unimodal and crossmodal matching results suggest that the same, size-specific perceptual representations underlie both visual and haptic object recognition, and indicate that crossmodal memory for objects must be at least partly based on common perceptual representations. PMID:19956685
Preparation of donut-shaped starch microparticles by aqueous-alcoholic treatment.
Farrag, Yousof; Sabando, Constanza; Rodríguez-Llamazares, Saddys; Bouza, Rebeca; Rojas, Claudio; Barral, Luís
2018-04-25
A simple method for producing donut-shaped starch microparticles by adding ethanol to a heated aqueous slurry of corn starch is presented. The obtained microparticles were analysed by SEM, XRD and DSC. The average size of microparticles was 14.1 ± 0.3 μm with holes of an average size of 4.6 ± 0.2 μm. The crystalline arrangement of the microparticles was of a V-type single helix. The change in crystallinity from A-type of the starch granules to a more open structure, where water molecules could penetrate easier within the microparticles, substantially increased their solubility and swelling power. The microparticles exhibited a higher gelatinization temperature and a lower gelatinization enthalpy than did the starch granules. The donut-shaped microparticles were stable for more than 18 months and can be used as a carrier of an active compound or as a filler in bioplastics. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane
Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importancemore » of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. Furthermore, this undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.« less
Antifogging abilities of model nanotextures
Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane; ...
2017-02-27
Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importancemore » of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. Furthermore, this undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.« less
Antifogging abilities of model nanotextures
NASA Astrophysics Data System (ADS)
Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane; Checco, Antonio; Black, Charles T.; Rahman, Atikur; Midavaine, Thierry; Clanet, Christophe; Quéré, David
2017-06-01
Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importance of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. This undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.
Meiofaunal assemblages associated with native and non-indigenous macroalgae
NASA Astrophysics Data System (ADS)
Veiga, Puri; Sousa-Pinto, Isabel; Rubal, Marcos
2016-07-01
Meiofauna is a useful tool to detect effects of different disturbances; however, its relevance in the frame of biological invasions has been almost fully neglected. Meiofaunal assemblages associated with the invasive macroalga Sargassum muticum were studied and compared with those associated with two native macroalgae (Bifurcaria bifurcata and Chondrus crispus). We used a linear mixed model to determine the influence of habitat size (i.e. macroalgal biomass) in shaping meiofaunal assemblages. Results showed that habitat size (i.e. macroalgal biomass) shaped meiofaunal assemblages influencing its abundance, richness and structure. However, the identity of macroalga (i.e. species) appears also to play a significant role, particularly the differences of complexity among the studied species may shape their meiofaunal assemblages. Finally, the invasive macroalga appears to influence positively species richness. Our results highlight the need of including different faunal components to achieve a comprehensive knowledge on effects of invasive macroalgae and that meiofaunal assemblages may be a valuable tool to examine them.
Biotemplating pores with size and shape diversity for Li-oxygen Battery Cathodes.
Oh, Dahyun; Ozgit-Akgun, Cagla; Akca, Esin; Thompson, Leslie E; Tadesse, Loza F; Kim, Ho-Cheol; Demirci, Gökhan; Miller, Robert D; Maune, Hareem
2017-04-04
Synthetic porogens provide an easy way to create porous structures, but their usage is limited due to synthetic difficulties, process complexities and prohibitive costs. Here we investigate the use of bacteria, sustainable and naturally abundant materials, as a pore template. The bacteria require no chemical synthesis, come in variable sizes and shapes, degrade easier and are approximately a million times cheaper than conventional porogens. We fabricate free standing porous multiwalled carbon nanotube (MWCNT) films using cultured, harmless bacteria as porogens, and demonstrate substantial Li-oxygen battery performance improvement by porosity control. Pore volume as well as shape in the cathodes were easily tuned to improve oxygen evolution efficiency by 30% and double the full discharge capacity in repeated cycles compared to the compact MWCNT electrode films. The interconnected pores produced by the templates greatly improve the accessibility of reactants allowing the achievement of 4,942 W/kg (8,649 Wh/kg) at 2 A/g e (1.7 mA/cm 2 ).
Biotemplating pores with size and shape diversity for Li-oxygen Battery Cathodes
Oh, Dahyun; Ozgit-Akgun, Çagla; Akca, Esin; Thompson, Leslie E.; Tadesse, Loza F.; Kim, Ho-Cheol; Demirci, Gökhan; Miller, Robert D.; Maune, Hareem
2017-01-01
Synthetic porogens provide an easy way to create porous structures, but their usage is limited due to synthetic difficulties, process complexities and prohibitive costs. Here we investigate the use of bacteria, sustainable and naturally abundant materials, as a pore template. The bacteria require no chemical synthesis, come in variable sizes and shapes, degrade easier and are approximately a million times cheaper than conventional porogens. We fabricate free standing porous multiwalled carbon nanotube (MWCNT) films using cultured, harmless bacteria as porogens, and demonstrate substantial Li-oxygen battery performance improvement by porosity control. Pore volume as well as shape in the cathodes were easily tuned to improve oxygen evolution efficiency by 30% and double the full discharge capacity in repeated cycles compared to the compact MWCNT electrode films. The interconnected pores produced by the templates greatly improve the accessibility of reactants allowing the achievement of 4,942 W/kg (8,649 Wh/kg) at 2 A/ge (1.7 mA/cm2). PMID:28374862
Supersonic Wing Optimization Using SpaRibs
NASA Technical Reports Server (NTRS)
Locatelli, David; Mulani, Sameer B.; Liu, Qiang; Tamijani, Ali Y.; Kapania, Rakesh K.
2014-01-01
This research investigates the advantages of using curvilinear spars and ribs, termed SpaRibs, to design a supersonic aircraft wing-box in comparison to the use of classic design concepts that employ straight spars and ribs. The objective is to achieve a more efficient load-bearing mechanism and to passively control the deformation of the structure under the flight loads. Moreover, the use of SpaRibs broadens the design space and allows for natural frequencies and natural mode shape tailoring. The SpaRibs concept is implemented in a new optimization MATLAB-based framework referred to as EBF3SSWingOpt. This optimization scheme performs both the sizing and the shaping of the internal structural elements, connecting the optimizer with the analysis software. The shape of the SpaRibs is parametrically defined using the so called Linked Shape method. Each set of SpaRibs is placed in a one by one square domain of the natural space. The set of curves is subsequently transformed in the physical space for creating the wing structure geometry layout. The shape of each curve of each set is unique; however, mathematical relations link the curvature in an effort to reduce the number of design variables. The internal structure of a High Speed Commercial Transport aircraft concept developed by Boeing is optimized subjected to stress, subsonic flutter and supersonic flutter constraints. The results show that the use of the SpaRibs allows for the reduction of the aircraft's primary structure weight without violating the constraints. A weight reduction of about 15 percent is observed.
An Application Programming Interface for Synthetic Snowflake Particle Structure and Scattering Data
NASA Technical Reports Server (NTRS)
Lammers, Matthew; Kuo, Kwo-Sen
2017-01-01
The work by Kuo and colleagues on growing synthetic snowflakes and calculating their single-scattering properties has demonstrated great potential to improve the retrievals of snowfall. To grant colleagues flexible and targeted access to their large collection of sizes and shapes at fifteen (15) microwave frequencies, we have developed a web-based Application Programming Interface (API) integrated with NASA Goddard's Precipitation Processing System (PPS) Group. It is our hope that the API will enable convenient programmatic utilization of the database. To help users better understand the API's capabilities, we have developed an interactive web interface called the OpenSSP API Query Builder, which implements an intuitive system of mechanisms for selecting shapes, sizes, and frequencies to generate queries, with which the API can then extract and return data from the database. The Query Builder also allows for the specification of normalized particle size distributions by setting pertinent parameters, with which the API can also return mean geometric and scattering properties for each size bin. Additionally, the Query Builder interface enables downloading of raw scattering and particle structure data packages. This presentation will describe some of the challenges and successes associated with developing such an API. Examples of its usage will be shown both through downloading output and pulling it into a spreadsheet, as well as querying the API programmatically and working with the output in code.
Morphological changes in ultrafast laser ablation plumes with varying spot size.
Harilal, S S; Diwakar, P K; Polek, M P; Phillips, M C
2015-06-15
We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present results clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.
Optimization of self-interstitial clusters in 3C-SiC with genetic algorithm
NASA Astrophysics Data System (ADS)
Ko, Hyunseok; Kaczmarowski, Amy; Szlufarska, Izabela; Morgan, Dane
2017-08-01
Under irradiation, SiC develops damage commonly referred to as black spot defects, which are speculated to be self-interstitial atom clusters. To understand the evolution of these defect clusters and their impacts (e.g., through radiation induced swelling) on the performance of SiC in nuclear applications, it is important to identify the cluster composition, structure, and shape. In this work the genetic algorithm code StructOpt was utilized to identify groundstate cluster structures in 3C-SiC. The genetic algorithm was used to explore clusters of up to ∼30 interstitials of C-only, Si-only, and Si-C mixtures embedded in the SiC lattice. We performed the structure search using Hamiltonians from both density functional theory and empirical potentials. The thermodynamic stability of clusters was investigated in terms of their composition (with a focus on Si-only, C-only, and stoichiometric) and shape (spherical vs. planar), as a function of the cluster size (n). Our results suggest that large Si-only clusters are likely unstable, and clusters are predominantly C-only for n ≤ 10 and stoichiometric for n > 10. The results imply that there is an evolution of the shape of the most stable clusters, where small clusters are stable in more spherical geometries while larger clusters are stable in more planar configurations. We also provide an estimated energy vs. size relationship, E(n), for use in future analysis.
Time-dependent breakdown of fiber networks: Uncertainty of lifetime
NASA Astrophysics Data System (ADS)
Mattsson, Amanda; Uesaka, Tetsu
2017-05-01
Materials often fail when subjected to stresses over a prolonged period. The time to failure, also called the lifetime, is known to exhibit large variability of many materials, particularly brittle and quasibrittle materials. For example, a coefficient of variation reaches 100% or even more. Its distribution shape is highly skewed toward zero lifetime, implying a large number of premature failures. This behavior contrasts with that of normal strength, which shows a variation of only 4%-10% and a nearly bell-shaped distribution. The fundamental cause of this large and unique variability of lifetime is not well understood because of the complex interplay between stochastic processes taking place on the molecular level and the hierarchical and disordered structure of the material. We have constructed fiber network models, both regular and random, as a paradigm for general material structures. With such networks, we have performed Monte Carlo simulations of creep failure to establish explicit relationships among fiber characteristics, network structures, system size, and lifetime distribution. We found that fiber characteristics have large, sometimes dominating, influences on the lifetime variability of a network. Among the factors investigated, geometrical disorders of the network were found to be essential to explain the large variability and highly skewed shape of the lifetime distribution. With increasing network size, the distribution asymptotically approaches a double-exponential form. The implication of this result is that, so-called "infant mortality," which is often predicted by the Weibull approximation of the lifetime distribution, may not exist for a large system.
Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas
2016-12-01
In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com; Ozcan, Yusuf; Orujalipoor, Ilghar
2016-06-07
In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactivemore » growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.« less
Advanced Metal Foam Structures for Outer Space
NASA Technical Reports Server (NTRS)
Hanan, Jay; Johnson, William; Peker, Atakan
2005-01-01
A document discusses a proposal to use advanced materials especially bulk metallic glass (BMG) foams in structural components of spacecraft, lunar habitats, and the like. BMG foams, which are already used on Earth in some consumer products, are superior to conventional metal foams: BMG foams have exceptionally low mass densities and high strength-to-weight ratios and are more readily processable into strong, lightweight objects of various sizes and shapes. These and other attractive properties of BMG foams would be exploited, according to the proposal, to enable in situ processing of BMG foams for erecting and repairing panels, shells, containers, and other objects. The in situ processing could include (1) generation of BMG foams inside prefabricated deployable skins that would define the sizes and shapes of the objects thus formed and (2) thermoplastic deformation of BMG foams. Typically, the generation of BMG foams would involve mixtures of precursor chemicals that would be subjected to suitable pressure and temperature schedules. In addition to serving as structural components, objects containing or consisting of BMG foams could perform such functions as thermal management, shielding against radiation, and shielding against hypervelocity impacts of micrometeors and small debris particles.
Crystal Engineering; How molecules build solids
NASA Astrophysics Data System (ADS)
Williams, Jeffrey H.
2017-09-01
There are more than 20 million chemicals in the literature, with new materials being synthesized each week. Most of these molecules are stable, and the 3-dimensional arrangement of the atoms in the molecules, in the various solids may be determined by routine x-ray crystallography. When this is done, it is found that this vast range of molecules, with varying sizes and shapes can be accommodated by only a handful of solid structures. This limited number of architectures for the packing of molecules of all shapes and sizes, to maximize attractive intermolecular forces and minimizing repulsive intermolecular forces, allows us to develop simple models of what holds the molecules together in the solid. In this volume we look at the origin of the molecular architecture of crystals; a topic that is becoming increasingly important and is often termed, crystal engineering. Such studies are a means of predicting crystal structures, and of designing crystals with particular properties by manipulating the structure and interaction of large molecules. That is, creating new crystal architectures with desired physical characteristics in which the molecules pack together in particular architectures; a subject of particular interest to the pharmaceutical industry.
Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver
NASA Astrophysics Data System (ADS)
Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas
2016-03-01
In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.
Linking Mechanics and Statistics in Epidermal Tissues
NASA Astrophysics Data System (ADS)
Kim, Sangwoo; Hilgenfeldt, Sascha
2015-03-01
Disordered cellular structures, such as foams, polycrystals, or living tissues, can be characterized by quantitative measurements of domain size and topology. In recent work, we showed that correlations between size and topology in 2D systems are sensitive to the shape (eccentricity) of the individual domains: From a local model of neighbor relations, we derived an analytical justification for the famous empirical Lewis law, confirming the theory with experimental data from cucumber epidermal tissue. Here, we go beyond this purely geometrical model and identify mechanical properties of the tissue as the root cause for the domain eccentricity and thus the statistics of tissue structure. The simple model approach is based on the minimization of an interfacial energy functional. Simulations with Surface Evolver show that the domain statistics depend on a single mechanical parameter, while parameter fluctuations from cell to cell play an important role in simultaneously explaining the shape distribution of cells. The simulations are in excellent agreement with experiments and analytical theory, and establish a general link between the mechanical properties of a tissue and its structure. The model is relevant to diagnostic applications in a variety of animal and plant tissues.
Weighing trees with lasers: advances, challenges and opportunities
Boni Vicari, M.; Burt, A.; Calders, K.; Lewis, S. L.; Raumonen, P.; Wilkes, P.
2018-01-01
Terrestrial laser scanning (TLS) is providing exciting new ways to quantify tree and forest structure, particularly above-ground biomass (AGB). We show how TLS can address some of the key uncertainties and limitations of current approaches to estimating AGB based on empirical allometric scaling equations (ASEs) that underpin all large-scale estimates of AGB. TLS provides extremely detailed non-destructive measurements of tree form independent of tree size and shape. We show examples of three-dimensional (3D) TLS measurements from various tropical and temperate forests and describe how the resulting TLS point clouds can be used to produce quantitative 3D models of branch and trunk size, shape and distribution. These models can drastically improve estimates of AGB, provide new, improved large-scale ASEs, and deliver insights into a range of fundamental tree properties related to structure. Large quantities of detailed measurements of individual 3D tree structure also have the potential to open new and exciting avenues of research in areas where difficulties of measurement have until now prevented statistical approaches to detecting and understanding underlying patterns of scaling, form and function. We discuss these opportunities and some of the challenges that remain to be overcome to enable wider adoption of TLS methods. PMID:29503726
Effects of Complex System Structure and External Field in Opinion Formation
NASA Astrophysics Data System (ADS)
Guo, Long; Cai, Xu
Around us, the society structure and external field, such as government policy, the newspaper, the internet and other mass media, play a special role in shaping the attitudes, beliefs and public opinion. For studying the role of the society structure and the external field, we propose a new opinion model based on the former models. With computer simulations of opinion dynamics, we find that the smaller the clustering coefficient and the society size, the easier the consensus phase is reached and other interesting results.
Development of laser-guided precision sprayers for tree crop applications
USDA-ARS?s Scientific Manuscript database
Tree crops in nurseries and orchards have great variations in shapes, sizes, canopy densities and gaps between in-row trees. The variability requires future sprayers to be flexible to spray the amount of chemicals that can match tree structures. A precision air-assisted sprayer was developed to appl...
There are several factors which influence the corrosion rate of lead, which in turn morphs into different crystal shapes and sizes. Some of the important factors are: alkalinity, pH, calcium, orthophosphate and silica. Low to moderate alkalinity decreases corrosion rates, while ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzun, Suzan; Ilavsky, Jan; Padua, Graciela Wild
Zein, a protein of corn, has an amphiphilic molecule capable of self-assembly into distinctly different structures. In this work, ultra-small-angle X-ray scattering (USAXS) was applied to investigate the formation of self-assembled zein structures in binary solvent systems of ethanol and water. Our study included observing structural changes due to aging. Three hierarchical structures were identified in zein-solvent systems, molecular zein 2D films, believed to be formed by zein rods assembled first into one-dimensional fibers and then into two-dimensional films, and 3D spherical aggregates. Aging did not change the size or shape of primary units, but promoted their self-assembly into intermediatemore » 2D structures and shaped 3D structures into well19 defined spheres. We found that the rheological parameters, consistency index (K) and behavior index (n), storage and loss moduli (G’ and G”) were also measured. K and n, changed markedly with aging, from nearly Newtonian low consistency fresh samples to highly viscous pseudoplastic aged samples. G’ and G” increased with aging for all samples reflecting increased interactions among zein self-assembled structures. Furthermore, viscoelastic parameters indicated that zein dispersions formed gels upon aging. It was observed that USAX reported on molecular scale self-assembly processes, while rheological measurements reported on the macroscale interaction between self-assembled particles. Raman spectra suggested that α-helix to β-sheet transformations prompted zein self-assembly, which influenced the size and morphology of molecular assemblies and ultimately the rheological properties of zein dispersions.« less
Kikugawa, Gota; Ando, Shotaro; Suzuki, Jo; Naruke, Yoichi; Nakano, Takeo; Ohara, Taku
2015-01-14
In the present study, molecular dynamics (MD) simulations on the monatomic Lennard-Jones liquid in a periodic boundary system were performed in order to elucidate the effect of the computational domain size and shape on the self-diffusion coefficient measured by the system. So far, the system size dependence in cubic computational domains has been intensively investigated and these studies showed that the diffusion coefficient depends linearly on the inverse of the system size, which is theoretically predicted based on the hydrodynamic interaction. We examined the system size effect not only in the cubic cell systems but also in rectangular cell systems which were created by changing one side length of the cubic cell with the system density kept constant. As a result, the diffusion coefficient in the direction perpendicular to the long side of the rectangular cell significantly increases more or less linearly with the side length. On the other hand, the diffusion coefficient in the direction along the long side is almost constant or slightly decreases. Consequently, anisotropy of the diffusion coefficient emerges in a rectangular cell with periodic boundary conditions even in a bulk liquid simulation. This unexpected result is of critical importance because rectangular fluid systems confined in nanospace, which are present in realistic nanoscale technologies, have been widely studied in recent MD simulations. In order to elucidate the underlying mechanism for this serious system shape effect on the diffusion property, the correlation structures of particle velocities were examined.
Structural characterization of casein micelles: shape changes during film formation.
Gebhardt, R; Vendrely, C; Kulozik, U
2011-11-09
The objective of this study was to determine the effect of size-fractionation by centrifugation on the film structure of casein micelles. Fractionated casein micelles in solution were asymmetrically distributed with a small distribution width as measured by dynamic light scattering. Films prepared from the size-fractionated samples showed a smooth surface in optical microscopy images and a homogeneous microstructure in atomic force micrographs. The nano- and microstructure of casein films was probed by micro-beam grazing incidence small angle x-ray scattering (μGISAXS). Compared to the solution measurements, the sizes determined in the film were larger and broadly distributed. The measured GISAXS patterns clearly deviate from those simulated for a sphere and suggest a deformation of the casein micelles in the film. © 2011 IOP Publishing Ltd
Chewing on the trees: Constraints and adaptation in the evolution of the primate mandible.
Meloro, Carlo; Cáceres, Nilton Carlos; Carotenuto, Francesco; Sponchiado, Jonas; Melo, Geruza Leal; Passaro, Federico; Raia, Pasquale
2015-07-01
Chewing on different food types is a demanding biological function. The classic assumption in studying the shape of feeding apparatuses is that animals are what they eat, meaning that adaptation to different food items accounts for most of their interspecific variation. Yet, a growing body of evidence points against this concept. We use the primate mandible as a model structure to investigate the complex interplay among shape, size, diet, and phylogeny. We find a weak but significant impact of diet on mandible shape variation in primates as a whole but not in anthropoids and catarrhines as tested in isolation. These clades mainly exhibit allometric shape changes, which are unrelated to diet. Diet is an important factor in the diversification of strepsirrhines and platyrrhines and a phylogenetic signal is detected in all primate clades. Peaks in morphological disparity occur during the Oligocene (between 37 and 25 Ma) supporting the notion that an adaptive radiation characterized the evolution of South American monkeys. In all primate clades, the evolution of mandible size is faster than its shape pointing to a strong effect of allometry on ecomorphological diversification in this group. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Freeze-Casting Produces a Graphene Oxide Aerogel with a Radial and Centrosymmetric Structure.
Wang, Chunhui; Chen, Xiong; Wang, Bin; Huang, Ming; Wang, Bo; Jiang, Yi; Ruoff, Rodney S
2018-05-14
We report the assembly of graphene oxide (G-O) building blocks into a vertical and radially aligned structure by a bidirectional freeze-casting approach. The crystallization of water to ice assembles the G-O sheets into a structure, a G-O aerogel whose local structure mimics turbine blades. The centimeter-scale radiating structure in this aerogel has many channels whose width increases with distance from the center. This was achieved by controlling the formation of the ice crystals in the aqueous G-O dispersion that grew radially in the shape of lamellae during freezing. Because the shape and size of ice crystals is influenced by the G-O sheets, different additives (ethanol, cellulose nanofibers, and chitosan) that can form hydrogen bonds with H 2 O were tested and found to affect the interaction between the G-O and formation of ice crystals, producing ice crystals with different shapes. A G-O/chitosan aerogel with a spiral pattern was also obtained. After chemical reduction of G-O, our aerogel exhibited elasticity and absorption capacity superior to that of graphene aerogels with "traditional" pore structures made by conventional freeze-casting. This methodology can be expanded to many other configurations and should widen the use of G-O (and reduced G-O and "graphenic") aerogels.
Synthesis And Characterization Of Reduced Size Ferrite Reinforced Polymer Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borah, Subasit; Bhattacharyya, Nidhi S.
2008-04-24
Small sized Co{sub 1-x}Ni{sub x}Fe{sub 2}O{sub 4} ferrite particles are synthesized by chemical route. The precursor materials are annealed at 400, 600 and 800 C. The crystallographic structure and phases of the samples are characterized by X-ray diffraction (XRD). The annealed ferrite samples crystallized into cubic spinel structure. Transmission Electron Microscopy (TEM) micrographs show that the average particle size of the samples are <20 nm. Particulate magneto-polymer composite materials are fabricated by reinforcing low density polyethylene (LDPE) matrix with the ferrite samples. The B-H loop study conducted at 10 kHz on the toroid shaped composite samples shows reduction in magneticmore » losses with decrease in size of the filler sample. Magnetic losses are detrimental for applications of ferrite at high powers. The reduction in magnetic loss shows a possible application of Co-Ni ferrites at high microwave power levels.« less
Bony pelvic canal size and shape in relation to body proportionality in humans.
Kurki, Helen K
2013-05-01
Obstetric selection acts on the female pelvic canal to accommodate the human neonate and contributes to pelvic sexual dimorphism. There is a complex relationship between selection for obstetric sufficiency and for overall body size in humans. The relationship between selective pressures may differ among populations of different body sizes and proportions, as pelvic canal dimensions vary among populations. Size and shape of the pelvic canal in relation to body size and shape were examined using nine skeletal samples (total female n = 57; male n = 84) from diverse geographical regions. Pelvic, vertebral, and lower limb bone measurements were collected. Principal component analyses demonstrate pelvic canal size and shape differences among the samples. Male multivariate variance in pelvic shape is greater than female variance for North and South Africans. High-latitude samples have larger and broader bodies, and pelvic canals of larger size and, among females, relatively broader medio-lateral dimensions relative to low-latitude samples, which tend to display relatively expanded inlet antero-posterior (A-P) and posterior canal dimensions. Differences in canal shape exist among samples that are not associated with latitude or body size, suggesting independence of some canal shape characteristics from body size and shape. The South Africans are distinctive with very narrow bodies and small pelvic inlets relative to an elongated lower canal in A-P and posterior lengths. Variation in pelvic canal geometry among populations is consistent with a high degree of evolvability in the human pelvis. Copyright © 2013 Wiley Periodicals, Inc.
Chiari, Ylenia; Glaberman, Scott; Tarroso, Pedro; Caccone, Adalgisa; Claude, Julien
2016-07-01
Oceanic islands are often inhabited by endemic species that have undergone substantial morphological evolutionary change due to processes of multiple colonizations from various source populations, dispersal, and local adaptation. Galápagos marine iguanas are an example of an island endemic exhibiting high morphological diversity, including substantial body size variation among populations and sexes, but the causes and magnitude of this variation are not well understood. We obtained morphological measurements from marine iguanas throughout their distribution range. These data were combined with genetic and local environmental data from each population to investigate the effects of evolutionary history and environmental conditions on body size and shape variation and sexual dimorphism. Our results indicate that body size and shape are highly variable among populations. Sea surface temperature and island perimeter, but not evolutionary history as depicted by phylogeographic patterns in this species, explain variation in body size among populations. Conversely, evolutionary history, but not environmental parameters or island size, was found to influence variation in body shape among populations. Finally, in all populations except one, we found strong sexual dimorphism in body size and shape in which males are larger, with higher heads than females, while females have longer heads than males. Differences among populations suggest that plasticity and/or genetic adaptation may shape body size and shape variation in marine iguanas. This study will help target future investigations to address the contribution of plasticity versus genetic adaptation on size and shape variation in marine iguanas.
Huang, Ke; Wang, Dekai; Duan, Penggen; Zhang, Baolan; Xu, Ran; Li, Na; Li, Yunhai
2017-09-01
Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1-1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain-like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1-1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP-WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain-like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Shape, size, and maturity trajectories of the human ilium.
Wilson, Laura A B; Ives, Rachel; Cardoso, Hugo F V; Humphrey, Louise T
2015-01-01
Morphological traits of the ilium have consistently been more successful for juvenile sex determination than have techniques applied to other skeletal elements, however relatively little is known about the ontogeny and maturation of size and shape dimorphism in the ilium. We use a geometric morphometric approach to quantitatively separate the ontogeny of size and shape of the ilium, and analyze interpopulation differences in the onset, rate and patterning of sexual dimorphism. We captured the shape of three traits for a total of 191 ilia from Lisbon (Portugal) and London (UK) samples of known age and sex (0-17 years). Our results indicate that a) there is a clear dissociation between the ontogeny of size and shape in males and females, b) the ontogeny of size and shape are each defined by non-linear trajectories that differ between the sexes, c) there are interpopulation differences in ontogenetic shape trajectories, which point to population-specific patterning in the attainment of sexual dimorphism, and d) the rate of shape maturation and size maturation is typically higher for females than males. Male and female shape differences in the ilium are brought about by trajectory divergence. Differences in size and shape maturation between the sexes suggest that maturity may confound our ability to discriminate between the sexes by introducing variation not accounted for in age-based groupings. The accuracy of sex determination methods using the ilium may be improved by the use of different traits for particular age groups, to capture the ontogenetic development of shape in both sexes. © 2014 Wiley Periodicals, Inc.
Drawing skill is related to the efficiency of encoding object structure.
Perdreau, Florian; Cavanagh, Patrick
2014-01-01
Accurate drawing calls on many skills beyond simple motor coordination. A good internal representation of the target object's structure is necessary to capture its proportion and shape in the drawing. Here, we assess two aspects of the perception of object structure and relate them to participants' drawing accuracy. First, we assessed drawing accuracy by computing the geometrical dissimilarity of their drawing to the target object. We then used two tasks to evaluate the efficiency of encoding object structure. First, to examine the rate of temporal encoding, we varied presentation duration of a possible versus impossible test object in the fovea using two different test sizes (8° and 28°). More skilled participants were faster at encoding an object's structure, but this difference was not affected by image size. A control experiment showed that participants skilled in drawing did not have a general advantage that might have explained their faster processing for object structure. Second, to measure the critical image size for accurate classification in the periphery, we varied image size with possible versus impossible object tests centered at two different eccentricities (3° and 8°). More skilled participants were able to categorise object structure at smaller sizes, and this advantage did not change with eccentricity. A control experiment showed that the result could not be attributed to differences in visual acuity, leaving attentional resolution as a possible explanation. Overall, we conclude that drawing accuracy is related to faster encoding of object structure and better access to crowded details.
Drawing skill is related to the efficiency of encoding object structure
Perdreau, Florian; Cavanagh, Patrick
2014-01-01
Accurate drawing calls on many skills beyond simple motor coordination. A good internal representation of the target object's structure is necessary to capture its proportion and shape in the drawing. Here, we assess two aspects of the perception of object structure and relate them to participants' drawing accuracy. First, we assessed drawing accuracy by computing the geometrical dissimilarity of their drawing to the target object. We then used two tasks to evaluate the efficiency of encoding object structure. First, to examine the rate of temporal encoding, we varied presentation duration of a possible versus impossible test object in the fovea using two different test sizes (8° and 28°). More skilled participants were faster at encoding an object's structure, but this difference was not affected by image size. A control experiment showed that participants skilled in drawing did not have a general advantage that might have explained their faster processing for object structure. Second, to measure the critical image size for accurate classification in the periphery, we varied image size with possible versus impossible object tests centered at two different eccentricities (3° and 8°). More skilled participants were able to categorise object structure at smaller sizes, and this advantage did not change with eccentricity. A control experiment showed that the result could not be attributed to differences in visual acuity, leaving attentional resolution as a possible explanation. Overall, we conclude that drawing accuracy is related to faster encoding of object structure and better access to crowded details. PMID:25469216
NASA Astrophysics Data System (ADS)
Mieloszyk, Magdalena; Krawczuk, Marek; Skarbek, Lukasz; Ostachowicz, Wieslaw
2011-07-01
This paper presents an application of neural networks to determinate the level of activation of shape memory alloy actuators of an adaptive wing. In this concept the shape of the wing can be controlled and altered thanks to the wing design and the use of integrated shape memory alloy actuators. The wing is assumed as assembled from a number of wing sections that relative positions can be controlled independently by thermal activation of shape memory actuators. The investigated wing is employed with an array of Fibre Bragg Grating sensors. The Fibre Bragg Grating sensors with combination of a neural network have been used to Structural Health Monitoring of the wing condition. The FBG sensors are a great tool to control the condition of composite structures due to their immunity to electromagnetic fields as well as their small size and weight. They can be mounted onto the surface or embedded into the wing composite material without any significant influence on the wing strength. The paper concentrates on analysis of the determination of the twisting moment produced by an activated shape memory alloy actuator. This has been analysed both numerically using the finite element method by a commercial code ABAQUS® and experimentally using Fibre Bragg Grating sensor measurements. The results of the analysis have been then used by a neural network to determine twisting moments produced by each shape memory alloy actuator.
Rose, Christopher S; Murawinski, Danny; Horne, Virginia
2015-06-01
Understanding skeletal diversification involves knowing not only how skeletal rudiments are shaped embryonically, but also how skeletal shape changes throughout life. The pharyngeal arch (PA) skeleton of metamorphosing amphibians persists largely as cartilage and undergoes two phases of development (embryogenesis and metamorphosis) and two phases of growth (larval and post-metamorphic). Though embryogenesis and metamorphosis produce species-specific features of PA cartilage shape, the extents to which shape and size change during growth and metamorphosis remain unaddressed. This study uses allometric equations and thin-plate spline, relative warp and elliptic Fourier analyses to describe shape and size trajectories for the ventral PA cartilages of the frog Xenopus laevis in tadpole and frog growth and metamorphosis. Cartilage sizes scale negatively with body size in both growth phases and cartilage shapes scale isometrically or close to it. This implies that most species-specific aspects of cartilage shape arise in embryogenesis and metamorphosis. Contributions from growth are limited to minor changes in lower jaw (LJ) curvature that produce relative gape narrowing and widening in tadpoles and frogs, respectively, and most cartilages becoming relatively thinner. Metamorphosis involves previously unreported decreases in cartilage size as well as changes in cartilage shape. The LJ becomes slightly longer, narrower and more curved, and the adult ceratohyal emerges from deep within the resorbing tadpole ceratohyal. This contrast in shape and size changes suggests a fundamental difference in the underlying cellular pathways. The observation that variation in PA cartilage shape decreases with tadpole growth supports the hypothesis that isometric growth is required for the metamorphic remodeling of PA cartilages. It also supports the existence of shape-regulating mechanisms that are specific to PA cartilages and that resist local adaptation and phenotypic plasticity. © 2015 Anatomical Society.
Rose, Christopher S; Murawinski, Danny; Horne, Virginia
2015-01-01
Understanding skeletal diversification involves knowing not only how skeletal rudiments are shaped embryonically, but also how skeletal shape changes throughout life. The pharyngeal arch (PA) skeleton of metamorphosing amphibians persists largely as cartilage and undergoes two phases of development (embryogenesis and metamorphosis) and two phases of growth (larval and post-metamorphic). Though embryogenesis and metamorphosis produce species-specific features of PA cartilage shape, the extents to which shape and size change during growth and metamorphosis remain unaddressed. This study uses allometric equations and thin-plate spline, relative warp and elliptic Fourier analyses to describe shape and size trajectories for the ventral PA cartilages of the frog Xenopus laevis in tadpole and frog growth and metamorphosis. Cartilage sizes scale negatively with body size in both growth phases and cartilage shapes scale isometrically or close to it. This implies that most species-specific aspects of cartilage shape arise in embryogenesis and metamorphosis. Contributions from growth are limited to minor changes in lower jaw (LJ) curvature that produce relative gape narrowing and widening in tadpoles and frogs, respectively, and most cartilages becoming relatively thinner. Metamorphosis involves previously unreported decreases in cartilage size as well as changes in cartilage shape. The LJ becomes slightly longer, narrower and more curved, and the adult ceratohyal emerges from deep within the resorbing tadpole ceratohyal. This contrast in shape and size changes suggests a fundamental difference in the underlying cellular pathways. The observation that variation in PA cartilage shape decreases with tadpole growth supports the hypothesis that isometric growth is required for the metamorphic remodeling of PA cartilages. It also supports the existence of shape-regulating mechanisms that are specific to PA cartilages and that resist local adaptation and phenotypic plasticity. PMID:25913729
Joint source based analysis of multiple brain structures in studying major depressive disorder
NASA Astrophysics Data System (ADS)
Ramezani, Mahdi; Rasoulian, Abtin; Hollenstein, Tom; Harkness, Kate; Johnsrude, Ingrid; Abolmaesumi, Purang
2014-03-01
We propose a joint Source-Based Analysis (jSBA) framework to identify brain structural variations in patients with Major Depressive Disorder (MDD). In this framework, features representing position, orientation and size (i.e. pose), shape, and local tissue composition are extracted. Subsequently, simultaneous analysis of these features within a joint analysis method is performed to generate the basis sources that show signi cant di erences between subjects with MDD and those in healthy control. Moreover, in a cross-validation leave- one-out experiment, we use a Fisher Linear Discriminant (FLD) classi er to identify individuals within the MDD group. Results show that we can classify the MDD subjects with an accuracy of 76% solely based on the information gathered from the joint analysis of pose, shape, and tissue composition in multiple brain structures.
Research on Bell-Shaped Vibratory Angular Rate Gyro's Character of Resonator
Su, Zhong; Fu, Mengyin; Li, Qing; Liu, Ning; Liu, Hong
2013-01-01
Bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG) and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator's mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG. PMID:23575033
NASA Astrophysics Data System (ADS)
Kyazym-Zade, A. G.; Salmanov, V. M.; Guseinov, A. G.; Mamedov, R. M.; Salmanova, A. A.; Akhmedova, F. Sh.
2018-02-01
The successive ionic layer adsorption and reaction (SILAR) method is used to prepare InSe thin films and InSe nanoparticles. Shapes and sizes of the obtained nanoparticles are investigated using a scanning electron microscope and an atomic force microscope. The main parameters of the examined structures, nanoparticle sizes (4-20 nm), and band gap ( E g = 1.60 eV) for nanoparticles with the least sizes are determined. Superfast (1.5·10-8 s) photocurrent relaxation and stimulated emission with line half-width of 8 Å have been observed upon exposure to laser radiation.
The effect of size and composition on structural transitions in monometallic nanoparticles
NASA Astrophysics Data System (ADS)
Rossi, Kevin; Pavan, Luca; Soon, YeeYeen; Baletto, Francesca
2018-02-01
Predicting the morphological stability of nanoparticles is an essential step towards the accurate modelling of their chemophysical properties. Here we investigate solid-solid transitions in monometallic clusters of 0.5-2.0 nm diameter at finite temperatures and we report the complex dependence of the rearrangement mechanism on the nanoparticle's composition and size. The concerted Lipscomb's Diamond-Square-Diamond mechanisms which connects the decahedral or the cuboctahedral to the icosahedral basins, take place only below a material dependent critical size above which surface diffusion prevails and leads to low-symmetry and defected shapes still belonging to the initial basin.
Forewing structure of the solitary bee Osmia bicornis developing on heavy metal pollution gradient.
Szentgyörgyi, Hajnalka; Moroń, Dawid; Nawrocka, Anna; Tofilski, Adam; Woyciechowski, Michał
2017-10-01
Wild bees in natural conditions can develop under various environmental stressors. Heavy metal pollution of the environment is one of the most widely studied stressors in insects, yet its effect is poorly described in bees. We have measured how pollution of the environment along a zinc, cadmium and lead contamination gradient in Poland affects bee development, using red mason bees (Osmia bicornis) as a model and their forewing asymmetry measures to assess possible developmental instabilities. We have also described wing asymmetry measures in the red mason bee-an important managed pollinator species-for the first time. The development of bee larvae in a contaminated environment did not affect forewing asymmetry measures, but it did lead to a negative correlation of wing size with contamination in females. Bees also showed a clear change in their asymmetry measures between various seasons, suggesting other, unknown environmental factors affecting wing asymmetry more than pollution. Sexes were found to have different forewing shape and size, larger females having larger forewings than the smaller males. The direction of size asymmetry was in favour of the left side in both sexes and also shape differences between the left and right wings showed similar tendencies in males and females. The levels of forewing shape and size asymmetry were smaller in females, making them the more symmetrical sex.
Structure of IgG and IgY molecules in ribosome-antibody complexes as studied by electron microscopy.
Noll, F; Lutsch, G; Bielka, H
1982-03-01
The overall shape and dimensions of IgG (rabbit) and IgY (chicken) antibodies against ribosomal proteins have been studied in electron micrographs of ribosome-antibody complexes. The antibodies appear as Y-shaped molecules with an angle of about 90 degrees between their Fab arms. The length of one Fab arm amounts to about 10 nm. No differences between the IgG and IgY molecules could be detected electron microscopically. The data obtained on the shape of IgG and IgY correlate with those of earlier electron microscopic studies while the determined size of the Fab arms is in the range found by scattering methods.
Geometric shapes inversion method of space targets by ISAR image segmentation
NASA Astrophysics Data System (ADS)
Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui
2017-11-01
The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.
Design and fabrication of nano-imprint templates using unique pattern transforms and primitives
NASA Astrophysics Data System (ADS)
MacDonald, Susan; Mellenthin, David; Rentzsch, Kevin; Kramer, Kenneth; Ellenson, James; Hostetler, Tim; Enck, Ron
2005-11-01
Increasing numbers of MEMS, photonic, and integrated circuit manufacturers are investigating the use of Nano-imprint Lithography or Step and Flash Imprint Lithography (SFIL) as a lithography choice for making various devices and products. Their main interests in using these technologies are the lack of aberrations inherent in traditional optical reduction lithography, and the relative low cost of imprint tools. Since imprint templates are at 1X scale, the small sizes of these structures have necessitated the use of high-resolution 50KeV, and 100KeV e-beam lithography tools to build these templates. For MEMS and photonic applications, the structures desired are often circles, arches, and other non-orthogonal shapes. It has long been known that both 50keV, and especially 100keV e-beam lithography tools are extremely accurate, and can produce very high resolution structures, but the trade off is long write times. The main drivers in write time are shot count and stage travel. This work will show how circles and other non-orthogonal shapes can be produced with a 50KeV Variable Shaped Beam (VSB) e-beam lithography system using unique pattern transforms and primitive shapes, while keeping the shot count and write times under control. The quality of shapes replicated into the resist on wafer using an SFIL tool will also be presented.
[Design and application of a cake-shaping apparatus for drug-separated moxibustion].
Zhu, Ai-Jun; Lu, Xiao-Dong
2008-08-01
Acupuncturist makes herbal cakes with traditional manual way, with such disadvantages as slow in making, varying in thickness and size of the cake. When the patients are treated with medical cake-separated moxibustion, they will be unevenly affected by the heat and the patient easily suffers from burning. These hinder clinically wide application of cake-separated moxibustion. With practice of many years, the authors design and make a kind of manual cake-shaping apparatus which can rapidly and conveniently make uniform medical cake, with simple technique, ingenious structure and normal material.
Method of fabricating a scalable nanoporous membrane filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem
A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter ofmore » the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.« less
Monodisperse Multidimensional Nanostructures via Centrifugal Separation
NASA Astrophysics Data System (ADS)
Shin, Yu Jin
Anisotropic nanomaterials, including zero-dimensional metallic nanoparticles (MNPs), one-dimensional single-walled carbon nanotubes (SWCNTs), and two-dimensional few-layer black phosphorous (FL-P) exhibit interesting structure-dependent properties that could be exploited in biomedicine, plasmonics, and optoelectronics. In this thesis, centrifugation sorting of these nanomaterials is utilized for structure refinement, investigation of structure-dependent optical response, and applications in biomedical imaging and plasmonics. Nobel NMPs show unique shape- and size-dependent optical properties. Controlled synthetic methods are developed to manipulate the structure of these NMPs, but intrinsically produce dispersions of polydisperse NPs with various shape and size, and synthetic byproducts. Here, we describe a facile strategy for separating small (edge length <100 nm) faceted gold NPs: rhombic dodecahedra (RD) and obtuse triangular bipyramids (BPs), which form simultaneously during synthesis but are hard to separate via commercial filters. By utilizing centrifugation of the as-synthesized mixture in a shallow density gradient centrifugation (DGC), we are able to isolate a high purity of BPs (>80%) and subsequently achieve a 2.5 fold enhancement in refractive index sensitivity, comparable to the unsorted mixture. This shallow DGC approach is robust and reliable, and therefore can be applied to other metal nanostructures for concomitant improvements in plasmonic properties and applications. Using the identical separation strategy in the previous study, we are able to enrich gold nanostars as a function of branch number. In particular, we explore different variants of density gradient media to ensure compatibility with the star shape and colloid stability. We determine that sucrose is compatible with nanostars stability and surface functionalizaton. The refined population of gold stars are functionalized with Gd(III)-DNA to act as MRI contrast agents, and thus enables us to investigate how populations of nanostars with different branch numbers contribute to the relaxivity of surface bound Gd(III)-DNA. It is shown that the increased relaxivity of DNA-Gd star is correlated with increased number of star branches, not with increased size of the stars. Therefore, shape is a new parameter which can be tuned in the design of NP-based MRI contrast agent. These findings can also improve the performance of functionalized anisotropic nanoconjugates which have potential for applications such as lowering detection limits for sensors and diagnostics, or enabling new modes of self-assembly. Finally, we have broadened the scope of DGC to other dimensional nanomaterials: 1D-SWCNTs and 2D-FL-P. Despite their tunable and structure-dependent optical properties, intrinsic structural heterogeneity and poor quantum efficiency limit their potential applications. Therefore, DGC is employed to separate the SWCNTs and FL-P by length and the number of layers, respectively, thereby incorporating them into optical cavity structures for enhancing their luminescence properties. These fundamental studies of low-dimensional nanomaterials assist in the design process for optoelectronic device fabrication.
Su, Miaoda; Liu, Mei; Liu, Limei; Sun, Yunyu; Li, Mingtong; Wang, Dalei; Zhang, Hui; Dong, Bin
2015-11-03
We report the utilization of the polydimethylsiloxane template to construct polymer-based autonomous micromotors with various structures. Solid or hollow micromotors, which consist of polycaprolactone and platinum nanoparticles, can be obtained with controllable sizes and shapes. The resulting micromotor can not only be self-propelled in solution based on the bubble propulsion mechanism in the presence of the hydrogen peroxide fuel, but also exhibit structure-dependent motion behavior. In addition, the micromotors can exhibit various functions, ranging from fluorescence, magnetic control to cargo transportation. Since the current method can be extended to a variety of organic and inorganic materials, we thus believe it may have great potential in the fabrication of different functional micromotors for diverse applications.
NASA Technical Reports Server (NTRS)
Ritman, E. L.; Sturm, R. E.; Wood, E. H.
1973-01-01
An operator interactive video system for the measurement of roentgen angiographically outlined structures is described. Left ventricular volume and three-dimensional shapes are calculated from up to 200 pairs of diameters measured from ventriculograms at the rate of 60 pairs of biplane images per second. The accuracy and reproducibility of volumes calculated by the system were established by analysis of roentgenograms of inanimate objects of known volume and by comparison of left ventricular stroke volumes calculated by the system with the stroke volumes calculated by an indicator-dilution technique and an aortic root electromagnetic flowmeter. Computer-generated display of the large amounts of data obtained by the videometry system is described.
NASA Astrophysics Data System (ADS)
Ryashin, N. S.; Malikov, A. G.; Shikalov, V. S.; Gulyaev, I. P.; Kuchumov, B. M.; Klinkov, S. V.; Kosarev, V. F.; Orishich, A. M.
2017-10-01
The paper presents results of the cold spraying of aluminum bronze coatings on substrates profiled with WC/Ni tracks obtained by laser cladding. Reinforcing cermet frames shaped as grids with varied mesh sizes were clad on stainless steel substrates using a CO2 laser machine "Siberia" (ITAM SB RAS, Russia). As a result, surfaces/substrates with heterogeneous shape, composition, and mechanical properties were obtained. Aluminum bronze coatings were deposited from 5lF-NS powder (Oerlikon Metco, Switzerland) on those substrates using cold spraying equipment (ITAM SB RAS). Data of profiling, microstructure diagnostics, EDS analysis, and mechanical tests of obtained composites is reported. Surface relief of the sprayed coatings dependence on substrate structure has been demonstrated.
NASA Astrophysics Data System (ADS)
Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.
2018-04-01
Core/shell BaSnO3/ZnO (BS-ZO) nanostructures were prepared by oxalate precipitation method and wet-chemical method. BaSnO3 (BSO) cubic perovskite structure and ZnO hexagonal wurtzite structure were confirmed by X-ray diffraction (XRD). The crystallite sizes is 23 nm, 29 nm and 27 nm for BSO, ZnO and BS-ZO, respectively. Chunk-shape and cuboids morphology observed from scanning electron microscopy (SEM) analysis. The magnetic properties were studied by VSM for bare and core-shell nano systems and the room temperature ferromagnetism observed for core-shell nanostructures. The BSO/ZnO shows enhanced coercivity and saturated magnetization as compared with BSO and ZnO nanostructures.
Shape-morphing composites with designed micro-architectures
NASA Astrophysics Data System (ADS)
Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.
2016-06-01
Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zare, Bijan; Faramarzi, Mohammad Ali; Sepehrizadeh, Zargham
Highlights: ► Biosynthesis of rod shape tellurium nanoparticles with a hexagonal crystal structure. ► Extraction procedure for isolation of tellurium nanoparticles from Bacillus sp. BZ. ► Extracted tellurium nanoparticles have good bactericidal activity against some bacteria. -- Abstract: In this study, a tellurium-transforming Bacillus sp. BZ was isolated from the Caspian Sea in northern Iran. The isolate was identified by various tests and 16S rDNA analysis, and then used to prepare elemental tellurium nanoparticles. The isolate was subsequently used for the intracellular biosynthesis of elemental tellurium nanoparticles. The biogenic nanoparticles were released by liquid nitrogen and purified by an n-octylmore » alcohol water extraction system. The shape, size, and composition of the extracted nanoparticles were characterized. The transmission electron micrograph showed rod-shaped nanoparticles with dimensions of about 20 nm × 180 nm. The energy dispersive X-ray and X-ray diffraction spectra respectively demonstrated that the extracted nanoparticles consisted of only tellurium and have a hexagonal crystal structure. This is the first study to demonstrate a biological method for synthesizing rod-shaped elemental tellurium by a Bacillus sp., its extraction and its antibacterial activity against different clinical isolates.« less
Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs
Campbell, Kate M.; Kouris, Angela; England, Whitney; Anderson, Rika E.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Whitaker, Rachel J.
2017-01-01
Abiotic and biotic forces shape the structure and evolution of microbial populations. We investigated forces that shape the spatial and temporal population structure of Sulfolobus islandicus by comparing geochemical and molecular analysis from seven hot springs in five regions sampled over 3 years in Yellowstone National Park. Through deep amplicon sequencing, we uncovered 148 unique alleles at two loci whose relative frequency provides clear evidence for independent populations in different hot springs. Although geography controls regional geochemical composition and population differentiation, temporal changes in population were not explained by corresponding variation in geochemistry. The data suggest that the influence of extinction, bottleneck events and/or selective sweeps within a spring and low migration between springs shape these populations. We suggest that hydrologic events such as storm events and surface snowmelt runoff destabilize smaller hot spring environments with smaller populations and result in high variation in the S. islandicus population over time. Therefore, physical abiotic features such as hot spring size and position in the landscape are important factors shaping the stability and diversity of the S. islandicus meta-population within Yellowstone National Park.
Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.
Crisp, Ryan W; Panthani, Matthew G; Rance, William L; Duenow, Joel N; Parilla, Philip A; Callahan, Rebecca; Dabney, Matthew S; Berry, Joseph J; Talapin, Dmitri V; Luther, Joseph M
2014-09-23
We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths.
NASA Astrophysics Data System (ADS)
Mele, Daniela; Dioguardi, Fabio
2018-03-01
Acknowledging the grain size dependency of shape is important in volcanology, in particular when dealing with tephra produced and emplaced during and after explosive volcanic eruptions. A systematic measurement of the tridimensional shape of vesicular pyroclasts of Campi Flegrei fallout deposits (Agnano-Monte Spina, Astroni 6 and Averno 2 eruptions) varying in size from 8.00 to 0.016 mm has been carried out by means of X-Ray Microtomography. Data show that particle shape changes with size, especially for juvenile vesicular clasts, since it is dependent on the distribution and size of vesicles that contour the external clast outline. Two drag laws that include sphericity in the formula were used for estimating the dependency of settling velocity on shape. Results demonstrate that it is not appropriate to assume a size-independent shape for vesicular particles, in contrast with the approach commonly employed when simulating the ash dispersion in the atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mnasri, Najib; Materials, Environment and Energy Laboratory; Charnay, Clarence
Silver-derivatized silica particles possessing a non-spherical morphology and surface plasmon resonance properties have been achieved. Nanometer-sized silica rods with uniformly sized mesopore channels were prepared first making use of alkyltrimethyl ammonium surfactants as porogens and the 1:0.10 tetraethyl orthosilicate (TEOS) : 3-aminopropyltriethoxysilane (APTES) mixture as a silicon source. Silica rods were subsequently functionalized by introducing elongated silver nanoparticles within the intra-particle mesopores thanks to the AgNO{sub 3} reduction procedure based on the action of hemiaminal groups previously located on the mesopore walls. The textural and structural features of the samples were inferred from the combined characterization studies including SEM andmore » TEM microscopy, nitrogen adsorption-desorption at 77 K, powder XRD in the small- and wide-angle region, as well as UV–visible spectroscopy. {sup 129}Xe NMR spectroscopy appeared particularly useful to obtain a correct information about the porous structure of rod-shaped silica particles and the silver incorporation within their intra-particle mesopores. - Highlights: • Mesoporous monodisperse submicron-sized silica rods were achieved. • Silver nanoparticles were located lengthwise within the intra-particle mesopores. • Textural and plasmonic properties of particles studied by {sup 129}Xe NMR and UV–Vis.« less
[The comparative morphology of Trichinella spiralis and Trichinella pseudospiralis].
Skvortsova, F K; Veretennikova, N L
1997-01-01
The comparative study of the morphology of invasive larvae and mature males and females T. spiralis and T. pseudospiralis at the head end of the parasites has revealed 14 papillae which are located in 3 circles and 2 which are placed bilaterally, 2 amphidae, and a lanceolar stiletto with a spicular cutting edge. There are no differences in the structure of the heads of these two Trichinella species. The larval cuticle is decorated only with cross folds while longitudinal small-sized folds which are arranged in regular rows appeared in mature species. The vulva in females is located at the levels of a fifth of the body from the head, it is slit-like and oval, that in T. pseudospiralis is situated at the cuticular projection. The anus in T. pseudospiralis larvae is as a cross oval slit, that in adult females is as a hemisphere, and in adult males it is coincident with the copulation pore. As for the structure of the pseudobursa, differences are found in the size and shape of copulation processes, in the arrangement of pre- and postanal papillae against the cloaca, in the size of the formed cuticular projections in T. spiralis, in the shape of the cloacal hole. In the unscrewed copulatory bell, it opens transversely in T. spiralis and vertically in T. pseudospiralis.
Kraan, Casper; Aarts, Geert; Van der Meer, Jaap; Piersma, Theunis
2010-06-01
Ongoing statistical sophistication allows a shift from describing species' spatial distributions toward statistically disentangling the possible roles of environmental variables in shaping species distributions. Based on a landscape-scale benthic survey in the Dutch Wadden Sea, we show the merits of spatially explicit generalized estimating equations (GEE). The intertidal macrozoobenthic species, Macoma balthica, Cerastoderma edule, Marenzelleria viridis, Scoloplos armiger, Corophium volutator, and Urothoe poseidonis served as test cases, with median grain-size and inundation time as typical environmental explanatory variables. GEEs outperformed spatially naive generalized linear models (GLMs), and removed much residual spatial structure, indicating the importance of median grain-size and inundation time in shaping landscape-scale species distributions in the intertidal. GEE regression coefficients were smaller than those attained with GLM, and GEE standard errors were larger. The best fitting GEE for each species was used to predict species' density in relation to median grain-size and inundation time. Although no drastic changes were noted compared to previous work that described habitat suitability for benthic fauna in the Wadden Sea, our predictions provided more detailed and unbiased estimates of the determinants of species-environment relationships. We conclude that spatial GEEs offer the necessary methodological advances to further steps toward linking pattern to process.
Synthesis of silver nanoparticles by silver salt reduction and its characterization
NASA Astrophysics Data System (ADS)
Muzamil, Muhammad; Khalid, Naveed; Danish Aziz, M.; Aun Abbas, S.
2014-06-01
The wet chemical method route by metal salt reduction has been used to synthesize nanoparticles, using silver nitrate as an inorganic salt, aldehyde as a reducing agent and amino acid as a catalyst. During the reaction aldehyde oxidizes to carboxylic acid and encapsulates the silver nanoparticles to prevent agglomeration and provide barrier in the growth of particle. The existing work produces particles using lab grade chemical, here the presented work is by using industrial grade chemicals to make the process more cost & time effective. The nano silver powder has been studied for their formation, particle size, shape & compositional analysis using Scanning Electron Microscope (SEM) equipped with EDS. The particles size distributions were analyzed by Laser Particle Analyzer (LPA), structure & morphological analysis using x-ray diffraction (XRD) and Fourier-transform-infrared Spectroscopy (FTIR) confirmed the stabilization of particles by coating of carboxylic group. These studies infer that the particles are mostly spherical in shape and have an average size between 70 to 350 nm.
Growth of Pd Nanoclusters on Single-Layer Graphene on Cu(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soy, Esin; Guisinger, Nathan P.; Trenary, Michael
We report scanning tunneling microscopy results on the nucleation and growth of Pd nanoclusters on a single layer of graphene on the Cu(111) surface. The shape, organization, and structural evolution of the Pd nanoclusters were investigated using two different growth methods, continuous and stepwise. The size and shape of the formed nanoclusters were found to greatly depend on the growth technique used. The size and density of spherical Pd nanoclusters increased with increasing coverage during stepwise deposition as a result of coarsening of existing clusters and continued nucleation of new clusters. In contrast, continuous deposition gave rise to well-defined triangularmore » Pd clusters as a result of anisotropic growth on the graphene surface. Exposure to ethylene caused a decrease in the size of the Pd clusters. As a result, this is attributed to the exothermic formation of ethylidyne on the cluster surfaces and an accompanying weakening of the Pd–Pd bonding.« less
Ingrosso, Chiara; Panniello, AnnaMaria; Comparelli, Roberto; Curri, Maria Lucia; Striccoli, Marinella
2010-01-01
The unique size- and shape-dependent electronic properties of nanocrystals (NCs) make them extremely attractive as novel structural building blocks for constructing a new generation of innovative materials and solid-state devices. Recent advances in material chemistry has allowed the synthesis of colloidal NCs with a wide range of compositions, with a precise control on size, shape and uniformity as well as specific surface chemistry. By incorporating such nanostructures in polymers, mesoscopic materials can be achieved and their properties engineered by choosing NCs differing in size and/or composition, properly tuning the interaction between NCs and surrounding environment. In this contribution, different approaches will be presented as effective opportunities for conveying colloidal NC properties to nanocomposite materials for micro and nanofabrication. Patterning of such nanocomposites either by conventional lithographic techniques and emerging patterning tools, such as ink jet printing and nanoimprint lithography, will be illustrated, pointing out their technological impact on developing new optoelectronic and sensing devices.
Growth of Pd Nanoclusters on Single-Layer Graphene on Cu(111)
Soy, Esin; Guisinger, Nathan P.; Trenary, Michael
2017-07-05
We report scanning tunneling microscopy results on the nucleation and growth of Pd nanoclusters on a single layer of graphene on the Cu(111) surface. The shape, organization, and structural evolution of the Pd nanoclusters were investigated using two different growth methods, continuous and stepwise. The size and shape of the formed nanoclusters were found to greatly depend on the growth technique used. The size and density of spherical Pd nanoclusters increased with increasing coverage during stepwise deposition as a result of coarsening of existing clusters and continued nucleation of new clusters. In contrast, continuous deposition gave rise to well-defined triangularmore » Pd clusters as a result of anisotropic growth on the graphene surface. Exposure to ethylene caused a decrease in the size of the Pd clusters. As a result, this is attributed to the exothermic formation of ethylidyne on the cluster surfaces and an accompanying weakening of the Pd–Pd bonding.« less
Effect of molecular shape on rotation under severe confinement
Dhiman, Indu; Bhowmik, Debsindhu; Shrestha, Utsab R.; ...
2018-01-31
Orientational structure and dynamics of molecules is known to be affected by confinement in space comparable in size to the molecule itself. ZSM-5 with porous channels of ≈0.55 nm is such a porous medium, which offers a strict spatial confinement on low molecular weight hydrocarbons. An important factor that determines these properties is the shape of the confined molecules. In this work, we employed molecular dynamics simulation to study the orientational structure and dynamics of four molecules that differ in shape but have similar kinetic diameters and moments of inertia, confined in ZSM-5. The effect of molecular shape on themore » orientational structure and dynamics of propane, acetonitrile, acetaldehyde and acetone in ZSM-5 is studied by means of probing the differences in the orientational distribution of molecules in the ZSM-5 channels, and extracting time scales of the decay of correlation functions related to rotational motion. Orientational correlation functions of all the four molecules exhibit two regimes of rotational motion. While the short time regime represents free rotation of the molecules before they collide with the pore walls, the long time orientational jumps driven by inter-channel migrations give rise to a very slow varying second regime. Of the molecules studied, orientational structure and dynamics of propane is found to be least affected by confinement under ZSM-5, whereas charge and shape asymmetry of other molecules makes their interchannel migration-driven rotation slow. The time scales involved in the rotational motion for the molecules studied are compared with similar studies reported in literature. Lastly, this study reveals the important role that molecular shape plays in the behavior of confined molecules.« less
Effect of molecular shape on rotation under severe confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhiman, Indu; Bhowmik, Debsindhu; Shrestha, Utsab R.
Orientational structure and dynamics of molecules is known to be affected by confinement in space comparable in size to the molecule itself. ZSM-5 with porous channels of ≈0.55 nm is such a porous medium, which offers a strict spatial confinement on low molecular weight hydrocarbons. An important factor that determines these properties is the shape of the confined molecules. In this work, we employed molecular dynamics simulation to study the orientational structure and dynamics of four molecules that differ in shape but have similar kinetic diameters and moments of inertia, confined in ZSM-5. The effect of molecular shape on themore » orientational structure and dynamics of propane, acetonitrile, acetaldehyde and acetone in ZSM-5 is studied by means of probing the differences in the orientational distribution of molecules in the ZSM-5 channels, and extracting time scales of the decay of correlation functions related to rotational motion. Orientational correlation functions of all the four molecules exhibit two regimes of rotational motion. While the short time regime represents free rotation of the molecules before they collide with the pore walls, the long time orientational jumps driven by inter-channel migrations give rise to a very slow varying second regime. Of the molecules studied, orientational structure and dynamics of propane is found to be least affected by confinement under ZSM-5, whereas charge and shape asymmetry of other molecules makes their interchannel migration-driven rotation slow. The time scales involved in the rotational motion for the molecules studied are compared with similar studies reported in literature. Lastly, this study reveals the important role that molecular shape plays in the behavior of confined molecules.« less
A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint.
Li, Xiaoniu; Yao, Zhiyuan; Yang, Mojian
2017-06-01
A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint is proposed in this paper. The motor is comprised of a V-shaped transducer, a slider, a clamp, and a base. The V-shaped transducer consists of two piezoelectric beams connected through a flexible joint to form an appropriate coupling angle. The V-shaped motor is operated in the coupled longitudinal-bending mode. Longitudinal and bending movements are transferred by the flexible joint between the two beams. Compared with the coupled longitudinal-bending mode of the single piezoelectric beam or the symmetrical and asymmetrical modes of the previous V-shaped transducer, the coupled longitudinal-bending mode of the V-shaped transducer with a flexible joint provides higher vibration efficiency and more convenient mode conformance adjustment. A finite element model of the V-shaped transducer is created to numerically study the influence of geometrical parameters and to determine the final geometrical parameters. In this paper, three prototypes were then fabricated and experimentally investigated. The modal test results match well with the finite element analysis. The motor mechanical output characteristics of three different coupling angles θ indicate that V-90 (θ = 90°) is the optimal angle. The mechanical output experiments conducted using the V-90 prototype (Size: 59.4 mm × 30.7 mm × 4 mm) demonstrate that the maximum unloaded speed is 1.2 m/s under a voltage of 350 Vpp, and the maximum output force is 15 N under a voltage of 300 Vpp. The proposed novel V-shaped linear ultrasonic motor has a compact size and a simple structure with a large thrust-weight ratio (0.75 N/g) and high speed.
High-energy ball milling technique for ZnO nanoparticles as antibacterial material
Salah, Numan; Habib, Sami S; Khan, Zishan H; Memic, Adnan; Azam, Ameer; Alarfaj, Esam; Zahed, Nabeel; Al-Hamedi, Salim
2011-01-01
Nanoparticles of zinc oxide (ZnO) are increasingly recognized for their utility in biological applications. In this study, the high-energy ball milling (HEBM) technique was used to produce nanoparticles of ZnO from its microcrystalline powder. Four samples were ball milled for 2, 10, 20, and 50 hours, respectively. The structural and optical modifications induced in the ‘as synthesized’ nanomaterials were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and photoluminescence emission spectra (PL). SEM and TEM results show a gradual decrease in particle size from around 600 to ∼30 nm, with increased milling time. The initial microstructures had random shapes, while the final shape became quite spherical. XRD analysis showed ZnO in a hexagonal structure, broadening in the diffracted peaks and going from larger to smaller particles along with a relaxation in the lattice constant c. The value of c was found to increase from 5.204 to 5.217 Å with a decrease in particle size (600 to ∼30 nm). PL result showed a new band at around 365 nm, whose intensity is found to increase as the particles size decreases. These remarkable structural and optical modifications induced in ZnO nanoparticles might prove useful for various applications. The increase in c value is an important factor for increasing the antibacterial effects of ZnO, suggesting that the HEBM technique is quite suitable for producing these nanoparticles for this purpose. PMID:21720499
Delimitation of terrestrial impact craters by way of pseudotachylytic rock distribution
NASA Technical Reports Server (NTRS)
Spray, John G.
1993-01-01
The determination of the shape and size of terrestrial impact craters is problematic, yet is critical to understanding cratering mechanics and for scaling bolide mass, volume, and impact velocity with crater size and target response. The problem is particularly difficult in older geological terrains (e.g. Precambrian) which are more likely to have suffered post-impact deformation and hence distortion of the original structure and/or where weathering may have partly removed or obscured its original shape. Traditionally, a number of features are used to assist us in determining the shape and size of an impact structure. These include the following: (1) the occurrence of faults, especially those disposed concentrically relative to the crater--the outermost ring faults being interpreted as indicating a viable minimum diameter; and (2) the development of so-called breccias, some of which are also associated with faults (e.g. the Sudbury Breccia developed within the target rocks of the Sudbury Structure of Onta rio, Canada). 'Breccia' is not a satisfactory term because a number of breccia-types exist at impact sites (e.g. fall-back breccias and in-situ brecciated target material). Of relevance to crater diameter determination is the recognition of discrete zones and fault- and shock-related pseudotachylyte. Pseudotachylyte is a rock type comprising a fine-grained, usually dark matrix containing clasts of minerals and/or rock derived from the country rock target material. It origin is normally attributed to high-speed slip (including vibration) along a slip surface (i.e. fault) or to the passage of a shock wave through the host material. The clasts can occur as angular fragments (i.e. like a breccia), but are more commonly developed as rounded to sub-rounded fragments. Significantly, the scale of these pseudotachylytes can range from sub-millimeter thick veinlets to dyke-like bodies up to 1 km or more thick. It is the latter, larger occurrence which has been referred to as 'breccia.' The smaller-sized occurrence is generally not recognized in the field, nor is it traditionally associated with its larger counterpart.
Xuezhu Xu; Fei Liu; Long Jiang; J.Y. Zhu; Darrin Haagenson; Dennis P. Wiesenborn
2013-01-01
Both cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) are nanoscale cellulose fibers that have shown reinforcing effects in polymer nanocomposites. CNCs and CNFs are different in shape, size and composition. This study systematically compared their morphologies, crystalline structure, dispersion properties in polyethylene oxide (PEO) matrix, interactions...
Crown ratio influences allometric scaling in trees
Annikki Makela; Harry T. Valentine
2006-01-01
Allometric theories suggest that the size and shape of organisms follow universal rules, with a tendency toward quarter-power scaling. In woody plants, however, structure is influenced by branch death and shedding, which leads to decreasing crown ratios, accumulation of heartwood, and stem and branch tapering. This paper examines the impacts on allometric scaling of...
ERIC Educational Resources Information Center
Johnson, Letitia K.; Ryan, Michael
In this course guide to the teaching of urban ecology, six learning activities on the following topics are outlined: (1) city location and growth; (2) an in-depth study of New Orleans; (3) city shape and structure; (4) size and spacing of cities; (5) cities with special functions; (6) local community study. Educational objectives for each activity…
Band Instrument Selection and Assignment: A Review of the Literature
ERIC Educational Resources Information Center
Millican, J. Si
2017-01-01
This review of the literature examines the process of matching students with band instruments as presented in academic research journals and practitioner publications. While some directors may evaluate the potential impact of students' physical characteristics such as lip size and shape, teeth and jaw structure, body build, and so forth, other…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, J.X.; Wei, B.Q.; Li, D.D.
The evolution of microstructure in bainite during graphitization annealing at 680 °C of Jominy-quenched bars of an Al-Si bearing medium carbon (0.4C wt%) steel has been studied and compared with that in martensite by using light, scanning and transmission electron microscopy. The results show that the graphitization process in bainite is different from that in martensite in many aspects such as the initial carbon state, the behavior of cementite, the nucleation-growth feature and kinetics of formation of graphite spheroids during graphitization annealing, and the shape, size and distribution of these graphite spheroids. The fact that the graphitization in bainite canmore » produce more homogeneous graphite spheroids with more spherical shape and finer size in a shorter annealing time without the help of preexisting coring particles implies that bainite should be a better starting structure than martensite for making graphitic steel. - Highlights: • This article presents a microstructural characterization of formation of graphite spheroids in bainite. • Nucleation and growth characteristics of graphite spheroids formed in bainite and martensite are compared. • Bainite should be a better starting structure for making graphitic steel as results show.« less
Vogel, Michael W; Vegh, Viktor; Reutens, David C
2013-05-01
This paper investigates optimal placement of a localized single-axis magnetometer for ultralow field (ULF) relaxometry in view of various sample shapes and sizes. The authors used finite element method for the numerical analysis to determine the sample magnetic field environment and evaluate the optimal location of the single-axis magnetometer. Given the different samples, the authors analysed the magnetic field distribution around the sample and determined the optimal orientation and possible positions of the sensor to maximize signal strength, that is, the power of the free induction decay. The authors demonstrate that a glass vial with flat bottom and 10 ml volume is the best structure to achieve the highest signal out of samples studied. This paper demonstrates the importance of taking into account the combined effects of sensor configuration and sample parameters for signal generation prior to designing and constructing ULF systems with a single-axis magnetometer. Through numerical simulations the authors were able to optimize structural parameters, such as sample shape and size, sensor orientation and location, to maximize the measured signal in ultralow field relaxometry.
Optical properties of truncated Au nanocages with different size and shape
NASA Astrophysics Data System (ADS)
Chen, Qin; Qi, Hong; Ren, Ya-Tao; Sun, Jian-Ping; Ruan, Li-Ming
2017-06-01
The hollow nanostructures are conducive to applications including drug delivery, energy storage and conversion, and catalysis. In the present work, a versatile type of Au nanoparticles, i.e. nanocage with hollow interior, was studied thoroughly. Simulation of the optical properties of nanocages with different sizes and shapes was presented, which is essential for tuning the localized surface plasmon resonance peak. The edge length, side length of triangle, and wall thickness were used as structural parameters of truncated Au nanocage. The dependence of absorption efficiency, resonant wavelength, and absorption quantum yield on the structural parameters were discussed. Meanwhile, the applications of absorption quantum yield in biomedical imaging and laser induced thermal therapy were investigated. It was found that the phenomenon of multipolar plasmon resonances exists on truncated Au nanocage. Furthermore, the electric field distribution at different resonant wavelengths was also investigated. It is found that the electromagnetic field corresponds to the dipolar mode in an individual nanocage is largely distributed at the corners. Whereas, the electromagnetic field corresponds to the multipolar region is mainly located in the internal corners and edges.
Morphological changes in ultrafast laser ablation plumes with varying spot size
Harilal, S. S.; Diwakar, P. K.; Polek, M. P.; ...
2015-06-04
We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present resultsmore » clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.« less
Influence of emulsifiers on the characteristics of polyurethane structures used as drug carrier
2013-01-01
Background Emulsifiers have a significant role in the emulsion polymerization by reducing the interfacial tension thus increasing the stability of colloidal dispersions of polymer nanostructures. This study evaluates the impact of four emulsifiers on the characteristics of polyurethane hollow structures used as drug delivery system. Results Polyurethane (PU) structures with high stability and sizes ranging from nano- to micro-scale were obtained by interfacial polyaddition combined with spontaneous emulsification. The pH of PU aqueous solutions (0.1% w/w) was slightly acidic, which is acceptable for products intended to be used on human skin. Agglomerated structures with irregular shapes were observed by scanning electron microscopy. The synthesized structures have melting points between 245-265°C and reveal promising results in different evaluations (TEWL, mexametry) on murine skin. Conclusions In this study hollow PU structures of reduced noxiousness were synthesized, their size and stability being influenced by emulsifiers. Such structures could be used in the pharmaceutical field as future drug delivery systems. PMID:23575277
Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages
Slater, Anna G.; Reiss, Paul S.; Pulido, Angeles; ...
2017-06-20
The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal-organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groupsmore » into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure-energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy-structure-function maps.« less
Ensemble modeling of very small ZnO nanoparticles.
Niederdraenk, Franziska; Seufert, Knud; Stahl, Andreas; Bhalerao-Panajkar, Rohini S; Marathe, Sonali; Kulkarni, Sulabha K; Neder, Reinhard B; Kumpf, Christian
2011-01-14
The detailed structural characterization of nanoparticles is a very important issue since it enables a precise understanding of their electronic, optical and magnetic properties. Here we introduce a new method for modeling the structure of very small particles by means of powder X-ray diffraction. Using thioglycerol-capped ZnO nanoparticles with a diameter of less than 3 nm as an example we demonstrate that our ensemble modeling method is superior to standard XRD methods like, e.g., Rietveld refinement. Besides fundamental properties (size, anisotropic shape and atomic structure) more sophisticated properties like imperfections in the lattice, a size distribution as well as strain and relaxation effects in the particles and-in particular-at their surface (surface relaxation effects) can be obtained. Ensemble properties, i.e., distributions of the particle size and other properties, can also be investigated which makes this method superior to imaging techniques like (high resolution) transmission electron microscopy or atomic force microscopy, in particular for very small nanoparticles. For the particles under study an excellent agreement of calculated and experimental X-ray diffraction patterns could be obtained with an ensemble of anisotropic polyhedral particles of three dominant sizes, wurtzite structure and a significant relaxation of Zn atoms close to the surface.
Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, Anna G.; Reiss, Paul S.; Pulido, Angeles
The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal-organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groupsmore » into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure-energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy-structure-function maps.« less
Mihut, Adriana M.; Stenqvist, Björn; Lund, Mikael; Schurtenberger, Peter; Crassous, Jérôme J.
2017-01-01
We have seen a considerable effort in colloid sciences to copy Nature’s successful strategies to fabricate complex functional structures through self-assembly. This includes attempts to design colloidal building blocks and their intermolecular interactions, such as creating the colloidal analogs of directional molecular interactions, molecular recognition, host-guest systems, and specific binding. We show that we can use oppositely charged thermoresponsive particles with complementary shapes, such as spherical and bowl-shaped particles, to implement an externally controllable lock-and-key self-assembly mechanism. The use of tunable electrostatic interactions combined with the temperature-dependent size and shape and van der Waals interactions of these building blocks provides an exquisite control over the selectivity and specificity of the interactions and self-assembly process. The dynamic nature of the mechanism allows for reversibly cycling through various structures that range from weakly structured dense liquids to well-defined molecule-shaped clusters with different configurations through variations in temperature and ionic strength. We link this complex and dynamic self-assembly behavior to the relevant molecular interactions, such as screened Coulomb and van der Waals forces and the geometrical complementarity of the two building blocks, and discuss our findings in the context of the concepts of adaptive chemistry recently introduced to molecular systems. PMID:28929133
NASA Astrophysics Data System (ADS)
Shofiah, Siti; Muflihatun, Suharyadi, Edi
2016-04-01
Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica encapsulated nickel ferrite (NiFe2O4) nanoparticles comparable sizes have been studied in detail. NiFe2O4 were prepared by co-precipitation methods. Crystalline size is 4.8 ± 0.2 nm became 1.6 ± 0.1 nm and 10.6 ± 0.3 nm after encapsulated PEG-4000 and silica, respectively. Transmission electron microscopy (TEM) showed that encapsulated PEG-4000 and silica decreased agglomeration, controlled shape of nanoparticles more spherical and dispersed. Coercivity of NiFe2O4 was 46.2 Oe and then increased after encapsulated PEG-4000 to 47.8 Oe can be related to the multi-domains of NiFe2O4 as influence the crystalline size was decreased. Meanwhile, after encapsulated silica, coercivity of NiFe2O4 became 93 Oe as influence the crystalline size was increased at single-domains due to its strong shape anisotropy. Magnetization value decreased from 5.7 emu/g to 5.3 emu/g and 3.6 emu/g after encapsulated PEG-4000 and silica, respectively. The remanent magnetization showed decreasing when saturation magnetization decreased, and conversely. However, it also depends on presence of α-Fe2O3 phases and their material non magnetic of encapsulating. Based on the result, The magnetic properties exhibit a strong dependence on the crystalline size as influence PEG-4000 and silica encapsulated NiFe2O4 nanoparticles.
Size and shape of soil humic acids estimated by viscosity and molecular weight.
Kawahigashi, Masayuki; Sumida, Hiroaki; Yamamoto, Kazuhiko
2005-04-15
Ultrafiltration fractions of three soil humic acids were characterized by viscometry and high performance size-exclusion chromatography (HPSEC) in order to estimate shapes and hydrodynamic sizes. Intrinsic viscosities under given solute/solvent/temperature conditions were obtained by extrapolating the concentration dependence of reduced viscosities to zero concentration. Molecular mass (weight average molecular weight (M (w)) and number average molecular weight (M (n))) and hydrodynamic radius (R(H)) were determined by HPSEC using pullulan as calibrant. Values of M (w) and M (n) ranged from 15 to 118 x 10(3) and from 9 to 50 x 10(3) (g mol(-1)), respectively. Polydispersity, as indicated by M (w)/M (n), increased with increasing filter size from 1.5 to 2.4. The hydrodynamic radii (R(H)) ranged between 2.2 and 6.4 nm. For each humic acid, M (w) and [eta] were related. Mark-Houwink coefficients calculated on the basis of the M (w)-[eta] relationships suggested restricted flexible chains for two of the humic acids and a branched structure for the third humic acid. Those structures probably behave as hydrated sphere colloids in a good solvent. Hydrodynamic radii of fractions calculated from [eta] using Einstein's equation, which is applicable to hydrated sphere colloids, ranged from 2.2 to 7.1 nm. These dimensions are fit to the size of nanospaces on and between clay minerals and micropores in soil particle aggregates. On the other hand, the good agreement of R(H) values obtained by applying Einstein's equation with those directly determined by HPSEC suggests that pullulan is a suitable calibrant for estimation of molecular mass and size of humic acids by HPSEC.
Polilov, Alexey A; Shmakov, Alexey S
2016-09-01
A new set of data on the internal and external structure of the adult and larva of the thrips Heliothrips haemorrhoidalis (Bouché, 1833) is presented. The structure of the internal systems of this thrips was revealed using modern methods of 3D computer modelling. The changes in shape and relative size are discussed as an outcome of miniaturization in comparison to the supposed ancestor of this species. The layout of the internal systems of thrips is compared to those of other insects similar in size: beetles of the families Ptiliidae and Corylophidae and wasps of the families Mymaridae and Trichogrammatidae. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Guangyu; Jiang, Xin; Wang, Enge
2003-04-18
We report the synthesis of tubular graphite cones using a chemical vapor deposition method. The cones have nanometer-sized tips, micrometer-sized roots, and hollow interiors with a diameter ranging from about 2 to several tens of nanometers. The cones are composed of cylindrical graphite sheets; a continuous shortening of the graphite layers from the interior to the exterior makes them cone-shaped. All of the tubular graphite cones have a faceted morphology. The constituent graphite sheets have identical chiralities of a zigzag type across the entire diameter, imparting structural control to tubular-based carbon structures. The tubular graphite cones have potential for use as tips for scanning probe microscopy, but with greater rigidity and easier mounting than currently used carbon nanotubes.
Costales, Aurora; Blanco, M A; Francisco, E; Pendas, A Martín; Pandey, Ravindra
2006-03-09
We report the results of a theoretical study of AlnNn (n=7-16) clusters that is based on density functional theory. We will focus on the evolution of structural and electronic properties with the cluster size in the stoichiometric AlN clusters considered. The results reveal that the structural and electronic properties tend to evolve toward their respective bulk limits. The rate of evolution is, however, slow due to the hollow globular shape exhibited by the clusters, which introduces large surface effects that dominate the properties studied. We will also discuss the changes induced upon addition of an extra electron to the respective neutral clusters.
Body size and allometric variation in facial shape in children.
Larson, Jacinda R; Manyama, Mange F; Cole, Joanne B; Gonzalez, Paula N; Percival, Christopher J; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Kimwaga, Emmanuel A; Mathayo, Joshua; Spitzmacher, Jared A; Rolian, Campbell; Jamniczky, Heather A; Weinberg, Seth M; Roseman, Charles C; Klein, Ophir; Lukowiak, Ken; Spritz, Richard A; Hallgrimsson, Benedikt
2018-02-01
Morphological integration, or the tendency for covariation, is commonly seen in complex traits such as the human face. The effects of growth on shape, or allometry, represent a ubiquitous but poorly understood axis of integration. We address the question of to what extent age and measures of size converge on a single pattern of allometry for human facial shape. Our study is based on two large cross-sectional cohorts of children, one from Tanzania and the other from the United States (N = 7,173). We employ 3D facial imaging and geometric morphometrics to relate facial shape to age and anthropometric measures. The two populations differ significantly in facial shape, but the magnitude of this difference is small relative to the variation within each group. Allometric variation for facial shape is similar in both populations, representing a small but significant proportion of total variation in facial shape. Different measures of size are associated with overlapping but statistically distinct aspects of shape variation. Only half of the size-related variation in facial shape can be explained by the first principal component of four size measures and age while the remainder associates distinctly with individual measures. Allometric variation in the human face is complex and should not be regarded as a singular effect. This finding has important implications for how size is treated in studies of human facial shape and for the developmental basis for allometric variation more generally. © 2017 Wiley Periodicals, Inc.
Barlenses and X-shaped features compared: two manifestations of boxy/peanut bulges
NASA Astrophysics Data System (ADS)
Laurikainen, E.; Salo, H.
2017-02-01
Aims: We study the morphological characteristics of boxy/peanut-shaped bulges. In particular, we are interested to determine whether most of the flux associated with bulges in galaxies with masses similar to those of the Milky Way at redshift z 0 might belong to the vertically thick inner part of the bar, in a similar manner as in the Milky Way itself. At high galaxy inclinations, these structures are observed as boxy/peanut/X-shaped features, and when the view is near to face-on, they are observed as barlenses. We also study the possibility that bulges in some fraction of unbarred galaxies might form in a similar manner as the bulges in barred galaxies. Methods: We used the Spitzer Survey of Stellar Structure in Galaxies (S4G) and the Near-IR S0 galaxy Survey (NIRS0S) to compile complete samples of galaxies with barlenses (N = 85) and X-shaped features (N = 88). A sample of unbarred galaxies (N = 41) is also selected. For all 214 galaxies unsharp mask images were created, used to recognize the X-shaped features and to measure their linear sizes. To detect possible boxy isophotes (using the B4-parameter), we also performed an isophotal analysis for the barlens galaxies. We use recently published N-body simulations: the models that exhibit boxy/peanut/X/barlens morphologies are viewed from isotropically chosen directions that cover the full range of galaxy inclinations in the sky. The synthetic images were analyzed in a similar manner as the observations. Results: This is the first time that the observed properties of barlenses and X-shaped features are directly compared across a wide range of galaxy inclinations. A comparison with the simulation models shows that the differences in their apparent sizes, a/rbar ≳ 0.5 for barlenses and a/rbar ≲ 0.5 for X-shapes, can be explained by projection effects. Observations at various inclinations are consistent with intrinsic abl ≈ aX ≈ 0.5rbar: here intrinsic size means the face-on semimajor axis length for bars and barlenses, and the semilength of the X-shape when the bar is viewed exactly edge-on. While X-shapes are quite common at intermediate galaxy inclinations (for I = 40°-60° their frequency is about half that of barlenses), they are seldom observed at smaller inclinations. This is consistent with our simulation models, which have a small compact classical bulge that produces a steep inner rotation slope, whereas bulgeless shallow rotation curve models predict that X-shapes should be visible even in a face-on geometry. The steep rotation curve models are also consistent with the observed trend that B4 is positive at low inclination and with negative values for I ≳ 40°-60°; this implies boxy isophotes. In total, only about one quarter of the barlenses (with I ≤ 60°) show boxy isophotes. Conclusions: Our analyses are consistent with the idea that barlenses and X-shaped features are physically the same phenomenon. However, the observed nearly round face-on barlens morphology is expected only when at least a few percent of the disk mass is located in a central component, within a region much smaller than the size of the barlens itself. Barlenses contribute to secular evolution of galaxies, and might even act as a transition phase between barred and unbarred galaxies. We also discuss that the wide range of stellar population ages obtained for the photometric bulges in the literature are consistent with our interpretation.
Andrews, Ross N; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan
2017-06-01
Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS-SAXS-WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS-SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low- q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian-MaxEnt analysis methods to data exhibiting structure factor effects and low- q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni-Al-Si alloy.
Andrews, Ross N.; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan
2017-01-01
Intermetallic γ′ precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy’s precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low-q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy. PMID:28656039
Fibrous structure in GaSb surfaces irradiated with fast Cu cluster ions
NASA Astrophysics Data System (ADS)
Tsuchida, Hidetsugu; Nitta, Noriko; Yanagida, Yusuke; Okumura, Yuya; Murase, Ryu
2018-04-01
The effect of fast cluster irradiation on the formation of fibrous structures is investigated for single crystal GaSb surfaces irradiated by Cun+ ions (n = 1-3) with an energy of 0.4 MeV/atom at ion fluences up to 5 × 1015 cm-2. We study the cluster size dependence on the growth of fibrous network structures. With increasing cluster size, the shape of the fiber changed from rod-like to spherical. To quantitatively evaluate this cluster effect, a fiber diameter d in rod or spherical portion is examined as a function of ion fluence Φ and cluster size n. We find that the fiber diameter nonlinearly increases and follows the relation d ∝nα×Φ , with α≈2 . This evidently implies that the amount of defects generated by n-sized cluster bombardments varies as n2 for n ≤3 . Cluster ion irradiation enhances the defect generation owing to the overlap between cascades of individual cluster constituents and is therefore effective for the growth of nanofibers.
Portable microwave instrument for non-destructive evaluation of structural characteristics
Bible, Don W.; Crutcher, Richard I.; Sohns, Carl W.; Maddox, Stephen R.
1995-01-01
A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member.
Effect of surface hydrophobicity on the function of the immobilized biomineralization protein Mms6
Liu, Xunpei; Zhang, Honghu; Nayak, Srikanth; ...
2015-08-13
Magnetotactic bacteria produce magnetic nanocrystals with uniform shapes and sizes in nature, which has inspired in vitro synthesis of uniformly sized magnetite nanocrystals under mild conditions. Mms6, a biomineralization protein from magnetotactic bacteria with a hydrophobic N-terminal domain and a hydrophilic C-terminal domain, can promote formation of magnetite nanocrystals in vitro with well-defined shape and size in gels under mild conditions. Here we investigate the role of surface hydrophobicity on the ability of Mms6 to template magnetite nanoparticle formation on surfaces. Our results confirmed that Mms6 can form a protein network structure on a monolayer of hydrophobic octadecanethiol (ODT)-coated goldmore » surfaces and facilitate magnetite nanocrystal formation with uniform sizes close to those seen in nature, in contrast to its behavior on more hydrophilic surfaces. We propose that this hydrophobicity effect might be due to the amphiphilic nature of the Mms6 protein and its tendency to incorporate the hydrophobic N-terminal domain into the hydrophobic lipid bilayer environment of the magnetosome membrane, exposing the hydrophilic C-terminal domain that promotes biomineralization. Supporting this hypothesis, the larger and well-formed magnetite nanoparticles were found to be preferentially located on ODT surfaces covered with Mms6 as compared to control samples, as characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy studies. A C-terminal domain mutant of this protein did not form the same network structure as wild-type Mms6, suggesting that the network structure is important for the magnetite nanocrystal formation. This article provides valuable insights into the role of surface hydrophilicity on the action of the biomineralization protein Mms6 to synthesize magnetic nanocrystals and provides a facile route to controlling bioinspired nanocrystal synthesis in vitro.« less
Du, Chengxiao; Wei, Tongbo; Zheng, Haiyang; Wang, Liancheng; Geng, Chong; Yan, Qingfeng; Wang, Junxi; Li, Jinmin
2013-10-21
Size-controllable p-GaN hexagonal nanopyramids (HnPs)-photonic crystal (PhC) structures were selectively grown on flat p-GaN layer for the elimination of total internal reflection of light-emitting diodes (LEDs). The LEDs with HnPs-PhC of 46.3% bottom fill factor (PhC lattice constant is 730 nm) showed an improved light output power by 99.9% at forward current of 350 mA compared to the reference LEDs with flat p-GaN layer. We confirmed the effect of HnPs-PhC with different bottom fill factors and the effect of nanopyramid-shaped and nanocolumn-shaped PhC on the light-extraction of LEDs was also investigated by using three-dimensional finite-difference time-domain simulations.
Shape control VO2 nanorods prepared by soft chemistry and electrochemical method
NASA Astrophysics Data System (ADS)
Simo, A.; Sibanyoni, J.; Fuku, X.; Numan, N.; Omorogbe, S.; Maaza, M.
2018-07-01
"Bottom up" approach is of primary interest for chemistry and materials science because the fundamental building blocks are atoms. Thus colloidal chemical synthetic methods can be utilized to prepare uniform nanocrystals with controlled particle size. In the following work of study, thermochromic VO2 nanostructures were prepared by hydrothermal technique soft chemistry. We concentrate on solution phase synthetic methods that enable a proper shape and size control of metal oxide nanocrystals. Their structural properties were studied by Scanning Electron Microscopy (SEM), Fourier Transform IR (FTIR) and Differential Scanning Calorimetry (DSC). It is demonstrated that the surfactant assistance (NaOH) has great influence on the morphology-control of the material. Electrochemical properties of the nanospheres show good stability after 20 cycles and the surface diffusion coefficient was calculated to be 5 × 10-6 cm2 s-1.
Influence of Geometries on the Assembly of Snowman-Shaped Janus Nanoparticles.
Kang, Chengjun; Honciuc, Andrei
2018-04-24
The self-assembly of micro/nanoparticles into suprastructures is a promising way to develop reconfigurable materials and to gain insights into the fundamental question of how matter organizes itself. The geometry of particles, especially those deviating from perfectly spherical shapes, is of significant importance in colloidal assembly because it influences the particle "recognition", determines the particle packing, and ultimately dictates the formation of assembled suprastructures. In order to organize particles into desired structures, it is of vital importance to understand the relationship between the shape of the colloidal building blocks and the assembled suprastructures. This fundamental issue is an enduring topic in the assembly of molecular surfactants, but it remained elusive in colloidal assembly. To address this issue, we use snowman-shaped Janus nanoparticles (JNPs) as a model to systematically study the effect of colloidal geometries on their assembled suprastructures. Ten types of JNPs with identical chemical compositions but with different geometries were synthesized. Specifically, the synthesized JNPs differ in their lobe size ratios, phase separation degrees, and overall sizes. We show that by altering these parameters, both finite suprastructures, such as capsules with different curvatures, and nonfinite suprastructures, including free-standing single-layered or double-layered JNPs sheets, can be obtained via self-assembly. All these different types of suprastructures are constituted by highly oriented and hexagonally packed JNPs. These findings demonstrate the significance of geometries in colloidal assembly, such that slightly changing the building block geometries could result in a large variety of very different assembled structures, without altering the chemistry of the particles.
The use of impact force as a scale parameter for the impact response of composite laminates
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Poe, C. C., Jr.
1992-01-01
The building block approach is currently used to design composite structures. With this approach, the data from coupon tests is scaled up to determine the design of a structure. Current standard impact tests and methods of relating test data to other structures are not generally understood and are often used improperly. A methodology is outlined for using impact force as a scale parameter for delamination damage for impacts of simple plates. Dynamic analyses were used to define ranges of plate parameters and impact parameters where quasi-static analyses are valid. These ranges include most low velocity impacts where the mass of the impacter is large and the size of the specimen is small. For large mass impacts of moderately thick (0.35 to 0.70 cm) laminates, the maximum extent of delamination damage increased with increasing impact force and decreasing specimen thickness. For large mass impact tests at a given kinetic energy, impact force and hence delamination size depends on specimen size, specimen thickness, boundary conditions, and indenter size and shape. If damage is reported in terms of impact force instead of kinetic energy, large mass test results can be applied directly to other plates of the same size.
Body shape convergence driven by small size optimum in marine angelfishes.
Frédérich, Bruno; Santini, Francesco; Konow, Nicolai; Schnitzler, Joseph; Lecchini, David; Alfaro, Michael E
2017-06-01
Convergent evolution of small body size occurs across many vertebrate clades and may reflect an evolutionary response to shared selective pressures. However it remains unclear if other aspects of phenotype undergo convergent evolution in miniaturized lineages. Here we present a comparative analysis of body size and shape evolution in marine angelfishes (Pomacanthidae), a reef fish family characterized by repeated transitions to small body size. We ask if lineages that evolve small sizes show convergent evolution in body shape. Our results reveal that angelfish lineages evolved three different stable size optima with one corresponding to the group of pygmy angelfishes ( Centropyge ). Then, we test if the observed shifts in body size are associated with changes to new adaptive peaks in shape. Our data suggest that independent evolution to small size optima have induced repeated convergence upon deeper body and steeper head profile in Centropyge These traits may favour manoeuvrability and visual awareness in these cryptic species living among corals, illustrating that functional demands on small size may be related to habitat specialization and predator avoidance. The absence of shape convergence in large marine angelfishes also suggests that more severe requirements exist for small than for large size optima. © 2017 The Author(s).
Shape Comparison Between 0.4–2.0 and 20–60 lm Cement Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzer, L.; Flatt, R; Erdogan, S
Portland cement powder, ground from much larger clinker particles, has a particle size distribution from about 0.1 to 100 {micro}m. An important question is then: does particle shape depend on particle size? For the same cement, X-ray computed tomography has been used to examine the 3-D shape of particles in the 20-60 {micro}m sieve range, and focused ion beam nanotomography has been used to examine the 3-D shape of cement particles found in the 0.4-2.0 {micro}m sieve range. By comparing various kinds of computed particle shape data for each size class, the conclusion is made that, within experimental uncertainty, bothmore » size classes are prolate, but the smaller size class particles, 0.4-2.0 {micro}m, tend to be somewhat more prolate than the 20-60 {micro}m size class. The practical effect of this shape difference on the set-point was assessed using the Virtual Cement and Concrete Testing Laboratory to simulate the hydration of five cement powders. Results indicate that nonspherical aspect ratio is more important in determining the set-point than are the actual shape details.« less
Galaxy evolution by color-log(n) type since redshift unity in the Hubble Ultra Deep Field
NASA Astrophysics Data System (ADS)
Cameron, E.; Driver, S. P.
2009-01-01
Aims: We explore the use of the color-log(n) (where n is the global Sérsic index) plane as a tool for subdividing the galaxy population in a physically-motivated manner out to redshift unity. We thereby aim to quantify surface brightness evolution by color-log(n) type, accounting separately for the specific selection and measurement biases against each. Methods: We construct (u-r) color-log(n) diagrams for distant galaxies in the Hubble Ultra Deep Field (UDF) within a series of volume-limited samples to z=1.5. The color-log(n) distributions of these high redshift galaxies are compared against that measured for nearby galaxies in the Millennium Galaxy Catalogue (MGC), as well as to the results of visual morphological classification. Based on this analysis we divide our sample into three color-structure classes. Namely, “red, compact”, “blue, diffuse” and “blue, compact”. Luminosity-size diagrams are constructed for members of the two largest classes (“red, compact” and “blue, diffuse”), both in the UDF and the MGC. Artificial galaxy simulations (for systems with exponential and de Vaucouleurs profile shapes alternately) are used to identify “bias-free” regions of the luminosity-size plane in which galaxies are detected with high completeness, and their fluxes and sizes recovered with minimal surface brightness-dependent biases. Galaxy evolution is quantified via comparison of the low and high redshift luminosity-size relations within these “bias-free” regions. Results: We confirm the correlation between color-log(n) plane position and visual morphological type observed locally and in other high redshift studies in the color and/or structure domain. The combined effects of observational uncertainties, the morphological K-correction and cosmic variance preclude a robust statistical comparison of the shape of the MGC and UDF color-log(n) distributions. However, in the interval 0.75 < z <1.0 where the UDF i-band samples close to rest-frame B-band light (i.e., the morphological K-correction between our samples is negligible) we are able to present tentative evidence of bimodality, albiet for a very small sample size (17 galaxies). Our unique approach to quantifying selection and measurement biases in the luminosity-size plane highlights the need to consider errors in the recovery of both magnitudes and sizes, and their dependence on profile shape. Motivated by these results we divide our sample into the three color-structure classes mentioned above and quantify luminosity-size evolution by galaxy type. Specifically, we detect decreases in B-band, surface brightness of 1.57 ± 0.22 mag arcsec-2 and 1.65 ± 0.22 mag arcsec-2 for our “blue, diffuse” and “red, compact” classes respectively between redshift unity and the present day.
NASA Astrophysics Data System (ADS)
Chaudhuri, S. K.; Ghosh, Manoranjan; Das, D.; Raychaudhuri, A. K.
2010-09-01
The present article describes the size induced changes in the structural arrangement of intrinsic defects present in chemically synthesized ZnO nanoparticles of various sizes. Routine x-ray diffraction and transmission electron microscopy have been performed to determine the shapes and sizes of the nanocrystalline ZnO samples. Detailed studies using positron annihilation spectroscopy reveals the presence of zinc vacancy. Whereas analysis of photoluminescence results predict the signature of charged oxygen vacancies. The size induced changes in positron parameters as well as the photoluminescence properties, has shown contrasting or nonmonotonous trends as size varies from 4 to 85 nm. Small spherical particles below a critical size (˜23 nm) receive more positive surface charge due to the higher occupancy of the doubly charge oxygen vacancy as compared to the bigger nanostructures where singly charged oxygen vacancy predominates. This electronic alteration has been seen to trigger yet another interesting phenomenon, described as positron confinement inside nanoparticles. Finally, based on all the results, a model of the structural arrangement of the intrinsic defects in the present samples has been reconciled.
Kasoju, Naresh; Kubies, Dana; Kumorek, Marta M.; Kříž, Jan; Fábryová, Eva; Machová, Lud'ka; Kovářová, Jana; Rypáček, František
2014-01-01
The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the “Dip TIPS” as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields. PMID:25275373
Prunier, Jérôme G.; Dewulf, Alexandre; Kuhlmann, Michael; Michez, Denis
2017-01-01
Morphological traits can be highly variable over time in a particular geographical area. Different selective pressures shape those traits, which is crucial in evolutionary biology. Among these traits, insect wing morphometry has already been widely used to describe phenotypic variability at the inter-specific level. On the contrary, fewer studies have focused on intra-specific wing morphometric variability. Yet, such investigations are relevant to study potential convergences of variation that could highlight micro-evolutionary processes. The recent sampling and sequencing of three solitary bees of the genus Melitta across their entire species range provides an excellent opportunity to jointly analyse genetic and morphometric variability. In the present study, we first aim to analyse the spatial distribution of the wing shape and centroid size (used as a proxy for body size) variability. Secondly, we aim to test different potential predictors of this variability at both the intra- and inter-population levels, which includes genetic variability, but also geographic locations and distances, elevation, annual mean temperature and precipitation. The comparison of spatial distribution of intra-population morphometric diversity does not reveal any convergent pattern between species, thus undermining the assumption of a potential local and selective adaptation at the population level. Regarding intra-specific wing shape differentiation, our results reveal that some tested predictors, such as geographic and genetic distances, are associated with a significant correlation for some species. However, none of these predictors are systematically identified for the three species as an important factor that could explain the intra-specific morphometric variability. As a conclusion, for the three solitary bee species and at the scale of this study, our results clearly tend to discard the assumption of the existence of a common pattern of intra-specific signal/structure within the intra-specific wing shape and body size variability. PMID:28273178
Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners
Viscosi, Vincenzo; Cardini, Andrea
2011-01-01
Taxonomy relies greatly on morphology to discriminate groups. Computerized geometric morphometric methods for quantitative shape analysis measure, test and visualize differences in form in a highly effective, reproducible, accurate and statistically powerful way. Plant leaves are commonly used in taxonomic analyses and are particularly suitable to landmark based geometric morphometrics. However, botanists do not yet seem to have taken advantage of this set of methods in their studies as much as zoologists have done. Using free software and an example dataset from two geographical populations of sessile oak leaves, we describe in detailed but simple terms how to: a) compute size and shape variables using Procrustes methods; b) test measurement error and the main levels of variation (population and trees) using a hierachical design; c) estimate the accuracy of group discrimination; d) repeat this estimate after controlling for the effect of size differences on shape (i.e., allometry). Measurement error was completely negligible; individual variation in leaf morphology was large and differences between trees were generally bigger than within trees; differences between the two geographic populations were small in both size and shape; despite a weak allometric trend, controlling for the effect of size on shape slighly increased discrimination accuracy. Procrustes based methods for the analysis of landmarks were highly efficient in measuring the hierarchical structure of differences in leaves and in revealing very small-scale variation. In taxonomy and many other fields of botany and biology, the application of geometric morphometrics contributes to increase scientific rigour in the description of important aspects of the phenotypic dimension of biodiversity. Easy to follow but detailed step by step example studies can promote a more extensive use of these numerical methods, as they provide an introduction to the discipline which, for many biologists, is less intimidating than the often inaccessible specialistic literature. PMID:21991324
Kasoju, Naresh; Kubies, Dana; Kumorek, Marta M; Kříž, Jan; Fábryová, Eva; Machová, Lud'ka; Kovářová, Jana; Rypáček, František
2014-01-01
The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the "Dip TIPS" as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields.
Gravity and the mechanics of dike intrusion
NASA Astrophysics Data System (ADS)
Townsend, M.
2017-12-01
Dikes are a diverse yet ubiquitous feature of terrestrial volcanic and magmatic settings, ranging in size from decimeter-thick aplite dikes in silicic plutons, to meters-thick dikes at basaltic shield volcanoes and rift zones, to 100-meter-thick "giant" dikes in swarms that can exceed over 2000 km in length. Dike profiles may be planar or curved, elliptical or teardrop-shaped, and blunt or tapered at the tips. The variety of size, shape, composition, and intrusion environment is in contrast with the ubiquitous observation that dikes tend to be vertically inclined, emanate from central reservoirs, and propagate laterally for distances that are 10 to over 100 times their height. In this talk, I will briefly review the geological and geophysical observations of dike geometry and propagation directions. These data motivate a 2D mechanical model for vertical dikes in which the primary loading is due to gravity. Using this model, I will explore fundamental relationships between density structure within the magma and surrounding crust, driving pressure, topographic and tectonic loading, and the size, shape, and depth at which dikes become vertically stable such that subsequent propagation is lateral. Modeling results highlight a dual effect of gravity, as both a source of diversity in stable dike geometries and as a robust mechanism for trapping dikes in the subsurface.
The problem with coal-waste dumps inventory in Upper Silesian Coal Basin
NASA Astrophysics Data System (ADS)
Abramowicz, Anna; Chybiorz, Ryszard
2017-04-01
Coal-waste dumps are the side effect of coal mining, which has lasted in Poland for 250 years. They have negative influence on the landscape and the environment, and pollute soil, vegetation and groundwater. Their number, size and shape is changing over time, as new wastes have been produced and deposited changing their shape and enlarging their size. Moreover deposited wastes, especially overburned, are exploited for example road construction, also causing the shape and size change up to disappearing. Many databases and inventory systems were created in order to control these hazards, but some disadvantages prevent reliable statistics. Three representative databases were analyzed according to their structure and type of waste dumps description, classification and visualization. The main problem is correct classification of dumps in terms of their name and type. An additional difficulty is the accurate quantitative description (area and capacity). A complex database was created as a result of comparison, verification of the information contained in existing databases and its supplementation based on separate documentation. A variability analysis of coal-waste dumps over time is also included. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018.
Zečević, Jovana; Hermannsdörfer, Justus; Schuh, Tobias; de Jong, Krijn P; de Jonge, Niels
2017-01-01
Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of scanning TEM (STEM) brings about the dissolution of silica nanoparticles in water by a gradual reduction of their sizes, and that silica redeposites at the sides of the nanoparticles in the scanning direction of the electron beam, such that elongated nanoparticles are formed. Nanoparticles with an elongation in a different direction are obtained simply by changing the scan direction. Material is expelled from the center of the nanoparticles at higher electron dose, leading to the formation of doughnut-shaped objects. Nanoparticles assembled in an aggregate gradually fuse, and the electron beam exposed section of the aggregate reduces in size and is elongated. Under TEM conditions with a stationary electron beam, the nanoparticles dissolve but do not elongate. The observed phenomena are important to consider when conducting liquid-phase STEM experiments on silica-based materials and may find future application for controlled anisotropic manipulation of the size and the shape of nanoparticles in liquid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Deshpande, Manohar
2011-01-01
A precise knowledge of the interior structure of asteroids, comets, and Near Earth Objects (NEO) is important to assess the consequences of their impacts with the Earth and develop efficient mitigation strategies. Knowledge of their interior structure also provides opportunities for extraction of raw materials for future space activities. Low frequency radio sounding is often proposed for investigating interior structures of asteroids and NEOs. For designing and optimizing radio sounding instrument it is advantageous to have an accurate and efficient numerical simulation model of radio reflection and transmission through large size bodies of asteroid shapes. In this presentation we will present electromagnetic (EM) scattering analysis of electrically large size asteroids using (1) a weak form formulation and (2) also a more accurate hybrid finite element method/method of moments (FEM/MOM) to help estimate their internal structures. Assuming the internal structure with known electrical properties of a sample asteroid, we first develop its forward EM scattering model. From the knowledge of EM scattering as a function of frequency and look angle we will then present the inverse scattering procedure to extract its interior structure image. Validity of the inverse scattering procedure will be presented through few simulation examples.
NASA Astrophysics Data System (ADS)
Steer, Philippe; Lague, Dimitri; Gourdon, Aurélie; Croissant, Thomas; Crave, Alain
2016-04-01
The grain-scale morphology of river sediments and their size distribution are important factors controlling the efficiency of fluvial erosion and transport. In turn, constraining the spatial evolution of these two metrics offer deep insights on the dynamics of river erosion and sediment transport from hillslopes to the sea. However, the size distribution of river sediments is generally assessed using statistically-biased field measurements and determining the grain-scale shape of river sediments remains a real challenge in geomorphology. Here we determine, with new methodological approaches based on the segmentation and geomorphological fitting of 3D point cloud dataset, the size distribution and grain-scale shape of sediments located in river environments. Point cloud segmentation is performed using either machine-learning algorithms or geometrical criterion, such as local plan fitting or curvature analysis. Once the grains are individualized into several sub-clouds, each grain-scale morphology is determined using a 3D geometrical fitting algorithm applied on the sub-cloud. If different geometrical models can be conceived and tested, only ellipsoidal models were used in this study. A phase of results checking is then performed to remove grains showing a best-fitting model with a low level of confidence. The main benefits of this automatic method are that it provides 1) an un-biased estimate of grain-size distribution on a large range of scales, from centimeter to tens of meters; 2) access to a very large number of data, only limited by the number of grains in the point-cloud dataset; 3) access to the 3D morphology of grains, in turn allowing to develop new metrics characterizing the size and shape of grains. The main limit of this method is that it is only able to detect grains with a characteristic size greater than the resolution of the point cloud. This new 3D granulometric method is then applied to river terraces both in the Poerua catchment in New-Zealand and along the Laonong river in Taiwan, which point clouds were obtained using both terrestrial lidar scanning and structure from motion photogrammetry.
The decomposition of deformation: New metrics to enhance shape analysis in medical imaging.
Varano, Valerio; Piras, Paolo; Gabriele, Stefano; Teresi, Luciano; Nardinocchi, Paola; Dryden, Ian L; Torromeo, Concetta; Puddu, Paolo E
2018-05-01
In landmarks-based Shape Analysis size is measured, in most cases, with Centroid Size. Changes in shape are decomposed in affine and non affine components. Furthermore the non affine component can be in turn decomposed in a series of local deformations (partial warps). If the extent of deformation between two shapes is small, the difference between Centroid Size and m-Volume increment is barely appreciable. In medical imaging applied to soft tissues bodies can undergo very large deformations, involving large changes in size. The cardiac example, analyzed in the present paper, shows changes in m-Volume that can reach the 60%. We show here that standard Geometric Morphometrics tools (landmarks, Thin Plate Spline, and related decomposition of the deformation) can be generalized to better describe the very large deformations of biological tissues, without losing a synthetic description. In particular, the classical decomposition of the space tangent to the shape space in affine and non affine components is enriched to include also the change in size, in order to give a complete description of the tangent space to the size-and-shape space. The proposed generalization is formulated by means of a new Riemannian metric describing the change in size as change in m-Volume rather than change in Centroid Size. This leads to a redefinition of some aspects of the Kendall's size-and-shape space without losing Kendall's original formulation. This new formulation is discussed by means of simulated examples using 2D and 3D platonic shapes as well as a real example from clinical 3D echocardiographic data. We demonstrate that our decomposition based approaches discriminate very effectively healthy subjects from patients affected by Hypertrophic Cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.
Morrison, Kerrie A; Akram, Aneel; Mathews, Ashlyn; Khan, Zoeya A; Patel, Jaimin H; Zhou, Chumin; Hardy, David J; Moore-Kelly, Charles; Patel, Roshani; Odiba, Victor; Knowles, Tim J; Javed, Masood-Ul-Hassan; Chmel, Nikola P; Dafforn, Timothy R; Rothnie, Alice J
2016-12-01
The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Characterization of zein assemblies by ultra-small-angle X-ray scattering
Uzun, Suzan; Ilavsky, Jan; Padua, Graciela Wild
2017-03-23
Zein, a protein of corn, has an amphiphilic molecule capable of self-assembly into distinctly different structures. In this work, ultra-small-angle X-ray scattering (USAXS) was applied to investigate the formation of self-assembled zein structures in binary solvent systems of ethanol and water. Our study included observing structural changes due to aging. Three hierarchical structures were identified in zein-solvent systems, molecular zein 2D films, believed to be formed by zein rods assembled first into one-dimensional fibers and then into two-dimensional films, and 3D spherical aggregates. Aging did not change the size or shape of primary units, but promoted their self-assembly into intermediatemore » 2D structures and shaped 3D structures into well19 defined spheres. We found that the rheological parameters, consistency index (K) and behavior index (n), storage and loss moduli (G’ and G”) were also measured. K and n, changed markedly with aging, from nearly Newtonian low consistency fresh samples to highly viscous pseudoplastic aged samples. G’ and G” increased with aging for all samples reflecting increased interactions among zein self-assembled structures. Furthermore, viscoelastic parameters indicated that zein dispersions formed gels upon aging. It was observed that USAX reported on molecular scale self-assembly processes, while rheological measurements reported on the macroscale interaction between self-assembled particles. Raman spectra suggested that α-helix to β-sheet transformations prompted zein self-assembly, which influenced the size and morphology of molecular assemblies and ultimately the rheological properties of zein dispersions.« less
Structural and Morphological Evaluation of Nano-Sized MoSi2 Powder Produced by Mechanical Milling
NASA Astrophysics Data System (ADS)
Sameezadeh, Mahmood; Farhangi, Hassan; Emamy, Masoud
Nano-sized intermetallic powders have received great attention owing to their property advantages over conventional micro-sized counterparts. In the present study nano-sized MoSi2 powder has been produced successfully from commercially available MoSi2 (3 μm) by a mechanical milling process carried out for a period of 100 hours. The effects of milling time on size and morphology of the powders were studied by SEM and TEM and image analyzing system. The results indicate that the as-received micrometric powder with a wide size distribution of irregular shaped morphology changes to a narrow size distribution of nearly equiaxed particles with the progress of attrition milling up to 100 h, reaching an average particle size of 71 nm. Structural evolution of milled samples was characterized by XRD to determine the crystallite size and lattice microstrain using Williamson-Hall method. According to the results, the crystallite size of the powders decreases continuously down to 23 nm with increasing milling time up to 100 h and this size refinement is more rapid at the early stages of the milling process. On the other hand, the lattice strain increases considerably with milling up to 65 h and further milling causes no significant changes of lattice strain.
Spinal cord evolution in early Homo.
Meyer, Marc R; Haeusler, Martin
2015-11-01
The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Centrins in unicellular organisms: functional diversity and specialization.
Zhang, Yu; He, Cynthia Y
2012-07-01
Centrins (also known as caltractins) are conserved, EF hand-containing proteins ubiquitously found in eukaryotes. Similar to calmodulins, the calcium-binding EF hands in centrins fold into two structurally similar domains separated by an alpha-helical linker region, shaping like a dumbbell. The small size (15-22 kDa) and domain organization of centrins and their functional diversity/specialization make them an ideal system to study protein structure-function relationship. Here, we review the work on centrins with a focus on their structures and functions characterized in unicellular organisms.
Growing Cobalt Silicide Columns In Silicon
NASA Technical Reports Server (NTRS)
Fathauer, Obert W.
1991-01-01
Codeposition by molecular-beam epitaxy yields variety of structures. Proposed fabrication process produces three-dimensional nanometer-sized structures on silicon wafers. Enables control of dimensions of metal and semiconductor epitaxial layers in three dimensions instead of usual single dimension (perpendicular to the plane of the substrate). Process used to make arrays of highly efficient infrared sensors, high-speed transistors, and quantum wires. For fabrication of electronic devices, both shapes and locations of columns controlled. One possible technique for doing this electron-beam lithography, see "Making Submicron CoSi2 Structures on Silicon Substrates" (NPO-17736).
Nano-architecture of metal-organic frameworks
NASA Astrophysics Data System (ADS)
Milichko, Valentin A.; Zalogina, Anastasiia; Mingabudinova, Leila R.; Vinogradov, Alexander V.; Ubyivovk, Evgeniy; Krasilin, Andrei A.; Mukhin, Ivan; Zuev, Dmitry A.; Makarov, Sergey V.; Pidko, Evgeny A.
2017-09-01
Change the shape and size of materials supports new functionalities never found in the sources. This strategy has been recently applied for porous crystalline materials - metal-organic frameworks (MOFs) to create hollow nanoscale structures or mesostructures with improved functional properties. However, such structures are characterized by amorphous state or polycrystallinity which limits their applicability. Here we follow this strategy to create such nano- and mesostructures with perfect crystallinity and new photonics functionalities by laser or focused ion beam fabrication.
Changes in Visual Object Recognition Precede the Shape Bias in Early Noun Learning
Yee, Meagan; Jones, Susan S.; Smith, Linda B.
2012-01-01
Two of the most formidable skills that characterize human beings are language and our prowess in visual object recognition. They may also be developmentally intertwined. Two experiments, a large sample cross-sectional study and a smaller sample 6-month longitudinal study of 18- to 24-month-olds, tested a hypothesized developmental link between changes in visual object representation and noun learning. Previous findings in visual object recognition indicate that children’s ability to recognize common basic level categories from sparse structural shape representations of object shape emerges between the ages of 18 and 24 months, is related to noun vocabulary size, and is lacking in children with language delay. Other research shows in artificial noun learning tasks that during this same developmental period, young children systematically generalize object names by shape, that this shape bias predicts future noun learning, and is lacking in children with language delay. The two experiments examine the developmental relation between visual object recognition and the shape bias for the first time. The results show that developmental changes in visual object recognition systematically precede the emergence of the shape bias. The results suggest a developmental pathway in which early changes in visual object recognition that are themselves linked to category learning enable the discovery of higher-order regularities in category structure and thus the shape bias in novel noun learning tasks. The proposed developmental pathway has implications for understanding the role of specific experience in the development of both visual object recognition and the shape bias in early noun learning. PMID:23227015
An online detection system for aggregate sizes and shapes based on digital image processing
NASA Astrophysics Data System (ADS)
Yang, Jianhong; Chen, Sijia
2017-02-01
Traditional aggregate size measuring methods are time-consuming, taxing, and do not deliver online measurements. A new online detection system for determining aggregate size and shape based on a digital camera with a charge-coupled device, and subsequent digital image processing, have been developed to overcome these problems. The system captures images of aggregates while falling and flat lying. Using these data, the particle size and shape distribution can be obtained in real time. Here, we calibrate this method using standard globules. Our experiments show that the maximum particle size distribution error was only 3 wt%, while the maximum particle shape distribution error was only 2 wt% for data derived from falling aggregates, having good dispersion. In contrast, the data for flat-lying aggregates had a maximum particle size distribution error of 12 wt%, and a maximum particle shape distribution error of 10 wt%; their accuracy was clearly lower than for falling aggregates. However, they performed well for single-graded aggregates, and did not require a dispersion device. Our system is low-cost and easy to install. It can successfully achieve online detection of aggregate size and shape with good reliability, and it has great potential for aggregate quality assurance.
Alarcón-Ríos, Lucía; Velo-Antón, Guillermo; Kaliontzopoulou, Antigoni
2017-04-01
The study of morphological variation among and within taxa can shed light on the evolution of phenotypic diversification. In the case of urodeles, the dorso-ventral view of the head captures most of the ontogenetic and evolutionary variation of the entire head, which is a structure with a high potential for being a target of selection due to its relevance in ecological and social functions. Here, we describe a non-invasive procedure of geometric morphometrics for exploring morphological variation in the external dorso-ventral view of urodeles' head. To explore the accuracy of the method and its potential for describing morphological patterns we applied it to two populations of Salamandra salamandra gallaica from NW Iberia. Using landmark-based geometric morphometrics, we detected differences in head shape between populations and sexes, and an allometric relationship between shape and size. We also determined that not all differences in head shape are due to size variation, suggesting intrinsic shape differences across sexes and populations. These morphological patterns had not been previously explored in S. salamandra, despite the high levels of intraspecific diversity within this species. The methodological procedure presented here allows to detect shape variation at a very fine scale, and solves the drawbacks of using cranial samples, thus increasing the possibilities of using collection specimens and alive animals for exploring dorsal head shape variation and its evolutionary and ecological implications in urodeles. J. Morphol. 278:475-485, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Knoll, Fátima do Rosário Naschenveng; Penatti, N C
2012-10-01
The effect of habitat fragmentation on the structure of orchid bee communities was analyzed by the investigation of the existence of a spatial structure in the richness and abundance of Euglossini species and by determining the relationship between these data and environmental factors. The surveys were carried out in four different forest fragments and one university campus. Richness, abundance, and diversity of species were analyzed in relation to abiotic (size of the area, extent of the perimeter, perimeter/area ratio, and shape index) and biotic characteristics (vegetation index of the fragment and of the matrix of each of the locations studied). We observed a highly significant positive correlation between the diversity index and the vegetation index of the fragment, landscape and shape index. Our analysis demonstrated that the observed variation could be explained mainly by the vegetation index and the size of the fragment. Variations in relative abundance showed a tendency toward an aggregated spatial distribution between the fragments studied, as well as between the sampling stations within the same habitat, demonstrating the existence of a spatial structure on a small scale in the populations of Euglossini. This distribution will determine the composition of species that coexist in the area after fragmentation. These data help in understanding the differences and similarities in the structure of communities of Euglossini resulting from forest fragmentation.
General mechanism of two-state protein folding kinetics.
Rollins, Geoffrey C; Dill, Ken A
2014-08-13
We describe here a general model of the kinetic mechanism of protein folding. In the Foldon Funnel Model, proteins fold in units of secondary structures, which form sequentially along the folding pathway, stabilized by tertiary interactions. The model predicts that the free energy landscape has a volcano shape, rather than a simple funnel, that folding is two-state (single-exponential) when secondary structures are intrinsically unstable, and that each structure along the folding path is a transition state for the previous structure. It shows how sequential pathways are consistent with multiple stochastic routes on funnel landscapes, and it gives good agreement with the 9 order of magnitude dependence of folding rates on protein size for a set of 93 proteins, at the same time it is consistent with the near independence of folding equilibrium constant on size. This model gives estimates of folding rates of proteomes, leading to a median folding time in Escherichia coli of about 5 s.
NASA Technical Reports Server (NTRS)
Skillen, Michael D.; Crossley, William A.
2008-01-01
This report documents a series of investigations to develop an approach for structural sizing of various morphing wing concepts. For the purposes of this report, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and / or increasing aspect ratio by as much as 200% from the lowest possible value. These significant changes in geometry mean that the underlying load-bearing structure changes geometry. While most finite element analysis packages provide some sort of structural optimization capability, these codes are not amenable to making significant changes in the stiffness matrix to reflect the large morphing wing planform changes. The investigations presented here use a finite element code capable of aeroelastic analysis in three different optimization approaches -a "simultaneous analysis" approach, a "sequential" approach, and an "aggregate" approach.
NASA Astrophysics Data System (ADS)
Corrêa, Eduardo L.; Bosch-Santos, Brianna; Freitas, Rafael S.; Potiens, Maria da Penha A.; Saiki, Mitiko; Carbonari, Artur W.
2018-05-01
In the investigation reported in this paper a modified thermal decomposition method was developed to produce very small Er2O3 nanoparticles (NPs). Particles structure, shape and size were characterized by x-ray diffraction and transmission electron microscopy which showed that the synthesis by thermal decomposition under O2 atmosphere produced very small and monodisperse NPs, allowing the investigation of finite-size and surface effects. Results of magnetization measurements showed that the smallest particles present the highest values of susceptibility that decrease as particle size increases. Specific heat measurements indicate that the sample with the smallest NPs (diameter ∼5 nm) has a Néel temperature of 0.54 K. The local structure of particles was investigated by measurements of hyperfine interactions with perturbed angular correlation spectroscopy using 111Cd as probe nuclei replacing the cationic sites. Results showed that the relative population of sites 8b increases in both the core and surface layer of particles.
Corrêa, Eduardo L; Bosch-Santos, Brianna; Freitas, Rafael S; da Penha A Potiens, Maria; Saiki, Mitiko; Carbonari, Artur W
2018-05-18
In the investigation reported in this paper a modified thermal decomposition method was developed to produce very small Er 2 O 3 nanoparticles (NPs). Particles structure, shape and size were characterized by x-ray diffraction and transmission electron microscopy which showed that the synthesis by thermal decomposition under O 2 atmosphere produced very small and monodisperse NPs, allowing the investigation of finite-size and surface effects. Results of magnetization measurements showed that the smallest particles present the highest values of susceptibility that decrease as particle size increases. Specific heat measurements indicate that the sample with the smallest NPs (diameter ∼5 nm) has a Néel temperature of 0.54 K. The local structure of particles was investigated by measurements of hyperfine interactions with perturbed angular correlation spectroscopy using 111 Cd as probe nuclei replacing the cationic sites. Results showed that the relative population of sites 8b increases in both the core and surface layer of particles.
Regional mechanics determine collagen fiber structure in healing myocardial infarcts.
Fomovsky, Gregory M; Rouillard, Andrew D; Holmes, Jeffrey W
2012-05-01
Following myocardial infarction, the mechanical properties of the healing infarct are an important determinant of heart function and the risk of progression to heart failure. In particular, mechanical anisotropy (having different mechanical properties in different directions) in the healing infarct can preserve pump function of the heart. Based on reports of different collagen structures and mechanical properties in various animal models, we hypothesized that differences in infarct size, shape, and/or location produce different patterns of mechanical stretch that guide evolving collagen fiber structure. We tested the effects of infarct shape and location using a combined experimental and computational approach. We studied mechanics and collagen fiber structure in cryoinfarcts in 53 Sprague-Dawley rats and found that regardless of shape or orientation, cryoinfarcts near the equator of the left ventricle stretched primarily in the circumferential direction and developed circumferentially aligned collagen, while infarcts at the apex stretched similarly in the circumferential and longitudinal directions and developed randomly oriented collagen. In a computational model of infarct healing, an effect of mechanical stretch on fibroblast and collagen alignment was required to reproduce the experimental results. We conclude that mechanical environment determines collagen fiber structure in healing myocardial infarcts. Our results suggest that emerging post-infarction therapies that alter regional mechanics will also alter infarct collagen structure, offering both potential risks and novel therapeutic opportunities. Copyright © 2012 Elsevier Ltd. All rights reserved.
Regional Mechanics Determine Collagen Fiber Structure in Healing Myocardial Infarcts
Fomovsky, Gregory M.; Rouillard, Andrew D.; Holmes, Jeffrey W.
2012-01-01
Following myocardial infarction, the mechanical properties of the healing infarct are an important determinant of heart function and the risk of progression to heart failure. In particular, mechanical anisotropy (having different mechanical properties in different directions) in the healing infarct can preserve pump function of the heart. Based on reports of different collagen structures and mechanical properties in various animal models, we hypothesized that differences in infarct size, shape, and/or location produce different patterns of mechanical stretch that guide evolving collagen fiber structure. We tested the effects of infarct shape and location using a combined experimental and computational approach. We studied mechanics and collagen fiber structure in cryoinfarcts in 53 Sprague-Dawley rats and found that regardless of shape or orientation, cryoinfarcts near the equator of the left ventricle stretched primarily in the circumferential direction and developed circumferentially aligned collagen, while infarcts at the apex stretched similarly in the circumferential and longitudinal direction and developed randomly oriented collagen. In a computational model of infarct healing, an effect of mechanical stretch on fibroblast and collagen alignment was required to reproduce the experimental results. We conclude that mechanical environment determines collagen fiber structure in healing myocardial infarcts. Our results suggest that emerging post-infarction therapies that alter regional mechanics will also alter infarct collagen structure, offering both potential risks and novel therapeutic opportunities. PMID:22418281
MRI analysis of the size and shape of the oropharynx in chronic whiplash.
Elliott, James; Cannata, Emma; Christensen, Eric; Demaris, Joel; Kummrow, John; Manning, Erin; Nielsen, Elizabeth; Romero, Tomas; Barnes, Clifford; Jull, Gwendolen
2008-06-01
To quantify differences in the size/shape of the oropharynx between female subjects with whiplash and controls. Retrospective cohort. A total of 113 subjects (79 whiplash, 34 controls) were included. T1-weighted MRI was used to measure 1) cross-sectional area (CSA [mm(2)]) and 2) shape ratios for the oropharynx. Reliability data were established. Whiplash subjects had significantly smaller oropharynx CSAs (P < 0.001) and shape ratios (P < 0.001) compared with healthy controls. Self-reported levels of pain and disability and duration of symptoms were not associated with size and shape of the oropharynx in whiplash subjects (P = 0.75 and P = 0.99, respectively). Age and BMI did influence the size (P = 0.01) and shape of the oropharynx (P < 0.001) in the whiplash subjects, but only 20 to 30 percent of the variance could be explained by these factors. Significant difference in the size and shape of the oropharynx was noted in subjects with chronic whiplash compared with controls. Future studies are required to investigate the relationships between oropharynx morphometry and symptoms in patients with chronic whiplash.
Biological synthesis of triangular gold nanoprisms
NASA Astrophysics Data System (ADS)
Shankar, S. Shiv; Rai, Akhilesh; Ankamwar, Balaprasad; Singh, Amit; Ahmad, Absar; Sastry, Murali
2004-07-01
The optoelectronic and physicochemical properties of nanoscale matter are a strong function of particle size. Nanoparticle shape also contributes significantly to modulating their electronic properties. Several shapes ranging from rods to wires to plates to teardrop structures may be obtained by chemical methods; triangular nanoparticles have been synthesized by using a seeded growth process. Here, we report the discovery that the extract from the lemongrass plant, when reacted with aqueous chloroaurate ions, yields a high percentage of thin, flat, single-crystalline gold nanotriangles. The nanotriangles seem to grow by a process involving rapid reduction, assembly and room-temperature sintering of 'liquid-like' spherical gold nanoparticles. The anisotropy in nanoparticle shape results in large near-infrared absorption by the particles, and highly anisotropic electron transport in films of the nanotriangles.
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Liu, Youhua
2000-01-01
At the preliminary design stage of a wing structure, an efficient simulation, one needing little computation but yielding adequately accurate results for various response quantities, is essential in the search of optimal design in a vast design space. In the present paper, methods of using sensitivities up to 2nd order, and direct application of neural networks are explored. The example problem is how to decide the natural frequencies of a wing given the shape variables of the structure. It is shown that when sensitivities cannot be obtained analytically, the finite difference approach is usually more reliable than a semi-analytical approach provided an appropriate step size is used. The use of second order sensitivities is proved of being able to yield much better results than the case where only the first order sensitivities are used. When neural networks are trained to relate the wing natural frequencies to the shape variables, a negligible computation effort is needed to accurately determine the natural frequencies of a new design.
Flexible Connectors between Capsomer Subunits that Regulate Capsid Assembly.
Hasek, Mary L; Maurer, Joshua B; Hendrix, Roger W; Duda, Robert L
2017-08-04
Viruses build icosahedral capsids of specific size and shape by regulating the spatial arrangement of the hexameric and pentameric protein capsomers in the growing shell during assembly. In the T=7 capsids of Escherichia coli bacteriophage HK97 and other phages, 60 capsomers are hexons, while the rest are pentons that are correctly positioned during assembly. Assembly of the HK97 capsid to the correct size and shape has been shown to depend on specific ionic contacts between capsomers. We now describe additional ionic interactions within capsomers that also regulate assembly. Each is between the long hairpin, the "E-loop," that extends from one subunit to the adjacent subunit within the same capsomer. Glutamate E153 on the E-loop and arginine R210 on the adjacent subunit's backbone alpha-helix form salt bridges in hexamers and pentamers. Mutations that disrupt these salt bridges were lethal for virus production, because the mutant proteins assembled into tubes or sheets instead of capsids. X-ray structures show that the E153-R210 links are flexible and maintained during maturation despite radical changes in capsomer shape. The E153-R210 links appear to form early in assembly to enable capsomers to make programmed changes in their shape during assembly. The links also prevent flattening of capsomers and premature maturation. Mutant phenotypes and modeling support an assembly model in which flexible E153-R210 links mediate capsomer shape changes that control where pentons are placed to create normal-sized capsids. The E-loop may be conserved in other systems in order to play similar roles in regulating assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tomita, Yoshiyuki; Okabayashi, Kunio
1985-01-01
A study has been systematically made of the effect of bainite on the mechanical properties of a commercial Japanese 0.40 pct C-Ni-Cr-Mo high strength steel (AISI 4340 type) having a mixed structure of martensite and bainite. Isothermal transformation of lower bainite at 593 K, which appeared in acicular form and partitioned prior austenite grains, in association with tempered marprovided provided a better combination of strength and fracture ductility, improving true notch tensile strength (TNTS) and fracture appearance transition temperature (FATT) in Charpy impact tests. This occurred regardless of the volume fraction of lower bainite present and/or the tempering conditions employed to create a difference in strength between the two phases. Upper bainite which was isothermally transformed at 673 K appeared as masses that filled prior austenite grains and had a very detrimental effect on the strength and fracture ductility of the steel. Significant damage occurred to TNTS and FATT, irrespective of the volume fraction of upper bainite present and/or the tempering conditions employed when the upper bainite was associated with tempered martensite. However, when the above two types of bainite appeared in the same size, shape, and distribution within tempered martensite approximately equalized to the strength of the bainite, a similar trend or a marked similarity was observed between the tensile properties of the mixed structures and the volume fraction of bainite. From the above results, it is assumed that the mechanical properties of high strength steels having a mixed structure of martensite and bainite are affected more strongly by the size, shape, and distribution of bainite within martensite than by the difference in strength between martensite and bainite or by the type of mixed bainite present. The remarkable effects of the size, shape, and distribution of bainite within martensite on the mechanical properties of the steel are briefly discussed in terms of the modified law of mixtures, metallographic examinations, and the analyses of stress-strain diagrams.
Li, Hai-Ru; Jian, Tian; Li, Wei-Li; Miao, Chang-Qing; Wang, Ying-Jin; Chen, Qiang; Luo, Xue-Mei; Wang, Kang; Zhai, Hua-Jin; Li, Si-Dian; Wang, Lai-Sheng
2016-10-26
Size-selected boron clusters have been found to be predominantly planar or quasi-planar (2D) in the small size regime with the appearance of three-dimensional (3D) borospherene cages of larger sizes. A seashell-like B 28 - cluster was previously shown to be the smallest borospherene, which competes with a quasi-planar isomer for the global minimum. Here we report a study on the structures and bonding of the B 29 - and B 29 clusters using photoelectron spectroscopy (PES) and first-principles calculations and demonstrate the continued competition between the 2D and borospherene structures. The PES spectrum of B 29 - displays a complex pattern with evidence of low-lying isomers. Global-minimum searches and extensive theoretical calculations revealed a complicated potential energy surface for B 29 - with five low-lying isomers, among which the lowest three were shown to contribute to the experimental spectrum. A 3D seashell-like C s (2, 1 A') isomer, featuring two heptagons on the waist and one octagon at the bottom, is the global minimum for B 29 - , followed by a 2D C 1 (3, 1 A) isomer with a hexagonal hole and a stingray-shaped 2D C s (1, 1 A') isomer with a pentagonal hole. However, by taking into account the entropic effects, the stingray-shaped isomer 1 was shown to be the lowest in energy at room temperature and was found to dominate the PES spectrum. Isomers 2 and 3, which have lower electron binding energies, were also found to be present in the experiment. Chemical bonding analyses showed that isomer 1 is an all-boron analogue of benzo[ghi]fluoranthene (C 18 H 10 ), whereas the borospherene isomer 2 possesses 18π electrons, conforming to the 2(N + 1) 2 electron counting rule for spherical aromaticity. For the B 29 neutral cluster, the seashell-like borospherene isomer is the global minimum, significantly lower in energy than the stingray-shaped quasi-planar structure.
The relationship of bull fertility to sperm nuclear shape
Ostermeier, G.C.; Sargeant, G.A.; Yandell, B.S.; Parrish, J.J.
2001-01-01
group had a linear relationship (r .89, P .05) with fertility. To construct a plot of mean sperm shapes, a novel technique to automatically orient and identify the anterior tip of the sperm head was developed. The mean nuclear shape of high-fertility sperm was more elongated and tapered than those of lower fertility. A discriminant function (P .05) was also constructed that separated the 6 bulls into 2 groups based only on the harmonic amplitudes or sperm nuclear shape. The bulls were correctly classified into the 2 fertility groups. A comparison of sperm chromatin structure analysis (SCSA) and harmonic amplitudes found that overall size variance, anterior roundness, and posterior taperedness of sperm nuclei were related to chromatin stability (P .05). Some of the differences observed in sperm nuclear shape between the high- and lower-fertility bulls may be explained by varying levels of chromatin stability. However, sperm nuclear shape appears to contain additional information from chromatin stability alone. In this particular study, with 6 bulls, all with good chromatin quality, sperm nuclear shape was a better predictor of bull fertility.
SU-D-201-04: Study On the Impact of Tumor Shape and Size On Drug Delivery to Pancreatic Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltani, M; Bazmara, H; Sefidgar, M
Purpose: Drug delivery to solid tumors can be expressed physically using transport phenomena such as convection and diffusion for the drug of interest within extracellular matrices. We aimed to carefully model these phenomena, and to investigate the effect of tumor shape and size on drug delivery to solid tumors in the pancreas. Methods: In this study, multiple tumor geometries as obtained from clinical PET/CT images were considered. An advanced numerical method was used to simultaneously solve fluid flow and solute transport equations. Data from n=45 pancreatic cancer patients with non-resectable locoregional disease were analyzed, and geometrical information from the tumorsmore » including size, shape, and aspect ratios were classified. To investigate effect of tumor shape, tumors with similar size but different shapes were selected and analyzed. Moreover, to investigate effect of tumor size, tumors with similar shapes but different sizes, ranging from 1 to 77 cm{sup 3}, were selected and analyzed. A hypothetical tumor similar to one of the analyzed tumors, but scaled to reduce its size below 0.2 cm{sup 3}, was also analyzed. Results: The results showed relatively similar average drug concentration profiles in tumors with different sizes. Generally, smaller tumors had higher absolute drug concentration. In the hypothetical tumor, with volume less than 0.2 cm{sup 3}, the average drug concentration was 20% higher in comparison to its counterparts. For the various real tumor geometries, however, the maximum difference between average drug concentrations was 10% for the smallest and largest tumors. Moreover, the results demonstrated that for pancreatic tumors the shape is not significant. The negligible difference of drug concentration in different tumor shapes was due to the minimum effect of convection in pancreatic tumors. Conclusion: In tumors with different sizes, smaller tumors have higher drug delivery; however, the impact of tumor shape in the case of pancreatic tumors is not significant.« less
Berthaume, Michael A.; Dumont, Elizabeth R.; Godfrey, Laurie R.; Grosse, Ian R.
2014-01-01
Teeth are often assumed to be optimal for their function, which allows researchers to derive dietary signatures from tooth shape. Most tooth shape analyses normalize for tooth size, potentially masking the relationship between relative food item size and tooth shape. Here, we model how relative food item size may affect optimal tooth cusp radius of curvature (RoC) during the fracture of brittle food items using a parametric finite-element (FE) model of a four-cusped molar. Morphospaces were created for four different food item sizes by altering cusp RoCs to determine whether optimal tooth shape changed as food item size changed. The morphospaces were also used to investigate whether variation in efficiency metrics (i.e. stresses, energy and optimality) changed as food item size changed. We found that optimal tooth shape changed as food item size changed, but that all optimal morphologies were similar, with one dull cusp that promoted high stresses in the food item and three cusps that acted to stabilize the food item. There were also positive relationships between food item size and the coefficients of variation for stresses in food item and optimality, and negative relationships between food item size and the coefficients of variation for stresses in the enamel and strain energy absorbed by the food item. These results suggest that relative food item size may play a role in selecting for optimal tooth shape, and the magnitude of these selective forces may change depending on food item size and which efficiency metric is being selected. PMID:25320068
The Limits of Shape Recognition following Late Emergence from Blindness.
McKyton, Ayelet; Ben-Zion, Itay; Doron, Ravid; Zohary, Ehud
2015-09-21
Visual object recognition develops during the first years of life. But what if one is deprived of vision during early post-natal development? Shape information is extracted using both low-level cues (e.g., intensity- or color-based contours) and more complex algorithms that are largely based on inference assumptions (e.g., illumination is from above, objects are often partially occluded). Previous studies, testing visual acuity using a 2D shape-identification task (Lea symbols), indicate that contour-based shape recognition can improve with visual experience, even after years of visual deprivation from birth. We hypothesized that this may generalize to other low-level cues (shape, size, and color), but not to mid-level functions (e.g., 3D shape from shading) that might require prior visual knowledge. To that end, we studied a unique group of subjects in Ethiopia that suffered from an early manifestation of dense bilateral cataracts and were surgically treated only years later. Our results suggest that the newly sighted rapidly acquire the ability to recognize an odd element within an array, on the basis of color, size, or shape differences. However, they are generally unable to find the odd shape on the basis of illusory contours, shading, or occlusion relationships. Little recovery of these mid-level functions is seen within 1 year post-operation. We find that visual performance using low-level cues is relatively robust to prolonged deprivation from birth. However, the use of pictorial depth cues to infer 3D structure from the 2D retinal image is highly susceptible to early and prolonged visual deprivation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water
NASA Astrophysics Data System (ADS)
Donėlienė, Jolanta; Rudzikas, Matas; Rades, Steffi; Dörfel, Ilona; Peplinski, Burkhard; Sahre, Mario; Pellegrino, Francesco; Maurino, Valter; Ulbikas, Juras; Galdikas, Algirdas; Hodoroaba, Vasile-Dan
2018-04-01
In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD (two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation.
NASA Astrophysics Data System (ADS)
Ellaby, Tom; Aarons, Jolyon; Varambhia, Aakash; Jones, Lewys; Nellist, Peter; Ozkaya, Dogan; Sarwar, Misbah; Thompsett, David; Skylaris, Chris-Kriton
2018-04-01
Platinum nanoparticles find significant use as catalysts in industrial applications such as fuel cells. Research into their design has focussed heavily on nanoparticle size and shape as they greatly influence activity. Using high throughput, high precision electron microscopy, the structures of commercially available Pt catalysts have been determined, and we have used classical and quantum atomistic simulations to examine and compare them with geometric cuboctahedral and truncated octahedral structures. A simulated annealing procedure was used both to explore the potential energy surface at different temperatures, and also to assess the effect on catalytic activity that annealing would have on nanoparticles with different geometries and sizes. The differences in response to annealing between the real and geometric nanoparticles are discussed in terms of thermal stability, coordination number and the proportion of optimal binding sites on the surface of the nanoparticles. We find that annealing both experimental and geometric nanoparticles results in structures that appear similar in shape and predicted activity, using oxygen adsorption as a measure. Annealing is predicted to increase the catalytic activity in all cases except the truncated octahedra, where it has the opposite effect. As our simulations have been performed with a classical force field, we also assess its suitability to describe the potential energy of such nanoparticles by comparing with large scale density functional theory calculations.
Single crystalline electronic structure and growth mechanism of aligned square graphene sheets
NASA Astrophysics Data System (ADS)
Yang, H. F.; Chen, C.; Wang, H.; Liu, Z. K.; Zhang, T.; Peng, H.; Schröter, N. B. M.; Ekahana, S. A.; Jiang, J.; Yang, L. X.; Kandyba, V.; Barinov, A.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Peng, H. L.; Liu, Z. F.; Chen, Y. L.
2018-03-01
Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES) to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation). Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001) copper surface structure but also discovered that the square graphene sheets' sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures)
Chirally directed formation of nanometer-scale proline clusters.
Myung, Sunnie; Fioroni, Marco; Julian, Ryan R; Koeniger, Stormy L; Baik, Mu-Hyun; Clemmer, David E
2006-08-23
Ion mobility measurements, combined with molecular mechanics simulations, are used to study enantiopure and racemic proline clusters formed by electrospray ionization. Broad distributions of cluster sizes and charge states are observed, ranging from clusters containing only a few proline units to clusters that contain more than 100 proline units (i.e., protonated clusters of the form [xPro + nH](n+) with x = 1 to >100 and n = 1-7). As the sizes of clusters increase, there is direct evidence for nanometer scale, chirally induced organization into specific structures. For n = 4 and 5, enantiopure clusters of approximately 50 to 100 prolines assemble into structures that are more elongated than the most compact structure that is observed from the racemic proline clusters. A molecular analogue, cis-4-hydroxy-proline, displays significantly different behavior, indicating that in addition to the rigidity of the side chain ring, intermolecular interactions are important in the formation of chirally directed clusters. This is the first case in which assemblies of chirally selective elongated structures are observed in this size range of amino acid clusters. Relationships between enantiopurity, cluster shape, and overall energetics are discussed.
An Object-Independent ENZ Metamaterial-Based Wideband Electromagnetic Cloak
Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2016-01-01
A new, metamaterial-based electromagnetic cloaking operation is proposed in this study. The metamaterial exhibits a sharp transmittance in the C-band of the microwave spectrum with negative effective property of permittivity at that frequency. Two metal arms were placed on an FR-4 substrate to construct a double-split-square shape structure. The size of the resonator was maintained to achieve the effective medium property of the metamaterial. Full wave numerical simulation was performed to extract the reflection and transmission coefficients for the unit cell. Later on, a single layer square-shaped cloak was designed using the proposed metamaterial unit cell. The cloak hides a metal cylinder electromagnetically, where the material exhibits epsilon-near-zero (ENZ) property. Cloaking operation was demonstrated adopting the scattering-reduction technique. The measured result was provided to validate the characteristics of the metamaterial and the cloak. Some object size- and shape-based analyses were performed with the cloak, and a common cloaking region was revealed over more than 900 MHz in the C-band for the different objects. PMID:27634456
An Object-Independent ENZ Metamaterial-Based Wideband Electromagnetic Cloak.
Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2016-09-16
A new, metamaterial-based electromagnetic cloaking operation is proposed in this study. The metamaterial exhibits a sharp transmittance in the C-band of the microwave spectrum with negative effective property of permittivity at that frequency. Two metal arms were placed on an FR-4 substrate to construct a double-split-square shape structure. The size of the resonator was maintained to achieve the effective medium property of the metamaterial. Full wave numerical simulation was performed to extract the reflection and transmission coefficients for the unit cell. Later on, a single layer square-shaped cloak was designed using the proposed metamaterial unit cell. The cloak hides a metal cylinder electromagnetically, where the material exhibits epsilon-near-zero (ENZ) property. Cloaking operation was demonstrated adopting the scattering-reduction technique. The measured result was provided to validate the characteristics of the metamaterial and the cloak. Some object size- and shape-based analyses were performed with the cloak, and a common cloaking region was revealed over more than 900 MHz in the C-band for the different objects.
Geometric morphometrics reveals sex-differential shape allometry in a spider.
Fernández-Montraveta, Carmen; Marugán-Lobón, Jesús
2017-01-01
Common scientific wisdom assumes that spider sexual dimorphism (SD) mostly results from sexual selection operating on males. However, testing predictions from this hypothesis, particularly male size hyperallometry, has been restricted by methodological constraints. Here, using geometric morphometrics (GMM) we studied for the first time sex-differential shape allometry in a spider ( Donacosa merlini , Araneae: Lycosidae) known to exhibit the reverse pattern (i.e., male-biased) of spider sexual size dimorphism. GMM reveals previously undetected sex-differential shape allometry and sex-related shape differences that are size independent (i.e., associated to the y-intercept, and not to size scaling). Sexual shape dimorphism affects both the relative carapace-to-opisthosoma size and the carapace geometry, arguably resulting from sex differences in both reproductive roles (female egg load and male competition) and life styles (wandering males and burrowing females). Our results demonstrate that body portions may vary modularly in response to different selection pressures, giving rise to sex differences in shape, which reconciles previously considered mutually exclusive interpretations about the origins of spider SD.
Morphometric abnormalities of the lateral ventricles in methamphetamine-dependent subjects☆
Jeong, Hyeonseok S.; Lee, Sunho; Yoon, Sujung; Jung, Jiyoung J.; Cho, Han Byul; Kim, Binna N.; Ma, Jiyoung; Ko, Eun; Im, Jooyeon Jamie; Ban, Soonhyun; Renshaw, Perry F.; Lyoo, In Kyoon
2017-01-01
Background The presence of morphometric abnormalities of the lateral ventricles, which can reflect focal or diffuse atrophic changes of nearby brain structures, is not well characterized in methamphetamine dependence. The current study was aimed to examine the size and shape alterations of the lateral ventricles in methamphetamine-dependent subjects. Methods High-resolution brain structural images were obtained from 37 methamphetamine-dependent subjects and 25 demographically matched healthy individuals. Using a combined volumetric and surface-based morphometric approach, the structural variability of the lateral ventricles, with respect to extent and location, was examined. Results Methamphetamine-dependent subjects had an enlarged right lateral ventricle compared with healthy individuals. Morphometric analysis revealed a region-specific pattern of lateral ventricular expansion associated with methamphetamine dependence, which was mainly distributed in the areas adjacent to the ventral striatum, medial prefrontal cortex, and thalamus. Conclusions Patterns of shape decomposition in the lateral ventricles may have relevance to the structural vulnerability of the prefrontal-ventral striatal-thalamic circuit to methamphetamine-induced neurotoxicity. PMID:23769159
Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oesterling, Patrick; Heine, Christian; Weber, Gunther H.
2012-05-04
Analyzing high-dimensional point clouds is a classical challenge in visual analytics. Traditional techniques, such as projections or axis-based techniques, suffer from projection artifacts, occlusion, and visual complexity.We propose to split data analysis into two parts to address these shortcomings. First, a structural overview phase abstracts data by its density distribution. This phase performs topological analysis to support accurate and non-overlapping presentation of the high-dimensional cluster structure as a topological landscape profile. Utilizing a landscape metaphor, it presents clusters and their nesting as hills whose height, width, and shape reflect cluster coherence, size, and stability, respectively. A second local analysis phasemore » utilizes this global structural knowledge to select individual clusters or point sets for further, localized data analysis. Focusing on structural entities significantly reduces visual clutter in established geometric visualizations and permits a clearer, more thorough data analysis. In conclusion, this analysis complements the global topological perspective and enables the user to study subspaces or geometric properties, such as shape.« less
The impact of cigarette pack shape, size and opening: evidence from tobacco company documents.
Kotnowski, Kathy; Hammond, David
2013-09-01
To use tobacco industry documents on cigarette pack shape, size and openings to identify industry findings on associations with brand imagery, product attributes, consumer perceptions and behaviour. Internal tobacco industry research and marketing documents obtained through court disclosure contained in the Legacy Tobacco Documents Library were searched using keywords related to pack shapes, sizes and opening methods. The search identified 66 documents related to consumer research and marketing plans on pack shape, size and openings, drawn from 1973 to 2002. Industry research consistently found that packs that deviated from the traditional flip-top box projected impressions of 'modern', 'elegant' and 'unique' brand imagery. Alternative pack shape and openings were identified as an effective means to communicate product attributes, particularly with regard to premium quality and smooth taste. Consumer studies consistently found that pack shape, size and opening style influenced perceptions of reduced product harm, and were often used to communicate a 'lighter' product. Slim, rounded, oval and booklet packs were found to be particularly appealing among young adults, and several studies demonstrated increased purchase interest for tobacco products presented in novel packaging shape or opening. Evidence from consumer tracking reports and company presentations indicate that pack innovations in shape or opening method increased market share of brands. Consumer research by the tobacco industry between 1973 and 2002 found that variations in packaging shape, size and opening method could influence brand appeal and risk perceptions and increase cigarette sales. © 2013 Society for the Study of Addiction.
Cell Division and Evolution of Biological Tissues
NASA Astrophysics Data System (ADS)
Rivier, Nicolas; Arcenegui-Siemens, Xavier; Schliecker, Gudrun
A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division (fragmentation) is a local, elementary topological transformation which establishes statistical equilibrium of the structure. Statistical equilibrium is characterized by observable relations (Lewis, Aboav) between cell shapes, sizes and those of their neighbours, obtained through maximum entropy and topological correlation extending to nearest neighbours only, i.e. maximal randomness. For a two-dimensional tissue (epithelium), the distribution of cell shapes and that of mother and daughter cells can be obtained from elementary geometrical and physical arguments, except for an exponential factor favouring division of larger cells, and exponential and combinatorial factors encouraging a most symmetric division. The resulting distributions are very narrow, and stationarity severely restricts the range of an adjustable structural parameter
Regional shape-based feature space for segmenting biomedical images using neural networks
NASA Astrophysics Data System (ADS)
Sundaramoorthy, Gopal; Hoford, John D.; Hoffman, Eric A.
1993-07-01
In biomedical images, structure of interest, particularly the soft tissue structures, such as the heart, airways, bronchial and arterial trees often have grey-scale and textural characteristics similar to other structures in the image, making it difficult to segment them using only gray- scale and texture information. However, these objects can be visually recognized by their unique shapes and sizes. In this paper we discuss, what we believe to be, a novel, simple scheme for extracting features based on regional shapes. To test the effectiveness of these features for image segmentation (classification), we use an artificial neural network and a statistical cluster analysis technique. The proposed shape-based feature extraction algorithm computes regional shape vectors (RSVs) for all pixels that meet a certain threshold criteria. The distance from each such pixel to a boundary is computed in 8 directions (or in 26 directions for a 3-D image). Together, these 8 (or 26) values represent the pixel's (or voxel's) RSV. All RSVs from an image are used to train a multi-layered perceptron neural network which uses these features to 'learn' a suitable classification strategy. To clearly distinguish the desired object from other objects within an image, several examples from inside and outside the desired object are used for training. Several examples are presented to illustrate the strengths and weaknesses of our algorithm. Both synthetic and actual biomedical images are considered. Future extensions to this algorithm are also discussed.
Preliminary structural design of a lunar transfer vehicle aerobrake. M.S. Thesis
NASA Technical Reports Server (NTRS)
Bush, Lance B.
1992-01-01
An aerobrake concept for a Lunar transfer vehicle was weight optimized through the use of the Taguchi design method, structural finite element analyses and structural sizing routines. Six design parameters were chosen to represent the aerobrake structural configuration. The design parameters included honeycomb core thickness, diameter to depth ratio, shape, material, number of concentric ring frames, and number of radial frames. Each parameter was assigned three levels. The minimum weight aerobrake configuration resulting from the study was approx. half the weight of the average of all twenty seven experimental configurations. The parameters having the most significant impact on the aerobrake structural weight were identified.
A computerized self-compensating system for ultrasonic inspection of airplane structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komsky, I.N.; Achenbach, J.D.; Hagemaier, D.
1993-12-31
Application of a self-compensating technique for ultrasonic inspection of airplane structures makes it possible not only to detect cracks in the different layers of joints but also to obtain information on crack sizes. A prototype computerized ultrasonic system, which utilizes the self-compensating method, has been developed for non-destructive inspection of multilayered airplane structures with in-between sealants, such as bolted joints in tail connections. Industrial applications of the system would require deployment of commercially available portable modules for data acquisition and processing. A portable ultrasonic flaw detector EPOCH II manual scanners and HandiScan, and SQL and FCS software modules form themore » PC-based TestPro system have been selected for initial tests. A pair of contact angle-beam transducers were used to generate shear waves in the material. Both hardware and software components of the system have been modified for the application in conjunction with the self-compensating technique. The system has bene tested on two calibration specimens with artificial flaws of different sizes in internal layers of multilayered structures. Ultrasonic signals transmitted through and reflected from the artificial flaws have bene discriminated and characterized using multiple time domain amplitude gates. Then the ratios of the reflection and transmission coefficients, R/T, were calculated for several positions of the transducers. Inspection of measured R/T curves shows it is difficult to visually associate curve shapes with corresponding flaw sizes and orientation. Hence for online classification of these curve shapes, application of an adaptive signal classifier was considered. Several different types and configurations of the classifiers, including a neural network, have been tested. Test results showed that improved performance of the classifier can be achieved by combination of a back-propagation neural network with a signal pre-processing module.« less
Srinivasan, Asha R; Shoyele, Sunday A
2013-03-01
The ability to produce submicron particles of monoclonal antibodies of different sizes and shapes would enhance their application to pulmonary delivery. Although non-ionic surfactants are widely used as stabilizers in protein formulations, we hypothesized that non-ionic surfactants will affect the shape and size of submicron IgG particles manufactured through precipitation. Submicron particles of IgG1 were produced by a precipitation process which explores the fact that proteins have minimum solubility but maximum precipitation at the isoelectric point. Non-ionic surfactants were used for size and shape control, and as stabilizing agents. Aerosol performance of the antibody nanoparticles was assessed using Andersen Cascade Impactor. Spinhaler® and Handihaler® were used as model DPI devices. SEM micrographs revealed that the shape of the submicron particles was altered by varying the type of surfactant added to the precipitating medium. Particle size as measured by dynamic light scattering was also varied based on the type and concentration of the surfactant. The surfactants were able to stabilize the IgG during the precipitation process. Polyhedral, sponge-like, and spherical nanoparticles demonstrated improved aerosolization properties compared to irregularly shaped (>20 μm) unprocessed particles. Stable antibody submicron particles of different shapes and sizes were prepared. Careful control of the shape of such particles is critical to ensuring optimized lung delivery by dry powder inhalation.
Alternative Views of the Solar System among Turkish Students
ERIC Educational Resources Information Center
Cin, Mustafa
2007-01-01
This study examines middle-school students' alternative frameworks of the earth's shape, its relative size and its distance from the sun and the moon. The sample was selected in the province of Giresun in Turkey. Sixty-five 14-year-old students participated in the research. A structured interview consisting of open-ended questions was employed to…
Protein Calligraphy: A New Concept Begins To Take Shape
2016-06-30
of nearly any conceivable material .47 Judicious selection of binding peptides combined with an appropriate protein nanostructure enables the...controllable size and symmetry is a long sought after goal of nanotechnology and material engineering. Proteins are particularly attractive for...of structurally defined materials with nanometer dimensions. Researchers have spent consid- erable effort attempting to mimic nature to sculpt