Sample records for structure spectroscopy study

  1. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  2. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  3. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  4. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  5. Raman structural studies of the nickel electrode

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.

    1994-01-01

    The objectives of this investigation have been to define the structures of charged active mass, discharged active mass, and related precursor materials (alpha-phases), with the purpose of better understanding the chemical and electrochemical reactions, including failure mechanisms and cobalt incorporation, so that the nickel electrode may be improved. Although our primary tool has been Raman spectroscopy, the structural conclusions drawn from the Raman data have been supported and augmented by three other analysis methods: infrared spectroscopy, powder X-ray Diffraction (XRD), and x-ray absorption spectroscopy (in particular EXAFS, Extended X-ray Absorption Fine Structure spectroscopy).

  6. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    PubMed

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  7. Correlation between the structure and the piezoelectric properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics studied by XRD and Raman spectroscopy.

    PubMed

    Rubio-Marcos, Fernando; Marchet, Pascal; Romero, Juan José; Fernández, Jose F

    2011-09-01

    This article reviews on the use of Raman spectroscopy for the study of (K,Na,Li)(Nb,Ta,Sb)O(3) lead-free piezoceramics. Currently, this material appears to be one of the most interesting and promising alternatives to the well-known PZT piezoelectric materials. In this work, we prepare piezoceramics with different stoichiometries and study their structural, ferroelectric, and piezoelectric properties. By using both Raman spectroscopy and X-ray diffraction, we establish a direct correlation between the structure and the properties. The results demonstrate that the wavenumber of the A(1g) vibration is proportional to the tetragonality, the remnant polarization, and the piezoelectric coefficients of these materials. Thus, Raman spectroscopy appears as a very useful technique for a fast evaluation of the crystalline structure and the ferroelectric/ piezoelectric properties.

  8. Calcium in the Oxygen-Evolving Complex: Structural and Mechanistic Role Determined by X-ray Spectroscopy

    PubMed Central

    Yachandra, Vittal K.; Yano, Junko

    2011-01-01

    This review describes the results from X-ray absorption spectroscopy studies that have contributed to an understanding of the role of Ca in the photosynthetic water oxidation reaction. The results include the first Mn, Ca and Sr X-ray spectroscopy studies using Ca or Sr-substituted PS II samples that established the presence of a MnCa heteronuclear structure and its orientation, and the most recent Sr X-ray spectroscopy study using biosynthetically prepared Sr-containing PS II in the various S-states that provide important insights into the requirement for Ca in the mechanism of the Mn4Ca catalytic center. PMID:21524917

  9. Search of massive star formation with COMICS

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshiko K.

    2004-04-01

    Mid-infrared observations is useful for studies of massive star formation. Especially COMICS offers powerful tools: imaging survey of the circumstellar structures of forming massive stars such as massive disks and cavity structures, mass estimate from spectroscopy of fine structure lines, and high dispersion spectroscopy to census gas motion around formed stars. COMICS will open the next generation infrared studies of massive star formation.

  10. Characterization of CuHal-intercalated carbon nanotubes with x-ray absorption spectroscopy combined with x-ray photoelectron and resonant photoemission spectroscopies

    NASA Astrophysics Data System (ADS)

    Brzhezinskaya, M.; Generalov, A.; Vinogdradov, A.; Eliseev, A.

    2013-04-01

    Encapsulated single-walled carbon nanotubes (SWCNTs) with inner channels filled by different compounds present the new class of composite materials. Such CNTs give opportunity to form 1D nanocrystals as well as quantum nanowires with new physical and chemical properties inside the tubes. The present study is aimed to characterize the possible chemical interaction between CuHal (Hal=I, Cl, Br) and SWCNTs in CuHal@SWCNTs and electronic structure of the latter using high-resolution near edge X-ray absorption fine structure (NEXAFS) spectroscopy combined with high-resolution X-ray photoelectron spectroscopy and resonant photoemission spectroscopy. The present study has shown that there is a chemical interaction between the filler and π-electron subsystem of CNTs which is accompanied by changes of the atomic and electronic structure of the filler during the encapsulating it inside CNTs.

  11. Structural, XPS and magnetic studies of pulsed laser deposited Fe doped Eu{sub 2}O{sub 3} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep; Prakash, Ram, E-mail: rpgiuc@gmail.com; Choudhary, R.J.

    2015-10-15

    Highlights: • Growth of Fe doped Eu{sub 2}O{sub 3} thin films by PLD. • XRD and Raman’s spectroscopy used for structure confirmation. • The electronic states of Eu and Fe are confirmed by XPS. • Magnetic properties reveals room temperature magnetic ordering in deposited film. - Abstract: Fe (4 at.%) doped europium (III) oxide thin film was deposited on silicon (1 0 0) substrate by pulsed laser deposition technique. Structural, spectral and magnetic properties were studied by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and magnetization measurements. XRD and Raman spectroscopy reveal that the grown film is singlemore » phased and belongs to the cubic structure of Eu{sub 2}O{sub 3}. XPS study of the Eu{sub 1.92}Fe{sub 0.08}O{sub 3} film shows that Fe exists in Fe{sup 3+} ionic state in the film. The film exhibits magnetic ordering at room temperature.« less

  12. Depth elemental characterization of 1D self-aligned TiO2 nanotubes using calibrated radio frequency glow discharge optical emission spectroscopy (GDOES)

    NASA Astrophysics Data System (ADS)

    Mohajernia, Shiva; Mazare, Anca; Hwang, Imgon; Gaiaschi, Sofia; Chapon, Patrick; Hildebrand, Helga; Schmuki, Patrik

    2018-06-01

    In this work we study the depth composition of anodic TiO2 nanotube layers. We use elemental depth profiling with Glow Discharge Optical Emission Spectroscopy and calibrate the results of this technique with X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS). We establish optimized sputtering conditions for nanotubular structures using the pulsed RF mode, which causes minimized structural damage during the depth profiling of the nanotubular structures. This allows to obtain calibrated sputter rates that account for the nanotubular "porous" morphology. Most importantly, sputter-artifact free compositional profiles of these high aspect ratio 3D structures are obtained, as well as, in combination with SEM, elegant depth sectional imaging.

  13. Contributions to advances in blend pellet products (BPP) research on molecular structure and molecular nutrition interaction by advanced synchrotron and globar molecular (Micro)spectroscopy.

    PubMed

    Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang

    2018-04-13

    To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.

  14. A Project-Based Biochemistry Laboratory Promoting the Understanding and Uses of Fluorescence Spectroscopy in the Study of Biomolecular Structures and Interactions

    ERIC Educational Resources Information Center

    Briese, Nicholas; Jakubowsk, Henry V.

    2007-01-01

    A laboratory project for a first semester biochemistry course is described, which integrates the traditional classroom study of the structure and function of biomolecules with the laboratory study of these molecules using fluorescence spectroscopy. Students are assigned a specific question addressing the stability/function of lipids, proteins, or…

  15. Using vibrational molecular spectroscopy to reveal association of steam-flaking induced carbohydrates molecular structural changes with grain fractionation, biodigestion and biodegradation

    NASA Astrophysics Data System (ADS)

    Xu, Ningning; Liu, Jianxin; Yu, Peiqiang

    2018-04-01

    Advanced vibrational molecular spectroscopy has been developed as a rapid and non-destructive tool to reveal intrinsic molecular structure conformation of biological tissues. However, this technique has not been used to systematically study flaking induced structure changes at a molecular level. The objective of this study was to use vibrational molecular spectroscopy to reveal association between steam flaking induced CHO molecular structural changes in relation to grain CHO fractionation, predicted CHO biodegradation and biodigestion in ruminant system. The Attenuate Total Reflectance Fourier-transform Vibrational Molecular Spectroscopy (ATR-Ft/VMS) at SRP Key Lab of Molecular Structure and Molecular Nutrition, Ministry of Agriculture Strategic Research Chair Program (SRP, University of Saskatchewan) was applied in this study. The fractionation, predicted biodegradation and biodigestion were evaluated using the Cornell Net Carbohydrate Protein System. The results show that: (1) The steam flaking induced significant changes in CHO subfractions, CHO biodegradation and biodigestion in ruminant system. There were significant differences between non-processed (raw) and steam flaked grain corn (P < .01); (2) The ATR-Ft/VMS molecular technique was able to detect the processing induced CHO molecular structure changes; (3) Induced CHO molecular structure spectral features are significantly correlated (P < .05) to CHO subfractions, CHO biodegradation and biodigestion and could be applied to potentially predict CHO biodegradation (R2 = 0.87, RSD = 0.74, P < .01) and intestinal digestible undegraded CHO (R2 = 0.87, RSD = 0.24, P < .01). In summary, the processing induced molecular CHO structure changes in grain corn could be revealed by the ATR-Ft/VMS vibrational molecular spectroscopy. These molecular structure changes in grain were potentially associated with CHO biodegradation and biodigestion.

  16. Defect study in ZnO related structures—A multi-spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Ling, C. C.; Cheung, C. K.; Gu, Q. L.; Dai, X. M.; Xu, S. J.; Zhu, C. Y.; Luo, J. M.; Zhu, C. Y.; Tam, K. H.; Djurišić, A. B.; Beling, C. D.; Fung, S.; Lu, L. W.; Brauer, G.; Anwand, W.; Skorupa, W.; Ong, H. C.

    2008-10-01

    ZnO has attracted a great deal of attention in recent years because of its potential applications for fabricating optoelectronic devices. Using a multi-spectroscopic approach including positron annihilation spectroscopy (PAS), deep level transient spectroscopy (DLTS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS), we have studied the two observed phenomena from ZnO related structures. They namely included the H 2O 2 pre-treatment induced ohmic to rectifying contact conversion on Au/ n-ZnO contact and the p-type doping by nitrogen ion implantation. The aim of the studies was to offering comprehensive views as to how the defects influenced the structures electrical and optical properties of the structures. It was also shown that PAS measurement using the monoenergetic positron beam could offer valuable information of vacancy type defects in the vertical ZnO nanorod array structure.

  17. Structure of a peptide adsorbed on graphene and graphite.

    PubMed

    Katoch, Jyoti; Kim, Sang Nyon; Kuang, Zhifeng; Farmer, Barry L; Naik, Rajesh R; Tatulian, Suren A; Ishigami, Masa

    2012-05-09

    Noncovalent functionalization of graphene using peptides is a promising method for producing novel sensors with high sensitivity and selectivity. Here we perform atomic force microscopy, Raman spectroscopy, infrared spectroscopy, and molecular dynamics simulations to investigate peptide-binding behavior to graphene and graphite. We studied a dodecamer peptide identified with phage display to possess affinity for graphite. Optical spectroscopy reveals that the peptide forms secondary structures both in powder form and in an aqueous medium. The dominant structure in the powder form is α-helix, which undergoes a transition to a distorted helical structure in aqueous solution. The peptide forms a complex reticular structure upon adsorption on graphene and graphite, having a helical conformation different from α-helix due to its interaction with the surface. Our observation is consistent with our molecular dynamics calculations, and our study paves the way for rational functionalization of graphene using biomolecules with defined structures and, therefore, functionalities.

  18. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com; Yadav, A. K.

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It ismore » a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.« less

  19. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    PubMed

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  20. Electronic structure of the organic semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from soft x-ray spectroscopies and density functional theory calculations.

    PubMed

    DeMasi, A; Piper, L F J; Zhang, Y; Reid, I; Wang, S; Smith, K E; Downes, J E; Peltekis, N; McGuinness, C; Matsuura, A

    2008-12-14

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq(3)) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq(3), and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.

  1. Microwave spectroscopy of biomolecular building blocks.

    PubMed

    Alonso, José L; López, Juan C

    2015-01-01

    Microwave spectroscopy, considered as the most definitive gas phase structural probe, is able to distinguish between different conformational structures of a molecule, because they have unique spectroscopic constants and give rise to distinct individual rotational spectra.Previously, application of this technique was limited to molecular specimens possessing appreciable vapor pressures, thus discarding the possibility of studying many other molecules of biological importance, in particular those with high melting points, which had a tendency to undergo thermal reactions, and ultimately degradation, upon heating.Nowadays, the combination of laser ablation with Fourier transform microwave spectroscopy techniques, in supersonic jets, has enabled the gas-phase study of such systems. In this chapter, these techniques, including broadband spectroscopy, as well as results of their application into the study of the conformational panorama and structure of biomolecular building blocks, such as amino acids, nucleic bases, and monosaccharides, are briefly discussed, and with them, the tools for conformational assignation - rotational constants, nuclear quadrupole coupling interaction, and dipole moment.

  2. Study of irradiated Hadfield steel using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Semionkin, V. A.; Neshev, F. G.; Tsurin, V. A.; Milder, O. B.; Oshtrakh, M. I.

    2010-03-01

    Proton irradiated Hadfield steel foil was studied using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy. It was shown that proton irradiation leads to structural changes in the foil as well as to surface oxidation with ferric hydrous oxide formation (ferrihydrite). Moreover, oxidation on the foil underside was higher than on the foil right side.

  3. Effects of a high-pressure treatment on the wheat alpha-amylase inhibitor and its relationship to elimination of allergenicity

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Takanohashi, K.; Hara, T.; Odani, S.; Suzuki, A.; Nishiumi, T.

    2010-03-01

    In this study, the effects of high-pressure treatment on structure and allergeincity of alpha amylase inhibitor (a-AI) were investigated. The pressure-induced structural changes of α-AI were estimated by fluorescence spectra and by fourth derivative UV-spectroscopy for probed tyrosine residues and by circular dichroism (CD) spectroscopy. The changes in the tertiary structure detected by fluorescence spectra and by fourth derivative UV-spectroscopy under high pressure were indicated at over 300 MPa. Measurements of CD spectroscopy suggested that the effects of a high-pressure treatment on changes in the secondary structure of α-AI were little. From our results, pressure-induced changes of the α-AI structure were not apparent. On the other hands, the IgE-specific binding activities of pressurized α-AI to sera from allergic patients against wheat, which is estimated by observations of dot-blotting, were decreased by high-pressure treatment. It is known that the pressure-induced elimination of allergenicity is related to the tertiary structural changes of allergen molecules. This study are suspected that the epitopes of α-AI do not contain tyrosine residues, and thus the decrease of IgE-specific binding activities is probably caused by the tertiary structural changes of these parts of α-AI.

  4. Relaxation processes in disaccharide sugar glasses

    NASA Astrophysics Data System (ADS)

    Hwang, Yoon-Hwae; Kwon, Hyun-Joung; Seo, Jeong-Ah; Shin, Dong-Myeong; Ha, Ji-Hye; Kim, Hyung-Kook

    2013-02-01

    We represented relaxation processes of disaccharide sugars (anhydrous trehalose and maltose) in supercooled and glassy states by using several spectroscopy techniques which include a broadband dielectric loss spectroscopy, photon correlation spectroscopy and X-ray diffraction (Retvield analysis) methods which are powerful tools to measure the dynamics in glass forming materials. In a dielectric loss spectroscopy study, we found that anhydrous trehalose and maltose glasses have an extra relaxation process besides α-, JG β- and γ-relaxations which could be related to a unique property of glycoside bond in disaccharides. In photon correlation spectroscopy study, we found an interesting compressed exponential relaxation at temperatures above 140°C. The q-1 dependence of its relaxation time corresponds to an ultraslow ballistic motion due to the local structure rearrangements. In the same temperature range, we found the glycosidic bond structure changes in trehalose molecule from the Raman and the Retvield X-ray diffraction measurements indicating that the observed compressed exponential relaxation in supercooled liquid trehalose could be resulted in the glycosidic bond structure change. Therefore, the overall results from this study might support the fact that the superior bioprotection ability of disaccharide sugar glasses might originate from this unique relaxation process of glycosidic bond.

  5. NMR contributions to structural dynamics studies of intrinsically disordered proteins☆

    PubMed Central

    Konrat, Robert

    2014-01-01

    Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity. Given their inherent structural flexibility X-ray crystallography is not applicable to study these proteins. In contrast, NMR spectroscopy offers unique opportunities for structural and dynamic studies of IDPs. The past two decades have witnessed significant development of NMR spectroscopy that couples advances in spin physics and chemistry with a broad range of applications. This article will summarize key advances in basic physical-chemistry and NMR methodology, outline their limitations and envision future R&D directions. PMID:24656082

  6. INSTRUMENTS AND METHODS OF INVESTIGATION: Positron annihilation spectroscopy in materials structure studies

    NASA Astrophysics Data System (ADS)

    Grafutin, Viktor I.; Prokop'ev, Evgenii P.

    2002-01-01

    A relatively new method of materials structure analysis — positron annihilation spectroscopy (PAS) — is reviewed. Measurements of positron lifetimes, the determination of positron 3γ- and 2γ-annihilation probabilities, and an investigation of the effects of different external factors on the fundamental characteristics of annihilation constitute the basis for this promising method. The ways in which the positron annihilation process operates in ionic crystals, semiconductors, metals and some condensed matter systems are analyzed. The scope of PAS is described and its prospects for the study of the electronic and defect structures are discussed. The applications of positron annihilation spectroscopy in radiation physics and chemistry of various substances as well as in physics and chemistry of solutions are exemplified.

  7. Properties of the carbon-palladium nanocomposites studied by Raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Belka, Radosław; Suchańska, Małgorzata

    2013-10-01

    In this paper, the results for thin carbon-palladium (C-Pd) nanocomposites obtained by PVD (Physical Vapour Deposition) and PVD/CVD (Chemical Vapour Deposition) method, carried out using Raman spectroscopy method are presented. Studies reveal the dominance of fullerene-like structure for PVD samples and graphite-like structures for CVD samples. The type of substrate and metal content have great impact on spectra shapes.

  8. Using Velocity Anisotropy to Analyze Magnetohydrodynamic Turbulence in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Madrid, Alecio; Hernandez, Audra

    2018-01-01

    Structure function (SF) analysis is a strong tool for gaging the Alfvénic properties of magnetohydrodynamic (MHD) simulations, yet there is a lack of literature rigorously investigating limitations in the context of radio spectroscopy. This study takes an in depth approach to studying the limitations of SF analysis for analyzing MHD turbulence in giant molecular cloud (GMC) spectroscopy data. MHD turbulence plays a critical role in the structure and evolution of GMCs as well as in the formation of sub-structures known to spawn stellar progenitors. Existing methods of detection are neither economical nor robust (e.g. dust polarization), and nowhere is this more clear than in the theoretical-observational divide in current literature. A significant limitation of GMC spectroscopy results from the large variation in methods used for extracting GMCs from survey data. Thus, a robust method for studying MHD turbulence must correctly gauge physical properties regardless of the data extraction method used. While SF analysis has demonstrated strong potential across a range of simulated conditions, this study finds significant concern regarding its feasibility as a robust tool in GMC spectroscopy.

  9. Dark spectroscopy at lepton colliders

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2018-03-01

    Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.

  10. Study on the conformation changes of Lysozyme induced by Hypocrellin A: The mechanism investigation

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Huang, He-Yong; Zhou, Lin; Yang, Chao; Zhou, Jia-Hong; Liu, Zheng-Ming

    2012-11-01

    The interactions between Lysozyme and Hypocrellin A are investigated in details using time-resolved fluorescence, fourier transform infrared spectroscopy (FTIR), circular dichroism spectroscopy (CD), three-dimensional fluorescence spectra, and thermal gravimetric analysis (TGA) techniques. The results of time-resolved fluorescence suggest that the quenching mechanism is static quenching. FTIR and CD spectroscopy provide evidences of the reducing of α-helix after interaction. Hypocrellin A could change the micro-environmental of Lysozyme according to hydrophobic interaction between the aromatic ring and the hydrophobic amino acid residues, and the altered polypeptide backbone structures induce the reduction of α-helical structures. Moreover, TGA study further demonstrates the structure changes of Lysozyme on the effect of Hypocrellin A. This study could provide some important information for the derivatives of HA in pharmacy, pharmacology and biochemistry.

  11. A study on the anisole-water complex by molecular beam-electronic spectroscopy and molecular mechanics calculations.

    PubMed

    Becucci, M; Pietraperzia, G; Pasquini, M; Piani, G; Zoppi, A; Chelli, R; Castellucci, E; Demtroeder, W

    2004-03-22

    An experimental and theoretical study is made on the anisole-water complex. It is the first van der Waals complex studied by high resolution electronic spectroscopy in which the water is seen acting as an acid. Vibronically and rotationally resolved electronic spectroscopy experiments and molecular mechanics calculations are used to elucidate the structure of the complex in the ground and first electronic excited state. Some internal dynamics in the system is revealed by high resolution spectroscopy. (c) 2004 American Institute of Physics

  12. Applications of Structural Mass Spectrometry to Metabolomics: Clarifying Bond Specific Spectral Signatures with Isotope Edited Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gorlova, Olga; Wolke, Conrad T.; Fournier, Joseph; Colvin, Sean; Johnson, Mark; Miller, Scott

    2015-06-01

    Comprehensive FTIR, MS/MS and NMR of pharmaceuticals are generally readily available but characterization of their metabolites has been an obstacle. Atorvastatin is a statin drug responsible for the maintenance of cholesterol in the body. Diovan is an angiostensin receptor antagonist used to treat high blood pressure and congestive heart failure. The field of metabolomics, however, is struggling to obtain the identity of their structures. We implement mass spectrometry with cryogenic ion spectroscopy to study gaseous ions of the desired metabolites which, in combination, not only identify the mass of the metabolite but also elucidate their structures through isotope-specific infrared spectroscopy.

  13. Studying the Structure and Dynamics of Biomolecules by Using Soluble Paramagnetic Probes

    PubMed Central

    Hocking, Henry G; Zangger, Klaus; Madl, Tobias

    2013-01-01

    Characterisation of the structure and dynamics of large biomolecules and biomolecular complexes by NMR spectroscopy is hampered by increasing overlap and severe broadening of NMR signals. As a consequence, the number of available NMR spectroscopy data is often sparse and new approaches to provide complementary NMR spectroscopy data are needed. Paramagnetic relaxation enhancements (PREs) obtained from inert and soluble paramagnetic probes (solvent PREs) provide detailed quantitative information about the solvent accessibility of NMR-active nuclei. Solvent PREs can be easily measured without modification of the biomolecule; are sensitive to molecular structure and dynamics; and are therefore becoming increasingly powerful for the study of biomolecules, such as proteins, nucleic acids, ligands and their complexes in solution. In this Minireview, we give an overview of the available solvent PRE probes and discuss their applications for structural and dynamic characterisation of biomolecules and biomolecular complexes. PMID:23836693

  14. High-pressure studies with x-rays using diamond anvil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Guoyin; Mao, Ho Kwang

    2016-11-22

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. Thesemore » HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.« less

  15. High-pressure studies with x-rays using diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Shen, Guoyin; Mao, Ho Kwang

    2017-01-01

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials’ properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.

  16. The road not taken: Applications of fluorescence spectroscopy and electronic structure theory to systems of materials and biological relevance

    NASA Astrophysics Data System (ADS)

    Carlson, Philip Joseph

    Applications of Fluorescence Spectroscopy and Electronic Structure Theory to Systems of Materials and Biological Relevance. The photophysics of curcumin was studied in micelles and the solvation dynamics were probed. The high-energy ionic liquid HEATN was also studied using the fragment molecular orbital method. The solvation dynamics of the HEATN system were determined. This marks the first study of the solvation dynamics in a triazolium ionic liquid system.

  17. Clathrate Structure Determination by Combining Crystal Structure Prediction with Computational and Experimental 129Xe NMR Spectroscopy

    PubMed Central

    Selent, Marcin; Nyman, Jonas; Roukala, Juho; Ilczyszyn, Marek; Oilunkaniemi, Raija; Bygrave, Peter J.; Laitinen, Risto; Jokisaari, Jukka

    2017-01-01

    Abstract An approach is presented for the structure determination of clathrates using NMR spectroscopy of enclathrated xenon to select from a set of predicted crystal structures. Crystal structure prediction methods have been used to generate an ensemble of putative structures of o‐ and m‐fluorophenol, whose previously unknown clathrate structures have been studied by 129Xe NMR spectroscopy. The high sensitivity of the 129Xe chemical shift tensor to the chemical environment and shape of the crystalline cavity makes it ideal as a probe for porous materials. The experimental powder NMR spectra can be used to directly confirm or reject hypothetical crystal structures generated by computational prediction, whose chemical shift tensors have been simulated using density functional theory. For each fluorophenol isomer one predicted crystal structure was found, whose measured and computed chemical shift tensors agree within experimental and computational error margins and these are thus proposed as the true fluorophenol xenon clathrate structures. PMID:28111848

  18. Investigating Molecular Structures of Bio-Fuel and Bio-Oil Seeds as Predictors To Estimate Protein Bioavailability for Ruminants by Advanced Nondestructive Vibrational Molecular Spectroscopy.

    PubMed

    Ban, Yajing; L Prates, Luciana; Yu, Peiqiang

    2017-10-18

    This study was conducted to (1) determine protein and carbohydrate molecular structure profiles and (2) quantify the relationship between structural features and protein bioavailability of newly developed carinata and canola seeds for dairy cows by using Fourier transform infrared molecular spectroscopy. Results showed similarity in protein structural makeup within the entire protein structural region between carinata and canola seeds. The highest area ratios related to structural CHO, total CHO, and cellulosic compounds were obtained for carinata seeds. Carinata and canola seeds showed similar carbohydrate and protein molecular structures by multivariate analyses. Carbohydrate molecular structure profiles were highly correlated to protein rumen degradation and intestinal digestion characteristics. In conclusion, the molecular spectroscopy can detect inherent structural characteristics in carinata and canola seeds in which carbohydrate-relative structural features are related to protein metabolism and utilization. Protein and carbohydrate spectral profiles could be used as predictors of rumen protein bioavailability in cows.

  19. Effects of high hydrostatic pressure on the structure and potential allergenicity of the major allergen bovine β-lactoglobulin.

    PubMed

    Meng, Xuanyi; Bai, Yuxin; Gao, Jinyan; Li, Xin; Chen, Hongbing

    2017-03-15

    Bovine β-lactoglobulin (β-Lg) is recognized as a significant milk allergen in several countries. In this study, β-Lg was isolated and treated with high hydrostatic pressure (HHP) at 100, 200, 300, 400, and 500MPa. The allergenic properties of the HHP-treated β-Lg were characterized by indirect competitive enzyme-linked immunosorbent assay with anti-β-Lg rabbit antibody and the sera of patients allergic to cows' milk. The conformation of the HHP-treated β-Lg was examined with ultraviolet absorption spectroscopy, endogenous fluorescence spectroscopy, exogenous fluorescence spectroscopy, and circular dichroism spectroscopy analyses. The results indicated that IgG binding increased with treatment pressure, and IgE binding was lowest at 200MPa and highest at 400MPa. The tertiary structure of β-Lg changed significantly after HHP, whereas the primary and secondary structures remained stable. Overall, this study suggests that the conformational changes in HHP-treated β-Lg contribute to its altered allergenicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Structural changes in gluten protein structure after addition of emulsifier. A Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ferrer, Evelina G.; Gómez, Analía V.; Añón, María C.; Puppo, María C.

    2011-06-01

    Food protein product, gluten protein, was chemically modified by varying levels of sodium stearoyl lactylate (SSL); and the extent of modifications (secondary and tertiary structures) of this protein was analyzed by using Raman spectroscopy. Analysis of the Amide I band showed an increase in its intensity mainly after the addition of the 0.25% of SSL to wheat flour to produced modified gluten protein, pointing the formation of a more ordered structure. Side chain vibrations also confirmed the observed changes.

  1. Electronic structure and fine structural features of the air-grown UNxOy on nitrogen-rich uranium nitride

    NASA Astrophysics Data System (ADS)

    Long, Zhong; Zeng, Rongguang; Hu, Yin; Liu, Jing; Wang, Wenyuan; Zhao, Yawen; Luo, Zhipeng; Bai, Bin; Wang, Xiaofang; Liu, Kezhao

    2018-06-01

    Oxide formation on surface of nitrogen-rich uranium nitride film/particles was investigated using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), aberration-corrected transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with electron energy-loss spectroscopy (EELS). XPS and AES studies indicated that the oxidized layer on UN2-x film is ternary compound uranium oxynitride (UNxOy) in 5-10 nm thickness. TEM/HAADF-STEM and EELS studies revealed the UNxOy crystallizes in the FCC CaF2-type structure with the lattice parameter close to the CaF2-type UN2-x matrix. The work can provide further information to the oxidation mechanism of uranium nitride.

  2. Charge carrier dynamics of GaAs/AlGaAs asymmetric double quantum wells at room temperature studied by optical pump terahertz probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Afalla, Jessica; Ohta, Kaoru; Tokonami, Shunrou; Prieto, Elizabeth Ann; Catindig, Gerald Angelo; Cedric Gonzales, Karl; Jaculbia, Rafael; Vasquez, John Daniel; Somintac, Armando; Salvador, Arnel; Estacio, Elmer; Tani, Masahiko; Tominaga, Keisuke

    2017-11-01

    Two asymmetric double quantum wells of different coupling strengths (barrier widths) were grown via molecular beam epitaxy, both samples allowing tunneling. Photoluminescence was measured at 10 and 300 K to provide evidence of tunneling, barrier dependence, and structural uniformity. Carrier dynamics at room temperature was investigated by optical pump terahertz probe (OPTP) spectroscopy. Carrier population decay rates were obtained and photoconductivity spectra were analyzed using the Drude model. This work demonstrates that carrier, and possibly tunneling dynamics in asymmetric double quantum well structures may be studied at room temperature through OPTP spectroscopy.

  3. SFG spectroscopy from 10 -8 to 1000 mbar: less-ordered CO structures and coadsorption on Pd (1 1 1)

    NASA Astrophysics Data System (ADS)

    Morkel, Matthias; Unterhalt, Holger; Salmeron, Miquel; Rupprechter, Günther; Freund, Hans-Joachim

    2003-06-01

    Vibrational sum frequency generation spectroscopy was employed to study "less-ordered" phases resulting from low-temperature CO exposure on Pd(1 1 1). Such imperfect structures may also occur under catalytic reaction conditions up to 1000 mbar and originate from the superposition of ordered structures when the CO mobility and flux were insufficient. The effect of coadsorbed hydrogen and water was also examined.

  4. Metalloprotein structures at ambient conditions and in real-time: biological crystallography and spectroscopy using X-ray free electron lasers

    DOE PAGES

    Kern, Jan; Yachandra, Vittal K.; Yano, Junko

    2015-09-02

    We have studied the structure of enzymes and the chemistry at the catalytic sites, intensively and have acquired an understanding of the atomic-scale chemistry which requires a new approach beyond steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure of metallo-enzymes at ambient conditions, while overcoming the severe X-ray-induced changes to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by the intense and ultra-short femtosecond (fs) X-ray pulses from an X-ray free electron laser (XFEL) by acquiring a signal before the samplemore » is destroyed. Our review describes the recent and pioneering uses of XFELs to study the protein structure and dynamics of metallo-enzymes using crystallography and scattering, as well as the chemical structure and dynamics of the catalytic complexes (charge, spin, and covalency) using spectroscopy during the reaction to understand the electron-transfer processes and elucidate the mechanism.« less

  5. Metalloprotein structures at ambient conditions and in real-time: biological crystallography and spectroscopy using X-ray free electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kern, Jan; Yachandra, Vittal K.; Yano, Junko

    We have studied the structure of enzymes and the chemistry at the catalytic sites, intensively and have acquired an understanding of the atomic-scale chemistry which requires a new approach beyond steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure of metallo-enzymes at ambient conditions, while overcoming the severe X-ray-induced changes to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by the intense and ultra-short femtosecond (fs) X-ray pulses from an X-ray free electron laser (XFEL) by acquiring a signal before the samplemore » is destroyed. Our review describes the recent and pioneering uses of XFELs to study the protein structure and dynamics of metallo-enzymes using crystallography and scattering, as well as the chemical structure and dynamics of the catalytic complexes (charge, spin, and covalency) using spectroscopy during the reaction to understand the electron-transfer processes and elucidate the mechanism.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ailavajhala, Mahesh S.; Mitkova, Maria; Gonzalez-Velo, Yago

    We explore the radiation induced effects in thin films from the Ge-Se to Ge-Te systems accompanied with silver radiation induced diffusion within these films, emphasizing two distinctive compositional representatives from both systems containing a high concentration of chalcogen or high concentration of Ge. The studies are conducted on blanket chalcogenide films or on device structures containing also a silver source. Data about the electrical conductivity as a function of the radiation dose were collected and discussed based on material characterization analysis. Raman Spectroscopy, X-ray Diffraction Spectroscopy, and Energy Dispersive X-ray Spectroscopy provided us with data about the structure, structural changesmore » occurring as a result of radiation, molecular formations after Ag diffusion into the chalcogenide films, Ag lateral diffusion as a function of radiation and the level of oxidation of the studied films. Analysis of the electrical testing suggests application possibilities of the studied devices for radiation sensing for various conditions.« less

  7. Multi-wavelength Raman spectroscopy study of supported vanadia catalysts: Structure identification and quantification

    DOE PAGES

    Wu, Zili

    2014-10-20

    Revealing the structure of supported metal oxide catalysts is a prerequisite for establishing the structure - catalysis relationship. Among a variety of characterization techniques, multi-wavelength Raman spectroscopy, combining resonance Raman and non-resonance Raman with different excitation wavelengths, has recently emerged as a particularly powerful tool in not only identifying but also quantifying the structure of supported metal oxide clusters. In our review, we make use of two supported vanadia systems, VO x/SiO 2 and VO x/CeO 2, as examples to showcase how one can employ this technique to investigate the heterogeneous structure of active oxide clusters and to understand themore » complex interaction between the oxide clusters and the support. Moreover, the qualitative and quantitative structural information gained from the multi-wavelength Raman spectroscopy can be utilized to provide fundamental insights for designing more efficient supported metal oxide catalysts.« less

  8. The Influence of Abrasion on Martian Dust Grains: Evidence from a Study of Antigorite Grains

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Drief, Ahmed; Dyar, M. Darby

    2003-01-01

    Grinding was shown to greatly affect the structure and a number of properties of antigorite grains in a study by Drief and Nieto. Grinding is likely to influence the structure of most clay mineral grains and has been shown recently to influence the structure of kaolinite. The antigorite structure includes curved waves of layered silicate as shown by D dony et al.. Our study was performed in order to characterize in detail changes in the mineral grains resulting from grinding and to assess the influence of physical processes on clay minerals on the surface of Mars. This project includes a combination of SEM, reflectance spectroscopy and Moessbauer spectroscopy.

  9. Induced secondary structure and polymorphism in an intrinsically disordered structural linker of the CNS: solid-state NMR and FTIR spectroscopy of myelin basic protein bound to actin.

    PubMed

    Ahmed, Mumdooh A M; Bamm, Vladimir V; Shi, Lichi; Steiner-Mosonyi, Marta; Dawson, John F; Brown, Leonid; Harauz, George; Ladizhansky, Vladimir

    2009-01-01

    The 18.5 kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that maintains the structural integrity of the myelin sheath of the central nervous system by conjoining the cytoplasmic leaflets of oligodendrocytes and by linking the myelin membrane to the underlying cytoskeleton whose assembly it strongly promotes. It is a multifunctional, intrinsically disordered protein that behaves primarily as a structural stabilizer, but with elements of a transient or induced secondary structure that represent binding sites for calmodulin or SH3-domain-containing proteins, inter alia. In this study we used solid-state NMR (SSNMR) and Fourier transform infrared (FTIR) spectroscopy to study the conformation of 18.5 kDa MBP in association with actin microfilaments and bundles. FTIR spectroscopy of fully (13)C,(15)N-labeled MBP complexed with unlabeled F-actin showed induced folding of both protein partners, viz., some increase in beta-sheet content in actin, and increases in both alpha-helix and beta-sheet content in MBP, albeit with considerable extended structure remaining. Solid-state NMR spectroscopy revealed that MBP in MBP-actin assemblies is structurally heterogeneous but gains ordered secondary structure elements (both alpha-helical and beta-sheet), particularly in the terminal fragments and in a central immunodominant epitope. The overall conformational polymorphism of MBP is consistent with its in vivo roles as both a linker (membranes and cytoskeleton) and a putative signaling hub.

  10. Bonding structure in amorphous carbon nitride: A spectroscopic and nuclear magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Sánchez-López, J. C.; Donnet, C.; Lefèbvre, F.; Fernández-Ramos, C.; Fernández, A.

    2001-07-01

    Since the prediction of Liu and Cohen [Science 245, 841 (1989)] of the potential extraordinary mechanical properties of crystalline β-C3N4, many authors have attempted its synthesis. However, in most cases, the obtained materials are amorphous phases with a complex bonding structure. Their characterization is complicated due to the absence of a reference compound, the lack of long-range order, and the poor knowledge about their bonding structure. In this article, we present 1H, 13C, and 15N solid-state nuclear magnetic resonance (NMR) measurements for the determination of the bonding types in amorphous CNx films. NMR measurements do not require long-range order and are able to clearly identify the signals from the sp2- and sp3-bonded phases. The analysis of the data obtained by other characterization techniques, such as infrared spectroscopy, x-ray photoelectron spectroscopy, electron energy-loss spectroscopy, and x-ray absorption near-edge spectroscopy on the same sample, based on the information acquired by NMR, enables the description of a structure model for the studied amorphous-CNx phase prepared by dc-magnetron sputtering and to revise the interpretation found in the literature.

  11. The gamma irradiation effects on structural and optical properties of silk fibroin/HPMC blend films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, G. Rajesha; Rao, B. Lakshmeesha; Gowda, Mahadeva

    In this paper the structural, chemical and optical properties of gamma irradiated silk fibroin/Hydroxypropyl methyl cellulose (SF-HPMC) blend films were studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-visible spectroscopy. The results indicate that the gamma radiation did not affect significantly the primary structure of polypeptide arrangement in the blend films. But the optical properties of the blends changed with gamma irradiation dosage.

  12. Raman and infrared spectroscopic study of kamphaugite-(Y)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo

    2015-05-01

    We have studied the carbonate mineral kamphaugite-(Y)(CaY(CO3)2(OH)·H2O), a mineral which contains yttrium and specific rare earth elements. Chemical analysis shows the presence of Ca, Y and C. Back scattering SEM appears to indicate a single pure phase. The vibrational spectroscopy of kamphaugite-(Y) was obtained using a combination of Raman and infrared spectroscopy. Two distinct Raman bands observed at 1078 and 1088 cm-1 provide evidence for the non-equivalence of the carbonate anion in the kamphaugite-(Y) structure. Such a concept is supported by the number of bands assigned to the carbonate antisymmetric stretching mode. Multiple bands in the ν4 region offers further support for the non-equivalence of carbonate anions in the structure. Vibrational spectroscopy enables aspects of the structure of the mineral kamphaugite-(Y) to be assessed.

  13. Scanning tunnelling microscope for boron surface studies

    NASA Astrophysics Data System (ADS)

    Trenary, Michael

    1990-10-01

    The equipment purchased is to be used in an experimental study of the relationship between atomic structure and chemical reactivity for boron and carbon surfaces. This research is currently being supported by grant AFOSR-88-0111. A renewal proposal is currently pending with AFOSR to continue these studies. Carbon and boron are exceptionally stable, covalently bonded solids with highly unique crystal structures. The specific reactions to be studied are loosely related to the problems of oxidation and oxidation inhibition of carbon/carbon composites. The main experimental instrument to be used is a scanning tunneling microscope (STM) purchased under grant number AFSOR-89-0146. Other techniques to be used include Auger electron spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), low energy electron diffraction (LEED), temperature programmed desorption (TPD) and scanning tunneling microscopy (STM).

  14. Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy - An Enhanced Method for Examining Protein Conformations and Protein Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B Wallace; R Janes

    CD (circular dichroism) spectroscopy is a well-established technique in structural biology. SRCD (synchrotron radiation circular dichroism) spectroscopy extends the utility and applications of conventional CD spectroscopy (using laboratory-based instruments) because the high flux of a synchrotron enables collection of data at lower wavelengths (resulting in higher information content), detection of spectra with higher signal-to-noise levels and measurements in the presence of absorbing components (buffers, salts, lipids and detergents). SRCD spectroscopy can provide important static and dynamic structural information on proteins in solution, including secondary structures of intact proteins and their domains, protein stability, the differences between wild-type and mutant proteins,more » the identification of natively disordered regions in proteins, and the dynamic processes of protein folding and membrane insertion and the kinetics of enzyme reactions. It has also been used to effectively study protein interactions, including protein-protein complex formation involving either induced-fit or rigid-body mechanisms, and protein-lipid complexes. A new web-based bioinformatics resource, the Protein Circular Dichroism Data Bank (PCDDB), has been created which enables archiving, access and analyses of CD and SRCD spectra and supporting metadata, now making this information publicly available. To summarize, the developing method of SRCD spectroscopy has the potential for playing an important role in new types of studies of protein conformations and their complexes.« less

  15. Scanning probe microscopy in mineralogical studies: about origin of the observed roughness of natural silica-rich glasses

    NASA Astrophysics Data System (ADS)

    Golubev, Ye A.; Isaenko, S. I.

    2017-10-01

    We have studied different mineralogical objects: natural glasses of impact (tektites, impactites) and volcanic (obsidians) origin, using atomic force microscopy, X-ray microanalysis, infrared and Raman spectroscopy. The spectroscopy showed the difference in the structure and chemical composition of the glasses of different origin. The analysis of the dependence of nanoscale heterogeneity of the glasses, revealed by the atomic force microscopy, on their structural and chemical features was carried out.

  16. Capacitance spectroscopy on n-type GaNAs/GaAs embedded quantum structure solar cells

    NASA Astrophysics Data System (ADS)

    Venter, Danielle; Bollmann, Joachim; Elborg, Martin; Botha, J. R.; Venter, André

    2018-04-01

    In this study, both deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) have been used to study the properties of electrically active deep level centers present in GaNAs/GaAs quantum wells (QWs) embedded in p-i-n solar cells. The structures were grown by molecular beam epitaxy (MBE). In particular, the electrical properties of samples with Si (n-type) doping of the QWs were investigated. DLTS revealed four deep level centers in the material, whereas only three were detected by AS. NextNano++ simulation software was used to model the sample band-diagrams to provide reasoning for the origin of the signals produced by both techniques.

  17. NMR Spectroscopy in Glass Science: A Review of the Elements

    PubMed Central

    2018-01-01

    The study of inorganic glass structure is critically important for basic glass science and especially the commercial development of glasses for a variety of technological uses. One of the best means by which to achieve this understanding is through application of solid-state nuclear magnetic resonance (NMR) spectroscopy, which has a long and interesting history. This technique is element specific, but highly complex, and thus, one of the many inquiries made by non-NMR specialists working in glass science is what type of information and which elements can be studied by this method. This review presents a summary of the different elements that are amenable to the study of glasses by NMR spectroscopy and provides examples of the type of atomic level structural information that can be achieved. It serves to inform the non-specialist working in glass science and technology about some of the benefits and challenges involved in the study of inorganic glass structure using modern, readily-available NMR methods. PMID:29565328

  18. Structural Studies of CH_3SiF_2-X (x = Nco, Cl) by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guirgis, Gamil A.; Gause, Korreda K.; Seifert, Nathan A.; Zaleski, Daniel P.; Pate, Brooks H.; Palmer, Michael H.; Peebles, Rebecca A.; Peebles, Sean A.; Elmuti, Lena F.; Obenchain, Daniel A.

    2012-06-01

    The structures of CH_3SiF_2-NCO and CH_3SiF_2-Cl have been studied by molecular rotational spectroscopy in the 6.5-18 GHz band. The rotational spectrum was measured by cavity Fourier transform microwave (FTMW) and chirped-pulse FTMW spectroscopy. The experiment targeted the study of CH_3SiF_2-NCO, but CH_3SiF_2-Cl was also observed as an impurity. Due to the dynamic range achieved on these spectra, all isotopologs with natural abundance ≥0.2% were assigned, which includes two doubly-substituted isotopologs for the chloride (29Si/37Cl and 30Si/37Cl). Strategies for obtaining the molecular structure for these two molecules using either a Kraitchman analysis (to obtain a partial substitution structure) or r_0 analysis (with additional constraints on the structure supplied by the theoretical structure) will be discussed. Derived structural parameters for the CH_3-SiF_2-X base structure are the same for the two compounds. The hyperfine and internal rotation effects in the spectra have been analyzed for all isotopologs and the Hamiltonian parameters are in very good agreement with ab initio results. The barriers to methyl group internal rotation for the two compounds 446(50) cm-1 and 463(3) cm-1 and are independent of the isotopic structure of the heavy atom frame.

  19. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M.; Prates, Luciana L.; Yu, Peiqiang

    2017-08-01

    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions.

  20. NATO Advanced Study Institute on Spectroscopy

    NASA Technical Reports Server (NTRS)

    DiBartolo, Baldassare; Barnes, James (Technical Monitor)

    2001-01-01

    This booklet presents an account of the course 'Spectroscopy of Systems with Spatially Confined Structures' held in Erice-Sicily, Italy, from June 15 to June 30, 2001. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the 'Ettore Majorana' Centre for Scientific Culture. The purpose of this course was to present and discuss nanometer-scale physics, a rapidly progressing field. The top-down approach of semiconductor technology will soon meet the scales of the bottom-up approaches of supramolecular chemistry and of spatially localized excitations in ionic crystals. This course dealt with the fabrication, measurement and understanding of the relevant structures and brought together the scientific communities responsible for these development. The advances in this area of physics have already let to applications in optoelectronics and will likely lead to many more. The subjects of the course included spatially resolved structures such as quantum wells, quantum wires and quantum dots, single atoms and molecules, clusters, fractal systems, and the development of related techniques like near-field spectroscopy and confocal microscopy to study such systems.

  1. Shifts due to quantum-mechanical interference from distant neighboring resonances for saturated fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Marsman, Alain; Horbatsch, Marko; Hessels, Eric A.

    2014-05-01

    Quantum-mechanical interference with distant neighboring resonances is found to cause shifts for precision saturated fluorescence spectroscopy of the atomic helium 23 S -to- 23 P transitions. The shifts are significant (larger than the experimental uncertainties for measurements of the intervals) despite the fact that the neighboring resonances are separated from the measured resonances by 1400 and 20 000 natural widths. The shifts depend strongly on experimental parameters such as the angular position of the fluorescence detector and the intensity and size of laser beams. These shifts must be considered for the ongoing program of determining the fine-structure constant from the helium 23 P fine structure. The work represents the first study of such interference shifts for saturated fluorescence spectroscopy and follows up on our previous study of similar shifts for laser spectroscopy. This work is supported by NSERC, CRC, ORF, CFI, NIST and SHARCNET.

  2. Coordination of Fe, Ga and Ge in high pressure glasses by Moessbauer, Raman and X-ray absorption spectroscopy, and geological implications

    NASA Technical Reports Server (NTRS)

    Fleet, M. E.; Henderson, G. S.; Herzberg, C. T.; Crozier, E. D.; Osborne, M. D.; Scarfe, C. M.

    1984-01-01

    For some time, it has been recognized that the structure of silicate liquids has a great bearing on such magma properties as viscosity, diffusivity, and thermal expansion and on the extrapolation of thermodynamic quantities outside of the experimentally measurable range. In this connection it is vital to know if pressure imposes changes in melt structure similar to the pressure-induced reconstructive transformations in crystals. In the present study on 1 bar and high pressure glasses, an investigation is conducted regarding the coordination of Fe(3+) in Fe silicate glasses by Moessbauer spectroscopy. Raman spectroscopy is employed to explore the coordinations of Ge(4+) in GeO2 glasses and of Ga(3+) in NaGa silicate glasses, while the coordination of Ga(3+) in NaGaSiO4 glasses is studied with the aid of methods of X-ray absorption spectroscopy.

  3. Coordination of Fe, Ga and Ge in high pressure glasses by Moessbauer, Raman and X-ray absorption spectroscopy, and geological implications

    NASA Astrophysics Data System (ADS)

    Fleet, M. E.; Herzberg, C. T.; Henderson, G. S.; Crozier, E. D.; Osborne, M. D.; Scarfe, C. M.

    1984-07-01

    For some time, it has been recognized that the structure of silicate liquids has a great bearing on such magma properties as viscosity, diffusivity, and thermal expansion and on the extrapolation of thermodynamic quantities outside of the experimentally measurable range. In this connection it is vital to know if pressure imposes changes in melt structure similar to the pressure-induced reconstructive transformations in crystals. In the present study on 1 bar and high pressure glasses, an investigation is conducted regarding the coordination of Fe(3+) in Fe silicate glasses by Moessbauer spectroscopy. Raman spectroscopy is employed to explore the coordinations of Ge(4+) in GeO2 glasses and of Ga(3+) in NaGa silicate glasses, while the coordination of Ga(3+) in NaGaSiO4 glasses is studied with the aid of methods of X-ray absorption spectroscopy.

  4. III-V/II-VI Hybrid Quantum Well Mid-Infrared Lasers

    DTIC Science & Technology

    2005-01-25

    semiconductor lasers are of great importance for many applications such as laser diode spectroscopy , pollution monitoring, low-loss optical communication...great importance for many applications such as laser diode spectroscopy, pollutant monitoring, low-losses longwavelength optical communication...InAsSb/CdMgSe laser structure 1.2. Characterization of the laser structures and interface quality (STM, EPFM etc) 1.3. Study of spontaneous and

  5. [Spectral studies on nano-sized titania photocatalysts prepared by different drying methods].

    PubMed

    Ye, Zhao; Zhang, Han-hui; Pan, Hai-bo; Pan, Hong-qing

    2002-12-01

    Nano-sized TiO2 photocatalysts were prepared by drying the ethanol gel of titanium tetrabutoxide through natural state, supercritical ethanol, supercritical carbon dioxide drying methods and characterized by XRD, FTIR spectroscopy, FT-Raman spectroscopy and fluorescent spectroscopy, respectively. We regard degradation of rhodamine B by photocatalyst as a model reaction, and compare photocatalytic activities of samples obtained. The experimental results show that different drying methods have strong effect on crystal structure, energy band structure, optical adsorption property, surface quality and photocatalytic activity, TiO2 photocatalyst prepared by supercritical carbon dioxide drying method has superior photocatalytic activity.

  6. Proton spectroscopy in the narcoleptic syndrome. Is there evidence of a brainstem lesion?

    PubMed

    Ellis, C M; Simmons, A; Lemmens, G; Williams, S C; Parkes, J D

    1998-02-01

    There is controversy regarding the relationship of structural or biochemical brainstem lesions to "idiopathic" narcolepsy. Most cases of the narcoleptic syndrome are considered to be idiopathic because no structural lesion is detectable, although some cases of secondary narcolepsy are known to be associated with no structural brainstem lesions. Using proton spectroscopy, we determined levels of ventral pontine metabolite pools in 12 normal subjects and 12 subjects with idiopathic narcolepsy. REM sleep is generated in ventral pontine areas. Proton spectroscopy was used to study levels of N-acetyl aspartate (NAA) as a marker of cell mass, creatine and phosphocreatine (Cr + PCr), and choline (Cho). The intensity of the peaks, as determined by the area under the peak (AUP), was measured. The AUP correlates with the quantity of chemical present. In this study, the ratios of NAA to Cr + PCr were similar in normal subjects and in narcoleptic subjects with idiopathic narcolepsy. No differences in measured metabolic ratio were observed in subjects who slept during the scan procedure compared with those who remained awake. Subjects with "symptomatic" narcolepsy accompanied by an obvious structural brain lesion were not studied. Proton spectroscopy of the brain initiates a new kind of neurochemistry, allowing the noninvasive study of metabolic pools in the living human brain without the use of any kind of tracer or radioactive molecule. In this study, there was no evidence of cell loss in the ventral pontine areas of subjects with the narcoleptic syndrome.

  7. Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy.

    PubMed

    Li, Hao; Zhu, Qing xia; Chwee, Tsz sian; Wu, Lin; Chai, Yi feng; Lu, Feng; Yuan, Yong fang

    2015-07-09

    Thin-layer chromatography (TLC) coupled with surface enhanced Raman spectroscopy (SERS) has been widely used for the study of various complex systems, especially for the detection of adulterants in botanical dietary supplements (BDS). However, this method is not sufficient to distinguish structurally similar adulterants in BDS since the analogs have highly similar chromatographic and/or spectroscopic behaviors. Taking into account the fact that higher cost and more time will be required for comprehensive chromatographic separation, more efforts with respect to spectroscopy are now focused on analyzing the overlapped SERS peaks. In this paper, the combination of a TLC-SERS method with two-dimensional correlation spectroscopy (2DCOS), with duration of exposure to laser as the perturbation, is applied to solve this problem. Besides the usual advantages of the TLC-SERS method, such as its simplicity, rapidness, and sensitivity, more advantages are presented here, such as enhanced selectivity and good reproducibility, which are obtained by 2DCOS. Two chemicals with similar structures are successfully differentiated from the complex BDS matrices. The study provides a more accurate qualitative screening method for detection of BDS with adulterants, and offers a new universal approach for the analysis of highly overlapped SERS peaks. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Vibrational structure of the polyunsaturated fatty acids eicosapentaenoic acid and arachidonic acid studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiefer, Johannes; Noack, Kristina; Bartelmess, Juergen; Walter, Christian; Dörnenburg, Heike; Leipertz, Alfred

    2010-02-01

    The spectroscopic discrimination of the two structurally similar polyunsaturated C 20 fatty acids (PUFAs) 5,8,11,14,17-eicosapentaenoic acid and 5,8,11,14-eicosatetraenoic acid (arachidonic acid) is shown. For this purpose their vibrational structures are studied by means of attenuated total reflection (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The fingerprint regions of the recorded spectra are found to be almost identical, while the C-H stretching mode regions around 3000 cm -1 show such significant differences as results of electronic and molecular structure alterations based on the different degree of saturation that both fatty acids can be clearly distinguished from each other.

  9. Structural, optical and photoelectric properties of sprayed CdS thin films

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, P.

    2018-05-01

    In this study, CdS thin films were grown via a facile spray pyrolysis technique. The crystalline phase, morphological, compositional and optical properties of the CdS thin films have been studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and UV-vis absorption spectroscopy, respectively. XRD patterns show that the grown CdS films crystallized in the hexagonal structure. Scanning electron microscopy (SEM) study shows that the surfaces of the films are smooth and are uniformly covered with nanoparticles. EDAX results reveal that the grown films have good stochiometry. UV-vis spectroscopy shows that the grown films have transparency above 80% over the entire visible region. The photo-electric response of the CdS films grown on glass substrates has been observed.

  10. Combined electron energy-loss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Coenen, Toon; Schoen, David T.; Brenny, Benjamin J. M.; Polman, Albert; Brongersma, Mark L.

    2016-05-01

    We systematically investigate the plasmonic "dolmen" geometry and its constituent elements using electron energy-loss spectroscopy and cathodoluminescence spectroscopy. In particular, we study the effects of the particle size and spacing on the resonant behavior and interparticle coupling. Because we apply both techniques on the same structures we can directly compare the results and investigate the radiative versus nonradiative character of the different modes. We find that the cathodoluminescence response is significantly lower than the electron energy-loss response for higher-energy modes because strong absorption reduces the scattering efficiency in this regime. Furthermore, we show that the overall resonant response roughly scales with size as expected for plasmonic structures but that the transverse resonant modes do become more dominant in larger structures due to a relative reduction in Ohmic dissipation. Using EELS and CL we can rigorously study coupling between the elements and show that the coupling diminishes for larger spacings.

  11. Super-resolved FT-IR spectroscopy: Strategies, challenges, and opportunities for membrane biophysics.

    PubMed

    Li, Jessica J; Yip, Christopher M

    2013-10-01

    Direct correlation of molecular conformation with local structure is critical to studies of protein- and peptide-membrane interactions, particularly in the context of membrane-facilitated aggregation, and disruption or disordering. Infrared spectroscopy has long been a mainstay for determining molecular conformation, following folding dynamics, and characterizing reactions. While tremendous advances have been made in improving the spectral and temporal resolution of infrared spectroscopy, it has only been with the introduction of scanned-probe techniques that exploit the raster-scanning tip as either a source, scattering tool, or measurement probe that researchers have been able to obtain sub-diffraction limit IR spectra. This review will examine the history of correlated scanned-probe IR spectroscopies, from their inception to their use in studies of molecular aggregates, membrane domains, and cellular structures. The challenges and opportunities that these platforms present for examining dynamic phenomena will be discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Electronic Structure of the Organic Semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from Soft X-ray Spectroscopies and Density Functional Theory Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMasi, A.; Piper, L; Zhang, Y

    2008-01-01

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq3) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq3, and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studiesmore » and the present data reveal the presence of clear photon-induced damage in the former.« less

  13. Structure formation in organic thin films observed in real time by energy dispersive near-edge x-ray absorption fine-structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Scholz, M.; Sauer, C.; Wiessner, M.; Nguyen, N.; Schöll, A.; Reinert, F.

    2013-08-01

    We study the structure formation of 1,4,5,8-naphthalene-tetracarboxylicacid-dianhydride (NTCDA) multilayer films on Ag(111) surfaces by energy dispersive near-edge x-ray absorption fine-structure spectroscopy (NEXAFS) and photoelectron spectroscopy. The time resolution of seconds of the method allows us to identify several sub-processes, which occur during the post-growth three-dimensional structural ordering, as well as their characteristic time scales. After deposition at low temperature the NTCDA molecules are preferentially flat lying and the films exhibit no long-range order. Upon annealing the molecules flip into an upright orientation followed by an aggregation in a transient phase which exists for several minutes. Finally, three-dimensional islands are established with bulk-crystalline structure involving substantial mass transport on the surface and morphological roughening. By applying the Kolmogorov-Johnson-Mehl-Avrami model the activation energies of the temperature-driven sub-processes can be derived from the time evolution of the NEXAFS signal.

  14. Spectroscopic techniques to study the immune response in human saliva

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, E.; Savchenko, E.; Velichko, E.; Bogomaz, T.; Aksenov, E.

    2018-01-01

    Studies of the immune response dynamics by means of spectroscopic techniques, i.e., laser correlation spectroscopy and fluorescence spectroscopy, are described. The laser correlation spectroscopy is aimed at measuring sizes of particles in biological fluids. The fluorescence spectroscopy allows studying of the conformational and other structural changings in immune complex. We have developed a new scheme of a laser correlation spectrometer and an original signal processing algorithm. We have suggested a new fluorescence detection scheme based on a prism and an integrating pin diode. The developed system based on the spectroscopic techniques allows studies of complex process in human saliva and opens some prospects for an individual treatment of immune diseases.

  15. Infrared Multiple-Photon Dissociation Action Spectroscopy of the b2 + Ion from PPG: Evidence of Third Residue Affecting b2 + Fragment Structure

    NASA Astrophysics Data System (ADS)

    Poutsma, John C.; Martens, Jonathan; Oomens, Jos; Maitre, Phillipe; Steinmetz, Vincent; Bernier, Matthew; Jia, Mengxuan; Wysocki, Vicki

    2017-07-01

    Infrared multiple-photon dissociation (IRMPD) action spectroscopy was performed on the b2 + fragment ion from the protonated PPG tripeptide. Comparison of the experimental infrared spectrum with computed spectra for both oxazolone and diketopiperazine structures indicates that the majority of the fragment ion population has an oxazolone structure with the remainder having a diketopiperazine structure. This result is in contrast with a recent study of the IRMPD action spectrum of the PP b2 + fragment ion from PPP, which was found to be nearly 100% diketopiperazine (Martens et al. Int. J. Mass Spectrom. 2015, 377, 179). The diketopiperazine b2 + ion is thermodynamically more stable than the oxazolone but normally requires a trans/cis peptide bond isomerization in the dissociating peptide. Martens et al. showed through IRMPD action spectroscopy that the PPP precursor ion was in a conformation in which the first peptide bond is already in the cis conformation and thus it was energetically favorable to form the thermodynamically-favored diketopiperazine b2 + ion. In the present case, solution-phase NMR spectroscopy and gas-phase IRMPD action spectroscopy show that the PPG precursor ion has its first amide bond in a trans configuration suggesting that the third residue is playing an important role in both the structure of the peptide and the associated ring-closure barriers for oxazolone and diketopiperazine formation.

  16. Novel visualization studies of lignocellulosic oxidation chemistry by application of C-near edge X-ray absorption fine structure spectroscopy

    Treesearch

    Douglas G. Mancosky; Lucian A. Lucia; Hiroki Nanko; Sue Wirick; Alan W. Rudie; Robert Braun

    2005-01-01

    The research presented herein is the first attempt to probe the chemical nature of lignocellulosic samples by the application of carbon near edge X-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft X-ray technique that principally provides selective interrogation of discrete atomic moieties using photoelectrons of variable energies. The X1A beam...

  17. Mononuclear nickel (II) and copper (II) coordination complexes supported by bispicen ligand derivatives: Experimental and computational studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nirupama; Niklas, Jens; Poluektov, Oleg

    2017-01-01

    The synthesis, characterization and density functional theory calculations of mononuclear Ni and Cu complexes supported by the N,N’-Dimethyl-N,N’-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane ligand and its derivatives are reported. The complexes were characterized by X-ray crystallography as well as by UV-visible absorption spectroscopy and EPR spectroscopy. The solid state structure of these coordination complexes revealed that the geometry of the complex depended on the identity of the metal center. Solution phase characterization data are in accord with the solid phase structure, indicating minimal structural changes in solution. Optical spectroscopy revealed that all of the complexes exhibit color owing to d-d transition bands in the visiblemore » region. Magnetic parameters obtained from EPR spectroscopy with other structural data suggest that the Ni(II) complexes are in pseudo-octahedral geometry and Cu(II) complexes are in a distorted square pyramidal geometry. In order to understand in detail how ligand sterics and electronics affect complex topology detailed computational studies were performed. The series of complexes reported in this article will add significant value in the field of coordination chemistry as Ni(II) and Cu(II) complexes supported by tetradentate pyridyl based ligands are rather scarce.« less

  18. Structure of Co-Doped Alq3 thin films investigated by grazing incidence X-ray absorption fine structure and Fourier transform infrared spectroscopy.

    PubMed

    Lin, Liang; Pang, Zhiyong; Fang, Shaojie; Wang, Fenggong; Song, Shumei; Huang, Yuying; Wei, Xiangjun; Yu, Haisheng; Han, Shenghao

    2011-02-10

    The structural properties of Co-doped tris(8-hydroxyquinoline)aluminum (Alq(3)) have been studied by grazing incidence X-ray absorption fine structure (GIXAFS) and Fourier transform infrared spectroscopy (FTIR). GIXAFS analysis suggests that there are multivalent Co-Alq(3) complexes and the doped Co atoms tend to locate at the attraction center with respect to N and O atoms and bond with them. The FTIR spectra indicate that the Co atoms interact with the meridional (mer) isomer of Alq(3) rather than forming inorganic compounds.

  19. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    PubMed

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  20. To study the effect of doping concentration of silver on structural and optical properties of cadmium oxide (CdO) nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Dept. of Physics, Vaish College of Engineering, Rohtak-124001, Haryana; Sharma, Ashwani

    The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results aremore » quite in accordance with XRD results.« less

  1. Structural studies of zirconium doped Ba{sub 0.70}Sr{sub 0.30}TiO{sub 3} lead free ferroelectric thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sarita, E-mail: sss.sharmasarita@gmail.com; Ram, Mast; Thakur, Shilpa

    2016-05-06

    Ba{sub 0.7}Sr{sub 0.3}(Zr{sub x}Ti{sub 1-x})O{sub 3}(BSZT, x=0,0.05,0.10,0.15,0.20) thin films were prepared by using sol gel method. Structural and microstructural properties were studied by using XRD, Raman Spectroscopy and atomic force microscopy (AFM) respectively. XRD and Raman Spectroscopy show the presence of tetragonal phase in multilayer BSZT thin film. The experimental results demonstrate that structural and microstructural properties of BSZT thin film were significantly dependent on variation of Zr content.

  2. Inhibition of 53BP1: Potential for Restoring Homologous Recombination In Ovarian Cancer Cells

    DTIC Science & Technology

    2017-08-01

    crystallography ; NMR spectroscopy; Calorimetry 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...ray crystallography ; NMR spectroscopy; Calorimetry 3. ACCOMPLISHMENTS: The PI is reminded that the recipient organization is required to obtain...originally planned. Each aim combines structural studies using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy and functional

  3. Molecular and structural characteristics in toxic algae cultures of Ostreopsis ovata and Ostreopsis spp. evidenced by FTIR and FTNIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mecozzi, Mauro; Pietroletti, Marco; Tornambè, Andrea

    2011-05-01

    In this article we investigated the compositional and structural characteristics of the principal biomolecules such as carbohydrates, proteins, lipids, nucleic acids and chlorophyll pigments present in biofilm cultures of Ostreopsis spp. and in batch cultures of Ostreopsis ovata. Our approach based on the use of infrared (FTIR) and near infrared (FTNIR) spectroscopy showed the marked differences existing between biofilm cultures and batch cultures. FTIR spectroscopy showed the higher contents of polysaccharides and chlorophyll pigments in O. ovata from batch cultures with respect to Ostreopsis spp. Second derivative FTIR spectroscopy showed different features concerning the secondary structure of proteins because in O. ovata samples the beta sheet and beta turn structures were observed whereas in Ostreopsis spp. samples the alpha helix structure was the most evident. FTNIR spectroscopy showed other structural differences observed existing between O. ovata and Ostreopsis spp. mainly related to hydrogen bond interactions determining more packed structures in the nucleus of O. ovata. In addition, the interpretation of FTIR and FTNIR spectral information was also supported by the application of two statistical methods, the independent component analysis (ICA) and the spectral cross correlation analysis (SCCA). ICA was used as spectral deconvolution technique to separate the effects of the interference bicarbonate ion from algal FTIR spectra so to verify the high similar qualitative composition of the three biofilm samples of Ostreopsis spp. At last, SCCA applied to FTIR and FTNIR spectra was useful to evidence some structural differences involving -CH and CH 2 groups of aliphatic chains in O. ovata and Ostreopsis spp. samples. Though preliminary, these results agree with some previous studies suggesting that the presence of different ecophysiological characteristics in O. ovata and Ostreopsis spp. depending on the parameters related to the condition growth.

  4. Probing long-range structural order in SnPc/Ag(111) by umklapp process assisted low-energy angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Jauernik, Stephan; Hein, Petra; Gurgel, Max; Falke, Julian; Bauer, Michael

    2018-03-01

    Laser-based angle-resolved photoelectron spectroscopy is performed on tin-phthalocyanine (SnPc) adsorbed on silver Ag(111). Upon adsorption of SnPc, strongly dispersing bands are observed which are identified as secondary Mahan cones formed by surface umklapp processes acting on photoelectrons from the silver substrate as they transit through the ordered adsorbate layer. We show that the photoemission data carry quantitative structural information on the adsorbate layer similar to what can be obtained from a conventional low-energy electron diffraction (LEED) study. More specifically, we compare photoemission data and LEED data probing an incommensurate-to-commensurate structural phase transition of the adsorbate layer. Based on our results we propose that Mahan-cone spectroscopy operated in a pump-probe configuration can be used in the future to probe structural dynamics at surfaces with a temporal resolution in the sub-100-fs regime.

  5. Laser-spectroscopy studies of the nuclear structure of neutron-rich radium

    NASA Astrophysics Data System (ADS)

    Lynch, K. M.; Wilkins, S. G.; Billowes, J.; Binnersley, C. L.; Bissell, M. L.; Chrysalidis, K.; Cocolios, T. E.; Goodacre, T. Day; de Groote, R. P.; Farooq-Smith, G. J.; Fedorov, D. V.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heinke, R.; Koszorús, Á.; Marsh, B. A.; Molkanov, P. L.; Naubereit, P.; Neyens, G.; Ricketts, C. M.; Rothe, S.; Seiffert, C.; Seliverstov, M. D.; Stroke, H. H.; Studer, D.; Vernon, A. R.; Wendt, K. D. A.; Yang, X. F.

    2018-02-01

    The neutron-rich radium isotopes, Ra-233222, were measured with Collinear Resonance Ionization Spectroscopy (CRIS) at the ISOLDE facility, CERN. The hyperfine structure of the 7 s2S10→7 s 7 p P31 transition was probed, allowing measurement of the magnetic moments, quadrupole moments, and changes in mean-square charge radii. These results are compared to existing literature values, and the new moments and change in mean-square charge radii of 231Ra are presented. Low-resolution laser spectroscopy of the very neutron-rich 233Ra has allowed the isotope shift and relative charge radius to be determined for the first time.

  6. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy

    PubMed Central

    Micsonai, András; Wien, Frank; Kernya, Linda; Lee, Young-Ho; Goto, Yuji; Réfrégiers, Matthieu; Kardos, József

    2015-01-01

    Circular dichroism (CD) spectroscopy is a widely used technique for the study of protein structure. Numerous algorithms have been developed for the estimation of the secondary structure composition from the CD spectra. These methods often fail to provide acceptable results on α/β-mixed or β-structure–rich proteins. The problem arises from the spectral diversity of β-structures, which has hitherto been considered as an intrinsic limitation of the technique. The predictions are less reliable for proteins of unusual β-structures such as membrane proteins, protein aggregates, and amyloid fibrils. Here, we show that the parallel/antiparallel orientation and the twisting of the β-sheets account for the observed spectral diversity. We have developed a method called β-structure selection (BeStSel) for the secondary structure estimation that takes into account the twist of β-structures. This method can reliably distinguish parallel and antiparallel β-sheets and accurately estimates the secondary structure for a broad range of proteins. Moreover, the secondary structure components applied by the method are characteristic to the protein fold, and thus the fold can be predicted to the level of topology in the CATH classification from a single CD spectrum. By constructing a web server, we offer a general tool for a quick and reliable structure analysis using conventional CD or synchrotron radiation CD (SRCD) spectroscopy for the protein science research community. The method is especially useful when X-ray or NMR techniques fail. Using BeStSel on data collected by SRCD spectroscopy, we investigated the structure of amyloid fibrils of various disease-related proteins and peptides. PMID:26038575

  7. Comparative studies of structural, thermal, optical, and electrochemical properties of azines with different end groups with their azomethine analogues toward application in (opto)electronics.

    PubMed

    Sek, Danuta; Siwy, Mariola; Bijak, Katarzyna; Grucela-Zajac, Marzena; Malecki, Grzegorz; Smolarek, Karolina; Bujak, Lukasz; Mackowski, Sebastian; Schab-Balcerzak, Ewa

    2013-10-10

    Two series of azines and their azomethine analogues were prepared via condensation reaction of benzaldehyde, 2-hydroxybenzaldehyde, 4-pyridinecarboxaldehyde, 2-thiophenecarboxaldehyde, and 4-(diphenylamino)benzaldehyde with hydrazine monohydrate and 1,4-phenylenediamine, respectively. The structures of given compounds were characterized by FTIR, (1)H NMR, and (13)C NMR spectroscopy as well as elemental analysis. Optical, electrochemical, and thermal properties of all compounds were investigated by means of differential scanning calorimetry (DSC), UV-vis spectroscopy, stationary and time-resolved photoluminescence spectroscopy, and cycling voltammetry (CV). Additionally, the electronic properties, that is, orbital energies and resulting energy gap were calculated theoretically by density functional theory (DFT). Influence of chemical structure of the compounds on their properties was analyzed.

  8. The influence of adsorbed molecules on the framework vibrations of Na-Faujasites studied with FT Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferwerda, R.; van der Maas, J. H.

    1995-11-01

    The use of FT Raman spectroscopy in the elucidation of the structural parameters of Faujasitic zeolites is investigated. Because fluorescence is less of a problem on excitation with a near-infrared laser, FT Raman spectroscopy allows one to probe the effects of in situ heat treatments on the zeolite structure. A correlation is found between the bending vibrations of the Y zeolites and their unit cell size. The vibrations, however, are severely influenced by the charge distribution within the zeolite. Hence, the position of the charge-balancing cations and the water content affect the Raman spectra. Pyridine adsorption results in a rearrangement of the cations or water molecules still present in the structure after activation, and thus alters the vibrations of the zeolite lattice.

  9. [Spectrum studies on titania photocatalysts].

    PubMed

    Su, W; Fu, X; Wei, K; Zhang, H; Lin, H; Wang, X; Li, D

    2001-02-01

    The nano-sized TiO2 photocatalysts were prepared by sol-gel method and characterized by FTIR spectroscopy, FT-Raman spectroscopy and diffuse reflectance spectroscopy(DRS). Photocatalytic degradation of oleic acid over the TiO2 catalysts was investigated. The result showed that calcination temperature has strong effect on crystal structure, energy band structure, optical adsorption and photocatalytic activity of the TiO2 catalysts. It was found that the TiO2 photocatalyst calcined at 400 degrees C has the best apparent optical adsorption, the biggest band edge position and the highest photoactivity. The effect of calcination temperature on photocatalytic activity of TiO2 catalysts has been ascribed to the changes in structure and optical property of catalyst such as crystal size, content of rutile, residual NO3-, and band-edge position of light adsorption.

  10. Interferometric 2D Sum Frequency Generation Spectroscopy Reveals Structural Heterogeneity of Catalytic Monolayers on Transparent Materials.

    PubMed

    Vanselous, Heather; Stingel, Ashley M; Petersen, Poul B

    2017-02-16

    Molecular monolayers exhibit structural and dynamical properties that are different from their bulk counterparts due to their interaction with the substrate. Extracting these distinct properties is crucial for a better understanding of processes such as heterogeneous catalysis and interfacial charge transfer. Ultrafast nonlinear spectroscopic techniques such as 2D infrared (2D IR) spectroscopy are powerful tools for understanding molecular dynamics in complex bulk systems. Here, we build on technical advancements in 2D IR and heterodyne-detected sum frequency generation (SFG) spectroscopy to study a CO 2 reduction catalyst on nanostructured TiO 2 with interferometric 2D SFG spectroscopy. Our method combines phase-stable heterodyne detection employing an external local oscillator with a broad-band pump pulse pair to provide the first high spectral and temporal resolution 2D SFG spectra of a transparent material. We determine the overall molecular orientation of the catalyst and find that there is a static structural heterogeneity reflective of different local environments at the surface.

  11. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite.

    PubMed

    Cheng, Hongfei; Frost, Ray L; Yang, Jing; Liu, Qinfu; He, Junkai

    2010-12-01

    The structure and thermal stability between typical Chinese kaolinite and halloysite were analysed by X-ray diffraction (XRD), infrared spectroscopy, infrared emission spectroscopy (IES) and Raman spectroscopy. Infrared emission spectroscopy over the temperature range of 300-700°C has been used to characterise the thermal decomposition of both kaolinite and halloysite. Halloysite is characterised by two bands in the water bending region at 1629 and 1648 cm(-1), attributed to structural water and coordinated water in the interlayer. Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm(-1) are observed for both kaolinite and halloysite. The 550°C infrared emission spectrum of halloysite is similar to that of kaolinite in 650-1350 cm(-1) spectral region. The infrared emission spectra of halloysite were found to be considerably different to that of kaolinite at lower temperatures. These differences are attributed to the fundamental difference in the structure of the two minerals. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Electronic structure of β-Ga2O3 single crystals investigated by hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Guo-Ling; Zhang, Fabi; Cui, Yi-Tao; Oji, Hiroshi; Son, Jin-Young; Guo, Qixin

    2015-07-01

    By combination of hard X-ray photoelectron spectroscopy (HAXPES) and first-principles band structure calculations, the electronic states of β-Ga2O3 were investigated to deepen the understanding of bulk information for this compound. The valence band spectra of HAXPES presented the main contribution from Ga 4sp, which are well represented by photoionization cross section weighted partial density of states. The experimental data complemented with the theoretical study yield a realistic picture of the electronic structure for β-Ga2O3.

  13. Structural and Optical Behaviour of Ar+ Implanted Polycarbonate

    NASA Astrophysics Data System (ADS)

    Shekhawat, Nidhi; Aggarwal, Sanjeev; Sharma, Annu; Deshpande, S. K.; Nair, K. G. M.

    2011-07-01

    Effects of 130 keV Ar+ ion implantation on the structural and optical properties of polycarbonate specimens have been studied using Raman, UV-Visible spectroscopy and glancing angle X-ray diffraction techniques. Formation of disordered carbonaceous network in the implanted layers has been observed using Raman and UV-Visible spectroscopy. A sharp decline in band gap values (4.1 eV to 0.63 eV) with increase in implantation dose has been observed. This decrease in optical band gap has been correlated with the formation of disordered structures in the implanted layers of polycarbonate.

  14. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  15. Exploring the relevance of gas-phase structures to biology: cold ion spectroscopy of the decapeptide neurokinin A.

    PubMed

    Pereverzev, A Y; Boyarkin, O V

    2017-02-01

    Linking the intrinsic tertiary structures of biomolecules to their native geometries is a central prerequisite for making gas-phase studies directly relevant to biology. The isolation of molecules in the gas phase eliminates hydrophilic interactions with solvents, to some extent mimicking a hydrophobic environment. Intrinsic structures therefore may resemble native ones for peptides that in vivo reside in a hydrophobic environment (e.g., binding pockets of receptors). In this study, we investigate doubly protonated neurokinin A (NKA) using IR-UV double resonance cold ion spectroscopy and find only five conformers of this decapeptide in the gas phase. In contrast, NMR data show that in aqueous solutions, NKA exhibits high conformational heterogeneity, which reduces to a few well-defined structures in hydrophobic micelles. Do the gas-phase structures of NKA resemble these native structures? The IR spectra reported here allow the validation of future structural calculations that may answer this question.

  16. Synchrotron-based soft X-ray spectroscopic studies of the electronic structure of organic semiconducting molecules

    NASA Astrophysics Data System (ADS)

    Demasi, Alexander

    Organic molecules have been the subject of many scientific studies due to their potential for use in a new generation of optoelectronic and semiconducting devices, such as organic photovoltaics and organic light emitting diodes. These studies are motivated by the fact that organic semiconductor devices have several advantages over traditional inorganic semiconductor devices. Unlike inorganic semiconductors, where the electronic properties are a result of the deliberate introduction of dopants to the material, the properties of organic semiconductors are often intrinsic to the molecules themselves. As a result, organic semiconductor devices are frequently less susceptible to contamination by impurities than their inorganic counterparts, which results in the relatively lower cost of producing such devices. Accurate experimental determination of the bulk and surface electronic structure of organic semiconductors is a prerequisite in developing a comprehensive understanding of such materials. The organic materials studied in this thesis were N,N-Ethylene-bis(1,1,1trifluoropentane-2,4-dioneiminato)-copper(ii) (abbreviated Cu-TFAC), aluminum tris-8hydroxyquinoline (A1g3), lithium quinolate (Liq), tetracyanoquinodimethane (TCNQ), and tetrafluorotetracyanoquinodimethane (F4TCNQ). The electronic structures of these materials were measured with several synchrotron-based x-ray spectroscopies. X-ray photoemission spectroscopy was used to measure the occupied total density of states and the core-level states of the aforementioned materials. X-ray absorption spectroscopy (XAS) was used to probe the element-specific unoccupied partial density of states (PDOS); its angle-resolved variant was used to measure the orientation of the molecules in a film and, in some circumstances, to gauge the extent of an organic film's crystallinity. Most notably, x-ray emission spectroscopy (XES) measures the element- specific occupied PDOS and, when aided by XAS, resonant XES can additionally be used to probe the electronic structure of individual atomic sites within a molecule. Most of the results in this thesis are accompanied by the results of electronic structure calculations determined with density functional theory (DFT). DFT is a useful aid in interpreting the results of the x-ray spectroscopies employed. The experimental results, combined with DFT calculations, provide a wealth of information regarding the electronic structures of these organic materials. v

  17. Computational Insights into the O2-evolving complex of photosystem II

    PubMed Central

    Sproviero, Eduardo M.; McEvoy, James P.; Gascón, José A.; Brudvig, Gary W.; Batista, Victor S.

    2009-01-01

    Mechanistic investigations of the water-splitting reaction of the oxygen-evolving complex (OEC) of photosystem II (PSII) are fundamentally informed by structural studies. Many physical techniques have provided important insights into the OEC structure and function, including X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy as well as mass spectrometry (MS), electron paramagnetic resonance (EPR) spectroscopy and Fourier transform infrared spectroscopy applied in conjunction with mutagenesis studies. However, experimental studies have yet to yield consensus as to the exact configuration of the catalytic metal cluster and its ligation scheme. Computational modeling studies, including density functional (DFT) theory combined with quantum mechanics/molecular mechanics (QM/MM) hybrid methods for explicitly including the influence of the surrounding protein, have proposed chemically satisfactory models of the fully ligated OEC within PSII that are maximally consistent with experimental results. The inorganic core of these models is similar to the crystallographic model upon which they were based but comprises important modifications due to structural refinement, hydration and proteinaceous ligation which improve agreement with a wide range of experimental data. The computational models are useful for rationalizing spectroscopic and crystallographic results and for building a complete structure-based mechanism of water-splitting in PSII as described by the intermediate oxidation states of the OEC. This review summarizes these recent advances in QM/MM modeling of PSII within the context of recent experimental studies. PMID:18483777

  18. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.

    2015-09-28

    Two dimensional electronic spectroscopy has proven to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derivemore » response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.« less

  19. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derivemore » response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.« less

  20. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy.

    PubMed

    Lewis, Nicholas H C; Dong, Hui; Oliver, Thomas A A; Fleming, Graham R

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.

  1. Surface and electronic structure of Bi-Ca-Sr-Cu-O superconductors studied by LEED, UPS and XPS

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Eom, C. B.; Kapitulnik, A.; Geballe, T. H.; Soukiassian, P.

    1989-02-01

    Single crystal and polycrystalline samples of Bi2CaSr2Cu2O8 have been studied by various surface sensitive techniques, including low energy electron diffraction (LEED), ultraviolet photoemission spectroscopy (UPS) and x-ray photoemission spectroscopy (XPS). The surface structure of the single crystals was characterized by LEED to be consistent with that of the bulk structure. Our data suggest that Bi2CaSr2Cu2O8 single crystals are very stable in the ultrahigh vacuu. No change of XPS spectra with temperature was observed. We have also studied the electronic structure of Bi2Sr2CuO6, which has a lower superconducting transition temperature Tc. Comparing the electronic structure of the two Bi-Ca-Sr-Cu-O superconductors, an important difference in the density of states near EF was observed which seems to be related to the difference in Tc.

  2. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations

    PubMed Central

    Schwaighofer, Andreas; Alcaráz, Mirta R.; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard

    2016-01-01

    Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml−1), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml−1). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml−1 in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml−1 was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy. PMID:27633337

  3. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations.

    PubMed

    Schwaighofer, Andreas; Alcaráz, Mirta R; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard

    2016-09-16

    Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml(-1)), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml(-1)). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml(-1) in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml(-1) was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stair, Peter C.

    The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supportedmore » metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.« less

  5. Structural and dynamical studies of molecular and network forming chalcogenide glasses and supercooled liquids with NMR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gjersing, Erica Lee

    The techniques of Nuclear Magnetic Resonance (NMR) and Raman spectroscopy have been employed to study structure and dynamics in Ge-Se, Ge/As-Te, and As-S binary and complex Ge-As-Te and P-As-S ternary chalcogenide glasses. Structural studies were conducted on Ge-Se glasses and on binary Ge/As-Te and ternary Ge-As-Te systems. The structure of the GexSe100-x glass series, with 5≤x≤33, is investigated with 77Se Magic Angle Spinning (MAS) NMR and then compared with three different proposed structural models. For the binary Ge-Te and As-Te and ternary Ge-As-Te glass systems the structure is studied using Raman spectroscopy and correlated with physical properties such as molar volume, viscosity, optical band gap and thermophysical properties. Studies on glass transition dynamics were conducted on systems with a range of structural features including an As4S3 inorganic molecular glass former, an As-P-S system where molecules are bonded to the As-S network, and network glasses in the Ge-Se system. Timescales of the rotational dynamics of As4S3 cage molecules in the molecular As-sulfide glass and supercooled liquid show remarkably large decoupling from the timescales of viscous flow and shear relaxation at temperatures below and near Tg (312K). Next, the dynamic behavior of a (As 2S3)90(P2S5)10 glass, which is proposed to consist of As2P2S8 molecular structures which are connected to an As-S network, is investigated with 31P NMR. The rotational dynamics of selenium chains in network forming GexSe100-x glasses and supercooled liquids with 5≤x≤23 are investigated with variable temperature 77Se NMR spectroscopy to determine the relationship between rigidity percolation and dynamic behavior. The timescale of the motion of the Se atoms is observed to be nearly identical for x≤17 and ≤2.36. However, for the x=20 and 23 compositions where ≤2.4, above the rigidity percolation threshold, the timescale slows down abruptly. Finally, the Ge20Se 80 glass and supercooled liquid have been the focus of a variable temperature Raman spectroscopy study to investigate the vibrational mode softening behavior and the importance of vibrational entropy in glass transition.

  6. Synthesis and characterization of silicon nanorod on n-type porous silicon.

    PubMed

    Behzad, Kasra; Mat Yunus, Wan Mahmood; Bahrami, Afarin; Kharazmi, Alireza; Soltani, Nayereh

    2016-03-20

    This work reports a new method for growing semiconductor nanorods on a porous silicon substrate. After preparation of n-type porous silicon samples, a thin layer of gold was deposited on them. Gold deposited samples were annealed at different temperatures. The structural, thermal, and optical properties of the samples were studied using a field emission scanning electron microscope (FESEM), photoacoustic spectroscopy, and photoluminescence spectroscopy, respectively. FESEM analysis revealed that silicon nanorods of different sizes grew on the annealed samples. Thermal behavior of the samples was studied using photoacoustic spectroscopy. Photoluminescence spectroscopy showed that the emission peaks were degraded by gold deposition and attenuated for all samples by annealing.

  7. Theoretical studies on the structural and spectra properties of two C74 fullerenes and the chlorinated species C74Cl10

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Song, Xitong; Li, Xiaoqi; Qi, Jiayuan

    2018-07-01

    The geometrical/electronic structures, X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy of two especially C74 fullerenes (D3h-C74 and C1-C74) and the chlorinated species C1-C74Cl10, which are newly isolated in the experiment, have been calculated by means of the density functional theory (DFT) method. Effective changes in the electronic structure and simulated X-ray spectra have been observed after chlorination. Strong isomer dependence has been found in both spectra, thus the 'fingerprints' in the spectra can be employed as a tool to identify the isomers. The ultraviolet-visible (UV-vis) absorption spectrum of C1-C74Cl10 has been performed by using the time-dependent DFT method. The generated UV-vis spectrum coincides with the previous experimental counterpart. The results of this work can provide useful information especially for isomer identification and further study on fullerenes by means of the aforementioned spectroscopy techniques.

  8. Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, Roger L.

    2007-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilicmore » peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal. Upon comparison of these spectra to the SFG spectra of interfacial polylysine and polyproline it was determined that the interfacial structure of a peptide is strongly dependent on its chain length. Lastly, SFG spectroscopy has been extended to the Amide I vibrational mode of a peptide (which is sensitive to peptide secondary structure) by building a new optical parametric amplifier based on lithium thioindate. Evidence is presented that suggests that the interfacial secondary structure of a peptide can be perturbed by a surface.« less

  9. Structural studies on Demospongiae sponges from Gökçeada Island in the Northern Aegean Sea

    NASA Astrophysics Data System (ADS)

    Bayari, Sevgi Haman; Şen, Elif Hilal; Ide, Semra; Topaloglu, Bülent

    2018-03-01

    The Demospongiae is the largest Class in the phylum Porifera (sponges). Most sponge species in the Class Demospongiae have a skeleton of siliceous spicules and/or protein spongin or both. The first aim of this study was to perform the morphological and structural characterization of the siliceous spicules of four species belonging to Class Demospongiae (Suberites domuncula, Axinella polypoides, Axinella damicornis and Agelas oroides) collected around Gökçeada Island-Turkey (Northern Aegean Sea). The characterizations were carried out using a combination of Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM/EDX), Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Small Angle X-ray Scattering (SAXS) techniques. The sponge Chondrosia reniformis (Porifera, Demospongiae) lacks a structural skeleton of spicules or the spongin. It consists mainly of a collagenous tissue. The collagen with sponge origin is an important source in biomedical and pharmaceutical applications. The second aim of this study was to provide more information on the molecular structure of collagen of outer (ectosome) and inner (choanosome) regions of the Chondrosia reniformis using ATR-FTIR spectroscopy. Hierarchical clustering analysis (HCA) was also used for the discrimination of ATR-FTIR spectra of species.

  10. Structure-property study of the Raman spectroscopy detection of fusaric acid and analogs

    USDA-ARS?s Scientific Manuscript database

    Food security can benefit from the development of selective methods to detect toxins. Fusaric acid is a mycotoxin produced by certain fungi occasionally found in agricultural commodities. Raman spectroscopy allows selective detection of analytes associated with certain spectral characteristics relat...

  11. Deposition of dual-layer coating on Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Hussain Din, Sajad; Shah, M. A.; Sheikh, N. A.

    2017-03-01

    Dual-layer diamond coatings were deposited on titanium alloy (Ti6Al4V) using a hot filament chemical vapour deposition technique with the anticipation of studying the structural and morphology properties of the alloy. The coated diamond films were characterized using scanning electron microscope, x-ray diffraction (XRD), and Raman spectroscopy. The XRD studies reveal that the deposited films are highly crystalline in nature, whereas morphological studies show that the films have a cauliflower structure. XRD analysis was used to calculate the structural parameters of the Ti6Al4V and CVD-coated Ti6Al4V. Raman spectroscopy was used to determine the nature and magnitude of the residual stress of the coatings.

  12. Combined experimental and ab initio study of the electronic structure of narrow-diameter single-wall carbon nanotubes with predominant (6,4),(6,5) chirality

    NASA Astrophysics Data System (ADS)

    de Blauwe, K.; Mowbray, D. J.; Miyata, Y.; Ayala, P.; Shiozawa, H.; Rubio, A.; Hoffmann, P.; Kataura, H.; Pichler, T.

    2010-09-01

    Narrow diameter tubes and especially (6,5) tubes with a diameter of 0.75 nm are currently one of the most studied carbon nanotubes because their unique optical and especially luminescence response makes them exceptionally suited for biomedical applications. Here we report on a detailed analysis of the electronic structure of nanotubes with (6,5) and (6,4) chiralities using a combined experimental and theoretical approach. From high-energy spectroscopy involving x-ray absorption and photoemission spectroscopy the detailed valence- and conduction-band response of these narrow diameter tubes is studied. The observed electronic structure is in sound agreement with state of the art ab initio calculations using density-functional theory.

  13. Structural and optical studies of Mg doped nanoparticles of chromium oxide (Cr2O3) synthesized by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Singh, Jarnail; Verma, Vikram; Kumar, Ravi

    2018-04-01

    We present here the synthesization, structural and optical studies of Mg doped nanoparticles of Chromium oxide (Cr2O3) prepared using co-precipitation method. These samples were characterized using powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman spectroscopy and UV-Vis spectroscopy techniques. We have demonstrated that there is negligible change in optical band gap with the Mg doping. The prepared Cr2O3 nanoparticles are spherical in shape, but they are transformed into platelets when doped with Mg. The XRD studies reveal that the Mg doping in Cr2O3 doesn't affect the structure of Chromium oxide (Cr2O3).

  14. Environmentally Controlled Infrared Spectroscopy System for Fundamental Studies of Polymer Electrolyte Membranes

    DTIC Science & Technology

    2015-10-15

    to state-of- hydration . Polarization modulated infrared reflection- absorption spectroscopy experiments are enabled by the use of a spin-coater to coat...NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SPEEK, Nafion, Ionomers, state-of- hydration ...enabled correlation of the exchange site structure to state-of- hydration . Polarization modulated infrared reflection-absorption spectroscopy experiments

  15. a Chiral Tagging Strategy for Determining Absolute Configuration and Enantiomeric Excess by Molecular Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Caminati, Walther; Patterson, David; Thomas, Javix; Xu, Yunjie; West, Channing; Pate, Brooks

    2017-06-01

    The introduction of three wave mixing rotational spectroscopy by Patterson, Schnell, and Doyle [1,2] has expanded applications of molecular rotational spectroscopy into the field of chiral analysis. Chiral analysis of a molecule is the quantitative measurement of the relative abundances of all stereoisomers of the molecule and these include both diastereomers (with distinct molecular rotational spectra) and enantiomers (with equivalent molecular rotational spectra). This work adapts a common strategy in chiral analysis of enantiomers to molecular rotational spectroscopy. A "chiral tag" is attached to the molecule of interest by making a weakly bound complex in a pulsed jet expansion. When this tag molecule is enantiopure, it will create diastereomeric complexes with the two enantiomers of the molecule being analyzed and these can be differentiated by molecule rotational spectroscopy. Identifying the structure of this complex, with knowledge of the absolute configuration of the tag, establishes the absolute configuration of the molecule of interest. Furthermore, the diastereomer complex spectra can be used to determine the enantiomeric excess of the sample. The ability to perform chiral analysis will be illustrated by a study of solketal using propylene oxide as the tag. The possibility of using current methods of quantum chemistry to assign a specific structure to the chiral tag complex will be discussed. Finally, chiral tag rotational spectroscopy offers a "gold standard" method for determining the absolute configuration of the molecule through determination of the substitution structure of the complex. When this measurement is possible, rotational spectroscopy can deliver a quantitative three dimensional structure of the molecule with correct stereochemistry as the analysis output. [1] David Patterson, Melanie Schnell, John M. Doyle, Nature 497, 475 (2013). [2] David Patterson, John M. Doyle, Phys. Rev. Lett. 111, 023008 (2013).

  16. Structure-Activity Relations In Enzymes: An Application Of IR-ATR Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fringeli, Urs P.; Ahlstrom, Peter; Vincenz, Claudius; Fringeli, Marianna

    1985-12-01

    Relations between structure and specific activity in immobilized acetylcholinesterase (ACNE) have been studied by means of pH- and Ca++-modulation technique combined with attenuated total reflection (ATR) infrared (IR) spectroscopy and enzyme activity measurement. Periodic modulation of pH and Ca++-concentration enabled a periodic on-off switching of about 40% of the total enzyme activity. It was found that about 0.5 to 1% of the amino acids were involved in this process. These 15 to 30 amino acids assumed antiparallel pleated sheet structure in the inhibited state and random and/or helical structure in the activated state.

  17. Infrared spectroscopy as a tool to characterise starch ordered structure--a joint FTIR-ATR, NMR, XRD and DSC study.

    PubMed

    Warren, Frederick J; Gidley, Michael J; Flanagan, Bernadine M

    2016-03-30

    Starch has a heterogeneous, semi-crystalline granular structure and the degree of ordered structure can affect its behaviour in foods and bioplastics. A range of methodologies are employed to study starch structure; differential scanning calorimetry, (13)C nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Despite the appeal of FTIR as a rapid, non-destructive methodology, there is currently no systematically defined quantitative relationship between FTIR spectral features and other starch structural measures. Here, we subject 61 starch samples to structural analysis, and systematically correlate FTIR spectra with other measures of starch structure. A hydration dependent peak position shift in the FTIR spectra of starch is observed, resulting from increased molecular order, but with complex, non-linear behaviour. We demonstrate that FTIR is a tool that can quantitatively probe short range interactions in starch structure. However, the assumptions of linear relationships between starch ordered structure and peak ratios are overly simplistic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Interface Structure of MoO3 on Organic Semiconductors

    PubMed Central

    White, Robin T.; Thibau, Emmanuel S.; Lu, Zheng-Hong

    2016-01-01

    We have systematically studied interface structure formed by vapor-phase deposition of typical transition metal oxide MoO3 on organic semiconductors. Eight organic hole transport materials have been used in this study. Ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy are used to measure the evolution of the physical, chemical and electronic structure of the interfaces at various stages of MoO3 deposition on these organic semiconductor surfaces. For the interface physical structure, it is found that MoO3 diffuses into the underlying organic layer, exhibiting a trend of increasing diffusion with decreasing molecular molar mass. For the interface chemical structure, new carbon and molybdenum core-level states are observed, as a result of interfacial electron transfer from organic semiconductor to MoO3. For the interface electronic structure, energy level alignment is observed in agreement with the universal energy level alignment rule of molecules on metal oxides, despite deposition order inversion. PMID:26880185

  19. Vibrational structure of the S 2 (1B u) excited state of diphenyloctatetraene observed by femtosecond stimulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kukura, Philipp; McCamant, David W.; Davis, Paul H.; Mathies, Richard A.

    2003-11-01

    Femtosecond time-resolved stimulated Raman spectroscopy (FSRS) is used to study the vibrational structure and dynamics of the S 2 state of diphenyloctatetraene. Strong vibrational features at 1184, 1259 and 1578 cm -1 whose linewidths are determined by the S 2 electronic lifetime are observed at early times after photoexcitation at 397 nm. Kinetic analysis of the integrated Raman intensities as well as the transient absorption reveals an exponential decay of the S 2 state on the order of 100 fs. These results demonstrate the ability of FSRS to study the vibrational structure of excited state and chemical reaction dynamics on the femtosecond timescale.

  20. Infrared Multiphoton Dissociation Spectroscopy with Free-Electron Lasers: On the Road from Small Molecules to Biomolecules.

    PubMed

    Jašíková, Lucie; Roithová, Jana

    2018-03-07

    Infrared multiphoton dissociation (IRMPD) spectroscopy is commonly used to determine the structure of isolated, mass-selected ions in the gas phase. This method has been widely used since it became available at free-electron laser (FEL) user facilities. Thus, in this Minireview, we examine the use of IRMPD/FEL spectroscopy for investigating ions derived from small molecules, metal complexes, organometallic compounds and biorelevant ions. Furthermore, we outline new applications of IRMPD spectroscopy to study biomolecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Activation and thermodynamic parameter study of the heteronuclear C=O···H-N hydrogen bonding of diphenylurethane isomeric structures by FT-IR spectroscopy using the regularized inversion of an eigenvalue problem.

    PubMed

    Spegazzini, Nicolas; Siesler, Heinz W; Ozaki, Yukihiro

    2012-08-02

    The doublet of the ν(C=O) carbonyl band in isomeric urethane systems has been extensively discussed in qualitative terms on the basis of FT-IR spectroscopy of the macromolecular structures. Recently, a reaction extent model was proposed as an inverse kinetic problem for the synthesis of diphenylurethane for which hydrogen-bonded and non-hydrogen-bonded C=O functionalities were identified. In this article, the heteronuclear C=O···H-N hydrogen bonding in the isomeric structure of diphenylurethane synthesized from phenylisocyanate and phenol was investigated via FT-IR spectroscopy, using a methodology of regularization for the inverse reaction extent model through an eigenvalue problem. The kinetic and thermodynamic parameters of this system were derived directly from the spectroscopic data. The activation and thermodynamic parameters of the isomeric structures of diphenylurethane linked through a hydrogen bonding equilibrium were studied. The study determined the enthalpy (ΔH = 15.25 kJ/mol), entropy (TΔS = 14.61 kJ/mol), and free energy (ΔG = 0.6 kJ/mol) of heteronuclear C=O···H-N hydrogen bonding by FT-IR spectroscopy through direct calculation from the differences in the kinetic parameters (δΔ(‡)H, -TδΔ(‡)S, and δΔ(‡)G) at equilibrium in the chemical reaction system. The parameters obtained in this study may contribute toward a better understanding of the properties of, and interactions in, supramolecular systems, such as the switching behavior of hydrogen bonding.

  2. Quantum chemical study of the structure, spectroscopy and reactivity of NO+.(H2O)n=1-5 clusters

    NASA Astrophysics Data System (ADS)

    Linton, Kirsty A.; Wright, Timothy G.; Besley, Nicholas A.

    2018-03-01

    Quantum chemical methods including Møller-Plesset perturbation (MP2) theory and density functional theory (DFT) have been used to study the structure, spectroscopy and reactivity of NO+.(H2O)n=1-5 clusters. MP2/6-311++G** calculations are shown to describe the structure and spectroscopy of the clusters well. DFT calculations with exchange-correlation functionals with a low fraction of Hartree-Fock exchange give a binding energy of NO+.(H2O) that is too high and incorrectly predict the lowest energy structure of NO+.(H2O)2, and this error may be associated with a delocalization of charge onto the water molecule directly binding to NO+. Ab initio molecular dynamics (AIMD) simulations were performed to study the NO+.(H2O)5 H+.(H2O)4 + HONO reaction to investigate the formation of HONO from NO+.(H2O)5. Whether an intracluster reaction to form HONO is observed depends on the level of electronic structure theory used. Of note is that methods that accurately describe the relative energies of the product and reactant clusters did not show reactions on the timescales studied. This suggests that in the upper atmosphere the reaction may occur owing to the energy present in the NO+.(H2O)5 complex following its formation. This article is part of the theme issue `Modern theoretical chemistry'.

  3. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Güler, Günnur; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2016-05-01

    Enzymatically-induced degradation of bovine serum albumin (BSA) by serine proteases (trypsin and α-chymotrypsin) in various concentrations was monitored by means of Fourier transform infrared (FT-IR) and ultraviolet circular dichroism (UV-CD) spectroscopy. In this study, the applicability of both spectroscopies to monitor the proteolysis process in real time has been proven, by tracking the spectral changes together with secondary structure analysis of BSA as proteolysis proceeds. On the basis of the FTIR spectra and the changes in the amide I band region, we suggest the progression of proteolysis process via conversion of α-helices (1654 cm- 1) into unordered structures and an increase in the concentration of free carboxylates (absorption of 1593 and 1402 cm- 1). For the first time, the correlation between the degree of hydrolysis and the concentration of carboxylic groups measured by FTIR spectroscopy was revealed as well. The far UV-CD spectra together with their secondary structure analysis suggest that the α-helical content decreases concomitant with an increase in the unordered structure. Both spectroscopic techniques also demonstrate that there are similar but less spectral changes of BSA for the trypsin attack than for α-chymotrypsin although the substrate/enzyme ratio is taken the same.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy

    The surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. Moreover, the evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annularmore » dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. The catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  6. Microstructural, optical and electrical transport properties of Cd-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseem; Khan, Shakeel; Mohsin Nizam Ansari, Mohd

    2018-03-01

    We have successfully investigated the structural, optical and dielectric properties of Cd assimilated SnO2 nanoparticles synthesized via very convenient precipitation route. The structural properties were studied by x-ray diffraction method (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. As-synthesized samples in the form of powder were examined for its morphology and average particle size by Transmission electron microscopy (TEM). The optical properties were studied by diffuse reflectance spectroscopy. Dielectric properties such that complex dielectric constant and ac conductivity were investigated by LCR meter. Average crystallite size calculated by XRD and average particle size obtained from TEM were found to be consistent and below 50 nm for all samples. The optical band gap of as-synthesized powder samples from absorption study was found in the range of 3.76 to 3.97 eV. The grain boundary parameters such that Rgb, Cgb and τ were evaluated using impedance spectroscopy.

  7. Infrared spectroscopic study of natural hydrotalcites carrboydite and hydrohonessite.

    PubMed

    Frost, Ray L; Weier, Matt L; Clissold, Meagan E; Williams, Peter A

    2003-12-01

    Infrared spectroscopy has proven most useful for the study of anions in the interlayer of natural hydrotalcites. A suite of naturally occurring hydrotalcites including carrboydite, hydrohonessite, reevesite, motukoreaite and takovite were analysed. Variation in the hydroxyl stretching region was observed and the band profile is a continuum of states resulting from the OH stretching of the hydroxyl and water units. Infrared spectroscopy identifies some isomorphic substitution of sulphate for carbonate through an anion exchange mechanism for the minerals carrboydite and hydrohonessite. The infrared spectra of the CO3 and SO4 stretching region of takovite is complex because of band overlap. For this mineral some sulphate has replaced the carbonate in the structure. In the spectra of takovites, a band is observed at 1346 cm(-1) and is attributed to the carbonate anion hydrogen bonded to water in the interlayer. Infrared spectroscopy has proven most useful for the study of the interlayer structure of these natural hydrotalcites.

  8. Probing the Adsorption of Carbon Monoxide on Transition Metal Clusters Using IR Action Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lapoutre, Vivike J. F.; Oomens, Jos; Bakker, Joost M.

    2012-06-01

    The discovery of enhanced catalytic activity of small gold clusters has led to a great interest in size-dependent catalytic properties of metal clusters. To obtain a better understanding of the catalytic mechanisms it is essential to know the structures of these clusters and the nature of their interaction with reactant molecules. We have studied the structure of gas-phase niobium clusters with a carbon monoxide adsorbed using IR action spectroscopy. We present size-selective IR spectra obtained via IR multiple photon spectroscopy monitoring either photodetachment or photodissociation depending on the charge state. The combination of these spectra with DFT calculations allows for the structural determination of the adsorption product. M. Haruta et al., Journal of Catalysis 115 301-309 (1989). M. Haertelt et al., The Journal of Physical Chemistry Letters 2 1720-1724 (2011)

  9. Colloquium: Laser probing of neutron-rich nuclei in light atoms

    NASA Astrophysics Data System (ADS)

    Lu, Z.-T.; Mueller, P.; Drake, G. W. F.; Nörtershäuser, W.; Pieper, Steven C.; Yan, Z.-C.

    2013-10-01

    The neutron-rich He6 and He8 isotopes exhibit an exotic nuclear structure that consists of a tightly bound He4-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms and have measured the atomic isotope shifts along the He4-He6-He8 chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.

  10. Spectroscopic Study of the Interaction between Horse Heart Myoglobin and Zirconium(IV)-Substituted Polyoxometalates as Artificial Proteases.

    PubMed

    Ly, Hong Giang T; Parac-Vogt, Tatjana N

    2017-09-20

    A recent study [Angew. Chem. Int. Ed. 2015, 54, 7391-7394] has shown that horse heart myoglobin (HHM) is selectively hydrolyzed by a range of zirconium(IV)-substituted polyoxometalates (POMs) under mild conditions. In this study, the molecular interactions between the Zr-POM catalysts and HHM are investigated by using a range of complementary techniques, including circular dichroism (CD), UV/Vis spectroscopy, tryptophan fluorescence spectroscopy, and 1 H and 31 P NMR spectroscopy. A tryptophan fluorescence quenching study reveals that, among all examined Zr-POMs, the most reactive POM, 2:2 Zr IV -Keggin, exhibits the strongest interaction with HHM. 31 P NMR spectroscopy studies show that this POM dissociates in solution, resulting in the formation of a monomeric 1:1 Zr IV -Keggin structure, which is likely to be a catalytically active species. In the presence of Zr IV -POMs, HHM does not undergo complete denaturation, as evidenced by CD, UV/Vis, tryptophan fluorescence, and 1 H NMR spectroscopy. CD spectroscopy shows a gradual decrease in the α-helical content of HHM upon addition of Zr IV -POMs. The largest effect is observed in the presence of a large Zr IV -Wells-Dawson structure, whereas small Zr IV -Lindqvist POM has the least influence on the decrease in the α-helical content of HHM. In all cases, the Soret band at λ=409 nm is maintained in the presence of all examined Zr-POMs, which indicates that no conformational changes in the protein occur near the heme group. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electron spectroscopy of the diamond surface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1981-01-01

    The diamond surface is studied by ionization loss spectroscopy and Auger electron spectroscopy. For surfaces heated to temperatures not exceeding 900 C, the band gap was found to be devoid of empty states in the absence of electron beam effects. The incident electron beam generates empty states in the band gap and loss of structure in the valence band for these surfaces. A cross section of 1.4 x 10 to the -19th sq cm was obtained for this effect. For surfaces heated to temperatures exceeding 900 C the spectra were identical to those from surfaces modified by the electron beam. The diamond surface undergoes a thermal conversion in its electronic structure at about 900 C.

  12. Surface topography and electrical properties in Sr2FeMoO6 films studied at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Angervo, I.; Saloaro, M.; Mäkelä, J.; Lehtiö, J.-P.; Huhtinen, H.; Paturi, P.

    2018-03-01

    Pulsed laser deposited Sr2FeMoO6 thin films were investigated for the first time with scanning tunneling microscopy and spectroscopy. The results confirm atomic scale layer growth, with step-terrace structure corresponding to a single lattice cell scale. The spectroscopy research reveals a distribution of local electrical properties linked to structural deformation in the initial thin film layers at the film substrate interface. Significant hole structure giving rise to electrically distinctive regions in thinner film also seems to set a thickness limit for the thinnest films to be used in applications.

  13. Extended X-ray Absorption Fine Structure Study of Bond Constraints in Ge-Sb-Te Alloys

    DTIC Science & Technology

    2011-02-07

    Ray Absorption Spectroscopy, or EXAFS. Using the spectroscopic capabilities provided by the MCAT line at the Advanced Photon Source at Argonne...Absorption Spectroscopy, or EXAFS. Using the spectroscopic capabilities provided by the MCAT line at the Advanced Photon Source at Argonne National

  14. Applications of positron annihilation spectroscopy in materials research

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1988-01-01

    Positron Annihilation Spectroscopy (PAS) has emerged as a powerful technique for research in condensed matter. It has been used extensively in the study of metals, ionic crystals, glasses and polymers. The present review concentrates on applications of positron lifetime measurements for elucidation of the physicochemical structure of polymers.

  15. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy.

    PubMed

    Naito, Akira; Matsumori, Nobuaki; Ramamoorthy, Ayyalusamy

    2018-02-01

    A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 3 10 -helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Vibrational spectroscopy in the ophthalmological field

    NASA Astrophysics Data System (ADS)

    Bertoluzza, Alessandro; Monti, P.; Simoni, R.

    1991-05-01

    Some applications of vibrational (Raman and FT/IR) spectroscopy to the study of biocompatibility in the ophthalmological field are described. The structure arid elastic properties of a new hydrophobic fluorocarbon copolymer (FCC) are presented. Bacterial adhesion on its surface is also considered. The structure arid properties of soft contact lenses based on poly2--hydroxyethylmethacrylate (PHEMA) and polyvinylpyrrolidone (PVP) are discussed in relation to their recent use as intrastromal implants. The preliminary results dealing with a study on protein deposits on soft contact lenses in presence of a collyrium limiting the formation of such deposits are also reported. 1.

  17. On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.

    PubMed

    Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias

    2008-09-01

    The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.

  18. Characterization of Organic Materials in the Xenolithic Clasts in Sharps (H3.4) Meteorite Using Micro-Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.

    2015-01-01

    Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using micro-Raman spectroscopy.

  19. Characterization of Organic Materials in the Xenolithic Clasts in Sharps (H3.4) Meteorite Using Microraman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.

    2015-01-01

    Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade [1-3]. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using µ-Raman spectroscopy.

  20. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  1. Valence-band structure of organic radical p-CF3PNN investigated by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Anzai, Hiroaki; Takakura, Ryosuke; Ono, Yusuke; Ishihara, Suzuna; Sato, Hitoshi; Namatame, Hirofumi; Taniguchi, Masaki; Matsui, Toshiyuki; Noguchi, Satoru; Hosokoshi, Yuko

    2018-05-01

    We study the electronic structure of p-trifluoromethylphenyl nitronyl nitroxide (p-CF3PNN), which forms a one-dimensional alternating antiferromagnetic chain of molecules, using angle-resolved photoemission spectroscopy. A singly occupied molecular orbital (SOMO) is observed clearly at ∼ 2 eV in the valence-band spectra. The small band gap and the overlap between the SOMO orbitals in the NO groups are associated with the antiferromagnetic interaction between neighboring spins.

  2. Titanium-silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy

    PubMed Central

    Dunlop, Iain E.; Zorn, Stefan; Richter, Gunther; Srot, Vesna; Kelsch, Marion; van Aken, Peter A.; Skoda, Maximilian; Gerlach, Alexander; Spatz, Joachim P.; Schreiber, Frank

    2010-01-01

    We present a titanium-silicon oxide film structure that permits polarization modulated infrared reflection absorption spectroscopy on silicon oxide surfaces. The structure consists of a ~6 nm sputtered silicon oxide film on a ~200 nm sputtered titanium film. Characterization using conventional and scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy and X-ray reflectometry is presented. We demonstrate the use of this structure to investigate a selectively protein-resistant self-assembled monolayer (SAM) consisting of silane-anchored, biotin-terminated poly(ethylene glycol) (PEG). PEG-associated IR bands were observed. Measurements of protein-characteristic band intensities showed that this SAM adsorbed streptavidin whereas it repelled bovine serum albumin, as had been expected from its structure. PMID:20418963

  3. Fan Beam Emission Tomography for Laminar Fires

    NASA Technical Reports Server (NTRS)

    Sivathanu, Yudaya; Lim, Jongmook; Feikema, Douglas

    2003-01-01

    Obtaining information on the instantaneous structure of turbulent and transient flames is important in a wide variety of applications such as fire safety, pollution reduction, flame spread studies, and model validation. Durao et al. has reviewed the different methods of obtaining structure information in reacting flows. These include Tunable Laser Absorption Spectroscopy, Fourier Transform Infrared Spectroscopy, and Emission Spectroscopy to mention a few. Most flames emit significant radiation signatures that are used in various applications such as fire detection, light-off detection, flame diagnostics, etc. Radiation signatures can be utilized to maximum advantage for determining structural information in turbulent flows. Emission spectroscopy is most advantageous in the infrared regions of the spectra, principally because these emission lines arise from transitions in the fundamental bands of stable species such as CO2 and H2O. Based on the above, the objective of this work was to develop a fan beam emission tomography system to obtain the local scalar properties such as temperature and mole fractions of major gas species from path integrated multi-wavelength infrared radiation measurements.

  4. X-ray absorption fine structure (XAFS) spectroscopy using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Shrivastava, B. D.

    2012-05-01

    The X-ray absorption fine structure (XAFS) spectra are best recorded when a highly intense beam of X-rays from a synchrotron is used along with a good resolution double crystal or curved crystal spectrometer and detectors like ionization chambers, scintillation counters, solid state detectors etc. Several synchrotrons around the world have X-ray beamlines dedicated specifically to XAFS spectroscopy. Fortunately, the Indian synchrotron (Indus-2) at Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore has started operation. A dispersive type EXAFS beamline called BL-8 has been commissioned at this synchrotron and another beamline having double crystal monochromator (DCM) is going to be commissioned shortly. In Indian context, in order that more research workers use these beamlines, the study of XAFS spectroscopy using synchrotron radiation becomes important. In the present work some of the works done by our group on XAFS spectroscopy using synchrotron radiation have been described.

  5. On the Electronic Structure of Cu Chlorophyllin and Its Breakdown Products: A Carbon K-Edge X-ray Absorption Spectroscopy Study.

    PubMed

    Witte, Katharina; Mantouvalou, Ioanna; Sánchez-de-Armas, Rocío; Lokstein, Heiko; Lebendig-Kuhla, Janina; Jonas, Adrian; Roth, Friedrich; Kanngießer, Birgit; Stiel, Holger

    2018-02-15

    Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, the carbon backbone of sodium copper chlorophyllin (SCC), a widely used chlorophyll derivative, and its breakdown products are analyzed to elucidate their electronic structure and physicochemical properties. Using various sample preparation methods and complementary spectroscopic methods (including UV/Vis, X-ray photoelectron spectroscopy), a comprehensive insight into the SCC breakdown process is presented. The experimental results are supported by density functional theory calculations, allowing a detailed assignment of characteristic NEXAFS features to specific C bonds. SCC can be seen as a model system for the large group of porphyrins; thus, this work provides a novel and detailed description of the electronic structure of the carbon backbone of those molecules and their breakdown products. The achieved results also promise prospective optical pump/X-ray probe investigations of dynamic processes in chlorophyll-containing photosynthetic complexes to be analyzed more precisely.

  6. Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies.

    PubMed

    Mahatha, S K; Patel, K D; Menon, Krishnakumar S R

    2012-11-28

    Angle-resolved photoemission spectroscopy (ARPES) and ab initio band structure calculations have been used to study the detailed valence band structure of molybdenite, MoS(2) and MoSe(2). The experimental band structure obtained from ARPES has been found to be in good agreement with the theoretical calculations performed using the linear augmented plane wave (LAPW) method. In going from MoS(2) to MoSe(2), the dispersion of the valence bands decreases along both k(parallel) and k(perpendicular), revealing the increased two-dimensional character which is attributed to the increasing interlayer distance or c/a ratio in these compounds. The width of the valence band and the band gap are also found to decrease, whereas the valence band maxima shift towards the higher binding energy from MoS(2) to MoSe(2).

  7. Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity

    DOE PAGES

    Li, Chen; Poplawsky, Jonathan; Yan, Yanfa; ...

    2017-07-01

    Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.

  8. Electronic structure of transition metal-cysteine complexes from X-ray absorption spectroscopy.

    PubMed

    Leung, Bonnie O; Jalilehvand, Farideh; Szilagyi, Robert K

    2008-04-17

    The electronic structures of HgII, NiII, CrIII, and MoV complexes with cysteine were investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. The covalency in the metal-sulfur bond was determined by analyzing the intensities of the electric-dipole allowed pre-edge features appearing in the XANES spectra below the ionization threshold. Because of the well-defined structures of the selected cysteine complexes, the current work provides a reference set for further sulfur K-edge XAS studies of bioinorganic active sites with transition metal-sulfur bonds from cysteine residues as well as more complex coordination compounds with thiolate ligands.

  9. Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chen; Poplawsky, Jonathan; Yan, Yanfa

    Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.

  10. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    NASA Astrophysics Data System (ADS)

    Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.

    2016-07-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.

  11. Comparison of Cellulose Supramolecular Structures Between Nanocrystals of Different Origins

    Treesearch

    Umesh P. Agarwal; Richard S. Reiner; Christopher G. Hunt; Jeffery Catchmark; E. Johan Foster; Akira Isogai

    2015-01-01

    In this study, morphologies and supramolecular structures of CNCs from wood-pulp, cotton, bacteria, tunicate, and cladophora were investigated. TEM was used to study the morphological aspects of the nanocrystals whereas Raman spectroscopy provided information on the cellulose molecular structure and its organization within a CNC. Dimensional differences between the...

  12. Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy

    PubMed Central

    Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.

    2017-01-01

    Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522

  13. Lithium Oxysilicate Compounds Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apblett, Christopher A.; Coyle, Jaclyn

    In this study, the structure and composition of lithium silicate thin films deposited by RF magnetron co-sputtering is investigated. Five compositions ranging from Li2Si2O5 to Li8SiO6 were confirmed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and structure analysis on the evolution of non-bridging oxygens in the thin films was conducted with fourier transform infrared (FTIR) spectroscopy. It was found that non-bridging oxygens (NBOs) increased as the silicate network breaks apart with increasing lithium content which agrees with previous studies on lithium silicates. Thin film impurities were examined with x-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopymore » (TOFSIMS) and traced back to target synthesis. This study utilizes a unique synthesis technique for lithium silicate thin films and can be referred to in future studies on the ionic conductivity of lithium silicates formed on the surface of silicon anodes in lithium ion batteries.« less

  14. Conceptual design and structural analysis of the spectroscopy of the atmosphere using far infrared emission (SAFIRE) instrument

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Averill, Robert D.

    1992-01-01

    The conceptual design and structural analysis for the Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Instrument are provided. SAFIRE, which is an international effort, is proposed for the Earth Observing Systems (EOS) program for atmospheric ozone studies. A concept was developed which meets mission requirements and is the product of numerous parametric studies and design/analysis iterations. Stiffness, thermal stability, and weight constraints led to a graphite/epoxy composite design for the optical bench and supporting struts. The structural configuration was determined by considering various mounting arrangements of the optical, cryo, and electronic components. Quasi-static, thermal, modal, and dynamic response analyses were performed, and the results are presented for the selected configuration.

  15. Synthesis of silver-platinum nanoferns substrates used in surface-enhanced Raman spectroscopy sensors to detect creatinine

    NASA Astrophysics Data System (ADS)

    Adliha Abdullah, Nur; Abu Bakar, Norhayati; Shapter, Joseph G.; Mat Salleh, Muhamad; Umar, Akrajas Ali

    2017-06-01

    Creatinine is one of the most commonly used bio markers of renal function. This paper reports a study on detection of creatinine using silver-platinum (AgPt) nanoferns substrates to fabricate a surface-enhanced Raman spectroscopy (SERS) sensor. The AgPt nanoferns were synthesized by liquid phase deposition (LPD) where the morphology structures and thickness of the AgPt nanoferns were controlled by varying the concentration of formic acid which was acting as the reducing agent. We have obtained four different nanoferns structures and thicknesses. This study showed that the AgPt nanoferns structure synthesized with 40 mM formic acid give the highest Raman peak intensity for a 0.05 M creatinine sample.

  16. Structural and optical properties of silicon-carbide nanowires produced by the high-temperature carbonization of silicon nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlikov, A. V., E-mail: pavlikov@physics.msu.ru; Latukhina, N. V.; Chepurnov, V. I.

    Silicon-carbide (SiC) nanowire structures 40–50 nm in diameter are produced by the high-temperature carbonization of porous silicon and silicon nanowires. The SiC nanowires are studied by scanning electron microscopy, X-ray diffraction analysis, Raman spectroscopy, and infrared reflectance spectroscopy. The X-ray structural and Raman data suggest that the cubic 3C-SiC polytype is dominant in the samples under study. The shape of the infrared reflectance spectrum in the region of the reststrahlen band 800–900 cm{sup –1} is indicative of the presence of free charge carriers. The possibility of using SiC nanowires in microelectronic, photonic, and gas-sensing devices is discussed.

  17. Role of Cu in engineering the optical properties of SnO2 nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup

    2018-06-01

    We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.

  18. Local structural distortion and electrical transport properties of Bi(Ni 1/2Ti 1/2)O 3 perovskite under high pressure

    DOE PAGES

    Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu -Wen; ...

    2015-12-16

    Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni 1/2Ti 1/2)O 3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Wemore » find, consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.« less

  19. Local structural distortion and electrical transport properties of Bi(Ni1/2Ti1/2)O3 perovskite under high pressure.

    PubMed

    Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu-Wen; Zhang, Jianzhong; Yang, Wenge; Hong, Xinguo; Jin, Changqing; Zhao, Yusheng

    2015-12-16

    Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni1/2Ti1/2)O3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.

  20. U(v) in metal uranates: A combined experimental and theoretical study of MgUO 4, CrUO 4, and FeUO 4

    DOE PAGES

    Guo, Xiaofeng; Tiferet, Eitan; Qi, Liang; ...

    2016-01-01

    Although pentavalent uranium can exist in aqueous solution, its presence in the solid state is uncommon. Metal monouranates, MgUO 4, CrUO 4 and FeUO 4 were synthesized for detailed structural and energetic investigations. Structural characteristics of these uranates used powder X-ray diffraction, synchrotron X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and 57Fe-Mossbauer spectroscopy. Enthalpies of formation were measured by high temperature oxide melt solution calorimetry. Density functional theory (DFT) calculations provided both structural and energetic information. The measured structural and thermodynamic properties show good consistency with those predicted from DFT. The presence of U 5+ has been solidly confirmed in CrUOmore » 4 and FeUO 4, which are thermodynamically stable compounds, and the origin and stability of U 5+ in the system was elaborated by DFT. Lastly, the structural and thermodynamic behaviour of U 5+ elucidated in this work is relevant to fundamental actinide redox chemistry and to applications in the nuclear industry and radioactive waste disposal.« less

  1. Optical and structural behaviors of crosslinked polyvinyl alcohol thin films

    NASA Astrophysics Data System (ADS)

    Pandit, Subhankar; Kundu, Sarathi

    2018-04-01

    Polyvinyl Alcohol (PVA) has excellent properties like uniaxial tensile stress, chemical resistance, biocompatibility, etc. The properties of PVA further can be tuned by crosslinking process. In this work, a simple heat treatment method is used to find out the optimum crosslinking of PVA and the corresponding structural and optical responses are explored. The PVA crosslinking is done by exposing the films at different temperatures and time intervals. The optical property of pure and heat treated PVA films are investigated by UV-Vis absorption and photoluminescence emission spectroscopy and structural modifications are studied by Fourier Transform Infrared Spectroscopy (FTIR). The absorption peaks of pure PVA are observed at ≈ 280 and 335 nm and the corresponding emission is observed at ≈ 424 nm. The pure PVA showed modified optical behaviors after the heat treatment. In addition, dipping the PVA films in hot water (85°C) for nearly 20 minutes also show impact on both structural and optical properties. From FTIR spectroscopy, the changes in vibrational band positions confirm the structural modifications of PVA films.

  2. Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcination temperatures

    NASA Astrophysics Data System (ADS)

    Loganathan, A.; Kumar, K.

    2016-06-01

    In the present work, pure and Sr2+ ions substituted Mg ferrite nanoparticles (NPs) had been prepared by co-precipitation method and their structural, optical, and magnetic properties at different calcination temperatures were studied. On this purpose, thermo gravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy, UV-Visible diffused reflectance spectroscopy, impedance spectroscopy, and vibrating sample magnetometer were carried out. The exo- and endothermic processes of synthesized precursors were investigated by TG-DTA measurements. The structural properties of the obtained products were examined by XRD analysis and show that the synthesized NPs are in the cubic spinel structure. The existence of two bands around 578-583 and 430-436 cm-1 in FT-IR spectrum also confirmed the formation of spinel-structured ferrite NPs. The lattice constants and particle size are estimated using XRD data and found to be strongly dependent on calcination temperatures. The optical, electrical, and magnetic properties of ferrite compositions also investigated and found to be strongly dependant on calcination temperatures.

  3. Investigations of photosynthetic light harvesting by two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Read, Elizabeth Louise

    Photosynthesis begins with the harvesting of sunlight by antenna pigments, organized in a network of pigment-protein complexes that rapidly funnel energy to photochemical reaction centers. The intricate design of these systems---the widely varying structural motifs of pigment organization within proteins and protein organization within a larger, cooperative network---underlies the remarkable speed and efficiency of light harvesting. Advances in femtosecond laser spectroscopy have enabled researchers to follow light energy on its course through the energetic levels of photosynthetic systems. Now, newly-developed femtosecond two-dimensional electronic spectroscopy reveals deeper insight into the fundamental molecular interactions and dynamics that emerge in these structures. The following chapters present investigations of a number of natural light-harvesting complexes using two-dimensional electronic spectroscopy. These studies demonstrate the various types of information contained in experimental two-dimensional spectra, and they show that the technique makes it possible to probe pigment-protein complexes on the length- and time-scales relevant to their functioning. New methods are described that further extend the capabilities of two-dimensional electronic spectroscopy, for example, by independently controlling the excitation laser pulse polarizations. The experiments, coupled with theoretical simulation, elucidate spatial pathways of energy flow, unravel molecular and electronic structures, and point to potential new quantum mechanical mechanisms of light harvesting.

  4. ULTRAFAST CHEMISTRY: Using Time-Resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics

    NASA Astrophysics Data System (ADS)

    Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud

    2005-05-01

    Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.

  5. Valence fluctuating compound α-YbAlB4 studied by 174Yb Mössbauer spectroscopy and X-ray diffraction using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Oura, Momoko; Ikeda, Shugo; Masuda, Ryo; Kobayashi, Yasuhiro; Seto, Makoto; Yoda, Yoshitaka; Hirao, Naohisa; Kawaguchi, Saori I.; Ohishi, Yasuo; Suzuki, Shintaro; Kuga, Kentaro; Nakatsuji, Satoru; Kobayashi, Hisao

    2018-05-01

    The structural properties and the Yb 4 f electronic state of the valence fluctuating α-YbAlB4 have been investigated by powder X-ray diffraction under pressure and 174Yb Mössbauer spectroscopy with magnetic fields at low temperature, respectively, using synchrotron radiation. Powder X-ray diffraction patterns showed that the crystal structure does not change up to p ∼ 18 GPa at 8 K and the volume decreases smoothly. However, the pressure dependence of the difference in the structure factor between the (060) and (061) diffraction lines changes at ∼ 3.4 GPa, indicating the change of atomic coordination parameters. The 174Yb Mössbauer spectroscopy measurements at 2 K with 10 and 50 kOe suggest that the electrical quadrupole interaction changes by applied magnetic fields.

  6. Structural change of the frustule of diatom by thermal treatment

    NASA Astrophysics Data System (ADS)

    Arasuna, Akane; Okuno, Masayuki

    2018-12-01

    The external skeleton, frustule, of a diatom is composed of hydrous amorphous silica and amino acids. In this study, the structural changes in the frustule of Chaetoceros calcitrans after thermal treatment up to 1200 °C were investigated using X-ray diffraction and attenuated total reflection infrared spectroscopy and Raman spectroscopy. Their structural changes after thermal treatment give important information to elucidate the unheated structure of the frustule and its crystallization process. In addition, this study is almost the first report to discuss the structure of diatom frustule in detail with Raman spectrum. The unheated structure of the frustule has the relatively ordered and dominant six-membered ring structure made of SiO4 tetrahedra. The sample heated at 800 °C has the more ordered six-membered ring structure observed in quartz or cristobalite. Water molecules and silanol (Si-OH) included in the frustule are dehydrated at this temperature. This dehydration may promote the formation of ordered and polymerized structure. The structure of the frustule after heating at 1200 °C is similar to that of low-cristobalite. However, additional heating is required for complete crystallization.

  7. Structural studies with the use of XRD and Mössbauer spectroscopy of new high Manganese steels

    NASA Astrophysics Data System (ADS)

    Jablonska, Magdalena Barbara

    2014-04-01

    New high-strength austenitic and austenitic-ferritic manganese steels represent a significant potential in applications for structural components in the automotive and railway industry due to the excellent combination of high mechanical properties and good plasticity. They belong to the group of steels called AHSS (Advanced High Strength Steels) and UHSS (Ultra High Strength Steels). Application of this combination of properties allows a reduction in the weight of vehicles by the use of reduced cross-section components, and thus to reduce fuel consumption. The development and implementation of industrial production of such interesting and promising steel and its use as construction material requires an improvement of their casting properties and susceptibility to deformation in plastic working conditions. In this work, XRD, Transmission Mössbauer Spectroscopy and Conversion Electron Mössbauer Spectroscopy were employed in a study of the new high-manganese steels with a austenite and austenite-ferrite structure. The influence of the plastic deformation parameters on the changes in the structure, distribution of ferrite and disclosure of the presence of carbides was determined. The analysis of phase transformations in various times using CEMS method made possible to reveal their fine details.

  8. Copper doped TiO2 nanoparticles characterized by X-ray absorption spectroscopy, total scattering, and powder diffraction--a benchmark structure-property study.

    PubMed

    Lock, Nina; Jensen, Ellen M L; Mi, Jianli; Mamakhel, Aref; Norén, Katarina; Qingbo, Meng; Iversen, Bo B

    2013-07-14

    Metal functionalized nanoparticles potentially have improved properties e.g. in catalytic applications, but their precise structures are often very challenging to determine. Here we report a structural benchmark study based on tetragonal anatase TiO2 nanoparticles containing 0-2 wt% copper. The particles were synthesized by continuous flow synthesis under supercritical water-isopropanol conditions. Size determination using synchrotron PXRD, TEM, and X-ray total scattering reveals 5-7 nm monodisperse particles. The precise dopant structure and thermal stability of the highly crystalline powders were characterized by X-ray absorption spectroscopy and multi-temperature synchrotron PXRD (300-1000 K). The combined evidence reveals that copper is present as a dopant on the particle surfaces, most likely in an amorphous oxide or hydroxide shell. UV-VIS spectroscopy shows that copper presence at concentrations higher than 0.3 wt% lowers the band gap energy. The particles are unaffected by heating to 600 K, while growth and partial transformation to rutile TiO2 occur at higher temperatures. Anisotropic unit cell behavior of anatase is observed as a consequence of the particle growth (a decreases and c increases).

  9. Structural characterization of metal complexes in aqueous solutions: a XAS study of stannous fluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsina, Marco A.; Gaillard, Jean-François

    The identity and structure of tin(ii)-fluoride complexes formed in aqueous solutions are determined by combining X-ray absorption spectroscopy, thermodynamic modeling and quantum mechanical calculations.

  10. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy.

    PubMed

    Shan, Yuping; Wang, Hongda

    2015-06-07

    The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.

  11. Interaction of sucralose with whey protein: Experimental and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Sun, Shixin; Wang, Yanqing; Cao, Jian

    2017-12-01

    The objective of this research was to study the interactions of sucralose with whey protein isolate (WPI) by using the three-dimensional fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling. The results showed that the peptide strands structure of WPI had been changed by sucralose. Sucralose binding induced the secondary structural changes and increased content of aperiodic structure of WPI. Sucralose decreased the thermal stability of WPI and acted as a structure destabilizer during the thermal unfolding process of protein. In addition, the existence of sucralose decreased the reversibility of the unfolding of WPI. Nonetheless, sucralose-WPI complex was less stable than protein alone. The molecular modeling result showed that van der Waals and hydrogen bonding interactions contribute to the complexation free binding energy. There are more than one possible binding sites of WPI with sucralose by surface binding mode.

  12. C-Ni-Pd and CNT-Ni-Pd film's molecular and crystalline structure investigations by FTIR spectroscopy and XRD diffraction

    NASA Astrophysics Data System (ADS)

    Stepińska, Izabela; Czerwosz, ElŻbieta; Diduszko, Ryszard; Kozłowski, Mirosław; Wronka, Halina

    2017-08-01

    In this work molecular and crystalline structure of new type of nanocomposite films were investigated. These films compose of CNT decorated with palladium nanograins. They were prepared on a base of C-Ni films modified in CVD process. C-Ni nanocomposite films were obtained by PVD process and their modification by CVD leads to a growth of CNT film. CNTs-Ni or C-Ni films were treated with additional PVD process with palladium. Nickel and palladium acetate and fulleren C60 are precursors of films in PVD process. FTIR spectroscopy was used to studied the molecular structure of film in every stage of preparation . The crystalline structure of these films was studied by X-ray diffraction. SEM (scanning electron microscopy) was applied to investigate film's surface topography.

  13. Dynamical Study of Femtosecond-Laser-Ablated Liquid-Aluminum Nanoparticles Using Spatiotemporally Resolved X-Ray-Absorption Fine-Structure Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi

    2007-10-19

    We study the temperature evolution of aluminum nanoparticles generated by femtosecond laser ablation with spatiotemporally resolved x-ray-absorption fine-structure spectroscopy. We successfully identify the nanoparticles based on the L-edge absorption fine structure of the ablation plume in combination with the dependence of the edge structure on the irradiation intensity and the expansion velocity of the plume. In particular, we show that the lattice temperature of the nanoparticles is estimated from the L-edge slope, and that its spatial dependence reflects the cooling of the nanoparticles during plume expansion. The results reveal that the emitted nanoparticles travel in a vacuum as a condensedmore » liquid phase with a lattice temperature of about 2500 to 4200 K in the early stage of plume expansion.« less

  14. Study of complex molecular systems by probe vibrational spectroscopy method

    NASA Astrophysics Data System (ADS)

    Boldeskul, A. E.; Zatsepin, V. M.; Atakhodjaev, A. K.; Shermatov, A. N.; Ashburiev, R.

    1984-03-01

    Experimental study of benzonitril as a probe in aqueous solution of sodium lauril sulphate /SDS/ by Raman spectroscopy technique showed integral moments of √ /C X N/ line to be extremely sensitive to the structural transitions in micellar systems. The central part of the experimental contour was used to determine integral moments with the help of line shape approximant received by Mori method

  15. High pressure and synchrotron radiation studies of solid state electronic instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pifer, J.H.; Croft, M.C.

    This report discusses Eu and General Valence Instabilities; Ce Problem: L{sub 3} Spectroscopy Emphasis; Bulk Property Emphasis; Transition Metal Compound Electronic Structure; Electronic Structure-Phonon Coupling Studies; High Temperature Superconductivity and Oxide Materials; and Novel Materials Collaboration with Chemistry.

  16. Structural, Optical, and Vibrational Properties of ZnO Microrods Deposited on Silicon Substrate

    NASA Astrophysics Data System (ADS)

    Lahlouh, Bashar I.; Ikhmayies, Shadia J.; Juwhari, Hassan K.

    2018-03-01

    Zinc oxide (ZnO) microrod films deposited by spray pyrolysis on silicon substrate at 350 ± 5°C have been studied and evaluated, and compared with thin films deposited by electron beam to confirm the identity of the studied samples. The films were characterized using different techniques. The microrod structure was studied and confirmed by scanning electron microscopy. Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction analysis confirmed successful deposition of ZnO thin films with the expected wurtzite structure. Reflectance data showed a substantial drop across the whole studied wavelength range. The photoluminescence (PL) spectra of the studied samples showed a peak at ˜ 360 nm, representing a signature of ZnO. The shift in the PL peak position is due to defects and other species present in the films, as confirmed by FTIR and energy-dispersive x-ray spectroscopy results.

  17. Reduced Prefrontal Hemodynamic Response in Pediatric Obsessive-Compulsive Disorder as Measured by Near-Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Ota, Toyosaku; Iida, Junzo; Sawada, Masayuki; Suehiro, Yuko; Yamamuro, Kazuhiko; Matsuura, Hiroki; Tanaka, Shohei; Kishimoto, Naoko; Negoro, Hideki; Kishimoto, Toshifumi

    2013-01-01

    Recent developments in near-infrared spectroscopy (NIRS) have enabled non-invasive clarification of brain functions in psychiatric disorders. Functional neuroimaging studies of patients with obsessive-compulsive disorder (OCD) have suggested that the frontal cortex and subcortical structures may play a role in the pathophysiology of the disorder.…

  18. Electronic structure of ferromagnetic heavy fermion, YbPdSi, YbPdGe, and YbPtGe studied by photoelectron spectroscopy, x-ray emission spectroscopy, and DFT + DMFT calculations

    DOE PAGES

    Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito; ...

    2017-11-02

    Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less

  19. Structure and Order of Phosphonic Acid-Based Self-Assembled Monolayers on Si(100)

    PubMed Central

    Dubey, Manish; Weidner, Tobias; Gamble, Lara J.; Castner, David G.

    2010-01-01

    Organophosphonic acid self-assembled monolayers (SAMs) on oxide surfaces have recently seen increased use in electrical and biological sensor applications. The reliability and reproducibility of these sensors require good molecular organization in these SAMs. In this regard, packing, order and alignment in the SAMs is important, as it influences the electron transport measurements. In this study, we examine the order of hydroxyl- and methyl- terminated phosphonate films deposited onto silicon oxide surfaces by the tethering by aggregation and growth method using complementary, state-of-art surface characterization tools. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy and in situ sum frequency generation (SFG) spectroscopy are used to study the order of the phosphonate SAMs in vacuum and under aqueous conditions, respectively. X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry results show that these samples form chemically intact monolayer phosphonate films. NEXAFS and SFG spectroscopy showed that molecular order exists in the octadecylphosphonic acid and 11-hydroxyundecylphosphonic acid SAMs. The chain tilt angles in these SAMs were approximately 37° and 45°, respectively. PMID:20735054

  20. Electronic structure of ferromagnetic heavy fermion, YbPdSi, YbPdGe, and YbPtGe studied by photoelectron spectroscopy, x-ray emission spectroscopy, and DFT + DMFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito

    Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Michael, E-mail: mvschaefer@mail.usf.edu, E-mail: axk650@case.edu, E-mail: mohan@case.edu, E-mail: schlaf@mail.usf.edu; Kumar, Ajay, E-mail: mvschaefer@mail.usf.edu, E-mail: axk650@case.edu, E-mail: mohan@case.edu, E-mail: schlaf@mail.usf.edu; Mohan Sankaran, R., E-mail: mvschaefer@mail.usf.edu, E-mail: axk650@case.edu, E-mail: mohan@case.edu, E-mail: schlaf@mail.usf.edu

    Microplasma-assisted gas-phase nucleation has emerged as an important new approach to produce high-purity, nanometer-sized, and narrowly dispersed particles. This study aims to integrate this technique with vacuum conditions to enable synthesis and deposition in an ultrahigh vacuum compatible environment. The ultimate goal is to combine nanoparticle synthesis with photoemission spectroscopy-based electronic structure analysis. Such measurements require in vacuo deposition to prevent surface contamination from sample transfer, which can be deleterious for nanoscale materials. A homebuilt microplasma reactor was integrated into an existing atomic layer deposition system attached to a surface science multi-chamber system equipped with photoemission spectroscopy. As proof-of-concept, wemore » studied the decomposition of ferrocene vapor in the microplasma to synthesize iron oxide nanoparticles. The injection parameters were optimized to achieve complete precursor decomposition under vacuum conditions, and nanoparticles were successfully deposited. The stoichiometry of the deposited samples was characterized in situ using X-ray photoelectron spectroscopy indicating that iron oxide was formed. Additional transmission electron spectroscopy characterization allowed the determination of the size, shape, and crystal lattice of the particles, confirming their structural properties.« less

  2. Application of far-infrared spectroscopy to the structural identification of protein materials.

    PubMed

    Han, Yanchen; Ling, Shengjie; Qi, Zeming; Shao, Zhengzhong; Chen, Xin

    2018-05-03

    Although far-infrared (IR) spectroscopy has been shown to be a powerful tool to determine peptide structure and to detect structural transitions in peptides, it has been overlooked in the characterization of proteins. Herein, we used far-IR spectroscopy to monitor the structure of four abundant non-bioactive proteins, namely, soybean protein isolate (SPI), pea protein isolate (PPI) and two types of silk fibroins (SFs), domestic Bombyx mori and wild Antheraea pernyi. The two globular proteins SPI and PPI result in broad and weak far-IR bands (between 50 and 700 cm-1), in agreement with those of some other bioactive globular proteins previously studied (lysozyme, myoglobin, hemoglobin, etc.) that generally only have random amino acid sequences. Interestingly, the two SFs, which are characterized by a structure composed of highly repetitive motifs, show several sharp far-IR characteristic absorption peaks. Moreover, some of these characteristic peaks (such as the peaks at 260 and 428 cm-1 in B. mori, and the peaks at 245 and 448 cm-1 in A. pernyi) are sensitive to conformational changes; hence, they can be directly used to monitor conformational transitions in SFs. Furthermore, since SF absorption bands clearly differ from those of globular proteins and different SFs even show distinct adsorption bands, far-IR spectroscopy can be applied to distinguish and determine the specific SF component within protein blends.

  3. Quantum chemical study of the structure, spectroscopy and reactivity of NO+.(H2O) n=1-5 clusters.

    PubMed

    Linton, Kirsty A; Wright, Timothy G; Besley, Nicholas A

    2018-03-13

    Quantum chemical methods including Møller-Plesset perturbation (MP2) theory and density functional theory (DFT) have been used to study the structure, spectroscopy and reactivity of NO + (H 2 O) n =1-5 clusters. MP2/6-311++G** calculations are shown to describe the structure and spectroscopy of the clusters well. DFT calculations with exchange-correlation functionals with a low fraction of Hartree-Fock exchange give a binding energy of NO + (H 2 O) that is too high and incorrectly predict the lowest energy structure of NO + (H 2 O) 2 , and this error may be associated with a delocalization of charge onto the water molecule directly binding to NO + Ab initio molecular dynamics (AIMD) simulations were performed to study the NO + (H 2 O) 5 [Formula: see text] H + (H 2 O) 4 + HONO reaction to investigate the formation of HONO from NO + (H 2 O) 5 Whether an intracluster reaction to form HONO is observed depends on the level of electronic structure theory used. Of note is that methods that accurately describe the relative energies of the product and reactant clusters did not show reactions on the timescales studied. This suggests that in the upper atmosphere the reaction may occur owing to the energy present in the NO + (H 2 O) 5 complex following its formation.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  4. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated watermore » (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.« less

  5. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  6. Pressure-induced structural transformations of the Zintl phase sodium silicide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabrera, Raul Quesada; Salamat, Ashkan; Barkalov, Oleg I.

    The high-pressure behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction to observe the onset of structural phase transformations and potential oligomerisation into anionic Si nanoclusters with extended dimensionality. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation above 15 GPa, suggesting the formation of Si-Si bonds with oxidation of the Si{sup -} species and reduction of Na{sup +} to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure. - Abstract: The high-pressuremore » behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation, suggesting the formation of Si-Si bonds with oxidation of the Si{sup -} species and reduction of Na{sup +} to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure. Display Omitted« less

  7. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    DOE PAGES

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; ...

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  8. On the way to unveiling the atomic structure of superheavy elements

    NASA Astrophysics Data System (ADS)

    Laatiaoui, Mustapha

    2016-12-01

    Optical spectroscopy of the transfermium elements (atomic number Z > 100) is nowadays one of the most fascinating and simultaneously challenging tasks in atomic physics. On the one hand, key atomic and even nuclear ground-state properties may be obtained by studying the spectral lines of these heaviest elements. On the other hand, these elements have to be produced "online" by heavy-ion induced fusion-evaporation reactions yielding rates on the order of a few atoms per second at most, which renders their optical spectroscopy extremely difficult. Only recently, a first foray of laser spectroscopy into this heaviest element region was reported. Several atomic transitions in the element nobelium (Z = 102) were observed and characterized, using an ultra-sensitive and highly efficient resonance ionization technique. The findings confirm the predictions and additionally provide a benchmark for theoretical modelling. The work represents an important stepping stone towards experimental studies of the atomic structure of superheavy elements.

  9. Using Jigsaw-Style Spectroscopy Problem-Solving to Elucidate Molecular Structure through Online Cooperative Learning

    ERIC Educational Resources Information Center

    Winschel, Grace A.; Everett, Renata K.; Coppola, Brian P.; Shultz, Ginger V.

    2015-01-01

    Cooperative learning was employed as an instructional approach to facilitate student development of spectroscopy problem solving skills. An interactive online environment was used as a framework to structure weekly discussions around spectroscopy problems outside of class. Weekly discussions consisted of modified jigsaw-style problem solving…

  10. Computational Amide I Spectroscopy for Refinement of Disordered Peptide Ensembles: Maximum Entropy and Related Approaches

    NASA Astrophysics Data System (ADS)

    Reppert, Michael; Tokmakoff, Andrei

    The structural characterization of intrinsically disordered peptides (IDPs) presents a challenging biophysical problem. Extreme heterogeneity and rapid conformational interconversion make traditional methods difficult to interpret. Due to its ultrafast (ps) shutter speed, Amide I vibrational spectroscopy has received considerable interest as a novel technique to probe IDP structure and dynamics. Historically, Amide I spectroscopy has been limited to delivering global secondary structural information. More recently, however, the method has been adapted to study structure at the local level through incorporation of isotope labels into the protein backbone at specific amide bonds. Thanks to the acute sensitivity of Amide I frequencies to local electrostatic interactions-particularly hydrogen bonds-spectroscopic data on isotope labeled residues directly reports on local peptide conformation. Quantitative information can be extracted using electrostatic frequency maps which translate molecular dynamics trajectories into Amide I spectra for comparison with experiment. Here we present our recent efforts in the development of a rigorous approach to incorporating Amide I spectroscopic restraints into refined molecular dynamics structural ensembles using maximum entropy and related approaches. By combining force field predictions with experimental spectroscopic data, we construct refined structural ensembles for a family of short, strongly disordered, elastin-like peptides in aqueous solution.

  11. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    NASA Astrophysics Data System (ADS)

    Blanc, A.; de France, G.; Drouet, F.; Jentschel, M.; Köster, U.; Mancuso, C.; Mutti, P.; Régis, J. M.; Simpson, G.; Soldner, T.; Ur, C. A.; Urban, W.; Vancraeyenest, A.

    2013-12-01

    One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL) campaign. In the present work, the EXILL setup and performance will be presented.

  12. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    NASA Astrophysics Data System (ADS)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  13. Polyaniline decorated Bi2MoO6 nanosheets with effective interfacial charge transfer as photocatalysts and optical limiters.

    PubMed

    Zhao, Wei; Li, Cheng; Wang, Aijian; Lv, Cuncai; Zhu, Weihua; Dou, Shengping; Wang, Qian; Zhong, Qin

    2017-11-01

    Polyaniline (PANI)-decorated Bi 2 MoO 6 nanosheets (BMO/PANI) were prepared by a facile solvothermal method. Different characterization techniques, including X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, diffuse reflectance ultraviolet-visible spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy, photocurrent spectroscopy, and nanosecond time-resolved emission studies, have been employed to investigate the structure, optical and electrical properties of the BMO/PANI composites. The wide absorption of the samples in the visible light region makes them suitable for nonlinear transmission and photocatalytic activity studies. The associated photocatalytic activity and optical nonlinearities for the BMO/PANI composites are shown to be dependent on the PANI loadings. The rational mechanisms responsible for deteriorating pollutants and improving optical nonlinearities were also proposed, which could be mainly attributed to the efficient interfacial charge transfer and the interfacial electronic interactions between PANI and Bi 2 MoO 6 . The photoluminescence spectroscopy, electrochemical impedance spectroscopy, and photocurrent spectroscopy studies confirmed that the interface charge separation efficiency was greatly improved by coupling Bi 2 MoO 6 with PANI. The tuning of photocatalysis and nonlinear optical behaviors with variation in the content of PANI provides an easy way to attain tunable properties, which are exceedingly required in optoelectronics applications.

  14. Atomic resolution Z-contrast imaging and energy loss spectroscopy of carbon nanotubes and bundles

    NASA Astrophysics Data System (ADS)

    Lupini, A. R.; Chisholm, M. F.; Puretzky, A. A.; Eres, G.; Melechko, A. V.; Schaaff, G.; Lowndes, D. H.; Geohegan, D. B.; Schittenhelm, H.; Pennycook, S. J.; Wang, Y.; Smalley, R. E.

    2002-03-01

    Single-wall carbon nanotubes and bundles were studied by a combination of techniques, including conventional imaging and diffraction, atomic resolution Z-contrast imaging in an aberration corrected STEM and electron energy loss spectroscopy (EELS). EELS is ideally suited for the analysis of carbon based structures because of the ability to distinguish between the different forms, specifically nanotubes, graphite, amorphous carbon and diamond. Numerous attempts were made to synthesize crystals of single walled carbon nanotubes, using both solution and vapor deposition of precursor structures directly onto TEM grids for in-situ annealing. The range of structures produced will be discussed.

  15. On the structural intricacies of a metabolic precursor: Direct spectroscopic detection of water-induced conformational reshaping of mevalonolactone

    NASA Astrophysics Data System (ADS)

    Domingos, Sérgio R.; Pérez, Cristóbal; Schnell, Melanie

    2017-09-01

    We use high-resolution rotational spectroscopy to investigate the structural intricacies of the lactone form of mevalonic acid, precursor of the mevalonate pathway. By combining microwave spectroscopy with supersonic expansions and quantum-chemical calculations, we determine the two most stable conformations of the precursor. Complementary micro-solvation studies reveal that aggregation of the first water molecule induces a substantial structural rearrangement comprising a hydroxy rotation and an endocyclic core torsion to create a favourable geometry to accommodate the water molecule. We discuss the conformational aspects of the precursor in isolation and under micro-hydrated conditions.

  16. Magic Angle Spinning NMR of Viruses

    PubMed Central

    Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-01-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  17. Multispectroscopic investigation of the interaction of BSA and DNA with the anticancer drug, N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid methyl ester

    NASA Astrophysics Data System (ADS)

    Rajina, S. R.; Sudhi, Geethu; Austin, P.; Praveen, S. G.; Xavier, T. S.; Kenny, Peter T. M.; Binoy, J.

    2018-05-01

    The interaction of a drug with DNA and BSA play a great role in studying anti cancer activity and drug transport properties, which can be effectively, investigated using vibrational spectroscopy, UV visible spectroscopy and Fluorescence spectroscopy. The present work reports the structural features of N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid Methyl ester (FNGABME) based on FTIR and FTRaman spectroscopy. The absorption and fluorescence spectroscopic methods were used to study the efficiency of the interaction of the compound FNGABME with BSA and DNA and also molecular docking were performed computationally to validate the results which shows that the title compound may exhibit inhibitory activity against the cancer cells.

  18. 229Thorium-doped calcium fluoride for nuclear laser spectroscopy.

    PubMed

    Dessovic, P; Mohn, P; Jackson, R A; Winkler, G; Schreitl, M; Kazakov, G; Schumm, T

    2014-03-12

    The (229)thorium isotope presents an extremely low-energy isomer state of the nucleus which is expected around 7.8 eV, in the vacuum ultraviolet (VUV) regime. This unique system may bridge between atomic and nuclear physics, enabling coherent manipulation and precision spectroscopy of nuclear quantum states using laser light. It has been proposed to implant (229)thorium into VUV transparent crystal matrices to facilitate laser spectroscopy and possibly realize a solid-state nuclear clock. In this work, we validate the feasibility of this approach by computer modelling of thorium doping into calcium fluoride single crystals. Using atomistic modelling and full electronic structure calculations, we find a persistent large band gap and no additional electronic levels emerging in the middle of the gap due to the presence of the dopant, which should allow direct optical interrogation of the nuclear transition.Based on the electronic structure, we estimate the thorium nuclear quantum levels within the solid-state environment. Precision laser spectroscopy of these levels will allow the study of a broad range of crystal field effects, transferring Mössbauer spectroscopy into the optical regime.

  19. Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.

    PubMed

    Guo, Zhenkun; Molesky, Brian P; Cheshire, Thomas P; Moran, Andrew M

    2017-11-02

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.

  20. Optical study of plasma sprayed hydroxyapatite coatings deposited at different spray distance

    NASA Astrophysics Data System (ADS)

    Belka, R.; Kowalski, S.; Żórawski, W.

    2017-08-01

    Series of hydroxyapatite (HA) coatings deposited on titanium substrate at different spray (plasma gun to workpiece) distance were investigated. The optical methods as dark field confocal microscopy, Raman/PL and UV-VIS spectroscopy were used for study the influence of deposition process on structural degradation of HA precursor. The hydroxyl group concentration was investigated by study the OH mode intensity in the Raman spectra. Optical absorption coefficients at near UV region were analyzed by Diffuse Reflectance Spectroscopy. PL intensity observed during Raman measurement was also considered as relation to defects concentration and degradation level. It was confirmed the different gunsubstrate distance has a great impact on structure of deposited HA ceramics.

  1. On the Exciton Coupling between Two Chlorophyll Pigments in the Absence of a Protein Environment: Intrinsic Effects Revealed by Theory and Experiment (German ed)

    DTIC Science & Technology

    2016-07-29

    other micro- environmental effects. In pioneering experiments, Shafizadeh et al.[13] utilized two-color pump-probe spectroscopy to mea- sure the lowest...Institute for the Structure and Dynamics of Matter Luruper Chaussee 149, 22761 Hamburg (Germany) Prof. A. Rubio Nano-Bio Spectroscopy Group and ETSF...have applied the action spectroscopy method used previously on individual Chl pigments to the study of Chl a dimers in vacuo to evaluate the extent to

  2. Freeze-quench (57)Fe-Mössbauer spectroscopy: trapping reactive intermediates.

    PubMed

    Krebs, Carsten; Bollinger, J Martin

    2009-01-01

    (57)Fe-Mössbauer spectroscopy is a method that probes transitions between the nuclear ground state (I=1/2) and the first nuclear excited state (I=3/2). This technique provides detailed information about the chemical environment and electronic structure of iron. Therefore, it has played an important role in studies of the numerous iron-containing proteins and enzymes. In conjunction with the freeze-quench method, (57)Fe-Mössbauer spectroscopy allows for monitoring changes of the iron site(s) during a biochemical reaction. This approach is particularly powerful for detection and characterization of reactive intermediates. Comparison of experimentally determined Mössbauer parameters to those predicted by density functional theory for hypothetical model structures can then provide detailed insight into the structures of reactive intermediates. We have recently used this methodology to study the reactions of various mononuclear non-heme-iron enzymes by trapping and characterizing several Fe(IV)-oxo reaction intermediates. In this article, we summarize these findings and demonstrate the potential of the method. © Springer Science+Business Media B.V. 2009

  3. Probing molecular dynamics in solution with x-ray valence-to-core spectroscopy

    NASA Astrophysics Data System (ADS)

    Doumy, Gilles; March, Anne Marie; Tu, Ming-Feng; Al Haddad, Andre; Southworth, Stephen; Young, Linda; Walko, Donald; Bostedt, Christoph

    2017-04-01

    Hard X-ray spectroscopies are powerful tools for probing the electronic and geometric structure of molecules in complex or disordered systems and have been particularly useful for studying molecules in the solution phase. They are element specific, sensitive to the electronic structure and the local arrangements of surrounding atoms of the element being selectively probed. When combined in a pump-probe scheme with ultrafast lasers, X-ray spectroscopies can be used to track the evolution of structural changes that occur after photoexcitation. Efficient use of hard x-ray radiation coming from high brilliance synchrotrons and upcoming high repetition rate X-ray Free Electron Lasers requires MHz repetition rate lasers and data acquisition systems. High information content Valence-to-Core x-ray emission is directly sensitive to the molecular orbitals involved in photochemistry. We report on recent progress towards fully enabling this photon-hungry technique for the study of time-resolved molecular dynamics, including efficient detection and use of polychromatic x-ray micro-probe at the Advanced Photon Source. Work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.

  4. Sodium-induced ordering of the benzoate species on Si(100)-2×1: a combined HREELS, XPS and NEXAFS study

    NASA Astrophysics Data System (ADS)

    Bitzer, T.; Richardson, N. V.; Reiss, S.; Wühn, M.; Wöll, Ch.

    2000-06-01

    The structure of benzoate on Na/Si(100)-2×1 has been studied by high resolution electron energy loss spectroscopy, X-ray photoelectron spectroscopy and near edge X-ray adsorption fine structure spectroscopy. At room temperature, benzoic acid (C 6H 5COOH) chemisorbs on Na/Si(100)-2×1 through a cleavage of the OH bond in the carboxylic group. The benzoate molecules formed are bonded exclusively to the sodium atoms in a bidentate coordination, in which the oxygen atoms are equivalent. At room temperature, benzoate saturation on Na/Si(100)-2×1 is reached at a coverage of one benzoate species for each Na atom or silicon dimer. At this coverage, the molecules are tilted in polar direction by 62°±4° to the surface plane and azimuthally rotated by 41°±4° with respect to the [01 1] surface azimuth. We propose an adsorbate structure, in which the benzoate molecules are oriented parallel to each other in densely packed rows.

  5. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    PubMed Central

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-01-01

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component. PMID:26463274

  6. Time-domain SFG spectroscopy using mid-IR pulse shaping: practical and intrinsic advantages.

    PubMed

    Laaser, Jennifer E; Xiong, Wei; Zanni, Martin T

    2011-03-24

    Sum-frequency generation (SFG) spectroscopy is a ubiquitous tool in the surface sciences. It provides infrared transition frequencies and line shapes that probe the structure and environment of molecules at interfaces. In this article, we apply techniques learned from the multidimensional spectroscopy community to SFG spectroscopy. We implement balanced heterodyne detection to remove scatter and the local oscillator background. Heterodyning also separates the resonant and nonresonant signals by acquiring both the real and imaginary parts of the spectrum. We utilize mid-IR pulse shaping to control the phase and delay of the mid-IR pump pulse. Pulse shaping allows phase cycling for data collection in the rotating frame and additional background subtraction. We also demonstrate time-domain data collection, which is a Fourier transform technique, and has many advantages in signal throughput, frequency resolution, and line shape accuracy over existing frequency domain methods. To demonstrate time-domain SFG spectroscopy, we study an aryl isocyanide on gold, and find that the system has an inhomogeneous structural distribution, in agreement with computational results, but which was not resolved by previous frequency-domain SFG studies. The ability to rapidly and actively manipulate the mid-IR pulse in an SFG pules sequence makes possible new experiments and more accurate spectra. © 2011 American Chemical Society

  7. X-ray absorption spectroscopy study on SiC-side interface structure of SiO2–SiC formed by thermal oxidation in dry oxygen

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Kosaka, Satoru; Kataoka, Keita; Watanabe, Yukihiko; Kimoto, Yasuji

    2018-06-01

    Extended X-ray absorption fine structure (EXAFS) spectroscopy is demonstrated to measure the fine atomic structure of SiO2–SiC interfaces. The SiC-side of the interface can be measured by fabricating thin SiO2 films and using SiC-selective EXAFS measurements. Fourier transforms of the oscillations of the EXAFS spectra correspond to radial-structure functions and reveal a new peak of the first nearest neighbor of Si for m-face SiC, which does not appear in measurements of the Si-face. This finding suggests that the m-face interface could include a structure with shorter Si–C distances. Numerical calculations provide additional support for this finding.

  8. Chiral Sulfoxide-Induced Single Turn Peptide α-Helicity

    PubMed Central

    Zhang, Qingzhou; Jiang, Fan; Zhao, Bingchuan; Lin, Huacan; Tian, Yuan; Xie, Mingsheng; Bai, Guoyun; Gilbert, Adam M.; Goetz, Gilles H.; Liras, Spiros; Mathiowetz, Alan A.; Price, David A.; Song, Kun; Tu, Meihua; Wu, Yujie; Wang, Tao; Flanagan, Mark E.; Wu, Yun-Dong; Li, Zigang

    2016-01-01

    Inducing α-helicity through side-chain cross-linking is a strategy that has been pursued to improve peptide conformational rigidity and bio-availability. Here we describe the preparation of small peptides tethered to chiral sulfoxide-containing macrocyclic rings. Furthermore, a study of structure-activity relationships (SARs) disclosed properties with respect to ring size, sulfur position, oxidation state, and stereochemistry that show a propensity to induce α-helicity. Supporting data include circular dichroism spectroscopy (CD), NMR spectroscopy, and a single crystal X-ray structure for one such stabilized peptide. Finally, theoretical studies are presented to elucidate the effect of chiral sulfoxides in inducing backbone α-helicity. PMID:27934919

  9. The AGATA Campaign at GANIL

    NASA Astrophysics Data System (ADS)

    Lenzi, Silvia M.; Clement, Emmanuel

    2018-02-01

    The Advanced Gamma Tracking Array, AGATA, is presently in its construction phase in which the European γ-spectroscopy research community is involved since several years. This powerful HPGe array offers unique possibilities for the study of rare phenomena in nuclei by detailed gamma-ray spectroscopy. The physics campaign in GANIL foresees different setups, with AGATA coupled to different spectrometers, to study nuclear structure properties of nuclei all across the nuclear chart, from light nuclei to very heavy species, using stable and radioactive beams. After a brief description of the AGATA concept, some recent results are presented together with the very interesting opportunities for nuclear structure research in the forthcoming years with AGATA at GANIL.

  10. Contactless measurement of alternating current conductance in quantum Hall structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drichko, I. L.; Diakonov, A. M.; Malysh, V. A.

    2014-10-21

    We report a procedure to determine the frequency-dependent conductance of quantum Hall structures in a broad frequency domain. The procedure is based on the combination of two known probeless methods—acoustic spectroscopy and microwave spectroscopy. By using the acoustic spectroscopy, we study the low-frequency attenuation and phase shift of a surface acoustic wave in a piezoelectric crystal in the vicinity of the electron (hole) layer. The electronic contribution is resolved using its dependence on a transverse magnetic field. At high frequencies, we study the attenuation of an electromagnetic wave in a coplanar waveguide. To quantitatively calibrate these data, we use themore » fact that in the quantum-Hall-effect regime the conductance at the maxima of its magnetic field dependence is determined by extended states. Therefore, it should be frequency independent in a broad frequency domain. The procedure is verified by studies of a well-characterized p-SiGe/Ge/SiGe heterostructure.« less

  11. A vibrational spectroscopic study of the phosphate mineral vantasselite Al4(PO4)3(OH)3·9H2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Scholz, Ricardo; Belotti, Fernanda Maria; López, Andrés; Theiss, Frederick L.

    2015-08-01

    We have studied the phosphate mineral vantasselite Al4(PO4)3(OH)3·9H2O using a combination of SEM with EDX and Raman and infrared spectroscopy. Qualitative chemical analysis shows Al, Fe and P. Raman bands at 1013 and 1027 cm-1 are assigned to the PO43- ν1 symmetric stretching mode. The observation of two bands suggests the non-equivalence of the phosphate units in the vantasselite structure. Raman bands at 1051, 1076 and 1090 cm-1 are attributed to the PO43- ν3 antisymmetric stretching vibration. A comparison is made with the spectroscopy of wardite. Strong infrared bands at 1044, 1078, 1092, 1112, 1133, 1180 and 1210 cm-1 are attributed to the PO43- ν3 antisymmetric stretching mode. Some of these bands may be due to δAl2OH deformation modes. Vibrational spectroscopy offers a mechanism for the study of the molecular structure of vantasselite.

  12. Electronic structures of U X3 (X =Al , Ga, and In) studied by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika

    2017-09-01

    The electronic structures of U X3 (X =Al , Ga , and In ) were studied by photoelectron spectroscopy to understand the relationship between their electronic structures and magnetic properties. The band structures and Fermi surfaces of UAl3 and UGa3 were revealed experimentally by angle-resolved photoelectron spectroscopy (ARPES), and they were compared with the result of band-structure calculations. The topologies of the Fermi surfaces and the band structures of UAl3 and UGa3 were explained reasonably well by the calculation, although bands near the Fermi level (EF) were renormalized owing to the finite electron correlation effect. The topologies of the Fermi surfaces of UAl3 and UGa3 are very similar to each other, except for some minor differences. Such minor differences in their Fermi surface or electron correlation effect might take an essential role in their different magnetic properties. No significant changes were observed between the ARPES spectra of UGa3 in the paramagnetic and antiferromagnetic phases, suggesting that UGa3 is an itinerant weak antiferromagnet. The effect of chemical pressure on the electronic structures of U X3 compounds was also studied by utilizing the smaller lattice constants of UAl3 and UGa3 than that of UIn3. The valence band spectrum of UIn3 is accompanied by a satellitelike structure on the high-binding-energy side. The core-level spectrum of UIn3 is also qualitatively different from those of UAl3 and UGa3. These findings suggest that the U 5 f states in UIn3 are more localized than those in UAl3 and UGa3.

  13. General theoretical description of angle-resolved photoemission spectroscopy of van der Waals structures

    NASA Astrophysics Data System (ADS)

    Amorim, B.

    2018-04-01

    We develop a general theory to model the angle-resolved photoemission spectroscopy (ARPES) of commensurate and incommensurate van der Waals (vdW) structures, formed by lattice mismatched and/or misaligned stacked layers of two-dimensional materials. The present theory is based on a tight-binding description of the structure and the concept of generalized umklapp processes, going beyond previous descriptions of ARPES in incommensurate vdW structures, which are based on continuous, low-energy models, being limited to structures with small lattice mismatch/misalignment. As applications of the general formalism, we study the ARPES bands and constant energy maps for two structures: twisted bilayer graphene and twisted bilayer MoS2. The present theory should be useful in correctly interpreting experimental results of ARPES of vdW structures and other systems displaying competition between different periodicities, such as two-dimensional materials weakly coupled to a substrate and materials with density wave phases.

  14. Dehydration of the Uranyl Peroxide Studtite, [UO 2(η 2-O 2)(H 2O) 2]·2H 2O, Affords a Drastic Change in the Electronic Structure: A Combined X-ray Spectroscopic and Theoretical Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitova, Tonya; Pidchenko, Ivan; Biswas, Saptarshi

    The dehydration of studtite, [UO 2(2-O 2)(H 2O)2]·2H 2O, to metastudtite, [UO 2(2-O 2)(H 2O) 2], uranyl peroxide minerals that are major oxidative alteration phases of UO2 under conditions of geological storage, has been studied using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy. XPS of the U 4f region shows small but significant differences between studtite and metastudtite, with the 4f binding energy of studtite the highest reported for a uranyl mineral studied by this technique. Further information on the changes in the electronic structure was elucidated using U M4-edge High Energy Resolution XANES (HR-XANES) spectroscopy, which directly probesmore » f-orbital states. The transition from the 3d to the 5f* orbital is sensitive to variations of the U=Oaxial bond length and to changes in the bond covalency. We report evidences that the covalence in the uranyl fragment decreases upon dehydration. Photoluminescence spectroscopy at near liquid helium temperatures reveals significant spectral differences between the two materials, correlating with the X-ray spectroscopy results. A theoretical investigation has been conducted on the structures of both studtite and metastudtite and benchmarked to the HR-XANES spectra. These illustrate the sensitivity of the 3d to the 5f * transition towards U=Oaxial bond variation.« less

  15. Coordination and structure of Ca(II)-acetate complexes in aqueous solution studied by a combination of Raman and XAFS spectroscopies

    NASA Astrophysics Data System (ADS)

    Muñoz Noval, Álvaro; Nishio, Daisuke; Kuruma, Takuya; Hayakawa, Shinjiro

    2018-06-01

    The determination of the structure of Ca(II)-acetate in aqueous solution has been addressed by combining Raman and X-ray absorption fine structure spectroscopies. The pH-dependent speciation of the acetate/Ca(II) system has been studied observing modifications in specific Raman bands of the carboxyl group. The current results evidence the Ca(II)-acetate above acetate pKa forms a bidentate complex and presents a coordination 6, in which the Ca-O shell radius decrease of about 0.1 Å with respect the hydrated Ca2+ with coordination 8. The experimental results show the OCO angle of the carboxyl in the complex is close to 124°, being the OCaO angle about 60°.

  16. Moessbauer study in thin films of FeSi2 and FeSe systems

    NASA Technical Reports Server (NTRS)

    Escue, W. J.; Aggarwal, K.; Mendiratta, R. G.

    1978-01-01

    Thin films of FeSi2 and FeSe were studied using Moessbauer spectroscopy information regarding dangling bond configuration and nature of crystal structure in thin films was derived. A significant influence of crystalline aluminum substrate on film structure was observed.

  17. Solvation-induced σ-complex structure formation in the gas phase: a revisit to the infrared spectroscopy of [C6H6-(CH3OH)2]+.

    PubMed

    Mizuse, Kenta; Suzuki, Yuta; Mikami, Naohiko; Fujii, Asuka

    2011-10-20

    Structures of the [C(6)H(6)-(CH(3)OH)(2)](+) cluster cation are investigated with infrared (IR) spectroscopy. While the noncovalent type structure has been confirmed for the n = 1 cluster of [C(6)H(6)-(CH(3)OH)(n)](+), only contradictory interpretations have been given for the spectra of n = 2, in which significant changes have been observed with the Ar tagging. In the present study, we revisit IR spectroscopy of the n = 2 cluster from the viewpoint of the σ-complex structure, which includes a covalent bond formation between the benzene and methanol moieties. The observed spectral range is extended to the lower-frequency region, and the spectrum is measured with and without Ar and N(2) tagging. A strongly hydrogen-bonded OH stretch band, which is characteristic to the σ-complex structure, is newly found with the tagging. The remarkable spectral changes with the tagging are interpreted by the competition between the σ-complex and noncovalent complex structures in the [C(6)H(6)-(CH(3)OH)(2)](+) system. This result shows that the microsolvation only with one methanol molecule can induce the σ-complex structure formation.

  18. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    PubMed

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  19. Combination of UV-vis spectroscopy and chemometrics to understand protein-nanomaterial conjugate: a case study on human serum albumin and gold nanoparticles.

    PubMed

    Wang, Yong; Ni, Yongnian

    2014-02-01

    Study of the interactions between proteins and nanomaterials is of great importance for understanding of protein nanoconjugate. In this work, we choose human serum albumin (HSA) and citrate-capped gold nanoparticles (AuNPs) as a model of protein and nanomaterial, and combine UV-vis spectroscopy with multivariate curve resolution by an alternating least squares (MCR-ALS) algorithm to present a new and efficient method for comparatively comprehensive study of evolution of protein nanoconjugate. UV-vis spectroscopy coupled with MCR-ALS allows qualitative and quantitative extraction of the distribution diagrams, spectra and kinetic profiles of absorbing pure species (AuNPs and AuNPs-HSA conjugate are herein identified) and undetectable species (HSA) from spectral data. The response profiles recovered are converted into the desired thermodynamic, kinetic and structural parameters describing the protein nanoconjugate evolution. Analysis of these parameters for the system gives evidence that HSA molecules are very likely to be attached to AuNPs surface predominantly as a flat monolayer to form a stable AuNPs-HSA conjugate with a core-shell structure, and the binding process takes place mainly through electrostatic and hydrogen-bond interactions between the positively amino acid residues of HSA and the negatively carboxyl group of citrate on AuNPs surface. The results obtained are verified by transmission electron microscopy, zeta potential, circular dichroism spectroscopy and Fourier transform infrared spectroscopy, showing the potential of UV-vis spectroscopy for study of evolution of protein nanoconjugate. In parallel, concentration evolutions of pure species resolved by MCR-ALS are used to construct a sensitive spectroscopic biosensor for HSA with a linear range from 1.8 nM to 28.1 nM and a detection limit of 0.8 nM. © 2013 Published by Elsevier B.V.

  20. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies.

    PubMed

    Signorelli, Sara; Santini, Simona; Yamada, Tohru; Bizzarri, Anna Rita; Beattie, Craig W; Cannistraro, Salvatore

    2017-04-01

    Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Micro-heterogeneity and micro-rheological properties of high-viscosity barley beta-glucan solutions studied by diffusion wave spectroscopy (DWS)

    USDA-ARS?s Scientific Manuscript database

    Soluble fiber ß-glucan is one of the key dietary materials in healthy food products known for reducing serum cholesterol levels. The micro-structural heterogeneity and micro-rheology of high-viscosity barley ß-glucan solutions were investigated by the diffusing wave spectroscopy (DWS) technology. By...

  2. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    PubMed Central

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  3. Spectroscopy of Isolated Prebiotic Nucleobases

    NASA Technical Reports Server (NTRS)

    Svadlenak, Nathan; Callahan, Michael P.; Ligare, Marshall; Gulian, Lisa; Gengeliczki, Zsolt; Nachtigallova, Dana; Hobza, Pavel; deVries, Mattanjah

    2011-01-01

    We use multiphoton ionization and double resonance spectroscopy to study the excited state dynamics of biologically relevant molecules as well as prebiotic nucleobases, isolated in the gas phase. Molecules that are biologically relevant to life today tend to exhibit short excited state lifetimes compared to similar but non-biologically relevant analogs. The mechanism is internal conversion, which may help protect the biologically active molecules from UV damage. This process is governed by conical intersections that depend very strongly on molecular structure. Therefore we have studied purines and pyrimidines with systematic variations of structure, including substitutions, tautomeric forms, and cluster structures that represent different base pair binding motifs. These structural variations also include possible alternate base pairs that may shed light on prebiotic chemistry. With this in mind we have begun to probe the ultrafast dynamics of molecules that exhibit very short excited states and search for evidence of internal conversions.

  4. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.

    PubMed

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; Schafer, Donald W; Messerschmidt, Marc; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Grosse-Kunstleve, Ralf W; Zwart, Petrus H; White, William E; Glatzel, Pieter; Adams, Paul D; Bogan, Michael J; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko

    2013-04-26

    Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.

  5. 8 MeV electron beam induced modifications in the thermal, structural and electrical properties of nanophase CeO2 for potential electronics applications

    NASA Astrophysics Data System (ADS)

    Babitha, K. K.; Sreedevi, A.; Priyanka, K. P.; Ganesh, S.; Varghese, Thomas

    2018-06-01

    The effect of 8 MeV electron beam irradiation on the thermal, structural and electrical properties of CeO2 nanoparticles synthesized by chemical precipitation route was investigated. The dose dependent effect of electron irradiation was studied using various characterization techniques such as, thermogravimetric and differential thermal analyses, X-ray diffraction, Fourier transformed infrared spectroscopy and impedance spectroscopy. Systematic investigation based on the results of structural studies confirm that electron beam irradiation induces defects and particle size variation on CeO2 nanoparticles, which in turn results improvements in AC conductivity, dielectric constant and loss tangent. Structural modifications and high value of dielectric constant for CeO2 nanoparticles due to electron beam irradiation make it as a promising material for the fabrication of gate dielectric in metal oxide semiconductor devices.

  6. Structural studies of homoisoflavonoids: NMR spectroscopy, X-ray diffraction, and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sievänen, Elina; Toušek, Jaromír; Lunerová, Kamila; Marek, Jaromír; Jankovská, Dagmar; Dvorská, Margita; Marek, Radek

    2010-08-01

    In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometries and crystal packing determined by X-ray diffraction are used for characterizing the intermolecular interactions. Electron distribution is crucial for the stability of radicals and hence the antioxidant efficiency of flavonoid structures. The hydrogen bonding governs the formation of complexes of homoisoflavonoids with biological targets.

  7. Time-gated real-time pump-probe imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferrari, Raffaele; D'Andrea, Cosimo; Bassi, Andrea; Valentini, Gianluca; Cubeddu, Rinaldo

    2007-07-01

    An experimental technique which allows one to perform pump-probe transient absorption spectroscopy in real-time is an important tool to study irreversible processes. This is particularly interesting in the case of biological samples which easily deteriorate upon exposure to light pulses, with the formation of permanent photoproducts and structural changes. In particular pump-probe spectroscopy can provide fundamental information for the design of optical chromophores. In this work a real-time pump-probe imaging spectroscopy system has been realized and we have explored the possibility to further reduce the number of laser pulses by using a time-gated camera. We believe that the use of a time-gated camera can provide an important step towards the final goal of pump-probe single shot spectroscopy.

  8. Advances in solid-state NMR of cellulose.

    PubMed

    Foston, Marcus

    2014-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical and enabling technology in biofuel research. Over the past few decades, lignocellulosic biomass and its conversion to supplement or displace non-renewable feedstocks has attracted increasing interest. The application of solid-state NMR spectroscopy has long been seen as an important tool in the study of cellulose and lignocellulose structure, biosynthesis, and deconstruction, especially considering the limited number of effective solvent systems and the significance of plant cell wall three-dimensional microstructure and component interaction to conversion yield and rate profiles. This article reviews common and recent applications of solid-state NMR spectroscopy methods that provide insight into the structural and dynamic processes of cellulose that control bulk properties and biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. MCD spectroscopy and TD-DFT calculations of low symmetry subnaphthalocyanine analogs.

    PubMed

    Mack, John; Otaki, Tatsuya; Durfee, William S; Kobayashi, Nagao; Stillman, Martin J

    2014-07-01

    Magnetic circular dichroism (MCD) spectroscopy and time-dependent density functional theory (TD-DFT) calculations are used to analyze the electronic structure and optical properties of low-symmetry subnaphthalocyanine analogs with AAB and ABB structures formed during mixed condensations of tetrafluorophthalonitrile and 2,3-naphthalenedicarbonitrile. The results demonstrate that trends observed in the properties of phthalocyanine analogs can be used to fine tune the optical properties so that the Q(0,0) bands lie in the red region, in a manner that does not significantly destabilize the highest occupied molecular orbital (HOMO) energy relative to that of the parent subphthalocyanine ligand. Attempts to study the spectroscopy of anion radical species proved unsuccessful, since they proved to be unstable. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Impedance spectroscopy and electric modulus behavior of Molybdenum doped Cobalt-Zinc ferrite

    NASA Astrophysics Data System (ADS)

    Pradhan, A. K.; Nath, T. K.; Saha, S.

    2017-07-01

    The complex impedance spectroscopy and the electric modulus of Mo doped Cobalt-Zinc inverse spinel ferrite has been investigated in detail. The conventional ceramic technique has been used to prepare the CZMO. The HRXRD technique has been used to study the structural analysis which confirms the inverse spinel structure of the material and also suggest the material have Fd3m space group. The complex impedance spectroscopic data and the electric modulus formalism have been used to understand the dielectric relaxation and conduction process. The contribution of grain and grain boundary in the electrical conduction process of CZMO has been confirmed from the Cole-Cole plot. The activation energy is calculated from both the IS (Impedance Spectroscopy) and electric modulus formalism and found to be nearly same for the materials.

  11. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, J.C.

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal IImore » EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.« less

  12. Characterization of isolated 1-aza-adamantan-4-one (C9H13NO) from microwave, millimeter-wave and infrared spectroscopy supported by electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Pirali, O.; Goubet, M.; Boudon, V.; D'Accolti, L.; Fusco, C.; Annese, C.

    2017-08-01

    We have synthesized 1-aza-adamantan-4-one (C9H13NO) starting from commercial 1,4-cyclohexanedionemonoethylene acetal and tosylmethylisocianide, following a procedure already described in the literature. The high degree of sample purity was demonstrated by gas chromatography and mass spectrometric measurements and its structure evidenced by 1H and 13C NMR spectroscopy. Among numerous interests in physical chemistry, this target molecule is of high relevance for mechanistic evaluation and the synthesis of novel pharmaceutical compounds. We present a thorough spectroscopic study of this molecule by gas phase vibrational and rotational spectroscopy. Accurate vibrational frequencies have been determined from infrared and far-infrared spectra. The pure rotational spectrum of the molecule has been recorded both by cavity-based Fourier transform microwave spectroscopy in the 2-20 GHz region by supersonically expanding the vapor pressure of the warm sample and by room-temperature absorption spectroscopy in the 140-220 GHz range. Accurate sets of rotational and centrifugal distortion parameters of 1-aza-adamantan-4-one in its ground state and in five vibrationally excited states have been derived from these measurements and compared to accurate quantum chemical calculations. The hyperfine parameters have been discussed in terms of molecular structure around the nitrogen quadrupole nucleus.

  13. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    NASA Astrophysics Data System (ADS)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  14. Structural study of human growth hormone-releasing factor fragment (1?29) by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Carmona, P.; Molina, M.; Lasagabaster, A.

    1995-05-01

    The conformational structure of fragment 1-29 of human growth hormone releasing factor, hGHRF (1-29), in aqueous solution and in the solid state is investigated by infrared and Raman spectroscopy. The polypeptide backbone is found to be unordered in the solid state. However, the spectra of the peptide prepared as 5% (w/w) aqueous solutions show that approximately 28% of the peptide is involved in intermolecular β-sheet aggregation. The remainder of the peptide exists largely as disordered and β-sheet conformations with a small portion of α-helices. Tyrosine residues are found to be exposed to the solvent. The secondary structures are quantitatively examined through infrared spectroscopy, the conformational percentages being near those obtained by HONDAet al. [ Biopolymers31, 869 (1991)] using circular dichroism. The fast hydrogen/deuterium exchange in peptide groups and the absence of any NMR sign indicative of ordered structure [ G. M. CLOREet al., J. Molec. Biol.191, 553 (1986)] support that the solution conformations of the non-aggregated peptide interconvert in dynamic equilibrium. Some physiological advantages that may derive from this conformational flexibility are also discussed

  15. Large-scale synthesis of coiled-like shaped carbon nanotubes using bi-metal catalyst

    NASA Astrophysics Data System (ADS)

    Krishna, Vemula Mohana; Somanathan, T.; Manikandan, E.; Umar, Ahmad; Maaza, M.

    2018-02-01

    Carbon nanomaterials (CNMs), especially carbon nanotubes (CNTs) with coiled structure exhibit scientifically fascinating. They may be projected as an innovative preference to future technological materials. Coiled carbon nanotubes (c-CNTs) on a large-scale were successfully synthesized with the help of bi-metal substituted α-alumina nanoparticles catalyst via chemical vapor deposition (CVD) technique. Highly spring-like carbon nanostructures were observed by field emission scanning electron microscope (FESEM) examination. Furthermore, the obtained material has high purity, which correlates the X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) analysis. Raman spectroscopy reveals that the carbon multi layers are well graphitized and crystalline, even if they have defects in its structure due to coiled morphology. High-resolution transmission electron microscope (HRTEM) describes internal structure and dia of the product. Ultimately, results support the activity of bi-metal impregnated α-alumina nanoparticles catalyst to determine the high yield, graphitization and internal structure of the material. We have also studied the purified c-CNTs magnetic properties at room temperature and will be an added advantage in several applications.

  16. Characterization of pentavalent and hexavalent americium complexes in nitric acid using X-ray absorption fine structure spectroscopy and first-principles modeling

    DOE PAGES

    Riddle, Catherine; Czerwinski, Kenneth; Kim, Eunja; ...

    2016-01-18

    We studied the speciation of pentavalent and hexavalent americium (Am) complexes in nitric acidicby X-ray absorption fine structure spectroscopy (XAFS), UV-visible spectroscopy, and density functional theory (DFT). Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) results were consistent with the presence of a mixture of AmO 2 + and AmO 2 2+ with only a small amount AmO 2 present. The resulting average bond distances we found were 1.71 Å for Am=O and 2.44 Å for Am-O. All-electron scalar relativistic calculations were also carried out using DFT to predict the equilibrium geometries and properties ofmore » the AmO 2 + and AmO 2 2+ aquo complexes. Calculated bond distances for the Am(VI) complex are in reasonable agreement with EXAFS data and the computed energy gaps between frontier molecular orbitals suggest a slightly higher kinetic stability and chemical hardness of Am(VI) compared to Am(V).« less

  17. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.

    PubMed

    Elsaesser, Thomas

    2009-09-15

    Hydrogen bonding plays a key role in the structural, physical, and chemical properties of liquids such as water and in macromolecular structures such as proteins. Vibrational spectroscopy is an important tool for understanding hydrogen bonding because it provides a way to observe local molecular geometries and their interaction with the environment. Linear vibrational spectroscopy has mapped characteristic changes of vibrational spectra and the occurrence of new bands that form upon hydrogen bonding. However, linear vibrational spectroscopy gives very limited insight into ultrafast dynamics of the underlying molecular interactions, such as the motions of hydrogen-bonded groups, energy dissipation and delocalization, and the fluctuations within hydrogen-bonded structures that occur in the ultrafast time domain. Nonlinear vibrational spectroscopy with its femtosecond time resolution can discern these dynamic processes in real time and has emerged as an important tool for unraveling molecular dynamics and for quantifying interactions that govern the vibrational and structural dynamics of hydrogen bonds. This Account reviews recent progress originating from third-order nonlinear methods of coherent multidimensional vibrational spectroscopy. Ultrafast dynamics of intermolecular hydrogen bonds are addressed for a number of prototype systems: hydrogen-bonded carboxylic acid dimers in an aprotic liquid environment, the disordered fluctuating hydrogen-bond network of liquid water, and DNA oligomers interacting with water. Cyclic carboxylic acid dimers display a rich scheme of vibrational couplings, resulting in OH stretching absorption bands with highly complex spectral envelopes. Two-dimensional spectroscopy of acetic acid dimers in a nonpolar liquid environment demonstrates that multiple Fermi resonances of the OH stretching mode with overtones and combination tones of fingerprint vibrations dominate both the 2D and linear absorption spectra. The coupling of the OH stretching mode with low-frequency hydrogen-bonding modes leads to additional progressions and coherent low-frequency hydrogen-bond motions in the subpicosecond time domain. In water, the 2D spectra reveal ultrafast spectral diffusion on a sub-100 fs time scale caused by the ultrafast structural fluctuations of the strongly coupled hydrogen-bond network. Librational motions play a key role for the ultrafast loss of structural memory. Spectral diffusion rates are enhanced by resonant transfer of OH stretching quanta between water molecules, typically occurring on a 100 fs time scale. In DNA oligomers, femtosecond nonlinear vibrational spectroscopy resolves NH and OH stretching bands in the highly congested infrared spectra of these molecules, which contain alternating adenine-thymine pairs. Studies at different levels of hydration reveal the spectral signatures of water molecules directly interacting with the phosphate groups of DNA and of a second water species forming a fluctuating environment around the DNA oligomers. We expect that the application of 2D infrared spectroscopy in an extended spectral range will reveal the intrinsic coupling between water and specific functional units of DNA.

  18. Synthesis, crystal structure, vibrational spectroscopy and photoluminescence of new hybrid compound containing chlorate anions of stanate (II)

    NASA Astrophysics Data System (ADS)

    Lassoued, Mohamed Saber; Abdelbaky, Mohammed S. M.; Lassoued, Abdelmajid; Meroño, Rafael Mendoza; Gadri, Abdellatif; Ammar, Salah; Ben Salah, Abdelhamid; García-Granda, Santiago

    2017-08-01

    The present work aimed at studying a new organic-inorganic bis (4-amino quinolinium) hexachloro stanate (II) dihydrate compound. It was prepared and characterized by single crystal X-ray diffraction, X-ray powder, Hirshfeld surface, Spectroscopy measurement, thermal study and photoluminescence properties. It was found to crystallize in the monoclinic system (P21/c space group) with the following lattice parameters: a = 7.2558(6) Å, b = 13.4876(5) Å, c = 17.2107(13) Å, β = 102.028 (12)°. Its crystal structure was determined and refined down to an R value of 0.06 and a wR value of 0.087. The structure consisted of two different alternating organic-inorganic layers. The crystal packing was stabilized by Nsbnd H⋯Cl and Osbnd H⋯Cl hydrogen bonds and π-π interactions. Hirshfeld surface analysis was used to investigate intermolecular interactions, as well 2D finger plots were conducted to reveal the contribution of these interactions in the crystal structure quantitatively. The X-ray powder is in agreement with the X-ray structure. Scanning electronic microscopy (SEM) was carried out. Furthermore, the room temperature Infra Red (IR) spectrum of the title compound was analyzed on the basis of data found in the literature. Solid state 13C NMR spectrum shows ten signals, confirming the solid state structure determined by X-ray diffraction. Thermal analysis shows two anomalies at 380 and 610 °C. The optical properties of the crystal were studied using optical absorption UV-visible and photoluminescence (PL) spectroscopy, which were investigated at room temperature.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozkendir, Osman Murat, E-mail: ozkendir@gmail.com

    Highlights: • Crystal and electronic structure properties of Nd{sub x}Ti{sub 1−x}BO{sub 2+d} structure were investigated. • New crystal structures for Nd–Ti complexes are determined. • Distortions in the crystal structure were observed as a result of Boron shortage. • Prominent change in electronic properties of the samples with the increasing Nd amount. - Abstract: Neodymium substituted TiBO{sub 3} samples were investigated according to their crystal, electric and electronic properties. Studies were conducted by X-ray absorption fine structure spectroscopy (XAFS) technique for the samples with different substitutions in the preparation processes. To achieve better crystal structure results during the study, XRDmore » pattern results were supported by extended-XAFS (EXAFS) analysis. The electronic structure analysis were studied by X-ray absorption near-edge structure spectroscopy (XANES) measurements at the room temperatures. Due to the substituted Nd atoms, prominent changes in crystal structure, new crystal geometries for Nd-Ti complexes, phase transitions in the crystals structure were detected according to the increasing Nd substitutions in the samples. In the entire stages of the substitutions, Nd atoms were observed as governing the whole phenomena due to their dominant characteristics in Ti geometries. Besides, electrical resistivity decay was determined in the materials with the increasing amount of Nd substitution.« less

  20. High pressure and synchrotron radiation studies of solid state electronic instabilities. Final technial report, May 1, 1984--April 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pifer, J.H.; Croft, M.C.

    This report discusses Eu and General Valence Instabilities; Ce Problem: L{sub 3} Spectroscopy Emphasis; Bulk Property Emphasis; Transition Metal Compound Electronic Structure; Electronic Structure-Phonon Coupling Studies; High Temperature Superconductivity and Oxide Materials; and Novel Materials Collaboration with Chemistry.

  1. Freezing-Induced Perturbation of Tertiary Structure of a Monoclonal Antibody

    PubMed Central

    LIU, LU; BRAUN, LATOYA JONES; WANG, WEI; RANDOLPH, THEODORE W.; CARPENTER, JOHN F.

    2014-01-01

    We studied the effects of pH and solution additives on freezing-induced perturbations in the tertiary structure of a monoclonal antibody (mAb) by intrinsic tryptophan fluorescence spectroscopy. In general, freezing caused perturbations in the tertiary structure of the mAb, which were reversible or irreversible depending on the pH or excipients present in the formulation. Protein aggregation occurred in freeze–thawed samples in which perturbations of the tertiary structure were observed, but the levels of protein aggregates formed were not proportional to the degree of structural perturbation. Protein aggregation also occurred in freeze–thawed samples without obvious structural perturbations, most likely because of freeze concentration of protein and salts, and thus reduced protein colloidal stability. Therefore, freezing-induced protein aggregation may or may not first involve the perturbation of its native structure, followed by the assembly processes to form aggregates. Depending on the solution conditions, either step can be rate limiting. Finally, this study demonstrates the potential of fluorescence spectroscopy as a valuable tool for screening therapeutic protein formulations subjected to freeze–thaw stress. PMID:24832730

  2. Integrated magnetic tweezers and single-molecule FRET for investigating the mechanical properties of nucleic acid.

    PubMed

    Long, Xi; Parks, Joseph W; Stone, Michael D

    2016-08-01

    Many enzymes promote structural changes in their nucleic acid substrates via application of piconewton forces over nanometer length scales. Magnetic tweezers (MT) is a single molecule force spectroscopy method widely used for studying the energetics of such mechanical processes. MT permits stable application of a wide range of forces and torques over long time scales with nanometer spatial resolution. However, in any force spectroscopy experiment, the ability to monitor structural changes in nucleic acids with nanometer sensitivity requires the system of interest to be held under high degrees of tension to improve signal to noise. This limitation prohibits measurement of structural changes within nucleic acids under physiologically relevant conditions of low stretching forces. To overcome this challenge, researchers have integrated a spatially sensitive fluorescence spectroscopy method, single molecule-FRET, with MT to allow simultaneous observation and manipulation of nanoscale structural transitions over a wide range of forces. Here, we describe a method for using this hybrid instrument to analyze the mechanical properties of nucleic acids. We expect that this method for analysis of nucleic acid structure will be easily adapted for experiments aiming to interrogate the mechanical responses of other biological macromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Integrated magnetic tweezers and single-molecule FRET for investigating the mechanical properties of nucleic acid

    PubMed Central

    Long, Xi; Parks, Joseph W.; Stone, Michael D.

    2017-01-01

    Many enzymes promote structural changes in their nucleic acid substrates via application of piconewton forces over nanometer length scales. Magnetic tweezers (MT) is a single molecule force spectroscopy method widely used for studying the energetics of such mechanical processes. MT permits stable application of a wide range of forces and torques over long time scales with nanometer spatial resolution. However, in any force spectroscopy experiment, the ability to monitor structural changes in nucleic acids with nanometer sensitivity requires the system of interest to be held under high degrees of tension to improve signal to noise. This limitation prohibits measurement of structural changes within nucleic acids under physiologically relevant conditions of low stretching forces. To overcome this challenge, researchers have integrated a spatially sensitive fluorescence spectroscopy method, single molecule-FRET, with MT to allow simultaneous observation and manipulation of nanoscale structural transitions over a wide range of forces. Here, we describe a method for using this hybrid instrument to analyze the mechanical properties of nucleic acids. We expect that this method for analysis of nucleic acid structure will be easily adapted for experiments aiming to interrogate the mechanical responses of other biological macromolecules. PMID:27320203

  4. Structural, optical and vibrational properties of Cr2O3 with ferromagnetic and antiferromagnetic order: A combined experimental and density functional theory study

    NASA Astrophysics Data System (ADS)

    Larbi, T.; Ouni, B.; Gantassi, A.; Doll, K.; Amlouk, M.; Manoubi, T.

    2017-12-01

    Chromium oxide (Cr2O3) thin films have been synthesized on glass substrates by the spray pyrolysis technique. The structural, morphological and optical properties of the sample have been studied by X-ray diffraction (XRD), Raman spectroscopy, FTIR spectroscopy, scanning probe microscopy and UV-vis spectroscopy respectively. X-ray diffraction results reveal that as deposited film is polycrystalline with a rhombohedral corundum structure and a preferential orientation of the crystallites along the (1 0 4) direction. IR and Raman spectra were recorded in the 100-900 cm-1 range and the observed modes were analysed and assigned to different normal modes of vibration. The direct optical band gap energy value calculated from the transmittance spectra of as-deposited thin film is about 3.38 eV. We employ first principles calculations based on density functional theory (DFT) with the B3LYP hybrid functional and a coupled perturbed Hartree-Fock/Kohn-Sham approach (CPHF/KS). We study the electronic structure, optimum geometry, and IR and Raman spectra of ferromagnetically and antiferromagnetically ordered Cr2O3. The computed results are consistent with the experimental measurements, and provide complete vibrational assignment, for the characterization of Cr2O3 thin film materials which can be used in photocatalysis and gas sensors.

  5. Electronic structure of LiCoO2 thin films: A combined photoemission spectroscopy and density functional theory study

    NASA Astrophysics Data System (ADS)

    Ensling, David; Thissen, Andreas; Laubach, Stefan; Schmidt, Peter C.; Jaegermann, Wolfram

    2010-11-01

    The electronic properties of LiCoO2 have been studied by theoretical band-structure calculations (using density functional theory) and experimental methods (photoemission). Synchrotron-induced photoelectron spectroscopy, resonant photoemission spectroscopy (ResPES), and soft x-ray absorption (XAS) have been applied to investigate the electronic structure of both occupied and unoccupied states. High-quality PES spectra were obtained from stoichiometric and highly crystalline LiCoO2 thin films deposited “in situ” by rf magnetron sputtering. An experimental approach of separating oxygen- and cobalt-derived (final) states by ResPES in the valence-band region is presented. The procedure takes advantage of an antiresonant behavior of cobalt-derived states at the 3p-3d excitation threshold. Information about the unoccupied density of states has been obtained by OK XAS. The structure of the CoL absorption edge is compared to semiempirical charge-transfer multiplet calculations. The experimental results are furthermore compared with band-structure calculations considering three different exchange potentials [generalized gradient approximation (GGA), using a nonlocal Hubbard U (GGA+U) and using a hybrid functional (Becke, three-parameter, Lee-Yang-Parr [B3LYP])]. For these different approaches total density of states and partial valence-band density of states have been investigated. The best qualitative agreement with experimental results has been obtained by using a GGA+U functional with U=2.9eV .

  6. Ultra-Small-Angle X-ray Scattering – X-ray Photon Correlation Spectroscopy Studies of Incipient Structural Changes in Amorphous Calcium Phosphate Based Dental Composites

    PubMed Central

    Zhang, F.; Allen, A.J.; Levine, L.E.; Espinal, L.; Antonucci, J.M.; Skrtic, D.; O’Donnell, J.N.R.; Ilavsky, J.

    2012-01-01

    The local structural changes in amorphous calcium phosphate (ACP) based dental composites were studied under isothermal conditions using both static, bulk measurement techniques and a recently developed methodology based on combined ultra-small angle X-ray scattering – X-ray photon correlation spectroscopy (USAXS-XPCS), which permits a dynamic approach. While results from conventional bulk measurements do not show clear signs of structural change, USAXS-XPCS results reveal unambiguous evidence for local structural variations on a similar time scale to that of water loss in the ACP fillers. A thermal-expansion based simulation indicates that thermal behavior alone does not account for the observed dynamics. Together, these results suggest that changes in the water content of ACP affect the composite morphology due to changes in ACP structure that occur without an amorphous-to-crystalline conversion. It is also noted that biomedical materials research could benefit greatly from USAXS-XPCS, a dynamic approach. PMID:22374649

  7. In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering microscopy.

    PubMed

    Littlejohn, George R; Mansfield, Jessica C; Parker, David; Lind, Rob; Perfect, Sarah; Seymour, Mark; Smirnoff, Nicholas; Love, John; Moger, Julian

    2015-05-01

    The cuticle is a ubiquitous, predominantly waxy layer on the aerial parts of higher plants that fulfils a number of essential physiological roles, including regulating evapotranspiration, light reflection, and heat tolerance, control of development, and providing an essential barrier between the organism and environmental agents such as chemicals or some pathogens. The structure and composition of the cuticle are closely associated but are typically investigated separately using a combination of structural imaging and biochemical analysis of extracted waxes. Recently, techniques that combine stain-free imaging and biochemical analysis, including Fourier transform infrared spectroscopy microscopy and coherent anti-Stokes Raman spectroscopy microscopy, have been used to investigate the cuticle, but the detection sensitivity is severely limited by the background signals from plant pigments. We present a new method for label-free, in vivo structural and biochemical analysis of plant cuticles based on stimulated Raman scattering (SRS) microscopy. As a proof of principle, we used SRS microscopy to analyze the cuticles from a variety of plants at different times in development. We demonstrate that the SRS virtually eliminates the background interference compared with coherent anti-Stokes Raman spectroscopy imaging and results in label-free, chemically specific confocal images of cuticle architecture with simultaneous characterization of cuticle composition. This innovative use of the SRS spectroscopy may find applications in agrochemical research and development or in studies of wax deposition during leaf development and, as such, represents an important step in the study of higher plant cuticles. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Proton transfer from imidazole to chloranil studied by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharma, Amit

    2018-05-01

    Imidazole is incorporated into many important biological molecules. The most obvious is the amino acid histidine, which has an imidazole side chain. Histidine is present in many proteins and enzymes and plays a vital part in the structure and binding functions of hemoglobin. Therefore it is important to study its proton transfer property. In the present work proton transfer from imidazole to chloranil is investigated by Fourier Transform Infra red Spectroscopy.

  9. Characterization of hybrid cobalt-porous silicon systems: protective effect of the Matrix in the metal oxidation

    PubMed Central

    2012-01-01

    In the present work, the characterization of cobalt-porous silicon (Co-PSi) hybrid systems is performed by a combination of magnetic, spectroscopic, and structural techniques. The Co-PSi structures are composed by a columnar matrix of PSi with Co nanoparticles embedded inside, as determined by Transmission Electron Microscopy (TEM). The oxidation state, crystalline structure, and magnetic behavior are determined by X-Ray Absorption Spectroscopy (XAS) and Alternating Gradient Field Magnetometry (AGFM). Additionally, the Co concentration profile inside the matrix has been studied by Rutherford Backscattering Spectroscopy (RBS). It is concluded that the PSi matrix can be tailored to provide the Co nanoparticles with extra protection against oxidation. PMID:22938050

  10. Boron difluoride dibenzoylmethane derivatives: Electronic structure and luminescence

    NASA Astrophysics Data System (ADS)

    Tikhonov, Sergey A.; Vovna, Vitaliy I.; Osmushko, Ivan S.; Fedorenko, Elena V.; Mirochnik, Anatoliy G.

    2018-01-01

    Electronic structure and optical properties of boron difluoride dibenzoylmethanate and four of its derivatives have been studied by X-ray photoelectron spectroscopy, absorption and luminescence spectroscopy and quantum chemistry (DFT, TDDFT). The relative quantum luminescence yields have been revealed to correlate with charge transfers of HOMO-LUMO transitions, energy barriers of aromatic substituents rotation and the lifetime of excited states in the investigated complexes. The bathochromic shift of intensive bands in the optical spectra has been observed to occur when the functional groups are introduced into p-positions of phenyl cycles due to destabilizing HOMO levels. Calculated energy intervals between electronic levels correlate well with XPS spectra structure of valence and core electrons.

  11. Thermal perturbation correlation of calcium binding Human centrin 3 and its structural changes

    NASA Astrophysics Data System (ADS)

    Pastrana-Rios, Belinda

    2014-07-01

    Perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy was applied for the determination of the individual transition temperatures of different vibrational modes located within structural components of a calcium binding protein known as Human centrin 3. This crucial information served to understand the contribution individual calcium binding sites made towards the stability of the EF-hand and therefore the protein without the use of probes. We are convinced that the general application of PCMW2D correlation spectroscopy can be applied to the study of proteins in general to ascertain the differences in the stability of structural motifs within proteins and its relationship to the actual transition temperature of unfolding.

  12. SEM, EDX and Raman and infrared spectroscopic study of brianyoungite Zn3(CO3,SO4)(OH)4 from Esperanza Mine, Laurion District, Greece

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Wang, Lina; Scholz, Ricardo; Sampaio, Ney Pinheiro

    2015-10-01

    The mineral brianyoungite, a carbonate-sulphate of zinc, has been studied by scanning electron microscopy (SEM) with chemical analysis using energy dispersive spectroscopy (EDX) and Raman and infrared spectroscopy. Multiple carbonate stretching modes are observed and support the concept of non-equivalent carbonate units in the brianyoungite structure. Intense Raman band at 1056 cm-1 with shoulder band at 1038 cm-1 is assigned to the CO32- ν1 symmetric stretching mode. Two intense Raman bands at 973 and 984 cm-1 are assigned to the symmetric stretching modes of the SO42- anion. The observation of two bands supports the concept of the non-equivalence of sulphate units in the brianyoungite structure. Raman bands at 704 and 736 cm-1 are assigned to the CO32- ν4 bending modes and Raman bands at 507, 528, 609 and 638 cm-1 are assigned to the CO32- ν2 bending modes. Multiple Raman and infrared bands in the OH stretching region are observed, proving the existence of water and hydroxyl units in different molecular environments in the structure of brianyoungite. Vibrational spectroscopy enhances our knowledge of the molecular structure of brianyoungite.

  13. Synchrotron FTIR micro-spectroscopy for structural analysis of Lewy bodies in the brain of Parkinson’s disease patients

    NASA Astrophysics Data System (ADS)

    Araki, Katsuya; Yagi, Naoto; Ikemoto, Yuka; Yagi, Hisashi; Choong, Chi-Jing; Hayakawa, Hideki; Beck, Goichi; Sumi, Hisae; Fujimura, Harutoshi; Moriwaki, Taro; Nagai, Yoshitaka; Goto, Yuji; Mochizuki, Hideki

    2015-12-01

    Lewy bodies (LBs), which mainly consist of α-synuclein (α-syn), are neuropathological hallmarks of patients with Parkinson’s disease (PD). The fine structure of LBs is unknown, and LBs cannot be made artificially. Nevertheless, many studies have described fibrillisation using recombinant α-syn purified from E. coli. An extremely fundamental problem is whether the structure of LBs is the same as that of recombinant amyloid fibrils. Thus, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to analyse the fine structure of LBs in the brain of PD patients. Our results showed a shift in the infrared spectrum that indicates abundance of a β-sheet-rich structure in LBs. Also, 2D infrared mapping of LBs revealed that the content of the β-sheet structure is higher in the halo than in the core, and the core contains a large amount of proteins and lipids.

  14. Compressive Force Spectroscopy: From Living Cells to Single Proteins.

    PubMed

    Wang, Jiabin; Liu, Meijun; Shen, Yi; Sun, Jielin; Shao, Zhifeng; Czajkowsky, Daniel Mark

    2018-03-23

    One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.

  15. Outcrop-scale imaging spectroscopy of the Haughton impact structure, Canada

    NASA Astrophysics Data System (ADS)

    Greenberger, R. N.; Ehlmann, B. L.; Osinski, G. R.; Tornabene, L. L.; Green, R. O.

    2016-12-01

    Field-portable imaging spectrometers are a novel tool to study heterogeneous deposits such as those found at impact structures. Laboratory imaging spectroscopy of samples from the Haughton impact structure, Devon Island, Nunavut, Canada, detects and maps a variety of minerals within hand samples including calcite, dolomite, hydrated silica, gypsum, garnet, and iron oxides and sulfates. Many of these minerals originate from the target rock lithologies (e.g., limestone, dolostone, sandstone, gneiss) that have been shocked, altered, and displaced. An intimate mixture of quenched melts of calcite and hydrated silica is indicative of the melt rock matrix and is a byproduct of the impact process. Based on these preliminary results, we conducted a field campaign in Summer 2016 at the Haughton structure using imaging spectroscopy on the ground to study and quantify outcrops of impact-disrupted materials around the structure. Key questions addressed include (1) to what extent are the different impact-disrupted/exposed target lithologies from discrete stratigraphic units homogenized during impact processes, (2) what single or mixed lithologies are we able to detect, and (3) is variability within the target lithologies observable within the impactites? The Haughton impact structure is an ideal location to address these questions due to its excellent preservation and the nearly flat-lying, undeformed target rocks. We will present results from the field campaign along with supporting laboratory analyses. The results have implications for our understanding of impact processes and interpretation of planetary remote sensing datasets.

  16. Origin of Pressure-induced Superconducting Phase in K xFe 2-ySe 2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    DOE PAGES

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; ...

    2016-08-08

    Pressure dependence of the electronic and crystal structures of K xFe 2–ySe 2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change ofmore » Fermi surface topology. Lastly, our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.« less

  17. Origin of Pressure-induced Superconducting Phase in KxFe2-ySe2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; Okazaki, Hiroyuki; Ozaki, Toshinori; Takano, Yoshihiko; Lin, Jung-Fu; Fujita, Hidenori; Kagayama, Tomoko; Shimizu, Katsuya; Hiraoka, Nozomu; Ishii, Hirofumi; Liao, Yen-Fa; Tsuei, Ku-Ding; Mizuki, Jun'Ichiro

    2016-08-01

    Pressure dependence of the electronic and crystal structures of KxFe2-ySe2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.

  18. Electronic and geometric structure of thin CoO(100) films studied by angle-resolved photoemission spectroscopy and Auger electron diffraction

    NASA Astrophysics Data System (ADS)

    Heiler, M.; Chassé, A.; Schindler, K.-M.; Hollering, M.; Neddermeyer, H.

    2000-05-01

    We have prepared ordered thin films of CoO by evaporating cobalt in an O 2 atmosphere on to a heated (500 K) Ag(100) substrate. The geometric and electronic structure of the films was characterized by means of Auger electron diffraction (AED) and angle-resolved photoemission spectroscopy (ARUPS), respectively. The experimental AED results were compared with simulated data, which showed that the film grows in (100) orientation on the Ag(100) substrate. Synchrotron-radiation-induced photoemission investigations were performed in the photon energy range from 25 eV to 67 eV. The dispersion of the transitions was found to be similar to that of previous results on a single-crystal CoO(100) surface. The resonance behaviour of the photoemission lines in the valence-band region was investigated by constant-initial-state (CIS) spectroscopy. The implications of this behaviour for assignment of the photoemission lines to specific electronic transitions is discussed and compared with published theoretical models of the electronic structure.

  19. Separation of overlapping vibrational peaks in terahertz spectra using two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ishii, Shinya; Otani, Chiko

    2014-07-01

    In this study, the terahertz (THz) absorption spectra of poly(3-hydroxybutyrate) (PHB) were measured during isothermal crystallization at 90-120 °C. The temporal changes in the absorption spectra were analyzed using two-dimensional correlation spectroscopy (2DCOS). In the asynchronous plot, cross peaks were observed around 2.4 THz, suggesting that two vibrational modes overlap in the raw spectrum. By comparing this to the peak at 2.9 THz corresponding to the stretching mode of the helical structure of PHB and the assignment obtained using polarization spectroscopy, we concluded that the high-frequency band could be attributed to the vibration of the helical structure and the low-frequency band to the vibration between the helical structures. The exact frequencies of the overlapping vibrational bands and their assignments provide a new means to inspect the thermal behavior of the intermolecular vibrational modes. The large red-shift of the interhelix vibrational mode suggests a large anharmonicity in the vibrational potential.

  20. (1)H NMR spectroscopy for profiling complex carbohydrate mixtures in non-fractionated beer.

    PubMed

    Petersen, Bent O; Nilsson, Mathias; Bøjstrup, Marie; Hindsgaul, Ole; Meier, Sebastian

    2014-05-01

    A plethora of biological and biotechnological processes involve the enzymatic remodelling of carbohydrates in complex mixtures whose compositions affect both the processes and products. In the current study, we employed high-resolution (1)H NMR spectroscopy for the analysis of cereal-derived carbohydrate mixtures as exemplified on six beer samples of different styles. Structural assignments of more than 50 carbohydrate moieties were obtained using (1)H1-(1)H2 groups as structural reporters. Spectroscopically resolved carbohydrates include more than ''20 different'' small carbohydrates with more than 38 isomeric forms in addition to cereal polysaccharide fragments with suspected organoleptic and prebiotic function. Structural motifs at the cleavage sites of starch, β-glucan and arabinoxylan fragments were identified, showing different extent and specificity of enzymatic polysaccharide cleavage during the production of different beer samples. Diffusion ordered spectroscopy supplied independent size information for the characterisation and identification of polysaccharide fragments, indicating the presence especially of high molecular weight arabinoxylan fragments in the final beer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. CdZnO coated film: A material for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Zargar, R. A.; Bhat, M. A.; Reshi, H. A.; Khan, S. D.

    2018-06-01

    The present study reports structural and optical parameters of wide band gap oxide thick film prepared by screen-printing followed by sintering route. Characterization of the samples was carried out with UV-spectroscopy, XRD, SEM, and Photoluminous study. The XRD and SEM studies reveal that the film deposited is polycrystalline, double phase, and porous with unsymmetrical grain distributions. Optical diffused reflection spectroscopy and Pl measurements give optical band gap of 2.87 eV and near band edge emission at 430 nm.

  2. New Generation Materials and Structures for Nanophotonics and Nanoelectronics

    DTIC Science & Technology

    2006-04-30

    been investigated using thermogravimetric analysis and FTIR spectroscopy. The nanoparticles appear to have excess surfactants on their surface, but...processes. We continued analysis of the vibrational modes of the InP/II- VI core-shell nanoparticles determined by IR and Raman studies, and initiated...photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), BET surface area analysis , transmission electron microscopy (TEM), and SQUID magnetometry. In

  3. Secondary Structure Prediction of Protein Constructs Using Random Incremental Truncation and Vacuum-Ultraviolet CD Spectroscopy

    PubMed Central

    Pukáncsik, Mária; Orbán, Ágnes; Nagy, Kinga; Matsuo, Koichi; Gekko, Kunihiko; Maurin, Damien; Hart, Darren; Kézsmárki, István; Vertessy, Beata G.

    2016-01-01

    A novel uracil-DNA degrading protein factor (termed UDE) was identified in Drosophila melanogaster with no significant structural and functional homology to other uracil-DNA binding or processing factors. Determination of the 3D structure of UDE is excepted to provide key information on the description of the molecular mechanism of action of UDE catalysis, as well as in general uracil-recognition and nuclease action. Towards this long-term aim, the random library ESPRIT technology was applied to the novel protein UDE to overcome problems in identifying soluble expressing constructs given the absence of precise information on domain content and arrangement. Nine constructs of UDE were chosen to decipher structural and functional relationships. Vacuum ultraviolet circular dichroism (VUVCD) spectroscopy was performed to define the secondary structure content and location within UDE and its truncated variants. The quantitative analysis demonstrated exclusive α-helical content for the full-length protein, which is preserved in the truncated constructs. Arrangement of α-helical bundles within the truncated protein segments suggested new domain boundaries which differ from the conserved motifs determined by sequence-based alignment of UDE homologues. Here we demonstrate that the combination of ESPRIT and VUVCD spectroscopy provides a new structural description of UDE and confirms that the truncated constructs are useful for further detailed functional studies. PMID:27273007

  4. Structure determination of butylone as a new psychoactive substance using chiroptical and vibrational spectroscopies.

    PubMed

    Spálovská, Dita; Králík, František; Kohout, Michal; Jurásek, Bronislav; Habartová, Lucie; Kuchař, Martin; Setnička, Vladimír

    2018-05-01

    Recently, there has been a worldwide substantial increase in the consumption of new psychoactive substances (NPS), compounds that mimic the structure of illicit drugs, such as amphetamines or ecstasy. The producers try to avoid the law by a slight modification of illicit structures, thereby developing dozens of temporarily legal NPS every year. The current trends in the detection and monitoring of such substances demand a fast and reliable analysis. Molecular spectroscopy represents a highly effective tool for the identification of NPS and chiroptical methods can provide further information on their 3D structure, which is the key for the determination of their biological activity. We present the first systematic study of NPS, specifically butylone, combining chiroptical and vibrational spectroscopies with ab initio calculations. According to density functional theory calculations, 6 stable lowest energy conformers of butylone were found and their molecular structure was described. For each conformer, the relative abundance based on the Boltzmann distribution was estimated, their population weighted spectra predicted and compared to the experimental results. Very good agreement between the experimental and the simulated spectra was achieved, which allowed not only the assignment of the absolute configuration, but also a precise description of the molecular structure. © 2018 Wiley Periodicals, Inc.

  5. Solid-State NMR Spectroscopy of Metal–Organic Framework Compounds (MOFs)

    PubMed Central

    Hoffmann, Herbert C.; Debowski, Marta; Müller, Philipp; Paasch, Silvia; Senkovska, Irena; Kaskel, Stefan; Brunner, Eike

    2012-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a well-established method for the investigation of various types of porous materials. During the past decade, metal–organic frameworks have attracted increasing research interest. Solid-state NMR spectroscopy has rapidly evolved into an important tool for the study of the structure, dynamics and flexibility of these materials, as well as for the characterization of host–guest interactions with adsorbed species such as xenon, carbon dioxide, water, and many others. The present review introduces and highlights recent developments in this rapidly growing field.

  6. In vivo soft tissue differentiation by diffuse reflectance spectroscopy: preliminary results

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael; Douplik, Alexandre

    Remote laser surgery does not provide haptic feedback to operate layer by layer and preserve vulnerable anatomical structures like nerve tissue or blood vessels. The aim of this study is identification of soft tissue in vivo by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Various soft tissues can be identified by diffuse reflectance spectroscopy in vivo. The results may set the base for a feedback system to prevent nerve damage during oral and maxillofacial laser surgery.

  7. Large Area X-Ray Spectroscopy Mission

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1997-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission concept study continues to evolve strongly following the merging of the LAXS mission with the Next Generation X-ray Observatory (NGXO, PI: Nick White) into the re-named High Throughput X-ray Spectroscopy (HTXS) Mission. HTXS retains key elements of the LAXS proposal, including the use of multiple satellites for risk-reduction and cost savings. A key achievement of the program has been the recommendation by the Structure and Evolution of the Universe (SEUS) (April 1997) for a new start for the HTXS mission in the 2000-2004 timeframe.

  8. In Situ Investigation of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid.

    PubMed

    Kulla, Hannes; Greiser, Sebastian; Benemann, Sigrid; Rademann, Klaus; Emmerling, Franziska

    2016-07-14

    A new cocrystal of pyrazinamide with oxalic acid was prepared mechanochemically and characterized by PXRD, Raman spectroscopy, solid-state NMR spectroscopy, DTA-TG, and SEM. Based on powder X-ray diffraction data the structure was solved. The formation pathway of the reaction was studied in situ using combined synchrotron PXRD and Raman spectroscopy. Using oxalic acid dihydrate the initially neat grinding turned into a rapid self-accelerated liquid-assisted grinding process by the release of crystallization water. Under these conditions, the cocrystal was formed directly within two minutes.

  9. Infrared and Raman spectroscopy and DFT calculations of DL amino acids: Valine and lysine hydrochloride

    NASA Astrophysics Data System (ADS)

    Paiva, F. M.; Batista, J. C.; Rêgo, F. S. C.; Lima, J. A.; Freire, P. T. C.; Melo, F. E. A.; Mendes Filho, J.; de Menezes, A. S.; Nogueira, C. E. S.

    2017-01-01

    Single crystals of DL-valine and DL-lysine hydrochloride were grown by slow evaporation method and the crystallographic structure were confirmed by X-ray diffraction experiment and Rietveld method. These two crystals have been studied by Raman spectroscopy in the 25-3600 cm-1 spectral range and by infrared spectroscopy through the interval 375-4000 cm-1 at room temperature. Experimental and theoretical vibrational spectra were compared and a complete analysis of the modes was done in terms of the Potential Energy Distribution (PED).

  10. Optimizing soft X-ray NEXAFS spectroscopy in the laboratory

    NASA Astrophysics Data System (ADS)

    Mantouvalou, I.; Jonas, A.; Witte, K.; Jung, R.; Stiel, H.; Kanngießer, B.

    2017-05-01

    Near edge X-ray absorption fine structure (NEXAFS) spectroscopy in the soft X-ray range is feasible in the laboratory using laser-produced plasma sources. We present a study using seven different target materials for optimized data analysis. The emission spectra of the materials with atomic numbers ranging from Z = 6 to Z = 79 show distinct differences, rendering the adapted selection of a suitable target material for specialized experiments feasible. For NEXAFS spectroscopy a 112.5 nm thick polyimide film is investigated as a reference exemplifying the superiority of quasi-continuum like emission spectra.

  11. XPS studies of structure-induced radiation effects at the Si/SiO2 interface. [X ray Photoelectron Spectroscopy

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Lewis, B. F.; Zamini, N.; Maserjian, J.; Madhukar, A.

    1980-01-01

    The interfacial structures of radiation hard and soft oxides grown by dry and wet processes on silicon substrates have been examined by high-resolution X-ray photoelectron spectroscopy. It is found that the primary difference in the local atomic structure at the Si/SiO2 interface is the significantly higher concentration of strained 120 deg SiO2 bonds and SiO interfacial species in soft samples. Results of in situ radiation damage experiments using low energy electrons (0-20 eV) are reported which correlate with the presence of a strained layer of SiO2 (20 A) at the interface. The results are interpreted in terms of a structural model for hole and electron trap generation by ionizing radiation.

  12. Fabrication and magnetic properties of Fe and Co co-doped ZrO2

    NASA Astrophysics Data System (ADS)

    Okabayashi, J.; Kono, S.; Yamada, Y.; Nomura, K.

    2011-12-01

    We investigate the effects of Fe and Co co-doping on the magnetic and electronic properties of ZrO2 ceramics prepared by a sol-gel method, and study their dependence on the annealing temperature. Dilute Fe and Co co-doping into ZrO2 exhibits ferromagnetic behavior at room temperature for annealing temperatures above 900 °C, accompanying the phase transition from tetragonal to monoclinic structure in ZrO2. The electronic structures are studied by x-ray absorption spectroscopy and Mössbauer spectroscopy, which suggest that the Fe3+ and Co2+/Co3+ mixing states are dominant in Fe and Co co-doped ZrO2.

  13. Interfacial structure of soft matter probed by SFG spectroscopy.

    PubMed

    Ye, Shen; Tong, Yujin; Ge, Aimin; Qiao, Lin; Davies, Paul B

    2014-10-01

    Sum frequency generation (SFG) vibrational spectroscopy, an interface-specific technique in contrast to, for example, attenuated total reflectance spectroscopy, which is only interface sensitive, has been employed to investigate the surface and interface structure of soft matter on a molecular scale. The experimental arrangement required to carry out SFG spectroscopy, with particular reference to soft matter, and the analytical methods developed to interpret the spectra are described. The elucidation of the interfacial structure of soft matter systems is an essential prerequisite in order to understand and eventually control the surface properties of these important functional materials. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantitative Raman spectroscopy as a tool to study the kinetics and formation mechanism of carbonates.

    PubMed

    Bonales, L J; Muñoz-Iglesias, V; Santamaría-Pérez, D; Caceres, M; Fernandez-Remolar, D; Prieto-Ballesteros, O

    2013-12-01

    We have carried out a systematic study of abiotic precipitation at different temperatures of several Mg and Ca carbonates (calcite, nesquehonite, hydrocalcite) present in carbonaceous chondrites. This study highlights the capability of Raman spectroscopy as a primary tool for performing full mineralogical analysis. The precipitation reaction and the structure of the resulting carbonates were monitored and identified with Raman spectroscopy. Raman spectroscopy enabled us to confirm that the precipitation reaction is very fast (minutes) when Ca(II) is present in the solution, whereas for Mg(II) such reactions developed at rather slow rates (weeks). We also observed that both the composition and the reaction mechanisms depended on temperature, which might help to clarify several issues in the fields of planetology and geology, because of the environmental implications of these carbonates on both terrestrial and extraterrestrial objects. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes

    DOE PAGES

    Li, Y.; Zakharov, D.; Zhao, S.; ...

    2015-06-29

    Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the complex structural dynamics of supported Pt catalysts exhibited during an exemplary catalytic reaction—ethylene hydrogenation. This work exploits a microfabricated catalytic reactor compatible with both probes. The results demonstrate dynamic transformations of the ensemble of Pt clusters that spans a broad size range throughout changing reaction conditions. Lastly,more » this method is generalizable to quantitative operando studies of complex systems using a wide variety of X-ray and electron-based experimental probes.« less

  16. Soft X-ray photoemission study of Co2(Cr1-xFex)Ga Heusler compounds

    NASA Astrophysics Data System (ADS)

    Tsunekawa, Masanori; Hattori, Yoshiro; Sekiyama, Akira; Fujiwara, Hidenori; Suga, Shigemasa; Muro, Takayuki; Kanomata, Takeshi; Imada, Shin

    2015-08-01

    We have performed soft X-ray photoemission spectroscopy (SXPES) and X-ray absorption spectroscopy (XAS) of the Co-based Heusler compounds Co2(Cr1-xFex)Ga (x = 0.0, 0.4, and 1.0) in order to study their electronic structures. Band-structure calculation was carried out and compared with the experimental results. SXPES spectra show hν-dependence, revealing the contributions of the Co, Cr, and Fe 3d electronic states in the valence band. The band width observed by the SXPES seems to be narrower than that predicted by the band-structure calculation. XAS spectra depend strongly on the the value of x in Co2(Cr1-xFex)Ga. The electron correlation effects are found to be stronger as x changes from 0.0 to 1.0.

  17. Study of Nb2O(y) (y = 2-5) anion and neutral clusters using anion photoelectron spectroscopy and density functional theory calculations.

    PubMed

    Mann, Jennifer E; Waller, Sarah E; Rothgeb, David W; Jarrold, Caroline Chick

    2011-09-14

    A study combining anion photoelectron spectroscopy and density functional theory calculations on the transition metal suboxide series, Nb(2)O(y)(-) (y = 2-5), is described. Photoelectron spectra of the clusters are obtained, and Franck-Condon simulations using calculated anion and neutral structures and frequencies are used to evaluate the calculations and assign transitions observed in the spectra. The spectra, several of which exhibit partially resolved vibrational structure, show an increase in electron affinity with increasing cluster oxidation state. Hole-burning experiments suggest that the photoelectron spectra of both Nb(2)O(2)(-) and Nb(2)O(3)(-) have contributions from more than one structural isomer. Reasonable agreement between experiment and computational results is found among all oxides. © 2011 American Institute of Physics

  18. Oxidized crystalline (3 × 1)-O surface phases of InAs and InSb studied by high-resolution photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuominen, M., E-mail: tmleir@utu.fi, E-mail: pekka.laukkanen@utu.fi; Lång, J.; Dahl, J.

    2015-01-05

    The pre-oxidized crystalline (3×1)-O structure of InAs(100) has been recently found to significantly improve insulator/InAs junctions for devices, but the atomic structure and formation of this useful oxide layer are not well understood. We report high-resolution photoelectron spectroscopy analysis of (3×1)-O on InAs(100) and InSb(100). The findings reveal that the atomic structure of (3×1)-O consists of In atoms with unexpected negative (between −0.64 and −0.47 eV) and only moderate positive (In{sub 2}O type) core-level shifts; highly oxidized group-V sites; and four different oxygen sites. These fingerprint shifts are compared to those of previously studied oxides of III-V to elucidate oxidation processes.

  19. Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites.

    PubMed

    Gabriel, Laís P; Santos, Maria Elizabeth M Dos; Jardini, André L; Bastos, Gilmara N T; Dias, Carmen G B T; Webster, Thomas J; Maciel Filho, Rubens

    2017-01-01

    In this work, thermoset polyurethane composites were prepared by the addition of hydroxyapatite nanoparticles using the reactants polyol polyether and an aliphatic diisocyanate. The polyol employed in this study was extracted from the Euterpe oleracea Mart. seeds from the Amazon Region of Brazil. The influence of hydroxyapatite nanoparticles on the structure and morphology of the composites was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), thermal properties were analyzed by thermogravimetry analysis (TGA), and biological properties were studied by in vitro and in vivo studies. It was found that the addition of HA nanoparticles promoted fibroblast adhesion while in vivo investigations with histology confirmed that the composites promoted connective tissue adherence and did not induce inflammation. In this manner, this study supports the further investigation of bio-based, polyurethane/hydroxyapatite composites as biocompatible scaffolds for numerous tissue engineering applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Determining the Structure of Oxalate Anion Using Infrared and Raman Spectroscopy Coupled with Gaussian Calculations

    ERIC Educational Resources Information Center

    Peterson, Karen I.; Pullman, David P.

    2016-01-01

    A laboratory project for the upper-division physical chemistry laboratory is described, and it combines IR and Raman spectroscopies with Gaussian electronic structure calculations to determine the structure of the oxalate anion in solid alkali oxalates and in aqueous solution. The oxalate anion has two limiting structures whose vibrational spectra…

  1. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  2. XAS Studies of Arsenic in the Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charnock, J. M.; School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL; Polya, D. A.

    2007-02-02

    Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples.

  3. Direct correlations of structural and optical properties of three-dimensional GaN/InGaN core/shell micro-light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas

    2016-05-01

    Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).

  4. Synthesis and structure elucidation of fluoro substituted guanidines as potential therapeutic agents

    NASA Astrophysics Data System (ADS)

    Ullah, Waseem; Imtiaz-ud-Din; Raheel, Ahmad; Badshah, Amin; Tahir, Muhammad Nawaz

    2017-09-01

    Six new fluoro -substituted guanidines (1-6) were synthesized and characterized by 1H and 13C NMR spectroscopy to ascertain the structures in solution (DMSO) besides the solid state information collected through FT IR and single crystal X-ray spectroscopy. The XRD data for (1-3) show that molecules are stabilized by strong intramolecular hydrogen bonding. The compounds were also preliminary bio-assayed for anti-microbial studies and show good to moderate activities. The anti-oxidant data revealed that o and p-substituted fluoro-guanidines enhances their DPPH scavenging ability significantly.

  5. Structural, optical, electrochemical and photovoltaic studies of spider web like Silver Indium Diselenide Quantum dots synthesized by ligand mediated colloidal sol-gel approach

    NASA Astrophysics Data System (ADS)

    Adhikari, Tham; Pathak, Dinesh; Wagner, Tomas; Jambor, Roman; Jabeen, Uzma; Aamir, Muhammad; Nunzi, Jean-Michel

    2017-11-01

    Silver indium diselenide quantum dots were successively synthesized by colloidal sol-gel method by chelating with organic ligand oleylamine (OLA). The particle size was studied by transmission electron microscopy (TEM) and the size was found about 10 nm. X-ray diffraction (XRD) was used to study crystalline structure of the nanocrystals. The grain size and morphology were further studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The elemental composition was studied by X-ray photon electron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDAX). The capping property of OLA in nanocrystal was also demonstrated by Fourier Transform Infrared spectroscopy (FTIR). The band gap was calculated from both cyclic voltammetry and optical absorption and suggest quantum confinement. The solution processed bilayer thin film solar cells were fabricated with n-type Zinc oxide using doctor blading/spin coating method and their photovoltaic performance was studied. The best device sintered at 450 °C showed an efficiency 0.75% with current density of 4.54 mAcm-2, open-circuit voltage 0.44 V and fill factor 39.4%.

  6. Investigation on Structural and Optical Properties of Copper Telluride Thin Films with Different Annealing Temperature

    NASA Astrophysics Data System (ADS)

    Nishanthini, R.; Muthu Menaka, M.; Pandi, P.; Bahavan Palani, P.; Neyvasagam, K.

    The copper telluride (Cu2Te) thin film of thickness 240nm was coated on a microscopic glass substrate by thermal evaporation technique. The prepared films were annealed at 150∘C and 250∘C for 1h. The annealing effect on Cu2Te thin films was examined with different characterization methods like X-ray Diffraction Spectroscopy (XRD), Scanning Electron Microscopy (SEM), Ultra Violet-Visible Spectroscopy (UV-VIS) and Photoluminescence (PL) Spectroscopy. The peak intensities of XRD spectra were increased while increasing annealing temperature from 150∘C to 250∘C. The improved crystallinity of the thin films was revealed. However, the prepared films are exposed complex structure with better compatibility. Moreover, the shift in band gap energy towards higher energies (blue shift) with increasing annealing temperature is observed from the optical studies.

  7. Characterization of the Cu(Π) and Zn(Π) binding to the Amyloid-β short peptides by both the Extended X-ray Absorption Fine Structure and the Synchrotron Radiation Circular Dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyin; Sun, Shuaishuai; Xu, Jianhua; Zhang, Jing; Huang, Yan; Zhang, Bingbing; Tao, Ye

    2013-04-01

    Alzheimer's disease (AD) is a progressive and devastating neurodegenerative pathology, clinically characterized by dementia, cognitive impairment, personality disorders and memory loss. It is generally accepted that, misfolding of Aβ peptides is the key element in pathogenesis and the secondary structure of Aβ can be changed to major β-strand with reasons unknown yet. Many studies have shown that the misfolding may be linked with some biometals, mainly copper and zinc ions. To characterize interactions of Aβ and metal ions, we utilized both the extended X-ray fine structure spectroscopy (EXAFS) and the synchrotron radiation circular dichroism spectroscopy (SRCD). Aβ (13-22), Aβ (13-21), Aβ (E22G) and Aβ(HH-AA) were selected to study the mechanism of copper and zinc binding to Aβ. We found that Cu interaction with H13 and H14 residues led to the disappearance of the PPΠ, while the Cu binding E22 residue caused a remarkable conformation change to β-sheet enrichment. The Zn ion, in contrast, made little effect on the conformation and it coordinated to only one histidine (H residue) or not.

  8. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  9. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  10. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE PAGES

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; ...

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  11. Myricetin arrests human telomeric G-quadruplex structure: a new mechanistic approach as an anticancer agent.

    PubMed

    Mondal, Soma; Jana, Jagannath; Sengupta, Pallabi; Jana, Samarjit; Chatterjee, Subhrangsu

    2016-07-19

    The use of small molecules to arrest G-quadruplex structure has become a potential strategy for the development and design of a new class of anticancer therapeutics. We have studied the interaction of myricetin, a plant flavonoid and a putative anticancer agent, with human telomeric G-quadruplex TTAGGG(TTAGGG)3 DNA. Reverse transcription PCR data revealed significant repression in hTERT expression in MCF-7 breast cancer cells upon increasing the concentration of myricetin. Further, we conducted a telomeric repeat amplification protocol assay to confirm the inhibition of telomerase by myricetin. Optical spectroscopic techniques like circular dichroism, UV spectroscopy and fluorescence spectroscopy revealed the formation of a stable myricetin-G-quadruplex complex. The thermodynamic parameters of myricetin-G-quadruplex complex formation, presented through isothermal titration calorimetry studies, indicate the binding process to be thermodynamically favorable. In addition, high resolution NMR spectroscopy in conjunction with molecular dynamics simulation is employed to provide detailed mechanistic insights into the binding in the myricetin-G-quadruplex complex at the atomic level. Our results thus propose a new mode of action of myricetin as an anticancer agent via arresting telomeric G-quadruplex structure.

  12. Vibrational spectroscopy of the silicate mineral plumbotsumite Pb5(OH)10Si4O8 - An assessment of the molecular structure

    NASA Astrophysics Data System (ADS)

    López, Andrés; Frost, Ray L.; Scholz, Ricardo; Gobac, Željka Žigovečki; Xi, Yunfei

    2013-12-01

    We have used scanning electron microscopy with energy dispersive X-ray analysis to determine the precise formula of plumbotsumite, a rare lead silicate mineral of formula Pb5(OH)10Si4O8. This study forms the first systematic study of plumbotsumite from the Bigadic deposits, Turkey. Vibrational spectroscopy was used to assess the molecular structure of plumbotsumite as the structure is not known. The mineral is characterized by sharp Raman bands at 1047, 1055 and 1060 cm-1 assigned to SiO stretching vibrational modes and sharp Raman bands at 673, 683 and 697 cm-1 assigned to OSiO bending modes. The observation of multiple bands offers support for a layered structure with variable SiO3 structural units. Little information may be obtained from the infrared spectra because of broad spectral profiles. Intense Raman bands at 3510, 3546 and 3620 cm-1 are ascribed to OH stretching modes. Evidence for the presence of water in the plumbotsumite structure was inferred from the infrared spectra.

  13. Effect of replacing Sn4+ ions by Zn2+ ions on structural, optical and magnetic properties of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Selvi, E. Thamarai; Sundar, S. Meenakshi

    2017-05-01

    This paper highlights on the consequence of replacing tetravalent Sn4+ ions of the SnO2 by divalent Zn2+ ions on their structural, optical, and magnetic properties. Samples of Sn1- x Zn x O2 with x = 0, 0.01, 0.02, 0.03, and 0.04 were synthesized using microwave irradiated solvothermal process. The X-ray powder diffraction patterns reveal the rutile tetragonal phase of all doped SnO2 samples with no secondary phases. The transmission electron microscopy results show the formation of spherical nanoparticles of size 10-30 nm. Morphological changes were observed by scanning electron microscopy. The functional groups were investigated using Fourier transform infrared spectroscopy studies. Optical studies were carried by UV-Vis spectroscopy and fluorescence spectroscopy. Electron paramagnetic resonance was used to calculate the Lande splitting factor ` g'. The magnetic properties using vibrating sample magnetometer exhibit room temperature ferromagnetism for all the samples.

  14. Methylglyoxal induced glycation and aggregation of human serum albumin: Biochemical and biophysical approach.

    PubMed

    Ahmed, Azaj; Shamsi, Anas; Khan, Mohd Shahnawaz; Husain, Fohad Mabood; Bano, Bilqees

    2018-07-01

    Serum protein glycation and formation of advanced glycation end products (AGEs) correlates with many diseases viz. diabetes signifying the importance of studying the glycation pattern of serum proteins. In our present study, methylglyoxal was investigated for its effect on the structure of human serum albumin (HSA); exploring the formation of AGEs and aggregates of HSA. The analytical tools employed includes intrinsic and extrinsic fluorescence, UV spectroscopy, far UV circular dichroism, Thioflavin T fluorescence, congo red binding, polyacrylamide gel electrophoresis (PAGE). UV and fluorescence spectroscopy revealed the structural transition of native HSA evident by new peaks and increased absorbance in UV spectra and quenched fluorescence in the presence of MG. Far UV CD spectroscopy revealed MG induced secondary structural alteration evident by reduced α-helical content. AGEs formation was confirmed by AGEs specific fluorescence. Increased ThT fluorescence and CR absorbance of 10mM MG incubated HSA suggests that glycated HSA results in the formation of aggregates of HSA. SEM and TEM were reported to have an insight of these aggregates. Molecular docking was also utilized to see site specific interaction of MG-HSA. This study is clinically significant as HSA is a clinically relevant protein which plays a crucial role in many diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Ultrafast internal conversion dynamics of highly excited pyrrole studied with VUV/UV pump probe spectroscopy.

    PubMed

    Horton, Spencer L; Liu, Yusong; Chakraborty, Pratip; Matsika, Spiridoula; Weinacht, Thomas

    2017-02-14

    We study the relaxation dynamics of pyrrole after excitation with an 8 eV pump pulse to a state just 0.2 eV below the ionization potential using vacuum ultraviolet/ultraviolet pump probe spectroscopy. Our measurements in conjunction with electronic structure calculations indicate that pyrrole undergoes rapid internal conversion to the ground state in less than 300 fs. We find that internal conversion to the ground state dominates over dissociation.

  16. Crystal structure, Hirshfeld surfaces computational study and physicochemical characterization of the hybrid material (C7H10N)2[SnCl6]·H2O

    NASA Astrophysics Data System (ADS)

    BelhajSalah, S.; Abdelbaky, Mohammed S. M.; García-Granda, Santiago; Essalah, K.; Ben Nasr, C.; Mrad, M. L.

    2018-01-01

    A novel hybrid compound, bis(4-methylanilinium)hexachlorostannate(IV) monohydrate, formulated as (C7H10N)2[SnCl6]·H2O, has been prepared and characterized by powder and single crystal X-ray diffraction (XRD), Hirshfeld surface analysis, infrared spectroscopy (IR), optical study, differential thermal analysis(DTA) and X-ray photoelectron spectroscopy analysis (XPS). The title compound crystallizes in the monoclinic space group P21/c with a = 13.093(1)Å, b = 7.093(6)Å, c = 24.152(2)Å, β = 98.536(4)⁰ and V = 2218.4(4) Å3. Their crystal structure exhibits alternating inorganic layers parallel to the (ab) plane at z = n/2. The different entities, [SnCl6]2-, organic cations and water molecules, are connected via hydrogen bonds to form a three-dimensional network. The powder XRD data confirms the phase purity of the crystalline sample. The intermolecular interactions were investigated by Hirshfeld surfaces. The vibrational absorption bands were identified by IR spectroscopy and have been discussed. The optical properties of the crystal were studied by using optical absorption, UV-visible absorption and photoluminescence spectroscopy studies. The compound was also characterized by DTA to determine its thermal behavior with respect to the temperature. Finally, XPS technique is reported for analyzing the surface chemistry of this compound.

  17. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  18. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    DOE PAGES

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; ...

    2014-09-10

    In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insightsmore » gained from these studies are described and future directions of this field are also discussed.« less

  19. 456th Brookhaven Lecture

    ScienceCinema

    Allen Orville

    2017-12-09

    Orville presents “Getting More From Less: Correlated Single-Crystal Spectroscopy and X-ray Crystallography at the NSLS” in which he discusses how researchers can use many different tools and techniques to study atomic structure and electronic structure to provide insights into chemistry.

  20. Local symmetry breaking in SnO2 nanocrystals with cobalt doping and its effect on optical properties.

    PubMed

    Roy, S; Joshi, Amish G; Chatterjee, S; Ghosh, Anup K

    2018-06-07

    X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to study the structural and morphological characteristics of cobalt doped tin(iv) oxide (Sn1-xCoxO2; 0 ≤ x ≤ 0.04) nanocrystals synthesized by a chemical co-precipitation technique. Electronic structure analysis using X-ray photoemission spectroscopy (XPS) shows the formation of tin interstitials (Sni) and reduction of oxygen vacancies (VO) in the host lattice on Co doping and that the doped Co exists in mixed valence states of +2 and +3. Using XRD, the preferential position of the Sni and doped Co in the unit cell of the nanocrystals have been estimated. Rietveld refinement of XRD data shows that samples are of single phase and variation of lattice constants follows Vegard's law. XRD and TEM measurements show that the crystallite size of the nanocrystals decrease with increase in Co doping concentration. SAED patterns confirm the monocrystalline nature of the samples. The study of the lattice dynamics using Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy shows the existence of many disorder activated forbidden optical phonon modes, along with the corresponding classical modes, signifying Co induced local symmetry breaking in the nanocrystals. UV-Vis spectroscopy shows that the optical band gap has red shifted with increase in doping concentration. The study of Urbach energy confirms the increase in disorder in the nanocrystals with Co doping. Local symmetry breaking induced UV emission along with violet, blue and green luminescence has been observed from the PL study. The spectral contribution of UV emission decreases and green luminescence increases with increase in doping. Using PL, in conjunction with Raman spectroscopy, the type of oxygen vacancy induced in the nanocrystals on Co doping has been confirmed and the position of the defect levels in the forbidden zone (w.r.t. the optical band gap) has been studied.

  1. Visualising substrate-fingermark interactions: Solid-state NMR spectroscopy of amino acid reagent development on cellulose substrates.

    PubMed

    Spindler, Xanthe; Shimmon, Ronald; Roux, Claude; Lennard, Chris

    2015-05-01

    Most spectroscopic studies of the reaction products formed by ninhydrin, 1,2-indanedione-zinc (Ind-Zn) and 1,8-diazafluoren-9-one (DFO) when reacted with amino acids or latent fingermarks on paper substrates are focused on visible absorption or luminescence spectroscopy. In addition, structural elucidation studies are typically limited to solution-based mass spectrometry or liquid nuclear magnetic resonance (NMR) spectroscopy, which does not provide an accurate representation of the fingermark development process on common paper substrates. The research presented in this article demonstrates that solid-state carbon-13 magic angle spinning NMR ((13)C-MAS-NMR) is a technique that can not only be utilised for structural studies of fingermark enhancement reagents, but is a promising technique for characterising the effect of paper chemistry on fingermark deposition and enhancement. The latter opens up a research area that has been under-explored to date but has the potential to improve our understanding of how fingermark secretions and enhancement reagents interact with paper substrates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    NASA Astrophysics Data System (ADS)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  3. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  4. Revisiting the magnetic structure and charge ordering in La1 /3Sr2 /3FeO3 by neutron powder diffraction and Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, F.; Pomjakushin, V.; Mazet, T.; Sibille, R.; Malaman, B.; Yadav, R.; Keller, L.; Medarde, M.; Conder, K.; Pomjakushina, E.

    2018-05-01

    The magnetic ordering of La1 /3Sr2 /3FeO3 perovskite has been studied by neutron powder diffraction and 57Fe Mössbauer spectroscopy down to 2 K. From symmetry analysis, a chiral helical model and a collinear model are proposed to describe the magnetic structure. Both are commensurate, with propagation vector k =(0 ,0 ,1 ) in R 3 ¯c space group. In the former model, the magnetic moments of Fe adopt the magnetic space group P 3221 and have helical and antiferromagnetic ordering propagating along the c axis. The model allows only a single Fe site, with a magnetic moment of 3.46(2)μB at 2 K. In the latter model, the magnetic moments of iron ions adopt the magnetic space group C 2 /c or C 2'/c' and are aligned collinearly. The model allows the presence of two inequivalent Fe sites with magnetic moments of amplitude 3.26(3)μB and 3.67(2)μB, respectively. The neutron-diffraction pattern is equally well fitted by either model. The Mössbauer spectroscopy study suggests a single charge state Fe3.66 + above the magnetic transition and a charge disproportionation into Fe(3.66 -ζ )+ and Fe(3.66 +2 ζ )+ below the magnetic transition. The compatibility of the magnetic structure models with the Mössbauer spectroscopy results is discussed.

  5. Effects of Humic Acids Isolated from Peat of Various Origin on in Vitro Production of Nitric Oxide: a Screening Study.

    PubMed

    Trofimova, E S; Zykova, M V; Ligacheva, A A; Sherstoboev, E Yu; Zhdanov, V V; Belousov, M V; Yusubov, M S; Krivoshchekov, S V; Danilets, M G; Dygai, A M

    2016-09-01

    A screening study of biological activity of native humic acids isolated from peat was performed; several physical and chemical parameters of their structures were studied by UV- and infrared spectroscopy. Spectroscopy yielded similar shape of light absorption curves of humic acids of different origin, which can reflect similarity of general structural principles of these substances. Alkaline humic acids have more developed system of polyconjugation, while molecular structures of pyrophosphate humic acids were characterized by higher aromaticity and condensation indexes. Biological activity of the studied humic acids was assessed by NO-stimulating capacity during their culturing with murine peritoneal macrophages in a wide concentration range. It was shown that due to dose-dependent enhancement of NO production humic acids can change the functional state of macrophages towards development of pro-inflammatory properties. These changes were associated with high activity of humic acids isolated by pyrophosphate extraction, which allows considering effects of isolation method on biological activity.

  6. The contribution of solid-state NMR spectroscopy to understanding biomineralization: Atomic and molecular structure of bone

    NASA Astrophysics Data System (ADS)

    Duer, Melinda J.

    2015-04-01

    Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.

  7. Consensus structures of the Mo(v) sites of sulfite-oxidizing enzymes derived from variable frequency pulsed EPR spectroscopy, isotopic labelling and DFT calculations.

    PubMed

    Enemark, John H

    2017-10-10

    Sulfite-oxidizing enzymes from eukaryotes and prokaryotes have five-coordinate distorted square-pyramidal coordination about the molybdenum atom. The paramagnetic Mo(v) state is easily generated, and over the years four distinct CW EPR spectra have been identified, depending upon enzyme source and the reaction conditions, namely high and low pH (hpH and lpH), phosphate inhibited (P i ) and sulfite (or blocked). Extensive studies of these paramagnetic forms of sulfite-oxidizing enzymes using variable frequency pulsed electron spin echo (ESE) spectroscopy, isotopic labeling and density functional theory (DFT) calculations have led to the consensus structures that are described here. Errors in some of the previously proposed structures are corrected.

  8. Electron spectroscopy imaging and surface defect configuration of zinc oxide nanostructures under different annealing ambient

    NASA Astrophysics Data System (ADS)

    Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd

    2013-01-01

    In this study, electron spectroscopy imaging was used to visualize the elemental distribution of zinc oxide nanopowder. Surface modification in zinc oxide was done through annealing treatment and type of surface defect was also inferred from the electron spectroscopy imaging investigation. The micrographs revealed the non-stoichiometric distribution of the elements in the unannealed samples. Annealing the samples in nitrogen and oxygen ambient at 700 °C would alter the density of the elements in the samples as a result of removal or absorption of oxygen. The electrical measurement showed that nitrogen annealing treatment improved surface electrical conductivity, whereas oxygen treatment showed an adverse effect. Observed change in the photoluminescence green emission suggested that oxygen vacancies play a significant role as surface defects. Structural investigation carried out through X-ray diffraction revealed the polycrystalline nature of both zinc oxide samples with hexagonal phase whereby annealing process increased the crystallinity of both zinc oxide specimens. Due to the different morphologies of the two types of zinc oxide nanopowders, X-ray diffraction results showed different stress levels in their structures and the annealing treatment give significant effect to the structural stress. Electron spectroscopy imaging was a useful technique to identify the elemental distribution as well as oxygen defect in zinc oxide nanopowder.

  9. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    DOE PAGES

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; ...

    2017-02-10

    Nitrogen-doped graphene oxides (GO:N x) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH 2) 2 ]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:N x synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in whichmore » each N-atom trigonally bonds to three distinct sp 2 -hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:N x . The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.« less

  10. Identification of crystalline structures in jet-cooled acetylene large clusters studied by two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshiteru; Yoshiura, Ryuto; Honma, Kenji

    2017-07-01

    We investigated the crystalline structures of jet-cooled acetylene (C2H2) large clusters by laser spectroscopy and chemometrics. The CH stretching vibrations of the C2H2 large clusters were observed by infrared (IR) cavity ringdown spectroscopy. The IR spectra of C2H2 clusters were measured under the conditions of various concentrations of C2H2/He mixture gas for supersonic jets. Upon increasing the gas concentration from 1% to 10%, we observed a rapid intensity enhancement for a band in the IR spectra. The strong dependence of the intensity on the gas concentration indicates that the band was assigned to CH stretching vibrations of the large clusters. An analysis of the IR spectra by two-dimensional correlation spectroscopy revealed that the IR absorption due to the C2H2 large cluster is decomposed into two CH stretching vibrations. The vibrational frequencies of the two bands are almost equivalent to the IR absorption of the pure- and poly-crystalline orthorhombic structures in the aerosol particles. The characteristic temperature behavior of the IR spectra implies the existence of the other large cluster, which is discussed in terms of the phase transition of a bulk crystal.

  11. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  12. Advancements of two dimensional correlation spectroscopy in protein researches

    NASA Astrophysics Data System (ADS)

    Tao, Yanchun; Wu, Yuqing; Zhang, Liping

    2018-05-01

    The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well.

  13. Activities report in quantum optics

    NASA Astrophysics Data System (ADS)

    1985-03-01

    Soft X-ray radiation from laser plasmas, intense Planck radiation, X-ray spectroscopy with transmission gratings, simulation of laser-produced shock waves, self-similar expansion in vacuum, radiation hydrodynamics, electronic structure of highly compressed matter, and heavy-ion beams for inertial confinement were investigated, and a high power iodine laser was developed. Laser-spectroscopy experiments, as well as a gravitational wave experiments were conducted. The fundamentals of light-matter interaction and nonlinear dynamics were studied. Many-photon ionization of molecules; spectroscopy of shock pairs; interaction of excited molecules with surfaces; IR laser applications; organic photochemistry with UV lasers; theoretical chemistry; and a ClF laser were investigated. Thin layers, and a high-pressure CO2 laser were studied.

  14. [Study on discrimination of varieties of fire resistive coating for steel structure based on near-infrared spectroscopy].

    PubMed

    Xue, Gang; Song, Wen-qi; Li, Shu-chao

    2015-01-01

    In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.

  15. Bioactive glasses: Importance of structure and properties in bone regeneration

    NASA Astrophysics Data System (ADS)

    Hench, Larry L.; Roki, Niksa; Fenn, Michael B.

    2014-09-01

    This review provides a brief background on the applications, mechanisms and genetics involved with use of bioactive glass to stimulate regeneration of bone. The emphasis is on the role of structural changes of the bioactive glasses, in particular Bioglass, which result in controlled release of osteostimulative ions. The review also summarizes the use of Raman spectroscopy, referred to hereto forward as bio-Raman spectroscopy, to obtain rapid, real time in vitro analysis of human cells in contact with bioactive glasses, and the osteostimulative dissolution ions that lead to osteogenesis. The bio-Raman studies support the results obtained from in vivo studies of bioactive glasses, as well as extensive cell and molecular biology studies, and thus offers an innovative means for rapid screening of new bioactive materials while reducing the need for animal testing.

  16. Probing the electronic structure of platinum(II) chromophores: crystal structures, NMR structures, and photophysical properties of six new bis- and di- phenolate/thiolate Pt(II)diimine chromophores.

    PubMed

    Weinstein, Julia A; Tierney, Mark T; Davies, E Stephen; Base, Karel; Robeiro, Anthony A; Grinstaff, Mark W

    2006-05-29

    A general route for synthesis of six structurally similar Pt(II) diimine thiolate/phenolates chromophores possessing bulky phenolate or thiolate ligands is reported. The Pt chromophores were characterized using an array of techniques including 1H, 13C, and 195Pt NMR, absorption, emission, (spectro)electrochemistry, and EPR spectroscopy. Systematic variation of the electronic structure of the Pt(II) chromophores studied was achieved by (i) changing solvent polarity; (ii) substituting oxygen for sulfur in the donor ligand; (iii) alternating donor ligands from bis- to di-coordination; and (iv) changing the electron donating/withdrawing properties of the ligand(s). The lowest excited state in these new chromophores was assigned to a [charge-transfer-to-diimine] transition from the HOMO of mixed Pt/S (or Pt/O) character on the basis of absorption and emission spectroscopy, UV/vis (spectro)electrochemistry, and EPR spectroscopy. One of the chromophores, Pt(dpphen)(3,5-di-tert-butyl-catecholate) represents an example of a Pt(II) diimine phenolate chromophore that possesses a reversible oxidation centered predominantly on the donor ligand. Results from EPR spectroscopy indicate participation of the Pt(II) orbitals in the HOMO. There is a dramatic difference in the photophysical properties of carborane complexes compared to other mixed-ligand Pt(II) compounds, which includes room-temperature emission and photostability. The charge-transfer character of the lowest excited state in this series of chromophores is maintained throughout. Moreover, the absorption and emission energies and the redox properties of the excited state can be significantly tuned.

  17. Comparison of red blood cells from gastric cancer patients and healthy persons using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Su, Qinglong; Sheng, Daping; Zheng, Wei; Wang, Xin

    2017-02-01

    In this paper, FTIR spectroscopy was used to compare gastric cancer patients' red blood cells (RBCs) with healthy persons' RBCs. IR spectra were acquired with high resolution. The A1653/A1543 (the protein secondary structures), A1543/A2958 (the relative content of proteins and lipids), A1106/A1166 (the structure and content changes of sugars) and A1543/A1106 (the relative content of proteins and sugars) ratios of gastric cancer patients' RBCs were significantly different from those of healthy persons' RBCs. Curve fitting results showed that the protein secondary structures and sugars' structures had differences between gastric cancer patients' and healthy persons' RBCs. Additionally, FTIR spectroscopy could obtain 95% sensitivity, 70% specificity, 84.2% accuracy and 80.9% positive predictive value in combination with canconical discriminant analysis. The above results indicate FTIR spectroscopy may be useful for diagnosing gastric cancer.

  18. Conformational structures of a decapeptide validated by first principles calculations and cold ion spectroscopy.

    PubMed

    Roy, Tapta Kanchan; Kopysov, Vladimir; Nagornova, Natalia S; Rizzo, Thomas R; Boyarkin, Oleg V; Gerber, R Benny

    2015-05-18

    Calculated structures of the two most stable conformers of a protonated decapeptide gramicidin S in the gas phase have been validated by comparing the vibrational spectra, calculated from first- principles and measured in a wide spectral range using infrared (IR)-UV double resonance cold ion spectroscopy. All the 522 vibrational modes of each conformer were calculated quantum mechanically and compared with the experiment without any recourse to an empirical scaling. The study demonstrates that first-principles calculations, when accounting for vibrational anharmonicity, can reproduce high-resolution experimental spectra well enough for validating structures of molecules as large as of 200 atoms. The validated accurate structures of the peptide may serve as templates for in silico drug design and absolute calibration of ion mobility measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Three-dimensional nature of the band structure of ZrTe 5 measured by high-momentum-resolution photoemission spectroscopy [3D nature ZrTe 5 band structure measured by high-momentum-resolution photoemission spectroscopy

    DOE PAGES

    Xiong, H.; Sobota, J. A.; Yang, S. -L.; ...

    2017-05-10

    Here, we have performed a systematic high-momentum-resolution photoemission study on ZrTe 5 using 6-eV photon energy. We have measured the band structure near the Γ point, and quantified the gap between the conduction and valence band as 18 ≤ Δ ≤ 29 meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the three-dimensional (3D) nature of the material's band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe 5 is not a 3D strong topologicalmore » insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe 5 being a 3D weak topological insulator.« less

  20. Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.

    PubMed

    Xia, Yan; Fischer, Axel W; Teixeira, Pedro; Weiner, Brian; Meiler, Jens

    2018-04-03

    While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy.

    PubMed

    Ogata, K; Salager, E; Kerr, C J; Fraser, A E; Ducati, C; Morris, A J; Hofmann, S; Grey, C P

    2014-01-01

    Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being to understand the complex kinetics and thermodynamics that control the reactions and structural rearrangements. Elucidating this necessitates real-time in situ metrologies, which are highly challenging, if the whole electrode structure is studied at an atomistic level for multiple cycles under realistic cycling conditions. Here we report that Si nanowires grown on a conducting carbon-fibre support provide a robust model battery system that can be studied by (7)Li in situ NMR spectroscopy. The method allows the (de)alloying reactions of the amorphous silicides to be followed in the 2nd cycle and beyond. In combination with density-functional theory calculations, the results provide insight into the amorphous and amorphous-to-crystalline lithium-silicide transformations, particularly those at low voltages, which are highly relevant to practical cycling strategies.

  2. Three-dimensional nature of the band structure of ZrTe 5 measured by high-momentum-resolution photoemission spectroscopy [3D nature ZrTe 5 band structure measured by high-momentum-resolution photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, H.; Sobota, J. A.; Yang, S. -L.

    Here, we have performed a systematic high-momentum-resolution photoemission study on ZrTe 5 using 6-eV photon energy. We have measured the band structure near the Γ point, and quantified the gap between the conduction and valence band as 18 ≤ Δ ≤ 29 meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the three-dimensional (3D) nature of the material's band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe 5 is not a 3D strong topologicalmore » insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe 5 being a 3D weak topological insulator.« less

  3. Structures and unimolecular chemistry of M(Pro2-H)(+) (M = Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn) by IRMPD spectroscopy, SORI-CID, and theoretical studies.

    PubMed

    Jami-Alahmadi, Yasaman; Fridgen, Travis D

    2016-01-21

    M(Pro2-H)(+) complexes were electrosprayed and isolated in an FTICR cell where their unimolecular chemistries and structures were explored using SORI-CID and IRMPD spectroscopy. These experiments were augmented by computational methods such as electronic structure, simulated annealing, and atoms in molecules (AIM) calculations. The unimolecular chemistries of the larger metal cation (Ca(2+), Sr(2+) and Ba(2+)) complexes predominantly involve loss of neutral proline whereas the complexes involving the smaller Mg(2+) and transition metal dications tend to lose small neutral molecules such as water and carbon dioxide. Interestingly, all complexes involving transition metal dications except for Cu(Pro2-H)(+) lose H2 upon collisional or IRMPD activation. IRMPD spectroscopy shows that the intact proline in the transition metal complexes and Cu(Pro2-H)(+) is predominantly canonical (charge solvated) while for the Ca(2+), Sr(2+), and Ba(2+) complexes, proline is in its zwitterionic form. The IRMPD spectra for both Mg(Pro2-H)(+) and Mn(Pro2-H)(+) are concluded to have contributions from both charge-solvated and canonical structures.

  4. NMR structural and kinetic assignment of fluoro-3H-naphthopyran photomerocyanines.

    PubMed

    Delbaere, S; Micheau, J C; Teral, Y; Bochu, C; Campredon, M; Vermeersch, G

    2001-11-01

    The kinetic and structural behavior of a photochromic compound, 3-(2-fluorophenyl)-3-phenyl-3H-naphtho[2,1-b]pyran (F-Py), was investigated using 1H and 19F nuclear magnetic resonance (NMR) spectroscopy. Upon irradiation, the four theoretically predicted photomerocyanines appear along with a fifth form X, whose final structure has not been elucidated. This last form and two of the photomerocyanines are thermally labile, whereas the other two do not show any signs of decay. The system has been analyzed by NMR spectroscopy. This led to the structural assignment of each photomerocyanine. The kinetics of the thermal bleaching were monitored by directly and separately measuring the concentrations of each species at regular time intervals using 19F NMR spectroscopy. We therefore propose a plausible reaction mechanism. On the basis of this mechanism, the mathematical treatment and the study of the effects of temperature led to the determination of the kinetic and thermodynamic parameters (rate coefficients, enthalpy and entropy of activation) of this photochromic system. The leading role of the labile intermediate X on the formation of trans-transoid-cis (TTC) and cis-transoid-cis (CTC) photomerocyanines is pointed out.

  5. Gram-level synthesis of core-shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, Mingchuan; Wei, Lingli; Wang, Fanghui; Han, Kefei; Zhu, Hong

    2014-12-01

    Over the past decade, Pt based core-shell structured alloys have been studied extensively as oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs) because of their distinctive electrochemical performance and low Pt loading. In this paper, a facile route based on microwave-assisted polyol method and chemical dealloying process is proposed to synthesize carbon supported core-shell structured nanoparticles (NPs) in gram-level for ORR electrocatalysis in PEMFCs. The obtained samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). These physical characterization indicate that the final synthesized NPs are highly dispersed on the carbon support, and in a core-shell structure with CuPt alloy as the core and Pt as the shell. Electrochemical measurements, conducted by cyclic voltammetry (CV) and rotating disk electrode (RDE) tests, show the core-shell structured catalyst exhibit a 3× increase in mass activity and a 2× increase in specific activity over the commercial Pt/C catalyst, respectively. These results demonstrate that this route can be a reliable way to synthesize low-Pt catalyst in large-scale for PEMFCs.

  6. Comparative serum albumin interactions and antitumor effects of Au(III) and Ga(III) ions.

    PubMed

    Sarioglu, Omer Faruk; Ozdemir, Ayse; Karaboduk, Kuddusi; Tekinay, Turgay

    2015-01-01

    In the present study, interactions of Au(III) and Ga(III) ions on human serum albumin (HSA) were studied comparatively via spectroscopic and thermal analysis methods: UV-vis absorbance spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and isothermal titration calorimetry (ITC). The potential antitumor effects of these ions were studied on MCF-7 cells via Alamar blue assay. It was found that both Au(III) and Ga(III) ions can interact with HSA, however; Au(III) ions interact with HSA more favorably and with a higher affinity. FT-IR second derivative analysis results demonstrated that, high concentrations of both metal ions led to a considerable decrease in the α-helix content of HSA; while Au(III) led to around 5% of decrease in the α-helix content at 200μM, it was around 1% for Ga(III) at the same concentration. Calorimetric analysis gave the binding kinetics of metal-HSA interactions; while the binding affinity (Ka) of Au(III)-HSA binding was around 3.87×10(5)M(-1), it was around 9.68×10(3)M(-1) for Ga(III)-HSA binding. Spectroscopy studies overall suggest that both metal ions have significant effects on the chemical structure of HSA, including the secondary structure alterations. Antitumor activity studies on MCF7 tumor cell line with both metal ions revealed that, Au(III) ions have a higher antiproliferative activity compared to Ga(III) ions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Isothermal crystallization of poly(3-hydroxybutyrate) studied by terahertz two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ishii, Shinya; Morisawa, Yusuke; Sato, Harumi; Noda, Isao; Ozaki, Yukihiro; Otani, Chiko

    2012-01-01

    The isothermal crystallization of poly(3-hydroxybutylate) (PHB) was studied by monitoring the temporal evolution of terahertz absorption spectra in conjunction with spectral analysis using two-dimensional correlation spectroscopy. Correlation between the absorption peaks and the sequential order of the changes in spectral intensity extracted from synchronous and asynchronous plots indicated that crystallization of PHB at 90 °C is a two step process, in which C-H...O=C hydrogen bonds are initially formed before well-defined crystal structures are established.

  8. Blood proteins analysis by Raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Artemyev, D. N.; Bratchenko, I. A.; Khristoforova, Yu. A.; Lykina, A. A.; Myakinin, O. O.; Kuzmina, T. P.; Davydkin, I. L.; Zakharov, V. P.

    2016-04-01

    This work is devoted to study the possibility of plasma proteins (albumin, globulins) concentration measurement using Raman spectroscopy setup. The blood plasma and whole blood were studied in this research. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm-1 for different protein fractions. Partial least squares regression analysis was used for determination of correlation coefficients. We have shown that the proposed method represents the structure and biochemical composition of major blood proteins.

  9. Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices

    DTIC Science & Technology

    2015-06-01

    either Co– or MnSi– initiated films on c(4x4) GaAs. Studies using x - ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy...Co– or MnSi– initiated films on c(4x4) GaAs. Studies using x - ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy (TEM...diagram of the Palmstrøm lab in-situ growth and char- acterization setup, with 6 MBE growth chambers, 3 scanning probe microscopes, an x - ray

  10. Post-mortem characterization of fs laser-generated micro-pillars in Li(Ni1/3Mn1/3Co1/3)O2 electrodes by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Smyrek, P.; Zheng, Y.; Seifert, H. J.; Pfleging, W.

    2016-03-01

    NMC thick films were prepared by tape-casting and subsequent ultrafast laser-structuring. The lithium distribution in electrochemically cycled and unstructured or fs laser-structured NMC cathodes was investigated by using Laser-Induced Breakdown Spectroscopy (LIBS). The main goal is to develop an optimized three dimensional cell architecture with improved electrochemical properties based on studies of the homogeneity of the local State-of-Charge. LIBS experiments were carried out using a LIBS workstation equipped with a mode-locked diode pumped solid state Nd:YAG laser operating at a wavelength of 1063 nm. The element distribution was investigated using two different techniques: element mapping and element depth-profiling of the unstructured / fs laser-structured electrode surface. Results achieved from post-mortem studies using LIBS will be presented.

  11. Operando characterization of batteries using x-ray absorption spectroscopy: advances at the beamline XAFS at synchrotron Elettra

    NASA Astrophysics Data System (ADS)

    Aquilanti, Giuliana; Giorgetti, Marco; Dominko, Robert; Stievano, Lorenzo; Arčon, Iztok; Novello, Nicola; Olivi, Luca

    2017-02-01

    X-ray absorption spectroscopy is a synchrotron radiation based technique that is able to provide information on both local structure and electronic properties in a chemically selective manner. It can be used to characterize the dynamic processes that govern the electrochemical energy storage in batteries, and to shed light on the redox chemistry and changes in structure during galvanostatic cycling to design cathode materials with improved properties. Operando XAS studies have been performed at beamline XAFS at Elettra on different systems. For Li-ion batteries, a multiedge approach revealed the role of the different cathode components during the charge and discharge of the battery. In addition, Li-S batteries for automotive applications were studied. Operando sulfur K-edge XANES and EXAFS analysis was used to characterize the redox chemistry of sulfur, and to relate the electrochemical mechanism to its local structure.

  12. [Study on structure and phase transformation laws of natural FeS2 whisker by Raman spectroscopy].

    PubMed

    Huang, Fei; Kou, Da-Ming; Yao, Yu-Zeng; Ni, Pei; Ding, Jun-Ying

    2009-08-01

    FeS2 belongs to sulfide, including pyrite of isometric system and marcasite of orthorhombic system. The FeS2 discovered in Gengzhuang, Shanxi Province, was growing in the form of whisker. The study with scanning electron microscopy and electron probe show that the mineral components of FeS2 vary regularly. The structure of natural nano-micron FeS2 whisker was determined by micro-Raman spectroscopy. The results show that there exist two types of structure in FeS2 whiskers: pyrite and marcasite. Marcasite presents irregular shapes, such as coarse lotus root joints, crude columnar or beaded. Pyrite exists in the shape of straight line and smooth surface. In the early growing stage, Gengzhuang FeS2 whisker was mainly marcasite-type structure; in the middle stage it was coexistent structure of pyrite- and marcasite-type; in the late stage it was mainly pyrite-type. The growing stages of the whisker FeS2 show the phase transformation laws. Moreover, during the growing process marcasite was growing with pyrite coated on. Study on FeS2 whisker structure shows that there are correlations between phase transformation laws of the structure and forms, and between the forming time and the composition characteristics.

  13. Enantiomeric characterization and structure elucidation of LH601A using vibrational circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Magesh, Sadagopan; Chen, Lin; Hu, Longqin; He, Yanan

    2018-03-01

    LH601A is a novel non-reactive chiral molecule inhibiting Keap1-Nrf2 protein-protein interaction. The absolute configuration (AC) was independently determined in this study using vibrational circular dichroism (VCD) spectroscopy. Because of band overlapping and broadening in the IR spectrum, a direct VCD spectrum comparison method is devised without the conventional IR band alignment. Being an unbiased AC inquiry, all possible chiralities are evaluated based on the statistical analysis of VCD similarity, Sv. The AC of three-center stereoisomer LH601A is unambiguously assigned to (S,R,S). A comparative study was also carried out to investigate the structural and energy differences of calculated conformers using the polarized continuum model of dimethyl sulfoxide.

  14. Mössbauer study of iron-based perovskite-type materials as potential catalysts for ethyl acetate oxidation

    NASA Astrophysics Data System (ADS)

    Paneva, D.; Dimitrov, M.; Velinov, N.; Kolev, H.; Kozhukharov, V.; Tsoncheva, T.; Mitov, I.

    2010-03-01

    La-Sr-Fe perovskite-type oxides were prepared by the nitrate-citrate method. The basic object of this study is layered Ruddlesden-Popper phase LaSr3Fe3O10. The phase composition and structural properties of the obtained materials are investigated by Mössbauer spectroscopy, X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and temperature programmed reduction (TPR). The preliminary catalytic tests show a high potential of these materials for volatile organic compounds (VOCs) elimination as they possess high conversion ability and selectivity to total oxidation of ethyl acetate. Catalytic performance of LaSr3Fe3O10 is depended on the stability of structure and Fe4+-oxidation state.

  15. Origin of the magnetic transition at 100 K in ɛ-Fe2O3 nanoparticles studied by x-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    López-Sánchez, J.; Muñoz-Noval, A.; Castellano, C.; Serrano, A.; del Campo, A.; Cabero, M.; Varela, M.; Abuín, M.; de la Figuera, J.; Marco, J. F.; Castro, G. R.; Rodríguez de la Fuente, O.; Carmona, N.

    2017-12-01

    The current study unveils the structural origin of the magnetic transition of the ɛ-Fe2O3 polymorph from an incommensurate magnetic order to a collinear ferrimagnetic state at low temperature. The high crystallinity of the samples and the absence of other iron oxide polymorphs have allowed us to carry out temperature-dependent x-ray absorption fine structure spectroscopy experiments out. The deformation of the structure is followed by the Debye-Waller factor for each selected Fe-O and Fe-Fe sub-shell. For nanoparticle sizes between 7 and 15 nm, the structural distortions between the Fete and Fe-D1oc sites are localized in a temperature range before the magnetic transition starts. On the contrary, the inherent interaction between the other sub-shells (named Fe-O1,2 and Fe-Fe1) provokes cooperative magneto-structural changes in the same temperature range. This means that the Fete with Fe-D1oc polyhedron interaction seems to be uncoupled with temperature dealing with these nanoparticle sizes wherein the structural distortions are likely moderate due to surface effects.

  16. Imaging secondary structure of individual amyloid fibrils of a β2-microglobulin fragment using near-field infrared spectroscopy.

    PubMed

    Paulite, Melissa; Fakhraai, Zahra; Li, Isaac T S; Gunari, Nikhil; Tanur, Adrienne E; Walker, Gilbert C

    2011-05-18

    Amyloid fibril diseases are characterized by the abnormal production of aggregated proteins and are associated with many types of neuro- and physically degenerative diseases. X-ray diffraction techniques, solid-state magic-angle spinning NMR spectroscopy, circular dichroism (CD) spectroscopy, and transmission electron microscopy studies have been utilized to detect and examine the chemical, electronic, material, and structural properties of amyloid fibrils at up to angstrom spatial resolution. However, X-ray diffraction studies require crystals of the fibril to be analyzed, while other techniques can only probe the bulk solution or solid samples. In the work reported here, apertureless near-field scanning infrared microscopy (ANSIM) was used to probe the secondary structure of individual amyloid fibrils made from an in vitro solution. Simultaneous topographic and infrared images of individual amyloid fibrils synthesized from the #21-31 peptide fragment of β(2)-microglobulin were acquired. Using this technique, IR spectra of the amyloid fibrils were obtained with a spatial resolution of less than 30 nm. It is observed that the experimental scattered field spectrum correlates strongly with that calculated using the far-field absorption spectrum. The near-field images of the amyloid fibrils exhibit much lower scattering of the IR radiation at approximately 1630 cm(-1). In addition, the near-field images also indicate that composition and/or structural variations among individual amyloid fibrils were present. © 2011 American Chemical Society

  17. Broadband Microwave Spectroscopy as a Tool to Study Intermolecular Interactions in the Diphenyl Ether - Water System

    NASA Astrophysics Data System (ADS)

    Fatima, Mariyam; Perez, Cristobal; Schnell, Melanie

    2017-06-01

    Many biological processes, such as chemical recognition and protein folding, are mainly controlled by the interplay of hydrogen bonds and dispersive forces. This interplay also occurs between organic molecules and solvent water molecules. Broadband rotational spectroscopy studies of weakly bound complexes are able to accurately reveal the structures and internal dynamics of molecular clusters isolated in the gas phase. Amongst them, water clusters with organic molecules are of particular interest. In this work, we investigate the interplay between different types of weak intermolecular interactions and how it controls the preferred interaction sites of aromatic ethers, where dispersive interactions may play a significant role. We present our results on diphenyl ether (C_{12}H_{10}O, 1,1'-Oxydibenzene) complexed with up to three molecules of water. Diphenyl ether is a flexible molecule, and it offers two competing binding sites for water: the ether oxygen and the aromatic π system. In order to determine the structure of the diphenyl ether-water complexes, we targeted transitions in the 2-8 GHz range using broadband rotational spectroscopy. We identify two isomers with one water, one with two water, and one with three water molecules. Further analysis from isotopic substitution measurements provided accurate structural information. The preferred interactions, as well as the observed structural changes induced upon complexation, will be presented and discussed.

  18. Water at protein surfaces studied with femtosecond nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Bakker, Huib J.

    We report on an investigation of the structure and dynamics of water molecules near protein surfaces with femtosecond nonlinear spectroscopic techniques. We measured the reorientation dynamics of water molecules near the surface of several globular protein surfaces, using polarization-resolved femtosecond infrared spectroscopy. We found that water molecules near the protein surface have a much slower reorientation than water molecules in bulk liquid water. The number of slow water molecules scales scales with the size of the hydrophobic surface of the protein. When we denature the proteins by adding an increasing amount of urea to the protein solution, we observe that the water-exposed surface increases by 50% before the secondary structure of the proteins changes. This finding indicates that protein unfolding starts with the protein structure becoming less tight, thereby allowing water to enter. With surface vibrational sum frequency generation (VSFG) spectroscopy, we studied the structure of water at the surface of antifreeze protein III. The measured VSFG spectra showed the presence of ice-like water layers at the ice-binding site of the protein in aqueous solution, at temperatures well above the freezing point. This ordered ice-like hydration layers at the protein surface likely plays an important role in the specific recognition and binding of anti-freeze protein III to nascent ice crystallites, and thus in its anti-freeze mechanism. This research is supported by the ''Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO).

  19. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, E. H., E-mail: martineh@ornl.gov; Caughman, J. B. O.; Isler, R. C.

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H{sub δ} spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  20. Biomimetic graphene sensors: functionalizing graphene with peptides

    NASA Astrophysics Data System (ADS)

    Ishigami, Masa; Nyon Kim, Sang; Naik, Rajesh; Tatulian, Suren A.; Katoch, Jyoti

    2012-02-01

    Non-covalent biomimetic functionalization of graphene using peptides is one of more promising methods for producing novel sensors with high sensitivity and selectivity. Here we combine atomic force microscopy, Raman spectroscopy, and attenuated total reflection Fourier transform infrared spectroscopy to investigate peptide binding to graphene and graphite. We choose to study a dodecamer peptide identified with phage display to possess affinities for graphite and we find that the peptide forms a complex mesh-like structure upon adsorption on graphene. Moreover, optical spectroscopy reveals that the peptide binds non-covalently to graphene and possesses an optical signature of an ?-helical conformation on graphene.

  1. Effects of high energy radiation on the mechanical properties of epoxy-graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1985-01-01

    In an effort to elucidate the changes in molecular structural and mechanical properties of epoxy/graphite fiber composites upon exposure to ionizing radiation in a simulated space environment, spectroscopic and surface properties of tetraglycidyl-4,4'-diamino diphenyl methane (TGDDM) red with diamino diphenyl sulfone (DDS) and T-300 graphite fiber were investigated following exposure to ionizing radiation. Cobalt-60 gamma radiation and 1/2 MeV electrons were used as radiation sources. The system was studied using electron spin resonance (ESR) spectroscopy, infrared absorption spectroscopy, contact angle measurements, and electron spectroscopy for chemical analysis.

  2. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited).

    PubMed

    Martin, E H; Zafar, A; Caughman, J B O; Isler, R C; Bell, G L

    2016-11-01

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H δ spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  3. In Situ Industrial Bimetallic Catalyst Characterization using Scanning Transmission Electron Microscopy and X-ray Absorption Spectroscopy at One Atmosphere and Elevated Temperature.

    PubMed

    Prestat, Eric; Kulzick, Matthew A; Dietrich, Paul J; Smith, Mr Matthew; Tien, Mr Eu-Pin; Burke, M Grace; Haigh, Sarah J; Zaluzec, Nestor J

    2017-08-18

    We have developed a new experimental platform for in situ scanning transmission electron microscope (STEM) energy dispersive X-ray spectroscopy (EDS) which allows real time, nanoscale, elemental and structural changes to be studied at elevated temperature (up to 1000 °C) and pressure (up to 1 atm). Here we demonstrate the first application of this approach to understand complex structural changes occurring during reduction of a bimetallic catalyst, PdCu supported on TiO 2 , synthesized by wet impregnation. We reveal a heterogeneous evolution of nanoparticle size, distribution, and composition with large differences in reduction behavior for the two metals. We show that the data obtained is complementary to in situ STEM electron energy loss spectroscopy (EELS) and when combined with in situ X-ray absorption spectroscopy (XAS) allows correlation of bulk chemical state with nanoscale changes in elemental distribution during reduction, facilitating new understanding of the catalytic behavior for this important class of materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Ultrafast Structural Dynamics in Combustion Relevant Model Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Peter M.

    2014-03-31

    The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energymore » of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecule’s structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecule’s structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of molecular species in the hot environments of combustion processes, there are several features that make the Rydberg ionization spectroscopy uniquely useful. First, the Rydberg electron’s orbit is quite large and covers the entire molecule for most molecular structures of combustion interest. Secondly, the ionization does not change vibrational quantum numbers, so that even complicated and large molecules can be observed with fairly well resolved spectra. In fact, the spectroscopy is blind to vibrational excitation of the molecule. This has the interesting consequence for the study of chemical dynamics, where the molecules are invariably very energetic, that the molecular structures are observed unobstructed by the vibrational congestion that dominates other spectroscopies. This implies also that, as a tool to probe the time-dependent structural dynamics of chemically interesting molecules, Rydberg spectroscopy may well be better suited than electron or x-ray diffraction. With recent progress in calculating Rydberg binding energy spectra, we are approaching the point where the method can be evolved into a structure determination method. To implement the Rydberg ionization spectroscopy we use a molecular beam based, time-resolved pump-probe multi-photon ionization/photoelectron scheme in which a first laser pulse excites the molecule to a Rydberg state, and a probe pulse ionizes the molecule. A time-of-flight detector measures the kinetic energy spectrum of the photoelectrons. The photoelectron spectrum directly provides the binding energy of the electron, and thereby reveals the molecule’s time-dependent structural fingerprint. Only the duration of the laser pulses limits the time resolution. With a new laser system, we have now reached time resolutions better than 100 fs, although very deep UV wavelengths (down to 190 nm) have slightly longer instrument functions. The structural dynamics of molecules in Rydberg-excited states is obtained by delaying the probe ionization photon from the pump photon; the structural dynamics of molecules in their ground state or excited valence states is measured by inducing the dynamics using a near UV laser pulse, and employing a multi-photon ionization scheme via the Rydberg states as a probe process. Thus, the technique is capable of measuring the reaction dynamics in any electronic state of neutral molecules.« less

  5. Analysis of carbon functional groups in mobile humic acid and recalcitrant calcium humate extracted from eight US soils

    USDA-ARS?s Scientific Manuscript database

    Solid state 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to study the structure of soil humic fractions; however, knowledge regarding carbon structural relationships in humic fractions is limited. In this study, mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fr...

  6. Origin of electrically heterogeneous microstructure in CuO from scanning tunneling spectroscopy study

    NASA Astrophysics Data System (ADS)

    Sarkar, Sudipta; Jana, Pradip Kumar; Chaudhuri, B. K.

    2008-04-01

    We report electronic structure of the grains and grain boundaries (GBs) of the high permittivity (κ˜104) ceramic CuO from scanning tunneling spectroscopy (STS) studies. The p-type semiconducting character of the CuO grains and insulating behavior of the corresponding GBs, observed from STS studies, have been explained. This type of electrically inhomogeneous microstructure leads to the formation of barrier layer capacitance elements in CuO and, hence, provides an explanation of the colossal-κ response exhibited by CuO.

  7. Deformation and Failure of Protein Materials in Physiologically Extreme Conditions and Disease

    DTIC Science & Technology

    2009-03-01

    resonance (NMR) spectroscopy and X- ray crystallography have advanced our ability to identify 3D protein structures57. Site-specific studies using NMR, a... ray crystallography, providing structural and temporal information about mechanisms of deformation and assembly (for example in intermediate...tens of thousands of 3D atomistic protein structures, identifying the structure of numerous proteins from varying species sources60. X- ray

  8. Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy

    PubMed Central

    Woodside, Michael T.; Block, Steven M.

    2015-01-01

    Folding may be described conceptually in terms of trajectories over a landscape of free energies corresponding to different molecular configurations. In practice, energy landscapes can be difficult to measure. Single-molecule force spectroscopy (SMFS), whereby structural changes are monitored in molecules subjected to controlled forces, has emerged as a powerful tool for probing energy landscapes. We summarize methods for reconstructing landscapes from force spectroscopy measurements under both equilibrium and nonequilibrium conditions. Other complementary, but technically less demanding, methods provide a model-dependent characterization of key features of the landscape. Once reconstructed, energy landscapes can be used to study critical folding parameters, such as the characteristic transition times required for structural changes and the effective diffusion coefficient setting the timescale for motions over the landscape. We also discuss issues that complicate measurement and interpretation, including the possibility of multiple states or pathways and the effects of projecting multiple dimensions onto a single coordinate. PMID:24895850

  9. Physico-chemical characterization of products from vacuum oil under delayed coking process by infrared spectroscopy and chemometrics methods

    NASA Astrophysics Data System (ADS)

    Meléndez, L. V.; Cabanzo, R.; Mejía-Ospino, E.; Guzmán, A.

    2016-02-01

    Eight vacuum residues and their delayed coking liquids products from Colombian crude were study by infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and principal component analysis (PCA). For the samples the structural parameters of aromaticity factor (fa), alifaticity (A2500-3100cm-1), aromatic condensation degree (GCA), length of aliphatic chains (LCA) and aliphatic chain length associated with aromatic (LACAR) were determined through the development of a methodology, which includes the previous processing of spectroscopy data, identifying the regions in the IR spectra of greatest variance using PCA and molecules patterns. The parameters were compared with the results obtained from proton magnetic resonance (1H-NMR) and 13C-NMR. The results showed the influence and correlation of structural parameters with some physicochemical properties such as API gravity, weight percent sulphur (% S) and Conradson carbon content (% CCR)

  10. Aminosilane-Assisted Electrodeposition of Gold Nanodendrites and Their Catalytic Properties

    PubMed Central

    Hau, Nga Yu; Yang, Peixian; Liu, Chang; Wang, Jian; Lee, Po-Heng; Feng, Shien-Ping

    2017-01-01

    A promising alternative route for the synthesis of three-dimensional Au dendrites was developed by direct electrodeposition from a solution of HAuCl4 containing 3-aminopropyltriethoxysilane (APTS). Ultraviolet-visible spectroscopy, fourier transform infrared spectroscopy and isothermal titration calorimetry were used to study the interaction of APTS in electrolyte. The effect of APTS on the formation of the hierarchical structure of Au dendrites was investigated by cyclic voltammetry, rotating disk electrode, electrochemical impedance spectroscopy and quartz crystal microbalance. The growth directions of the trunks and branches of the Au dendrites can be controlled by sweep-potential electrodeposition to obtain more regular structures. The efficacy of as-synthesised Au dendrites was demonstrated in the enhanced electro-catalytic activity to methanol electro-oxidation and the high sensitivity of glucose detection, which have potential applications in direct-methanol fuel cells and non-enzymatic electrochemical glucose biosensors, respectively. PMID:28045064

  11. In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPeak, Kevin M.; Becker, Matthew A.; Britton, Nathan G.

    2010-12-03

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. Here we report the first use of in situ X-ray absorption spectroscopy during CBD, enabling detailed investigation of both reaction mechanisms and kinetics of ZnO nanowire growth from zinc nitrate and hexamethylenetetramine (HMTA) precursors. Time-resolved X-ray absorption near-edge structure (XANES) spectra were used to quantify Zn(II) speciation in both solution and solid phases. ZnO crystallizes directly from [Zn(H{sub 2}O){sub 6}]{sup 2+} without long-lived intermediates. Using ZnO nanowire deposition as an example,more » this study establishes in situ XANES spectroscopy as an excellent quantitative tool to understand CBD of nanomaterials.« less

  12. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

    NASA Astrophysics Data System (ADS)

    Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi

    2010-10-01

    A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.

  13. Aminosilane-Assisted Electrodeposition of Gold Nanodendrites and Their Catalytic Properties

    NASA Astrophysics Data System (ADS)

    Hau, Nga Yu; Yang, Peixian; Liu, Chang; Wang, Jian; Lee, Po-Heng; Feng, Shien-Ping

    2017-01-01

    A promising alternative route for the synthesis of three-dimensional Au dendrites was developed by direct electrodeposition from a solution of HAuCl4 containing 3-aminopropyltriethoxysilane (APTS). Ultraviolet-visible spectroscopy, fourier transform infrared spectroscopy and isothermal titration calorimetry were used to study the interaction of APTS in electrolyte. The effect of APTS on the formation of the hierarchical structure of Au dendrites was investigated by cyclic voltammetry, rotating disk electrode, electrochemical impedance spectroscopy and quartz crystal microbalance. The growth directions of the trunks and branches of the Au dendrites can be controlled by sweep-potential electrodeposition to obtain more regular structures. The efficacy of as-synthesised Au dendrites was demonstrated in the enhanced electro-catalytic activity to methanol electro-oxidation and the high sensitivity of glucose detection, which have potential applications in direct-methanol fuel cells and non-enzymatic electrochemical glucose biosensors, respectively.

  14. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticlesvia reversible addition fragmentation chain transfer polymerization: A facile three-in-one system for recognition and separation of endocrine disrupting chemicals

    NASA Astrophysics Data System (ADS)

    Li, Ying; Dong, Cunku; Chu, Jia; Qi, Jingyao; Li, Xin

    2011-01-01

    In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals.In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals. Electronic supplementary information (ESI) available: Supplementary figure S1. The hysteresis loop of Fe3O4 (a), Fe3O4@SiO2 (b), and Fe3O4@SiO2-Dye-SiO2 (c). See DOI: 10.1039/c0nr00614a

  15. Microsolvation of sodium acetate in water: Anion photoelectron spectroscopy and ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wen-Jing; Hou, Gao-Lei; Wang, Peng

    2015-08-07

    To understand the microsolvation of sodium acetate (CH{sub 3}COONa, NaOAc) in water, we studied NaOAc(H{sub 2}O){sub n}{sup −} (n = 0–3) clusters by photoelectron spectroscopy. We also investigated the structures of NaOAc(H{sub 2}O){sub n}{sup −} (n = 0–5) anions and NaOAc(H{sub 2}O){sub n} (n = 0–7) neutrals by quantum chemistry calculations. By comparing the theoretical results with the photoelectron experiment, the most probable structures of NaOAc(H{sub 2}O){sub n}{sup −/0} (n = 0–3) were determined. The study also shows that, with increasing n, the solvent-separated ion pair (SSIP) structures of NaOAc(H{sub 2}O){sub n}{sup −} anions become nearly energetically degenerate with themore » contact ion pair (CIP) structures at n = 5, while the SSIP structures of the neutral NaOAc(H{sub 2}O){sub n} clusters appear at n = 6 and become dominant at n = 7.« less

  16. Probing Biomolecular Structures and Dynamics of Single Molecules Using In-Gel Alternating-Laser Excitation

    PubMed Central

    Santoso, Yusdi; Kapanidis, Achillefs N.

    2009-01-01

    Gel electrophoresis is a standard biochemical technique used for separating biomolecules on the basis of size and charge. Despite the use of gels in early single-molecule experiments, gel electrophoresis has not been widely adopted for single-molecule fluorescence spectroscopy. We present a novel method that combines gel electrophoresis and single-molecule fluorescence spectroscopy to simultaneously purify and analyze biomolecules in a gel matrix. Our method, in-gel ALEX, uses non-denaturing gels to purify biomolecular complexes of interest from free components, aggregates, and non-specific complexes. The gel matrix also slows down translational diffusion of molecules, giving rise to long, high-resolution time traces without surface immobilization, which allow extended observations of conformational dynamics in a biologically friendly environment. We demonstrated the compatibility of this method with different types of single molecule spectroscopy techniques, including confocal detection and fluorescence-correlation spectroscopy. We demonstrated that in-gel ALEX can be used to study conformational dynamics at the millisecond timescale; by studying a DNA hairpin in gels, we directly observed fluorescence fluctuations due to conformational interconversion between folded and unfolded states. Our method is amenable to the addition of small molecules that can alter the equilibrium and dynamic properties of the system. In-gel ALEX will be a versatile tool for studying structures and dynamics of complex biomolecules and their assemblies. PMID:19863108

  17. Solid structures with bioorganic films on silicon

    NASA Astrophysics Data System (ADS)

    Tutov, E. A.

    2012-06-01

    The electrophysical parameters of ovalbumin/silicon and propolis/silicon heterostructures are studied using impedance spectroscopy and high-frequency capacitance-voltage characteristics under water vapor sorption conditions.

  18. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis.

    PubMed

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-26

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  19. Methylmercury chloride damage to the adult rat hippocampus cannot be detected by proton magnetic resonance spectroscopy

    PubMed Central

    Lu, Zhiyan; Wu, Jinwei; Cheng, Guangyuan; Tian, Jianying; Lu, Zeqing; Bi, Yongyi

    2014-01-01

    Previous studies have found that methylmercury can damage hippocampal neurons and accordingly cause cognitive dysfunction. However, a non-invasive, safe and accurate detection method for detecting hippocampal injury has yet to be developed. This study aimed to detect methylmercury-induced damage on hippocampal tissue using proton magnetic resonance spectroscopy. Rats were given a subcutaneous injection of 4 and 2 mg/kg methylmercury into the neck for 50 consecutive days. Water maze and pathology tests confirmed that cognitive function had been impaired and that the ultrastructure of hippocampal tissue was altered after injection. The results of proton magnetic resonance spectroscopy revealed that the nitrogen-acetyl aspartate/creatine, choline complex/creatine and myoinositol/creatine ratio in rat hippocampal tissue were unchanged. Therefore, proton magnetic resonance spectroscopy can not be used to determine structural damage in the adult rat hippocampus caused by methylmercury chloride. PMID:25368649

  20. Dielectric and structural characterisation of chalcogenide glasses via terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Ravagli, A.; Naftaly, M.; Craig, C.; Weatherby, E.; Hewak, D. W.

    2017-07-01

    Terahertz time-domain spectroscopy (THz TDS) was used to investigate a series of chalcogenide glasses. In particular, the dielectric properties at terahertz frequencies were determined and correlated with the glass composition. The experimental results showed a strong relationship between the dielectric properties and the polarizability of the glasses studied. A new explanation based on the coordination number of the metallic cations was proposed to understand these observations.

  1. The speciation of soluble sulphur compounds in bacterial culture fluids by X-ray absorption near edge structure spectroscopy.

    PubMed

    Franz, Bettina; Lichtenberg, Henning; Hormes, Josef; Dahl, Christiane; Prange, Alexander

    2009-11-01

    Over the last decade X-ray absorption near edge structure (XANES) spectroscopy has been used in an increasing number of microbiological studies. In addition to other applications it has served as a valuable tool for the investigation of the sulphur globules deposited intra- or extracellularly by certain photo- and chemotrophic sulphur-oxidizing (Sox) bacteria. For XANES measurements, these deposits can easily be concentrated by filtration or sedimentation through centrifugation. However, during oxidative metabolism of reduced sulphur compounds, such as sulphide or thiosulphate, sulphur deposits are not the only intermediates formed. Soluble intermediates such as sulphite may also be produced and released into the medium. In this study, we explored the potential of XANES spectroscopy for the detection and speciation of sulphur compounds in culture supernatants of the phototrophic purple sulphur bacterium Allochromatium vinosum. More specifically, we investigated A. vinosum DeltasoxY, a strain with an in frame deletion of the soxY gene. This gene encodes an essential component of the thiosulphate-oxidizing Sox enzyme complex. Improved sample preparation techniques developed for the DeltasoxY strain allowed for the first time not only the qualitative but also the quantitative analysis of bacterial culture supernatants by XANES spectroscopy. The results thus obtained verified and supplemented conventional HPLC analysis of soluble sulphur compounds. Sulphite and also oxidized organic sulphur compounds were shown by XANES spectroscopy to be present, some of which were not seen when standard HPLC protocols were used.

  2. Structural atlas of dynein motors at atomic resolution.

    PubMed

    Toda, Akiyuki; Tanaka, Hideaki; Kurisu, Genji

    2018-04-01

    Dynein motors are biologically important bio-nanomachines, and many atomic resolution structures of cytoplasmic dynein components from different organisms have been analyzed by X-ray crystallography, cryo-EM, and NMR spectroscopy. This review provides a historical perspective of structural studies of cytoplasmic and axonemal dynein including accessory proteins. We describe representative structural studies of every component of dynein and summarize them as a structural atlas that classifies the cytoplasmic and axonemal dyneins. Based on our review of all dynein structures in the Protein Data Bank, we raise two important points for understanding the two types of dynein motor and discuss the potential prospects of future structural studies.

  3. Pressure effects on the structure, kinetic, and thermodynamic properties of heat-induced aggregation of protein studied by FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Taniguchi, Y.; Okuno, A.; Kato, M.

    2010-03-01

    Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the α-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular β-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation (ΔV# = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates (ΔV=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular β-sheet is unfavorable under high pressure.

  4. Understanding the impact of nanoscale aggregation on charge transport and structural dynamics in room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Griffin, Philip; Holt, Adam; Wang, Yangyang; Sokolov, Alexei

    2015-03-01

    Amphiphilic room temperature ionic liquids (ILs) segregate on the nanoscale, forming intricate networks of charge-rich ionic domains intercalated with charge-poor aliphatic domains. While this structural phenomenon has been well established through x-ray diffraction studies and atomistic MD simulations, the precise effects of nanophase segregation on ion transport and structural dynamics in ILs remains poorly understood. Using a combination of broadband dielectric spectroscopy, light scattering spectroscopy, and rheology, we have characterized the ionic conductivity, structural dynamics, and shear viscosity of a homologous series of quaternary ammonium ionic liquids over a wide temperature range. Upon increasing the length and volume fraction of the alkyl side chains of these quaternary ammonium ILs, ionic conductivity decreases precipitously, although no corresponding slowing of the structural dynamics is observed. Instead, we identify the dynamical signature of supramolecular aggregates. Our results directly demonstrate the role that chemical structure and ionic aggregation plays in determining the charge transport properties of amphiphilic ILs.

  5. Electrical conductivity studies of graphene wrapped nanocrystalline LiMnPO{sub 4} composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheruku, Rajesh; D, Surya Bhaskaram; Govindaraj, G., E-mail: ggraj-7@yahoo.com

    Nanocrystalline LiMnPO{sub 4} material was synthesized by template free sucrose assisted hydrothermal method. The material possesses the orthorhombic crystal structure with Pnma, space group having four formula units. The GO was prepared by the hummer’s method and it was reduced graphene oxide (rGO) with hydrazine hydrate in the presence of nitrogen atmosphere. LiMnPO{sub 4} material was wrapped by the rGO to increase its conductivity. The structural characterization was accomplished through X-ray diffraction, FT-IR and Raman spectroscopy. Morphology was identified by the SEM, Electrical characterization was done through impedance spectroscopy and the results were reported.

  6. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying

    NASA Astrophysics Data System (ADS)

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  7. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying.

    PubMed

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  8. Safranin-O dye in the ground state. A study by density functional theory, Raman, SERS and infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lofrumento, C.; Arci, F.; Carlesi, S.; Ricci, M.; Castellucci, E.; Becucci, M.

    2015-02-01

    The analysis of ground state structural and vibrational properties of Safranin-O is presented. The experimental results, obtained by FTIR, Raman and SERS spectroscopy, are discussed in comparison to the results of DFT calculations carried out at the B3LYP/6-311 + G(d,p) level of theory. The calculated spectra reproduce quite satisfactorily the experimental data. The calculated Safranin-O equilibrium structure and the assignment of the vibrational spectra are reported as well. From the changes between Raman and SERS spectra a model is presented for the interaction of Safranin-O with silver nanoparticles.

  9. Microwave Spectrum of the Isopropanol-Water Dimer

    NASA Astrophysics Data System (ADS)

    Mead, Griffin; Finneran, Ian A.; Carroll, Brandon; Blake, Geoffrey

    2016-06-01

    Microwave spectroscopy provides a unique opportunity to study model non-covalent interactions. Of particular interest is the hydrogen bonding of water, whose various molecular properties are influenced by both strong and weak intermolecular forces. More specifically, measuring the hydrogen bonded structures of water-alcohol dimers investigates both strong (OH ··· OH) and weak (CH ··· OH) hydrogen bond interactions. Recently, we have measured the pure rotational spectrum of the isopropanol-water dimer using chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW) between 8-18 GHz. Here, we present the spectrum of this dimer and elaborate on the structure's strong and weak hydrogen bonding.

  10. Staircase polymetalsilicon nanocomplexes - Polymetalphenyl siloxanes: Structure and properties

    NASA Astrophysics Data System (ADS)

    Shapkin, N. P.; Balanov, M. I.; Razov, V. I.; Gardionov, S. V.; Mayorov, V. Yu; Tokar, E. A.; Papynov, E. K.; Korochentsev, V. V.; Leont'ev, L. B.; Slobodyuk, A. B.; Modin, E. B.

    2018-03-01

    Polyphenyl siloxanes containing chromium, iron, and aluminum in the backbone chain have been synthesized. The structure of the obtained staircase nano-metal complexes has been studied by the methods of XRD analysis and IR, 29Si and 27Al NMR, and XPS spectroscopy and scanning electron microscopy. Physical-chemical characteristics of these compounds have been investigated by the positron annihilation spectroscopy (PAS) and low-temperature nitrogen adsorption. The data of X-ray diffraction analysis (XRD) enabled us to calculate the size and volume of coherent scattering regions (CSR) and the cross-section area of the polymer chains. By means of the PAS method, the specific volumes of positron (Ve+) and positronium (Vps) "traps" have been calculated. The data of 29Si NMR spectroscopy have shown the presence of T2 and T3 fragments in the structure. As was shown on the basis of the data of 27Al NMR and XPS spectroscopy, tetrahedral (66%) and octahedral surroundings of the metal atom were realized in the backbone chain. The obtained data were used to describe a spatial layered structure of phenyl siloxanes containing trivalent metals. The electron microscopy of nanocomplexes revealed the presence of spherical particles, whose size changes in cases of chromium, iron, and aluminum. Using the data of low-temperature nitrogen adsorption, it was assumed that the specific surface area was filled with a layer of compacted spherical particles, whereas the layer thickness was determined, in its turn, by the specific polarizing potential (SPP) calculated as a ratio of the polarizing potential (PP) to the volume of voids between coherent scattering regions. Similar dependence is observed between the layer thickness and the specific polarizing potential calculated as a ratio of the polarizing potential to the positronium "trap" volume. A direct dependence between the thickness of the spherical particles layer and the specific polarizing potential has been demonstrated. The assumption on a fractal structure of spherical particles was made. Tribotechnical properties of the motor oil with metal siloxane additives have been studied.

  11. Structural characteristics of phosphorus-doped C60 thin film prepared by radio frequency-plasma assisted thermal evaporation technique.

    PubMed

    Arie, Arenst Andreas; Lee, Joong Kee

    2012-02-01

    Phosphorus doped C60 (P:C60) thin films were prepared by a radio frequency plasma assisted thermal evaporation technique using C60 powder as a carbon source and a mixture of argon and phosphine (PH3) gas as a dopant precursor. The effects of the plasma power on the structural characteristics of the as-prepared films were then studied using Raman spectroscopy, Auger electron spectroscopy (AES) and X-ray photo-electrons spectroscopy (XPS). XPS and Auger analysis indicated that the films were mainly composed of C and P and that the concentration of P was proportional to the plasma power. The Raman results implied that the doped films contained a more disordered carbon structure than the un-doped samples. The P:C60 films were then used as a coating layer for the Si anodes of lithium ion secondary batteries. The cyclic voltammetry (CV) analysis of the P:C60 coated Si electrodes demonstrated that the P:C60 coating layer might be used to improve the transport of Li-ions at the electrode/electrolyte interface.

  12. Analysis of structural transformation in wool fiber resulting from oxygen plasma treatment using vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Barani, Hossein; Haji, Aminoddin

    2015-01-01

    The aim of this study was to investigate the influence of oxygen plasma procedure at different time treatments on wool fiber using the micro-Raman spectroscopy as a non-destructive vibrational spectroscopic technique and Fourier transform infrared spectroscopy. The amide I and III regions, Csbnd C skeletal vibration region, and Ssbnd S and Csbnd S bonds vibration regions were analyzed with the Raman microscope. The Fourier transform infrared spectroscope analysis was employed to find out the effect of oxygen plasma treatment on the cysteic acid residues content of the wool fiber sample. The results indicated that the α-helix structure was the highest component content of wool fiber. Moreover, the protein secondary structure of wool fibers was transformed from α-helical arrangement to the β-pleated sheet configuration during the oxygen plasma treatment. Also, the disulphide bonds content in the treated wool fiber reduced because they were fractured and oxidized during oxygen plasma treatment. The oxygen plasma treated samples presented higher cysteic acid compared to the untreated wool samples due to produce more cleavage of disulfide linkages.

  13. Simulation of Two Dimensional Ultraviolet (2DUV) Spectroscopy of Amyloid Fibrils

    PubMed Central

    Jiang, Jun; Abramavicius, Darius; Falvo, Cyril; Bulheller, Benjamin M.; Hirst, Jonathan D.; Mukamel, Shaul

    2010-01-01

    Revealing the structure and aggregation mechanism of amyloid fibrils is essential for the treatment of over 20 diseases related to protein misfolding. Coherent two dimensional (2D) infrared spectroscopy is a novel tool that provides a wealth of new insight into the structure and dynamics of biomolecular systems. Recently developed ultrafast laser sources are extending multidimensional spectroscopy into the ultraviolet (UV) region, and this opens up new opportunities for probing fibrils. In a simulation study, we show that 2DUV spectra of the backbone of a 32-residue β-amyloid (Aβ9–40) fibril associated with Alzheimer’s disease, and two intermediate prefibrillar structures carry characteristic signatures of fibril size and geometry that could be used to monitor its formation kinetics. The dependence of these signals on the fibril size and geometry is explored. We demonstrate that the dominant features of the β-amyloid fibril spectra are determined by intramolecular interactions within a single Aβ9–40, while intermolecular interactions at the “external interface” have clear signatures in the fine details of these signals. PMID:20795695

  14. PALS, MIR and UV-vis-NIR spectroscopy studies of pHEMA hydrogel, silicon- and fluoro-containing contact lens materials

    NASA Astrophysics Data System (ADS)

    Filipecka, Katarzyna; Budaj, Mariusz; Chamerski, Kordian; Miedziński, Rafał; Sitarz, Maciej; Miskowiak, Bogdan; Makowska-Janusik, Małgorzata; Filipecki, Jacek

    2017-11-01

    Studies on polymeric materials used in contactology for manufacturing of contact lenses are presented in the paper. Different types of brand new contact lenses were investigated: hydrogel, silicone-hydrogel and rigid gas permeable. Positron annihilation lifetime spectroscopy (PALS) was used to characterize geometrical sizes and fraction of the free volume holes in the investigated samples. Measurements reveal significant differences between the materials. Namely differences in size and fraction of free volume were observed. These changes are strongly correlated with oxygen permeability in contact lenses. Middle infrared (MIR) spectroscopy was carried out in order to investigate the internal structure of materials. Furthermore, UV-vis-NIR studies were performed in order to determine the transmittance properties of contact lenses.

  15. Oxidation of municipal wastewater by free radicals mechanism. A UV/Vis spectroscopy study.

    PubMed

    Giannakopoulos, E; Isari, E; Bourikas, K; Karapanagioti, H K; Psarras, G; Oron, G; Kalavrouziotis, I K

    2017-06-15

    This study investigates the oxidation of municipal wastewater (WW) by complexation with natural polyphenols having radical scavenging activity, such as (3,4,5 tri-hydroxy-benzoic acid) gallic acid (GA) in alkaline pH (>7), under ambient O 2 and temperature. Physicochemical and structural characteristics of GA-WW complex-forming are evaluated by UV/Vis spectroscopy. The comparative analysis among UV/Vis spectra of GA monomer, GA-GA polymer, WW compounds, and GA-WW complex reveals significant differences within 350-450 and 500-900 nm. According to attenuated total reflectance (ATR) spectroscopy and thermogravimetric analysis (TGA), these spectra differences correspond to distinct complexes formed. This study suggests a novel role of natural polyphenols on the degradation and humification of wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Theory and Applications of Solid-State NMR Spectroscopy to Biomembrane Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Xiaolin

    Solid-state Nuclear Magnetic Resonance (NMR) is one of the premiere biophysical methods that can be applied for addressing the structure and dynamics of biomolecules, including proteins, lipids, and nucleic acids. It illustrates the general problem of determining the average biomolecular structure, including the motional mean-square amplitudes and rates of the fluctuations. Lineshape and relaxtion studies give us a view into the molecular properties under different environments. To help the understanding of NMR theory, both lineshape and relaxation experiments are conducted with hexamethylbezene (HMB). This chemical compound with a simple structure serves as a perfect test molecule. Because of its highly symmetric structure, its motions are not very difficult to understand. The results for HMB set benchmarks for other more complicated systems like membrane proteins. After accumulating a large data set on HMB, we also proceed to develop a completely new method of data analysis, which yields the spectral densities in a body-fixed frame revealing internal motions of the system. Among the possible applications of solid-state NMR spectroscopy, we study the light activation mechanism of visual rhodopsin in lipid membranes. As a prototype of G-protein-coupled receptors, which are a large class of membrane proteins, the cofactor isomerization is triggered by photon absorption, and the local structural change is then propagated to a large-scale conformational change of the protein. Facilitation of the binding of transducin then passes along the visual signal to downstream effector proteins like transducin. To study this process, we introduce 2H labels into the rhodopsin chromophore retinal and the C-terminal peptide of transducin to probe the local structure and dynamics of these two hotspots of the rhodopsin activation process. In addition to the examination of local sites with solid-state 2H NMR spectroscopy, wide angle X-ray scattering (WAXS) provides us the chance of looking at the overall conformational changes through difference scattering profiles. Although the resolution of this method is not as high as NMR spectroscopy, which gives information on atomic scale, the early activation probing is possible because of the short duration of the optical pump and X-ray probe lasers. We can thus visualize the energy dissipation process by observing and comparing the difference scattering profiles at different times after the light activation moments.

  17. Structural study of the exopolysaccharide produced by a clinical isolate of Burkholderia cepacia.

    PubMed

    Cescutti, P; Bosco, M; Picotti, F; Impallomeni, G; Leitão, J H; Richau, J A; Sá-Correia, I

    2000-07-14

    The primary structure of the exopolysaccharide produced by a clinical isolate of the bacterium Burkholderia cepacia was studied by means of methylation analysis, selective degradation, NMR spectroscopy, and electrospray mass spectrometry. The resulting data showed that the parent repeating unit of the exopolysaccharide is a highly branched heptasaccharide with the following structure: Two acetyl groups are present per repeating unit, as noncarbohydrate substituents. Copyright 2000 Academic Press.

  18. DichroMatch at the protein circular dichroism data bank (DM@PCDDB): A web-based tool for identifying protein nearest neighbors using circular dichroism spectroscopy.

    PubMed

    Whitmore, Lee; Mavridis, Lazaros; Wallace, B A; Janes, Robert W

    2018-01-01

    Circular dichroism spectroscopy is a well-used, but simple method in structural biology for providing information on the secondary structure and folds of proteins. DichroMatch (DM@PCDDB) is an online tool that is newly available in the Protein Circular Dichroism Data Bank (PCDDB), which takes advantage of the wealth of spectral and metadata deposited therein, to enable identification of spectral nearest neighbors of a query protein based on four different methods of spectral matching. DM@PCDDB can potentially provide novel information about structural relationships between proteins and can be used in comparison studies of protein homologs and orthologs. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  19. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

    PubMed

    Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei

    2011-08-01

    In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

  20. Synthesis and structural properties of Ba(1-x)LaxTiO3 perovskite nanoparticles fabricated by solvothermal synthesis route

    NASA Astrophysics Data System (ADS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.

    2017-05-01

    We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.

  1. Structural Model of the Bilitranslocase Transmembrane Domain Supported by NMR and FRET Data.

    PubMed

    Roy Choudhury, Amrita; Sikorska, Emilia; van den Boom, Johannes; Bayer, Peter; Popenda, Łukasz; Szutkowski, Kosma; Jurga, Stefan; Bonomi, Massimiliano; Sali, Andrej; Zhukov, Igor; Passamonti, Sabina; Novič, Marjana

    2015-01-01

    We present a 3D model of the four transmembrane (TM) helical regions of bilitranslocase (BTL), a structurally uncharacterized protein that transports organic anions across the cell membrane. The model was computed by considering helix-helix interactions as primary constraints, using Monte Carlo simulations. The interactions between the TM2 and TM3 segments have been confirmed by Förster resonance energy transfer (FRET) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy, increasing our confidence in the model. Several insights into the BTL transport mechanism were obtained by analyzing the model. For example, the observed cis-trans Leu-Pro peptide bond isomerization in the TM3 fragment may indicate a key conformational change during anion transport by BTL. Our structural model of BTL may facilitate further studies, including drug discovery.

  2. Local structure study of Fe dopants in Ni-deficit Ni 3Al alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor V zz=1.6 10 21Vm -2 matches well with the resultsmore » of Mössbauer spectroscopy and indicates that the Fe atoms occupy Ni sites.« less

  3. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    PubMed

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  4. [Bacterial synthesis, purification, and solubilization of transmembrane segments of ErbB family members].

    PubMed

    Goncharuk, M V; Shul'ga, A A; Ermoliuk, Ia S; Tkach, E N; Goncharuk, S A; Pustovalova, Iu E; Mineev, K S; Bocharov, É V; Maslennikov, I V; Arsen'ev, A S; Kirpichnikov, M P

    2011-01-01

    A family of epidermal growth factor receptors, ErbB, represents an important class of receptor tyrosine kinases, playing a leading role in cellular growth, development and differentiation. Transmembrane domains of these receptors transduce biochemical signals across plasma membrane via lateral homo- and heterodimerization. Relatively small size of complexes of ErbB transmembrane domains with detergents or lipids allows one to study their detailed spatial structure using three-dimensional heteronuclear high-resolution NMR spectroscopy. Here, we describe the effective expression system and purification procedure for preparative-scale production of transmembrane peptides from four representatives of ErbB family, ErbB1, ErbB2, ErbB3, ErbB4, for structural studies. The recombinant peptides were produced in Escherichia coli BL21(DE3)pLysS as C-terminal extensions of thioredoxin A. The fusion protein cleavage was accomplished with the light subunit of human enterokinase. Several (10-30) milligrams of purified isotope-labeled transmembrane peptides were isolated with the use of a simple and convenient procedure, which consists of consecutive steps of immobilized metal affinity chromatography and cation-exchange chromatography. The purified peptides were reconstituted in lipid/detergent environment (micelles or bicelles) and characterized using dynamic light scattering, CD and NMR spectroscopy. The data obtained indicate that the purified ErbB transmembrane peptides are suitable for structural and dynamic studies of their homo- and heterodimer complexes using high resolution NMR spectroscopy.

  5. Application of Raman spectroscopy technology to studying Sudan I

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Guoping; Chen, Chen

    2006-06-01

    Being an industrial dye, the Sudan I may have a toxic effect after oral intake on the body, and has recently been shown to cause cancer in rats, mice and rabbits. Because China and some other countries have detected the Sudan I in samples of the hot chilli powder and the chilli products, it is necessary to study the characteristics of this dye. As one kind of molecule scattering spectroscopy, Raman spectroscopy is characterized by the frequency excursion caused by interactions of molecules and photons. The frequency excursion reflects the margin between certain two vibrational or rotational energy states, and shows the information of the molecule. Because Raman spectroscopy can provides quick, easy, reproducible, and non-destructive analysis, both qualitative and quantitative, with no sample preparation required, Raman spectroscopy has been a particularly promising technique for analyzing the characteristics and structures of molecules, especially organic ones. Now, it has a broad application in biological, chemical, environmental and industrial applications. This paper firstly introduces Sudan I dye and the Raman spectroscopy technology, and then describes its application to the Sudan I. Secondly, the fingerprint spectra of the Sudan I are respectively assigned and analyzed in detail. Finally, the conclusion that the Raman spectroscopy technology is a powerful tool to determine the Sudan I is drawn.

  6. Investigating Protein-Ligand Interactions by Solution Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Becker, Walter; Bhattiprolu, Krishna Chaitanya; Gubensäk, Nina; Zangger, Klaus

    2018-04-17

    Protein-ligand interactions are of fundamental importance in almost all processes in living organisms. The ligands comprise small molecules, drugs or biological macromolecules and their interaction strength varies over several orders of magnitude. Solution NMR spectroscopy offers a large repertoire of techniques to study such complexes. Here, we give an overview of the different NMR approaches available. The information they provide ranges from the simple information about the presence of binding or epitope mapping to the complete 3 D structure of the complex. NMR spectroscopy is particularly useful for the study of weak interactions and for the screening of binding ligands with atomic resolution. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Structural changes in a heterogeneous solid (granite) under shock wave action

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Shcherbakov, I. P.; Mamalimov, R. I.; Kulik, V. B.

    2016-04-01

    The structure of two granite types (plagiogranite and alaskite) before and after shock wave action has been studied by infrared, Raman, and photoluminescence spectroscopy methods. It has been found that the shock wave caused transformation of quartz and feldspar crystals composing these granites into diaplectic glasses.

  8. Optical Properties of Laminarin Using Terahertz Time-Domain Spectroscopy (abstract)

    NASA Astrophysics Data System (ADS)

    Shin, Hee Jun; Maeng, Inhee; Oh, Seung Jae; Kim, Sung In; Kim, Ha Won; Son, Joo-Hiuk

    2009-04-01

    Terahertz spectroscopy is important in the study of biomolecular structure because the vibration and rotation energy of large molecules such as DNA, proteins, and polysaccharides are laid in terahertz regions. Terahertz time-domain spectroscopy (THz-TDS), using terahertz pulses generated and detected by femto-second pulses laser, has been used in the study of biomolecular dynamics, as well as carrier dynamics of semiconductors. Laminarin is a polysaccharide of glucose in brown algae. It is made up of β(1-3)-glucan and β(1-6)-glucan. β-glucan is an anticancer material that activates the immune reaction of human cells and inhibits proliferation of cancer cells. β-glucan with a single-strand structure has been reported to activate the immune reaction to a greater extent than β-glucan with a triple-strand helix structure. We used THz-TDS to characterize the difference between single-strand and triple-strand β-glucan. We obtained single-strand β-glucan by chemical treatment of triple-strand β-glucan. We measured the frequency dependent optical constants of Laminarin using THz-TDS. Power absorption of the triple-strand helix is larger than the single-strand helix in terahertz regions. The refractive index of the triple-strand helix is also larger than that of the single-strand helix.

  9. FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers

    PubMed Central

    Shahabi, Sima; Fekrazad, Reza; Johari, Maryam; Chiniforoush, Nasim; Rezaei, Yashar

    2016-01-01

    Background. Despite recent advances in dental caries prevention, caries is common and remains a serious health problem. Laser irradiation is one of the most common methods in preventive measures in recent years. Raman spectroscopy technique is utilized to study the microcrystalline structure of dental enamel. In this study, FT-Raman spectroscopy was used to evaluate chemical changes in enamel structure irradiated with Nd:YAG and Er:YAG lasers. Methods. We used 15 freshly-extracted, non-carious, human molars that were treated as follows: No treatment was carried out in group A (control group); Group B was irradiated with Er:YAG laser for 10 seconds under air and water spray; and Group C was irradiated with Nd:YAG laser for 10 seconds under air and water spray. After treatment, the samples were analyzed by FT-Raman spectroscopy. Results. The carbonate content evaluation with regard to the integrated area under the curve (1065/960 cm–1) exhibited a significant reduction in its ratio in groups B and C. The organic content (2935/960 cm-1) area exhibited a significant decrease after laser irradiation in group B and C. Conclusion. The results showed that the mineral and organic matrices of enamel structure were affected by laser irradiation; therefore, it might be a suitable method for caries prevention. PMID:28096945

  10. Effect of reduction time on third order optical nonlinearity of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.

    2017-04-01

    We report the influence of reduction time on structural, linear and nonlinear optical properties of reduced graphene oxide (rGO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned with reduction time in GO is due to the increased structural ordering because of the restoration of sp2 carbon atoms with the time of reduction. The nonlinear absorption studies by open aperture Z-scan technique exhibited a saturable absorption. The nonlinear refraction studies showed the self de focusing nature of rGO by closed aperture Z scan technique. The nonlinear absorption coefficient and saturation intensity varies with the time for reduction of GO which is attributed to the depletion of valence band and the conduction band filling effect. Our results emphasize duration for reduction of GO dependent optical nonlinearity of rGO thin films to a great extent and explore its applications Q switched mode locking laser systems for generating ultra short laser pulses and in optical sensors. The rGO coated films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.

  11. Study on the Lattice Dynamics of the Argyrodite Ag8GeTe6

    NASA Astrophysics Data System (ADS)

    Hitchcock, Dale; Thompson, Emily; He, Jian; Bredesen, Isaac; Keppends, Veelre; Mandrus, David

    2014-03-01

    Ag8GeTe6 was initially studied as a super ionic-electronic mixed conductor in the 1970s, and more recently has attracted new interest for its thermoelectric performance. A key to the desirable thermoelectric performance of Ag8GeTe6 is its exceptionally low lattice thermal conductivity (~ 0.25W/m*K at 300K), which is intimately related to its structure, consecutive structural instabilities, and unusual lattice dynamics (e.g., anharmonicity). In this work, we have studied Ag8GeTe6 by means of thermal conductivity, electrical conductivity, Seebeck coefficient, Hall coefficient, magnetic susceptibility, resonant ultrasound spectroscopy (RUS), photoacoustic spectroscopy, and synchrotron x-ray diffraction at low temperatures in order to further understand the coexistence of mixed conduction and high thermoelectric performance at elevated temperatures. This work is supported by NSF DMR 1307740.

  12. Studies on the chemical synthesis and characterization of lead oxide nanoparticles with different organic capping agents

    NASA Astrophysics Data System (ADS)

    Arulmozhi, K. T.; Mythili, N.

    2013-12-01

    Lead oxide (PbO) nanoparticles were chemically synthesized using Lead (II) acetate as precursor. The effects of organic capping agents such as Oleic acid, Ethylene Diamine Tetra Acetic acid (EDTA) and Cetryl Tri Methyl Butoxide (CTAB) on the size and morphology of the nanoparticles were studied. Characterization techniques such as X-ray diffraction (XRD), Fourier Transform-Infrared spectroscopy (FT-IR), Photoluminescence (PL) Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM) were used to analyse the prepared nanoparticles for their physical, structural and optical properties. The characterization studies reveal that the synthesized PbO nanoparticles had well defined crystalline structure and sizes in the range of 25 nm to 36 nm for capping agents used and 40 nm for pure PbO nanoparticles.

  13. Doubly resonant three-wave-mixing spectroscopy of a chiral coupled-chromophore system in solution: coherent two-dimensional optical activity spectroscopy.

    PubMed

    Cheon, Sangheon; Lee, Hochan; Choi, Jun-Ho; Cho, Minhaeng

    2007-02-07

    Theoretical descriptions of doubly resonant two-dimensional (2D) sum-frequency-generation (SFG) and difference-frequency-generation (DFG) spectroscopies of coupled-chromophore systems are presented. Despite that each electronic or vibrational chromophore is achiral, the interaction-induced chirality of a coupled multichromophore system in solution can be measured by using the doubly resonant 2D three-wave-mixing (3WM) spectroscopic method. An electronically coupled dimer, where each monomer is modeled as a simple two-level system, can have nonvanishing SFG (or DFG) properties, e.g., susceptibility in frequency domain or nonlinear response function in time domain, if the induced dipole vector of the dimer is not orthogonal to the vector product of the two monomer electronic transition dipole vectors. In order to demonstrate that these 2D 3WM spectroscopic methods can be used to determine the solution structure of a polypeptide, the authors carried out quantum chemistry calculations for an alanine dipeptide and obtained first- and second-order dipole derivatives associated with the amide I vibrational transitions of the dipeptide. It is shown that the numerically simulated 2D IR-IR SFG spectrum is highly sensitive to the dipeptide secondary structure and provides rich information on the one- and two-exciton states. It is believed that the theoretically proposed doubly resonant 2D 3WM spectroscopy, which can be considered to be an optical activity spectroscopy, will be of use in studying both structural and dynamical aspects of coupled multichromophore systems, such as proteins, nucleic acids, nanoparticle aggregates etc.

  14. Elucidating Peptide and Protein Structure and Dynamics: UV Resonance Raman Spectroscopy

    PubMed Central

    Oladepo, Sulayman A.; Xiong, Kan; Hong, Zhenmin; Asher, Sanford A.

    2011-01-01

    UV resonance Raman spectroscopy (UVRR) is a powerful method that has the requisite selectivity and sensitivity to incisively monitor biomolecular structure and dynamics in solution. In this perspective, we highlight applications of UVRR for studying peptide and protein structure and the dynamics of protein and peptide folding. UVRR spectral monitors of protein secondary structure, such as the Amide III3 band and the Cα-H band frequencies and intensities can be used to determine Ramachandran Ψ angle distributions for peptide bonds. These incisive, quantitative glimpses into conformation can be combined with kinetic T-jump methodologies to monitor the dynamics of biomolecular conformational transitions. The resulting UVRR structural insight is impressive in that it allows differentiation of, for example, different α-helix-like states that enable differentiating π- and 310- states from pure α-helices. These approaches can be used to determine the Gibbs free energy landscape of individual peptide bonds along the most important protein (un)folding coordinate. Future work will find spectral monitors that probe peptide bond activation barriers that control protein (un)folding mechanisms. In addition, UVRR studies of sidechain vibrations will probe the role of side chains in determining protein secondary, tertiary and quaternary structures. PMID:21379371

  15. Evaluation of protein immobilization capacity on various carbon nanotube embedded hydrogel biomaterials.

    PubMed

    Derkus, Burak; Emregul, Kaan Cebesoy; Emregul, Emel

    2015-11-01

    This study investigates effective immobilization of proteins, an important procedure in many fields of bioengineering and medicine, using various biomaterials. Gelatin, alginate and chitosan were chosen as polymeric carriers, and applied in both their composites and nanocomposite forms in combination with carbon nanotubes (CNTs). The prepared nano/composite structures were characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TG) and contact angle analysis (CA). Electrochemical impedance spectroscopy analysis revealed gelatin composites in general to exhibit better immobilization performance relative to the native gelatin which can be attributed to enhanced film morphologies of the composite structures. Moreover, superior immobilization efficiencies were obtained with the addition of carbon nanotubes, due to their conducting and surface enhancement features, especially in the gelatin-chitosan structures due to the presence of structural active groups. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Structure elucidation of dimeric transmembrane domains of bitopic proteins.

    PubMed

    Bocharov, Eduard V; Volynsky, Pavel E; Pavlov, Konstantin V; Efremov, Roman G; Arseniev, Alexander S

    2010-01-01

    The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.

  17. Positron annihilation lifetime spectroscopy (PALS) study of the as prepared and calcined MFI zeolites

    NASA Astrophysics Data System (ADS)

    Bosnar, Sanja; Vrankić, Martina; Bosnar, Damir; Ren, Nan; Šarić, Ankica

    2017-11-01

    The synthesis of high silica zeolites in many cases implies the usage of organic structural direction agents (SDA). However, to manifest their functionalities, the SDA occluded inside the channels of the as-synthesized structure should be removed, usually by a high temperature treatment (calcination). In this paper, the positron annihilation lifetime spectroscopy (PALS) was used to monitor the development of accessible spaces, their sizes and distributions in MFI zeolites, ZSM-5 and silicalite-1 in order to give an additional insight in the process of the SDA removal. For that purpose, a conventional PALS setup with 22Na positron source was applied. It was established that there is a pronounced difference between positron annihilation data for these two zeolites of the same structural type. The samples were additionally analysed by X-ray powder diffraction at room temperature with a crystal structure refinement and thermogravimetry.

  18. Effect of Zn doping on structural, optical and thermal properties of CeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ramasamy, V.; Vijayalakshmi, G.

    2015-09-01

    The undoped and Zn doped CeO2 nanoparticles were synthesized by chemical precipitation method at room temperature. The undoped and Zn doped CeO2 nanoparticles have been characterized by X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), ultraviolet visible and photoluminescence (PL) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and thermogravimetry and differential thermal analysis (TG-DTA). The cubic fluorite structures of the CeO2 nanoparticles were determined by XRD. The influence of particle size on structural parameters such as lattice parameter (a), inter planar distance (d), dislocation density (δ), microstrain (ε), lattice strain (η) and texture co-efficient (TC) were also determined. The lattice strains were determined by Williamson-Hall plot method. The effect of Zn doping with shifting of the bands were observed by UV-Vis spectroscopy and also their optical band gap were determined. The emission spectra and energy band diagram of the undoped and Zn doped samples were derived from PL spectroscopy. The structural bond vibrations of undoped and Zn doped CeO2 nanoparticles were analyzed by FTIR spectroscopy. The thermal property (weight loss and decomposition) of the sample is observed by TG-DTA curve.

  19. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems

    NASA Astrophysics Data System (ADS)

    Ildefonse, Ph.; Calas, G.; Flank, A. M.; Lagarde, P.

    1995-05-01

    Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaOsbnd MgOsbnd 2SiO2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mgsbnd O distances of 2.01Å. In aluminosilicate gels, Alsbnd K XANES has been used to investigate the [4]Al/Altotal ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Sisbnd K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si= 1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels.

  20. Membrane transporters studied by EPR spectroscopy: structure determination and elucidation of functional dynamics.

    PubMed

    Mullen, Anna; Hall, Jenny; Diegel, Janika; Hassan, Isa; Fey, Adam; MacMillan, Fraser

    2016-06-15

    During their mechanistic cycles membrane transporters often undergo extensive conformational changes, sampling a range of orientations, in order to complete their function. Such membrane transporters present somewhat of a challenge to conventional structural studies; indeed, crystallization of membrane-associated proteins sometimes require conditions that vary vastly from their native environments. Moreover, this technique currently only allows for visualization of single selected conformations during any one experiment. EPR spectroscopy is a magnetic resonance technique that offers a unique opportunity to study structural, environmental and dynamic properties of such proteins in their native membrane environments, as well as readily sampling their substrate-binding-induced dynamic conformational changes especially through complementary computational analyses. Here we present a review of recent studies that utilize a variety of EPR techniques in order to investigate both the structure and dynamics of a range of membrane transporters and associated proteins, focusing on both primary (ABC-type transporters) and secondary active transporters which were key interest areas of the late Professor Stephen Baldwin to whom this review is dedicated. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  1. Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet

    NASA Astrophysics Data System (ADS)

    Mohammadian-Kohol, M.; Asgari, M.; Shakur, H. R.

    2018-04-01

    In this study, the effects of gamma radiation on the chemical structure, mechanical and optical properties of polytetrafluoroethylene (PTFE) sheet were investigated with various doses up to 12 kGy. The chemical changes in the structure were studied by FTIR spectroscopy. Also, effects of radiation on the different mechanical parameters such as Young's modulus, toughness, strain, and stress were studied at the maximum tolerable force and the fracture points. Furthermore, changing the various optical parameters such as absorption coefficient, Urbach energy, optical band gaps, refractive index, optical dispersion parameters and plasma resonance frequency were studied by UV-visible spectroscopy. Formation of a band at 1594 cm-1, which was belonged to double carbon bonds, indicated that chain-scission was occurred at 12 kGy gamma irradiation dose. As well, the mechanical results showed an increase in the elastic behavior of PTFE sheets and a decrease in the plastic behavior of it with absorbed dose increasing. Moreover, the results showed that gamma irradiation can effectively change the various optical properties of PTFE sheets due to different phenomena such as degradation of the main chains, occurring chain-scission, formation of free radicals and cross-linking in the polymer structure.

  2. A study of the phosphate mineral kapundaite NaCa(Fe3+)4(PO4)4(OH)3ṡ5(H2O) using SEM/EDX and vibrational spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Xi, Yunfei; Scholz, Ricardo

    2014-03-01

    Vibrational spectroscopy enables subtle details of the molecular structure of kapundaite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Kapundaite is the Fe3+ member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of kapundaite with wardite. The Raman spectrum of kapundaite in the 800-1400 cm-1 spectral range shows two intense bands at 1089 and 1114 cm-1 assigned to the ν1PO43- symmetric stretching vibrations. The observation of two bands provides evidence for the non-equivalence of the phosphate units in the kapundaite structure. The infrared spectrum of kapundaite in the 500-1300 cm-1 shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 966, 1003 and 1036 cm-1 and are attributed to the ν1PO43- symmetric stretching mode and ν3PO43- antisymmetric stretching mode. Raman bands in the ν4 out of plane bending modes of the PO43- unit support the concept of non-equivalent phosphate units in the kapundaite structure. In the 2600-3800 cm-1 spectral range, Raman bands for kapundaite are found at 2905, 3151, 3311, 3449 and 3530 cm-1. These bands are broad and are assigned to OH stretching vibrations. Broad infrared bands are also found at 2904, 3105, 3307, 3453 and 3523 cm-1 and are attributed to water. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of kapundaite to be ascertained and compared with that of other phosphate minerals.

  3. Spectroscopic studies on the conformational transitions of a bovine growth hormone releasing factor analog

    NASA Astrophysics Data System (ADS)

    Sarver, Ronald W.; Friedman, Alan R.; Thamann, Thomas J.

    1997-10-01

    The secondary structure of the bovine growth hormone releasing factor analog, [Ile 2, Ser 8,28, Ala 15, Leu 27, Hse 30] bGRF(1-30)-NH-Ethyl, acetate salt (U-90699F) was studied in solution by Fourier transform infrared and Raman spectroscopies. Spectroscopic studies revealed that concentrated aqueous solutions of U-90699F (100 mg ml -1) undergo a secondary structure transition from disordered coil/α-helix to intermolecular β-sheet. Disordered coil and α-helical structure were grouped together in the infrared and Raman studies since the amide I vibrations are close in frequency and overlap in assignments was possible. Before the conformational transition, the facile exchange of the peptide's amide hydrogens for deuterium indicated that the majority of amide hydrogens were readily accessible to solvent. The kinetics of the conformational transition coincided with an increase in solution viscosity and turbidity. An initiation phase preceded the conformational transition during which only minor spectral changes were observed by infrared spectroscopy. The initiation phase and reaction kinetics were consistent with a highly cooperative nucleation ultimately leading to a network of intermolecular β-sheet structure and gel formation. Increased temperature accelerated the conformational transition. The conformational transition was thermally irreversible but the β-sheet structure of aggregated or gelled peptide could be disrupted by dilution and agitation.

  4. The effect of heat treatment on structural and electronic properties of niobium nitride prepared by a thermal diffusion method

    DOE PAGES

    Farha, Ashraf Hassan; Ozkendir, Osman Murat; Elsayed-Ali, Hani E.; ...

    2016-11-15

    NbN coatings are prepared onto Nb substrate by thermal diffusion at high temperatures. The formation of NbN coating by thermal diffusion was studied in the range of 1250-1500 °C at constant nitrogen background gas pressure (1.3x10 -3 Pa) and processing time (180 min). The electronic and crystal structures of the NbN coatings were investigated. It was found that nitrogen diffuses into Nb forming the Nb-N solid solution (bcc) a-NbN phase that starts to appear above 1250 °C. Increasing the processing temperature gives richer a-phase concentration. Besides, X-ray absorption spectroscopy (XAS) was performed to study the electronic structure of the NbNmore » layer. The results of the electronic structural study corroborate the crystal structural analysis. The Nb M 3,2 edge X-ray absorption spectroscopy (XAS) spectrum shows strong temperature dependence. At the highest processing temperature (1500 °C), the number of d holes increased. Nitrogen diffusion into Nb is resulting to increase electrostatic interaction between d electron and core hole. Lastly, for the studied conditions, only the α-NbN was observed in the X-ray diffraction patterns.« less

  5. The effect of heat treatment on structural and electronic properties of niobium nitride prepared by a thermal diffusion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farha, Ashraf Hassan; Ozkendir, Osman Murat; Elsayed-Ali, Hani E.

    NbN coatings are prepared onto Nb substrate by thermal diffusion at high temperatures. The formation of NbN coating by thermal diffusion was studied in the range of 1250-1500 °C at constant nitrogen background gas pressure (1.3x10 -3 Pa) and processing time (180 min). The electronic and crystal structures of the NbN coatings were investigated. It was found that nitrogen diffuses into Nb forming the Nb-N solid solution (bcc) a-NbN phase that starts to appear above 1250 °C. Increasing the processing temperature gives richer a-phase concentration. Besides, X-ray absorption spectroscopy (XAS) was performed to study the electronic structure of the NbNmore » layer. The results of the electronic structural study corroborate the crystal structural analysis. The Nb M 3,2 edge X-ray absorption spectroscopy (XAS) spectrum shows strong temperature dependence. At the highest processing temperature (1500 °C), the number of d holes increased. Nitrogen diffusion into Nb is resulting to increase electrostatic interaction between d electron and core hole. Lastly, for the studied conditions, only the α-NbN was observed in the X-ray diffraction patterns.« less

  6. Magnetic, ferroelectric, and spin phonon coupling studies of Sr{sub 3}Co{sub 2}Fe{sub 24}O{sub 41} multiferroic Z-type hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raju, N.; Shravan Kumar Reddy, S.; Ramesh, J.

    2016-08-07

    The magnetic, Raman, ferroelectric, and in-field {sup 57}Fe Mössbauer studies of polycrystalline multiferroic Sr{sub 3}Co{sub 2}Fe{sub 24}O{sub 41} are reported in this paper. From the magnetization studies, it is observed that the sample is soft magnetic in nature with low temperature magnetic spin transitions like longitudinal to transverse conical structure around 130 K and change in magnetic crystalline anisotropy from conical to planar structure at 250 K. Ferroelectric studies of the sample exhibit the spontaneous polarization at low temperature. Strong spin phonon and spin lattice coupling is observed through low temperature Raman spectroscopy. From the in-field {sup 57}Fe Mössbauer spectroscopy, spin upmore » and spin down site occupations of Fe ions are calculated in the unit cell.« less

  7. Interaction of DNA with Simple and Mixed Ligand Copper(II) Complexes of 1,10-Phenanthrolines as Studied by DNA-Fiber EPR Spectroscopy

    PubMed Central

    Chikira, Makoto; Ng, Chew Hee; Palaniandavar, Mallayan

    2015-01-01

    The interaction of simple and ternary Cu(II) complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II) complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR) spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements. PMID:26402668

  8. New insights into heat induced structural changes of pectin methylesterase on fluorescence spectroscopy and molecular modeling basis

    NASA Astrophysics Data System (ADS)

    Nistor, Oana Viorela; Stănciuc, Nicoleta; Aprodu, Iuliana; Botez, Elisabeta

    2014-07-01

    Heat-induced structural changes of Aspergillus oryzae pectin methylesterase (PME) were studied by means of fluorescence spectroscopy and molecular modeling, whereas the functional enzyme stability was monitored by inactivation studies. The fluorescence spectroscopy experiments were performed at two pH value (4.5 and 7.0). At both pH values, the phase diagrams were linear, indicating the presence of two molecular species induced by thermal treatment. A red shift of 7 nm was observed at neutral pH by increasing temperature up to 60 °C, followed by a blue shift of 4 nm at 70 °C, suggesting significant conformational rearrangements. The quenching experiments using acrylamide and iodide demonstrate a more flexible conformation of enzyme with increasing temperature, especially at neutral pH. The experimental results were complemented with atomic level observations on PME model behavior after performing molecular dynamics simulations at different temperatures. The inactivation kinetics of PME in buffer solutions was fitted using a first-order kinetics model, resulting in activation energy of 241.4 ± 7.51 kJ mol-1.

  9. Microstructure and conductivity of in-situ polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) crystals

    NASA Astrophysics Data System (ADS)

    Liu, Jinglin; Ouyang, Liangqi; Wu, Jinghang; Kuo, Chin-Chen; Wei, Bin; Martin, David

    2013-03-01

    Conjugated polymers are widely used in organic solar cells, biomedical devices, and chemical sensors. Both chemical and electrochemical methods have been developed for preparing conducting polymers, but the extent of crystalline order is usually modest. Here we synthesized highly-ordered brominated (3,4-ethylenedioxythiophene) (EDOT-Br) monomer crystals via electrochemical methods. The kinetics of the synthesis was studied with a Quartz Crystal Microbalance (QCM) and Cyclic Voltammetry (CV). The chemical structure of the EDOT-Br monomer has been confirmed by Nuclear Magnetic Resonance (NMR), Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and Mass Spectrometry (MS). The EDOT-Br monomer crystals can be in-situ polymerized into highly ordered PEDOT conjugated polymer crystals by annealing at temperatures below the EDOT-Br melting point. The crystalline structure was studied by optical microscopy, electron microscopy and X-Ray analysis. The conductivity and electrochemical properties of both the EDOT-Br monomer and corresponding PEDOT polymer crystals were examined with electrochemical impedance spectroscopy (EIS) and CV. This work was supported by NSF, DMR- 1103027.

  10. X-ray diffraction, Raman, and photoacoustic studies of ZnTe nanocrystals

    NASA Astrophysics Data System (ADS)

    Ersching, K.; Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Souza, S. M.; da Silva, D. L.; Pizani, P. S.

    2009-06-01

    Nanocrystalline ZnTe was prepared by mechanical alloying. X-ray diffraction (XRD), energy dispersive spectroscopy, Raman spectroscopy, and photoacoustic absorption spectroscopy techniques were used to study the structural, chemical, optical, and thermal properties of the as-milled powder. An annealing of the mechanical alloyed sample at 590 °C for 6 h was done to investigate the optical properties in a defect-free sample (close to bulk form). The main crystalline phase formed was the zinc-blende ZnTe, but residual trigonal tellurium and hexagonal ZnO phases were also observed for both as-milled and annealed samples. The structural parameters, phase fractions, average crystallite sizes, and microstrains of all crystalline phases were obtained from Rietveld analyses of the X-ray patterns. Raman results corroborate the XRD results, showing the longitudinal optical phonons of ZnTe (even at third order) and those modes of trigonal Te. Nonradiative surface recombination and thermal bending heat transfer mechanisms were proposed from photoacoustic analysis. An increase in effective thermal diffusivity coefficient was observed after annealing and the carrier diffusion coefficient, the surface recombination velocity, and the recombination time parameters remained the same.

  11. Arsenic Re-Mobilization in Water Treatment Adsorbents Under Reducing Conditions: Part II, XAS and Modeling Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu,S.; Jing, C.; Meng, X.

    2008-01-01

    The mechanism of arsenic re-mobilization in spent adsorbents under reducing conditions was studied using X-ray absorption spectroscopy and surface complexation model calculations. X-ray absorption near edge structure (XANES) spectroscopy demonstrated that As(V) was partially reduced to As(III) in spent granular ferric hydroxide (GFH), titanium dioxide (TiO2), activated alumina (AA) and modified activated alumina (MAA) adsorbents after 2 years of anaerobic incubation. As(V) was completely reduced to As(III) in spent granular ferric oxide (GFO) under 2-year incubation. The extended X-ray absorption fine structure (EXAFS) spectroscopy analysis showed that As(III) formed bidentate binuclear surface complexes on GFO as evidenced by an averagemore » As(III)-O bond distance of 1.78 Angstroms and As(III)-Fe distance of 3.34 Angstroms . The release of As from the spent GFO and TiO2 was simulated using the charge distribution multi-site complexation (CD-MUSIC) model. The observed redox ranges for As release and sulfate mobility were described by model calculations.« less

  12. High-harmonic spectroscopy of aligned molecules

    NASA Astrophysics Data System (ADS)

    Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee

    2017-01-01

    High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.

  13. X-Ray Absorption near Edge Structure Spectroscopy of Nanodiamonds from the Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Hill, H.; Jacobsen, C.; Wirick, S.

    2000-01-01

    Carbon X-ray Absorption Near Edge Structure Spectroscopy shows Allende DM nanodiamonds have two pre-edge peaks, consistent with other small diamonds, but fail to show a diamond exciton which is seen in 3.6 nm diamond thin films.

  14. Ricin, ricin agglutinin, and the ricin binding subunit structural comparison by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Brandt, N. N.; Chikishev, A. Yu.; Sotnikov, A. I.; Savochkina, Yu. A.; Agapov, I. I.; Tonevitsky, A. G.

    2005-02-01

    Raman spectroscopy is used to study conformation-sensitive vibrational bands of the plant toxins ricin and ricin agglutinin and the ricin binding subunit in aqueous solution. The analysis of the Raman data yields the conformational state of the protein molecules differing from that predicted by the X-ray data. The differences and similarities in the conformational state of ricin, ricin agglutinin, and ricin binding subunit are discussed.

  15. The static structure and dynamics of cadmium sulfide nanoparticles within poly(styrene- block-isoprene) diblock copolymer melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Woo -Sik; Koo, Peter; Bryson, Kyle

    Here, the static structure and dynamic behavior of cadmium sulfide nanoparticles suspended in block copolymer matrix are investigated using transmission electron microscopy, small-angle X-ray scattering, and X-ray photon correlation spectroscopy. The transmission electron micro- scopy study shows that cadmium sulfide nanoparticles are preferentially segregated within the polyisoprene domain of a poly(styrene- block-isoprene) diblock copolymer. For the dynamics study, X-ray photon correlation spectroscopy captures the relaxation process of cadmium sulfide nanoparticles. The measured characteristic relaxation time reveals that the observed dynamics are hyperdiffusive. The characteristic velocity and corresponding activation energy, which are hallmarks of a hyperdiffusive system, are determined from themore » relationship between the characteristic relaxation time and the wavevector.« less

  16. The static structure and dynamics of cadmium sulfide nanoparticles within poly(styrene- block-isoprene) diblock copolymer melts

    DOE PAGES

    Jang, Woo -Sik; Koo, Peter; Bryson, Kyle; ...

    2015-12-20

    Here, the static structure and dynamic behavior of cadmium sulfide nanoparticles suspended in block copolymer matrix are investigated using transmission electron microscopy, small-angle X-ray scattering, and X-ray photon correlation spectroscopy. The transmission electron micro- scopy study shows that cadmium sulfide nanoparticles are preferentially segregated within the polyisoprene domain of a poly(styrene- block-isoprene) diblock copolymer. For the dynamics study, X-ray photon correlation spectroscopy captures the relaxation process of cadmium sulfide nanoparticles. The measured characteristic relaxation time reveals that the observed dynamics are hyperdiffusive. The characteristic velocity and corresponding activation energy, which are hallmarks of a hyperdiffusive system, are determined from themore » relationship between the characteristic relaxation time and the wavevector.« less

  17. Field enhanced graphene based dual hexagonal ring optical antenna for tip-enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Aditya, Rachakonda A. N. S.; Thampy, Anand Sreekantan

    2018-05-01

    Field enhanced graphene based dual hexagonal ring optical antenna has been designed in IR regime. Outcomes of hexagonal rings with gold and graphene materials and their effect has been studied and analyzed. Graphene based structures are found to have better and enhanced results as compared to that of gold. In addition, a two fold increase in bandwidth (∼30 THz) and cross-section (∼6.00E+06 nm2) has been observed in case of graphene. Field patterns for various tip/corner curvatures are simulated and localized/regional field patterns are justified. The effect of inter ring spacing on absorption cross section has been studied for every 10 nm increase in spacing. This absorption enhancement in addition to field localization makes the current structure feasible for tip enhanced spectroscopy.

  18. Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Manimunda, Praveena; Hintsala, Eric; Asif, Syed; Mishra, Manish Kumar

    2017-01-01

    The ability to correlate mechanical and chemical characterization techniques in real time is both lacking and powerful tool for gaining insights into material behavior. This is demonstrated through use of a novel nanoindentation device equipped with Raman spectroscopy to explore the deformation-induced structural changes in piroxicam crystals. Mechanical anisotropy was observed in two major faces ( 0bar{1}1 ) and (011), which are correlated to changes in the interlayer interaction from in situ Raman spectra recorded during indentation. The results of this study demonstrate the considerable potential of an in situ Raman nanoindentation instrument for studying a variety of topics, including stress-induced phase transformation mechanisms, mechanochemistry, and solid state reactivity under mechanical forces that occur in molecular and pharmaceutical solids.

  19. Picosecond Phase Grating Spectroscopy of Hemoglobin and Myoglobin: Vibrational Relaxation and Global Protein Motions.

    NASA Astrophysics Data System (ADS)

    Genberg, Laura Lynn

    The vibrational energy relaxation pathways from optically excited met heme proteins have been studied using the technique of picosecond phase grating spectroscopy. Vibrational energy transfer from the porphyrin ring to the protein backbone leads to extensive delocalization of the energy in the protein matrix which is efficiently transferred to the water interface in less than 20 ps. A slower relaxation process on the nanosecond time scale is also observed. The slow relaxation component is attributed to slow conformational relaxation processes of high potential energy states of the heme proteins. These states are accessed during the high internal energy conditions of the optically excited molecules. In addition, a detailed theoretical analysis of this form of spectroscopy is presented that explains the effects of delayed thermal energy deposition on grating dynamics. The effects of optical pulse shape and duration are also treated. The observable in this technique is not an electronic polarization, but is derived from a response of the material fields to changes in the lattice temperature. Phase grating spectroscopy is also used to observe picosecond tertiary structural changes in both myoglobin and hemoglobin following CO photodissociation. The original interest in this experiment was to ascertain whether local minima are accessed during the highly exothermic conditions following photodissociation, as was observed in the met heme studies. Photodissociation of CO induces a well defined ligated to deoxy structure transition that is important to the functionality of these proteins. Using grating spectroscopy, protein driven density waves are observed on a picosecond time scale. These waves are launched by the tertiary structural changes that occur in both hemoglobin and myoglobin. The exact shape and amplitude of these waves reveal the time scale for the motion as well as the energetics for these protein motions. This result demonstrates that tertiary structure changes are global in nature and occur on an extremely fast time scale. This provides new insight into the biomechanics of conformational changes in proteins and lends support to theoretical models invoking stored strain energy as the driving force for large amplitude correlated motions.

  20. Applications of Silicon-on-Insulator Photonic Crystal Structures in Miniature Spectrometer Designs

    NASA Astrophysics Data System (ADS)

    Gao, Boshen

    Optical spectroscopy is one of the most important fundamental scientific techniques. It has been widely adopted in physics, chemistry, biology, medicine and many other research fields. However, the size and weight of a spectrometer as well as the difficulty to align and maintain it have long limited spectroscopy to be a laboratory-only procedure. With the recent advancement in semiconductor electronics and photonics, miniaturized spectrometers have been introduced to complete many tasks in daily life where mobility and portability are necessary. This thesis focuses on the study of several photonic crystal (PC) nano-structures potentially suitable for miniaturized on-chip spectrometer designs. Chapter 1 briefly introduces the concept of PCs and their band structures. By analyzing the band structure, the origin of the superprism effect is explained. Defect-based PC nano-cavities are also discussed, as well as a type of coupled cavity waveguides (CCW) composed of PC nano-cavities. Chapter 2 is devoted to the optimization of a flat-band superprism structure for spectroscopy application using numerical simulations. Chapter 3 reports a fabricated broad-band superprism and the experimental characterization of its wavelength resolving performance. In chapter 4, the idea of composing a miniature spectrometer based on a single tunable PC nano-cavity is proposed. The rest of this chapter discusses the experimental study of this design. Chapter 5 examines the slow-light performance of a CCW and discusses its potential application in slow-light interferometry. Chapter 6 serves as a conclusion of this thesis and proposes directions for possible future work to follow up.

  1. On a Molecular Basis, Investigate Association of Molecular Structure with Bioactive Compounds, Anti-Nutritional Factors and Chemical and Nutrient Profiles of Canola Seeds and Co-Products from Canola Processing: Comparison Crusher Plants within Canada and within China as well as between Canada and China.

    PubMed

    Gomaa, Walaa M S; Mosaad, Gamal M; Yu, Peiqiang

    2018-04-21

    The objectives of this study were to: (1) Use molecular spectroscopy as a novel technique to quantify protein molecular structures in relation to its chemical profiles and bioenergy values in oil-seeds and co-products from bio-oil processing. (2) Determine and compare: (a) protein molecular structure using Fourier transform infrared (FT/IR-ATR) molecular spectroscopy technique; (b) bioactive compounds, anti-nutritional factors, and chemical composition; and (c) bioenergy values in oil seeds (canola seeds), co-products (meal or pellets) from bio-oil processing plants in Canada in comparison with China. (3) Determine the relationship between protein molecular structural features and nutrient profiles in oil-seeds and co-products from bio-oil processing. Our results showed the possibility to characterize protein molecular structure using FT/IR molecular spectroscopy. Processing induced changes between oil seeds and co-products were found in the chemical, bioenergy profiles and protein molecular structure. However, no strong correlation was found between the chemical and nutrient profiles of oil seeds (canola seeds) and their protein molecular structure. On the other hand, co-products were strongly correlated with protein molecular structure in the chemical profile and bioenergy values. Generally, comparisons of oil seeds (canola seeds) and co-products (meal or pellets) in Canada, in China, and between Canada and China indicated the presence of variations among different crusher plants and bio-oil processing products.

  2. Ground-State Hyperfine Structure of Heavy Hydrogen-Like Ions

    NASA Astrophysics Data System (ADS)

    Kühl, T.; Borneis, S.; Dax, A.; Engel, T.; Faber, S.; Gerlach, M.; Holbrow, C.; Huber, G.; Marx, D.; Merz, P.; Quint, W.; Schmitt, F.; Seelig, P.; Tomaselli, M.; Winter, H.; Wuertz, M.; Beckert, K.; Franzke, B.; Nolden, F.; Reich, H.; Steck, M.

    Contributions of quantum electrodynamics (QED) to the combined electric and magnetic interaction between the electron and the nucleus can be studied by optical spectroscopy in high-Z hydrogen-like heavy ions. The transition studied is the ground-state hyperfine structure transition, well known from the 21 cm line in atomic hydrogen. The hyperfine splitting of the is ground state of hydrogen-like systems constitutes the simplest and most basic magnetic interaction in atomic physics. The Z3-increase leads to a transition energy in the UV-region of the optical spectrum for the case of Bi82+. At the same time, the QED correction rises to nearly 1 fraction of higher order contributions. This situation is particularly useful for a comparison with non-perturbative QED calculations. The combination of exceptionally intense electric and magnetic fields electric and magnetic fields is unique. This transition has become accessible to precision laser spectroscopy at the high-energy heavy-ion storage ring at GSI-Darmstadt in the hydrogen-like 209Bi82+ and 207Pb81+. In the meantime, 165Ho66+ and 185,187Re74+ were also studied with reduced resolution by conventional optical spectroscopy at the SuperEBIT ion trap at Lawrence Livermore National Laboratory.

  3. Force spectroscopy studies on protein-ligand interactions: a single protein mechanics perspective.

    PubMed

    Hu, Xiaotang; Li, Hongbin

    2014-10-01

    Protein-ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein-ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein-ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein-ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Raman study of opal at high pressure

    NASA Astrophysics Data System (ADS)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  5. The green hydrothermal synthesis of nanostructured Cu2ZnSnSe4 as solar cell material and study of their structural, optical and morphological properties

    NASA Astrophysics Data System (ADS)

    Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.

    2017-12-01

    Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.

  6. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    NASA Astrophysics Data System (ADS)

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; Cho, Hsiao-Mei; Doriese, William B.; Fowler, Joseph W.; Gaffney, Kelly; Gard, Johnathon D.; Hilton, Gene C.; Kenney, Chris; Knight, Jason; Li, Dale; Marks, Ronald; Minitti, Michael P.; Morgan, Kelsey M.; O'Neil, Galen C.; Reintsema, Carl D.; Schmidt, Daniel R.; Sokaras, Dimosthenis; Swetz, Daniel S.; Ullom, Joel N.; Weng, Tsu-Chien; Williams, Christopher; Young, Betty A.; Irwin, Kent D.; Solomon, Edward I.; Nordlund, Dennis

    2017-12-01

    We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.

  7. Current Advances in the Application of Raman Spectroscopy for Molecular Diagnosis of Cervical Cancer

    PubMed Central

    Ramos, Inês Raquel Martins; Malkin, Alison; Lyng, Fiona Mary

    2015-01-01

    Raman spectroscopy provides a unique biochemical fingerprint capable of identifying and characterizing the structure of molecules, cells, and tissues. In cervical cancer, it is acknowledged as a promising biochemical tool due to its ability to detect premalignancy and early malignancy stages. This review summarizes the key research in the area and the evidence compiled is very encouraging for ongoing and further research. In addition to the diagnostic potential, promising results for HPV detection and monitoring treatment response suggest more than just a diagnosis prospective. A greater body of evidence is however necessary before Raman spectroscopy is fully validated for clinical use and larger comprehensive studies are required to fully establish the role of Raman spectroscopy in the molecular diagnostics of cervical cancer. PMID:26180802

  8. Probing Gas Adsorption in Zeolites by Variable-Temperature IR Spectroscopy: An Overview of Current Research.

    PubMed

    Garrone, Edoardo; Delgado, Montserrat R; Bonelli, Barbara; Arean, Carlos O

    2017-09-15

    The current state of the art in the application of variable-temperature IR (VTIR) spectroscopy to the study of (i) adsorption sites in zeolites, including dual cation sites; (ii) the structure of adsorption complexes and (iii) gas-solid interaction energy is reviewed. The main focus is placed on the potential use of zeolites for gas separation, purification and transport, but possible extension to the field of heterogeneous catalysis is also envisaged. A critical comparison with classical IR spectroscopy and adsorption calorimetry shows that the main merits of VTIR spectroscopy are (i) its ability to provide simultaneously the spectroscopic signature of the adsorption complex and the standard enthalpy change involved in the adsorption process; and (ii) the enhanced potential of VTIR to be site specific in favorable cases.

  9. Interaction of curcumin with Zn(II) and Cu(II) ions based on experiment and theoretical calculation

    NASA Astrophysics Data System (ADS)

    Zhao, Xue-Zhou; Jiang, Teng; Wang, Long; Yang, Hao; Zhang, Sui; Zhou, Ping

    2010-12-01

    Curcumin and its complexes with Zn 2+ and Cu 2+ ions were synthesized and characterized by elemental analysis, mass spectroscopy, IR spectroscopy, UV spectroscopy, solution 1H and solid-state 13C NMR spectroscopy, EPR spectroscopy. In addition, the density functional theory (DFT)-based UV and 13C chemical shift calculations were also performed to view insight into those compound structures and properties. The results show that curcumin easily chelate the metal ions, such as Zn 2+ and Cu 2+, and the Cu(II)-curcumin complex has an ability to scavenge free-radicals. We demonstrated the differences between Zn(II)-curcumin and Cu(II)-curcumin complexes in structure and properties, enhancing the comprehensions about the curcumin roles in the Alzhermer's disease treatment.

  10. Synthesis of electroactive tetraaniline grafted polyethylenimine for tissue engineering

    NASA Astrophysics Data System (ADS)

    Dong, Shilei; Han, Lu; Cai, Muhang; Li, Luhai; Wei, Yan

    2015-07-01

    Tetraaniline grafted polyethylenimine (AT-PEI) was successfully synthesized in this study. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy was used to determine the structure of carboxyl-capped aniline tetramer (AT-COOH) and AT-PEI. UV-Vis spectroscopy and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize the absorption spectrum of the obtained AT-PEI samples. The morphology of AT-PEI copolymers in aqueous solution was determined by Scanning electron microscope (SEM). Moreover, AT-PEI copolymers demonstrated excellent solubility in aqueous solution and possessed electroactivity by cyclic voltammogram (CV) curves, which showed its potential application in the field of tissue engineering.

  11. Raman spectroscopy and atomic force microscopy study of interfacial polytypism in GaP/Ge(111) heterostructures

    NASA Astrophysics Data System (ADS)

    Aggarwal, R.; Ingale, Alka A.; Dixit, V. K.

    2018-01-01

    Effects of lattice and polar/nonpolar mismatch between the GaP layer and Ge(111) substrate are investigated by spatially resolved Raman spectroscopy. The red shifted transverse optical (TO) and longitudinal optical (LO) phonons due to residual strain, along with asymmetry to TO phonon ∼358 cm-1 are observed in GaP/Ge(111). The peak intensity variation of mode ∼358 cm-1 with respect to TO phonon across the crystallographic morphed surface of GaP micro structures is associated with the topographical variations using atomic force microscopy mapping and Raman spectroscopy performed on both in plane and cross-sectional surface. Co-existence of GaP allotropes, i.e. wurtzite phase near heterojunction interface and dominant zinc-blende phase near surface is established using the spatially resolved polarized Raman spectroscopy from the cross sectional surface of heterostructures. This consistently explains effect of surface morphology on Raman spectroscopy from GaP(111). The study shows the way to identify crystalline phases in other advanced semiconductor heterostructures without any specific sample preparation.

  12. Isolation and identification of three potential impurities of pholcodine bulk drug substance.

    PubMed

    Denk, O M; Gray, A I; Skellern, G G; Watson, D G

    2000-07-01

    Three previously unreported manufacturing impurities were isolated from a pholcodine mother liquor using preparative reversed-phase HPLC. The liquor was the residue remaining after recrystallisation of a production batch of pholcodine. The impurities, which are structurally related to pholcodine, were initially detected by thin-layer chromatography (TLC). Their structures were determined after separation by preparative HPLC (Econo-Prep 5 microm C18 column, 30 cm x 21.2 mm i.d.). Structure elucidation was carried out using nuclear magnetic resonance (NMR) spectroscopy, mass spectroscopy (MS) and ultra violet (UV) spectroscopy. The impurities were identified as alkylated derivatives of pholcodine possessing second 2-morpholinoethyl substituents at various positions.

  13. Mössbauer studies of heterobimetallic and heterotrimetallic compounds containing iron and tin

    NASA Astrophysics Data System (ADS)

    de Lima, Geraldo M.; A. L. Filgueiras, Carlos; Abras, Anuar

    1994-12-01

    A series of ferrocene derivatives was prepared and studied by57Fe and119Sn Mössbauer spectroscopy, as well as by other techniques such as NMR and IR spectroscopies. These complexes can be divided into three types: mercurated, organotin derivatives of ferrocene, and bi- and trimetallic derivatives of 1,1'-bis(diphenylphosphino)ferrocene. Iron did not show great variation in its Mössbauer parameters in the compounds, in spite of their diversity; tin, however, gave important Mössbauer data for the elucidation of bonding and structural features of the complexes.

  14. Laser spectroscopy of phonons and rotons in superfluid helium doped with Dy atoms

    NASA Astrophysics Data System (ADS)

    Moroshkin, P.; Borel, A.; Kono, K.

    2018-03-01

    We report the results of a high-resolution laser-spectroscopy study of dysprosium atoms injected into superfluid 4He. A special attention is paid to the transitions between the inner 4 f and 5 d electronic shells of Dy. The characteristic gap is observed between the zero-phonon line and the phonon wing in the experimental excitation spectrum that arises due to the peculiar structure of the phonon-roton spectrum of superfluid He. This observation resolves the longstanding discrepancy between the studies of bulk superfluid He and He nanodroplets.

  15. An Electrochemical Study on the Copolymer Formed from Piperazine and Aniline Monomers.

    PubMed

    Dkhili, Samiha; López-Bernabeu, Sara; Kedir, Chahineze Nawel; Huerta, Francisco; Montilla, Francisco; Besbes-Hentati, Salma; Morallon, Emilia

    2018-06-14

    A study on the electrochemical oxidation of piperazine and its electrochemical copolymerization with aniline in acidic medium is presented. It was found that the homopolymerization of piperazine cannot be achieved under electrochemical conditions. A combination of electrochemistry, in situ Fourier transform infrared (FTIR), and ex situ X-ray photoelectron spectroscopy (XPS) spectroscopies was used to characterize both the chemical structure and the redox behavior of an electrochemically synthesized piperazine⁻aniline copolymer. The electrochemical sensing properties of the deposited material were also tested against ascorbic acid and dopamine as redox probes.

  16. Deducing 2D Crystal Structure at the Solid/Liquid Interface with Atomic Resolution by Combined STM and SFG Study

    NASA Astrophysics Data System (ADS)

    McClelland, Arthur; Ahn, Seokhoon; Matzger, Adam J.; Chen, Zhan

    2009-03-01

    Supplemented by computed models, Scanning Tunneling Microscopy (STM) can provide detailed structure of 2D crystals formed at the liquid/solid interface with atomic resolution. However, some structural information such as functional group orientations in such 2D crystals needs to be tested experimentally to ensure the accuracy of the deduced structures. Due to the limited sensitivity, many other experimental techniques such as Raman and infrared spectroscopy have not been allowed to provide such structural information of 2D crystals. Here we showed that Sum Frequency Generation Vibrational Spectroscopy (SFG) can measure average orientation of functional groups in such 2D crystals, or physisorbed monolayers, providing key experimental data to aid in the modeling and interpretation of the STM images. The usefulness of combining these two techniques is demonstrated with a phthalate diesters monolayer formed at the 1-phenyloctane/ highly oriented pyrolytic graphite (HOPG) interface. The spatial orientation of the ester C=O of the monolayer was successfully determined using SFG.

  17. Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li 4 P 2 S 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, Christian; Sadowski, Marcel; Sicolo, Sabrina

    Glassy, glass–ceramic, and crystalline lithium thiophosphates have attracted interest in their use as solid electrolytes in all-solid-state batteries. Despite similar structural motifs, including PS 4 3–, P 2S 6 4–, and P 2S 7 4– polyhedra, these materials exhibit a wide range of possible compositions, crystal structures, and ionic conductivities. Here, we present a combined approach of Bragg diffraction, pair distribution function analysis, Raman spectroscopy, and 31P magic angle spinning nuclear magnetic resonance spectroscopy to study the underlying crystal structure of Li 4P 2S 6. In this work, we show that the material crystallizes in a planar structural arrangement asmore » a glass ceramic composite, explaining the observed relatively low ionic conductivity, depending on the fraction of glass content. Calculations based on density functional theory provide an understanding of occurring diffusion pathways and ionic conductivity of this Li + ionic conductor.« less

  18. Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump-Probe Spectroscopy.

    PubMed

    Kundu, Achintya; Błasiak, Bartosz; Lim, Joon-Hyung; Kwak, Kyungwon; Cho, Minhaeng

    2016-03-03

    The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump-probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.

  19. Influence of Ar-ion implantation on the structural and mechanical properties of zirconia as studied by Raman spectroscopy and nanoindentation techniques

    NASA Astrophysics Data System (ADS)

    Kurpaska, L.; Jasinski, J.; Wyszkowska, E.; Nowakowska-Langier, K.; Sitarz, M.

    2018-04-01

    In this study, structural and nanomechanical properties of zirconia polymorphs induced by ion irradiation were investigated by means of Raman spectroscopy and nanoindentation techniques. The zirconia layer have been produced by high temperature oxidation of pure zirconium at 600 °C for 5 h at normal atmospheric pressure. In order to distinguish between the internal and external parts of zirconia, the spherical metallographic sections have been prepared. The samples were irradiated at room temperature with 150 keV Ar+ ions at fluences ranging from 1 × 1015 to 1 × 1017 ions/cm2. The main objective of this study was to distinguish and confirm different structural and mechanical properties between the interface layer and fully developed scale in the internal/external part of the oxide. Conducted studies suggest that increasing ion fluence impacts Raman bands positions (especially characteristic for tetragonal phase) and increases the nanohardness and Young's modulus of individual phases. This phenomenon has been examined from the point of view of stress-induced hardening effect and classical monoclinic → tetragonal (m → t) martensitic phase transformation.

  20. Effect of particle size on ferroelectric and magnetic properties of BiFeO₃ nanopowders.

    PubMed

    Escobar Castillo, M; Shvartsman, V V; Gobeljic, D; Gao, Y; Landers, J; Wende, H; Lupascu, D C

    2013-09-06

    The ferroelectric and magnetic behaviour of multiferroic BiFeO₃ nanoparticles has been studied using piezoresponse force microscopy (PFM), Mössbauer spectroscopy and SQUID magnetometry. The results of the PFM studies indicate a decay of the spontaneous polarization with decreasing particle size. Nevertheless, particles with diameter ∼50 nm still manifest ferroelectric behaviour. At the same time these particles are weakly ferromagnetic. The Mössbauer spectroscopy studies prove that the weak ferromagnetic state is due to non-compensated surface spins rather than distortions of the cycloidal spin structure characteristic for bulk BiFeO₃.

  1. Structural, optical and dielectric properties of graphene oxide

    NASA Astrophysics Data System (ADS)

    Bhargava, Richa; Khan, Shakeel

    2018-05-01

    The Modified Hummers method has been used to synthesize Graphene oxide nanoparticles. Microstructural analyses were carried out by X-ray diffraction and Fourier transform infrared spectroscopy. Optical properties were studied by UV-visible spectroscopy in the range of 200-700 nm. The energy band gap was calculated with the help of Tauc relation. The frequency dependence of dielectric constant and dielectric loss were studied over a range of the frequency 75Hz to 5MHz at room temperature. The dispersion in dielectric constant can be explained with the help of Maxwell-Wagner model in studied nanoparticles.

  2. Characterization of fossil remains using XRF, XPS and XAFS spectroscopies

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Pinakidou, F.; Brzhezinskaya, M.; Papadopoulou, L.; Vlachos, E.; Tsoukala, E.; Paloura, E. C.

    2016-05-01

    Synchrotron radiation micro-X-Ray Fluorescence (μ-XRF), X-ray photoelectron (XPS) and X-ray Absorption Fine Structure (XAFS) spectroscopies are applied for the study of paleontological findings. More specifically the costal plate of a gigantic terrestrial turtle Titanochelon bacharidisi and a fossilized coprolite of the cave spotted hyena Crocuta crocuta spelaea are studied. Ca L 2,3-edge NEXAFS and Ca 2p XPS are applied for the identification and quantification of apatite and Ca containing minerals. XRF mapping and XAFS are employed for the study of the spatial distribution and speciation of the minerals related to the deposition environment.

  3. Extending Tabletop XUV Spectroscopy to the Liquid Phase to Examine Transition Metal Catalysts

    NASA Astrophysics Data System (ADS)

    Benke, Kristin; Ryland, Elizabeth S.; Vura-Weis, Josh

    2017-06-01

    M-edge spectroscopy of first row transition metals (3p to 3d excitation) is the low energy analogue of more well-known K- and L-edge spectroscopy, but can be implemented without the use of a synchrotron. Instead, M-edge spectroscopy can be performed as a tabletop method, relying on high harmonic generation (HHG) to produce ultrashort (˜ 20 fs) pulses of extreme ultraviolet (XUV) light in the range of 10-100s of eV. We have shown tabletop M-edge spectroscopy to be a valuable tool in determining the electronic structure of metal-centered coordination complexes and have demonstrated its capacity to yield element-specific information about a compound's oxidation state, spin state, and ligand field. The power of this technique to distinguish these features makes it a promising addition to the arsenal of methods used to study metal-centered catalysts. A catalytic reaction can be initiated photochemically and the XUV probe can be used to track oxidative and structural changes to identify the key intermediates. Until recently tabletop XUV spectroscopy has been performed on thin film samples, but in order to examine homogeneous catalysis, the technique must be adapted to look at samples in the liquid phase. The challenges of adapting tabletop XUV spectroscopy to the liquid phase lie in the lower attenuation length of XUV light compared to soft and hard x-rays and the lower flux compared to synchrotron methods. As a result, the sample must be limited to a sub-micron thickness as well as isolated from the vacuum environment required for x-ray spectroscopy. I am developing a liquid flow cell that relies on confining the sample between two x-ray transmissive SiN membranes, as has been demonstrated for use at synchrotrons, but adapted to the unique difficulties encountered in tabletop XUV spectroscopy.

  4. What can we Expect of High-Resolution Spectroscopies on Carbohydrates?

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Uriarte, Iciar; Usabiaga, Imanol; Fernández, José A.; Basterretxea, Francisco J.; Lesarri, Alberto; Davis, Benjamin G.

    2015-06-01

    Carbohydrates are one of the most multifaceted building blocks, performing numerous roles in living organisms. We present several structural investigations on carbohydrates exploiting an experimental strategy which combines microwave (MW) and laser spectroscopies in high-resolution. Laser spectroscopy offers high sensitivity coupled to mass and conformer selectivity, making it ideal for polysaccharides studies. On the other hand, microwave spectroscopy provides much higher resolution and direct access to molecular structure of monosaccharides. This combined approach provides not only accurate chemical insight on conformation, structure and molecular properties, but also benchmarking standards guiding the development of theoretical calculations. In order to illustrate the possibilities of a combined MW-laser approach we present results on the conformational landscape and structural properties of several monosaccharides and oligosaccharides including microsolvation and molecular recognition processes of carbohydrates. E.J. Cocinero, A. Lesarri, P. écija, F.J. Basterretxea, J.-U. Grabow, J.A. Fernández and F. Casta {n}o Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E.J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B.G. Davis, F.J. Basterretxea, J.A. Fernández and F. Casta {n}o J. Am. Chem. Soc. 135, 2845-2852, 2013. E.J. Cocinero, P. Çarçabal, T.D. Vaden, J.P. Simons and B.G. Davis Nature 469, 76-80, 2011. C.S. Barry, E.J. Cocinero, P. Çarçabal, D.P. Gamblin, E.C. Stanca-Kaposta, S. M. Fernández-Alonso, S. Rudić, J.P. Simons and B.G. Davis J. Am. Chem. Soc. 135, 16895-16903, 2013.

  5. Structure and stability of hydrous minerals at high pressure

    NASA Technical Reports Server (NTRS)

    Duffy, T. S.; Fei, Y.; Meade, C.; Hemley, R. J.; Mao, H. K.

    1994-01-01

    The presence of even small amounts of hydrogen in the Earth's deep interior may have profound effects on mantle melting, rheology, and electrical conductivity. The recent discovery of a large class of high-pressure H-bearing silicates further underscores the potentially important role for hydrous minerals in the Earth's mantle. Hydrogen may also be a significant component of the Earth's core, as has been recently documented by studies of iron hydride at high pressure. In this study, we explore the role of H in crystal structures at high pressure through detailed Raman spectroscopic and x ray diffraction studies of hydrous minerals compressed in diamond anvil cells. Brucite, Mg(OH)2, has a simple structure and serves as an analogue for the more complex hydrous silicates. Over the past five years, this material has been studied at high pressure using shock-compression, powder x ray diffraction, infrared spectroscopy, Raman spectroscopy, and neutron diffraction. In addition, we have recently carried out single-crystal synchrotron x-ray diffraction on Mg(OH)2 and Raman spectroscopy on Mg(OD)2 at elevated pressure. From all these studies, an interesting picture of the crystal chemical behavior of this material at high pressure is beginning to emerge. Some of the primary conclusions are as follows: First, hydrogen bonding is enhanced by the application of pressure. Second, layered minerals which are elastically anisotropic at low pressure may not be so at high pressure. Furthermore, the brucite data place constraints on the effect of hydrogen on seismic velocities and density at very high pressure. Third, the stability of hydrous minerals may be enhanced at high P by subtle structural rearrangements that are difficult to detect using traditional probes and require detailed spectroscopic analyses. Finally, brucite appears to be unique in that it undergoes pressure-induced disordering that is confined solely to the H-containing layers of the structure.

  6. On the challenges of using field spectroscopy to measure the impact of soil type on leaf traits

    NASA Astrophysics Data System (ADS)

    Nunes, Matheus H.; Davey, Matthew P.; Coomes, David A.

    2017-07-01

    Understanding the causes of variation in functional plant traits is a central issue in ecology, particularly in the context of global change. Spectroscopy is increasingly used for rapid and non-destructive estimation of foliar traits, but few studies have evaluated its accuracy when assessing phenotypic variation in multiple traits. Working with 24 chemical and physical leaf traits of six European tree species growing on strongly contrasting soil types (i.e. deep alluvium versus nearby shallow chalk), we asked (i) whether variability in leaf traits is greater between tree species or soil type, and (ii) whether field spectroscopy is effective at predicting intraspecific variation in leaf traits as well as interspecific differences. Analysis of variance showed that interspecific differences in traits were generally much stronger than intraspecific differences related to soil type, accounting for 25 % versus 5 % of total trait variation, respectively. Structural traits, phenolic defences and pigments were barely affected by soil type. In contrast, foliar concentrations of rock-derived nutrients did vary: P and K concentrations were lower on chalk than alluvial soils, while Ca, Mg, B, Mn and Zn concentrations were all higher, consistent with the findings of previous ecological studies. Foliar traits were predicted from 400 to 2500 nm reflectance spectra collected by field spectroscopy using partial least square regression, a method that is commonly employed in chemometrics. Pigments were best modelled using reflectance data from the visible region (400-700 nm), while all other traits were best modelled using reflectance data from the shortwave infrared region (1100-2500 nm). Spectroscopy delivered accurate predictions of species-level variation in traits. However, it was ineffective at detecting intraspecific variation in rock-derived nutrients (with the notable exception of P). The explanation for this failure is that rock-derived elements do not have absorption features in the 400-2500 nm region, and their estimation is indirect, relying on elemental concentrations covarying with structural traits that do have absorption features in that spectral region (constellation effects). Since the structural traits did not vary with soil type, it was impossible for our regression models to predict intraspecific variation in rock-derived nutrients via constellation effects. This study demonstrates the value of spectroscopy for rapid, non-destructive estimation of foliar traits across species, but highlights problems with predicting intraspecific variation indirectly. We discuss the implications of these findings for mapping functional traits by airborne imaging spectroscopy.

  7. Similarities and Differences between RNA and DNA Double-Helical Structures in Circular Dichroism Spectroscopy: A SAC-CI Study.

    PubMed

    Miyahara, Tomoo; Nakatsuji, Hiroshi; Sugiyama, Hiroshi

    2016-11-17

    The helical structures of DNA and RNA are investigated experimentally using circular dichroism (CD) spectroscopy. The signs and the shapes of the CD spectra are much different between the right- and left-handed structures as well as between DNA and RNA. The main difference lies in the sign at around 295 nm of the CD spectra: it is positive for the right-handed B-DNA and the left-handed Z-RNA but is negative for the left-handed Z-DNA and the right-handed A-RNA. We calculated the SAC-CI CD spectra of DNA and RNA using the tetramer models, which include both hydrogen-bonding and stacking interactions that are important in both DNA and RNA. The SAC-CI results reproduced the features at around 295 nm of the experimental CD spectra of each DNA and RNA, and elucidated that the strong stacking interaction between the two base pairs is the origin of the negative peaks at 295 nm of the CD spectra for both DNA and RNA. On the basis of these facts, we discuss the similarities and differences between RNA and DNA double-helical structures in the CD spectroscopy based on the ChiraSac methodology.

  8. Cerium chloride stimulated controlled conversion of B-to-Z DNA in self-assembled nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhanjadeo, Madhabi M.; Academy of Scientific & Innovative Research; Nayak, Ashok K.

    DNA adopts different conformation not only because of novel base pairs but also while interacting with inorganic or organic compounds. Self-assembled branched DNA (bDNA) structures or DNA origami that change conformation in response to environmental cues hold great promises in sensing and actuation at the nanoscale. Recently, the B-Z transition in DNA is being explored to design various nanomechanical devices. In this communication we have demonstrated that Cerium chloride binds to the phosphate backbone of self-assembled bDNA structure and induce B-to-Z transition at physiological concentration. The mechanism of controlled conversion from right-handed to left-handed has been assayed by various dyemore » binding studies using CD and fluorescence spectroscopy. Three different bDNA structures have been identified to display B-Z transition. This approach provides a rapid and reversible means to change bDNA conformation, which can be used for dynamic and progressive control at the nanoscale. - Highlights: • Cerium-induced B-to-Z DNA transition in self-assembled nanostructures. • Lower melting temperature of Z-DNA than B-DNA confirmed by CD spectroscopy. • Binding mechanism of cerium chloride is explained using fluorescence spectroscopy. • Right-handed to left-handed DNA conformation is also noticed in modified bDNA structure.« less

  9. Probing the influence of the center atom coordination structure in iron phthalocyanine multi-walled carbon nanotube-based oxygen reduction reaction catalysts by X-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Peng, Yingxiang; Li, Zhipan; Xia, Dingguo; Zheng, Lirong; Liao, Yi; Li, Kai; Zuo, Xia

    2015-09-01

    Three different pentacoordinate iron phthalocyanine (FePc) electrocatalysts with an axial ligand (pyridyl group, Py) anchored to multi-walled carbon nanotubes (MWCNTs) are prepared by a microwave method as high performance composite electrocatalysts (FePc-Py/MWCNTs) for the oxygen reduction reaction (ORR). For comparison, tetracoordinate FePc electrocatalysts without an axial ligand anchored to MWCNTs (FePc/MWCNTs) are assembled in the same way. Ultraviolet-visible spectrophotometry (UV-Vis), Raman spectroscopy (RS), and high-resolution transmission electron microscopy (HRTEM) are used to characterize the obtained electrocatalysts. The electrocatalytic activity of the samples is measured by linear sweep voltammetry (LSV), and the onset potential of all of the FePc-Py/MWCNTs electrocatalysts is found to be more positive than that of their FePc/MWCNTs counterparts. X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy are employed to elucidate the relationship between molecular structure and electrocatalytic activity. XPS indicates that higher concentrations of Fe3+ and pyridine-type nitrogen play critical roles in determining the electrocatalytic ORR activity of the samples. XAFS spectroscopy reveals that the FePc-Py/MWCNTs electrocatalysts have a coordination geometry around Fe that is closer to the square pyramidal structure, a higher concentration of Fe3+, and a smaller phthalocyanine ring radius compared with those of FePc/MWCNTs.

  10. Multiple-stage structure transformation of organic-inorganic hybrid perovskite CH 3 NH 3 PbI 3

    DOE PAGES

    Chen, Qiong; Liu, Henan; Kim, Hui -Seon; ...

    2016-09-15

    In this study, by performing spatially resolved Raman and photoluminescence spectroscopy with varying excitation wavelength, density, and data acquisition parameters, we achieve a unified understanding towards the spectroscopy signatures of the organic-inorganic hybrid perovskite, transforming from the pristine state (CH 3NH 3PbI 3) to the fully degraded state (i.e., PbI 2) for samples with varying crystalline domain size from mesoscopic scale (approximately 100 nm) to macroscopic size (centimeters), synthesized by three different techniques. We show that the hybrid perovskite exhibits multiple stages of structure transformation occurring either spontaneously or under light illumination, with exceptionally high sensitivity to the illumination conditionsmore » (e.g., power, illumination time, and interruption pattern). We highlight four transformation stages (stages I-IV, with stage I being the pristine state) along either the spontaneous or photoinduced degradation path exhibiting distinctly different Raman spectroscopy features at each stage, and point out that previously reported Raman spectra in the literature reflect highly degraded structures of either stage III or stage IV. Additional characteristic optical features of partially degraded materials under the joint action of spontaneous and photodegradation are also given. This study offers reliable benchmark results for understanding the intrinsic material properties and structure transformation of this unique category of hybrid materials, and the findings are pertinently important to a wide range of potential applications where the hybrid material is expected to function in greatly different environment and light-matter interaction conditions.« less

  11. Spray pyrolytic deposition of α-MoO3 film and its use in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Tamboli, Parvin S.; Jagtap, Chaitali V.; Kadam, Vishal S.; Ingle, Ravi V.; Vhatkar, Rajiv S.; Mahajan, Smita S.; Pathan, Habib M.

    2018-04-01

    Thermal decomposition of ammonium para molybdate tetrahydrate precursor has been studied to determine degradation temperatures in air atmosphere. Current work explores the synthesis of α-MoO3 films by an economical spray pyrolysis technique using ammonium para molybdate tetrahydrate precursor in the presence of compressed air. A variety of characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-visible spectroscopy, Fourier transform infrared, and Raman spectroscopy were carried out, and the studies have confirmed that orthorhombic phase formation of MoO3 takes place with spongy mesh-type structure. The study of electro-catalytic activity of α-MoO3 in titania-based dye-sensitized solar cell is also carried out by cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curves to evaluate its performance as a counter electrode.

  12. Time- and Space-Resolved Spectroscopic Investigation on Pi-Conjugated Nanostructures - 2

    DTIC Science & Technology

    2016-01-12

    15. SUBJECT TERMS Materials Characterization, Materials Chemistry, Nonlinear Optical Materials, Spectroscopy 16. SECURITY CLASSIFICATION...nanostructures will translate into new ground-breaking developments that not only allow the structure-property relationships to be probed in greater detail... spectroscopy . I. Experimental method 1. Steady-state Spectroscopy - UV-Vis-NIR Absorption & Emission Steady-state Spectroscopy - NIR

  13. Non-injection synthesis of monodisperse Cu-Fe-S nanocrystals and their size dependent properties.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Żukrowski, Jan; Zabost, Damian; Kotwica, Kamil; Malinowska, Karolina; Ostrowski, Andrzej; Wielgus, Ireneusz; Lisowski, Wojciech; Sobczak, Janusz W; Przybylski, Marek; Pron, Adam

    2016-06-01

    It is demonstrated that ternary Cu-Fe-S nanocrystals differing in composition (from Cu-rich to Fe-rich), structure (chalcopyrite or high bornite) and size can be obtained from a mixture of CuCl, FeCl3, thiourea and oleic acid (OA) in oleylamine (OLA) using the heating up procedure. This new preparation method yields the smallest Cu-Fe-S nanocrystals ever reported to date (1.5 nm for the high bornite structure and 2.7 nm for the chalcopyrite structure). A comparative study of nanocrystals of the same composition (Cu1.6Fe1.0S2.0) but different in size (2.7 nm and 9.3 nm) revealed a pronounced quantum confinement effect, confirmed by three different techniques: UV-vis spectroscopy, cyclic voltammetry and Mössbauer spectroscopy. The optical band gap increased from 0.60 eV in the bulk material to 0.69 eV in the nanocrystals of 9.3 nm size and to 1.39 eV in nanocrystals of 2.7 nm size. The same trend was observed in the electrochemical band gaps, derived from cyclic voltammetry studies (band gaps of 0.74 eV and 1.54 eV). The quantum effect was also manifested in Mössbauer spectroscopy by an abrupt change in the spectrum from a quadrupole doublet to a Zeeman sextet below 10 K, which could be interpreted in terms of the well defined energy states in these nanoparticles, resulting from quantum confinement. The Mössbauer spectroscopic data confirmed, in addition to the results of XPS spectroscopy, the co-existence of Fe(iii) and Fe(ii) in the synthesized nanocrystals. The organic shell composition was investigated by NMR (after dissolution of the inorganic core) and IR spectroscopy. Both methods identified oleylamine (OLA) and 1-octadecene (ODE) as surfacial ligands, the latter being formed in situ via an elimination-hydrogenation reaction occurring between OLA and the nanocrystal surface.

  14. Low pressure-induced secondary structure transitions of regenerated silk fibroin in its wet film studied by time-resolved infrared spectroscopy.

    PubMed

    He, Zhipeng; Liu, Zhao; Zhou, Xiaofeng; Huang, He

    2018-06-01

    The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time-resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β-sheet structure. Under constant pressure there is an optimum amount of D 2 O in the wet film (D 2 O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β-sheet structure. Under constant amount of D 2 O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α-helix, and β-turn were quickly transformed into β-sheet. In the second stage, random coil and β-turn were relatively slowly transformed into β-sheet and α-helix, and the content of α-helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure. © 2018 Wiley Periodicals, Inc.

  15. Structure, Electronic Properties, and Electrochemical Behavior of a Boron-Doped Diamond/Quartz Optically Transparent Electrode.

    PubMed

    Wächter, Naihara; Munson, Catherine; Jarošová, Romana; Berkun, Isil; Hogan, Timothy; Rocha-Filho, Romeu C; Swain, Greg M

    2016-10-26

    The morphology, microstructure, chemistry, electronic properties, and electrochemical behavior of a boron-doped nanocrystalline diamond (BDD) thin film grown on quartz were evaluated. Diamond optically transparent electrodes (OTEs) are useful for transmission spectroelectrochemical measurements, offering excellent stability during anodic and cathodic polarization and exposure to a variety of chemical environments. We report on the characterization of a BDD OTE by atomic force microscopy, optical spectroscopy, Raman spectroscopic mapping, alternating-current Hall effect measurements, X-ray photoelectron spectroscopy, and electrochemical methods. The results reported herein provide the first comprehensive study of the relationship between the physical and chemical structure and electronic properties of a diamond OTE and the electrode's electrochemical activity.

  16. Effective adsorption and collection of cesium from aqueous solution using graphene oxide grown on porous alumina

    NASA Astrophysics Data System (ADS)

    Entani, Shiro; Honda, Mitsunori; Shimoyama, Iwao; Li, Songtian; Naramoto, Hiroshi; Yaita, Tsuyoshi; Sakai, Seiji

    2018-04-01

    Graphene oxide (GO) with a large surface area was synthesized by the direct growth of GO on porous alumina using chemical vapor deposition to study the Cs adsorption mechanism in aqueous solutions. Electronic structure analysis employing in situ near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy measurements clarifies the Cs atoms bond via oxygen functional groups on GO in the aqueous solution. The Cs adsorption capacity was found to be as high as 650-850 mg g-1, which indicates that the GO/porous alumina acts as an effective adsorbent with high adsorption efficiency for radioactive nuclides in aqueous solutions.

  17. The TRIUMF nuclear structure program and TIGRESS

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Chakrawarthy, R. S.; Churchman, R.; Cline, D.; Cooper, R. J.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T.; Finlay, P.; Gagnon, K.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Maharaj, R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Ruiz, C.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Strange, M. D.; Subramanian, M.; Svensson, C. E.; Waddington, J. C.; Wan, J.; Whitbeck, A.; Williams, S. J.; Wood, J. L.; Wong, J. C.; Wu, C. Y.; Zganjar, E. F.

    2007-08-01

    The isotope separator and accelerator (ISAC) facility located at the TRIUMF laboratory in Vancouver, Canada, is one of the world's most advanced isotope separator on-line-type radioactive ion beam facilities. An extensive γ-ray spectroscopy programme at ISAC is centred around two major research facilities: (i) the 8π γ-ray spectrometer for β-delayed γ-ray spectroscopy experiments with the low-energy beams from ISAC-I, and (ii) the next generation TRIUMF-ISAC gamma-ray escape suppressed spectrometer (TIGRESS) for in-beam experiments with the accelerated radioactive-ion beams. An overview of these facilities and recent results from the diverse programme of nuclear structure and fundamental interaction studies they support is presented.

  18. Study the Synthesis, Characterization and Immersion of Dense and Porous Bovine Hydroxyapatite Structures in Hank's Balanced Salt Solution

    NASA Astrophysics Data System (ADS)

    Eslami, N.; Mahmoodian, R.; Hamdi, M.; Khatir, Nadia Mahmoudi; Herliansyah, M. K.; Rafieerad, Ali Reza

    2017-04-01

    The bone-bonding potential of biomaterials is evaluated in vitro through examining the surface apatite formation in Hank's media to enhance biocompatibility, which is also applicable to facilitate in vivo osseointegration of implantable devices. Hence, bovine hydroxyapatite (BHA) bioceramic structures have been used in various biomedical applications such as orthopedic implants. In this article, the microstructure, in vitro bioactivity, and nanomechanical properties of the synthesized dense and porous BHA are investigated via scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, and nanoindentation analysis. From the obtained results, porous BHA mostly possesses adequate requirements for substitution as implants in the human body.

  19. Safranin-O dye in the ground state. A study by density functional theory, Raman, SERS and infrared spectroscopy.

    PubMed

    Lofrumento, C; Arci, F; Carlesi, S; Ricci, M; Castellucci, E; Becucci, M

    2015-02-25

    The analysis of ground state structural and vibrational properties of Safranin-O is presented. The experimental results, obtained by FTIR, Raman and SERS spectroscopy, are discussed in comparison to the results of DFT calculations carried out at the B3LYP/6-311+G(d,p) level of theory. The calculated spectra reproduce quite satisfactorily the experimental data. The calculated Safranin-O equilibrium structure and the assignment of the vibrational spectra are reported as well. From the changes between Raman and SERS spectra a model is presented for the interaction of Safranin-O with silver nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The spectroscopy of singlets and triplets excites electronic states, spatial and electronic structure of hydrocarbons and quantum classifications in chemmotology

    NASA Astrophysics Data System (ADS)

    Obukhov, A. E.

    2017-01-01

    In this work we demonstrate the physical foundations of the spectroscopy of the grounds states: E- and X-ray, (RR) Raman scattering the NMR 1H and 13C and IR-, EPR- absorption and the singlets and triplets electronic excited states in the multinuclear hydrocarbons in chemmotology. The parameters of UV-absorption, RR-Raman scattering of light, the fluorescence and the phosphorescence and day-lasers at the pumping laser and lamp, OLEDs and OTETs- are measurements. The spectral-energy properties are briefly studied. The quantum-chemical LCAO-MO SCF expanded-CI PPP/S and INDO/S methods in the electronic and spatial structure hidrocarbons are considered.

  1. Photoelectron spectra and biological activity of cinnamic acid derivatives revisited

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Klasinc, Leo; McGlynn, Sean P.

    2018-01-01

    The electronic structures of several derivatives of cinnamic acid have been studied by UV photoelectron spectroscopy (UPS) and Green's function quantum chemical calculations. The spectra reveal the presence of dimers in the gas phase for p-coumaric and ferulic acids. The electronic structure analysis has been related to the biological properties of these compounds through the analysis of some structure-activity relationships (SAR).

  2. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    PubMed

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted more changes. Size exclusion chromatography analysis depicted the complete dissolution of BSA in the aqueous media employed in the wet granulation method. In conclusion, an ATR FT-IR spectroscopic method was successfully developed to investigate BSA secondary structure in solid lipid matrices following the subtraction of lipid spectral interference. The ATR FT-IR spectroscopy could further be applied to investigate the secondary structure perturbations of therapeutic proteins during their formulation development.

  3. Synchrotron applications in wood preservation and deterioration

    Treesearch

    Barbara L. Illman

    2003-01-01

    Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...

  4. Characterization and kinetics of surface functionalization and binding of biologically and chemically significant molecules

    NASA Astrophysics Data System (ADS)

    Steiner, Rachel

    The purpose of this project is to investigate intermolecular interactions of organic molecular assemblies. By understanding the structure and physical interactions in these assemblies, we gain insights into practical applications for nanoscale systems built upon these surface structures. It is possible for organic chemists to create many forms of modified organic molecules, functionalizing them with specific reactive end groups. Through surface functionalization, enabling covalent or highly associative binding, it is possible to create ordered molecular assemblies of these molecules. Scientists can study the nature of this structure and the intermolecular interactions through spectroscopic, optical, and scattering experiments. To understand the self-assembly process in molecular systems, we preliminarily created monolayer films on silica substrates with a variety of organic molecules. In particular, we functionalized silica substrates with hydroxyl groups and covalently bound acid chloride functionalized aromatic compounds, with and without an underlying adhesion layer of 3-aminopropyltriethoxysilane. We characterized the monolayer assemblies with ellipsometry, UV-vis absorption spectroscopy, FTIR spectroscopy, and fluorescence/photoemission spectroscopy, obtaining a quantitative measure of the molecular surface coverage. In order to understand the nature of these molecular assemblies, we also pursued an in-depth kinetic study to control and optimize the monolayer formation process. Through use of UV-vis spectroscopy, we determined that the monolayer formation can best be modeled with diffusion-limited Langmuir kinetics. Specifically, we concluded that for anthracene acid chloride in dichloromethane the average diffusion coefficient was 1.6x10-7 cm2/sec. Additionally, we find we are able to achieve surface coverages of approximately 2x1014 molecules/cm2. Having established the ability to create ordered molecular assemblies, through surface functionalization, enabling covalent or highly associative binding, we continued to explore the field of molecular assemblies by studying the binding and structure of molecules to carbon nanostructures. Previous studies have shown that alkyl side chains and aromatic compounds, such as pyrene, will bind non-covalently to the sidewalls of carbon nanotubes through pi-pi interactions. We explored functionalization of carbon nanotubes and graphene by using microscopy to examine the adsorption of biomolecules onto nanotube sidewalls and graphene.

  5. Redox chemistry of a binary transition metal oxide (AB 2 O 4 ): a study of the Cu 2+ /Cu 0 and Fe 3+ /Fe 0 interconversions observed upon lithiation in a CuFe 2 O 4 battery using X-ray absorption spectroscopy

    DOE PAGES

    Cama, Christina A.; Pelliccione, Christopher J.; Brady, Alexander B.; ...

    2016-06-06

    Copper ferrite, CuFe 2 O 4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe 2 O 4. A phase pure tetragonal CuFe 2 O 4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. We used ex situ X-ray absorption spectroscopy (XAS) measurements to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structuremore » (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(II) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(III) cations to octahedral positions previously occupied by copper(II). Then, upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(III) was achieved. Our results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.« less

  6. Structure and bioactivity studies of new polysiloxane-derived materials for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, Czesława; Gumuła, Teresa; Podporska, Joanna; Błażewicz, Marta

    2006-07-01

    The aim of this work was to examine the structure of new calcium silicate bioactive ceramic implant material for bone surgery applications. The bioceramic material was obtained by thermal treatment of active fillers-containing organosilicon polymer precursor. Different ceramic active fillers, namely Ca(OH) 2, CaCO 3, Na 2HPO 4 and SiO 2 powders were used. The phase composition of ceramic samples obtained by thermal transformation of active fillers containing polysiloxane was investigated. Morphology and structure of ceramic phases were characterized by means of scanning electron microscopy (SEM) with EDS point analysis, FTIR spectroscopy and XRD analysis. It was found that thermal treatment of active fillers-containing organosilicon precursor lead to the formation of wollastonite-containing ceramic material. This ceramic material showed bioactivity in 'in vitro' conditions studied by immersing the samples in simulated body fluid (SBF). The surface of wollastonite-containing ceramic before and after immersion in SBF was analysed. It can be concluded that this kind of ceramic material may be useful as bone substitute. FTIR spectroscopy is an adequate device for the determination of such derived materials structure.

  7. Structural investigation of the capsular polysaccharide produced by a novel Klebsiella serotype (SK1). Location of O-acetyl substituents using NMR and MS techniques.

    PubMed

    Cescutti, P; Ravenscroft, N; Ng, S; Lam, Z; Dutton, G G

    1993-06-21

    The capsular polysaccharide of Klebsiella SK1 was investigated by methylation analysis, Smith degradation, and 1H NMR spectroscopy. The oligosaccharides (P1 and P2) obtained by bacteriophage phi SK1 degradation of the polymer were studied by methylation analysis, and 1D- and 2D-NMR spectroscopy. The resulting data showed that the parent repeating unit is a branched pentasaccharide having a structure identical to the revised structure recently proposed for Klebsiella serotype K8 capsular polysaccharide. [Formula: see text] The 2D-NMR data showed that one third of the glucuronic acid residues in the SK1 polymer are acetylated at O-2, O-3, or O-4. FABMS studies confirmed the presence of monoacetylated glucuronic acid residues. Thus, the relationship between the Klebsiella K8 and SK1 polymers is akin to that found for Klebsiella polysaccharides K30 and K33, which have been typed as serologically distinct yet their structures differ only in the degree of acetylation.

  8. Structural characterization, surface characteristics and non covalent interactions of a heterocyclic Schiff base: Evaluation of antioxidant potential by UV-visible spectroscopy and DFT

    NASA Astrophysics Data System (ADS)

    Chithiraikumar, S.; Gandhimathi, S.; Neelakantan, M. A.

    2017-06-01

    A heterocyclic Schiff base, (E)-4-(1-((pyridin-2-ylmethyl)imino)ethyl)benzene-1,3-diol (L) was synthesized and isolated as single crystals. Its structure was characterized by FT-IR, UV, 1H and 13C NMR, and further confirmed by X-ray crystallography. Qualitatively and quantitatively the various interactions in the crystal structure of L has been analyzed by Hirshfeld surfaces and 2D fingerprint plots. Non covalent interactions have been studied by electron localization function (ELF) and mapped with reduced density gradient (RDG) analysis. The molecular structure was studied computationally by DFT-B3LYP/6-311G(d,p) calculations. HOMO-LUMO energy levels, chemical reactivity descriptors and thermodynamic parameters have been investigated at the same level of theory. The antioxidant potential of L was evaluated experimentally by measuring DPPH free radical scavenging effect using UV-visible spectroscopy and theoretically by DFT. Theoretical parameters, such as bond dissociation enthalpy (BDE) and spin density calculated suggests that antioxidant potential of L is due to H atom abstraction from the sbnd OH group.

  9. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    PubMed

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  10. Studies on Structural, Optical, Thermal and Electrical Properties of Perylene-Doped p-terphenyl Luminophors.

    PubMed

    Desai, Netaji K; Mahajan, Prasad G; Bhopate, Dhanaji P; Dalavi, Dattatray K; Kamble, Avinash A; Gore, Anil H; Dongale, Tukaram D; Kolekar, Govind B; Patil, Shivajirao R

    2018-01-01

    A simple solid state reaction technique was employed for the preparation of polycrystalline luminophors of p-terphenyl containing different amounts of perylene followed by spectral characterization techniques viz. XRD, SEM, TGA-DSC, UV-Visible spectroscopy, thermo-electrical conductivity, fluorescence spectroscopy, fluorescence life time spectroscopy and temperature dependent fluorescence. X-ray diffraction profiles of the doped p-terphenyl reveal well-defined and sharp peaks indicate homogeneity and crystallinity. The SEM micrograph of pure p-terphenyl exhibit flakes like grains and then compact and finally gets separately with perylene amounts. The observed results indicate that closed packed crystal structures of doped p-terphenyl during crystal formation. The band gaps estimated from UV-visible spectroscopy decreased from 5.20 to 4.10 eV, while thermo-electrical conductivity increases with perylene content. The fluorescence spectra showed partial quenching of p-terphenyl fluorescence and simultaneously sensitization of perylene fluorescence at the excitation wavelength of p-terphenyl (290 nm) due to excitation energy transfer from p-terphenyl to perylene. The observed sensitization results are in harmony with intense blue color seen in fluorescence microscopy images and has high demand in scintillation process.

  11. Perspective: Two-dimensional resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  12. Optimal Control-Enabled Imaging and Spectroscopy using a Nanowire Magnetic Resonance Force Microscope

    NASA Astrophysics Data System (ADS)

    Rose, William; Haas, Holger; Chen, Angela; Cory, David; Budakian, Raffi

    Magnetic resonance imaging (MRI) is a powerful non-invasive technique that has transformed our ability to study the structure and function of biological systems. Key to its success has been the unique ability to combine imaging with magnetic resonance spectroscopy. Although it remains a significant challenge, there is considerable interest in extending MRI spectroscopy to the nanometer scale because it would provide a fundamentally new route for determining the structure and function of complex biomolecules. We present data taken with a nanowire magnetic resonance force microscopy (MRFM) setup. We show how the capabilities of this very sensitive spin-detection system can be extended to include spectroscopy and nanometer-scale imaging by combining optimal control theory (OCT) techniques with magic echo sequences. We apply OCT-based dynamical-decoupling pulses to nanoscale ensembles of proton spins in polystyrene, and demonstrate a 500-fold line-narrowing of the proton spin resonance, from 30 kHz to 60 Hz. We further demonstrate 1-D imaging over a 35-nm region with an average voxel size of 2.2 nm. Funding provided by the U.S. Army Research Office, Grant No. W911NF-12-1-0341.

  13. Nondestructive surface analysis for material research using fiber optic vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.

    2001-11-01

    The advanced methods of fiber optical vibrational spectroscopy (FOVS) has been developed in conjunction with interferometer and low-loss, flexible, and nontoxic optical fibers, sensors, and probes. The combination of optical fibers and sensors with Fourier Transform (FT) spectrometer has been used in the range from 2.5 to 12micrometers . This technique serves as an ideal diagnostic tool for surface analysis of numerous and various diverse materials such as complex structured materials, fluids, coatings, implants, living cells, plants, and tissue. Such surfaces as well as living tissue or plants are very difficult to investigate in vivo by traditional FT infrared or Raman spectroscopy methods. The FOVS technique is nondestructive, noninvasive, fast (15 sec) and capable of operating in remote sampling regime (up to a fiber length of 3m). Fourier transform infrared (FTIR) and Raman fiber optic spectroscopy operating with optical fibers has been suggested as a new powerful tool. These techniques are highly sensitive techniques for structural studies in material research and various applications during process analysis to determine molecular composition, chemical bonds, and molecular conformations. These techniques could be developed as a new tool for quality control of numerous materials as well as noninvasive biopsy.

  14. Supramolecularly engineered perylene bisimide assemblies exhibiting thermal transition from columnar to multilamellar structures.

    PubMed

    Yagai, Shiki; Usui, Mari; Seki, Tomohiro; Murayama, Haruno; Kikkawa, Yoshihiro; Uemura, Shinobu; Karatsu, Takashi; Kitamura, Akihide; Asano, Atsushi; Seki, Shu

    2012-05-09

    Perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI) was functionalized with ditopic cyanuric acid to organize it into complex columnar architectures through the formation of hydrogen-bonded supermacrocycles (rosette) by complexing with ditopic melamines possessing solubilizing alkoxyphenyl substituents. The aggregation study in solution using UV-vis and NMR spectroscopies showed the formation of extended aggregates through hydrogen-bonding and π-π stacking interactions. The cylindrical fibrillar nanostructures were visualized by microscopic techniques (AFM, TEM), and the formation of lyotropic mesophase was confirmed by polarized optical microscopy and SEM. X-ray diffraction study revealed that a well-defined hexagonal columnar (Col(h)) structure was formed by solution-casting of fibrillar assemblies. All of these results are consistent with the formation of hydrogen-bonded PBI rosettes that spontaneously organize into the Col(h) structure. Upon heating the Col(h) structure in the bulk state, a structural transition to a highly ordered lamellar (Lam) structure was observed by variable-temperature X-ray diffraction, differential scanning calorimetry, and AFM studies. IR study showed that the rearrangement of the hydrogen-bonding motifs occurs during the structural transition. These results suggest that such a striking structural transition is aided by the reorganization in the lowest level of self-organization, i.e., the rearrangement of hydrogen-bonded motifs from rosette to linear tape. A remarkable increase in the transient photoconductivity was observed by the flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements upon converting the Col(h) structure to the Lam structure. Transient absorption spectroscopy revealed that electron transfer from electron-donating alkoxyphenyl groups of melamine components to electron-deficient PBI moieties takes place, resulting in a higher probability of charge carrier generation in the Lam structure compared to the Col(h) structure.

  15. Spectroscopy of Sound Transmission in Solid Samples

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Peterson, Joshua P.; Fitzjarrald, Tamara J.

    2013-01-01

    These laboratory experiments are designed to familiarize students with concepts of spectroscopy by using sound waves. Topics covered in these experiments include the structure of nitinol alloys and polymer chain stiffness as a function of structure and temperature. Generally, substances that are stiffer or have higher symmetry at the molecular…

  16. XAFS SPECTROSCOPY ANALYSIS OF SELECTED HAP ELEMENTS IN FINE PM DERIVED FROM COAL COMBUSTION

    EPA Science Inventory

    X-ray absorption fine structure (XAFS) spectroscopy has been used to investigate the valence states and molecular structures of sulfur (S), chromium (Cr), arsenic (As), and zinc (Zn) in fine particulate matter (PM) separated from coal flyash produced in a realistic combustion sys...

  17. EIT intensity noise spectroscopy power-broadening and level structure

    NASA Astrophysics Data System (ADS)

    Snider, Charles; Crescimanno, Michael; Oleary, Shannon

    2011-05-01

    One particularly interesting (and potentially technologically useful) characteristic of EIT coherence as viewed through intensity noise spectroscopy is its power-broadening resistant features. We detail a connection between the power broadening behavior and the underlying level structure by solving a more realistic quantum optics scenario modeled on recent experiments.

  18. Pressure-induced structural transformations of the Zintl phase sodium silicide

    NASA Astrophysics Data System (ADS)

    Cabrera, Raúl Quesada; Salamat, Ashkan; Barkalov, Oleg I.; Leynaud, Olivier; Hutchins, Peter; Daisenberger, Dominik; Machon, Denis; Sella, Andrea; Lewis, Dewi W.; McMillan, Paul F.

    2009-09-01

    The high-pressure behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction to observe the onset of structural phase transformations and potential oligomerisation into anionic Si nanoclusters with extended dimensionality. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation above 15 GPa, suggesting the formation of Si-Si bonds with oxidation of the Si - species and reduction of Na + to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure.

  19. Ultrafast and versatile spectroscopy by temporal Fourier transform

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wei, Xiaoming; Marhic, Michel E.; Wong, Kenneth K. Y.

    2014-06-01

    One of the most remarkable and useful properties of a spatially converging lens system is its inherent ability to perform the Fourier transform; the same applies for the time-lens system. At the back focal plane of the time-lens, the spectral information can be instantaneously obtained in the time axis. By implementing temporal Fourier transform for spectroscopy applications, this time-lens-based architecture can provide orders of magnitude improvement over the state-of-art spatial-dispersion-based spectroscopy in terms of the frame rate. On the other hand, in addition to the single-lens structure, the multi-lens structures (e.g. telescope or wide-angle scope) will provide very versatile operating conditions. Leveraging the merit of instantaneous response, as well as the flexible lens structure, here we present a 100-MHz frame rate spectroscopy system - the parametric spectro-temporal analyzer (PASTA), which achieves 17 times zoom in/out ratio for different observation ranges.

  20. Elucidating the alkaline oxygen evolution reaction mechanism on platinum

    DOE PAGES

    Favaro, M.; Valero-Vidal, C.; Eichhorn, J.; ...

    2017-03-07

    Understanding the interplay between surface chemistry, electronic structure, and reaction mechanism of the catalyst at the electrified solid/liquid interface will enable the design of more efficient materials systems for sustainable energy production. The substantial progress in operando characterization, particularly using synchrotron based X-ray spectroscopies, provides the unprecedented opportunity to uncover surface chemical and structural transformations under various (electro)chemical reaction environments. In this work, we study a polycrystalline platinum surface under oxygen evolution conditions in an alkaline electrolyte by means of ambient pressure X-ray photoelectron spectroscopy performed at the electrified solid/liquid interface. We elucidate previously inaccessible aspects of the surface chemistrymore » and structure as a function of the applied potential, allowing us to propose a reaction mechanism for oxygen evolution on a platinum electrode in alkaline solutions.« less

  1. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less

  2. Characterization of the Solid-Phase Behavior of n-Nonylammonium Tetrachlorocuprate by Fourier Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ning, Guo

    1995-06-01

    The solid-phase behavior of [n-C9H19NH3]2CuCl4 was investigated by infrared spectroscopy. The nature of the three solid phases (phase I, phase II, and phase III) is discussed. A temperature-dependent study of infrared spectra provides evidence for the occurrence of structural phase transitions related to the dynamics of the alkyl chains and -NH3 polar heads. The phase transition at Tc1 (22°C) arises from variation in the interaction and packing structure of the chain. The phase transition at Tc2 (34°C) is related to variation in partial conformational order-disorder at the intramolecular level. The GTG or GTG‧ and small concentration of TG structures near the CH3 group are generated in phase III (above 38°C).

  3. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    DOE PAGES

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    2016-02-15

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less

  4. Cytochrome c at charged interfaces studied by resonance Raman and surface-enhanced resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Peter

    1991-05-01

    The effect of electrostatic fields on the structure of cytochrome c bound to charged interfaces was studied by resonance Raman and surface enhanced resonance Raman spectroscopy. Binding of this heme protein to the Ag electrode or heteropolytungstates which may be regarded as simple model systems for biological interfaces establishes an equilibrium between two conformational states (I II). In state I the structure and the redox potential are the same as for the uncomplexed cytochrome c. In state II however the heme pocket assumes an open structure and the axial iron Met80 bond is weakened leading to thennal coordination equilibrium between the fivecoordinated high spin and the sixcoordinated low spin configuration. These structural changes are accompanied by a decrease of the redox potential by 420 mV. The structural rearrangement of the heme pocket in state II is presumably initiated by the dissociation of the internal salt bridge of Lys13 due to electrostatic interactions with the negatively charged surfaces of the model systems. From detailed Raman spectroscopic studies characteristic spectral properties of the states I and II were identified. Based on these findings the interactions of cytochrome c with phospholipid vesicles as well as with its physiological reaction partner cytocbrome c oxidase were analysed. A systematic study of the cytochmme c/phospholipid system by varying the lipid composition and the temperature revealed mutual structural changes in both the lipid and the protein structure.

  5. Bacterial Expression and Purification of the Amyloidogenic Peptide PAPf39 for Multidimensional NMR Spectroscopy

    PubMed Central

    Shanmuganathan, Aranganathan; Bishop, Anthony C.; French, Kinsley C.; McCallum, Scott A.; Makhatadze, George I.

    2013-01-01

    PAPf39 is a 39 residue peptide fragment from human prostatic acidic phosphatase that forms amyloid fibrils in semen. These fibrils have been implicated in facilitating HIV transmission. To enable structural studies of PAPf39 by NMR spectroscopy, efficient methods allowing the production of milligram quantities of isotopically labeled peptide are essential. Here, we report the high-yield expression, as a fusion to ubiquitin at the N-terminus and an intein at the C-terminus, and purification of uniformly labeled 13C- and 15N-labeled PAPf39 peptide. This allows the study of the PAPf39 monomer conformational ensemble by NMR spectroscopy. To this end, we performed the NMR chemical shift assignment of the PAPf39 peptide in the monomeric state at low pH. PMID:23314347

  6. Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study

    NASA Astrophysics Data System (ADS)

    Tseng, Sheng-Hao; Hsu, Chao-Kai; Yu-Yun Lee, Julia; Tzeng, Shih-Yu; Chen, Wan-Rung; Liaw, Yu-Kai

    2012-07-01

    Collagen is a rich component in skin that provides skin structure integrity; however, its contribution to the absorption and scattering properties of various types of skin has not been extensively studied. We considered the contribution of the collagen to the absorption spectrum of in vivo normal skin and keloids of 12 subjects derived from our diffuse reflectance spectroscopy (DRS) system in the wavelength range from 550 to 860 nm. It was found that the collagen concentration, the hemoglobin oxygen saturation, and the reduced scattering coefficient of keloids were remarkably different from that of normal skin. Our results suggest that our DRS system could assist clinicians in understanding the functional and structural condition of keloid scars. In the future, we will evaluate the accuracy of our system in the keloid diagnosis and investigate the applicability of our system for other skin-collagen-related studies.

  7. Sol-gel synthesis, phase composition, morphological and structural characterization of Ca10(PO4)6(OH)2: XRD, FTIR, SEM, 3D SEM and solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Kareiva, Simonas; Klimavicius, Vytautas; Momot, Aleksandr; Kausteklis, Jonas; Prichodko, Aleksandra; Dagys, Laurynas; Ivanauskas, Feliksas; Sakirzanovas, Simas; Balevicius, Vytautas; Kareiva, Aivaras

    2016-09-01

    Aqueous sol-gel chemistry route based on ammonium-hydrogen phosphate as the phosphorus precursor, calcium acetate monohydrate as source of calcium ions, and 1,2-ethylendiaminetetraacetic acid (EDTA), or 1,2-diaminocyclohexanetetracetic acid (DCTA), or tartaric acid (TA), or ethylene glycol (EG), or glycerol (GL) as complexing agents have been used to prepare calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp). The phase transformations, composition, and structural changes in the polycrystalline samples were studied by infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRD), and scanning electron microscopy (SEM). The local short-range (nano- and mezo-) scale effects in CHAp were studied using solid-state NMR spectroscopy. The spatial 3D data from the SEM images of CHAp samples obtained by TA, EG and GL sol-gel routes were recovered for the first time to our knowledge.

  8. Spectroscopic, structural and computational analysis of [Re(CO)3(dippM)Br](n+) (dippM = 1,1'-bis(diiso-propylphosphino)metallocene, M = Fe, n = 0 or 1; M = Co, n = 1).

    PubMed

    Furneaux, Aliza G; Piro, Nicholas A; Hernández Sánchez, Raúl; Gramigna, Kathryn M; Fey, Natalie; Robinson, Michael J; Kassel, W Scott; Nataro, Chip

    2016-03-21

    While the redox active backbone of bis(phosphino)ferrocene ligands is often cited as an important feature of these ligands in catalytic studies, the structural parameters of oxidized bis(phosphino)ferrocene ligands have not been thoroughly studied. The reaction of [Re(CO)3(dippf)Br] (dippf = 1,1'-bis(diiso-propylphosphino)ferrocene) and [NO][BF4] in methylene chloride yields the oxidized compound, [Re(CO)3(dippf)Br][BF4]. The oxidized species, [Re(CO)3(dippf)Br][BF4], and the neutral species, [Re(CO)3(dippf)Br], are compared using X-ray crystallography, cyclic voltammetry, visible spectroscopy, IR spectroscopy and zero-field (57)Fe Mössbauer spectroscopy. In addition, the magnetic moment of the paramagnetic [Re(CO)3(dippf)Br][BF4] was measured in the solid state using SQUID magnetometry and in solution by the Evans method. The electron transfer reaction of [Re(CO)3(dippf)Br][BF4] with acetylferrocene was also examined. For additional comparison, the cationic compound, [Re(CO)3(dippc)Br][PF6] (dippc = 1,1'-bis(diiso-propylphosphino)cobaltocenium), was prepared and characterized by cyclic voltammetry, X-ray crystallography, and NMR, IR and visible spectroscopies. Finally, DFT was employed to examine the oxidized dippf ligand and the oxidized rhenium complex, [Re(CO)3(dippf)Br](+).

  9. Study of concentration-dependent cobalt ion doping of TiO2 and TiO(2-x)Nx at the nanoscale.

    PubMed

    Gole, James L; Prokes, Sharka M; Glembocki, O J; Wang, Junwei; Qiu, Xiaofeng; Burda, Clemens

    2010-07-01

    Experiments with a porous sol-gel generated TiO(2) nanocolloid and its corresponding oxynitride TiO(2-x)N(x) are carried out to evaluate those transformations which accompany additional doping with transition metals. In this study, doping with cobalt (Co(ii)) ions is evaluated using a combination of core level and VB-photoelectron and optical spectroscopy, complementing data obtained from Raman spectroscopy. Raman spectroscopy suggests that cobalt doping of porous sol-gel generated anatase TiO(2) and nitridated TiO(2-x)N(x) introduces a spinel-like structure into the TiO(2) and TiO(2-x)N(x) lattices. TEM and XPS data complemented by valence band-photoelectron spectra demonstrate that metallic cobalt clusters are not formed even at high doping levels. As evidenced by Raman spectroscopy, the creation of a spinel-like structure is commensurate with the room temperature conversion of the oxide and its oxynitride from the anatase to the rutile form. The onset of this kinetically driven process correlates with the formation of spinel sites within the TiO(2) and TiO(2-x)N(x) particles. Despite their visible light absorption, the photocatalytic activity of these cobalt seeded systems is diminished relative to the oxynitride TiO(2-x)N(x).

  10. A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy.

    PubMed

    Cassaignau, Anaïs M E; Launay, Hélène M M; Karyadi, Maria-Evangelia; Wang, Xiaolin; Waudby, Christopher A; Deckert, Annika; Robertson, Amy L; Christodoulou, John; Cabrita, Lisa D

    2016-08-01

    During biosynthesis on the ribosome, an elongating nascent polypeptide chain can begin to fold, in a process that is central to all living systems. Detailed structural studies of co-translational protein folding are now beginning to emerge; such studies were previously limited, at least in part, by the inherently dynamic nature of emerging nascent chains, which precluded most structural techniques. NMR spectroscopy is able to provide atomic-resolution information for ribosome-nascent chain complexes (RNCs), but it requires large quantities (≥10 mg) of homogeneous, isotopically labeled RNCs. Further challenges include limited sample working concentration and stability of the RNC sample (which contribute to weak NMR signals) and resonance broadening caused by attachment to the large (2.4-MDa) ribosomal complex. Here, we present a strategy to generate isotopically labeled RNCs in Escherichia coli that are suitable for NMR studies. Uniform translational arrest of the nascent chains is achieved using a stalling motif, and isotopically labeled RNCs are produced at high yield using high-cell-density E. coli growth conditions. Homogeneous RNCs are isolated by combining metal affinity chromatography (to isolate ribosome-bound species) with sucrose density centrifugation (to recover intact 70S monosomes). Sensitivity-optimized NMR spectroscopy is then applied to the RNCs, combined with a suite of parallel NMR and biochemical analyses to cross-validate their integrity, including RNC-optimized NMR diffusion measurements to report on ribosome attachment in situ. Comparative NMR studies of RNCs with the analogous isolated proteins permit a high-resolution description of the structure and dynamics of a nascent chain during its progressive biosynthesis on the ribosome.

  11. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  12. Protein folding on the ribosome studied using NMR spectroscopy

    PubMed Central

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  13. Raman spectroscopy of triolein under high pressures

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  14. Solid state structural investigations of the bis(chalcone) compound with single crystal X-ray crystallography, DFT, gamma-ray spectroscopy and chemical spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Yakalı, Gül; Biçer, Abdullah; Eke, Canel; Cin, Günseli Turgut

    2018-04-01

    A bis(chalcone), (2E,6E)-2,6-bis((E)-3phenylallidene)cyclohexanone, was characterized by 1H NMR, 13C NMR, FTIR, UV-Vis spectroscopy, gamma-ray spectroscopy and single crystal X- ray structural analysis. The optimized molecular structure of the compound is calculated using DFT/B3LYP with 6-31G (d,p) level. The calculated geometrical parameters are in good agreement with the experimental data obtained from our reported X-ray structure. The powder and single crystal compounds were gama-irradiated using clinical electron linear accelerator and 60Co gamma-ray source, respectively. Spectral studies (1H NMR, 13C NMR, FTIR and UV-Vis) of powder chalcone compound were also investigated before and after irradiation. Depending on the irradiation notable changes were observed in spectral features powder sample. Single crystal X-ray diffraction investigation shows that both unirradiated and irradiated single crystal samples crystallizes in a orthorhombic crystal system in the centrosymmetric space group Pbcn and exhibits an C-H..O intramolecular and intermolecular hydrogen bonds. The crystal packing is stabilised by strong intermolecular bifurcate C-H..O hydrogen bonds and π…π stacking interactions. The asymmetric unit of the title compound contains one-half of a molecule. The other half of the molecule is generated with (1-x,y,-3/2-z) symmetry operator. The molecule is almost planar due to having π conjugated system of chalcones. However, irradiated single crystal compound showed significant changes lattice parameters, crystal volume and density. According to results of gamma-ray spectroscopy, radioactive elements of powder compound which are 123Sb(n,g),124Sb,57Fe(g,p),56Mn, 55Mn(g,n), and 54Mn were determined using photoactivation analysis. However, the most intensive gamma-ray energy signals are 124Sb.

  15. Body Temperature-Related Structural Transitions of Monotremal and Human Hemoglobin

    PubMed Central

    Digel, I.; Maggakis-Kelemen, Ch.; Zerlin, K. F.; Linder, Pt.; Kasischke, N.; Kayser, P.; Porst, D.; Temiz Artmann, A.; Artmann, G. M.

    2006-01-01

    In this study, temperature-related structural changes were investigated in human, duck-billed platypus (Ornithorhynchus anatinus, body temperature Tb = 31–33°C), and echidna (Tachyglossus aculeatus, body temperature Tb = 32–33°C) hemoglobin using circular dichroism spectroscopy and dynamic light scattering. The average hydrodynamic radius (Rh) and fractional (normalized) change in the ellipticity (Fobs) at 222 ± 2 nm of hemoglobin were measured. The temperature was varied stepwise from 25°C to 45°C. The existence of a structural transition of human hemoglobin at the critical temperature Tc between 36–37°C was previously shown by micropipette aspiration experiments, viscosimetry, and circular dichroism spectroscopy. Based on light-scattering measurements, this study proves the onset of molecular aggregation at Tc. In two different monotremal hemoglobins (echidna and platypus), the critical transition temperatures were found between 32–33°C, which are close to the species' body temperature Tb. The data suggest that the correlation of the structural transition's critical temperature Tc and the species' body temperature Tb is not mere coincidence but, instead, is a more widespread structural phenomenon possibly including many other proteins. PMID:16844747

  16. Protein Ligation of the Photosynthetic Oxygen-Evolving Center

    PubMed Central

    Debus, Richard J.

    2008-01-01

    Photosynthetic water oxidation is catalyzed by a unique Mn4Ca cluster in Photosystem II. The ligation environment of the Mn4Ca cluster optimizes the cluster’s reactivity at each step in the catalytic cycle and minimizes the release of toxic, partly oxidized intermediates. However, our understanding of the cluster’s ligation environment remains incomplete. Although the recent X-ray crystallographic structural models have provided great insight and are consistent with most conclusions of earlier site-directed mutagenesis studies, the ligation environments of the Mn4Ca cluster in the two available structural models differ in important respects. Furthermore, while these structural models and the earlier mutagenesis studies agree on the identity of most of the Mn4Ca cluster’s amino acid ligands, they disagree on the identity of others. This review describes mutant characterizations that have been undertaken to probe the ligation environment of the Mn4Ca cluster, some of which have been inspired by the recent X-ray crystallographic structural models. Many of these characterizations have involved Fourier Transform Infrared (FTIR) difference spectroscopy because of the extreme sensitivity of this form of spectroscopy to the dynamic structural changes that occur during an enzyme’s catalytic cycle. PMID:18496594

  17. Mechanical design of the first proximal Ig domain of human cardiac titin revealed by single molecule force spectroscopy.

    PubMed

    Li, Hongbin; Fernandez, Julio M

    2003-11-14

    The elastic I-band part of muscle protein titin contains two tandem immunoglobulin (Ig) domain regions of distinct mechanical properties. Until recently, the only known structure was that of the I27 module of the distal region, whose mechanical properties have been reported in detail. Recently, the structure of the first proximal domain, I1, has been resolved at 2.1A. In addition to the characteristic beta-sandwich structure of all titin Ig domains, the crystal structure of I1 showed an internal disulfide bridge that was proposed to modulate its mechanical extensibility in vivo. Here, we use single molecule force spectroscopy and protein engineering to examine the mechanical architecture of this domain. In contrast to the predictions made from the X-ray crystal structure, we find that the formation of a disulfide bridge in I1 is a relatively rare event in solution, even under oxidative conditions. Furthermore, our studies of the mechanical stability of I1 modules engineered with point mutations reveal significant differences between the mechanical unfolding of the I1 and I27 modules. Our study illustrates the varying mechanical architectures of the titin Ig modules.

  18. Electronic structure and magnetic anisotropy of L1{sub 0}-FePt thin film studied by hard x-ray photoemission spectroscopy and first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, S.; Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148; Mizuguchi, M.

    2016-07-25

    We have studied the electronic structure of the L1{sub 0} ordered FePt thin film by hard x-ray photoemission spectroscopy (HAXPES), cluster model, and first-principles calculations to investigate the relationship between the electronic structure and perpendicular magneto-crystalline anisotropy (MCA). The Fe 2p core-level HAXPES spectrum of the ordered film revealed the strong electron correlation in the Fe 3d states and the hybridization between the Fe 3d and Pt 5d states. By comparing the experimental valence band structure with the theoretical density of states, the strong electron correlation in the Fe 3d states modifies the valence band electronic structure of the L1{submore » 0} ordered FePt thin film through the Fe 3d-Pt 5d hybridization. These results strongly suggest that the strong electron correlation effect in the Fe 3d states and the Fe 3d-Pt 5d hybridization as well as the spin-orbit interaction in the Pt 5d states play important roles in the perpendicular MCA for L1{sub 0}-FePt.« less

  19. Body temperature-related structural transitions of monotremal and human hemoglobin.

    PubMed

    Digel, I; Maggakis-Kelemen, Ch; Zerlin, K F; Linder, Pt; Kasischke, N; Kayser, P; Porst, D; Temiz Artmann, A; Artmann, G M

    2006-10-15

    In this study, temperature-related structural changes were investigated in human, duck-billed platypus (Ornithorhynchus anatinus, body temperature T(b) = 31-33 degrees C), and echidna (Tachyglossus aculeatus, body temperature T(b) = 32-33 degrees C) hemoglobin using circular dichroism spectroscopy and dynamic light scattering. The average hydrodynamic radius (R(h)) and fractional (normalized) change in the ellipticity (F(obs)) at 222 +/- 2 nm of hemoglobin were measured. The temperature was varied stepwise from 25 degrees C to 45 degrees C. The existence of a structural transition of human hemoglobin at the critical temperature T(c) between 36-37 degrees C was previously shown by micropipette aspiration experiments, viscosimetry, and circular dichroism spectroscopy. Based on light-scattering measurements, this study proves the onset of molecular aggregation at T(c). In two different monotremal hemoglobins (echidna and platypus), the critical transition temperatures were found between 32-33 degrees C, which are close to the species' body temperature T(b). The data suggest that the correlation of the structural transition's critical temperature T(c) and the species' body temperature T(b) is not mere coincidence but, instead, is a more widespread structural phenomenon possibly including many other proteins.

  20. Molecular structure of hybrid imino-chalcone in the solid state: X-ray diffraction, spectroscopy study and third-order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Custodio, J. M. F.; Santos, F. G.; Vaz, W. F.; Cunha, C. E. P.; Silveira, R. G.; Anjos, M. M.; Campos, C. E. M.; Oliveira, G. R.; Martins, F. T.; da Silva, C. C.; Valverde, C.; Baseia, B.; Napolitano, H. B.

    2018-04-01

    A comprehensive structural study of the compound (2E)-1-((E)-4-(4-methoxybenzylideneamino)phenyl)-3-(4-methoxyphenyl)prop-2-en-1-one was carried out in this work. Single crystal X-ray diffraction (SCXRD), X-ray powder diffraction (XRPD), NMR, Raman and Infrared spectroscopies, and DFT calculations were performed for characterization of this iminochalcone hybrid. Intermolecular interactions were described by Hirshfeld surface analysis derived from crystal structure. Reactivity and intramolecular charge transfer were investigated using the frontier molecular orbitals and molecular electrostatic potential. In addition, we have calculated the Nonlinear Optical Properties at the CAM-B3LYP/6-311+g(d) level of theory in the presence of different solvents (gas-phase, acetone, chloroform, dichloromethane, dimethyl sulfoxide, ethanol, methanol, and water), being found meaningful NLO parameters for our compound. At last, there is a good agreement between calculated and experimental IR spectrum, allowing the assignment of some of normal vibrational modes of the iminochalcone hybrid.

Top