Shawn Fraver; Brian J. Palik
2012-01-01
The wide range of stand and age-cohort structures in these old-growth P. resinosa stands depicts pre-settlement forests more complex than those of the single-cohort, post-stand-replacing-fire model that has guided regional forest management. Within-stand patchiness of cohort age structures implies disturbances operating at scales smaller than...
NASA Astrophysics Data System (ADS)
Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan
2016-08-01
Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and height diversity through silvicultural operations might constitute an effective approach for enhancing aboveground C storage in these forests.
Alexa K. Michel; Susanne Winter
2009-01-01
In this study, microhabitat structures in Douglas-fir (Pseudotsuga menziesii) forests were defined and their frequency and abundance in natural stands and stands of varying active management histories and stand ages was compared. Indicator microhabitat structures for natural forests were determined and the relationship of the abundance of...
Conversion of Successionally Stable Even-Aged Oak Stands to an Uneven-Aged Structure
Edward F. Loewenstein; James M. Guldin
2004-01-01
Developing a silvicultural prescription to convert an even-aged or unmanaged oak stand to an uneven-aged structure depends in large part on the length of time the existing overstory will live. Four conversion prescriptions, representing three initial stand conditions, are presented. Each prescription partitions the cut of the original overstory differently in time and...
NASA Astrophysics Data System (ADS)
Kuttner, Benjamin George
Natural fire return intervals are relatively long in eastern Canadian boreal forests and often allow for the development of stands with multiple, successive cohorts of trees. Multi-cohort forest management (MCM) provides a strategy to maintain such multi-cohort stands that focuses on three broad phases of increasingly complex, post-fire stand development, termed "cohorts", and recommends different silvicultural approaches be applied to emulate different cohort types. Previous research on structural cohort typing has relied upon primarily subjective classification methods; in this thesis, I develop more comprehensive and objective methods for three common boreal mixedwood and black spruce forest types in northeastern Ontario. Additionally, I examine relationships between cohort types and stand age, productivity, and disturbance history and the utility of airborne LiDAR to retrieve ground-based classifications and to extend structural cohort typing from plot- to stand-levels. In both mixedwood and black spruce forest types, stand age and age-related deadwood features varied systematically with cohort classes in support of an age-based interpretation of increasing cohort complexity. However, correlations of stand age with cohort classes were surprisingly weak. Differences in site productivity had a significant effect on the accrual of increasingly complex multi-cohort stand structure in both forest types, especially in black spruce stands. The effects of past harvesting in predictive models of class membership were only significant when considered in isolation of age. As an age-emulation strategy, the three cohort model appeared to be poorly suited to black spruce forests where the accrual of structural complexity appeared to be more a function of site productivity than age. Airborne LiDAR data appear to be particularly useful in recovering plot-based cohort types and extending them to the stand-level. The main gradients of structural variability detected using LiDAR were similar between boreal mixedwood and black spruce forest types; the best LiDAR-based models of cohort type relied upon combinations of tree size, size heterogeneity, and tree density related variables. The methods described here to measure, classify, and predict cohort-related structural complexity assist in translating the conceptual three cohort model to a more precise, measurement-based management system. In addition, the approaches presented here to measure and classify stand structural complexity promise to significantly enhance the detail of structural information in operational forest inventories in support of a wide array of forest management and conservation applications.
Jeffrey H. Gove; Mark J. Ducey; William B. Leak; Lianjun Zhang
2008-01-01
Stand structures from a combined density manipulation and even- to uneven-aged conversion experiment on the Bartlett Experimental Forest (New Hampshire, USA) were examined 25 years after initial treatment for rotated sigmoidal diameter distributions. A comparison was made on these stands between two probability density functions for fitting these residual structures:...
William B. Leak; Mariko. Yamasaki
2012-01-01
Based on records taken during a harvest operation in 1899 on more than 400 trees in a northern hardwood stand in upper New York State, age and structural characteristics, including growth patterns, were developed and summarized. Age and size characteristics indicate that this was an exemplary old-growth stand similar in character to current old-growth examples in the...
Robert L. Deal; Troy Heithecker; Eric K. Zenner
2010-01-01
The effects of partial cutting on tree size structure and stand growth were evaluated in 52 plots in 13 stands in southeast Alaska that were partially harvested 53 to 96 years ago and compared with 50-year-old even-aged stands that developed after clearcutting. The net basal-area growth was greater in the partially cut plots than in the uncut plots, and basal-area...
Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data
Van R. Kane; Jonathan D. Bakker; Robert J. McGaughey; James A. Lutz; Rolf F. Gersonde; Jerry F. Franklin
2010-01-01
LiDAR measurements of canopy structure can be used to classify forest stands into structural stages to study spatial patterns of canopy structure, identify habitat, or plan management actions. A key assumption in this process is that differences in canopy structure based on forest age and elevation are consistent with predictions from models of stand development. Three...
Bolton, Douglas K; Coops, Nicholas C; Wulder, Michael A
2013-08-01
The structure and productivity of boreal forests are key components of the global carbon cycle and impact the resources and habitats available for species. With this research, we characterized the relationship between measurements of forest structure and satellite-derived estimates of gross primary production (GPP) over the Canadian boreal. We acquired stand level indicators of canopy cover, canopy height, and structural complexity from nearly 25,000 km of small-footprint discrete return Light Detection and Ranging (Lidar) data and compared these attributes to GPP estimates derived from the MODerate resolution Imaging Spectroradiometer (MODIS). While limited in our capacity to control for stand age, we removed recently disturbed and managed forests using information on fire history, roads, and anthropogenic change. We found that MODIS GPP was strongly linked to Lidar-derived canopy cover (r = 0.74, p < 0.01), however was only weakly related to Lidar-derived canopy height and structural complexity as these attributes are largely a function of stand age. A relationship was apparent between MODIS GPP and the maximum sampled heights derived from Lidar as growth rates and resource availability likely limit tree height in the prolonged absence of disturbance. The most structurally complex stands, as measured by the coefficient of variation of Lidar return heights, occurred where MODIS GPP was highest as productive boreal stands are expected to contain a wider range of tree heights and transition to uneven-aged structures faster than less productive stands. While MODIS GPP related near-linearly to Lidar-derived canopy cover, the weaker relationships to Lidar-derived canopy height and structural complexity highlight the importance of stand age in determining the structure of boreal forests. We conclude that an improved quantification of how both productivity and disturbance shape stand structure is needed to better understand the current state of boreal forests in Canada and how these forests are changing in response to changing climate and disturbance regimes.
Gary W. Miller; Petra B. Wood; Jeffrey V. Nichols; Jeffrey V. Nichols
1995-01-01
Silvicultural practices that promote a two-age stand structure provide an opportunity to maintain diversity of woody species and vertical structure for extended periods of time in Appalachian hardwoods. Data from four two-age stands initiated by deferment cutting in West Virginia are summarized for the first 10 to 15 years after treatment. Results indicated that 15...
Leaf area and tree increment dynamics of even-aged and multiaged lodgepole pine stands in Montana
Cassandra L. Kollenberg; Kevin L. O' Hara
1999-01-01
Age structure and distribution of leaf area index (LAI) of even and multiaged lodgepole pine (Pinus contorta var. latifolia Engelm.) stands were examined on three study areas in western and central Montana. Projected leaf area was determined based on a relationship with sapwood cross-sectional area at breast height. Stand structure and LAI varied considerably between...
Characteristics of gaps and natural regeneration in mature longleaf pine flatwoods ecosystems
Jennifer L. Gagnon; Eric J. Jokela; W.K. Moser; Dudley A. Huber
2004-01-01
Developing uneven-aged structure in mature stands of longleaf pine requires scientifically based silvicultural systems that are reliable, productive and sustainable. Understanding seedling responses to varying levels of site resource availability within forest gaps is essential for effectively converting even-aged stands to uneven-aged stands. A project was initiated...
Wu, Zeyan; Haack, Stacey Elizabeth; Lin, Wenxiong; Li, Bailian; Wu, Linkun; Fang, Changxun; Zhang, Zhixing
2015-01-01
Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P. elliottii plantations.
Wu, Zeyan; Haack, Stacey Elizabeth; Lin, Wenxiong; Li, Bailian; Wu, Linkun; Fang, Changxun; Zhang, Zhixing
2015-01-01
Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P. elliottii plantations. PMID:26267338
Composition and development of reproduction in two-age Appalachian hardwood stands: 20-year results
Gary W. Miller; James N. Kochenderfer; Desta Fekedulegn
2004-01-01
In the early 1980s, silviculturists with the Northeastern Research Station and Monongahela National Forest envisioned that managing some Appalachian hardwood stands to promote two-age structures would be part of an effective strategy for managing multi-use forests. Two-age stands provided the light and seedbed conditions necessary for regenerating numerous desirable...
Analysis of conifer forest regeneration using Landsat Thematic Mapper data
NASA Technical Reports Server (NTRS)
Fiorella, Maria; Ripple, William J.
1995-01-01
Landsat Thematic Mapper (TM) data were used to evaluate young conifer stands in the western Cascade Mountains of Oregon. Regression and correlation analyses were used to describe the relationships between TM band values and age of young Douglas-fir stands (2 to 35 years old). Spectral data from well regenerated Douglas-fir stands were compared to those of poorly regenerated conifer stands. TM bands 1, 2, 3, 5, 6, and 7 were inversely correlated with the age (r greater than or equal to -0.80) of well regenerated Douglas-fir stands. Overall, the 'structural index' (TM 4/5 ratio) had the highest correlation to age of Douglas-fir stands (r = 0.96). Poorly regenerated stands were spectrally distinct from well regenerated Douglas-fir stands after the stands reached an age of approximately 15 years.
Estimating growth and yield of mixed stands
Stephen R. Shifley; Burnell C. Fischer
1989-01-01
A mixed stand is defined as one in which no single species comprises more than 80 percent of the stocking. The growth estimation methods described below can be used not only in mixed stands but in almost any stand, regardless of species composition, age structure, or size structure. The methods described are necessary to accommodate the complex species mixtures and...
Douglas H. Page
2008-01-01
This paper demonstrates how Stand Density Index may be used to guide postthinning stand structure for the sustainable management of pinyon-juniper ecosystems. The post-thinning residual stand density can be varied to achieve various management objectives. Uneven-aged management is recommended, where possible, as a better approximation of the natural development process...
NASA Technical Reports Server (NTRS)
Cohen, Warren B.; Spies, Thomas A.
1992-01-01
Relationships between spectral and texture variables derived from SPOT HRV 10 m panchromatic and Landsat TM 30 m multispectral data and 16 forest stand structural attributes is evaluated to determine the utility of satellite data for analysis of hemlock forests west of the Cascade Mountains crest in Oregon and Washington, USA. Texture of the HRV data was found to be strongly related to many of the stand attributes evaluated, whereas TM texture was weakly related to all attributes. Data analysis based on regression models indicates that both TM and HRV imagery should yield equally accurate estimates of forest age class and stand structure. It is concluded that the satellite data are a valuable source for estimation of the standard deviation of tree sizes, mean size and density of trees in the upper canopy layers, a structural complexity index, and stand age.
Estimating oak growth and yield
Martin E. Dale; Donald E. Hilt
1989-01-01
Yields from upland oak stands vary widely from stand to stand due to differences in age, site quality, species composition, and stand structure. Cutting history and other past disturbances such as grazing or fire also affect yields.
Stand structure and stocking control in Appalachian mixed hardwoods
George R., Jr. Trimble; H. Clay Smith
1976-01-01
Uneven-aged management using a "q" technique for structure control is discussed for Appalachian mixed hardwoods. The success in attaining stand structure goals with periodic selection cuts was evaluated. Where these goals had not been reached, the authors speculated, on the basis of current stand conditions, whether they would be reached, and if so, when. For...
Stand dynamics in 60-year-old Allegheny hardwoods after thinning
Gary W. Miller
1997-01-01
Stand dynamics and tree growth in even-aged hardwood stands can be influenced by manipulating relative stand density, species composition, and stand structure. Land managers need quantitative information on the effect of vegetation manipulation to prescribe stand treatments that are appropriate for specific management objectives. Sixty-year-old stands composed of black...
Habitat diversity in uneven-aged northern hardwood stands: a case study
Laura S. Kenefic; Ralph D. Nyland
2000-01-01
Habitat characteristics were quantified in an empirically balanced uneven-aged northern hardwood stand in central New York. Canopy structure, wildlife trees, downed woody material, low cover, and richness and abundance of understory vegetation were assessed. High vertical structural diversity and low horizontal patchiness were associated with the single-tree selection...
Robert R. Alexander; Carleton B. Edminster
1977-01-01
Topics discussed include: (1) cutting methods, (2) stand structure goals, which involve choosing a residual stocking level, selecting a maximum tree size, and establishing a diameter distribution using the "q" technique, and (3) harvesting and removal of trees. Examples illustrate how to determine realistic stand structures for the initial entry for...
Growth of site trees and stand structure in mixed stands of Pacific silver fir and western hemlock.
Marshall D. Murray; Peggy C. Leonard
1990-01-01
Height and diameter growth of Pacific silver fir (Abies amabilis Dougl. ex Forbes) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) site trees, as well as overall stand structure on 0.15-acre plots, were analyzed in mixed stands 43 to 57 years old in breast height age at six locations in western Washington. These mixed...
Barrett A. Garrison; Christopher D. otahal; Matthew L. Triggs
2002-01-01
Age structure and growth of California black oak (Quercus kelloggii) was determined from tagged trees at four 26.1-acre study stands in Placer County, California. Stands were dominated by large diameter (>20 inch dbh) California black oak and ponderosa pine (Pinus ponderosa). Randomly selected trees were tagged in June-August...
Köstner, B; Falge, E; Tenhunen, J D
2002-06-01
Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to reduced light interception per leaf area provides another potential explanation for reduced carbon gain in old stands of P. abies, even when hydraulic constraints increase in response to changes in canopy architecture and aging.
A case history of all-age management
Richard M. Godman; Gilbert A. Mattson
1992-01-01
Single-tree selection "works" in sugar maple stands in the Lake States. This system of all-age management has been used for 31 years on the Argonne Experimental Forest. In 1953, researchers found that cutting according to basal area guides is both a convenient and effective way to regulate a stand. Later experience showed that achieving good stand structure...
Manual felling time and productivity in southern forests
D. Lortz; R. Kluender; W McCoy; [and others
1997-01-01
Sixteen stands were harvested by either clearcut, shelterwood, group selection, or single-tree selection methods. Three of the stands had uneven-aged structure. The other 13 were typical, mature, even-aged stands. Harvest intensity (proportion of basal area removed) ranged from 0.27 to 1.00. Harvested sites were similar in slope, average diameter at breast height (d.b....
Aaron R. Weiskittel; Laura S. Kenefic; Rongxia Li; John Brissette
2011-01-01
The effects of four precommercial thinning (PCT) treatments on an even-aged northern conifer stand in Maine were investigated by examining stand structure and composition 32 years after treatment. Replicated treatments applied in 1976 included: (1) control (no PCT), (2) row thinning (rowthin; 5-ft-wide row removal with 3-ft-wide residual strips), (3) row thinning with...
Hanson, Jacob J; Lorimer, Craig G
2007-07-01
Moderate-severity disturbances appear to be common throughout much of North America, but they have received relatively little detailed study compared to catastrophic disturbances and small gap dynamics. In this study, we examined the immediate impact of moderate-intensity wind storms on stand structure, opening sizes, and light regimes in three hemlock-hardwood forests of northeastern Wisconsin. These were compared to three stands managed by single-tree and group selection, the predominant forest management system for northern hardwoods in the region. Wind storms removed an average of 41% of the stand basal area, compared to 27% removed by uneven-aged harvests, but both disturbances removed trees from a wide range of size classes. The removal of nearly half of the large trees by wind in two old-growth stands caused partial retrogression to mature forest structure, which has been hypothesized to be a major disturbance pathway in the region. Wind storms resulted in residual stand conditions that were much more heterogeneous than in managed stands. Gap sizes ranged from less than 10 m2 up to 5000 m2 in wind-disturbed stands, whereas the largest opening observed in managed stands was only 200 m2. Wind-disturbed stands had, on average, double the available solar radiation at the forest floor compared to managed stands. Solar radiation levels were also more heterogeneous in wind-disturbed stands, with six times more variability at small scales (0.1225 ha) and 15 times more variability at the whole-stand level. Modification of uneven-aged management regimes to include occasional harvests of variable intensity and spatial pattern may help avoid the decline in species diversity that tends to occur after many decades of conventional uneven-aged management. At the same time, a multi-cohort system with these properties would retain a high degree of average crown cover, promote structural heterogeneity typical of old-growth forests, and maintain dominance by late-successional species.
[Population structure of soil arthropod in different age Pinus massoniana plantations].
Tan, Bo; Wu, Fu-zhong; Yang, Wan-qin; Zhang, Jian; Xu, Zhen-feng; Liu, Yang; Gou, Xiao-lin
2013-04-01
An investigation was conducted on the population structure of soil arthropod community in the 3-, 8-, 14-, 31-, and 40-years old Pinus massoniana plantations in the upper reaches of the Yangtze River in spring (May) and autumn (October), 2011, aimed to search for the scientific management of the plantation. A total of 4045 soil arthropods were collected, belonging to 57 families. Both the individual density and the taxonomic group number of the soil arthropod community decreased obviously with increasing soil depth, and this trend increased with increasing stand age. The dominant groups and ordinary groups of the soil arthropod community varied greatly with the stand age of P. massoniana plantation, and a significant difference (P<0.05) was observed in the individual density and taxonomic group number among different age P. massoniana plantations. In comparison with other stand age P. massoniana plantations, 3years old P. massoniana plantation had a significant difference in the structure and diversity of soil arthropod community, and the similarity index of the soil arthropod community was lower. The individual density, taxonomic group number, and diversity of soil arthropod community were the highest in 8-years old P. massoniana plantation, and then, decreased obviously with increasing stand age. It was suggested that the land fertility of the P. massoniana plantations could be degraded with increasing stand age, and it would be appropriate to make artificial regulation and restoration in 8-years old P. massoniana plantation.
Cathryn H. Greenberg; Robert W. Simons
1999-01-01
The authors sampled tree age, species composition, and stand structure of four high pine sites composed of old-growth sand post oak (Q. margaretta Ashe), old-growth turkey oak (Quercus laevis Walt.), and young longleaf pine (Pinus palustris Mill.) in north and central peninsular Florida. The oldest turkey oak...
Stocking and structure for maximum growth in sugar maple selection stands.
Thomas R. Crow; Carl H. Tubbs; Rodney D. Jacobs; Robert R. Oberg
1981-01-01
The impacts of stocking, structure, and cutting cycle on basal area, cubic foot volume, board foot volume, and diameter growth are considered. Recommendations are provided for maximum growth in uneven-aged sugar maple stands.
Productivity of rubber-tired skidders in southern pine forests
R. Kluender; D. Lortz; W. McCoy; B. Stokes; J. Klepac
1997-01-01
Sixteen stands were harvested at intensities (proportion of basal area removed) ranging from 0.27 to 1.00. Logging contractors used one or two rubber-tired cable and/or grapple skidders. Harvested sites were similar in slope, tree size, and stand composition. Thirteen of the stands had even-aged structures while the other three were uneven-aged. Skidding time per cycle...
Changing stand structure and regional growth reductions in Georgia's natural pine stands
W.A. Bechtold; G.A. Ruark; F.T. Lloyd
1991-01-01
Forest Inventory and Analysis (FIA) data indicate reductions in the growth of naturally regenerated pines in Georgia between the two latest measurement periods (1961-1972 vs. 1972-1982). Analysis of Covariance was used to adjust stand-level basal area growth rates for differences between periods in stand age, stand density, site index, mortality, and hardwood...
Colin C. Hardy; Helen Y. Smith; Ward McCaughey
2006-01-01
This paper presents several components of a multi-disciplinary project designed to evaluate the ecological and biological effects of two innovative silvicultural treatments coupled with prescribed fire in an attempt to both manage fuel profiles and create two-aged stand structures in lodgepole pine. Two shelterwood silvicultural treatments were designed to replicate as...
Ercanli, İlker; Kahriman, Aydın
2015-03-01
We assessed the effect of stand structural diversity, including the Shannon, improved Shannon, Simpson, McIntosh, Margelef, and Berger-Parker indices, on stand aboveground biomass (AGB) and developed statistical prediction models for the stand AGB values, including stand structural diversity indices and some stand attributes. The AGB prediction model, including only stand attributes, accounted for 85 % of the total variance in AGB (R (2)) with an Akaike's information criterion (AIC) of 807.2407, Bayesian information criterion (BIC) of 809.5397, Schwarz Bayesian criterion (SBC) of 818.0426, and root mean square error (RMSE) of 38.529 Mg. After inclusion of the stand structural diversity into the model structure, considerable improvement was observed in statistical accuracy, including 97.5 % of the total variance in AGB, with an AIC of 614.1819, BIC of 617.1242, SBC of 633.0853, and RMSE of 15.8153 Mg. The predictive fitting results indicate that some indices describing the stand structural diversity can be employed as significant independent variables to predict the AGB production of the Scotch pine stand. Further, including the stand diversity indices in the AGB prediction model with the stand attributes provided important predictive contributions in estimating the total variance in AGB.
Effect of seedbed preparation on natural reproduction of spruce and hemlock under dense shade
Grant Davis; Arthur C. Hart
1961-01-01
The cutting practices commonly recommended for spruce-fir stands in the Northeast involve uneven-aged management. The success of this type of management is predicated upon stand structures that have a range of size classes from seedlings to mature trees in intimate mixture. This kind of stand structure requires a continuous supply of reproduction of desirable species....
Simulated cavity tree dynamics under alternative timber harvest regimes
Zhaofei Fan; Stephen R Shifley; Frank R Thompson; David R Larsen
2004-01-01
We modeled cavity tree abundance on a landscape as a function of forest stand age classes and as a function of aggregate stand size classes.We explored the impact of five timber harvest regimes on cavity tree abundance on a 3261 ha landscape in southeast Missouri, USA, by linking the stand level cavity tree distribution model to the landscape age structure simulated by...
Prescribed fire effects on structure in uneven-aged stands of loblolly and shortleaf pines
Michael D. Cain; T. Bently Wigley; Derik J. Reed
1998-01-01
Structure was assessed in uneven-aged stands of loblolly (Pinus taeda) and shortleaf pine (P. echinata) that were subjected to prescribed winter burns on cycles of 0, 3, 6, and 9 years. Vegetation assessments were made in late summer of 1990, 10 years after a single hardwood control treatment (basal injection of non-pine woody plants >2.5 cm in groundline diameter...
Forest stand structure, productivity, and age mediate climatic effects on aspen decline
Bell, David M.; Bradford, John B.; Lauenroth, William K.
2014-01-01
Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.
NASA Astrophysics Data System (ADS)
Köstner, B.
Spatial scaling from patch to the landscape level requires knowledge on the effects of vegetation structure on maximum surface conductances and evaporation rates. The following paper summarizes results on atmospheric, edaphic, and structural controls on forest evaporation and transpiration observed in stands of Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica). Forest canopy transpiration (Ec) was determined by tree sapflow measurements scaled to the stand level. Estimates of understory transpiration and forest floor evaporation were derived from lysimeter and chamber measurements. Strong reduction of Ec due to soil drought was only observed at a Scots pine stand when soil water content dropped below 16% v/v. Although relative responses of Ec on atmospheric conditions were similar, daily maximum rates of could differ more than 100% between forest patches of different structure (1.5-3.0mmd-1 and 2.6-6.4mmd-1 for spruce and beech, respectively). A significant decrease of Ecmax per leaf area index with increasing stand age was found for monocultures of Norway spruce, whereas no pronounced changes in were observed for beech stands. It is concluded that structural effects on Ecmax can be specified and must be considered for spatial scaling from forest stands to landscapes. Hereby, in conjunction with LAI, age-related structural parameters are important for Norway spruce stands. Although compensating effects of tree canopy layers and understory on total evaporation of forests were observed, more information is needed to quantify structure-function relationships in forests of heterogenous structure.
Diameter growth of trees in an uneven-aged oak forest in the Missouri Ozarks
Edward F. Loewenstein; Paul S. Johnson; Harold E. Garrett
1997-01-01
We tested the efficacy of even-aged stand tables for predicting diameter growth of trees in uneven-aged oak stands. The study was based on the age- and diameter-structure of the Pioneer Forest, a 156,000-acre, privately owned oak forest in the Ozark Highlands of Missouri. The forest has been managed by single-tree selection since 1954.
Application of Lidar remote sensing to the estimation of forest canopy and stand structure
NASA Astrophysics Data System (ADS)
Lefsky, Michael Andrew
A new remote sensing instrument, SLICER (Scanning Lidar Imager of Canopies by Echo Recovery), has been applied to the problem of remote sensing the canopy and stand structure of two groups of deciduous forests, Tulip Poplar-Oak stands in the vicinity of Annapolis, MD. and bottomland hardwood stands near Williamston, NC. The ability of the SLICER instrument to remotely sense the vertical distribution of canopy structure (Canopy Height Profile), bulk canopy transmittance, and several indices of canopy height has been successfully validated using twelve stands with coincident field and SLICER estimates of canopy structure. Principal components analysis has been applied to canopy height profiles from both field sites, and three significant factors were identified, each closely related to the amount of foliage in a recognizable layer of the forest, either understory, midstory, or overstory. The distribution of canopy structure to these layers is significantly correlated with the size and number of stems supporting them. The same layered structure was shown to apply to both field and SLICER remotely sensed canopy height profiles, and to apply to SLICER remotely sensed canopy profiles from both the bottomland hardwood stands in the coastal plain of North Carolina, and to mesic Tulip-Poplars stands in the upland coastal plain of Maryland. Linear regressions have demonstrated that canopy and stand structure are correlated to both a statistically significant and useful degree. Stand age and stem density is more highly correlated to stand height, while stand basal area and aboveground biomass are more closely related to a new measure of canopy structure, the quadratic mean canopy height. A geometric model of canopy structure has been shown to explain the differing relationships between canopy structure and stand basal area for stands of Eastern Deciduous Forest and Douglas Fir Forest.
M.G. Ryan; D. Binkley; J.L. Stape
2008-01-01
The growth of Eucalyptus stands varies several fold across sites, under the influence of resource availability, stand age and stand structure. We describe a series of related studies that aim to understand the mechanisms that drive this great range in stand growth rates. In a seven-year study in Hawaii of Eucalyptus saligna at a...
R. Justin DeRose; Robert S. Seymour
2012-01-01
We tested the hypothesis that changes in leaf area index (LAIm2 m-2) and mean stand diameter following thinning are due to thinning type and residual density. The ratios of pre- to postthinning diameter and LAI were used to assess structural changes between replicated crown, dominant, and low thinning treatments to 33% and 50% residual density in even-aged Picea rubens...
Recognizing all-aged hemlock forests
Orie L. Loucks; James Nighswander
2000-01-01
Eastern hemlock (Tsuga canadensis (L.) Carr.) occurs in old-growth stands sometimes over 400 years old, throughout its principal range from Nova Scotia to Wisconsin. Studies based on aging as well as diameter distributions indicate a stand structure often dominated by an initial multi-decade post-disturbance pulse of seedling establishment, followed...
Paul A. Murphy; Robert M. Farrar
1981-01-01
In this study, 588 before-cut and 381 after-cut diameter distributions of uneven-aged loblolly-shortleaf pinestands were fitted to two different forms of the exponential probability density function. The left truncated and doubly truncated forms of the exponential were used.
Zavala, Miguel A; Angulo, Oscar; Bravo de la Parra, Rafael; López-Marcos, Juan C
2007-02-07
Light competition and interspecific differences in shade tolerance are considered key determinants of forest stand structure and dynamics. Specifically two main stand diameter distribution types as a function of shade tolerance have been proposed based on empirical observations. All-aged stands of shade tolerant species tend to have steeply descending, monotonic diameter distributions (inverse J-shaped curves). Shade intolerant species in contrast typically exhibit normal (unimodal) tree diameter distributions due to high mortality rates of smaller suppressed trees. In this study we explore the generality of this hypothesis which implies a causal relationship between light competition or shade tolerance and stand structure. For this purpose we formulate a partial differential equation system of stand dynamics as a function of individual tree growth, recruitment and mortality which allows us to explore possible individual-based mechanisms--e.g. light competition-underlying observed patterns of stand structure--e.g. unimodal or inverse J-shaped equilibrium diameter curves. We find that contrary to expectations interspecific differences in growth patterns can result alone in any of the two diameter distributions types observed in the field. In particular, slow growing species can present unimodal equilibrium curves even in the absence of light competition. Moreover, light competition and shade intolerance evaluated both at the tree growth and mortality stages did not have a significant impact on stand structure that tended to converge systematically towards an inverse J-shaped curves for most tree growth scenarios. Realistic transient stand dynamics for even aged stands of shade intolerant species (unimodal curves) were only obtained when recruitment was completely suppressed, providing further evidence on the critical role played by juvenile stages of tree development (e.g. the sampling stage) on final forest structure and composition. The results also point out the relevance of partial differential equations systems as a tool for exploring the individual-level mechanisms underpinning forest structure, particularly in relation to more complex forest simulation models that are more difficult to analyze and to interpret from a biological point of view.
Seth A. Ex; Robert DeRose; James N. Long
2011-01-01
Curlleaf mountain mahogany (Cercocarpus ledifolius Nutt.) is a little-studied woodland tree that occurs in pure stands throughout the Intermountain West. Stand development and population dynamics of this species are poorly understood, despite their relevance to management. We describe here the development of stand age structures and population dynamics of mahogany...
Age structure of a southern pine stand following 72 years of uneven-aged silviculture
Don C. Bragg
2012-01-01
Work on uneven-aged silviculture in southern pine stands on the Crossett Experimental Forest (CEF) began in the 1930s, when a number of 16.2-ha compartments were placed into a series of demonstration projects and studies (Reynolds 1980). Two of these compartments, the Good and Poor Farm Forestry Forties, have been maintained continuously in this silvicultural regime...
J.E. Smith; R. Molina; M.M.P. Huso; D.L. Luoma; D. McKay; M.A. Castellano; T. Lebel; Y. Valachovic
2002-01-01
Knowledge of the community structure of ectomycorrhizal fungi among successional forest age-classes is critical for conserving fungal species diversity. Hypogeous and epigeous sporocarps were collected from three replicate stands in each of three forest age-classes (young, rotation-age, and old-growth) of Douglas-fir (Pseudotsuga menziesii (Mirb.)...
Canopy transpiration for two Japanese cypress forests with contrasting structures
NASA Astrophysics Data System (ADS)
Tsuruta, K.; Komatsu, H.; Kume, T.; Shinohara, Y.; Otsuki, K.
2012-12-01
Canopy transpiration (EC) could have large variations among stands with different structures. To evaluate a difference in EC between stands with different structures for Japanese cypress, we observed EC using the sap flow technique in two stands with contrasting structures (age was 19 year and 99 year, mean diameter at breast height was 13.5 cm and 44.6 cm, stem density was 2100 trees ha-1 and 350 trees ha-1, respectively) for 5 months under the same meteorological condition. The mean stand sap flux density (JS) for measurement period and stand sapwood area (AS_stand) for the old stand (0.43 m3 m-2 day-1 and 15.2 m2 ha-1) were lower than those for the young stand (0.62 m3 m-2 day-1 and 20.4 m2 ha-1) by 31.1 % and 25.4 %, respectively. EC is calculated as a product of JS and AS_stand. Therefore the EC in the old stand was lower than that in the young stand by 50 %. We calculated the contribution of the reference JS for a given meteorological conditions (JSref) and the response of JS to the meteorological conditions (JSresp) in the two stands, and examined which is a primary factor for the difference of EC between the two studied stands. The JSresp for the young stand were not considerably different from that for the old stand, whereas JSref for the young stand was greater than that for the old stand. This indicates that JSref (not JSresp) was the primary cause for the difference of EC between the two stands. Further studies observing EC from stands with various structures are needed to generalize our conclusions.
Ecosystem management, forest health, and silviculture
Merrill R. Kaufmann; Claudia M. Regan
1995-01-01
Forest health issues include the effects of fire suppression and grazing on forest stands, reduction in amount of old-growth forests, stand structural changes associated with even-aged management, .changes in structure of the landscape mosaic, loss of habitat for threatened species, and the introduction of exotic species. The consequences of these impacts can be...
An Ecological Context for Regenerating Mult-cohort, Mixed-species Red Pine Forests
Brian Palik; John Zasada
2003-01-01
Human disturbances have simplified the structure and composition of red pine forest, relative to historical conditions. A greater understanding of natureal disturbances and their role in generating complex stand structures, and their associated benefits, has increased interest in managing for mixed-species, multi-aged stands. We outline a conceptual approach for...
Hou, Lin; Hou, Sijia
2017-01-01
Restoration of degraded forest ecosystem is crucial for regional sustainable development. To protect the country's fragile and fragmented environment, the Chinese government initiated an ecological engineering project, the Natural Forest Protection Program, in seventeen provinces in China beginning in 1998. Fully hillside-closed forest protection (vegetation restoration naturally without any artificial disturbance) was one of vital measures of the Natural Forest Protection Program applied nation wide. Whether plant diversity, biomass and age structure of dominant tree species and soil nutrients in protected stands may become better with increase of protected period are still open problems. We investigated community diversity, biomass of dominant tree species, age structures, and analyzed soil chemical properties of a Pinus tabulaeformis population at protected sites representing different protected ages at Huanglongshan Forest Bureau on the Loess Plateau, Shaanxi, China. Plant species richness of Pinus tabulaeformis community was significantly affected ( p < 0.05) by forest protection and the effect attenuated with protection age. Shannon evenness index of plant species generally increased with protection age. Stands protected for 45 years had the highest tree biomass and considerable natural regeneration capacity. Contents of organic carbon, available phosphorus and available potassium in top soil increased in protected stands less than 45 years, however decreased significantly thereafter. Long-term forest protection also decreased the content of mineral nitrogen in top soil. We found that the richness of shrubs and herbs was significantly affected by forest protection, and evenness indices of tree, shrub and herb increased inconsistently with protected ages. Forest protection created more complex age structures and tree densities with increasing age of protection. Content of soil mineral nitrogen at 0-20 cm soil depth showed a decreasing trend in stands of up to 30 years. Soil available phosphorus and potassium contents were higher in stands with greater proportions of big and medium trees. Long-term protection (>45 years) of Pinus tabulaeformis stands in southeast Loess Plateau, China, may be associated with decreasing plant species richness, proportion of medium to large trees, dominant biomass of Pinus tabulaeformis and soil nutrients.
Development and quality of reproduction in two-age central Appalachian hardwoods - 10-year results
Gary W. Miller; Thomas M. Schuler
1995-01-01
Silvicultural practices that promote two-age stand structures have the potential to meet a wide range of forest resource goals. Such practices can overcome perceived disadvantages associated with clearcutting and still provide sustainable yields of desirable timber products and other woodland benefits. Forest managers need information on stand development following two...
Effect of Silviculture on the Yield and Quality of Veneers
Leslie H. Groom; Ray Newbold; Jim Guldin
2002-01-01
The structural and aesthetic value of wood is typically sacrificed in an attempt to meet demand. This paper addresses the financial and quality aspects of silvicultural choices as it relates to wood veneers. Five trees each were harvested from an uneven-aged stand and from the following even- aged stands: intensive plantation, conventional plantation, and natural...
Structure of Pine Stands in the Southeast
William A. Bechtold; Gregory A. Ruark
1988-01-01
Distributional and statistical information associated with stand age, site index, basal area per acre, number of stems per acre, and stand density index is reported for major pine cover types of the Southeastern United States. Means, standard deviations, and ranges of these variables are listed by State and physiographic region for loblolly, slash, longleaf, pond,...
James M. Guldin; Robert M. Farrar
2002-01-01
In the absence of replicated studies, we used a case study demonstration to illustrate converting a 26-year-old even-aged loblolly pine (Pinus taeda L.) plantation to uneven-aged structure. Unreplicated treatments included maintaining even-aged structure through low thinning (thinning from below) to a residual basal area of 80 square feet per acre,...
Broadbent, Eben N.; Almeyda Zambrano, Angélica M.; Asner, Gregory P.; Soriano, Marlene; Field, Christopher B.; de Souza, Harrison Ramos; Peña-Claros, Marielos; Adams, Rachel I.; Dirzo, Rodolfo; Giles, Larry
2014-01-01
Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ13C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ13C dynamics were largely constrained by plant species composition. Foliar δ15N had a significant negative correlation with both stand age and species successional status, – most likely resulting from a large initial biomass-burning enrichment in soil 15N and 13C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession. PMID:24516525
Broadbent, Eben N; Almeyda Zambrano, Angélica M; Asner, Gregory P; Soriano, Marlene; Field, Christopher B; de Souza, Harrison Ramos; Peña-Claros, Marielos; Adams, Rachel I; Dirzo, Rodolfo; Giles, Larry
2014-01-01
Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ(13)C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ(13)C dynamics were largely constrained by plant species composition. Foliar δ(15)N had a significant negative correlation with both stand age and species successional status, - most likely resulting from a large initial biomass-burning enrichment in soil (15)N and (13)C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession.
Timothy B. Harrington
2006-01-01
Many of the stand structural characteristics of longleaf pine (Pinus palustris Mill.) forests that existed prior to European colonization have been altered or lost from past disturbance histories (Frost this volume). For example, often missing are the widely spaced, large-diameter trees, the all-aged stand structure that included a vigorous cohort...
Peter M. Brown; Anna W. Schoettle
2008-01-01
We developed fire-scar and tree-recruitment chronologies from two stands dominated by limber pine and Rocky Mountain bristlecone pine in central and northern Colorado. Population structures in both sites exhibit reverse-J patterns common in uneven-aged forests. Bristlecone pine trees were older than any other at the site or in the limber pine stand, with the oldest...
Forest development and carbon dynamics after mountain pine beetle outbreaks
E. Matthew Hansen
2014-01-01
Mountain pine beetles periodically infest pine forests in western North America, killing many or most overstory pine stems. The surviving secondary stand structure, along with recruited seedlings, will form the future canopy. Thus, even-aged pine stands become multiaged and multistoried. The species composition of affected stands will depend on the presence of nonpines...
Longleaf pine (Pinus palustris ) Stand Dynamics: A Regional Longleaf Growth Study
Ralph S. Meldahl; John S. Kush; William D. Boyer
1998-01-01
Objective: Describe and model temporal changes in longleaf pine stand structure. From 1964-1967, the U.S. Forest Service established a regional longleaf pine growth study (RLGS) in the Gulf States. The original objective was to obtain a database for the development of growth and mortality predictions of naturally regenerated, even- aged longleaf pine stands. The...
Mike Hillis; Vick Applegate; Steve Slaughter; Michael G. Harrington; Helen Smith
2001-01-01
Forest Service land managers, with the collaborative assistance from research, applied a disturbance based restoration strategy to rehabilitate a greatly-altered, high risk Northern Rocky Mountain old-forest ponderosa pine-Douglas-fir stand. Age-class structure and fire history for the site have been documented in two research papers (Arno and others 1995, 1997)....
Hailemariam Temesgen; Tara M. Barrett; Greg Latta
2008-01-01
Cavity trees contribute to diverse forest structure and wildlife habitat. For a given stand, the size and density of cavity trees indicate its diversity, complexity, and suitability for wildlife habitat. Size and density of cavity trees vary with stand age, density, and structure. Using Forest Inventory and Analysis (FIA) data collected in western Oregon and western...
Identification of stand age in rubber plantations using time series Landsat and PALSAR-2 data
NASA Astrophysics Data System (ADS)
Chen, B.; Wu, Z.; Xiao, X.; Li, X.; Ma, J.; Lan, G.; Yang, C.; Xie, G.; Dong, J.; Qin, Y.
2016-12-01
Stand age of rubber plantation is vital for optimal plantation management such as fertilization, prediction of latex yield and timber production. It is also an important variable for biomass estimation and determining the distribution of carbon pools and fluxes in rubber plantation ecosystem. Benefit from the traits of large coverage, high speed, and low-cost, satellite remote sensing techniques have been serviced as a major approach to map acreage and stand age of forest and plantations. Despite a number of studies working on acreage and stand age mapping, the stand age information of rubber plantation is still poorly available at regional scale. In this study, the 25-m cloud-free Phased Array type L-band Synthetic Aperture Radar 2 (PALSAR-2) mosaic product, together with the 30-m time series images of Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI), were used to map stand age of rubber plantation in China under Google Earth Engine computing platform. Rubber plantation in 2015 were first identified by structural information in PALSAR-2 and phenological and spectral signatures (deciduous, rapid change of canopies during rubber defoliation and foliation periods, and dense canopy in growing season) that derived from time series Landsat ETM+/OLI images. Based on the resultant rubber plantation map, we then successfully identified the stand age of rubber plantation using land cover transfer information during rubber seeding cultivation period, specifically, by yearly composited Land Surface Water Index (LSWI) of Landsat TM/ETM+/OLI images since 1985. The estimated stand age has very high accuracy with Root Square Mean Error (RMSE) less than 2 years. The resultant rubber stand age information are likely to be useful for sustainable plantation management and ecological assessment, and the methodology can be extendable for applications in other regions.
Stand structure and dynamics of sand pine differ between the Florida panhandle and peninsula
Drewa, P.B.; Platt, W.J.; Kwit, C.; Doyle, T.W.
2008-01-01
Size and age structures of stand populations of numerous tree species exhibit uneven or reverse J-distributions that can persist after non-catastrophic disturbance, especially windstorms. Among disjunct populations of conspecific trees, alternative distributions are also possible and may be attributed to more localized variation in disturbance. Regional differences in structure and demography among disjunct populations of sand pine (Pinus clausa (Chapm. ex Engelm.) Vasey ex Sarg.) in the Florida panhandle and peninsula may result from variation in hurricane regimes associated with each of these populations. We measured size, age, and growth rates of trees from panhandle and peninsula populations and then compiled size and age class distributions. We also characterized hurricanes in both regions over the past century. Size and age structures of panhandle populations were unevenly distributed and exhibited continuous recruitment; peninsula populations were evenly sized and aged and exhibited only periodic recruitment. Since hurricane regimes were similar between regions, historical fire regimes may have been responsible for regional differences in structure of sand pine populations. We hypothesize that fires were locally nonexistent in coastal panhandle populations, while periodic high intensity fires occurred in peninsula populations over the past century. Such differences in local fire regimes could have resulted in the absence of hurricane effects in the peninsula. Increased intensity of hurricanes in the panhandle and current fire suppression patterns in the peninsula may shift characteristics of sand pine stands in both regions. ?? 2007 Springer Science+Business Media B.V.
Effect of diameter limits and stand structure on relative density indices: a case study
Robert O. Curtis
2010-01-01
An understory of shade-tolerant species often develops in stands in the Douglas-fir region of western Washington and Oregon and can have a disproportionate effect on relative density indices, such as Reineke stand density index and Curtis relative density. The effects of such understories and of other departures from The even-aged condition are illustrated with...
Heavy thinning of ponderosa pine stands: An Arizona case study
Peter F. Ffolliott; Jr. Baker; Gerald J. Gottfried
2000-01-01
Growth and structural changes in a mosaic of even-aged ponderosa pine (Pinus ponderosa) stands were studied for 25 years to determine the long-term impacts of a heavy thinning treatment to a basal-area level of 25 ft2/acre. Basal area and volume growth of these stands has increased since thinning and likely will continue to...
Montygierd-Loyba, T. M.; Keeley, J.E.; DeVries, J.J.
1986-01-01
Wildfires have had a major influence on the structural and functional adaptations that have evolved in Mediterranean-type ecosystems. Some chaparral shrubs sprout after fires while others produce serotinous cones or seeds refractory to germination until they are cued by a fire. Ceanothus megacarpus is a sclerophylous shrub commonly found in California in either pure of mixed stands which does not survive fires but whose seeds germinate following a fire. Because in recent decades man-made fires have become frequent, few older stands remain, and they have been described as "decadent" or "senescent." Since data on older chaparral stands are scarce, a stand of chaparral in the Santa Monica Mountains of southern California, which last burned in 1929 was studied in an effort to elucidate the survivorship patterns and community structure of Ceanothus megacarpus as it ages. Ceanothus is responsible for 68 percent of the basal coverage at this mixed stand, and one-eighth of the Ceanothus were found to be dead. Over 130 such dead individuals were cut at ground level and aged by ring counts to establish the survivorship curve for this species in this chaparral community in the absence of fires.
A Conceptual Model of Riparian Forest Response to Channel Abandonment on Meandering Rivers
NASA Astrophysics Data System (ADS)
Stella, J. C.; Hayden, M. K.; Battles, J. J.; Piegay, H.; Dufour, S.; Fremier, A. K.
2008-12-01
On alluvial rivers, hydrogeomorphic regimes exert a primary control on the regeneration of pioneer riparian forest stands and thus their composition and age structure. Seasonal flow patterns provide the necessary conditions for recruitment, and channel migration drives patterns of forest stand dynamics. To date, studies of pioneer riparian forest structure have focused primarily on point bar habitats, where woody vegetation typically recruits with decadal frequency in even-aged bands parallel to the river margin. However, there are indications that other recruitment pathways exist and can be important from a population and conservation perspective. On floodplains where channel migration occurs as infrequent cutoff or avulsion events, the geometry and position of the old channel relative to the new one determines rates and patterns of sedimentation and flood frequency. These conditions provide a brief opportunity for forest recruitment, and geomorphic evolution of the former channel habitat in turn influences forest dynamics. The population implications of this alternative forest regeneration pathway depend on the temporal dynamics of channel abandonment versus the rate of lateral channel migration. Preliminary analysis indicates that the geographic scope of this ecogeomorphological process is sizable. Along the Sacramento River (CA) and Ain River (France), for example, cottonwood-dominated stands associated with abandoned channels tend to be less frequent in number (38% of all stands) but larger in area (accounting for 53% of all forest area) relative to forest stands associated with laterally migrating point bars. Dendrochronological analysis confirms that tree ages in floodplain stands corresponds to the first decade after channel abandonment. These data indicate that changes to the rate and scale of channel abandonment due to human and climatic alterations to the flow regime will likely influence riparian corridor-wide tree population structure and forest dynamics.
M.E. Ostry; M.J. Moore; C.C. Kern; R.C. Venette; B.J. Palik
2012-01-01
Increasing the diversity of species and structure of red pine (Pinus resinosa) is often a management goal in stands simplified by practices such as fire suppression and plantation management in many areas of the Great Lakes Region. One approach to diversification is to convert predominantly even-aged, pure red pine stands to multi-cohort, mixed-...
Madison Katherine Akers; Michael Kane; Dehai Zhao; Richard F. Daniels; Robert O. Teskey
2015-01-01
Examining the role of foliage in stand development across a range of stand structures provides a more detailed understanding of the processes driving productivity and allows further development of process-based models for prediction. Productivity changes observed at the stand scale will be the integration of changes at the individual tree scale, but few studies have...
Variable-retention harvesting as a silvicultural option for lodgepole pine
Christopher R. Keyes; Thomas E. Perry; Elaine K. Sutherland; David K. Wright; Joel M. Egan
2014-01-01
Bark beetle-induced mortality in forested landscapes of structurally uniform, even-aged lodgepole pine stands has inspired a growing interest in the potential of silvicultural treatments to enhance resilience by increasing spatial and vertical complexity. Silvicultural treatments can simulate mixed-severity disturbances that create multiaged lodgepole pine stands,...
Sound-mapping a coniferous forest—Perspectives for biodiversity monitoring and noise mitigation
Fischer, Michael; Tzanopoulos, Joseph
2018-01-01
Acoustic diversity indices have been proposed as low-cost biodiversity monitoring tools. The acoustic diversity of a soundscape can be indicative of the richness of an acoustic community and the structural/vegetation characteristics of a habitat. There is a need to apply these methods to landscapes that are ecologically and/or economically important. We investigate the relationship between the acoustic properties of a coniferous forest with stand-age and structure. We sampled a 73 point grid in part of the UK’s largest man-made lowland coniferous plantation forest, covering a 320ha mosaic of different aged stands. Forest stands ranged from 0–85 years old providing an age-gradient. Short soundscape recordings were collected from each grid point on multiple mornings (between 6am-11am) to capture the dawn chorus. We repeated the study during July/August in 2014 and again in 2015. Five acoustic indices were calculated for a total of 889 two minute samples. Moderate relationships between acoustic diversity with forest stand-age and vegetation characteristics (canopy height; canopy cover) were observed. Ordinations suggest that as structural complexity and forest age increases, the higher frequency bands (4-10KHz) become more represented in the soundscape. A strong linear relationship was observed between distance to the nearest road and the ratio of anthropogenic noise to biological sounds within the soundscape. Similar acoustic patterns were observed in both years, though acoustic diversity was generally lower in 2014, which was likely due to differences in wind conditions between years. Our results suggest that developing these relatively low-cost acoustic monitoring methods to inform adaptive management of production landscapes, may lead to improved biodiversity monitoring. The methods may also prove useful for modelling road noise, landscape planning and noise mitigation. PMID:29320514
NASA Astrophysics Data System (ADS)
Hibbard, K. A.; Law, B.; Thornton, P.
2003-12-01
Disturbance and management regimes in forested ecosystems have been recently highlighted as important factors contributing to quantification of carbon stocks and fluxes. Disturbance events, such as stand-replacing fires and current management regimes that emphasize understory and tree thinning are primary suspects influencing ecosystem processes, including net ecosystem productivity (NEP) in forests of the Pacific Northwest. Several recent analyses have compared simulated to measured component stocks and fluxes of carbon in Ponderosa Pine (Pinus ponderosa var. Laws) at 12 sites ranging from 9 to 300 years in central Oregon (Law et al. 2001, Law et al. 2003) using the BIOME-BGC model. Major emphases on ecosystem model developments include improving allocation logic, integrating ecosystem processes with disturbance such as fire and including nitrogen in biogeochemical cycling. In Law et al. (2001, 2003), field observations prompted BIOME-BGC improvements including dynamic allocation of carbon to fine root mass through the life of a stand. A sequence of simulations was also designed to represent both management and disturbance histories for each site, however, current age structure of each sites wasn't addressed. Age structure, or cohort management has largely been ignored by ecosystem models, however, some studies have sought to incorporate stand age with disturbance and management (e.g. Hibbard et al. 2003). In this analyses, we regressed tree ages against height (R2 = 0.67) to develop a proportional distribution of age structure for each site. To preserve the integrity of the comparison between Law et al. (2003) and this study, we maintained the same timing of harvest, however, based on the distribution of age structures, we manipulated the amount of removal. Harvest by Law et al. (2003) was set at stand-replacement (99%) levels to simulate clear-cutting and reflecting the average top 10% of the age in each plot. For the young sites, we set removal at 73%, 51% and 61% for sites averaging 9,16 and 23 years, respectively. It was assumed that changes in long-term pools (e.g. soil C) were negligible within these timeframes. In Law et al. (2003), the model performed well for old and mature sites, however, model simulations of the younger sites (9-50Y) were weak compared to NEP estimates from observations. Error for the young plots in Law et al. (2003) ranged from 150 - >400% of observed NEP. By accounting for the observed age structure through harvest removal, model error from this study ranged from 20-90% in young plots. This study is one of a few that have sought to account for age structure in simulating ecosystem dynamics and processes.
Joelsson, Klara; Hjältén, Joakim; Gibb, Heloise
2018-01-01
Management of forest for wood production has altered ecosystem structures and processes and led to habitat loss and species extinctions, worldwide. Deadwood is a key resource supporting forest biodiversity, and commonly declines following forest management. However, different forest management methods affect dead wood differently. For example, uneven-aged silviculture maintains an age-stratified forest with ongoing dead wood production, while even-aged silviculture breaks forest continuity, leading to long periods without large trees. We asked how deadwood-dependent beetles respond to different silvicultural practices and if their responses depend on deadwood volume, and beetles preference for decay stages of deadwood. We compared beetle assemblages in five boreal forest types with different management strategies: clearcutting and thinning (both representing even-aged silviculture), selective felling (representing uneven-aged silviculture), reference and old growth forest (both uneven-aged controls without a recent history [~50 years] of management, but the latter with high conservation values). We collected beetles using window traps and by sieving the bark from experimental logs (bolts). Beetle assemblages on clear-cuts differed from all other stand types, regardless of trapping method or decay stage preference. Thinning differed from reference stands, indicating incomplete recovery after clear-cutting, while selective felling differed only from clear-cuts. In contrast to our predictions, early and late successional species responded similarly to different silvicultural practices. However, there were indications of marginal assemblage differences both between thinned stands and selective felling and between thinned and old growth stands (p = 0.10). The stand volume of early decay stage wood influenced assemblage composition of early, but not late successional species. Uneven-aged silviculture maintained species assemblages similar to those of the reference and old growth stands and might therefore be a better management option when considering biodiversity conservation.
A practical alternative to single tree selection?
Gary W. Miller; H. Clay Smith
1993-01-01
When landowners want to develop and maintain an uneven-aged tree structure in eastern hardwood stands, single-tree selection often is suggested as the only advisable, long-term partial regeneration harvest method. Single-tree selection is preferred because it provides a means for improving quality and controlling stocking of the residual stand necessary for sustained...
Patrick H. Brose; Thomas A. Waldrop
2006-01-01
The prevalence of stand-replacing fire in the formation of Table Mountain pine - pitch pine (Pinus pungens Lamb. and Pinus rigida Mill., respectively) communities was investigated with dendrochronological techniques. Nine stands in Georgia, South Carolina, and Tennessee were analyzed for age structure, species recruitment trends,...
Patrick H. Brose; Thomas A. Waldrop
2006-01-01
The prevalence of stand-replacing tire in the formation of Table Mountain pine - pitch pine (Pinus pungens Lamb. and Pinus rigida Mill., respectively) communities was investigated with dendrochronological techniques. Nine stands in Georgia, South Carolina, and Tennessee were analyzed for age structure, species recruitment trends,...
NASA Astrophysics Data System (ADS)
Streich, M.; Wetz, J. J.; Ajemian, M. J.; Stunz, G. W.
2016-02-01
The goal of our study was to evaluate the relative abundance, size and age structure of Red Snapper among three different habitat types (standing oil and gas platforms, artificial reefs [rigs-to-reefs], and natural banks) in the northwestern Gulf of Mexico. From May 2013 - January 2015, we conducted 140 vertical line sets and captured 1538 Red Snapper ranging in size from 251 to 855 mm TL. Ages determined for 801 of these fish ranged from 2-30 years. No differences were detected in Red Snapper CPUE among the three habitats. However, a comparison of TL and TW distributions suggested that natural banks supported a greater proportion of larger fish than artificial reefs or standing platforms (K-S test, p<0.001). Mean TW-at-age regressions for the most common age groups (ages 3-7) suggested that Red Snapper grew faster at artificial reefs and standing platforms than natural bank habitats (ANCOVA, p<0.05). Mean age was positively correlated with capture depth (r=0.79) suggesting spatial variation in age composition. These results have important implications for artificial reef development and Red Snapper management in the GOM. Further use of standardized, fishery-independent surveys and additional biological data will help elucidate the role artificial structures play in maintaining the Red Snapper population.
Structural effects of liana presence in secondary tropical dry forests using ground LiDAR
NASA Astrophysics Data System (ADS)
Sánchez-Azofeifa, A.; Portillo-Quintero, C.; Durán, S. M.
2015-10-01
Lianas, woody vines, are a key component of tropical forest because they may reduce carbon storage potential. Lianas are increasing in density and biomass in tropical forests, but it is unknown what the potential consequences of these increases are for forest dynamics. Lianas may proliferate in disturbed areas, such as regenerating forests, but little is known about the role of lianas in secondary succession. In this study, we evaluated the potential of the ground LiDAR to detect differences in the vertical structure of stands of different ages with and without lianas in tropical dry forests. Specifically, we used a terrestrial laser scanner called VEGNET to assess whether liana presence influences the vertical signature of stands of different ages, and whether successional trajectories as detected by the VEGNET could be altered by liana presence. We deployed the VEGNET ground LiDAR system in 15 secondary forests of different ages early (21 years old since land abandonment), intermediate (32-35 years old) and late stages (> 80 years old) with and without lianas. We compared laser-derived vegetation components such as Plant Area Index (PAI), plant area volume density (PAVD), and the radius of gyration (RG) across forest stands between liana and no-liana treatments. In general forest stands without lianas show a clearer distinction of vertical strata and the vertical height of accumulated PAVD. A significant increase of PAI was found from intermediate to late stages in stands without lianas, but in stands where lianas were present there was not a significant trend. This suggests that lianas may be influencing successional trajectories in secondary forests, and these effects can be captured by terrestrial laser scanners such as the VEGNET. This research contributes to estimate the potential effects of lianas in secondary dry forests and highlight the role of ground LiDAR to monitor structural changes in tropical forests due to liana presence.
Moore, Georgianne W; Bond, Barbara J; Jones, Julia A; Phillips, Nathan; Meinzer, Federick C
2004-05-01
Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees. Overall, sapwood basal area was 21% higher in the young stand than in the old stand. In the old forest, T. heterophylla is an important co-dominant, accounting for 58% of total sapwood basal area, whereas P. menziesii is the only dominant conifer in the young stand. Angiosperms accounted for 36% of total sapwood basal area in the young stand, but only 7% in the old stand. For all factors combined, we estimated 3.27 times more water use by vegetation in the riparian area of the young stand over the measurement period. Tree age had the greatest effect on stand differences in water use, followed by differences in sapwood basal area, and finally species composition. The large differences in transpiration provide further evidence that forest management alters site water balance via elevated transpiration in vigorous young stands.
Chen, Qi Min; Luo, Qing Hong; Ning, Hu Sen; Zhao, Cheng Yi; Duan, Wen Biao
2017-03-18
The population structure characteristics, natural regeneration, and the influential factors of Haloxylon ammodendron plantations at six different stand ages on the southern edge of the Gurbantunggut Desert were studied. The results showed that H. ammodendron plantation at the stand age of 7 could naturally regenerate. At the stand age of 17, the densities of the seedlings (<30 cm height), saplings (30≤H<50 height), and small trees (≥50 cm height) reached optimal class, and the mean height and base diameter of the small tress reached 1.10 m and 1.91 cm, respectively. The parent trees in H. ammodendron plantation at the stand age of 20 grew best. The height of 35% individuals grew up to 2.50-3.00 m, and the basal stem diameter of 23.1% individuals grew up to 8.00-10.00 cm. The height and diameter growth of the parent trees in H. ammodendron plantation at the stand age of 33 apparently declined, but the regeneration ability by natural seed dispersal was still strong. The regeneration density of natural seed dispersal showed the greatest correlation with the available nitrogen content in 0-100 cm soil layer (0.87), followed by the soil rapidly available phosphorus content (0.84) and the soil water content (0.79). The soils with pH 8.1-8.6 did not limit the nutrient growth of the regeneration layer. In the main stand layer, the individual density of whole regeneration layer showed the greatest correlation with the biomass of the parent trees (0.77), while the density of regeneration layer of the small trees showed the greatest correlation with the planting density (0.71) and the age of the parent trees (0.70).
Best density and structure for uneven-aged northern hardwood management in New England
William B. Leak
2003-01-01
Choice of the best residual density (basal area per acre) and structure (diameter distribution) for uneven-aged management of northern hardwoods is a complex decision that depends on the manager's decision rules, product objectives, site conditions, and - perhaps most important - current stand conditions. In contrast to other recommendations on residual density...
D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn; Palik, Brian J.
2013-01-01
Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (>50 yrs) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forest systems.
D'Amato, Anthony W; Bradford, John B; Fraver, Shawn; Palik, Brian J
2013-12-01
Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (> 50 years) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forests.
Management of western coniferous forest habitat for nesting accipiter hawks
Richard T. Reynolds
1983-01-01
Availability of nesting sites can limit accipiter populations. Because accipiters nest in dense forest stands, any alteration that opens these stands is likely to lessen their desirability as nest sites. Tree growth and the associated changes in the vegetative structure of aging nest sites limit the number of years sites will be suitable. Therefore, prospective...
Correlations among stand ages and forest strata in mixed-oak forests of southeastern Ohio
P. Charles Goebel; David M. Hix
1997-01-01
Many models of landscape ecosystem development, as well as of forest stand dynamics, are based upon spatial and temporal changes in the species composition and structure of various forest strata. However, few document the interrelationships among forest strata, or the response of different strata to alterations of natural disturbance regimes. To examine how...
Long-term structural change in uneven-aged northern hardwoods
William B. Leak
1996-01-01
The diameter distributions of 10 previously unmanaged northern hardwood stands on the Bartlett Experimental Forest in New Hampshire were analyzed to determine changes over a 35 yr period since a single cutting by the diameter-limit or single-tree selection methods. The diameter distribution of an uncut old-growth stand (the Bowl) provided a comparison. The cuttings...
Reconstructing the spatial pattern of trees from routine stand examination measurements
Hanus, M.L.; Hann, D.W.; Marshall, D.D.
1998-01-01
Reconstruction of the spatial pattern of trees is important for the accurate visual display of unmapped stands. The proposed process for generating the spatial pattern is a nonsimple sequential inhibition process, with the inhibition zone proportionate to the scaled maximum crown width of an open-grown tree of the same species and same diameter at breast height as the subject tree. The results of this coordinate generation procedure are compared with mapped stem data from nine natural stands of Douglas-fir at two ages by the use of a transformed Ripley's K(d) function. The results of this comparison indicate that the proposed method, based on complete tree lists, successfully replicated the spatial patterns of the trees in all nine stands at both ages and over the range of distances examined. On the basis of these findings and the procedure's ability to model effects through time, the nonsimple sequential inhibition process has been chosen to generate tree coordinates in the VIZ4ST computer program for displaying forest stand structure in naturally regenerated young Douglas-fir stands. For. Sci.
Peter M. Brown; Wayne D. Shepperd; Christopher C. Brown; Stephen A. Mata; Douglas L. McClain
1995-01-01
Age structure in a stand of very old-age Engelmann spruce is described. The site is at 3,505 m near treeline in the Fraser Experimental Forest in central Colorado. The site contains the oldest Engelmann spruce trees yet reported in the literature; the oldest tree is at least 852 years of age.
NASA Astrophysics Data System (ADS)
Marconi, S.; Collalti, A.; Santini, M.; Valentini, R.
2013-12-01
3D-CMCC-Forest Ecosystem Model is a process based model formerly developed for complex forest ecosystems to estimate growth, water and carbon cycles, phenology and competition processes on a daily/monthly time scale. The Model integrates some characteristics of the functional-structural tree models with the robustness of the light use efficiency approach. It treats different heights, ages and species as discrete classes, in competition for light (vertical structure) and space (horizontal structure). The present work evaluates the results of the recently developed daily version of 3D-CMCC-FEM for two neighboring different even aged and mono specific study cases. The former is a heterogeneous Pedunculate oak forest (Quercus robur L. ), the latter a more homogeneous Scot pine forest (Pinus sylvestris L.). The multi-layer approach has been evaluated against a series of simplified versions to determine whether the improved model complexity in canopy structure definition increases its predictive ability. Results show that a more complex structure (three height layers) should be preferable to simulate heterogeneous scenarios (Pedunculate oak stand), where heights distribution within the canopy justify the distinction in dominant, dominated and sub-dominated layers. On the contrary, it seems that using a multi-layer approach for more homogeneous stands (Scot pine stand) may be disadvantageous. Forcing the structure of an homogeneous stand to a multi-layer approach may in fact increase sources of uncertainty. On the other hand forcing complex forests to a mono layer simplified model, may cause an increase in mortality and a reduction in average DBH and Height. Compared with measured CO2 flux data, model results show good ability in estimating carbon sequestration trends, on both a monthly/seasonal and daily time scales. Moreover the model simulates quite well leaf phenology and the combined effects of the two different forest stands on CO2 fluxes.
Stand density index in uneven-aged ponderosa pine stands
C.W. Woodall; C.E. Fiedler; K.S. Milner
2003-01-01
Stand density index (SDI) was developed to quantify relative stand density in even-aged stands. Application of SDI in uneven-aged stands has been described mathematically but not justified biologically. Diameter-class trends in SDI and sapwood area across 14 uneven-aged ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) stands in eastern...
Richard F. Miller; Robin J. Tausch; E. Durant McArthur; Dustin D. Johnson; Stewart C. Sanderson
2008-01-01
Numerous studies have documented the expansion of woodlands in the Intermountain West; however, few have compared the chronology of expansion for woodlands across different geographic regions or determined the mix and extent of presettlement stands. We evaluated tree age structure and establishment for six woodlands in four ecological provinces in the central and...
Arbuscular mycorrhizal fungi associated with Populus-Salix stands in a semiarid riparian ecosystem
Beauchamp, Vanessa B.; Stromberg, J.C.; Stutz, J.C.
2006-01-01
??? This study examined the activity, species richness, and species composition of the arbuscular mycorrhizal fungal (AMF) community of Populus-Salix stands on the Verde River (Arizona, USA), quantified patterns of AMF richness and colonization along complex floodplain gradients, and identified environmental variables responsible for structuring the AMF community. ??? Samples from 61 Populus-Salix stands were analyzed for AMF and herbaceous composition, AMF colonization, gravimetric soil moisture, soil texture, per cent organic matter, pH, and concentrations of nitrate, bicarbonate phosphorus and exchangeable potassium. ??? AMF species richness declined with stand age and distance from and elevation above the channel and was positively related to perennial species cover and richness and gravimetric soil moisture. Distance from and elevation above the active channel, forest age, annual species cover, perennial species richness, and exchangeable potassium concentration all played a role in structuring the AMF community in this riparian area. ??? Most AMF species were found across a wide range of soil conditions, but a subset of species tended to occur more often in hydric areas. This group of riparian affiliate AMF species includes several not previously encountered in the surrounding Sonoran desert. ?? New Phytologist (2006).
Ge, Xiao-Gai; Huang, Zhi-Lin; Cheng, Rui-Mei; Zeng, Li-Xiong; Xiao, Wen-Fa; Tan, Ben-Wang
2012-12-01
An investigation was made on the soil physical and chemical properties in different-aged Pinus massoniana plantations in Three Gorges Reservoir Area under effects of litterfall and roots. The annual litter production in mature stand was 19.4% and 65.7% higher than that in nearly mature and middle-aged stands, respectively. The litter standing amount was in the sequence of mature stand > middle-aged stand > nearly mature stand, while the litter turnover coefficient was in the order of nearly mature stand (0.51) > mature stand (0.40) > middle-aged stand (0.36). The total root biomass, live root biomass, and dead root biomass were the highest in middle-aged stand, and the lowest in nearly mature stand. In middle-aged stand, soil total porosity was the highest, and soil bulk density was the lowest. Soil organic matter and total nitrogen contents were in the order of mature stand > middle-aged stand > nearly mature stand, soil nitrate nitrogen occupied a larger proportion of soil mineral N in nearly mature stand, while ammonium nitrogen accounted more in middle-aged and mature stands. In nearly mature stand, litter production was moderate but turnover coefficient was the highest, and soil nutrient contents were the lowest. In middle-aged stand, root biomass and soil total porosity were the highest, and soil bulk density were the lowest. In mature stand, root biomass was lower while soil nutrient contents were the highest. The increase of root biomass could improve soil physical properties.
Transpiration in an oil palm landscape: effects of palm age
NASA Astrophysics Data System (ADS)
Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.
2015-06-01
Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25 year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12 year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of two years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2 year old to 2.5 mm day-1 in a 12 year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Confronting sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2 year old stand and 53 % in the 12 year old stand, indicating variable and substantial additional sources of evaporation, e.g. from the soil, the ground vegetation and from trunk epiphytes. Diurnally, oil palm transpiration rates were characterized by an early peak between 10 and 11 a.m.; there was a pronounced hysteresis in the leaf water use response to changes in vapor pressure deficit for all palms of advanced age. On the day-to-day basis this resulted in a relatively low variability of oil palm water use regardless of fluctuations in vapor pressure deficit and radiation. We conclude, that oil palm dominated landscapes show some spatial variations in (evapo)transpiration rates, e.g. due to varying age-structures, but that the temporal variability of oil palm transpiration is rather low. Stand transpiration rates of some studied oil palm stands compared to or even exceed values reported for different tropical forests, indicating a high water use of oil palms under certain site or management conditions. Our study provides first insights into the eco-hydrological characteristics of oil palms as well as a first estimate of oil palm water use across a gradient of plantation age. It sheds first light on some of the hydrological consequences of the continuing expansion of oil palm plantations.
Transpiration in an oil palm landscape: effects of palm age
NASA Astrophysics Data System (ADS)
Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.
2015-10-01
Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25-year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12-year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of 2 years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2-year old to 2.5 mm day-1 in a 12-year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Comparing sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2-year old stand and 53 % in the 12-year old stand, indicating variable and substantial additional sources of evaporation, e.g., from the soil, the ground vegetation and from trunk epiphytes. Diurnally, oil palm transpiration rates were characterized by an early peak between 10 and 11 a.m.; there was a pronounced hysteresis in the leaf water use response to changes in vapor pressure deficit for all palms of advanced age. On the day-to-day basis this resulted in a relatively low variability of oil palm water use regardless of fluctuations in vapor pressure deficit and radiation. We conclude that oil palm dominated landscapes show some spatial variations in (evapo)transpiration rates, e.g., due to varying age-structures, but that the temporal variability of oil palm transpiration is rather low. The stand transpiration of some of the studied oil palm stands was as high or even higher than values reported for different tropical forests, indicating a high water use of oil palms under yet to be explained site or management conditions. Our study provides first insights into the eco-hydrological characteristics of oil palms as well as a first estimate of oil palm water use across a gradient of plantation age. It sheds first light on some of the hydrological consequences of the continuing expansion of oil palm plantations.
Robert L Deal; Sharon Stanton; Matthew Betts; Zhiqiang. Yang
2015-01-01
Federal forests in the Pacific Northwest region have undergone exceptional changes in management over the past 20 years, and these changes have led to a reduction in regional timber production and significant changes in the management and current age structure of forests. Public lands include large areas of older forests with relatively little younger early-seral...
[Carbon storage of forest stands in Shandong Province estimated by forestry inventory data].
Li, Shi-Mei; Yang, Chuan-Qiang; Wang, Hong-Nian; Ge, Li-Qiang
2014-08-01
Based on the 7th forestry inventory data of Shandong Province, this paper estimated the carbon storage and carbon density of forest stands, and analyzed their distribution characteristics according to dominant tree species, age groups and forest category using the volume-derived biomass method and average-biomass method. In 2007, the total carbon storage of the forest stands was 25. 27 Tg, of which the coniferous forests, mixed conifer broad-leaved forests, and broad-leaved forests accounted for 8.6%, 2.0% and 89.4%, respectively. The carbon storage of forest age groups followed the sequence of young forests > middle-aged forests > mature forests > near-mature forests > over-mature forests. The carbon storage of young forests and middle-aged forests accounted for 69.3% of the total carbon storage. Timber forest, non-timber product forest and protection forests accounted for 37.1%, 36.3% and 24.8% of the total carbon storage, respectively. The average carbon density of forest stands in Shandong Province was 10.59 t x hm(-2), which was lower than the national average level. This phenomenon was attributed to the imperfect structure of forest types and age groups, i. e., the notably higher percentage of timber forests and non-timber product forest and the excessively higher percentage of young forests and middle-aged forest than mature forests.
Mark A. Rumble; R. Scott Gamo
2011-01-01
Timber management is the most prominent land management activity in the Black Hills National Forest in the northcentral United States. Management units are stands 4-32 ha in size and are described using a hierarchal vegetative description including vegetation type, size class (age), and overstory canopy cover. For the most part, these stands are relatively homogeneous...
Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany.
Dănescu, Adrian; Albrecht, Axel T; Bauhus, Jürgen
2016-10-01
Forest diversity-productivity relationships have been intensively investigated in recent decades. However, few studies have considered the interplay between species and structural diversity in driving productivity. We analyzed these factors using data from 52 permanent plots in southwestern Germany with more than 53,000 repeated tree measurements. We used basal area increment as a proxy for productivity and hypothesized that: (1) structural diversity would increase tree and stand productivity, (2) diversity-productivity relationships would be weaker for species diversity than for structural diversity, and (3) species diversity would also indirectly impact stand productivity via changes in size structure. We measured diversity using distance-independent indices. We fitted separate linear mixed-effects models for fir, spruce and beech at the tree level, whereas at the stand level we pooled all available data. We tested our third hypothesis using structural equation modeling. Structural and species diversity acted as direct and independent drivers of stand productivity, with structural diversity being a slightly better predictor. Structural diversity, but not species diversity, had a significant, albeit asymmetric, effect on tree productivity. The functioning of structurally diverse, mixed forests is influenced by both structural and species diversity. These sources of trait diversity contribute to increased vertical stratification and crown plasticity, which in turn diminish competitive interferences and lead to more densely packed canopies per unit area. Our research highlights the positive effects of species diversity and structural diversity on forest productivity and ecosystem dynamics.
Examination of the item structure of the Alberta infant motor scale.
Liao, Pai-Jun M; Campbell, Suzann K
2004-01-01
The Alberta Infant Motor Scale (AIMS) is a screening tool for identifying delayed motor development from birth to 18 months of age. The purpose of this study was to examine the psychometric structure of the AIMS, including the hierarchical scale of items and the precision for measuring infant ability at different ages. Ninety-seven infants with varying degrees of risk of developmental disability were recruited from three hospitals or from the community in the Chicago metropolitan area. Infants were tested on the AIMS at three, six, nine, and 12 months of age. The hierarchical structure and the range and distribution of item difficulty on the AIMS were analyzed using Rasch psychometric analysis. The Rasch analysis confirmed that items for each of the four testing positions (supine, prone, sitting, and standing) were arranged in increasing order of difficulty, but a ceiling effect was present. Gaps exist at six ability levels, indicating low precision of measurement for differentiating among infants after about nine months of age. The AIMS shows a ceiling effect, measures infant ability best from three to nine months of age, and has few items available for discriminating among infants after they pass the controlled lowering through standing item. Clinical impressions should be drawn with caution at ages when the precision of measurement is low.
Charles E. Williams; William J. Moriarity
2000-01-01
We assessed the species composition and structure of three riparian forest stands of differing ages (old-growth, late-successional, mid-successional), dominated by eastern hemlock (Tsuga canadensis Carr.), in the Allegheny National Forest of northwestern Pennsylvania.
Wu, Jian-qiang; Wang, Yi-xiang; Yang, Yi; Zhu, Ting-ting; Zhu, Xu-dan
2015-02-01
Crop trees were selected in a 26-year-old even-aged Cunninghamia lanceolata plantation in Lin' an, and compared in plots that were released and unreleased to examine growth and structure responses for 3 years after thinning. Crop tree release significantly increased the mean increments of diameter and volume of individual tree by 1.30 and 1.25 times relative to trees in control stands, respectively. The increments of diameter and volume of crop trees were significantly higher than those of general trees in thinning plots, crop trees and general trees in control plots, which suggested that the responses from different tree types to crop tree release treatment were different. Crop tree release increased the average distances of crop trees to the nearest neighboring trees, reducing competition among crop trees by about 68.2%. 3-year stand volume increment for thinning stands had no significant difference with that of control stands although the number of trees was only 81.5% of the control. Crop trees in thinned plots with diameters over than 14 cm reached 18.0% over 3 years, compared with 12.0% for trees without thinning, suggesting that crop tree release benefited the larger individual trees. The pattern of tree locations in thinning plots tended to be random, complying with the rule that tree distribution pattern changes with growth. Crop tree release in C. lanceolata plantation not only promoted the stand growth, but also optimized the stand structure, benefiting crop trees sustained rapid growth and larger diameter trees production.
Response of birds to thinning young Douglas-fir forests
Hayes, John P.; Weikel, Jennifer M.; Huso, Manuela M. P.; Erickson, Janet L.
2003-01-01
As a result of recent fire history and decades of even-aged forest management, many coniferous forests in western Oregon are composed of young (20-50 yrs), densely stocked Douglas-fir stands. Often these stands are structurally simple - a single canopy layer with one or two overstory tree species - and have a relatively sparse understory. The lack of structural complexity in these stands may limit the availability of key habitat components for several species of vertebrates, including birds. Thinning may increase structural diversity by reducing competition among overstory trees and increasing the amount of sunlight reaching the forest floor, thereby increasing development of understory vegetation. Existing old-growth forests may have developed under lower densities than is typical of contemporary plantations. Thus, thinning also may be a tool for accelerating the development of late-successional forest conditions in some circumstances. In addition to the potential increases in structural and biological diversity, thinning frequently is used to optimize wood fiber production and to generate timber revenue.
Association of unipedal standing time and bone mineral density in community-dwelling Japanese women.
Sakai, A; Toba, N; Takeda, M; Suzuki, M; Abe, Y; Aoyagi, K; Nakamura, T
2009-05-01
Bone mineral density (BMD) and physical performance of the lower extremities decrease with age. In community-dwelling Japanese women, unipedal standing time, timed up and go test, and age are associated with BMD while in women aged 70 years and over, unipedal standing time is associated with BMD. The aim of this study was to clarify whether unipedal standing time is significantly associated with BMD in community-dwelling women. The subjects were 90 community-dwelling Japanese women aged 54.7 years. BMD of the second metacarpal bone was measured by computed X-ray densitometry. We measured unipedal standing time as well as timed up and go test to assess physical performance of the lower extremities. Unipedal standing time decreased with increased age. Timed up and go test significantly correlated with age. Low BMD was significantly associated with old age, short unipedal standing time, and long timed up and go test. Stepwise regression analysis revealed that age, unipedal standing time, and timed up and go test were significant factors associated with BMD. In 21 participants aged 70 years and over, body weight and unipedal standing time, but not age, were significantly associated with BMD. BMD and physical performance of the lower extremities decrease with older age. Unipedal standing time, timed up and go test, and age are associated with BMD in community-dwelling Japanese women. In women aged 70 years and over, unipedal standing time is significantly associated with BMD.
Influence of thinning style on stand structure and growth in upland oaks: a 58-year case study
Jeffery S. Ward
2003-01-01
In 1937, a study comparing low and high thinning (partial crop tree release) was established in northwestern Connecticut. Oaks accounted for 65 percent of the crop trees that were partially released at stand ages 17, 26, and 42 years. Sawtimber trees had greater diameters, higher volumes, and higher tree grades on thinned than unmanaged plots. The higher oak density on...
NASA Astrophysics Data System (ADS)
Michalzik, Beate; Bischoff, Sebastian; Levia, Delphis; Schwarz, Martin; Escher, Peter; Wilcke, Wolfgang; Thieme, Lisa; Kerber, Katja; Kaupenjohann, Martin; Siemens, Jan
2017-04-01
In forested ecosystems, throughfall and stemflow function as key components in the cycling of water and associated biogeochemistry. Analysing annual flux data collected from 27 intensively monitored forest sites of the Biodiversity Exploratories, we found throughfall fluxes of DOC (dissolved organic carbon) linearly related (R2 = 0.40, p < 0.001) to the silvicultural management intensity indicator (SMI) developed by Schall and Ammer (2013). The SMI combines tree species, stand age and aboveground living and dead woody biomass, thereby allowing the quantifying of silvicultural management intensities of stands differing in species composition, age, silvicultural system as they convert from one stand type into another. Throughfall fluxes of particulate organic C and N (POC and PN) and dissolved N were, however independent from those forest structural metrics as well as annual C and N stemflow fluxes, which varied greatly among management intensity classes. In this context, we suggest that canopy structure metrics are more important drivers of water and matter stemflow dynamics, than structural metrics on the level of forest stands. On the other hand, leaching losses of DOC and POC from the litter layer of forests increased significantly with increasing forest management intensity. The observed relationships revealed by intensive flux monitoring are important because they allow us to link organic matter fluxes to forest metrics of larger forested areas (e.g. derived from LiDAR imagery), and hence to model and up-scale water-bound OC dynamics to the landscape level.
Boal, C.W.; Andersen, D.E.; Kennedy, P.L.
2005-01-01
We used radiotelemetry to examine foraging habitat preferences of 17 breeding, male northern goshawks (Accipiter gentilis) in Minnesota from 1998-2000. We assessed habitat preference using radio relocation points and 50-m radius buffers of radio relocation points. Our data suggested that foraging male goshawks used early-successional upland conifer stands (???25 yrs old), early-successional upland deciduous stands (???50 yrs old), late-successional upland conifer stands (???50 yrs old), and late-successional upland deciduous stands (???50 yrs old) more frequently than expected based on the abundance of these vegetation types in the landscape. The 2 most available stand types, early-successional upland deciduous (<25 yrs old) and all ages of late-successional lowland conifer stands, were used less than expected by foraging goshawks. Late-successional lowland deciduous stands (???50 yrs old) were used in proportion to availability. Although analysis of relocation points suggested early-successional upland deciduous stands (25-49 yrs old) and late-successional upland conifer stands (???50 yrs old) were used in proportion to availability, analysis of buffers around relocation points indicated that these stand types were also used more than expected by foraging goshawks. Regardless of vegetation community type, stands used by goshawks were structurally similar with high canopy and understory stem densities, high canopy closure, substantial shrub cover, and large amounts of woody debris. Nest stands consisted of taller and larger diameter canopy trees and fewer understory trees than foraging stands, but stands were otherwise similar in structural features, suggesting goshawks used similar stands for nesting and foraging but that they tended to select the most mature stands for nesting. A commonality among nesting and foraging stands was the presence of open spaces between the canopy and understory foliage, and between understory and shrub layer foliage. In our study area, these spaces may have served as relatively unobstructed flight paths where foraging and nesting stands possessed stem densities at the upper end of that reported for goshawk habitat.
Nordström, Birgitta; Näslund, Annika; Ekenberg, Lilly; Zingmark, Karin
2014-10-01
The aim of this study was to describe children's and parents' experiences of the significance of standing in a standing device. Individual interviews were performed with six children/teenagers (aged 7-19 years) and 14 parents. The interviews were transcribed and analyzed using a qualitative content analysis. The analysis resulted in the major theme, the duality of uprightness and the related themes: (1) the instrumental dimension of standing; (2) the social dimension of standing; and (3) the ambivalent dimension of standing. Each of the themes comprised several subthemes. There is an inherent duality related to the use of a standing device. Standing in a standing device was seen as a treatment of body structures and functions, as well as a possible source of pain. Standing was considered to influence freedom in activities and participation both positively and negatively. The parents experienced that standing influenced other peoples' views of their child, while the children experienced standing as a way to extend the body and as something that gave them benefits in some activities. Physiotherapists working with children should take into account both the social and physical dimensions of using a standing device and consider both the child's and the parents' views.
Canopy structure on forest lands in western Oregon: differences among forest types and stand ages
Anne C.S. McIntosh; Andrew N. Gray; Steven L. Garman
2009-01-01
Canopy structure is an important attribute affecting economic and ecological values of forests in the Pacific Northwest. However, canopy cover and vertical layering are rarely measured directly; they are usually inferred from other forest measurements. In this study, we quantified and compared vertical and horizontal patterns of tree canopy structure and understory...
Stand structure in eastside old-growth ponderosa pine forests of Oregon and northern California.
Andrew Youngblood; Timothy Max; Kent Coe
2004-01-01
Quantitative metrics of horizontal and vertical structural attributes in eastside old-growth ponderosa pine (Pinus ponderosa P. and C. Lawson var. ponderosa) forests were measured to guide the design of restoration prescriptions. The age, size structure, and the spatial patterns were investigated in old-growth ponderosa pine forests at three...
NASA Astrophysics Data System (ADS)
Renner, Maik; Hassler, Sibylle; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stan; Kleidon, Axel
2016-04-01
Roberts (1983) found that forest transpiration is relatively uniform across different climatic conditions and suggested that forest transpiration is a conservative process compensating for environmental heterogeneity. Here we test this hypothesis at a steep valley cross-section composed of European Beech in the Attert basin in Luxemburg. We use sapflow, soil moisture, biometric and meteorological data from 6 sites along a transect to estimate site scale transpiration rates. Despite opposing hillslope orientation, different slope angles and forest stand structures, we estimated relatively similar transpiration responses to atmospheric demand and seasonal transpiration totals. This similarity is related to a negative correlation between sap velocity and site-average sapwood area. At the south facing sites with an old, even-aged stand structure and closed canopy layer, we observe significantly lower sap velocities but similar stand-average transpiration rates compared to the north-facing sites with open canopy structure, tall dominant trees and dense understorey. This suggests that plant hydraulic co-ordination allows for flexible responses to environmental conditions leading to similar transpiration rates close to the water and energy limits despite the apparent heterogeneity in exposition, stand density and soil moisture. References Roberts, J. (1983). Forest transpiration: A conservative hydrological process? Journal of Hydrology 66, 133-141.
NASA Astrophysics Data System (ADS)
Sanchez Lopez, N.; Hudak, A. T.; Boschetti, L.
2017-12-01
Explicit information on the location, the size or the time since disturbance (TSD) at the forest stand level complements field inventories, improves the monitoring of forest attributes and the estimation of biomass and carbon stocks. Even-aged stands display homogenous structural parameters that have often been used as a proxy of stand age. Consequently, performing object-oriented analysis on Light Detection and Ranging (LiDAR) data has potential to detect historical stand-replacing disturbances. Recent research has shown good results in the delineation of forest stands as well as in the prediction of disturbance occurrence and TSD using airborne LiDAR data. Nevertheless, the use of airborne LiDAR for systematic monitoring of forest stands is limited by the sporadic availability of data and its high cost compared to satellite instruments. NASA's forthcoming Global Ecosystem Dynamics Investigations (GEDI) mission will provide systematically data on the vertical structure of the vegetation, but its use presents some challenges compared to the common discrete-return airborne LiDAR. GEDI will be a waveform instrument, hence the summary metrics will be different to those obtained with airborne LiDAR, and the sampling configuration could limit the utility of the data, especially on heterogeneous landscapes. The potential use of GEDI data for forest characterization at the stand level would therefore depend on the predictive power of the GEDI footprint metrics, and on the density of point samples relative to forest stand size (i.e. the number of observation/footprints per stand).In this study, we assess the performance of simulated GEDI-derived metrics for stand characterization and estimation of TSD, and the point density needed to adequately identify forest stands, which translates - due to the fixed sampling configuration - into the minimum temporal interval needed to collect a sufficient number of points. The study area was located in the Clear Creek, Selway River, and Elk Creek watersheds ( 54,000 ha) within the Nez Perce-Clearwater National Forest in Idaho, where airborne LiDAR and reference maps on TSD were available. Simulated GEDI footprints and waveforms were obtained from airborne LiDAR point clouds and the results were compared to similar analysis performed with airborne LiDAR.
NASA Technical Reports Server (NTRS)
Sader, Steven A.; Waide, Robert B.; Lawrence, William T.; Joyce, Armond T.
1989-01-01
Forest stand structure and biomass data were collected using conventional forest inventory techniques in tropical, subtropical, and warm temperate forest biomes. The feasibility of detecting tropical forest successional age class and total biomass differences using Landsat-Thematic mapper (TM) data, was evaluated. The Normalized Difference Vegetation Index (NDVI) calculated from Landsat-TM data were not significantly correlated with forest regeneration age classes in the mountain terrain of the Luquillo Experimental Forest, Puerto Rico. The low sun angle and shadows cast on steep north and west facing slopes reduced spectral reflectance values recorded by TM orbital altitude. The NDVI, calculated from low altitude aircraft scanner data, was significatly correlated with forest age classes. However, analysis of variance suggested that NDVI differences were not detectable for successional forests older than approximately 15-20 years. Also, biomass differences in young successional tropical forest were not detectable using the NDVI. The vegetation index does not appear to be a good predictor of stand structure variables (e.g., height, diameter of main stem) or total biomass in uneven age, mixed broadleaf forest. Good correlation between the vegetation index and low biomass in even age pine plantations were achieved for a warm temperate study site. The implications of the study for the use of NDVI for forest structure and biomass estimation are discussed.
S. Fu; C. Rodr¡guez Pedraza; A. E. Lugo
1996-01-01
we compared forest structure over a 12 yr period. 1982-1994 that include measurements before and after a servere hurricaine in two forests: a 64 yr old swietenia macrophylla tree plantantion and a paired natural forest of similar age in a subtropical wet forests
Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands
Powers, Matthew D.; Kolka, Randall K.; Bradford, John B.; Palik, Brian J.; Fraver, Shawn; Jurgensen, Martin F.
2012-01-01
Forests function as a major global C sink, and forest management strategies that maximize C stocks offer one possible means of mitigating the impacts of increasing anthropogenic CO2 emissions. We studied the effects of thinning, a common management technique in many forest types, on age-related trends in C stocks using a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands ranging from 9 to 306 years old. Live tree C stocks increased with age to a maximum near the middle of the chronosequence in unmanaged stands, and increased across the entire chronosequence in thinned stands. C in live understory vegetation and C in the mineral soil each declined rapidly with age in young stands but changed relatively little in middle-aged to older stands regardless of management. Forest floor C stocks increased with age in unmanaged stands, but forest floor C decreased with age after the onset of thinning around age 40 in thinned stands. Deadwood C was highly variable, but decreased with age in thinned stands. Total ecosystem C increased with stand age until approaching an asymptote around age 150. The increase in total ecosystem C was paralleled by an age-related increase in total aboveground C, but relatively little change in total belowground C. Thinning had surprisingly little impact on total ecosystem C stocks, but it did modestly alter age-related trends in total ecosystem C allocation between aboveground and belowground pools. In addition to characterizing the subtle differences in C dynamics between thinned and unmanaged stands, these results suggest that C accrual in red pine stands continues well beyond the 60–100 year management rotations typical for this system. Management plans that incorporate longer rotations and thinning in some stands could play an important role in maximizing C stocks in red pine forests while meeting other objectives including timber extraction, biodiversity conservation, restoration, and fuel reduction goals.
Gspaltl, Martin; Bauerle, William; Binkley, Dan; Sterba, Hubert
2013-01-01
Silviculture focuses on establishing forest stand conditions that improve the stand increment. Knowledge about the efficiency of an individual tree is essential to be able to establish stand structures that increase tree resource use efficiency and stand level production. Efficiency is often expressed as stem growth per unit leaf area (leaf area efficiency), or per unit of light absorbed (light use efficiency). We tested the hypotheses that: (1) volume increment relates more closely with crown light absorption than leaf area, since one unit of leaf area can receive different amounts of light due to competition with neighboring trees and self-shading, (2) dominant trees use light more efficiently than suppressed trees and (3) thinning increases the efficiency of light use by residual trees, partially accounting for commonly observed increases in post-thinning growth. We investigated eight even-aged Norway spruce (Picea abies (L.) Karst.) stands at Bärnkopf, Austria, spanning three age classes (mature, immature and pole-stage) and two thinning regimes (thinned and unthinned). Individual leaf area was calculated with allometric equations and absorbed photosynthetically active radiation was estimated for each tree using the three-dimensional crown model Maestra. Absorbed photosynthetically active radiation was only a slightly better predictor of volume increment than leaf area. Light use efficiency increased with increasing tree size in all stands, supporting the second hypothesis. At a given tree size, trees from the unthinned plots were more efficient, however, due to generally larger tree sizes in the thinned stands, an average tree from the thinned treatment was superior (not congruent in all plots, thus only partly supporting the third hypothesis). PMID:25540477
Comparison of log quality from even-aged and uneven-aged loblolly pine stands in south Arkansas
James M. Guldin; Michael W. Fitzpatrick
1991-01-01
Log grade, number of knots, and log volume of the first two logs, as well as form class of the butt log, were compared across three broad sawtimber categories among even-aged plantations, even-aged natural stands, and uneven-aged natural stands of loblolly pine (Pinus taeda L .) in Ashley County, AR. Trees from uneven-aged stands had butt logs of...
Relationship of stand age to streamwater nitrate in New Hampshire
William B. Leak; C. Wayne Martin
1975-01-01
Streamwater nitrate content of six watersheds during spring and summer was apparently related to stand age or age since disturbance. Nitrate concentration averaged 10.3 ppm right after cutting, dropped to a trace in medium-aged stands, and then rose again to a maximum of 4.8 ppm as stands became overmature.
Schulze, E-D; Wirth, C; Mollicone, D; Ziegler, W
2005-11-01
The dark taiga of Siberia is a boreal vegetation dominated by Picea obovata, Abies sibirica, and Pinus sibirica during the late succession. This paper investigates the population and age structure of 18 stands representing different stages after fire, wind throw, and insect damage. To our knowledge, this is the first time that the forest dynamics of the Siberian dark taiga is described quantitatively in terms of succession, and age after disturbance, stand density, and basal area. The basis for the curve-linear age/diameter relation of trees is being analyzed. (1) After a stand-replacing fire Betula dominates (4,000 trees) for about 70 years. Although tree density of Betula decreases rapidly, basal area (BA) reached >30 m2/ha after 40 years. (2) After fire, Abies, Picea, and Pinus establish at the same time as Betula, but grow slower, continue to gain height and eventually replace Betula. Abies has the highest seedling number (about 1,000 trees/ha) and the highest mortality. Picea establishes with 100-400 trees/ha, it has less mortality, but reached the highest age (>350 years, DBH 51 cm). Picea is the most important indicator for successional age after disturbance. Pinus sibirica is an accompanying species. The widely distributed "mixed boreal forest" is a stage about 120 years after fire reaching a BA of >40 m2/ha. (3) Wind throw and insect damage occur in old conifer stands. Betula does not establish. Abies initially dominates (2,000-6,000 trees/ha), but Picea becomes dominant after 150-200 years since Abies is shorter lived. (4) Without disturbance the forest develops into a pure coniferous canopy (BA 40-50 m2/ha) with a self-regenerating density of 1,000 coniferous canopy trees/ha. There is no collapse of old-growth stands. The dark taiga may serve as an example in which a limited set to tree species may gain dominance under certain disturbance conditions without ever getting monotypic.
Spatial variation of fuel loading within varying aged stands of chaparral
Kellie A. Uyeda; Douglas A. Stow; John F. O' Leary; Ian T. Schmidt; Philip J. Riggan
2016-01-01
Questions: How do stand-level biomass and percentage of deadmaterial in chaparral vary as a function of stand age? How do the landscape properties of aggregation index and patch size vary in each of the dominant species groups as a function of stand age? Location: Stands of 7-, 28-and 68-yr-old...
Tuomas Aakala; Shawn Fraver; Anthony W. D' Amato; Brian J. Palik
2013-01-01
Factors influencing tree growth in structurally complex forests remain poorly understood. Here we assessed the influence of competition on Pinus resinosa (n = 224) and Pinus strobus (n = 90) growth in four old-growth stands in Minnesota, using mixed effects models. A subset of trees, with...
Stevens, Jens T; Safford, Hugh D; North, Malcolm P; Fried, Jeremy S; Gray, Andrew N; Brown, Peter M; Dolanc, Christopher R; Dobrowski, Solomon Z; Falk, Donald A; Farris, Calvin A; Franklin, Jerry F; Fulé, Peter Z; Hagmann, R Keala; Knapp, Eric E; Miller, Jay D; Smith, Douglas F; Swetnam, Thomas W; Taylor, Alan H
Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.
NASA Astrophysics Data System (ADS)
Cintra, B. B. L.; Schietti, J.; Emillio, T.; Martins, D.; Moulatlet, G.; Souza, P.; Levis, C.; Quesada, C. A.; Schöngart, J.
2013-04-01
The ongoing demand for information on forest productivity has increased the number of permanent monitoring plots across the Amazon. Those plots, however, do not comprise the whole diversity of forest types in the Amazon. The complex effects of soil, climate and hydrology on the productivity of seasonally waterlogged interfluvial wetland forests are still poorly understood. The presented study is the first field-based estimate for tree ages and wood biomass productivity in the vast interfluvial region between the Purus and Madeira rivers. We estimate stand age and wood biomass productivity by a combination of tree-ring data and allometric equations for biomass stocks of eight plots distributed along 600 km in the Purus-Madeira interfluvial area that is crossed by the BR-319 highway. We relate stand age and wood biomass productivity to hydrological and edaphic conditions. Mean productivity and stand age were 5.6 ± 1.1 Mg ha-1 yr-1 and 102 ± 18 yr, respectively. There is a strong relationship between tree age and diameter, as well as between mean diameter increment and mean wood density within a plot. Regarding the soil hydromorphic properties we find a positive correlation with wood biomass productivity and a negative relationship with stand age. Productivity also shows a positive correlation with the superficial phosphorus concentration. In addition, superficial phosphorus concentration increases with enhanced soil hydromorphic condition. We raise three hypotheses to explain these results: (1) the reduction of iron molecules on the saturated soils with plinthite layers close to the surface releases available phosphorous for the plants; (2) the poor structure of the saturated soils creates an environmental filter selecting tree species of faster growth rates and shorter life spans and (3) plant growth on saturated soil is favored during the dry season, since there should be low restrictions for soil water availability.
Wirth, C; Schulze, E-D; Schulze, W; von Stünzner-Karbe, D; Ziegler, W; Miljukova, I M; Sogatchev, A; Varlagin, A B; Panvyorov, M; Grigoriev, S; Kusnetzova, W; Siry, M; Hardes, G; Zimmermann, R; Vygodskaya, N N
1999-10-01
The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the "lichen" site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6-10 kg dw m -2 after 200 years depending on stand density and fire history compared to 20 kg dw m -2 in the "Vaccinium" type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5-1.5 and crown cover was 30-60%, whereas LAI reached 2.5 and crown cover was >100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope -0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem functions predominantly via changes in fire regimes.
Justin S. Crotteau; Christopher R. Keyes; Elaine K. Sutherland; David K. Wright; Joel M. Egan
2016-01-01
Variable-retention harvesting in lodgepole pine offers an alternative to conventional, even-aged management. This harvesting technique promotes structural complexity and age-class diversity in residual stands and promotes resilience to disturbance. We examined fuel loads and potential fire behaviour 12 years after two modes of variable-retention harvesting (...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
... uncharacteristicly high-severity wild fires, which can lead to loss of entire stands during one fire event. About 67..., fire, and wind. The purpose of the project is to restore forest health, move forests toward an uneven-aged forest structure with all age classes represented, and restore frequent, periodic surface fire as...
Relative influence of the components of timber harvest strategies on landscape pattern
Eric J. Gustafson
2007-01-01
Forest managers seek to produce healthy landscape patterns by implementing harvest strategies that are composed of multiple management components such as cutblock size, rotation length, even-aged or uneven-aged residual stand structure, conversion to plantations, and the spatial dispersion of harvest units. With use of the HARVEST model and neutral landscapes, a...
Stevens, Jens T.; Safford, Hugh D.; North, Malcolm P.; Fried, Jeremy S.; Gray, Andrew N.; Brown, Peter M.; Dolanc, Christopher R.; Dobrowski, Solomon Z.; Falk, Donald A.; Farris, Calvin A.; Franklin, Jerry F.; Fulé, Peter Z.; Hagmann, R. Keala; Knapp, Eric E.; Miller, Jay D.; Smith, Douglas F.; Swetnam, Thomas W.; Taylor, Alan H.
2016-01-01
Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the “stand age” variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical “mixed-severity” fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data. PMID:27196621
Natural stand dynamics in longleaf pine: How climatic disturbances shape the community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Outcalt, Kenneth, W.
2001-06-01
Longleaf pine (Pinus palustris) once dominated the overstory of a wide range of southern plant communities from the Atlantic to Texas. Although periodic fires shaped the longleaf pine communities, climatic caused disturbances, significantly impacted them as well, changing stand structure and providing open sites for regeneration. Tornadoes, which usually operate at the partial stand scale are mimicked by even age management of longleaf pine. Seed-tree and shelterwood systems create conditions similar to less severe hurricanes that remove only some of the overstory. Lightening strikes, are continuously impacting longleaf stands creating small scale gaps of 2 to 4 trees where regenerationmore » is not uniform. Managers using the selection system should be aware of this, and create gaps in dry sandhills sites accordingly.« less
Effects of two-age management and clearcutting on songbird density and reproductive success
Jeffery V. Nichols; Petra Bohall Wood
1995-01-01
We examined density and reproductive success of passerine species on 7 uncut forest stands and on 12 stands harvested 10-14 years ago on the Monongahela National Forest of West Virginia (6 clearcut stands and 6 stands harvested using 2-age management). In 2-age management, stands resemble a shelterwood cut with 10-30 overstory trees/acre left uncut. Uncut periphery...
Jay R. Law; Craig G. Lorimer
1989-01-01
Maintaining uneven-aged stands involves cutting trees from a range of diameter classes in such a way that the residual stand has a balanced, steeply descending diameter distribution curve (fig. 1). The objective is to distribute trees by diameter classes so that over time the stand contains trees of different ages and sizes.
How applicable is even-aged silviculture in the northeast?
Ralph H. Griffin
1977-01-01
The applicability of even-aged silviculture in the management of forest stands in the Northeast is examined through consideration of the forest stand, stand development, intermediate cuttings, and regeneration methods. It is concluded that even-aged silviculture is quite applicable in the management of forest stands in the Northeast.
Density, ages, and growth rates in old-growth and young-growth forests in coastal Oregon
Tappeiner, J. C.; Huffman, D.; Spies, T.; Bailey, John D.
1997-01-01
We studied the ages and diameter growth rates of trees in former Douglas-fir (Pseudotsuga menziesii (Mirb.)Franco) old-growth stands on 10 sites and compared them with young-growth stands (50-70 years old, regenerated after timber harvest) in the Coast Range of western Oregon. The diameters and diameter growth rates for the first 100 years of trees in the old-growth stands were significantly greater than those in the young-growth stands. Growth rates in the old stands were comparable with those from long-term studies of young stands in which density is about 100-120 trees/ha; often young-growth stand density is well over 500 trees/ha. Ages of large trees in the old stands ranged from 100 to 420 years; ages in young stands varied by only about 5 to 10 years. Apparently, regeneration of old-growth stands on these sites occurred over a prolonged period, and trees grew at low density with little self-thinning; in contrast, after timber harvest, young stands may develop with high density of trees with similar ages and considerable self-thinning. The results suggest that thinning may be needed in dense young stands where the management objective is to speed development of old-growth characteristics.
Genetic subpopulation structuring and its implications in a mature eastern white pine stand
Samuel E. Nijensohn; Paul G. Schaberg; Gary J. Hawley; Donald H. DeHayes; Donald H. DeHayes
2005-01-01
We examined patterns of genetic structuring within a mature eastern white pine (Pinus strobus L.) forest, using geographic information system (GIS)-based data and maps that combined genetic (isozyme analysis of 46 loci) and other tree-specific information (e.g., size, growth, age, and location) for 220 trees in Jericho, Vermont. Interconnections between genotypic...
John D. Shaw; James N. Long
2010-01-01
Reinekeâs Stand Density Index (SDI) has been available to silviculturists for over 75 years, but application of this stand metric has been inconsistent. Originally described as a measurement of relative density in single-species, even-aged stands, it has since been generalized for use in uneven-aged stands and mixed-species stands. However, methods used to establish...
Crown structure and growth efficiency of red spruce in uneven-aged, mixed-species stands in Maine
Douglas A. Maguire; John C. Brissette; Lianhong. Gu
1998-01-01
Several hypotheses about the relationships among individual tree growth, tree leaf area, and relative tree size or position were tested with red spruce (Picea rubens Sarg.) growing in uneven-aged, mixed-species forests of south-central Maine, U.S.A. Based on data from 65 sample trees, predictive models were developed to (i)...
Yield Tables and Stand Structure for Unthinned Longleaf Pine Plantations in Louisiana and Texas
Richard E. Longrey; Robert L. Bailey
1977-01-01
A system of equations is developed to forecast number of trees per acre, basal area, and cubic foot yields in eight volume categories by l-inch diameter classes for several combinations of site index, age from planting, and either number of trees planted, number of trees surviving, or basal area at a given age.
JeriLynn E. Peck; Eric K. Zenner; Brian Palik
2012-01-01
Retention harvests are proposed as mechanisms for introducing two-aged structure into even-aged red pine (Pinus resinosa Ait.) stands, yet little is known about seedling responses to overstory abundance and resource availability under potential harvesting treatments. We related spatially explicit measurements of overstory abundance, proportional...
Mapping spatial distribution of forest age in China
NASA Astrophysics Data System (ADS)
Zhang, Yuan; Yao, Yitong; Wang, Xuhui; Liu, Yongwen; Piao, Shilong
2017-03-01
Forest stand age is a meaningful metric, which reflects the past disturbance legacy, provides guidelines for forest management practices, and is an important factor in qualifying forest carbon cycles and carbon sequestration potential. Reliable large-scale forest stand age information with high spatial resolutions, however, is difficult to obtain. In this study, we developed a top-down method to downscale the provincial statistics of national forest inventory data into 1 km stand age map using climate data and light detection and ranging-derived forest height. We find that the distribution of forest stand age in China is highly heterogeneous across the country, with a mean value of 42.6 years old. The relatively young stand age for Chinese forests is mostly due to the large proportion of newly planted forests (0-40 years old), which are more prevailing in south China. Older forests (stand age > 60 years old) are more frequently found in east Qinghai-Tibetan Plateau and the central mountain areas of west and northeast China, where human activities are less intensive. Among the 15 forest types, forests dominated by species of Taxodiaceae, with the exception of Cunninghamia lanceolata stands, have the oldest mean stand age (136 years), whereas Pinus massoniana forests are the youngest (18 years). We further identified uncertainties associated with our forest age map, which are high in west and northeast China. Our work documents the distribution of forest stand age in China at a high resolution which is useful for carbon cycle modeling and the sustainable use of China's forest resources.
NASA Astrophysics Data System (ADS)
Musavi, Talie; Migliavacca, Mirco; Mahecha, Miguel D.; Reichstein, Markus; Kattge, Jens; Wirth, Christian; Black, T. Andrew; Janssens, Ivan; Knohl, Alexander; Loustau, Denis; Roupsard, Olivier; Varlagin, Andrej; Rambal, Serge; Cescatti, Alessandro; Gianelle, Damiano; Kondo, Hiroaki; Tamrakar, Rijan
2017-04-01
Gross primary productivity, GPP, the total uptake of carbon dioxide (CO2) by ecosystems via photosynthesis, is the largest flux in the global carbon cycle. The photosynthetic capacity at light saturation (GPPsat) is a fundamental ecosystem functional property and its interannual variability (IAV) is propagated to the net ecosystem exchange of CO2. In this contribution we made use of a variety of data streams consisting of ecosystem-atmosphere CO2 fluxes measured at eddy covariance flux sites with more than 4 years of data, the GPPsat derived at the different sites, information about climate (temperature, precipitation, and water availability index - WAI), biodiversity information and species richness, stand age, and plant traits, nutrient availability indexes derived from field campaigns, ancillary databases, and the literature. We also used data about forest structure derived from satellite products. Sites were selected according to the availability of eddy covariance flux measurements for at least 4 years, information about stand age, canopy cover, canopy height, and species abundance. The resulting global database consisted of 50 sites with different vegetation types across different climatic regions. Considering the importance of the understanding of IAV in CO2 fluxes to improve the predictive capacity of the global carbon cycle we analyzed a range of alternative hypotheses and potential drivers of the magnitude of IAV in GPPsat in forest ecosystems. The results show that the IAV in GPPsat within sites is driven by climate (i.e. fluctuations in air temperature and soil water availability), but the magnitude of IAV in GPPsat is related to ecosystem structure, and more in details to stand age and biodiversity (R2=0.55, p<0.0001). We conclude that irrespective of forest type the IAV of GPPsat in older and more diverse forests is dampened, and is higher in younger forests with few dominant species.
Shinneman, Douglas J.; Baker, William L.
2009-01-01
Fire is known to structure tree populations, but the role of broad-scale climate variability is less clear. For example, the influence of climatic “teleconnections” (the relationship between oceanic–atmospheric fluctuations and anomalous weather patterns across broad scales) on forest age structure is relatively unexplored. We sampled semiarid piñon–juniper (Pinus edulis–Juniperus osteosperma) woodlands in western Colorado, USA, to test the hypothesis that woodland age structures are shaped by climate, including links to oceanic–atmospheric fluctuations, and by past fires and livestock grazing. Low-severity surface fire was lacking, as fire scars were absent, and did not influence woodland densities, but stand-replacing fires served as long-rotation (>400–600 years), stand-initiating events. Old-growth stands (>300 years old) were found in 75% of plots, consistent with a long fire rotation. Juniper and piñon age structures suggest contrasting responses during the past several centuries to dry and wet episodes linked to the Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). Juniper density increased slightly during periods of drought, positive (warm) AMO (after ∼10-year lag), and negative (cool) PDO. In contrast, piñon populations may still be recovering from a long, drought-filled period (AD 1620–1820), with pulses of recovery favored during cool AMO, warm PDO, and above-average moisture periods. Analysis of 20th-century tree establishment and instrumental climate data corroborate the long-term relationships between age structure and climate. After Euro–American settlement (AD 1881), livestock grazing reduced understory grasses and forbs, reducing competition with tree seedlings and facilitating climate-induced increases in piñons. Thus tree populations in these woodlands are in flux, affected by drought and wet periods linked to oceanic–atmospheric variability, Euro–American livestock grazing, and long-rotation, high-severity fires. Reductions in livestock grazing levels may aid ecological restoration efforts. However, given long-term fluctuations in tree density and composition, and expected further drought, thinning or burning to reduce tree populations may be misdirected.
NASA Astrophysics Data System (ADS)
Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.
2014-02-01
Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 yr. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents a preferable alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.
Jacob J. Hanson; Craig G. Lorimer; Corey R. Halpin; Brian J. Palik
2012-01-01
Ecological forestry practices are designed to retain species and structural features important for maintaining ecosystem function but which may be deficient in conventionally managed stands. We used the spatially-explicit, individual tree model CANOPY to assess tradeoffs in enhanced ecological attributes vs. reductions in timber yield for a wide variety of treatments...
Historical range of variability in live and dead wood biomass: a regional-scale simulation study
Etsuko Nonaka; Thomas A. Spies; Michael C. Wimberly; Janet L. Ohmann
2007-01-01
The historical range of variability (HRV) in landscape structure and composition created by natural disturbance can serve as a general guide for evaluating ecological conditions of managed landscapes. HRV approaches to evaluating landscapes have been based on age classes or developmental stages, which may obscure variation in live and dead stand structure. Developing...
Justin S. Crotteau; Martin W. Ritchie
2014-01-01
The Blacks Mountain Experimental Research Project created two distinct overstory structural classes (high structural diversity [HiD]; low-structural diversity [LoD]) across 12 stands and subsequently burned half of each stand. We analyzed stand-level growth 10 years after treatment and then modeled individual tree growth to forecast stand-level growth 10â20 years after...
Stand age and habitat influences on salamanders in Appalachian cove hardwood forests
W. Mark Ford; Brian R. Chapman; Michael A. Menzel; Richard H. Odom
2002-01-01
We surveyed cove hardwood stands aged 15, 25, 50, and ≥85 years following clearcutting in the southern Appalachian Mountains of northern Georgia to assess the effects of stand age and stand habitat characteristics on salamander communities using drift-fence array and pitfall methodologies from May 1994 to April 1995. Over a 60,060 pitfall trapnight effort, we...
Analysis of forest structure using thematic mapper simulator data
NASA Technical Reports Server (NTRS)
Peterson, D. L.; Westman, W. E.; Brass, J. A.; Stephenson, N. J.; Ambrosia, V. G.; Spanner, M. A.
1986-01-01
The potential of Thematic Mapper Simulator (TMS) data for sensing forest structure information has been explored by principal components and feature selection techniques. In a survey of forest structural properties conducted for 123 field sites of the Sequoia National Park, the canopy closure could be well estimated (r = 0.62 to 0.69) by a variety of channel bands and band ratios, without reference to the forest type. Estimation of the basal area was less successful (r = 0.51 or less) on the average, but could be improved for certain forest types when data were stratified by floristic composition. To achieve such a stratification, individual sites were ordinated by a detrended correspondence analysis based on the canopy of dominant species. The analysis of forest structure in the Sequoia data suggests that total basal area can be best predicted in stands of lower density, and in younger even-aged managed stands.
NASA Astrophysics Data System (ADS)
Henne, Paul D.; Hawbaker, Todd J.; Zhao, Feng; Huang, Chengquan; Berryman, Erin M.; Zhu, Zhiliang
2016-04-01
The Greater Yellowstone Ecosystem (GYE) provides unique opportunities to understand how changing climate, land use, and disturbance affect ecosystem carbon balance. The GYE is one of the largest, most intact ecosystems in the United States. However, distinct management histories on National Park, National Forest, and private lands, elevational climate gradients, and variable fire activity, have created a mosaic of stand ages and forest types. It is uncertain how greenhouse forcing may alter the carbon balance of the GYE. Whereas increasing temperatures may enhance productivity and perpetuate the GYE as a carbon sink, climate-driven increases in fire frequency may offset productivity gains by limiting biomass accumulation. We investigated how changes in fire frequency and size may affect vegetation dynamics and carbon sequestration potential in the GYE using the LANDIS-II dynamic landscape vegetation model. LANDIS-II provides sufficient spatial resolution to capture landscape-level variation in forest biomass and forest types (i.e. 90 × 90 m grid cells), but can integrate disturbance regimes and vegetation dynamics across the entire GYE (92,000 km2). We initiated our simulations with biomass and stand conditions that preceded the exceptional 1988 fire, when 16% of the GYE burned. We inferred the biomass, species abundances, and stand demographics of each model cell by combining satellite imagery with forest inventory data, and developed two fire regime scenarios from historical fire records. We developed a historic wildfire scenario with infrequent fires by excluding 1988 from our calibration of fire sizes and frequencies, and a future scenario with more frequent and larger fires by including 1988 in our calibrations. Fire frequency increased in all forest types in our future scenario, with a 152% increase in the annual forest area burned relative to observed area burned during recent decades. However, the changes in fire frequency varied among forest types, with the largest increases in lodgepole pine (Pinus contorta; 332% increase) and spruce/fir (Picea engelmannii, Abies lasiocarpa; 243% increase) stands. In model runs with the historic fire regime, average stand age and live biomass remained consistent with pre-1988 values during the 200-year simulation period; biomass increased significantly only in recently-logged areas. In contrast, a marked shift to younger stands with lower biomass occurred in the future fire scenario. Average stand age declined from 112 years to 31 years in lodgepole pine stands, and from 191 years to 65 years in spruce/fir stands, with consequent reductions in living biomass. A smaller shift in stand age was simulated for douglas-fir (Pseudotsuga menziesii) stands (i.e. 121 to 92 years). These fire-driven changes in stand age and biomass coincided with important shifts in species abundances. Specifically, lodgepole pine stands replaced large areas previously dominated by spruce and fir. Our results suggest that the potential for increasing the amount of fossil fuel emissions offset by carbon sequestration on public lands in the American West is limited by ongoing changes in disturbance regimes. Instead, land managers may need to consider strategies to adapt to climate change impacts.
Establishing Normative Reference Values for Standing Broad Jump Among Hungarian Youth.
Saint-Maurice, Pedro F; Laurson, Kelly R; Kaj, Mónika; Csányi, Tamás
2015-06-26
The purpose of this study was to examine age and sex trends in anaerobic power assessed by a standing broad jump and to determine norm-referenced values for youth in Hungary. A sample of 2,427 Hungarian youth (1,360 boys and 1,067 girls) completed the standing broad jump twice, and the highest distance score was recorded. Quantile regression was used to fit standing broad jump trends across linear and quadratic functions of age. Statistical significance was determined with bootstrap confidence intervals and the Wald test with p < .05. Age-by-sex specific centiles were generated and the 50th percentile was used to describe the overall patterns. Standing broad jump scores increased steadily in boys from age 11 through 18 years with a discrete plateau at the end of adolescence. Girls' standing broad jump scores of those who performed above the median increased with age and plateaued later in the adolescence. Both linear and quadratic age terms were statistically significant predictors of standing broad jump trends across age (p < .05), but the relations varied depending on the percentile. The 50th percentile values resulted in 147.0 cm, 162.0 cm, 175.0 cm, 186.0 cm, 195.0 cm, 202.0 cm, 207.0 cm, and 210.0 cm for boys aged 11 to 18 years old, respectively, and 140.0 cm, 143.9 cm, 147.3 cm, 150.0 cm, 152.1 cm, 153.7 cm, 154.6 cm, and 155.0 cm for girls aged 11 to 18 years old, respectively. This study provides normative reference charts that take into account age and sex differences in standing broad jump performance. The proposed reference values can be used to interpret standing broad jump scores in Hungarian youth.
American College of Sports Medicine position stand. Exercise and physical activity for older adults.
Chodzko-Zajko, Wojtek J; Proctor, David N; Fiatarone Singh, Maria A; Minson, Christopher T; Nigg, Claudio R; Salem, George J; Skinner, James S
2009-07-01
The purpose of this Position Stand is to provide an overview of issues critical to understanding the importance of exercise and physical activity in older adult populations. The Position Stand is divided into three sections: Section 1 briefly reviews the structural and functional changes that characterize normal human aging, Section 2 considers the extent to which exercise and physical activity can influence the aging process, and Section 3 summarizes the benefits of both long-term exercise and physical activity and shorter-duration exercise programs on health and functional capacity. Although no amount of physical activity can stop the biological aging process, there is evidence that regular exercise can minimize the physiological effects of an otherwise sedentary lifestyle and increase active life expectancy by limiting the development and progression of chronic disease and disabling conditions. There is also emerging evidence for significant psychological and cognitive benefits accruing from regular exercise participation by older adults. Ideally, exercise prescription for older adults should include aerobic exercise, muscle strengthening exercises, and flexibility exercises. The evidence reviewed in this Position Stand is generally consistent with prior American College of Sports Medicine statements on the types and amounts of physical activity recommended for older adults as well as the recently published 2008 Physical Activity Guidelines for Americans. All older adults should engage in regular physical activity and avoid an inactive lifestyle.
Maureen V. Duane; Warren B. Cohen; John L. Campbell; Tara Hudiburg; David P. Turner; Dale Weyermann
2010-01-01
Empirical models relating forest attributes to remotely sensed metrics are widespread in the literature and underpin many of our efforts to map forest structure across complex landscapes. In this study we compared empirical models relating Landsat reflectance to forest age across Oregon using two alternate sets of ground data: one from a large (n ~ 1500) systematic...
Russell, W.H.; Carnell, K.; McBride, J.R.
2001-01-01
Feeding damage to trees by black bears (Ursus americanus Pallas) was recorded in proximity to timber harvest edges in harvested and old-growth stands of coast redwood (Sequoia sempervirens [D. Don] Endl.) in northern California, USA. Bears exhibited distinct preference in their feeding patterns related to stand structure and composition and to distance from the timber-harvest edge. Most damage was recorded within regenerating stands. Regression analysis indicated that density of damaged trees was negatively correlated with distance from timber harvest edges within old-growth stands. A significant negative correlation was also found between the density of trees damaged by bears and habitat diversity (H') as measured by the Shannon diversity index. In addition, bears exhibited preference for pole-size trees (dbh = 10-50 cm) over all other size classes, and coast redwood over other species. In general, damage by bears appeared to act as a natural thinning agent in even-aged stands. No damage was recorded in old-growth stands except in close proximity to the timber-harvest edge where subcanopy recruitment was high.
NASA Astrophysics Data System (ADS)
Fujiki, Shogoro; Okada, Kei-ichi; Nishio, Shogo; Kitayama, Kanehiro
2016-09-01
We developed a new method to estimate stand ages of secondary vegetation in the Bornean montane zone, where local people conduct traditional shifting cultivation and protected areas are surrounded by patches of recovering secondary vegetation of various ages. Identifying stand ages at the landscape level is critical to improve conservation policies. We combined a high-resolution satellite image (WorldView-2) with time-series Landsat images. We extracted stand ages (the time elapsed since the most recent slash and burn) from a change-detection analysis with Landsat time-series images and superimposed the derived stand ages on the segments classified by object-based image analysis using WorldView-2. We regarded stand ages as a response variable, and object-based metrics as independent variables, to develop regression models that explain stand ages. Subsequently, we classified the vegetation of the target area into six age units and one rubber plantation unit (1-3 yr, 3-5 yr, 5-7 yr, 7-30 yr, 30-50 yr, >50 yr and 'rubber plantation') using regression models and linear discriminant analyses. Validation demonstrated an accuracy of 84.3%. Our approach is particularly effective in classifying highly dynamic pioneer vegetation younger than 7 years into 2-yr intervals, suggesting that rapid changes in vegetation canopies can be detected with high accuracy. The combination of a spectral time-series analysis and object-based metrics based on high-resolution imagery enabled the classification of dynamic vegetation under intensive shifting cultivation and yielded an informative land cover map based on stand ages.
Enlargement of sacral subcutaneous meningocele associated with retained medullary cord.
Shirozu, Noritoshi; Morioka, Takato; Inoha, Satoshi; Imamoto, Naoyuki; Sasaguri, Takakazu
2018-04-27
A retained medullary cord (RMC) is a rare closed spinal dysraphism with a robust elongated neural structure continuous from the conus and extending to the dural cul-de-sac. Four cases of RMC extending down to the base of an associated subcutaneous meningocele at the sacral level have been reported. We report an additional case of RMC, in whom serial MRI examination revealed an enlargement of the meningocele associated with RMC over a 3-month period between 8 and 11 months of age, when he began to stand. At the age of 12 months, untethering of the cord was performed. Histologically, the presence of ependyma-lined central canals in the dense neuroglial cores was noted in all cord-like structures in the intradural and intrameningocele sacs and at the attachment to the meningocele. It is conceivable that the hydrodynamic pressure with standing position and the check valve phenomenon were involved in meningocele enlargement. We should be mindful of these potential morphological changes.
Susan M. Tait; Charles G. III Shaw; Andris Eglitis
1985-01-01
Insects and diseases were surveyed in 16 even-aged, young-growth stands of Sitka spruce (Picea sitchensis (Bong.) Carr.) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) in southeastern Alaska. Stand ages ranged from 17 to 27 years in nine thinned stands and from 12 to 22 years in seven unthinned stands. All stands...
Optimizing any-aged management of mixed-species stands: II. effects of decision criteria
Robert G. Haight; Robert A. Monserud
1990-01-01
The effects of maximum present value and maximum volume objectives on the efficiencies of alternative silvicultural systems are determined by solving any-aged management problems for mixed-conifer stands in the Northern Rocky Mountains. Any-aged management problems are formulated with periodic planting and harvesting controls and without constraints on the stand age or...
Michael G. Shelton; Paul A. Murphy
1999-01-01
Logging disturbance is important in uneven-aged stands because harvests are frequent, merchantable trees are retained, and regeneration may be present. Logging disturbance was monitored during the establishment of a study testing the application of uneven-aged silvicufture in an irregularly aged, pine-hardwood stand. Disturbances were: (1) seedbed conditions...
Age-related differences in quality of standing balance using a composite score.
Pasma, Jantsje H; Bijlsma, Astrid Y; van der Bij, Mark D W; Arendzen, J Hans; Meskers, Carel G M; Maier, Andrea B
2014-01-01
Age-related differences in standing balance are not detected by testing the ability to maintain balance. Quality of standing balance might be more sensitive to detect age-related differences. To study age-related differences in quality of standing balance, center of pressure (CoP) movement was evaluated using a wide range of CoP parameters in several standing conditions in healthy young and old participants. In 35 healthy young (18-30 years) and 75 healthy old (70-80 years) participants, CoP movement was assessed in eight standing conditions on a force plate, including side-by-side, one-leg, semi-tandem and tandem stance, both with eyes open and eyes closed. Direction-specific CoP composite scores were calculated from standardized single CoP parameters (mean amplitude, amplitude variability, mean velocity, velocity variability and range) in anterior-posterior (AP) and medial-lateral (ML) direction. Linear regression analysis was used to detect age-related differences in single CoP parameters and composite scores - adjusted for gender, height and weight. Overall, single CoP parameters were higher in old compared to young participants, but no single CoP parameter consistently demonstrated the largest effect size for all standing conditions. Age-related differences were demonstrated for CoP composite scores in AP direction (tandem eyes open; semi-tandem eyes closed; p < 0.001). CoP composite scores in ML direction were consistently higher for all standing conditions in old compared to young participants (p < 0.001). CoP composite scores in ML direction were the most consistent parameters to detect age-related differences in quality of standing balance in healthy participants and might be of clinical value to detect subtle changes in quality of standing balance. © 2014 S. Karger AG, Basel
A Short Course in Post-Structuralism.
ERIC Educational Resources Information Center
Tompkins, Jane
1988-01-01
Asserts that post-structuralism cannot be applied to literary texts because to talk about applying post-structuralism assumes: (1) free-standing subjects; (2) free-standing objects of investigation; (3) free-standing methods; and (4) free-standing interpretation. (RAE)
Longleaf pine cone production in relation to site index, stand age, and stand density
Thomas Croker
1973-01-01
Few cones were produced in stands less than 30 years old. In stands 30 to 70 years in age, production seemed best at timber densities of about 30 square feet of basal area per acre, and tended to increase with increasing site index.
The importance of age-related decline in forest NPP for modeling regional carbon balances.
Zaehle, Sönke; Sitch, Stephen; Prentice, I Colin; Liski, Jari; Cramer, Wolfgang; Erhard, Markus; Hickler, Thomas; Smith, Benjamin
2006-08-01
We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.
Jennifer L. Hestir; Michael D. Cain
1999-01-01
In southern Arkansas, l3-year periodical cicadas (Magicicada spp.) were expected to emerge in late April and early May of 1998. Presence of a superabundant food source, such as periodical cicadas, may attract greater numbers of birds and more species of birds than is usually present in a particular area. Three even-aged loblolly pine (Pinus...
Reineke's Stand Density Index: Where are we and where do we go from here?
John D. Shaw
2006-01-01
In recent years there has been renewed interest in Reineke's Stand Density Index (SDI). Although originally described as a measurement of relative density in single-species, even-aged stands, it has since been generalized for use in uneven-aged stands and its use in multi-species stands is an active area of investigation. Some investigators use a strict definition...
Individual-tree diameter growth model for managed, even-aged, upland oak stands
Donald E. Hilt
1983-01-01
A distance-independent, individual-tree diameter growth model was developed for managed, even-aged, upland oak stands. The 5-year basal-area growth of individual trees is first modeled as a function of dbh squared for given stands. Parameters from these models are then modeled as a function of mean stand diameter, percent stocking of the stand, and site index. A...
David L. Graney; Paul A. Murphy
1997-01-01
A test of group-selection and single-tree selection cutting methods was installed in 80-year-old even-aged oak-hickory stands in the Boston Mountains of northern Arkansas. Twenty-four 11-ac study plots were installed in well stocked stands representing north or east and south or west aspects. Stands between group openings were cut to residual basal areas of 65 and 85...
Predicting Stand and Stock Tables from a Spacing Study in Naturally Regenerated Longleaf Pine
Robert M. Farrar
1985-01-01
A prediction system is presented whereby stand and stock tables are calculated for young natural longleaf pine stands of varying initial density. Tables can be output for stand conditions of 10 to 20 years of age, 300 to 1,500 initial trees per acre (at age lo), and 70 to 80 feet in site index (index age 50). The system also allows one to translate from density...
Schoonmaker, A S; Lieffers, V J; Landhäusser, S M
2016-07-01
In the continued quest to explain the decline in productivity and vigor with aging forest stands, the most poorly studied area relates to root system change in time. This paper measures the wood production, root and leaf area (and mass) in a chronosequence of fire-origin lodgepole pine (Pinus contorta Loudon) stands consisting of four age classes (12, 21, 53, and ≥100 years), each replicated ~ five times. Wood productivity was greatest in the 53-year-old stands and then declined in the ≥100-year-old stands. Growth efficiency, the quantity of wood produced per unit leaf mass, steadily declined with age. Leaf mass and fine root mass plateaued between the 53- and ≥100-year-old stands, but leaf area index actually increased in the older stands. An increase in the leaf area index:fine root area ratio supports the idea that older stand are potentially limited by soil resources. Other factors contributing to slower growth in older stands might be lower soil temperatures and increased self-shading due to the clumped nature of crowns. Collectively, the proportionally greater reduction in fine roots in older stands might be the variable that predisposes these forests to be at a potentially greater risk of stress-induced mortality.
Martin A. Spetich; David L. Graney; Paul A. Murphy
1999-01-01
A test of group-selection and single-tree selection was installed in 80-year-old even-aged oak-hickory stands in the Boston Mountains of northern Arkansas. Twenty-four 11-acre plots were installed in well stocked stands representing north or east and south or west aspects. Stands between group openings were cut to residual basal areas of 65 and 85 ft2...
Reinvasion of Hardwoods Following Eradication in an Unveven-Aged Pine Stand
M.D. Cain; D.A. Yaussy
1983-01-01
Study quantitatively describes the woody plant component that developed in an uneven-aged loblolly/shortleaf pine stand following hardwood eradication. Comparisons are made with four other stands managed at various intensity levels.
Glendon W. Smalley; Robert L. Bailey
1974-01-01
Detailed schedules of trees per acre, basal area, mean tree height, and cubic-foot yields in eight volume categories by l-inch diameter classes are presented for all combinations of four site indexes, seven ages from seed, and nine planting densities.
Conserving genetic diversity in Ponderosa Pine ecosystem restoration
L.E. DeWald
2017-01-01
Restoration treatments in the ponderosa pine (Pinus ponderosa P. & C. Lawson) ecosystems of the southwestern United States often include removing over 80 percent of post-EuroAmerican settlement-aged trees to create healthier forest structural conditions. These types of stand density reductions can have negative effects on genetic diversity. Allozyme analyses...
Relationship between morphologic somatotypes and standing posture equilibrium.
Allard, P; Nault, M L; Hinse, S; LeBlanc, R; Labelle, H
2001-01-01
Previous studies have identified height and weight as important factors affecting quiet standing stability but studies have not addressed body morphology as a global factor. Using anthropometric measurements, the morphologic somatotypes were defined in terms of body composition and structure. The aim of this study was to test the hypothesis that morphologic somatotypes were related to standing posture equilibrium in able-bodied girls. A total of 43 able-bodied girls having a mean age of 13.8 +/- 2.2 years participated in this study. Somatotype measurements were taken to determine their endomorphic, mesomorphic or ectomorphic components. Then, subjects were asked to stand still on a force platform for 64 s with their eyes opened, feet about 23 cm apart and arms aligned with the trunk. Afterwards, subjects were grouped based on the highest value of their somatotype component. There was no statistical difference in age, height and weight among the groups. The surface area of an ellipse delineated by the displacement of the centre of pressure (COP) was statistically larger (236.9 +/- 134.3 mm2) for the ectomorphs than for the endomorphs 137.7 +/- 71.4 mm2). The minor axis was longer (8.1 +/- 2.9 mm) for the ectomorphs than for the endomorphs (5.7 +/- 2.2 mm). The decrease in standing posture stability of the ectomorphic group was attributed to a relatively low muscle component, a high height weight ratio and an elevated position of the body centre of mass in this population of girls. Somatotypes should be considered when assessing standing posture in both able-bodied subjects and patients.
Jagodzinski, Andrzej M.; Ziółkowski, Jędrzej; Warnkowska, Aleksandra; Prais, Hubert
2016-01-01
There are few data on fine root biomass and morphology change in relation to stand age. Based on chronosequences for beech (9–140 years old), oak (11–140 years) and alder (4–76 years old) we aimed to examine how stand age affects fine root biomass and morphology. Soil cores from depths of 0–15 cm and 16–30 cm were used for the study. In contrast to previously published studies that suggested that maximum fine root biomass is reached at the canopy closure stage of stand development, we found almost linear increases of fine root biomass over stand age within the chronosequences. We did not observe any fine root biomass peak in the canopy closure stage. However, we found statistically significant increases of mean fine root biomass for the average individual tree in each chronosequence. Mean fine root biomass (0–30 cm) differed significantly among tree species chronosequences studied and was 4.32 Mg ha-1, 3.71 Mg ha-1 and 1.53 Mg ha-1, for beech, oak and alder stands, respectively. The highest fine root length, surface area, volume and number of fine root tips (0–30 cm soil depth), expressed on a stand area basis, occurred in beech stands, with medium values for oak stands and the lowest for alder stands. In the alder chronosequence all these values increased with stand age, in the beech chronosequence they decreased and in the oak chronosequence they increased until ca. 50 year old stands and then reached steady-state. Our study has proved statistically significant negative relationships between stand age and specific root length (SRL) in 0–30 cm soil depth for beech and oak chronosequences. Mean SRLs for each chronosequence were not significantly different among species for either soil depth studied. The results of this study indicate high fine root plasticity. Although only limited datasets are currently available, these data have provided valuable insight into fine root biomass and morphology of beech, oak and alder stands. PMID:26859755
England, Jacqueline R; Attiwill, Peter M
2007-08-01
Increases in plant size and structural complexity with increasing age have important implications for water flow through trees. Water supply to the crown is influenced by both the cross-sectional area and the permeability of sapwood. It has been hypothesized that hydraulic conductivity within sapwood increases with age. We investigated changes in sapwood permeability (k) and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans F. Muell. Sapwood was sampled at breast height from trees ranging from 8 to 240 years old, and at three height positions on the main stem of 8-year-old trees. Variation in k was not significant among sampling height positions in young trees. However, k at breast height increased with tree age. This was related to increases in both vessel frequency and vessel diameter, resulting in a greater proportion of sapwood being occupied by vessel lumina. Sapwood hydraulic conductivity (the product of k and sapwood area) also increased with increasing tree age. However, at the stand level, there was a decrease in forest sapwood hydraulic conductivity with increasing stand age, because of a decrease in the number of trees per hectare. Across all ages, there were significant relationships between k and anatomy, with individual anatomical characteristics explaining 33-62% of the variation in k. There was also strong agreement between measured k and permeability predicted by the Hagen-Poiseuille equation. The results support the hypothesis of an increase in sapwood permeability at breast height with age. Further measurements are required to confirm this result at other height positions in older trees. The significance of tree-level changes in sapwood permeability for stand-level water relations is discussed.
Multi-aged Forest: an Optimal Management Strategy for Carbon Sequestration
NASA Astrophysics Data System (ADS)
Yao, L.; Tang, X.; Ma, M.
2017-12-01
Disturbances and climatic changes significantly affect forest ecosystem productivity, water use efficiency (WUE) and carbon (C) flux dynamics. A deep understanding of terrestrial feedbacks to such effects and recovery mechanisms in forests across contrasting climatic regimes is essential to predict future regional/global C and water budgets, which are also closely related to the potential forest management decisions. However, the resilience of multi-aged and even-aged forests to disturbances has been debated for more than 60 years because of technical measurement constraints. Here we evaluated 62 site-years of eddy covariance measurements of net ecosystem production (NEP), evapotranspiration (ET), the estimates of gross primary productivity (GPP), ecosystem respiration (Re) and ecosystem-level WUE, as well as the relationships with environmental controls in three chronosequences of multi- and even-aged coniferous forests covering the Mediterranean, temperate and boreal regions. Age-specific dynamics in multi-year mean annual NEP and WUE revealed that forest age is a key variable that determines the sign and magnitude of recovering forest C source-sink strength from disturbances. However, the trends of annual NEP and WUE across succession stages between two stand structures differed substantially. The successional patterns of NEP exhibited an inverted-U trend with age at the two even-aged chronosequences, whereas NEP of the multi-aged chronosequence increased steadily through time. Meanwhile, site-level WUE of even-aged forests decreased gradually from young to mature, whereas an apparent increase occurred for the same forest age in multi-aged stands. Compared with even-aged forests, multi-aged forests sequestered more CO2 with forest age and maintained a relatively higher WUE in the later succession periods. With regard to the available flux measurements in this study, these behaviors are independent of tree species, stand ages and climate conditions . We also found that distinctly different environmental factors controlled forest C and water fluxes under three climatic regimes.These findings will provide important implications for forest management strategies to mitigate global climate change.
Dang, Peng; Yu, Xuan; Le, Hien; Liu, Jinliang; Shen, Zhen
2017-01-01
The effects of Chinese pine (Pinus tabuliformis) on soil variables after afforestation have been established, but microbial community changes still need to be explored. Using high-throughput sequencing technology, we analyzed bacterial and fungal community composition and diversity in soils from three stands of different-aged, designated 12-year-old (PF1), 29-year-old (PF2), and 53-year-old (PF3), on a Chinese pine plantation and from a natural secondary forest (NSF) stand that was almost 80 years old. Abandoned farmland (BL) was also analyzed. Shannon index values of both bacterial and fungal community in PF1 were greater than those in PF2, PF3 and NSF. Proteobacteria had the lowest abundance in BL, and the abundance increased with stand age. The abundance of Actinobacteria was greater in BL and PF1 soils than those in other sites. Among fungal communities, the dominant taxa were Ascomycota in BL and PF1 and Basidiomycota in PF2, PF3 and NSF, which reflected the successional patterns of fungal communities during the development of Chinese pine plantations. Therefore, the diversity and dominant taxa of soil microbial community in stands 12 and 29 years of age appear to have undergone significant changes; afterward, the soil microbial community achieved a relatively stable state. Furthermore, the abundances of the most dominant bacterial and fungal communities correlated significantly with organic C, total N, C:N, available N, and available P, indicating the dependence of these microbes on soil nutrients. Overall, our findings suggest that the large changes in the soil microbial community structure of Chinese pine plantation forests may be attributed to the phyla present (e.g., Proteobacteria, Actinobacteria, Ascomycota and Basidiomycota) which were affected by soil carbon and nutrients in the Loess Plateau. PMID:29049349
Dang, Peng; Yu, Xuan; Le, Hien; Liu, Jinliang; Shen, Zhen; Zhao, Zhong
2017-01-01
The effects of Chinese pine (Pinus tabuliformis) on soil variables after afforestation have been established, but microbial community changes still need to be explored. Using high-throughput sequencing technology, we analyzed bacterial and fungal community composition and diversity in soils from three stands of different-aged, designated 12-year-old (PF1), 29-year-old (PF2), and 53-year-old (PF3), on a Chinese pine plantation and from a natural secondary forest (NSF) stand that was almost 80 years old. Abandoned farmland (BL) was also analyzed. Shannon index values of both bacterial and fungal community in PF1 were greater than those in PF2, PF3 and NSF. Proteobacteria had the lowest abundance in BL, and the abundance increased with stand age. The abundance of Actinobacteria was greater in BL and PF1 soils than those in other sites. Among fungal communities, the dominant taxa were Ascomycota in BL and PF1 and Basidiomycota in PF2, PF3 and NSF, which reflected the successional patterns of fungal communities during the development of Chinese pine plantations. Therefore, the diversity and dominant taxa of soil microbial community in stands 12 and 29 years of age appear to have undergone significant changes; afterward, the soil microbial community achieved a relatively stable state. Furthermore, the abundances of the most dominant bacterial and fungal communities correlated significantly with organic C, total N, C:N, available N, and available P, indicating the dependence of these microbes on soil nutrients. Overall, our findings suggest that the large changes in the soil microbial community structure of Chinese pine plantation forests may be attributed to the phyla present (e.g., Proteobacteria, Actinobacteria, Ascomycota and Basidiomycota) which were affected by soil carbon and nutrients in the Loess Plateau.
Fertilization Thinning in a 7-Year-Old Natural Hardwood Stand in Eastern North Carolina
Leslie P. Newton; Daniel J. Robison; Gerald Hansen; H. Lee Allen
2002-01-01
Young even-aged hardwood stands undergo a period of intense competition and self-thinning during the early years of stand development. During this time relatively little growth is accumulated by stems which will persist until rotation age. Silvicultural manipulations which accelerate the rate of stand development, concentrate growth on fewer stems of desirable...
Estimating stand age for Douglas-fir.
Floyd A. Johnson
1954-01-01
Stand age for Douglas-fir has been defined as the average age of dominant and codominant trees. It is commonly estimated by measuring the age of several dominants and codominants and computing their arithmetic average.
The Development of Even-Aged Plantation Forests: An Exercise in Forest Stand Dynamics
ERIC Educational Resources Information Center
Wilson, E. R.; Leslie, A. D.
2008-01-01
In this paper we present a field-based practical exercise that allows students in forestry, ecology and natural resources to develop their understanding of forest stand dynamics. The exercise involves measurement of key tree growth parameters in four even-aged, single-species plantation stands of different age but occupying sites with similar soil…
MicroComputer Software for Predicting Growth of Southern Timber Stands
Robert M. Farrar
1992-01-01
Sixteen BASIC programs and 21 electronic spreadsheet templates for microcomputers are presented with documentation and examples of use, This software permits simulation of the growth and yield of natural stands ofeven-aged southern pines, uneven-aged loblolly-shortleaf and shortleaf pines,even-aged yellow-poplar, and of certain planted pine stands for a variety of site...
Winter habitat associations of eastern spotted skunks in Virginia
Thorne, Emily D.; Waggy, Charles; Jachowski, David S.; Kelly, Marcella J.; Ford, W. Mark
2017-01-01
Eastern spotted skunk (Spilogale putorius) populations have declined throughout much of their range in the eastern United States over recent decades. Declines have been attributed to habitat loss or change, increased competition with sympatric mesocarnivore species, or disease. To better understand the extant distribution of spotted skunks in the Appalachian Mountains of western Virginia, USA, we used a detection-non-detection sampling approach using baited camera traps to evaluate the influence of landscape-level environmental covariates on spotted skunk detection probability and site occupancy. We conducted camera trap surveys at 91 sites from January to May in 2014 and 2015. Spotted skunk occupancy was associated with young-aged forest stands at lower elevations and more mature forest stands at higher elevations. Both land cover types in this region can be characterized as having complex forest structure, providing cover that varies with stand age, species composition, elevation, and management regime. Our results provide insight into factors that influence spotted skunk spatial distribution and habitat selection, information that can be used to generate conservation assessments and inform management decisions.
NASA Astrophysics Data System (ADS)
Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J.
2011-01-01
Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified.
NASA Astrophysics Data System (ADS)
Desai, A. R.; Bolstad, P. V.; Moorcroft, P. R.; Davis, K. J.
2005-12-01
The interplay between land use change, forest management and land cover variability complicates the ability to characterize regional scale (10-1000 km) exchange of carbon dioxide between the land surface and atmosphere in heterogeneous landscapes. An attempt was made to observe and model these factors and their influence on the regional carbon cycle across the upper Midwest USA. A high density of eddy-covariance carbon flux, micrometeorology, carbon dioxide mixing ratio, stand-scale biometry and canopy component flux observations have been occurring in this area as part of the Chequamegon Ecosystem-Atmosphere Study. Observations limited to sampling only dominant stands and coarse-resolution biogeochemical models limited to biome-scale parameterization neither accurately capture the variability of carbon fluxes measured by the network of eddy covariance towers nor match the regional-scale carbon flux inferred from very tall tower eddy covariance measurements and multi-site upscaling. Analysis of plot level biometric data, U.S. Forest Service Forest Inventory Analysis data and high-resolution land cover data around the tall tower revealed significant variations in vegetation type, stand age, canopy stocking and structure. Wetlands, clearcuts and recent natural disturbances occur in characteristic small non-uniformly distributed patches that aggregate to form more than 30% of the landscape. The Ecosystem Demography model, a dynamic ecosystem model that incorporates vegetation heterogeneity, canopy structure, stand age, disturbance, land use change and forest management, was parameterized with regional biometric data and meteorology, historical records of land management and high-resolution satellite land cover maps. The model will be used to examine the significance of past land use change, natural disturbance history and current forest management in explaining landscape structure and regional carbon fluxes observed in the region today.
NASA Astrophysics Data System (ADS)
Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.
2014-08-01
Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESMs). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first-generation dynamic vegetation models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second-generation DVMs that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE (Community Atmosphere Biosphere Land Exchange) or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub-grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to wide-ranging temporal and boreal forests, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model, and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 year. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.
Hewlette S. Crawford
1976-01-01
The impacts of forest cutting upon understory vegetation were evaluated for Ozark oak-hickory and Appalachian oak-pine stands. These findings were related to similar information from other eastern forest types. Production of understory vegetation is related to stand type, stand structure, stand disturbance, and site. Stand type, structure, and site operate together to...
Agne, Michelle C.; Shaw, David C.; Woolley, Travis J.; Queijeiro-Bolaños, Mónica E.
2014-01-01
Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21–28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to influence stand structure. PMID:25221963
Estimating yellow-poplar growth and yield
Donald E. Beck
1989-01-01
Yellow-poplar grows in essentially pure, even-aged stands, so you can make growth and yield estimates from relatively few stand characteristics. The tables and models described here require only measures of stand age, stand basal area in trees 4.5 inches and larger, and site index. They were developed by remeasuring (at 5-year intervals over a 20-year period) many...
Effect of crown growing space and age on the growth of northern red oak
Gary W. Miller
1997-01-01
Cultural practices can be applied in even-age stands to reallocate site resources to selected crop trees. Precornrnercial thinning in sapling stands can increase diameter growth and improve species composition of trees in the main canopy. Commercial thinning in sawtimber stands also increases diameter growth of crop trees, improves residual stand quality, and removes...
Mao, Peili; Han, Guangxuan; Wang, Guangmei; Yu, Junbao; Shao, Hongbo
2014-01-01
Effects of age and stand density of mother tree on seed germination, seedling biomass allocation, and seedling growth of Pinus thunbergii were studied. The results showed that age of mother tree did not have significant influences on seed germination, but it was significant on seedling biomass allocation and growth. Seedlings from the minimum and maximum age of mother tree had higher leaf mass ratio and lower root mass ratio than from the middle age of mother tree. Moreover, they also had higher relative height growth rate and slenderness, which were related to their biomass allocation. Stand density of mother tree mainly demonstrated significant effects on seed germination and seedling growth. Seed from higher stand density of mother tree did not decrease germination rate, but had higher mean germination time, indicating that it delayed germination process. Seedlings of higher stand density of mother tree showed higher relative height growth rate and slenderness. These traits of offspring from higher stand density of mother tree were similar to its mother, indicating significant environmental maternal effects. So, mother tree identity of maternal age and environments had important effects on natural regeneration of the coastal P. thunbergii forest.
Mao, Peili; Han, Guangxuan; Wang, Guangmei; Yu, Junbao; Shao, Hongbo
2014-01-01
Effects of age and stand density of mother tree on seed germination, seedling biomass allocation, and seedling growth of Pinus thunbergii were studied. The results showed that age of mother tree did not have significant influences on seed germination, but it was significant on seedling biomass allocation and growth. Seedlings from the minimum and maximum age of mother tree had higher leaf mass ratio and lower root mass ratio than from the middle age of mother tree. Moreover, they also had higher relative height growth rate and slenderness, which were related to their biomass allocation. Stand density of mother tree mainly demonstrated significant effects on seed germination and seedling growth. Seed from higher stand density of mother tree did not decrease germination rate, but had higher mean germination time, indicating that it delayed germination process. Seedlings of higher stand density of mother tree showed higher relative height growth rate and slenderness. These traits of offspring from higher stand density of mother tree were similar to its mother, indicating significant environmental maternal effects. So, mother tree identity of maternal age and environments had important effects on natural regeneration of the coastal P. thunbergii forest. PMID:24955404
Genetic consequences of selection cutting on sugar maple (Acer saccharum Marshall).
Graignic, Noémie; Tremblay, Francine; Bergeron, Yves
2016-07-01
Selection cutting is a treatment that emulates tree-by-tree replacement for forests with uneven-age structures. It creates small openings in large areas and often generates a more homogenous forest structure (fewer large leaving trees and defective trees) that differs from old-growth forest. In this study, we evaluated whether this type of harvesting has an impact on genetic diversity of sugar maple (Acer saccharum Marshall). Genetic diversity among seedlings, saplings, and mature trees was compared between selection cut and old-growth forest stands in Québec, Canada. We found higher observed heterozygosity and a lower inbreeding coefficient in mature trees than in younger regeneration cohorts of both forest types. We detected a recent bottleneck in all stands undergoing selection cutting. Other genetic indices of diversity (allelic richness, observed and expected heterozygosity, and rare alleles) were similar between forest types. We concluded that the effect of selection cutting on the genetic diversity of sugar maple was recent and no evidence of genetic erosion was detectable in Québec stands after one harvest. However, the cumulative effect of recurring applications of selection cutting in bottlenecked stands could lead to fixation of deleterious alleles, and this highlights the need for adopting better forest management practices.
Carbon and biodiversity loss due to forest degradation – a Cambodian case study
Nophea Sasaki; Kimsun Chheng; Nobuya Mizoue
2013-01-01
Tropical forests are diverse in terms of stand and age structures, commercial and biodiversity values of individually trees, and dependency of local communities. Monitoring forest degradation in the tropics remains a challenge despite increasing global interests in reducing carbon emissions from deforestation and forest degradation and safeguarding...
Paul G. Scowcroft; Janis E. Haraguchi; David M. Fujii
2008-01-01
Restoration of degraded Acacia koa forests in Hawaii often involves mechanical scarification to stimulate germination of seed buried in the soil and to suppress vegetation that competes with shade intolerant A. koa. Resulting even-age stands are gradually colonized by other plant species, but understory...
Maintaining saproxylic insects in Canada's extensively managed boreal forests: a review
David W. Langor; John R. Spence; H.E. James Hammond; Joshua Jacobs; Tyler P. Cobb
2006-01-01
Recent work on saproxylic insect assemblages in western Canadian boreal forests has demonstrated high faunal diversity and variability, and that adequate assessment of these insects involves significant sampling and taxonomic challenges. Some major determinants of assemblage structure include tree species, degree of decay, stand age and cause of tree death. Experiments...
A method for determining fire history in coniferous forests in the Mountain West
Stephen F. Arno; Kathy M. Sneck
1977-01-01
Describes a method for determining historic fire frequency, intensity, and size from cross sections collected from fire-scarred trees and tree age classes determined through increment borings. Tells how to interpret the influence of fire in stand composition and structure and how to identify effects of modern fire suppression.
Children's Narrative Structure: How Do Japanese Children Talk About Their Own Stories?
ERIC Educational Resources Information Center
Minami, Masahiko
The conversational narratives of 17 Japanese children aged 5 to 9 were analyzed using stanza analysis. Three distinctive features emerged: (1) the narratives are exceptionally succinct; (2) they are usually free-standing collections of three experiences; and (3) stanzas almost always consist of three lines. These features reflect the basic…
Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin
2013-01-01
The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.
Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J.; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin
2013-01-01
The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China. PMID:23977252
NASA Astrophysics Data System (ADS)
Yi, K.; Park, C.; Ryu, S.; Lee, K.; Yi, M.; Kim, C.; Park, G.; Kim, R.; Son, Y.
2011-12-01
Soil carbon (C) stocks of Pinus densiflora forests in Korea were estimated using a generic forest soil C dynamics model based on the process of dead organic matter input and decomposition. Annual input of dead organic matter to the soil was determined by stand biomass and turnover rates of tree components (stem, branch, twig, foliage, coarse root, and fine root). The model was designed to have a simplified structure consisting of three dead organic matter C (DOC) pools (aboveground woody debris (AWD), belowground woody debris (BWD), and litter (LTR) pool) and one soil organic C (SOC) pool. C flows in the model were regulated by six turnover rates of stem, branch, twig, foliage, coarse root, and fine root, and four decay rates of AWD, BWD, LTR, and SOC. To simulate the soil C stocks of P. densiflora forests, statistical data of forest land area (1,339,791 ha) and growing stock (191,896,089 m3) sorted by region (nine provinces and seven metropolitan cities) and stand age class (11 to 20- (II), 21 to 30- (III), 31 to 40- (IV), 41 to 50- (V), and 51 to 60-year-old (VI)) were used. The growing stock of each stand age class was calculated for every region and representable site index was also determined by consulting the yield table. Other model parameters related to the stand biomass, annual input of dead organic matter and decomposition were estimated from previous studies conducted on P. densiflora forests in Korea, which were also applied for model validation. As a result of simulation, total soil C stock of P. densiflora forests were estimated as 53.9 MtC and soil C stocks per unit area ranged from 28.71 to 47.81 tC ha-1 within the soil depth of 30 cm. Also, soil C stocks in the P. densiflora forests of age class II, III, IV, V, and VI were 16,780,818, 21,450,812, 12,677,872, 2,366,939, and 578,623 tC, respectively, and highly related to the distribution of age classes. Soil C stocks per unit area initially decreased with stand age class and started to increase after the stand age class of V. Regional soil C stocks ranged from 9,805 to 15,595,802 tC, and were generally proportional to the forest land area. Our results suggest an approach to estimate soil C stock on a national scale by using a computer model and manipulating the existing statistical data.
Stand-age profile of North Carolina's timberland
Herbert A. Knight
1977-01-01
Most timber stands in North Carolina are even aged and appeared after some act of nature or man. The most common acts which lead to the establishment of a new stand are timber harvesting, retirement of farmland, wildfire, wind and ice storms, or insect and disease outbreaks. Most frequently, the new stand is a product of natureâs healing process. Less often, some land...
Yamako, Go; Chosa, Etsuo; Totoribe, Koji; Fukao, Yuu; Deng, Gang
2017-01-01
Simple methods for quantitative evaluations of individual motor performance are crucial for the early detection of motor deterioration. Sit-to-stand movement from a chair is a mechanically demanding component of activities of daily living. Here, we developed a novel method using the ground reaction force and center of pressure measured from the Nintendo Wii Balance Board to quantify sit-to-stand movement (sit-to-stand score) and investigated the age-related change in the sit-to-stand score as a method to evaluate reduction in motor performance. The study enrolled 503 participants (mean age ± standard deviation, 51.0 ± 19.7 years; range, 20-88 years; male/female ratio, 226/277) without any known musculoskeletal conditions that limit sit-to-stand movement, which were divided into seven 10-year age groups. The participants were instructed to stand up as quickly as possible, and the sit-to-stand score was calculated as the combination of the speed and balance indices, which have a tradeoff relationship. We also performed the timed up and go test, a well-known clinical test used to evaluate an individual's mobility. There were significant differences in the sit-to-stand score and timed up and go time among age groups. The mean sit-to-stand score for 60s, 70s, and 80s were 77%, 68%, and 53% of that for the 20s, respectively. The timed up and go test confirmed the age-related decrease in mobility of the participants. In addition, the sit-to-stand score measured using the Wii Balance Board was compared with that from a laboratory-graded force plate using the Bland-Altman plot (bias = -3.1 [ms]-1, 95% limit of agreement: -11.0 to 3.9 [ms]-1). The sit-to-stand score has good inter-device reliability (intraclass correlation coefficient = 0.87). Furthermore, the test-retest reliability is substantial (intraclass correlation coefficient = 0.64). Thus, the proposed STS score will be useful to detect the early deterioration of motor performance.
Chosa, Etsuo; Totoribe, Koji; Fukao, Yuu; Deng, Gang
2017-01-01
Simple methods for quantitative evaluations of individual motor performance are crucial for the early detection of motor deterioration. Sit-to-stand movement from a chair is a mechanically demanding component of activities of daily living. Here, we developed a novel method using the ground reaction force and center of pressure measured from the Nintendo Wii Balance Board to quantify sit-to-stand movement (sit-to-stand score) and investigated the age-related change in the sit-to-stand score as a method to evaluate reduction in motor performance. The study enrolled 503 participants (mean age ± standard deviation, 51.0 ± 19.7 years; range, 20–88 years; male/female ratio, 226/277) without any known musculoskeletal conditions that limit sit-to-stand movement, which were divided into seven 10-year age groups. The participants were instructed to stand up as quickly as possible, and the sit-to-stand score was calculated as the combination of the speed and balance indices, which have a tradeoff relationship. We also performed the timed up and go test, a well-known clinical test used to evaluate an individual’s mobility. There were significant differences in the sit-to-stand score and timed up and go time among age groups. The mean sit-to-stand score for 60s, 70s, and 80s were 77%, 68%, and 53% of that for the 20s, respectively. The timed up and go test confirmed the age-related decrease in mobility of the participants. In addition, the sit-to-stand score measured using the Wii Balance Board was compared with that from a laboratory-graded force plate using the Bland–Altman plot (bias = −3.1 [ms]-1, 95% limit of agreement: −11.0 to 3.9 [ms]-1). The sit-to-stand score has good inter-device reliability (intraclass correlation coefficient = 0.87). Furthermore, the test–retest reliability is substantial (intraclass correlation coefficient = 0.64). Thus, the proposed STS score will be useful to detect the early deterioration of motor performance. PMID:29136031
Bäcklund, Sofia; Jönsson, Mari; Strengbom, Joachim; Frisch, Andreas; Thor, Göran
2016-01-01
With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden.
Bäcklund, Sofia; Jönsson, Mari; Strengbom, Joachim; Frisch, Andreas; Thor, Göran
2016-01-01
With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden. PMID:26799558
SouthPro : a computer program for managing uneven-aged loblolly pine stands
Benedict Schulte; Joseph Buongiorno; Ching-Rong Lin; Kenneth E. Skog
1998-01-01
SouthPro is a Microsoft Excel add-in program that simulates the management, growth, and yield of uneven-aged loblolly pine stands in the Southern United States. The built-in growth model of this program was calibrated from 991 uneven-aged plots in seven states, covering most growing conditions and sites. Stands are described by the number of trees in 13 size classes...
Zhao, Jinlong; Kang, Fengfeng; Wang, Luoxin; Yu, Xiaowen; Zhao, Weihong; Song, Xiaoshuai; Zhang, Yanlei; Chen, Feng; Sun, Yu; He, Tengfei; Han, Hairong
2014-01-01
Patterns of biomass and carbon (C) storage distribution across Chinese pine (Pinus tabulaeformis) natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb), and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH) were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0-100 cm) were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha-1 for the young stand to 344.8 Mg·ha-1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha-1 in the middle-aged stand to 3.5 Mg·ha-1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha-1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha-1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale.
Wang, Luoxin; Yu, Xiaowen; Zhao, Weihong; Song, Xiaoshuai; Zhang, Yanlei; Chen, Feng; Sun, Yu; He, Tengfei; Han, Hairong
2014-01-01
Patterns of biomass and carbon (C) storage distribution across Chinese pine (Pinus tabulaeformis) natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb), and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH) were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0–100 cm) were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha–1 for the young stand to 344.8 Mg·ha–1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha–1 in the middle-aged stand to 3.5 Mg·ha–1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha–1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha–1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale. PMID:24736660
James M. Guldin
2011-01-01
The selection method applied in shade-intolerant pine stands in the southern United States has been shown to be an effective method of uneven-aged silviculture, but it is becoming less frequently practiced for a variety of reasons. Economically, the high value of standing timber puts fully stocked uneven-aged pine stands at risk of liquidation if the timberland is sold...
Errors in Site Index Determination Caused by Tree Age Variation in Even-Aged Oak Stands
Robert A. McQuilkin
1975-01-01
Age deviations of individual trees in even-aged oak stands in Missouri caused variations in the height growth patterns and site index estimates of these younger or older trees. A correction factor for site index estimates on these age-deviant trees is given.
Robert L. Deal; J.C. Tappeiner; Paul E. Hennon
2002-01-01
The effects of partial cutting on species composition, stand structure and growth, tree size distribution, and tree disease and mortality were evaluated on 73 plots in 18 stands that were harvested 12â96 years ago in southeast Alaska. Partially-cut stands had diverse and highly complex stand structures similar to uncut stands. Sitka spruce was maintained in mixed...
Robert L. Deal; John C. Tappeiner
2002-01-01
The effects of partial cutting on species composition, new and residual-tree cohorts, tree size distribution, and tree growth was evaluate on 73 plots in 18 stands throughout southeast Alaska. These partially cut stands were harvested 12-96 years ago, when 16-96% if the former stand basal area was removed.Partial cutting maintained stand structures similar to...
Uneven-aged silviculture, southern style
James M. Guldin; James B. Baker
1998-01-01
Data spanning 60 years on uneven-aged loblolly-shortleaf pine stands in Arkansas show that two regulation methods have been successful in regulating stand development. Key attributes of these methods are that regulation is more important than balance, residual basal area drives stand development, and regeneration is the first indicator of sustainability. Marking uneven...
Management of spruce-fir in even-aged stands in the central Rocky Mountains
Robert R. Alexander; Carleton B. Edminster
1980-01-01
Potential production of Engelmann spruce and subalpine fir in the central Rocky Mountains is simulated for vario.us combinations of stand density, site quality, ages, and thinning schedules. Such estimates are needed to project future development of stands managed in different ways for various uses.
Age-dependent changes in ecosystem carbon fluxes in managed forests in Northern Wisconsin, USA
Asko Noormets; Jiquan Chen; Thomas R. Crow
2007-01-01
The age-dependent variability of ecosystem carbon (C) fluxes was assessed by measuring the net ecosystem exchange of C (NEE) in five managed forest stands in northern Wisconsin, USA. The study sites ranged in age from 3-year-old clearcut to mature stands (65 years). All stands, except the clearcut, accumulated C over the study period from May to October 2002. Seasonal...
Influence of red alder on chemical properties of a clay loam soil in western Washington.
D.S. DeBell; M.A. Radwan; J.M. Kraft
1983-01-01
Chemical characteristics of mineral soil beneath red alder (Alnus rubra Bong.) stands of various ages were studied. Total nitrogen (N) of the 0-to 20-centimeter (0- to 8-inch) soil layer increased with stand age, and pH of both the 0- to 20-centimeter and 20- to 50-centimeter (8- to 20-inch) layers decreased with stand age. Contents of some mineral...
Growth and body composition in Brazilian female rhythmic gymnastics athletes.
Camargo, Cristiane Teixeira Amaral; Gomez-Campos, Rossana Anelice; Cossio-Bolaños, Marco Antonio; Barbeta, Vinicius Justino De Oliveira; Arruda, Miguel; Guerra-Junior, Gil
2014-01-01
The aim was to analyse the physical growth and body composition of rhythmic gymnastics athletes relative to their level of somatic maturation. This was a cross-sectional study of 136 athletes on 23 teams from Brazil. Mass, standing height and sitting height were measured. Fat-free and fat masses, body fat percentages and ages of the predicted peak height velocity (PHV) were calculated. The z scores for mass were negative during all ages according to both WHO and Brazilian references, and that for standing height were also negative for all ages according to WHO reference but only until 12 years old according to Brazilian reference. The mean age of the predicted PHV was 12.1 years. The mean mass, standing and sitting heights, body fat percentage, fat-free mass and fat mass increased significantly until 4 to 5 years after the age of the PHV. Menarche was reached in only 26% of these athletes and mean age was 13.2 years. The mass was below the national reference standards, and the standing height was below only for the international reference, but they also had late recovery of mass and standing height during puberty. In conclusion, these athletes had a potential to gain mass and standing height several years after PHV, indicating late maturation.
Effect of Land Use Legacy on Forest Carbon Dynamics in the NE U.S.
NASA Astrophysics Data System (ADS)
Felzer, B. S.
2016-12-01
Forest stand age is a prime determinant of the strength of the carbon sink, as younger, growing forests tend to be stronger sinks than more mature forests. The substantial carbon sink in the NE U.S. is due to forests regrowing from previous disturbance. The particular type of disturbance, whether agricultural abandonment, timber harvest, or fire, can have an impact on the Net Ecosystem Productivity (NEP) observed today, especially for more recently disturbed forests. Nutrient levels, particularly nitrogen, are the most important factor determining the rate of regrowth following disturbance. Agriculture results in depletion of nutrients from the soil, so often results in slower regrowth than timber harvest, for example. If fire is also used during harvesting, nutrient depletion may be even more severe. This study will use the 1 km USDA forest stand age data for the NE U.S. for a series of model sensitivity experiments with the TEM-Hydro model. Three simulations will apply a single disturbance to result in the correct stand age, with agricultural abandonment, timber harvest, and fire applied at the year of disturbance, respectively. A 1/8o run will explore how aggregated stand age affects NEP relative to higher resolution stand age. Preliminary results for a single grid in PA show timber harvest has faster regrowth than regrowth from agricultural abandonment, though fertilization quickens regrowth rates. The effect of crops on NEP is a larger sink than timber harvest in the 5 years following disturbance, but a smaller sink in the decades following, with equivalent NEP values after about 50 years. A simple stand age mixture experiment shows that heterogeneous stand age matters most in the first 20 years following disturbance. These methods will be applied to realistic stand ages for the entire NE U.S. to determine the importance of disturbance type on forest regrowth.
Angstmann, J L; Ewers, B E; Kwon, H
2012-05-01
Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had ∼ 50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.
Shimada, Hiroyuki; Tiedemann, Anne; Lord, Stephen R; Suzukawa, Megumi; Makizako, Hyuma; Kobayashi, Kumiko; Suzuki, Takao
2011-01-01
The purpose of this study was to determine the interrelationships between lower limb muscle performance, balance, gait and falls in older people using structural equation modeling. Study participants were two hundred and thirteen people aged 65 years and older (mean age, 80.0 ± 7.1 years), who used day-care services in Japan. The outcome measures were the history of falls three months retrospectively and physical risk factors for falling, including performance in the chair stand test (CST), one-leg standing test (OLS), tandem walk test, 6m walking time, and the timed up-and-go (TUG) test. Thirty-nine (18.3%) of the 213 participants had fallen at least one or more times during the preceding 3 months. The fall group had significantly slower 6m walking speed and took significantly longer to undertake the TUG test than the non-fall group. In a structural equation model, performance in the CST contributed significantly to gait function, and low gait function was significantly and directly associated with falls in older people. This suggests that task-specific strength exercise as well as general mobility retraining should be important components of exercise programs designed to reduce falls in older people. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
J. Zavitkovski; David H. Dawson
1978-01-01
Spacing and rotation length effects were studied for 7 years in intensively cultured jack pine stands. Production culminated at age 5 in the densest planting and progressively later in more open spacing. Biomass production was two to several times higher than in jack pine plantations grown under traditional silvicultural systems.
Ariel E. Lugo F.N. Scatena
1995-01-01
Relationships between landforms, soil nutrients, forest structure, and the relative importance of different disturbances were quantified in two subtropical wet steepland watersheds in Puerto Rico. Ridges had fewer landslides and treefall gaps, more above-ground biomass, older aged stands, and greater species richness than other landscape positions. Ridge soils had...
Jennifer L. Funk; Christian P. Giardina; Alexander Knohl; Manuel T. Lerdau
2006-01-01
Eucalyptus plantations occupy approximately 10 million ha of land in the tropics and, increasingly, afforestation and reforestation projects are relying on this genus to provide rapid occupation of degraded sites, large quantities of high-quality wood products, and high rates of carbon sequestration. Members of the genus Eucalyptus...
Madrean pine-oak forest in Arizona: altered fire regimes, altered communities
Andrew M. Barton
2005-01-01
In Madrean pine-oak forests in the Chiricahua Mountains, surface fire favors pines, which exhibit high top-survival, but resprouting allows oaks to rebound during inter-fire periods. These patterns plus age structure and radial growth data suggest that frequent presettlement surface fire maintained open stands, promoted a high pine:oak ratio, and excluded less fire...
A density management diagram for Norway spruce in the temperate Europe montane region
Giorgio Vacchiano; R. Justin DeRose; John D. Shaw; Miroslav Svoboda; Renzo Motta
2013-01-01
Norway spruce is one of the most important conifer tree species in Europe, paramount for timber provision, habitat, recreation, and protection of mountain roads and settlements from natural hazards. Although natural Norway spruce forests exhibit diverse structures, even-aged stands can arise after disturbance or as the result of common silvicultural practice, including...
Fire and fire-suppression impacts on forest-soil carbon [Chapter 13
Deborah Page-Dumroese; Martin F. Jurgensen; Alan E. Harvey
2003-01-01
The potential of forest soils to sequester carbon (C) depends on many biotic and abiotic variables, such as: forest type, stand age and structure, root activity and turnover, temperature and moisture conditions, and soil physical, chemical, and biological properties (Birdsey and Lewis, Chapter 2; Johnson and Kern, Chapter 4; Pregitzer, Chapter 6; Morris and Paul,...
Songbird response to alternative forest density management in young Douglas-fir stands
Joan C. Hagar
2013-01-01
Th inning has been increasingly used in the Pacifi c Northwest to restore structural and biological diversity to densely-stocked young- to mid-aged forests that have been previously intensively managed for timber production. In the short term, thinning promotes development of understory vegetation, which in turn can increase habitat diversity for wildlife, particularly...
Shifts and future trends in the forest resources of the Central Hardwood region
Thomas L. Schmidt; William H. McWilliams
2003-01-01
Forests in the Central Hardwood region are undergoing change in terms of area, volume, species composition, and forest structure. These forests are dominated by deciduous species; are increasing their average stand size, volume, and age; and, are experiencing woody plant species replacement as shade intolerant species are being replaced by more shade tolerant species....
Shifts and future trends in the forest resources of the Central Hardwood Region
Thomas L. Schmidt; William H. McWilliams
2003-01-01
Forests in the Central Hardwood region are undergoing change in terms of area, volume, species composition, and forest structure. These forests are dominated by deciduous species; are increasing their average stand size, volume, and age; and, are experiencing woody plant species replacement as shade intolerant species are being replaced by more shade tolerant species....
Deferment cutting in central Appalachian hardwoods: an update
Gary w. Miller; James E. Johnson; John E. Baumgras
1997-01-01
This paper summarizes research results on deferment cutting, a silvicultural practice that promotes a two-age stand structure, as it has been applied in central Appalachian hardwoods on the Monongahela National Forest (MNF) since 1979. Ten-year results from experimental cuts that were applied from 1979 to 1983 indicated that 89% of residual trees survived, 76 to 100%...
Two centuries of fire in a southwestern Virginia Pinus pungens community
E. K. Sutherland; H. Grissino-Mayer; C. A. Woodhouse; W. W. Covington; S. Horn; L. Huckaby; R. Kerr; J. Kush; M. Moore; T. Plumb
1995-01-01
Fire exclusion in fire-dependent forest communities can alter stand structure and composition. The objective was to construct a fire history of two Pinus pungens Lamb. communities growing in southwestern Virgina. Treering analysis of fire-scarred P. pungens specimens and a tree survey were used to determine species composition and age distributions. From 1798-1944,...
John B. Bradford; Douglas N. Kastendick
2010-01-01
Forest managers are seeking strategies to create stands that can adapt to new climatic conditions and simultaneously help mitigate increases in atmospheric CO2. Adaptation strategies often focus on enhancing resilience by maximizing forest complexity in terms of species composition and size structure, while mitigation involves sustaining carbon...
The effects of partial cutting practices on forest stand structure in Appalachian hardwood forests
Mary Ann Fajvan; Shawn T. Grushecky
1997-01-01
Eastern hardwood forests originated after catastrophic disturbances around the turn of the century and are currently an even-aged, maturing resource. The increasing value of sawlogs, especially those of particular species and quality, has prompted many forest landowners to increase their harvesting efforts. Most harvesting appears to be economically driven, focusing on...
Stand age and climate drive forest carbon balance recovery
NASA Astrophysics Data System (ADS)
Besnard, Simon; Carvalhais, Nuno; Clevers, Jan; Herold, Martin; Jung, Martin; Reichstein, Markus
2016-04-01
Forests play an essential role in the terrestrial carbon (C) cycle, especially in the C exchanges between the terrestrial biosphere and the atmosphere. Ecological disturbances and forest management are drivers of forest dynamics and strongly impact the forest C budget. However, there is a lack of knowledge on the exogenous and endogenous factors driving forest C recovery. Our analysis includes 68 forest sites in different climate zones to determine the relative influence of stand age and climate conditions on the forest carbon balance recovery. In this study, we only included forest regrowth after clear-cut stand replacement (e.g. harvest, fire), and afforestation/reforestation processes. We synthesized net ecosystem production (NEP), gross primary production (GPP), ecosystem respiration (Re), the photosynthetic respiratory ratio (GPP to Re ratio), the ecosystem carbon use efficiency (CUE), that is NEP to GPP ratio, and CUEclimax, where GPP is derived from the climate conditions. We implemented a non-linear regression analysis in order to identify the best model representing the C flux patterns with stand age. Furthermore, we showed that each C flux have a non-linear relationship with stand age, annual precipitation (P) and mean annual temperature (MAT), therefore, we proposed to use non-linear transformations of the covariates for C fluxes'estimates. Non-linear stand age and climate models were, therefore, used to establish multiple linear regressions for C flux predictions and for determining the contribution of stand age and climate in forest carbon recovery. Our findings depicted that a coupled stand age-climate model explained 33% (44%, average site), 62% (76%, average site), 56% (71%, average site), 41% (59%, average site), 50% (65%, average site) and 36% (50%, average site) of the variance of annual NEP, GPP, Re, photosynthetic respiratory ratio, CUE and CUEclimax across sites, respectively. In addition, we showed that gross fluxes (e.g. GPP and Re) are mainly climatically driven with 54.2% (68.4%, average site) and 54.1% (71.0%, average site) of GPP and Re variability, respectively, explained by the sum of MAT and P. However, annual NEP, GPP to Re ratio and CUEclimax are affected by both forest stand age and climate conditions, in particular MAT. The key result is that forest stand age plays a crucial role in determining CUE (36.4% and 48.2% for all years per site and average site, respectively), while climate conditions have less effect on CUE (13.6% and 15.4% for all years per site and average site, respectively). These findings are relevant for the implementation of Earth system models and imply that information both on forest stand age and climate conditions are critical to improve the accuracy of global terrestrial C models's estimates.
Sugar maple height-diameter and age-diameter relationships in an uneven-aged northern hardwood stand
Laura S. Kenefic; R.D. Nyland
1999-01-01
Sugar maple (Acer saccharum Marsh.) height-diameter and age-diameter relationships are explored in a balanced uneven-aged northern hardwood stand in central New York. Results show that although both height and age vary considerably with diameter, these relationships can be described by statistically valid equations. The age-diameter relationship...
Kevin L. O' Hara; Lathrop P. Leonard; Christopher R. Keyes
2012-01-01
Variable-density thinning (VDT) is an emerging thinning method that attempts to enhance stand structural heterogeneity by deliberately thinning at different intensities throughout a stand. VDT may create stands with dense areas, open areas, and other areas that may be intermediate in density. Subsequent stand development forms a more varied structure than is...
David H. Peter; Constance A. Harrington
2010-01-01
We reconstructed the stand structure and composition for two western Washington old-growth forest stands harvested around 1930 (named Fresca and Rail) from field and historical data. Both old-growth stands had a codominant or dominant 250-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) overstory with a few scattered older Douglas-fir....
Thinning and Pruning Influence Glaze Damage in a Loblolly Pine Plantation
James D. Burton
1981-01-01
An old-field plantation was thinned and pruned at age 11 and again at age 14 to 4 basal area levels and 3 crown percent levels. A survey was made to determine how damage by an ice storm at age 15 was influenced by treatment. Severe damage was heaviest in the densest stands and in stands with the shortest crowns, while the percent of stand destroyed was least under the...
Fixed and equilibrium endpoint problems in uneven-aged stand management
Robert G. Haight; Wayne M. Getz
1987-01-01
Studies in uneven-aged management have concentrated on the determination of optimal steady-state diameter distribution harvest policies for single and mixed species stands. To find optimal transition harvests for irregular stands, either fixed endpoint or equilibrium endpoint constraints can be imposed after finite transition periods. Penalty function and gradient...
Regenerating uneven-aged stands of loblolly and shortleaf pines: the current state of knowledge
Michael G. Shelton; Michael D. Cain
2000-01-01
Periodic regeneration is crucial to creating or sustaining uneven-aged (UEA) stands of loblolly (Pinus taeda L.) and shortleaf (P. echinata Mill.) pines. Although both species are shade intolerant, they have silvical characteristics that are conducive to natural regeneration in UEA stands. Their seed production is fairly consistent...
Accumulation of soil organic C and N in planted forests fostered by tree species mixture
NASA Astrophysics Data System (ADS)
Liu, Yan; Lei, Pifeng; Xiang, Wenhua; Yan, Wende; Chen, Xiaoyong
2017-09-01
With the increasing trend of converting monocultures into mixed forests, more and more studies have been carried out to investigate the admixing effects on tree growth and aboveground carbon storage. However, few studies have considered the impact of mixed forests on belowground carbon sequestration, particularly changes in soil carbon and nitrogen stocks as a forest grows. In this study, paired pure Pinus massoniana plantations, Cinnamomum camphora plantations and mixed Pinus massoniana-Cinnamomum camphora plantations at ages of 10, 24 and 45 years were selected to test whether the mixed plantations sequestrate more organic carbon (OC) and nitrogen (N) in soils and whether this admixing effect becomes more pronounced with stand ages. The results showed that tree species identification, composition and stand age significantly affected soil OC and N stocks. The soil OC and N stocks were the highest in mixed Pinus-Cinnamomum stands compared to those in counterpart monocultures with the same age in the whole soil profile or specific soil depth layers (0-10, 10-20 and 20-30 cm) for most cases, followed by Cinnamomum stands and Pinus stands with the lowest. These positive admixing effects were mostly nonadditive. Along the chronosequence, the soil OC stock peaked in the 24-year-old stand and was maintained as relatively stable thereafter. The admixing effects were also the highest at this stage. However, in the topsoil layer, the admixing effects increased with stand ages in terms of soil OC stocks. When comparing mixed Pinus-Cinnamomum plantations with corresponding monocultures within the same age, the soil N stock in mixed stands was 8.30, 11.17 and 31.45 % higher than the predicted mean value estimated from counterpart pure species plantations in 10-, 24- and 45-year-old stands, respectively. This suggests that these admixing effects were more pronounced along the chronosequence.
Trouvé, Raphaël; Bontemps, Jean-Daniel; Seynave, Ingrid; Collet, Catherine; Lebourgeois, François
2015-10-01
Even-aged forest stands are competitive communities where competition for light gives advantages to tall individuals, thereby inducing a race for height. These same individuals must however balance this competitive advantage with height-related mechanical and hydraulic risks. These phenomena may induce variations in height-diameter growth relationships, with primary dependences on stand density and tree social status as proxies for competition pressure and access to light, and on availability of local environmental resources, including water. We aimed to investigate the effects of stand density, tree social status and water stress on the individual height-circumference growth allocation (Δh-Δc), in even-aged stands of Quercus petraea Liebl. (sessile oak). Within-stand Δc was used as surrogate for tree social status. We used an original long-term experimental plot network, set up in the species production area in France, and designed to explore stand dynamics on a maximum density gradient. Growth allocation was modelled statistically by relating the shape of the Δh-Δc relationship to stand density, stand age and water deficit. The shape of the Δh-Δc relationship shifted from linear with a moderate slope in open-grown stands to concave saturating with an initial steep slope in closed stands. Maximum height growth was found to follow a typical mono-modal response to stand age. In open-grown stands, increasing summer soil water deficit was found to decrease height growth relative to radial growth, suggesting hydraulic constraints on height growth. A similar pattern was found in closed stands, the magnitude of the effect however lowering from suppressed to dominant trees. We highlight the high phenotypic plasticity of growth in sessile oak trees that further adapt their allocation scheme to their environment. Stand density and tree social status were major drivers of growth allocation variations, while water stress had a detrimental effect on height in the Δh-Δc allocation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
McDermott, M.E.; Wood, P.B.
2009-01-01
Two-age (deferment or leave tree) harvesting is used increasingly in even-aged forest management, but long-term responses of breeding avifauna to retention of residual canopy trees have not been investigated. Breeding bird surveys completed in 1994-1996 in two-age and clearcut harvests in the central Appalachian Mountains of West Virginia, USA allowed us to document long-term changes in these stands. In 2005 and 2006, we conducted point counts in mature unharvested forest stands and in 19-26 year-old clearcut and two-age harvests from the original study and in younger clearcut and two-age stands (6-10 years old). We found differences in breeding bird metrics among these five treatments and temporal differences in the original stands. Although early-successional species are typically absent from group selection cuts, they were almost as common in young two-age stands as clearcuts, supporting two-age harvests as an alternative to clearcutting. Although older harvests had lower species richness and diversity, they were beginning to provide habitat for some species of late-successional forest songbirds that were absent or uncommon in young harvests. Overall, late-successional forest-interior species were more flexible in their use of different seral stages; several species used both age classes and harvest types in addition to mature forest, which may reflect the lack of edges in our heavily-forested landscape. Consequently, two-age management provides habitat for a diverse group of species as these stands mature and may be an ecologically sustainable alternative to clearcutting in landscapes where brown-headed cowbirds (Molothrus ater) are uncommon. ?? 2008 Elsevier Ltd.
Water and Energy Balances of Loblolly Pine Plantation Forests during a Full Stand Rotation
NASA Astrophysics Data System (ADS)
Sun, G.; Mitra, B.; Domec, J. C.; Gavazi, M.; Yang, Y.; Tian, S.; Zietlow, D.; McNulty, S.; King, J.; Noormets, A.
2017-12-01
Loblolly pine (Pinus taeda) plantations in the southern U.S. are well recognized for their ecosystem services in supplying clean and stable water and mitigating climate change through carbon sequestration and solar energy partitioning. Since 2004, we have monitored energy, water, and carbon fluxes in a chronosequence of three drained loblolly pine plantations using integrated methods that include eddy covariance, sap flux, watershed hydrometeorology, remote sensing, and process-based simulation modeling. Study sites were located on the eastern North Carolina coastal plain, representing highly productive ecosystems with high groundwater table, and designated in the Ameriflux network as NC1 (0-10 year old), NC2 (12-25 year old) and NC3 (0-3 years old). The 13-year study spanned a wide range of annual precipitation (900-1600 mm/yr) including two exceptionally dry years during 2007-2008. We found that the mature stand (NC2) had higher net radiation (Rn) flux due to its lower albedo (α =0.11-12), compared with the young stands (NC1, NC3) (α=0.15-0.18). Annually about 75%-80% of net radiation was converted to latent heat in the pine plantations. In general, the mature stand had higher latent heat flux (LE) (i.e. evapotranspiration (ET)) rates than the young stands, but ET rates were similar during wet years when the groundwater table was at or near the soil surface. During a historic drought period (i.e., 2007-2008), total stand annual ET exceeded precipitation, but decreased about 30% at NC2 when compared to a normal year (e.g., 2006). Field measurements and remote sensing-based modeling suggested that annual ET rates increased linearly from planting age (about 800 mm) to age 15 (about 1050 mm) and then stabilized as stand leaf area index leveled-off. Over a full stand rotation, approximately 70% (young stand) to 90% (mature stand) of precipitation was returned to the atmosphere through ET. We conclude that both climatic variability and canopy structure controlled the partitioning of precipitation and solar energy in pine forests. In addition, we conclude that accessible groundwater was important factor for stabilizing forest water and energy balances during a drought in the lower coastal ecosystems.
Alzheimer's Disease Diagnosis in Individual Subjects using Structural MR Images: Validation Studies
Vemuri, Prashanthi; Gunter, Jeffrey L.; Senjem, Matthew L.; Whitwell, Jennifer L.; Kantarci, Kejal; Knopman, David S.; Boeve, Bradley F.; Petersen, Ronald C.; Jack, Clifford R.
2008-01-01
OBJECTIVE To develop and validate a tool for Alzheimer's disease (AD) diagnosis in individual subjects using support vector machine (SVM) based classification of structural MR (sMR) images. BACKGROUND Libraries of sMR scans of clinically well characterized subjects can be harnessed for the purpose of diagnosing new incoming subjects. METHODS 190 patients with probable AD were age- and gender-matched with 190 cognitively normal (CN) subjects. Three different classification models were implemented: Model I uses tissue densities obtained from sMR scans to give STructural Abnormality iNDex (STAND)-score; and Models II and III use tissue densities as well as covariates (demographics and Apolipoprotein E genotype) to give adjusted-STAND (aSTAND)-score. Data from 140 AD and 140 CN were used for training. The SVM parameter optimization and training was done by four-fold cross validation. The remaining independent sample of 50 AD and 50 CN were used to obtain a minimally biased estimate of the generalization error of the algorithm. RESULTS The CV accuracy of Model II and Model III aSTAND-scores was 88.5% and 89.3% respectively and the developed models generalized well on the independent test datasets. Anatomic patterns best differentiating the groups were consistent with the known distribution of neurofibrillary AD pathology. CONCLUSIONS This paper presents preliminary evidence that application of SVM-based classification of an individual sMR scan relative to a library of scans can provide useful information in individual subjects for diagnosis of AD. Including demographic and genetic information in the classification algorithm slightly improves diagnostic accuracy. PMID:18054253
Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests.
Samuelson, Lisa J; Stokes, Thomas A; Butnor, John R; Johnsen, Kurt H; Gonzalez-Benecke, Carlos A; Martin, Timothy A; Cropper, Wendell P; Anderson, Pete H; Ramirez, Michael R; Lewis, John C
2017-01-01
Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5 to 118 years located across the southeastern United States and estimated above- and belowground C trajectories. Ecosystem C stock (all pools including soil C) and aboveground live tree C increased nonlinearly with stand age and the modeled asymptotic maxima were 168 Mg C/ha and 80 Mg C/ha, respectively. Accumulation of ecosystem C with stand age was driven mainly by increases in aboveground live tree C, which ranged from <1 Mg C/ha to 74 Mg C/ha and comprised <1% to 39% of ecosystem C. Live root C (sum of below-stump C, ground penetrating radar measurement of lateral root C, and live fine root C) increased with stand age and represented 4-22% of ecosystem C. Soil C was related to site index, but not to stand age, and made up 39-92% of ecosystem C. Live understory C, forest floor C, downed dead wood C, and standing dead wood C were small fractions of ecosystem C in these frequently burned stands. Stand age and site index accounted for 76% of the variation in ecosystem C among stands. The mean root-to-shoot ratio calculated as the average across all stands (excluding the grass-stage stand) was 0.54 (standard deviation of 0.19) and higher than reports for other conifers. Long-term accumulation of live tree C, combined with the larger role of belowground accumulation of lateral root C than in other forest types, indicates a role of longleaf pine forests in providing disturbance-resistant C storage that can balance the more rapid C accumulation and C removal associated with more intensively managed forests. Although other managed southern pine systems sequester more C over the short-term, we suggest that longleaf pine forests can play a meaningful role in regional forest C management. © 2016 by the Ecological Society of America.
Vegetative conditions and management options in even-age stands on the Monongahela National Forest
Gary W. Miller; James N. Kochenderfer; James Knibbs; John E. Baumgras
2001-01-01
In 1998, personnel with the Northeastern Research Station and the Monongahela National Forest initiated a comprehensive survey of even-age stands that regenerated between 1964 and 1990. Preliminary results indicate that clearcutting was successful in regenerating these young stands with a variety of woody and herbaceous plant species. Early cleanings using crop-tree...
Trent A. Danley; Andrew W. Ezell; Emily B. Schultz; John D. Hodges
2015-01-01
Desired forest conditions, or DFCs, are recently created parameters which strive to create diverse stands of hardwoods of various species and age classes, along with varying densities and canopy gaps, through the use of uneven-aged silvicultural methods and repeated stand entries. Little research has been conducted to examine residual stand composition and hardwood...
Static Standing Balance in Adolescents with Down Syndrome
ERIC Educational Resources Information Center
Villarroya, M. Adoracion; Gonzalez-Aguero, Alejandro; Moros-Garcia, Teresa; de la Flor Marin, Mario; Moreno, Luis A.; Casajus, Jose A.
2012-01-01
Aim: To analyse static-standing-balance of adolescents with Down syndrome (DS). Methods: Thirty-two adolescents with DS aged 10-19 years (DSG); 33 adolescents, age/sex-matched, without DS (CG). Static-standing-balance under four conditions (C1: open-eyes/fixed-foot-support; C2: closed-eyes/fixed-foot-support; C3: open-eyes/compliant-foot-support;…
Forest floor and mineral soil respiration rates in a northern Minnesota red pine chronosequence
Powers, Matthew; Kolka, Randall; Bradford, John B.; Palik, Brian J.; Jurgensen, Martin
2018-01-01
We measured total soil CO2 efflux (RS) and efflux from the forest floor layers (RFF) in red pine (Pinus resinosaAit.) stands of different ages to examine relationships between stand age and belowground C cycling. Soil temperature and RS were often lower in a 31-year-old stand (Y31) than in 9-year-old (Y9), 61-year-old (Y61), or 123-year-old (Y123) stands. This pattern was most apparent during warm summer months, but there were no consistent differences in RFF among different-aged stands. RFF represented an average of 4–13% of total soil respiration, and forest floor removal increased moisture content in the mineral soil. We found no evidence of an age effect on the temperature sensitivity of RS, but respiration rates in Y61 and Y123 were less sensitive to low soil moisture than RS in Y9 and Y31. Our results suggest that soil respiration’s sensitivity to soil moisture may change more over the course of stand development than its sensitivity to soil temperature in red pine, and that management activities that alter landscape-scale age distributions in red pine forests could have significant impacts on rates of soil CO2 efflux from this forest type.
Dynamics of dense direct-seeded stands of southern pines
J.C.G. Goelz
2006-01-01
Direct seeding of southern pines is an effective method of artificial regeneration, producing extremely dense stands when survival exceeds expectations. Long-term studies of dense direct-seeded stands provide ideal data for exploring development of stands as they approach the limit of maximum stand density. I present data from seven studies with ages of stands ranging...
Structural Characteristics of an Old-Growth Coast Redwood Stand in Mendocino County, California
Gregory A. Giusti
2007-01-01
This paper compares stand characteristics of Old Growth coastal redwood stand densities and forest structure found throughout the northern tier of the range of coast redwood (Sequoia sempervirens). Tree densities are relatively low compared to commercially managed stands of coast redwood. Tree size classes distributions vary from 254cm...
Deferment cutting in central Appalachian hardwoods: an update
Gary W. Miller; James E. Johnson; John E. Baumgras
1997-01-01
Deferment cutting is designed to regenerate a variety of high-quality hardwood species and promote a two-age stand structure for aesthetic, wildlife habitat, and other non-timber binefits. Basal area is reduced enough so that it resembles a seedtree or shelterwood practice in that some overstory trees are retained while all other trees are cut (Figure 1). However, in...
Overview of developing desired conditions: Short-term actions, long-term objectives
J. D. Chew; K. O' Hara; J. G. Jones
2001-01-01
A number of modeling tools are required to go from short-term treatments to long-term objectives expressed as desired future conditions. Three models are used in an example that starts with determining desired stand level structure and ends with the implementation of treatments over time at a landscape scale. The Multi-Aged Stocking Assessment Model (MASAM) is used for...
Christine E. Hura; Thomas R. Crow
2004-01-01
We examined the effects of management on coarse woody debris, both standing and downed, in thinned and unthinned northern hardwood forests in upper Michigan. The unthinned conditions included old growth and second growth, while the thinned conditions included both even- and uneven-aged management. The structural features analyzed were stem diameter, density, basal area...
Dwyer, John M; Fensham, Rod J; Buckley, Yvonne M
2010-10-01
Opportunities for dual restoration and carbon benefits from naturally regenerating woody ecosystems in agricultural landscapes have been highlighted recently. The restoration capacity of woody ecosystems depends on the magnitude and duration of ecosystem modification, i.e., the "agricultural legacy." However, this legacy may not influence carbon sequestration in the same way as restoration because carbon potential depends primarily on biomass accumulation, with little consideration of other attributes and functions of the ecosystem. Our present study simultaneously assesses the restoration and carbon potential of Acacia harpophylla regrowth, an extensive regrowth ecosystem in northeastern Australia. We used a landscape-scale survey of A. harpophylla regrowth to test the following hypotheses: (1) management history, in combination with climatic and edaphic factors, has long-term effects on stem densities, and (2) higher-density stands have lower restoration and carbon potential, which is also influenced by climatic and edaphic factors. We focused on the restoration of forest structure, which was characterized using stem density, aboveground biomass, stem heights, and stem diameters. Data were analyzed using multilevel models within the hierarchical Bayesian model (HBM) framework. We found strong support for both hypotheses. Repeated attempts at clearing Brigalow (A. harpophylla ecosystem) regrowth increases stem densities, and these densities remain high over the long term, particularly in high-rainfall areas and on gilgaied, high-clay soils (hypothesis 1). In models testing hypothesis 2, interactions between stem density and stand age indicate that higher-density stands have slower biomass accumulation and structural development in the long term. After accounting for stem density and stand age, annual rainfall had a positive effect on biomass accumulation and structural development. Other climate and soil variables were retained in the various models but had weaker effects. Spatial extrapolations of the HBMs indicated that the central and eastern parts of the study region are most suitable for biomass accumulation; however, these may not correspond to the areas that historically supported the highest biomass Brigalow forests. We conclude that carbon and restoration goals are largely congruent within areas of similar climate. At the regional scale, however, spatial prioritization of restoration and carbon projects may only be aligned where carbon benefits will be high.
Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.
Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie
2008-12-01
Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.
NASA Astrophysics Data System (ADS)
Jiao, L.
2015-12-01
Black locust (Robinia pseudoacacia) was widely planted to control soil erosion and restore degraded ecosystem in Loess Plateau. The water use of the plantations was concerned due to its potential effects on hydrological cycle and regional water resource. Although some studies estimated canopy transpiration (Ec) of the mature black locust plantation, variation in Ec in plantations with different ages was not clear. In this study, we selected two plantations with different ages (12 years and 27 years, denoted as young stand and mature stand, respectively) in similar topographical conditions in Yangjuangou catchment in the central of Loess Plateau. Sap flux density (Fd) and tree biometrics were measured in each stand during the growing season in 2014. Soil water content (SWC) in each plot and meteorological variables in the catchment were simultaneously monitored. Tree transpiration (Et) was derived from Fd and tree sapwood area (As). Canopy transpiration (Ec) was estimated by a product of mean stand sap flux density (Js) and stand total sapwood area (AST). The mean Fd of mature trees was 2-fold larger than that of young trees.However, tree-to-tree variation in Fd among sampled trees within mature stand was evident compared to that within young stand. Mean Et in mature stand was higher than that in young stand. Ec in mature stand was significant higher than that in young stand,with cumulative value of 54 mm and 27 mm respectively. This is attributed to higher Js in mature stand although AST in young is slightly higher than that in mature stand. The patterns of daily Ec during the growing season were similar in both stands during the study period. A exponential saturation model can explain the responses of Ec to vapor deficit pressure (VPD) and solar radiation (Rs) in both stands.The relationship between Ec and SWC was not detected. Our finding suggested that stand age should be taken into consideration when estimated vegetation water use in this region. Further researches on variations in Ec of black locust plantations along a chronosequence and responses of Ec to drought should be conducted to provide useful information on water resource and forest managements in this region.
Determinants of tree quality and lumber value in natural uneven-aged southern pine stands
Jeffrey P. Prestemon; Joseph Buongiorno
2000-01-01
An ordered-probit model was developed to predict tree grade from tree- and stand-level variables, some of which could be changed by management. Applied to uneven-aged mixed loblolly (Pinus taeda L.) - shortleaf pine (Pinus echinata Mill.) stands, the model showed that the grade of pine trees was highly correlated with tree diameter...
Long-Term Records of Southern Pine Dynamics in Even-Aged Stands
J.C.G. Goelz; J.H. Scarborough; J.A. Floyd; D.J. Leduc
2004-01-01
The timber management research wor k unit of the U.S. Depar tment of Agriculture Forest Service in Pineville, LA (SRS-4111) oversees many long-term studies in stand dynamics; we summarize current studies in table 1. We remeasure > 700 plots established in even-aged stands of southern pines at approximately 5-year intervals; some plots have measurements spanning...
Effects of even-aged management on forest birds at northern hardwood stand interfaces
Richard M. DeGraaf
1992-01-01
Breeding birds were counted along transects across edges of even-aged northern hardwood stands in the White Mountain National Forest, New Hampshire, U.S.A. Two replicate transects across each of 7 edge types representing 3 classes of contrast (abrupt, intermediate, and subtle) were sampled during June 1983-1985 to define species assemblages at stand edges and estimate...
Managing mature, even-aged stands
Ivan L. Sander; H. Clay Smith
1989-01-01
Foresters generally consider central hardwood stands mature when they are 80 to 100 years old or have reached a specified rotation age. However, by the time stands are 50 to 60 years old and in the large pole/small sawtimber size, they have generally slowed in height growth, their annual basal area growth has leveled off, and except for size, they have many of the...
Thomas A. Hanley; Robert L. Deal; Ewa H. Orlikowska
2006-01-01
Interest in mixed red alder (Alnus rubra Bong.)conifer young-growth stands has grown in southeast Alaska, USA, because they appear to provide much more productive understory vegetation and wildlife habitat than do similar-aged pure conifer stands. We studied understory vegetation in nine even-aged young-growth stands (38-42 years old)...
George R., Jr. Trimble; George R. Trimble
1970-01-01
In 1948 a study of uneven-aged forest management, with individual tree-selection cuttings, was begun on two 31-acre stands of Appalachian hardwoods in West Virginia. Now, after 20 years, these stands are beginning to show how this kind of management affects growth, yield, and species composition.
Physical activity patterns in morbidly obese and normal-weight women.
Kwon, Soyang; Mohammad, Jamal; Samuel, Isaac
2011-01-01
To compare physical activity patterns between morbidly obese and normal-weight women. Daily physical activity of 18 morbidly obese and 7 normal-weight women aged 30-58 years was measured for 2 days using the Intelligent Device for Energy Expenditure and Activity (IDEEA) device. The obese group spent about 2 hr/day less standing and 30 min/day less walking than did the normal-weight group. Time spent standing (standing time) was positively associated with time spent walking (walking time). Age- and walking time-adjusted standing time did not differ according to weight status. Promoting standing may be a strategy to increase walking.
Fest, Benedikt; Wardlaw, Tim; Livesley, Stephen J; Duff, Thomas J; Arndt, Stefan K
2015-11-01
Disturbance associated with severe wildfires (WF) and WF simulating harvest operations can potentially alter soil methane (CH4 ) oxidation in well-aerated forest soils due to the effect on soil properties linked to diffusivity, methanotrophic activity or changes in methanotrophic bacterial community structure. However, changes in soil CH4 flux related to such disturbances are still rarely studied even though WF frequency is predicted to increase as a consequence of global climate change. We measured in-situ soil-atmosphere CH4 exchange along a wet sclerophyll eucalypt forest regeneration chronosequence in Tasmania, Australia, where the time since the last severe fire or harvesting disturbance ranged from 9 to >200 years. On all sampling occasions, mean CH4 uptake increased from most recently disturbed sites (9 year) to sites at stand 'maturity' (44 and 76 years). In stands >76 years since disturbance, we observed a decrease in soil CH4 uptake. A similar age dependency of potential CH4 oxidation for three soil layers (0.0-0.05, 0.05-0.10, 0.10-0.15 m) could be observed on incubated soils under controlled laboratory conditions. The differences in soil CH4 uptake between forest stands of different age were predominantly driven by differences in soil moisture status, which affected the diffusion of atmospheric CH4 into the soil. The observed soil moisture pattern was likely driven by changes in interception or evapotranspiration with forest age, which have been well described for similar eucalypt forest systems in south-eastern Australia. Our results imply that there is a large amount of variability in CH4 uptake at a landscape scale that can be attributed to stand age and soil moisture differences. An increase in severe WF frequency in response to climate change could potentially increase overall forest soil CH4 sinks. © 2015 John Wiley & Sons Ltd.
Bakırhan, Serkan; Unver, Bayram; Karatosun, Vasfi
2013-01-01
The study aims to determine body weight ratios between extremities in patients with unilateral total knee arthroplasty (TKA) at 12 months postoperatively at the static-standing position at 30, 60 and 90 degrees of knee flexion. The study included 52 female patients (mean age 65.6±10.6 years; range 40 to 83 years) who underwent unilateral primary TKA. The force-platform was used to calculate the body-weight ratios of the patients. Body weight ratios on the operated and non-operated limbs of the unilateral TKA patients were examined at standing-static position at 30, 60 and 90 degrees of knee flexion on the force-platform according to their age and body mass index (BMI). The pain levels of the patients were evaluated using the visual analog scale. It was found that unilateral TKA patients placed their body weight on the non-operated limb more at the standing-static position, and 30, 60 and 90 degrees of knee flexion at 12 months postoperatively (p<0.05). It was also found that as the knee flexion degree increased with age, so did TKA patients place their body weight on the nonoperated limb more (p<0.05), and that BMI had no effect on the load distribution difference over the two extremities (p>0.05). During the postoperative period, load asymmetry between the two extremities in patients with unilateral TKA remains the same due to advancing age. This accelerates the osteoarthritis process on the non-operated knee. It is concluded that the age factor should be taken into account while planning physiotherapy and rehabilitation programs for unilateral TKA patients and knee exercise programs aiming to place load over the operated limb should be arranged.
D.A. Marquis
1991-01-01
Many studies have shown that initial tree diameter is closely correlated with subsequent tree growth. But initial tree diameter is actually a confounded variable, incorporating both competitive position (crown class) and age.
Stand-density study of spruce-hemlock stands in southeastern Alaska.
Donald J. DeMars
2000-01-01
The lack of growth and yield information for young even-aged western hemlock (Tsuga heterophylla(Raf.) Sarg.)-Sitka spruce (Picea sitchensis (Bong.) Carr.) stands in southeastern Alaska served as the impetus for a long-term stand-density study begun in 1974. The study has followed permanent growth plots in managed stands under...
Breeding birds of even- and uneven-aged pine forests of eastern Texas
Ronald E. Thill; Nancy E. Koerth
2005-01-01
While single-tree selection, uneven-aged management is being used increasingly on southern national forests as an alternative to clearcutting and planting of pine, its effects on wildlife are largely unknown. We compared breeding season bird abundance, species richness, diversity, and composition among uneven-aged stands and six seral stages of even-aged stands in...
McDermott, M.E.; Wood, P.B.; Miller, G.W.; Simpson, B.T.
2011-01-01
Spatial scale is an important consideration when managing forest wildlife habitat, and models can be used to improve our understanding of these habitats at relevant scales. Our objectives were to determine whether stand- or microhabitat-scale variables better predicted bird metrics (diversity, species presence, and abundance) and to examine breeding bird response to clearcut size and age in a highly forested landscape. In 2004-2007, vegetation data were collected from 62 even-aged stands that were 3.6-34.6. ha in size and harvested in 1963-1990 on the Monongahela National Forest, WV, USA. In 2005-2007, we also surveyed birds at vegetation plots. We used classification and regression trees to model breeding bird habitat use with a suite of stand and microhabitat variables. Among stand variables, elevation, stand age, and stand size were most commonly retained as important variables in guild and species models. Among microhabitat variables, medium-sized tree density and tree species diversity most commonly predicted bird presence or abundance. Early successional and generalist bird presence, abundance, and diversity were better predicted by microhabitat variables than stand variables. Thus, more intensive field sampling may be required to predict habitat use for these species, and management may be needed at a finer scale. Conversely, stand-level variables had greater utility in predicting late-successional species occurrence and abundance; thus management decisions and modeling at this scale may be suitable in areas with a uniform landscape, such as our study area. Our study suggests that late-successional breeding bird diversity can be maximized long-term by including harvests >10. ha in size into our study area and by increasing tree diversity. Some harvesting will need to be incorporated regularly, because after 15 years, the study stands did not provide habitat for most early successional breeding specialists. ?? 2010 Elsevier B.V.
Turner, Monica G; Whitby, Timothy G; Tinker, Daniel B; Romme, William H
2016-05-01
Disturbance and succession have long been of interest in ecology, but how landscape patterns of ecosystem structure and function evolve following large disturbances is poorly understood. After nearly 25 years, lodgepole pine (Pinus contorta var. latifolia) forests that regenerated after the 1988 Yellowstone Fires (Wyoming, USA) offer a prime opportunity to track the fate of disturbance-created heterogeneity in stand structure and function in a wilderness setting. In 2012, we resampled 72 permanent plots to ask (1) How have postfire stand structure and function changed between 11 and 24 yr postfire, and what variables explain these patterns and changes? (2) How has landscape-level (among-stand) variability in postfire stand structure and function changed between 11 and 24 yr postfire? We expected to see evidence of convergence beginning to emerge, but also that initial postfire stem density would still determine trajectories of biomass accumulation. After 24 yr, postfire lodgepole pine density remained very high (mean = 21,738 stems/ha, range = 0-344,067 stems/ha). Stem density increased in most plots between 11 and 24 yr postfire, but declined sharply where 11-yr-postfire stem density was > 72,000 stems/ha. Stems were small in high-density stands, but stand-level lodgepole pine leaf area, foliage biomass, and live aboveground biomass increased over time and with increasing stem density. After 24 yr, mean annual lodgepole pine aboveground net primary production (ANPP) was high (mean = 5 Mg · ha⁻¹ · yr⁻¹, range = 0-16.5 Mg · ha⁻¹ · yr⁻¹). Among stands, lodgepole pine ANPP increased with stem density, which explained 69% of the variation; another 8% of the variation was explained by environmental covariates. Early patterns of postfire lodgepole pine regeneration, which were contingent on prefire serotiny and fire severity, remained the dominant driver of stand structure and function. We observed mechanisms that would lead to convergence in stem density (structure) over time, but it was landscape variation in functional variables that declined substantially. Stand structure and function have not converged across the burned landscape, but our evidence suggests function will converge sooner than structure.
Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica.
Rozendaal, Danae M A; Chazdon, Robin L
2015-03-01
Second-growth tropical forests are an important global carbon sink. As current knowledge on biomass accumulation during secondary succession is heavily based on chronosequence studies, direct estimates of annual rates of biomass accumulation in monitored stands are largely unavailable. We evaluated the contributions of tree diameter increment, recruitment, and mortality to annual tree biomass change during succession for three groups of tree species: second-growth (SG) specialists, generalists, and old-growth (OG) specialists. We monitored six second-growth tropical forests that varied in stand age and two old-growth forests in northeastern Costa Rica. We monitored these over a period of 8 to 16 years. To assess rates of biomass change during secondary succession, we compared standing biomass and biomass dynamics between second-growth forest stages and old-growth forest, and evaluated the effect of stand age on standing biomass and biomass dynamics in second-growth forests. Standing tree biomass increased with stand age during succession, whereas the rate of biomass change decreased. Biomass change was largely driven by tree diameter increment and mortality, with a minor contribution from recruitment. The relative importance of these demographic drivers shifted over succession. Biomass gain due to tree diameter increment decreased with stand age, whereas biomass loss due to mortality increased. In the age range of our second-growth forests, 10-41 years, SG specialists dominated tree biomass in second-growth forests. SG specialists, and to a lesser extent generalists, also dominated stand-level biomass increase due to tree diameter increment, whereas SG specialists largely accounted for decreases in biomass due to mortality. Our results indicate that tree growth is largely driving biomass dynamics early in succession, whereas both growth and mortality are important later in succession. Biomass dynamics are largely accounted for by a few SG specialists and one generalist species, Pentaclethra macroloba. To assess the generality of our results, similar long-term studies should be compared across tropical forest landscapes.
Uncertainty in accounting for carbon accumulation following forest harvesting
NASA Astrophysics Data System (ADS)
Lilly, P.; Yanai, R. D.; Arthur, M. A.; Bae, K.; Hamburg, S.; Levine, C. R.; Vadeboncoeur, M. A.
2014-12-01
Tree biomass and forest soils are both difficult to quantify with confidence, for different reasons. Forest biomass is estimated non-destructively using allometric equations, often from other sites; these equations are difficult to validate. Forest soils are destructively sampled, resulting in little measurement error at a point, but with large sampling error in heterogeneous soil environments, such as in soils developed on glacial till. In this study, we report C contents of biomass and soil pools in northern hardwood stands in replicate plots within replicate stands in 3 age classes following clearcut harvesting (14-19 yr, 26-29 yr, and > 100 yr) at the Bartlett Experimental Forest, USA. The rate of C accumulation in aboveground biomass was ~3 Mg/ha/yr between the young and mid-aged stands and <1 Mg/ha/yr between the mid-aged and mature stands. We propagated model uncertainty through allometric equations, and found errors ranging from 3-7%, depending on the stand. The variation in biomass among plots within stands (6-19%) was always larger than the allometric uncertainties. Soils were described by quantitative soil pits in three plots per stand, excavated by depth increment to the C horizon. Variation in soil mass among pits within stands averaged 28% (coefficient of variation); variation among stands within an age class ranged from 9-25%. Variation in carbon concentrations averaged 27%, mainly because the depth increments contained varying proportions of genetic horizons, in the upper part of the soil profile. Differences across age classes in soil C were not significant, because of the high variability. Uncertainty analysis can help direct the design of monitoring schemes to achieve the greatest confidence in C stores per unit of sampling effort. In the system we studied, more extensive sampling would be the best approach to reducing uncertainty, as natural spatial variation was higher than model or measurement uncertainties.
Patterns of covariance between forest stand and canopy structure in the Pacific Northwest.
Michael A. Lefsky; Andrew T. Hudak; Warren B. Cohen; S.A. Acker
2005-01-01
In the past decade, LIDAR (light detection and ranging) has emerged as a powerful tool for remotely sensing forest canopy and stand structure, including the estimation of aboveground biomass and carbon storage. Numerous papers have documented the use of LIDAR measurements to predict important aspects of forest stand structure, including aboveground biomass. Other...
Effects of repeated precommercial thinnings in central hardwood sapling stands
Donald E. Hilt; Martin E. Dale
1982-01-01
Precommercial thinnings were repeated four times in a central hardwood sapling stand beginning at age 8 and ending at age 22. Treated plots were thinned on an area-wide basis to specified density levels of 30-, 50-, and 70-percent stocking. The species composition of all stems in the stand was altered somewhat by thinning, but similar trends occurred on control plots....
Results of a long-term thinning study in some natural, even-aged pine stands of the Midsouth
Don C. Bragg
2013-01-01
This paper reports on a long-term thinning study established in stands of naturally seeded loblolly (Pinus taeda L.) and shortleaf (P. echinata Mill.) pine in southern Arkansas and northern Louisiana. Plots were established in 1949â50 and 1954 in previously unmanaged stands, thinned about once every 5 years from age 20 to 60 years...
The effects of stand structure after thinning on the growth of an Allegheny hardwood stand
David A. Marquis; Richard L. Ernst
1991-01-01
A 50-year-old Allegheny hardwood stand in which the crown canopy had stratified into distinct species groups was thinned to 60% relative density leaving dramatically different stand structures and species composition. Treatments included combined thinning, thin from middle, thin from above, thin from below, and unthinned control. Individual tree growth was stimulated...
Nancy E. Gillette; Richard S. Vetter; Sylvia R. Mori; Carline R. Rudolph; Dessa R. Welty
2008-01-01
We assessed spider (Arachnida: Araneae) responses to prescribed fire following stand s tructure treatments in ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) stands in the Cascade Range of California. Stands were logged or left untreated to create three levels of structural diversity. We logged one treatment to minimize old-growth...
Cathryn H. Greenberg
2003-01-01
Vegetation and stand structure of sand pine scrub in central Florida, USA, were measured before a prescribed stand-replacement burn and for > 8 y afterward. Herbaceous species richness peaked within 16 months postburn, then gradually declined, although significant differences were detected only between 16 months and > 8 y postburn. Twenty-two plant species...
NASA Astrophysics Data System (ADS)
Morrisey, D. J.; Skilleter, G. A.; Ellis, J. I.; Burns, B. R.; Kemp, C. E.; Burt, K.
2003-03-01
Management of coastal environments requires understanding of ecological relationships among different habitats and their biotas. Changes in abundance and distribution of mangroves, like those of other coastal habitats, have generally been interpreted in terms of changes in biodiversity or fisheries resources within individual stands. In several parts of their range, anthropogenically increased inputs of sediment to estuaries have led to the spread of mangroves. There is, however, little information on the relative ecological properties, or conservational values, of stands of different ages. The faunal, floral and sedimentological properties of mangrove ( Avicennia marina var. australasica) stands of two different ages in New Zealand has been compared. Older (>60 years) and younger (3-12 years) stands showed clear separation on the basis of environmental characteristics and benthic macrofauna. Numbers of faunal taxa were generally larger at younger sites, and numbers of individuals of several taxa were also larger at these sites. The total number of individuals was not different between the two age-classes, largely due to the presence of large numbers of the surface-living gastropod Potamopyrgus antipodarum at the older sites. It is hypothesized that as mangrove stands mature, the focus of faunal diversity may shift from the benthos to animals living on the mangrove plants themselves, such as insects and spiders, though these were not included in the present study. Differences in the faunas were coincident with differences in the nature of the sediment. Sediments in older stands were more compacted and contained more organic matter and leaf litter. Measurement of leaf chemistry suggested that mangrove plants in the younger stands were able to take up more N and P than those in the older stands.
Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B
2017-06-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands. © 2017 by the Ecological Society of America.
Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.
2017-01-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands.
Brain J. Palik; Kurt S. Pregitzer
1995-01-01
Retrospective studies of forest stand dynamics may rely on estimates of tree ages. In some of these studies, trees are aged near the stem base, while in other studies trees may be aged at breast height. An age correction may be added to breast-height ages in an attempt to account for average time to reach breast height and thus provide better estimates of total ages....
Long-term monitoring of diversity and structure of two stands of an Atlantic Tropical Forest
Carvalho, Warley Augusto Caldas; Santos, Rubens Manoel; Gastauer, Markus; Garcia, Paulo Oswaldo; Fontes, Marco Aurélio Leite; Coelho, Polyanne Aparecida; Moreira, Aline Martins; Menino, Gisele Cristina Oliveira; Oliveira-Filho, Ary Teixeira
2017-01-01
Abstract Background This study aimed to report the long-term monitoring of diversity and structure of the tree community in a protected semideciduous Atlantic Forest in the South of Minas Gerais State, Southeast Brazil. The study was conducted in two stands (B and C), each with 26 and 38 10 m x 30 m plots. Censuses of stand B were conducted in 2000, 2005 and 2011, and stand C in 2001, 2006 and 2011. In both stands, the most abundant and important species for biomass accumulation over the inventories were trees larger than 20 cm of diameter, which characterize advanced successional stage within the forest. New information The two surveyed stands within the studied forest presented differences in structure, diversity and species richness over the time. PMID:28848371
Long-term monitoring of diversity and structure of two stands of an Atlantic Tropical Forest.
Diniz, Écio Souza; Carvalho, Warley Augusto Caldas; Santos, Rubens Manoel; Gastauer, Markus; Garcia, Paulo Oswaldo; Fontes, Marco Aurélio Leite; Coelho, Polyanne Aparecida; Moreira, Aline Martins; Menino, Gisele Cristina Oliveira; Oliveira-Filho, Ary Teixeira
2017-01-01
This study aimed to report the long-term monitoring of diversity and structure of the tree community in a protected semideciduous Atlantic Forest in the South of Minas Gerais State, Southeast Brazil. The study was conducted in two stands (B and C), each with 26 and 38 10 m x 30 m plots. Censuses of stand B were conducted in 2000, 2005 and 2011, and stand C in 2001, 2006 and 2011. In both stands, the most abundant and important species for biomass accumulation over the inventories were trees larger than 20 cm of diameter, which characterize advanced successional stage within the forest. The two surveyed stands within the studied forest presented differences in structure, diversity and species richness over the time.
Evan Johnson; Michael Kane; Dehai Zhao; Robert Teskey
2015-01-01
Three existing loblolly pine (Pinus taeda L.) installations in the Plantation Management Research Cooperative's Upper Coastal Plain/Piedmont Culture Density Study were used to examine the effects of two cultural intensities, four initial planting densities, and their interactions on stem growth at the individual tree level from age 12 to 15 years and at the stand...
Spatial cross-correlation of undisturbed, natural shortleaf pine stands in northern Georgia
Robin M. Reich; Raymond L. Czaplewski; William A. Bechtold
1994-01-01
In this study a cross-correlation statistic is used to analyse the spatial relationship among stand characteristics of natural, undisturbed shortleaf pine stands sampled during 1961-72 and 1972-82 in northern Georgia. Stand characteristics included stand age, site index, tree density, hardwood competition, and mortality. In each time period, the spatial cross-...
Hart Welsh; A.J. Lind
1991-01-01
Terrestrial and aquatic herpetofauna were sampled by three methods, time-constrained searches, pitfall traps, and areaconstrained searches from 1984 to 1986 in northwestern California and southwestern Oregon. The 54 terrestrial and 39 aquatic study sites were in Douglas-fir/hardwood forest stands that ranged in age from 30 to 560 years. Results of these surveys are...
D.R. Warren; W.S. Keeton; H.A. Bechtold; E.J. Rosi-Marshall
2013-01-01
Light availability strongly influences stream primary production, water temperatures and resource availability at the base of stream food webs. In headwater streams, light is regulated primarily by the riparian forest, but few studies have evaluated the influence of riparian forest stand age and associated structural differences on light availability. In this study, we...
Diameter Growth in Even- and Uneven-Aged Northern Hardwoods in New Hampshire Under Partial Cutting
William B. Leak
2004-01-01
One important concern in the conversion of even-aged stands to an uneven aged condition through individual-tree or small-group cutting is the growth response throughout the diameter-class distribution, especially of the understoty trees Increment-core sampling of an older, uneven-aged northern hardwood stand in New Hampshire under management for about 50 years...
NASA Astrophysics Data System (ADS)
Zhang, C.; Ju, W.; Zhang, F.; Mao, D.; Wang, X.
2017-12-01
Forests play an irreplaceable role in the Earth's terrestrial carbon budget which retard the atmospheric CO2 buildup. Understanding the factors controlling forest carbon budget is critical for reducing uncertainties in projections of future climate. The relative importance of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age changes on carbon budget, however, remains unclear for China's forests. In this study, we quantify individual contribution of these drivers to the trends of forest carbon budget in China from 1901 to 2012 by integrating national datasets, the updated Integrated Terrestrial Ecosystem Carbon Cycle (InTEC) model and factorial simulations. Results showed that the average carbon sink in China's forests from 1982 to 2012 was 186.9 Tg C yr-1 with 68% (127.6 Tg C yr-1) of the sink in living biomass because of the integrated effects of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age factors. Compared with the simulation of all factors combined, the estimated carbon sink during 1901-2012 would be reduced by 41.8 Tg C yr-1 if climate change, atmospheric CO2 concentration and nitrogen deposition factors were omitted, and reduced by 25.0 Tg C yr-1 if stand age factor was omitted. In most decades, these factors increased forest carbon sinks with the largest of 101.3, 62.9, and 44.0 Tg C yr-1 from 2000 to 2012 contributed by stand age, CO2 concentration and nitrogen deposition, respectively. During 1901-2012, climate change, CO2 concentration, nitrogen deposition and stand age contributed -13.3, 21.4, 15.4 and 25.0 Tg C yr-1 to the averaged carbon sink of China's forests, respectively. Our study also showed diverse regional patterns of forest carbon budget related to the importance of driving factors. Stand age effect was the largest in most regions, but the effects of CO2 concentration and nitrogen deposition were dominant in southern China.
McDermott, Molly E.; Wood, Petra B.
2011-01-01
Avian use of even-aged timber harvests is likely affected by stand attributes such as size, amount of edge, and retained basal area, all characteristics that can easily be manipulated in timber harvesting plans. However, few studies have examined their effects during the post-breeding period. We studied the impacts of clearcut, low-leave two-age, and high-leave two-age harvesting on post-breeding birds using transect sampling and mist-netting in north-central West Virginia. In our approach, we studied the effects of these harvest types as well as stand size and edge on species characteristic of both early-successional and mature forest habitats. In 2005–2006, 13 stands ranging from 4 to 10 years post-harvest and 4–21 ha in size were sampled from late June through mid-August. Capture rates and relative abundance were similar among treatments for generalist birds. Early-successional birds had the lowest capture rates and fewer species (∼30% lower), and late-successional birds reached their highest abundance and species totals (double the other treatments) in high-leave two-age stands. Area sensitivity was evident for all breeding habitat groups. Both generalist and late-successional bird captures were negatively related to stand size, but these groups showed no clear edge effects. Mean relative abundance decreased to nearly zero for the latter group in the largest stands. In contrast, early-successional species tended to use stand interiors more often and responded positively to stand size. Capture rates for this group tripled as stand size increased from 4 to 21 ha. Few birds in the forest periphery responded to harvest edge types despite within-stand edge effects evident for several species. To create suitable habitat for early-successional birds, large, non-linear openings with a low retained basal area are ideal, while smaller harvests and increased residual tree retention would provide habitat for more late-successional birds post-breeding. Although our study has identified habitat use patterns for different species in timber harvests, understanding habitat-specific bird survival is needed to help determine the quality of silvicultural harvests for post-breeding birds.
Odion, Dennis C.; Hanson, Chad T.; Baker, William L.; DellaSala, Dominick A.; Williams, Mark A.
2016-01-01
In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper. PMID:27195808
Odion, Dennis C; Hanson, Chad T; Baker, William L; DellaSala, Dominick A; Williams, Mark A
2016-01-01
In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper.
Thomas A. Waldrop; Daniel A. Yaussy; Ross J. Phillips; Todd A. Hutchinson; Lucy Brudnak; Ralph E.J. Boerner
2008-01-01
Prescribed fire and mechanical treatments were tested at the two hardwood sites of the National Fire and Fire Surrogate Study (southern and central Appalachian regions) for impacts to stand structure. After two fires and one mechanical treatment, no treatment or treatment combination restored stand structure to historical levels. Burning alone had little impact on...
Influence of whole-tree harvesting on stand composition and structure in the oak-pine type
James W. McMinn
1989-01-01
Oak-pine stands in the Upper Piedmont of Georgia were harvested with small fellerbunchers in both the dormant season and early growing season to 1 -inch and 4-inch lower diameter limits. After 9 years of natural stand development, both season and intensity of harvesting significantly influenced species composition and stand structure. Areas harvested during the growing...
Tang, Xuguang; Li, Hengpeng; Ma, Mingguo; Yao, Li; Peichl, Matthias; Arain, Altaf; Xu, Xibao; Goulden, Michael
2017-12-01
Disturbances and climatic changes significantly affect forest ecosystem productivity, water use efficiency (WUE) and carbon (C) flux dynamics. A deep understanding of terrestrial feedbacks to such effects and recovery mechanisms in forests across contrasting climatic regimes is essential to predict future regional/global C and water budgets, which are also closely related to the potential forest management decisions. However, the resilience of multi-aged and even-aged forests to disturbances has been debated for >60years because of technical measurement constraints. Here we evaluated 62site-years of eddy covariance measurements of net ecosystem production (NEP), evapotranspiration (ET), the estimates of gross primary productivity (GPP), ecosystem respiration (R e ) and ecosystem-level WUE, as well as the relationships with environmental controls in three chronosequences of multi- and even-aged coniferous forests covering the Mediterranean, temperate and boreal regions. Age-specific dynamics in multi-year mean annual NEP and WUE revealed that forest age is a key variable that determines the sign and magnitude of recovering forest C source-sink strength from disturbances. However, the trends of annual NEP and WUE across succession stages between two stand structures differed substantially. The successional patterns of NEP exhibited an inverted-U trend with age at the two even-aged chronosequences, whereas NEP of the multi-aged chronosequence increased steadily through time. Meanwhile, site-level WUE of even-aged forests decreased gradually from young to mature, whereas an apparent increase occurred for the same forest age in multi-aged stands. Compared with even-aged forests, multi-aged forests sequestered more CO 2 with forest age and maintained a relatively higher WUE in the later succession periods. With regard to the available flux measurements in this study, these behaviors are independent of tree species, stand ages and climate conditions. We also found that distinctly different environmental factors controlled forest C and water fluxes under three climatic regimes. Typical weather events such as temperature anomalies or drying-wetting cycles severely affected forest functions. Particularly, a summer drought in the boreal forest resulted in an increased NEP owing to a considerable decrease in R e , but at the cost of greater water loss from deeper groundwater resources. These findings will provide important implications for forest management strategies to mitigate global climate change. Copyright © 2017 Elsevier B.V. All rights reserved.
Fire Severity Controlled Susceptibility to a 1940s Spruce Beetle Outbreak in Colorado, USA
Kulakowski, Dominik; Veblen, Thomas T.; Bebi, Peter
2016-01-01
The frequency, magnitude, and size of forest disturbances are increasing globally. Much recent research has focused on how the occurrence of one disturbance may affect susceptibility to subsequent disturbances. While much has been learned about such linked disturbances, the strength of the interactions is likely to be contingent on the severity of disturbances as well as climatic conditions, both of which can affect disturbance intensity and tree resistance to disturbances. Subalpine forests in western Colorado were affected by extensive and severe wildfires in the late 19th century and an extensive and severe outbreak of spruce beetle (Dendroctonus rufipennis) in the 1940s. Previous research found that most, but not all, of the stands that burned and established following the late 19th century fires were not susceptible to the 1940s outbreak as beetles preferentially attack larger trees and stands in advanced stages of development. However, previous research also left open the possibility that some stands that burned and established following the 19th century fires may have been attacked during the 1940s outbreak. Understanding how strongly stand structure, as shaped by disturbances of varying severity, affected susceptibility to past outbreaks is important to provide a baseline for assessing the degree to which recent climate change may be relaxing the preferences of beetles for larger trees and for stands in latter stages of structural development and thereby changing the nature of linked disturbances. Here, dendroecological methods were used to study disturbance history and tree age of stands in the White River National Forest in Western Colorado that were identified in historical documents or remotely-sensed images as having burned in the 19th century and having been attacked by spruce beetle in the 1940s. Dendroecological reconstructions indicate that in young post-fire stands only old remnant trees that survived the otherwise stand-replacing fires were killed in the 1940s outbreak. No young post-fire trees (< ca. 128 years) were susceptible to the 1940s outbreak, implying that under the relatively cool and wet conditions of the mid-20th century, susceptibility to and spatial patterns of spruce beetle outbreak were most likely controlled by variations in severity of prior disturbance by fire. This study provides a baseline for comparing linked disturbances under the relatively warmer and drier conditions of recent (e.g. post-1990) outbreaks in order to assess how climate mitigates the degree to which pre-disturbance history and structure affect susceptibility to disturbances. PMID:27438289
Fire Severity Controlled Susceptibility to a 1940s Spruce Beetle Outbreak in Colorado, USA.
Kulakowski, Dominik; Veblen, Thomas T; Bebi, Peter
2016-01-01
The frequency, magnitude, and size of forest disturbances are increasing globally. Much recent research has focused on how the occurrence of one disturbance may affect susceptibility to subsequent disturbances. While much has been learned about such linked disturbances, the strength of the interactions is likely to be contingent on the severity of disturbances as well as climatic conditions, both of which can affect disturbance intensity and tree resistance to disturbances. Subalpine forests in western Colorado were affected by extensive and severe wildfires in the late 19th century and an extensive and severe outbreak of spruce beetle (Dendroctonus rufipennis) in the 1940s. Previous research found that most, but not all, of the stands that burned and established following the late 19th century fires were not susceptible to the 1940s outbreak as beetles preferentially attack larger trees and stands in advanced stages of development. However, previous research also left open the possibility that some stands that burned and established following the 19th century fires may have been attacked during the 1940s outbreak. Understanding how strongly stand structure, as shaped by disturbances of varying severity, affected susceptibility to past outbreaks is important to provide a baseline for assessing the degree to which recent climate change may be relaxing the preferences of beetles for larger trees and for stands in latter stages of structural development and thereby changing the nature of linked disturbances. Here, dendroecological methods were used to study disturbance history and tree age of stands in the White River National Forest in Western Colorado that were identified in historical documents or remotely-sensed images as having burned in the 19th century and having been attacked by spruce beetle in the 1940s. Dendroecological reconstructions indicate that in young post-fire stands only old remnant trees that survived the otherwise stand-replacing fires were killed in the 1940s outbreak. No young post-fire trees (< ca. 128 years) were susceptible to the 1940s outbreak, implying that under the relatively cool and wet conditions of the mid-20th century, susceptibility to and spatial patterns of spruce beetle outbreak were most likely controlled by variations in severity of prior disturbance by fire. This study provides a baseline for comparing linked disturbances under the relatively warmer and drier conditions of recent (e.g. post-1990) outbreaks in order to assess how climate mitigates the degree to which pre-disturbance history and structure affect susceptibility to disturbances.
Robert H. McAlister; Alexander Clark; Joseph R. Saucier
1997-01-01
The effect of rotation age on strength and stiffness of lumber produced from unthinned loblolly pine stands in the Coastal Plain of Georgia was examined. Six stands representing 22-, 28-, and 40-year-old roations were sampled. A stratified random sample of trees 8 to 16 inches in diameter at breast height was selected from each stand and processed into lumber....
Climate-tree growth models in relation to long-term growth trends of white oak in Pennsylvania
D. D. Davis; R. P. Long
2003-01-01
We examined long-term growth trends of white oak by comparing tree-ring chronologies developed from an old-growth stand, where the average tree age was 222 years, with a second-growth stand where average tree age was 78 years. Evaluation of basal area growth trends suggested that an anomalous decrease in basal area increment trend occurred in both stands during the...
Rebecca Ralston; Joseph Buongiorno; Benedict Schulte; Jeremy Fried
2003-01-01
WestPro is an add-in program designed to work with Microsoft Excel to simulate the growth of uneven-aged Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands in the Pacific Northwest region of the United States. Given the initial stand state, defined as the number of softwood and hardwood trees per acre by diameter class, WestPro predicts the...
CalPro: a spreadsheet program for the management of California mixed-conifer stands.
Jingjing Liang; Joseph Buongiorno; Robert A. Monserud
2004-01-01
CalPro is an add-in program developed to work with Microsoft Excel to simulate the growth and management of uneven-aged mixed-conifer stands in California. Its built-in growth model was calibrated from 177 uneven-aged plots on industry and other private lands. Stands are described by the number of trees per acre in each of nineteen 2-inch diameter classes in...
Masaki, Mitsuhiro; Ikezoe, Tome; Fukumoto, Yoshihiro; Minami, Seigo; Aoyama, Junichi; Ibuki, Satoko; Kimura, Misaka; Ichihashi, Noriaki
2016-06-01
Age-related change of spinal alignment in the standing position is known to be associated with decreases in walking speed, and alteration in muscle quantity (i.e., muscle mass) and muscle quality (i.e., increases in the amount of intramuscular non-contractile tissue) of lumbar back muscles. Additionally, the lumbar lordosis angle in the standing position is associated with walking speed, independent of lower-extremity muscle strength, in elderly individuals. However, it is unclear whether spinal alignment in the standing position is associated with walking speed in the elderly, independent of trunk muscle quantity and quality. The present study investigated the association of usual and maximum walking speed with age, sagittal spinal alignment in the standing position, muscle quantity measured as thickness, and quality measured as echo intensity of lumbar muscles in 35 middle-aged and elderly women. Sagittal spinal alignment in the standing position (thoracic kyphosis, lumbar lordosis, and sacral anterior inclination angle) using a spinal mouse, and muscle thickness and echo intensity of the lumbar muscles (erector spinae, psoas major, and lumbar multifidus) using an ultrasound imaging device were also measured. Stepwise regression analysis showed that only age was a significant determinant of usual walking speed. The thickness of the lumbar erector spinae muscle was a significant, independent determinant of maximal walking speed. The results of this study suggest that a decrease in maximal walking speed is associated with the decrease in lumbar erector spinae muscles thickness rather than spinal alignment in the standing position in middle-aged and elderly women.
Sola schola et sanitate: human capital as the root cause and priority for international development?
Lutz, Wolfgang
2009-01-01
This paper summarizes new scientific evidence supporting the hypothesis that among the many factors contributing to international development, the combination of education and health stands out as a root cause on which other dimensions of development depend. Much of this recent analysis is based on new reconstructions and projections of populations by age, sex and four levels of educational attainment for more than 120 countries using the demographic method of multi-state population dynamics. It also refers to a series of systems analytical population–development–environment case studies that comprehensively assess the role of population and education factors relative to other factors in the struggle for sustainable development. The paper also claims that most concerns about the consequences of population trends are in fact concerns about human capital, and that only by adding the ‘quality’ dimension of education to the traditionally narrow focus on size and age structure can some of the long-standing population controversies be resolved. PMID:19770154
Development of a stand density index equation for slash pine stands
Paul F. Doruska
2002-01-01
Stand density index (SDI) is commonly used as the basis for density management guides for even-aged forest stands. Many tree species follow the same self-thinning trajectory, allowing for the use of stand density index in such guides. Slash pine (Pinus elliottii Englem.) has been shown to depart from the self-thinning trajectory exhibited by other...
Stocking, growth, and yield of oak stands
Samuel F. Gingrich
1971-01-01
An appraisal of stocking in even-aged upland oak stands is a prerequisite for determining the cultural needs of a given stand. Most oak stands have sufficient stocking to utilize the site, but are deficient in high-quality trees. Thinning such stands offers a good opportunity to upgrade the relative quality of the growing stock and enhance the growth and yield...
Chris W. Woodall; Patrick D. Miles; John S. Vissage
2005-01-01
Stand density index (SDI), although developed for use in even-aged monocultures, has been used for assessing stand density in large-scale forest inventories containing diverse tree species and size distributions. To improve application of SDI in unevenaged, mixed species stands present in large-scale forest inventories, trends in maximum SDI across diameter classes...
Sustainable carbon uptake - important ecosystem service within sustainable forest management
NASA Astrophysics Data System (ADS)
Zorana Ostrogović Sever, Maša; Anić, Mislav; Paladinić, Elvis; Alberti, Giorgio; Marjanović, Hrvoje
2016-04-01
Even-aged forest management with natural regeneration under continuous cover (i.e. close to nature management) is considered to be sustainable regarding the yield, biodiversity and stability of forest ecosystems. Recently, in the context of climate change, there is a raising question of sustainable forest management regarding carbon uptake. Aim of this research was to explore whether current close to nature forest management approach in Croatia can be considered sustainable in terms of carbon uptake throughout the life-time of Pedunculate oak forest. In state-owned managed forest a chronosequence experiment was set up and carbon stocks in main ecosystem pools (live biomass, dead wood, litter and mineral soil layer), main carbon fluxes (net primary production, soil respiration (SR), decomposition) and net ecosystem productivity were estimated in eight stands of different age (5, 13, 38, 53, 68, 108, 138 and 168 years) based on field measurements and published data. Air and soil temperature and soil moisture were recorded on 7 automatic mini-meteorological stations and weekly SR measurements were used to parameterize SR model. Carbon balance was estimated at weekly scale for the growing season 2011 (there was no harvesting), as well as throughout the normal rotation period of 140 years (harvesting was included). Carbon stocks in different ecosystem pools change during a stand development. Carbon stocks in forest floor increase with stand age, while carbon stocks in dead wood are highest in young and older stands, and lowest in middle-aged, mature stands. Carbon stocks in mineral soil layer were found to be stable across chronosequence with no statistically significant age-dependent trend. Pedunculate Oak stand, assuming successful regeneration, becomes carbon sink very early in a development phase, between the age of 5 and 13 years, and remains carbon sink even after the age of 160 years. Greatest carbon sink was reached in the stand aged 53 years. Obtained results indicate that current harvesting practice has no detrimental effect on carbon stored in forest soil. Observed early and long-lasting carbon sink suggest that close to nature forest management can be considered sustainable in terms of carbon uptake. Also, observed carbon sink in the oldest stand is valuable information for potential debate on prolonging rotation period in this type of forest ecosystems.
Porta, Alberto; Faes, Luca; Bari, Vlasta; Marchi, Andrea; Bassani, Tito; Nollo, Giandomenico; Perseguini, Natália Maria; Milan, Juliana; Minatel, Vinícius; Borghi-Silva, Audrey; Takahashi, Anielle C. M.; Catai, Aparecida M.
2014-01-01
The proposed approach evaluates complexity of the cardiovascular control and causality among cardiovascular regulatory mechanisms from spontaneous variability of heart period (HP), systolic arterial pressure (SAP) and respiration (RESP). It relies on construction of a multivariate embedding space, optimization of the embedding dimension and a procedure allowing the selection of the components most suitable to form the multivariate embedding space. Moreover, it allows the comparison between linear model-based (MB) and nonlinear model-free (MF) techniques and between MF approaches exploiting local predictability (LP) and conditional entropy (CE). The framework was applied to study age-related modifications of complexity and causality in healthy humans in supine resting (REST) and during standing (STAND). We found that: 1) MF approaches are more efficient than the MB method when nonlinear components are present, while the reverse situation holds in presence of high dimensional embedding spaces; 2) the CE method is the least powerful in detecting age-related trends; 3) the association of HP complexity on age suggests an impairment of cardiac regulation and response to STAND; 4) the relation of SAP complexity on age indicates a gradual increase of sympathetic activity and a reduced responsiveness of vasomotor control to STAND; 5) the association from SAP to HP on age during STAND reveals a progressive inefficiency of baroreflex; 6) the reduced connection from HP to SAP with age might be linked to the progressive exploitation of Frank-Starling mechanism at REST and to the progressive increase of peripheral resistances during STAND; 7) at REST the diminished association from RESP to HP with age suggests a vagal withdrawal and a gradual uncoupling between respiratory activity and heart; 8) the weakened connection from RESP to SAP with age might be related to the progressive increase of left ventricular thickness and vascular stiffness and to the gradual decrease of respiratory sinus arrhythmia. PMID:24586796
Diameter Distributions in Natural Yellow-Poplar Stands
Charles E. McGee; Lino Della-Bianca
1967-01-01
Diameter distributions obtained from 141 pure, natural unthinned yellow-poplar stands in the Appalachian Mountains of Virginia, North Carolina, and Georgia are presented in tables. The distributions are described in relation to stand age, site index, and total number of trees per acre, and are useful for stand management planning.
Rebuilding after collapse: evidence for long-term cohort dynamics in the native Hawaiian rain forest
Boehmer, Hans Juergen; Wagner, Helene H.; Jacobi, James D.; Gerrish, Grant C.; Mueller-Dombois, Dieter
2013-01-01
Questions: Do long-term observations in permanent plots confirm the conceptual model of Metrosideros polymorpha cohort dynamics as postulated in 1987? Do regeneration patterns occur independently of substrate age, i.e. of direct volcanic disturbance impact? Location: The windward mountain slopes of the younger Mauna Loa and the older Mauna Kea volcanoes (island of Hawaii, USA). Methods: After widespread forest decline (dieback), permanent plots were established in 1976 in 13 dieback and 13 non-dieback patches to monitor the population structure of M. polymorpha at ca. 5-yr intervals. Within each plot of 20 × 20 m, all trees with DBH >2.5 cm were individually tagged, measured and tree vigour assessed; regeneration was quantified in 16 systematically placed subplots of 3 × 5 m. Data collected in the subplots included the total number of M. polymorpha seedlings and saplings (five stem height classes). Here we analyse monitoring data from six time steps from 1976 to 2003 using repeated measures ANOVA to test specific predictions derived from the 1987 conceptual model. Results: Regeneration was significantly different between dieback and non-dieback plots. In dieback plots, the collapse in the 1970s was followed by a ‘sapling wave’ that by 2003 led to new cohort stands of M. polymorpha. In non-dieback stands, seedling emergence did not result in sapling waves over the same period. Instead, a ‘sapling gap’ (i.e. very few or no M. polymorpha saplings) prevailed as typical for mature stands. Canopy dieback in 1976, degree of recovery by 2003 and the number of living trees in 2003 were unrelated to substrate age. Conclusions: Population development of M. polymorpha supports the cohort dynamics model, which predicts rebuilding of the forest with the same canopy species after dieback. The lack of association with substrate age suggests that the long-term maintenance of cohort structure in M. polymorpha does not depend on volcanic disturbance but may be related to other environmental mechanisms, such as climate anomalies.
KEITH HIGGINBOTHAM AT TEST STAND 4699
2016-10-17
KEITH HIGGINBOTHAM, STRUCTURAL TEST LEAD FOR THE SLS SPACECRAFT PAYLOAD INTEGRATION AND EVOLUTION OFFICE, IS SHOWN BESIDE TEST STAND 4699 AT THE MARSHALL SPACE FLIGHT CENTER’S WEST TEST AREA. HIGGINBOTHAM WILL BE LEADING STRUCTURAL LOADS TESTING AT TEST STAND 4699 FOR THE CORE STAGE SIMULATER AND THE LAUNCH VEHICLE STAGE ADAPTER. THE TEST SERIES WILL ENSURE EACH STRUCTURE CAN WITHSTAND THE INCREDIBLE STRESSES OF LAUNCH.
Careful logging, partial cutting and the protection of terrestrial and aquatic habitats
Daniel C. Dey
1994-01-01
Stand management activites influence (1) tree growth and quality; (2) stand structure, stocking and composition; (3) wildlife and aquatic habitat quality; and (4) long-term site productivity. The cumulative impacts of stand-level treatments affect ecosystem structure and function at the landscape level.
Ming, Angang; Jia, Hongyan; Zhao, Jinlong; Tao, Yi; Li, Yuanfa
2014-01-01
More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account.
Zhang, Yang; Ni, Jiupai; Yang, John; Zhang, Tong; Xie, Deti
2017-08-01
Soil carbon fractionation is a valuable indicator in assessing stabilization of soil organic matter and soil quality. However, limited studies have addressed how different vegetation stand ages under intercropping agroforestry systems, could affect organic carbon (OC) accumulation in bulk soil and its physical fractions. A field study thus investigated the impact of citrus plantation age (15-, 25-, and 45-year citrus) on the bulk soil organic carbon (SOC) and SOC fractions and yields of Stropharia rugoso-annulata (SRA) in the Three Gorges Reservoir area, Chongqing, China. Results indicated that the intercropping practice of SRA with citrus significantly increased the SOC by 57.4-61.6% in topsoil (0-10 cm) and by 24.8-39.9% in subsoil (10-30 cm). With a significantly higher enhancement under the 25-year citrus stand than the other two stands, all these citrus stands of three ages also resulted in a significant increase of free particulate OC (fPOC, 60.1-62.4% in topsoil and 34.8-46.7% in subsoil), intra-micro aggregate particulate OC (iPOC, 167.6-206.0% in topsoil and 2.77-61.09% in subsoil), and mineral-associated OC (MOC, 43.6-46.5% in topsoil and 26.0-51.5% in subsoil). However, there were no significant differences in yields of SRA under three citrus stands. Our results demonstrated that citrus stand ages did play an important role in soil carbon sequestration and fractionation under a citrus/SRA intercropping system, which could therefore provide a sustainable agroforestry system to enhance concurrently the SOC accumulation while mitigating farmland CO 2 emission.
Zhao, Jinlong; Tao, Yi
2014-01-01
More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account. PMID:25343446
Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing
2011-06-01
Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability and applicability of the fitted NPP-age relationships. These relationships were used to replace the normalized NPP-age relationship used in the original InTEC (Integrated Terrestrial Ecosystem Carbon) model, to improve the accuracy of estimated carbon balance for China's forest ecosystems. With the revised NPP-age relationship, the InTEC model simulated a larger carbon source from 1950-1980 and a larger carbon sink from 1985-2001 for China's forests than the original InTEC model did because of the modification to the age-related carbon dynamics in forests. This finding confirms the importance of considering the dynamics of NPP related to forest age in estimating regional and global terrestrial carbon budgets. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2010-01-01
Employees at NASA's John C. Stennis Space Center work to maneuver a structural steam beam into place on the A-1 Test Stand on Jan. 13. The beam was one of several needed to form the thrust takeout structure that will support a new thrust measurement system being installed on the stand for future rocket engine testing. Once lifted onto the stand, the beams had to be hoisted into place through the center of the test stand, with only two inches of clearance on each side. The new thrust measurement system represents a state-of-the-art upgrade from the equipment installed more than 40 years ago when the test stand was first constructed.
Kenneth J. Grayson; Robert F. Wittwer; Michael G. Shelton
2004-01-01
Sixteen shortleaf pine trees were felled in a stand 10 years after an uneven-aged regeneration cut reduced pine basal area to 60 square feet per acre and hardwoods were controlled. Sixteen unreleased trees in an adjacent uncut pine-hardwood stand (120 square feet per acre) were felled for comparison. Sample trees were selected from four 2-inch d.b.h. classes (11, 13,...
Jose F. Negron; Kurt Allen; Blaine Cook; John R. Withrow
2008-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers...
Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S.
2008-01-01
Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls over these factors will help predict how changes in climate and fire regime will affect the carbon balance of Interior Alaska. ?? 2008 Springer Science+Business Media, LLC.
AmeriFlux US-Me4 Metolius-old aged ponderosa pine
Law, Bev [Oregon State University
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Me4 Metolius-old aged ponderosa pine. Site Description - The site is located on land designated as a Research Natural Area (RNA). The site is very open, with even-aged stands of old-growth trees, young trees and mixed aged stands. The eddy-flux tower footprint was classified as ~ 48% mixed aged, ~27% pure old growth and ~25% young aged stands. The data in this workbook describes the mixed aged component. A separate workbook describes the pure old growth component. Law et al (2001) Global Change Biology 7, 755-777; Law et al (2001) Agricultural and Forest Meteorology 110, 27-43; Anthoni et al (2002) Agricultural and Forest Meteorology 111, 203-222; Irvine & Law (2002) Global Change biology 8,1183-1194, Irivne et al (2004) Tree Physiology 24,753-763.
Børja, Isabella; De Wit, Heleen A; Steffenrem, Arne; Majdi, Hooshang
2008-05-01
We assessed the influence of stand age on fine root biomass and morphology of trees and understory vegetation in 10-, 30-, 60- and 120-year-old Norway spruce stands growing in sandy soil in southeast Norway. Fine root (< 1, 1-2 and 2-5 mm in diameter) biomass of trees and understory vegetation (< 2 mm in diameter) was sampled by soil coring to a depth of 60 cm. Fine root morphological characteristics, such as specific root length (SRL), root length density (RLD), root surface area (RSA), root tip number and branching frequency (per unit root length or mass), were determined based on digitized root data. Fine root biomass and morphological characteristics related to biomass (RLD and RSA) followed the same tendency with chronosequence and were significantly higher in the 30-year-old stand and lower in the 10-year-old stand than in the other stands. Among stands, mean fine root (< 2 mm) biomass ranged from 49 to 398 g m(-2), SLR from 13.4 to 19.8 m g(-1), RLD from 980 to 11,650 m m(-3) and RSA from 2.4 to 35.4 m(2) m(-3). Most fine root biomass of trees was concentrated in the upper 20 cm of the mineral soil and in the humus layer (0-5 cm) in all stands. Understory fine roots accounted for 67 and 25% of total fine root biomass in the 10- and 120-year-old stands, respectively. Stand age had no affect on root tip number or branching frequency, but both parameters changed with soil depth, with increasing number of root tips and decreasing branching frequency with increasing soil depth for root fractions < 2 mm in diameter. Specific (mass based) root tip number and branching density were highest for the finest roots (< 1 mm) in the humus layer. Season (spring or fall) had no effect on tree fine root biomass, but there was a small and significant increase in understory fine root biomass in fall relative to spring. All morphological characteristics showed strong seasonal variation, especially the finest root fraction, with consistently and significantly higher values in spring than in fall. We conclude that fine root biomass, especially in the finest fraction (< 1 mm in diameter), is strongly dependent on stand age. Among stands, carbon concentration in fine root biomass was highest in the 30-year-old stand, and appeared to be associated with the high tree and canopy density during the early stage of stand development. Values of RLD and RSA, morphological features indicative of stand nutrient-uptake efficiency, were higher in the 30-year-old stand than in the other stands.
Stand development of trembling aspen in Canaan Valley, West Virginia
James S. Rentch; James T. Anderson
2008-01-01
In wetlands of Canaan Valley, West Virginia, trembling aspen occurs as a disjunct population well south of its primary natural range. Based on sample data from 15 stands, we found that aspen occurs as nearly monospecific stands or clones. Eight stands had median ages between 30 and 40 yrs, and we suggest that stand initiation was related to changes in land use after...
Controlling Factors of Soil CO2 Efflux in Pinus yunnanensis across Different Stand Ages
Wang, Shaojun; Zhao, Jixia; Chen, Qibo
2015-01-01
The characteristics of soil respiration (Rs) across different stand ages have not been well investigated. In this study, we identified temporal variation of Rs and its driving factors under three nature forest stands (e.g. 15-yr-old, 30-yr-old, and 45-yr-old) of Pinus yunnanensis in the Plateau of Mid-Yunnan, China. No consistent tendency was found on the change of Rs with the stand ages. Rs was ranked in the order of 30-yr-old > 45-yr-old >15-yr-old. Rs in 15-yr-old stand was the most sensitive to soil temperature (Ts) among the three sites. However, Ts only explained 30-40% of the seasonal dynamics of Rs at the site. Soil water content (Sw) was the major controlling factor of temporal variation at the three sites. Sw explained 88-93% of seasonal variations of Rs in the 30-yr-old stand, and 63.7-72.7% in the 15-yr-old and 79.1-79.6% in the 45-yr-old stands. In addition, we found that pH, available nitrogen (AN), C/N and total phosphorus (TP) contributed significantly to the seasonal variation of Rs. Sw was significantly related with pH, total nitrogen (TN), AN and TP, suggesting that Sw can affect Rs through improving soil acid-base property and soil texture, and increasing availability of soil nutrient. The results indicated that besides soil water, soil properties (e. g. pH, AN, C/N and TP) were also the important in controlling the temporal variations of Rs across different stand ages in the nature forestry. PMID:25996943
Hawkins, G S
1965-01-08
On the basis of the stone record it appears that the Callanish people were as precise as the Stonehengers in setting up their megalithic structure, but not as scientifically advanced. Callanish is, however, a structure that could have been used much as Stonehenge was. It would be interesting to obtain a date, by the radiocarbon method, for the peat in the area of Callanish, to determine how much older, or more recent, than Stonehenge this structure is. Perhaps the knowledge gained at Callanish was later used in the design of Stonehenge.
Don C. Bragg
2016-01-01
This study provides a preliminary assessment of 4 compartments on the Crossett Experimental Forest (CEF) being restored to old-growth-like conditions. After being partially cleared for agriculture or lumbered in the late 1910s, Compartments 1, 2, 11, and 12 were included in a combination of pulpwood-thinning and uneven-aged cutting-cycle studies for the next 50 y....
Cultural practices in Appalachian hardwood sapling stands--are they worthwhile?
Gary W. Miller
1986-01-01
Forest managers often question the economic feasibility of cultural practices in hardwood sapling stands. Investment factors, including initial treatment cost, required rate of return, investment period, and stand response to treatment are discussed in terms of how they affect the outcome of early investments in even-aged hardwood stands. Attention is focused on...
Victor A. Rudis; James H. Gramann; Theresa A. Herrick
1994-01-01
An analysis of summer visual attributes and an overview of ongoing scenic quality research within selected shortleaf pine-hardwood stands in the Ouachita and Ozark National forests are presented.Within-stand visual attributes were reported prior to even-aged stand-level (Phase II) treatment for twelve 40-acre stands in the north, east, and south regions and for plot-...
Biogeographical patterns of biomass allocation in leaves, stems, and roots in China's forests.
Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping
2015-11-03
To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China's forests using both the national forest inventory data (2004-2008) and our field measurements (2011-2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China.
Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests
Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping
2015-01-01
To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China’s forests using both the national forest inventory data (2004–2008) and our field measurements (2011–2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China. PMID:26525117
C. Pascual; A. Garcia-Abril; L.G. Garcia-Montero; S. Martin-Fernandez; W.B. Cohen
2008-01-01
In this paper, we present a two-stage approach for characterizing the structure of Pinus sylvestris L. stands in forests of central Spain. The first stage was to delimit forest stands using eCognition and a digital canopy height model (DCHM) derived from lidar data. The polygons were then clustered into forest structure types based on the DCHM data...
The Multivariate Largest Lyapunov Exponent as an Age-Related Metric of Quiet Standing Balance
Liu, Kun; Wang, Hongrui; Xiao, Jinzhuang
2015-01-01
The largest Lyapunov exponent has been researched as a metric of the balance ability during human quiet standing. However, the sensitivity and accuracy of this measurement method are not good enough for clinical use. The present research proposes a metric of the human body's standing balance ability based on the multivariate largest Lyapunov exponent which can quantify the human standing balance. The dynamic multivariate time series of ankle, knee, and hip were measured by multiple electrical goniometers. Thirty-six normal people of different ages participated in the test. With acquired data, the multivariate largest Lyapunov exponent was calculated. Finally, the results of the proposed approach were analysed and compared with the traditional method, for which the largest Lyapunov exponent and power spectral density from the centre of pressure were also calculated. The following conclusions can be obtained. The multivariate largest Lyapunov exponent has a higher degree of differentiation in differentiating balance in eyes-closed conditions. The MLLE value reflects the overall coordination between multisegment movements. Individuals of different ages can be distinguished by their MLLE values. The standing stability of human is reduced with the increment of age. PMID:26064182
McCoy, John W.; Draugelis-Dale, Rassa O.; Keeland, Bobby D.; Darville, Roy
2010-01-01
Aboveground primary productivity for cypress forests was assessed from measurements of litter production in two age groups and in two hydrological regimes (standing water and free-flowing). Caddo Lake, located in northeast Texas on the Texas-Louisiana border, offered a unique study site since it is dominated by extensive stands composed entirely of Taxodium distichum (L.) Rich, (baldcypress) in different age groups. Young stands (approximately 100 years old) are found along the shoreline and on shallow flooded islands. Old stands (-150 to 300 years old) are found in deeper water where they were continuously flooded. Litter production over three years from October 1998 to September 2001 was measured. Litter consisting of leaves, twigs, bark, reproductive parts, and Tillandsia usneoides (L.) L. (Spanish moss) was collected monthly using 0.5 m2 floating traps. Tree diameters were measured within 200 m2 circular plots in each stand. The young stands supported densities greater than 2,000 stems/ha and a mean stand basal area of 72.3 m2/ha, whereas old stands supported lower densities of about 500 stems/ha but with a similar mean stand basal area of 73.3 m2/ha. There was a significant difference between old and young stands for overall yearly litter production, averaging about 670 g/m2/yr in the young stands and 460 g/m2/yr in the old stands. Leaves and twigs were significantly greater in the young stands, while reproductive parts were higher in old stands. Litter collections between years or hydrological regimes were not significantly different.
Mietkiewicz, Nathan; Kulakowski, Dominik; Veblen, Thomas T
2018-03-01
Over the past 30 years, forest disturbances have increased in size, intensity, and frequency globally, and are predicted to continue increasing due to climate change, potentially relaxing the constraints of vegetation properties on disturbance regimes. However, the consequences of the potentially declining importance of vegetation in determining future disturbance regimes are not well understood. Historically, bark beetles preferentially attack older trees and stands in later stages of development. However, as climate warming intensifies outbreaks by promoting growth of beetle populations and compromising tree defenses, smaller diameter trees and stands in early stages of development now are being affected by outbreaks. To date, no study has considered how stand age and other pre-outbreak forest conditions mediate the effects of outbreaks on surface and aerial fuel arrangements. We collected fuels data across a chronosequence of post-outbreak sites affected by spruce beetle (SB) between the 1940s and the 2010s, stratified by young (<130 yr) and old (>130 yr) post-fire stands. Canopy and surface fuel loads were calculated for each tree and stand, and available crown fuel load, crown bulk density, and canopy bulk densities were estimated. Canopy bulk density and density of live canopy individuals were reduced in all stands affected by SB, though foliage loss was proportionally greater in old stands as compared to young stands. Fine surface fuel loads in young stands were three times greater shortly (<30 yr) following outbreak as compared to young stands not affected by outbreak, after which the abundance of fine surface fuels decreased to below endemic (i.e., non-outbreak) levels. In both young and old stands, the net effect of SB outbreaks during the 20th and 21st centuries reduced total canopy fuels and increased stand-scale spatial heterogeneity of canopy fuels following outbreak. Importantly, the decrease in canopy fuels following outbreaks was greater in young post-fire stands than in older stands, suggesting that SB outbreaks may more substantially reduce risk of active crown fire when they affect stands in earlier stages of development. The current study shows that the effects of SB outbreaks on forest structure and on fuel profiles are strongly contingent on pre-outbreak conditions as determined by pre-outbreak disturbance history. © 2018 by the Ecological Society of America.
Zhu, Jiaojun; Gonda, Yutaka; Yu, Lizhong; Li, Fengqin; Yan, Qiaoling; Sun, Yirong
2012-01-01
To examine the effects of thinning intensity on wind vulnerability and regeneration in a coastal pine (Pinus thunbergii) forest, thinning with intensities of 20%, 30% and 50% was conducted in December 1997; there was an unthinned treatment as the control (total 8 stands). We re-measured the permanent sites to assess the regeneration characteristics 11 years after thinning. In the 50% thinned stand, seedlings aged from 2 to 10 years exhibited the highest pine seedling density and growth. The age composition ranged from 1-3 years with densities of 9.9 and 5.1 seedlings m(-2) in 30% and 20% thinned stands; only 1-year-old seedlings with a density of 6.1 seedlings m(-2) in the unthinned stand. Similar trends were found for the regeneration of broadleaved species such as Robinia pseudoacacia and Prunus serrulata. We speculate that the canopy openness and moss coverage contributed to the regeneration success in the 50% thinned stand, while the higher litter depth and lack of soil moisture induced the regeneration failure in the unthinned stand. The stands thinned at 20% or 30% were less favourable for pine regeneration than the stands thinned at 50%. Therefore, thinning with less than 30% canopy openness (20% and 30% thinned stands) should be avoided, and thinning at higher than 30% canopy openness (50% thinned stand, approximately 1500 stems ha(-1) at ages 40-50 years) is suggested for increasing regeneration in the coastal pine forest. The implications of thinning-based silviculture in the coastal pine forest management are also discussed. The ongoing development of the broadleaved seedlings calls for further observations.
Bryophyte species associations with coarse woody debris and stand ages in Oregon
Rambo, T.; Muir, Patricia S.
1998-01-01
We quantified the relationships of 93 forest floor bryophyte species, including epiphytes from incorporated litterfall, to substrate and stand age in Pseudotsuga menziesii-Tsuga heterophylla stands at two sites in western Oregon. We used the method of Dufrêne and Legendre that combines a species' relative abundance and relative frequency, to calculate that species' importance in relation to environmental variables. The resulting "indicator value" describes a species' reliability for indicating the given environmental parameter. Thirty-nine species were indicative of either humus, a decay class of coarse woody debris, or stand age. Bryophyte community composition changed along the continuum of coarse woody debris decomposition from recently fallen trees with intact bark to forest floor humus. Richness of forest floor bryophytes will be enhanced when a full range of coarse woody debris decay classes is present. A suite of bryophytes indicated old-growth forest. These were mainly either epiphytes associated with older conifers or liverworts associated with coarse woody debris. Hardwood-associated epiphytes mainly indicated young stands. Mature conifers, hardwoods, and coarse woody debris are biological legacies that can be protected when thinning managed stands to foster habitat complexity and biodiversity, consistent with an ecosystem approach to forest management.
Nakashima, Eiji; Neriishi, Kazuo; Hsu, Wan-Ling
2015-01-01
For youngmore » atomic-bomb (A-bomb) survivors, A-bomb radiation’s (total) effect on standing height is thought to comprise the sum of direct effect and indirect effect via inflammation. With the data of five inflammatory markers—white blood cell count, sialic acid, corrected erythrocyte sedimentation rate (ESR), α 1 globulin, and α 2 globulin—obtained in adulthood during the period 1988 to 1992, a summary inflammatory index was constructed as a surrogate for the five subclinical inflammatory markers. For 3,327 A-bomb survivors exposed at ages of less than 25 years, a structural equation model was analyzed to measure direct radiation effects on adult height as well as mediating effect of radiation via inflammation on the height after adjustment for other risk factors, smoking, cancer, inflammatory disease, obesity, and diabetes mellitus. The mediation proportion of the radiation effect on height via inflammation was approximately 5% for both sexes for all ages, and indirect dose effects via inflammation were statistically significant for both sexes combined and for females exposed at ages 0 to 5 years. Indirect dose effects for all ages via sialic acid, corrected ESR, and α 2 globulin were marginally significant for both sexes combined and for females. These proportions are likely underestimated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Eiji; Neriishi, Kazuo; Hsu, Wan-Ling
For youngmore » atomic-bomb (A-bomb) survivors, A-bomb radiation’s (total) effect on standing height is thought to comprise the sum of direct effect and indirect effect via inflammation. With the data of five inflammatory markers—white blood cell count, sialic acid, corrected erythrocyte sedimentation rate (ESR), α 1 globulin, and α 2 globulin—obtained in adulthood during the period 1988 to 1992, a summary inflammatory index was constructed as a surrogate for the five subclinical inflammatory markers. For 3,327 A-bomb survivors exposed at ages of less than 25 years, a structural equation model was analyzed to measure direct radiation effects on adult height as well as mediating effect of radiation via inflammation on the height after adjustment for other risk factors, smoking, cancer, inflammatory disease, obesity, and diabetes mellitus. The mediation proportion of the radiation effect on height via inflammation was approximately 5% for both sexes for all ages, and indirect dose effects via inflammation were statistically significant for both sexes combined and for females exposed at ages 0 to 5 years. Indirect dose effects for all ages via sialic acid, corrected ESR, and α 2 globulin were marginally significant for both sexes combined and for females. These proportions are likely underestimated.« less
Relationships between net primary productivity and forest stand age in U.S. forests
Liming He; Jing M. Chen; Yude Pan; Richard Birdsey; Jens Kattge
2012-01-01
Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four...
Don C. Bragg; James M. Guldin
2015-01-01
A randomized sample of 250 loblolly (Pinus taeda L.) and shortleaf (Pinus echinata Mill.) pine ring counts was collected from the Good and Poor Farm Forestry compartments on the Crossett Experimental Forest. These mature, pine-dominated stands have been managed using uneven-aged silviculture since 1937. Our sample shows that both...
An experimental test of the causes of forest growth decline with stand age.
Michael G. Ryan; Dan Binkley; James H. Fownes; Christian Giardina; Randy S. Senock
2004-01-01
The decline in aboveground wood production after canopy closure in even-aged forest stands is a common pattern in forests, but clear evidence for the mechanism causing the decline is lacking. The problem is fundamental to forest biology, commercial forestry (the decline sets the rotation age), and to carbon storage in forests. We tested three hypotheses...
"Growing trees backwards": Description of a stand reconstruction model (P-53)
Jonathan D. Bakker; Andrew J. Sanchez Meador; Peter Z. Fule; David W. Huffman; Margaret M. Moore
2008-01-01
We describe an individual-tree model that uses contemporary measurements to "grow trees backward" and reconstruct past tree diameters and stand structure in ponderosa pine dominated stands of the Southwest. Model inputs are contemporary structural measurements of all snags, logs, stumps, and living trees, and radial growth measurements, if available. Key...
"Growing trees backwards": Description of a stand reconstruction model
Jonathan D. Bakker; Andrew J. Sanchez Meador; Peter Z. Fule; David W. Huffman; Margaret M. Moore
2008-01-01
We describe an individual-tree model that uses contemporary measurements to "grow trees backward" and reconstruct past tree diameters and stand structure in ponderosa pine dominated stands of the Southwest. Model inputs are contemporary structural measurements of all snags, logs, stumps, and living trees, and radial growth measurements, if available. Key...
Forest structure and development: implications for forest management
Kevin L. O' Hara
2004-01-01
A general premise of forest managers is that modern silviculture should be based, in large part, on natural disturbance patterns and species' adaptations to these disturbances. An understanding of forest stand dynamics is therefore a prerequisite to sound forest management. This paper provides a brief overview of forest stand development, stand structures, and...
Ageing with long-standing hearing impairment and deafness.
Gething, L
2000-09-01
Until recently, ageing with a long-standing disability had not been a major consideration for governments around the world. Policy and planning for this substantial subgroup had not kept abreast with developments in regard to the growing numbers of older people in general. Consultations held in Australia provided information and recommendations for use by governments and service agencies. The focus was on the viewpoints of consumers. This article reports results for people with long-standing deafness and hearing impairment. It is believed that disadvantages throughout life act to restrict freedom of choice and well-being in old age. Important factors perceived to underlie disadvantage include lifelong restricted access to the opportunities afforded by education and employment and their concomitant effects on the ability to develop the skills, attitudes and knowledge necessary for independence in old age; attitudes of others (including service providers); and the complexity and inflexibility of service systems. However, there are positive aspects. Comparison with published reports about people who acquired hearing loss as a result of the ageing process suggests that people with long-standing disability have learned to live with their situation. In contrast, people whose loss was associated with ageing often report emotional issues and isolation.
Effects of low thinning in Atlantic white-cedar stands
G. T. Bamford; S. Little
1960-01-01
Atlantic white-cedar typically grows in dense stands. In southern New Jersey, young stands commonly contain several thousand trees per acre, and at ages around 60 years there still may be 1,000 or more trees per acre.
1981-09-01
4 GRAYS HARBOR AND CHEHALIS RIVER IMPROVEMENTS TO NAVIGATION ENVIRONMENTAL STUDIES COMMUNITY STRUCTURE AND STANDING © STOCK OF EPIBENTHIC... FISHERIES RESEARCH INSTITUTE %r UNIVERSITY OF WASHINGTON B of Engineers SEPTEMBER 1981 Seattle District(DISTRIBUTION STATEM EN T. -A-8-1 2 7 Approved...PERIOD COVERED Community Structure and Standing Stock of Final May 7. 1981 Epibenthic Zooplankton at Five Sites in 6. PERFORMING ORG. REPORT NUMBER
Computerized algorithms for partial cuts
R.L. Ernst; S.L. Stout
1991-01-01
Stand density, stand structure (diameter distribution), and species composition are all changed by intermediate treatments in forest stands. To use computer stand-growth simulators to assess the effects of different treatments on stand growth and development, users must be able to duplicate silviculturally realistic treatments in the simulator. In this paper, we review...
A silvicultural Guide for Spruce-Fir in the Northeast
Robert M. Frank; John C. Bjorkbom
1973-01-01
A practical guide to the silvicultural treatment of spruce-fir stands for timber production in New England and New York. Both evenaged and uneven-aged management are considered, covering both the establishment of new stands and the culture of existing stands. Includes a set of prescriptions describing specific treatments for a range of stand conditions and management...
The Relation of Growth to Stand Density in Natural Loblolly Pine Stands
K.F. Wenger; T.C. Evans; T. Lotti; R.W. Cooper; E.V. Brender
1958-01-01
This is a progress report of a regional study on growing-space requirements for natural stands of loblolly pine (Pinus taeda L.).A primary objective is to measure the effects of residual stand density, obtained naturally or by cutting, during intermediate ages, upon volume yield and total production. By imposing real values and costs upon...
Red alder stand development and dynamics.
R.L. Deal
2006-01-01
This paper synthesizes information on the development of natural pure red alder stands and dynamics of mixed alder-conifer stands. Early research on red alder growth and yield focused on developing stand volume and normal yield. tables for alder in the Pacific Northwest. Recent site-index estimation and height-growth curves were developed on a 20-year site base age....
Is self-thinning in ponderosa pine ruled by Dendroctonus bark beetles?
William W. Oliver
1995-01-01
Stand density of even-aged stands of ponderosa pine in California seems to be ruled by Dendroctonus bark beetles, rather than the suppressioninduced mortality common for other tree species. Size-density trajectories were plotted for 155 permanent plots in both plantations and natural stands. Bark beetle kills created a limiting Stand Density Index of...
The central Appalachian hardwoods experience provides silvicultural tools for Ontario
Gary W. Miller; Ken A Elliott; Eric P. Boysen
1998-01-01
Cultural practices can be applied in even-age stands to reallocate site resources to selected crop trees. Precommercial thinning in sapling stands can increase diameter growth and improve species composition of trees in the main canopy. Commercial thinning in sawtimber stands also increases diameter growth of crop trees, improves residual stand quality, and removes...
Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.
2015-01-01
Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations. PMID:26421726
The ratio of NPP to GPP: evidence of change over the course of stand development.
Mäkelä, A; Valentine, H T
2001-09-01
Using Scots pine (Pinus sylvestris L.) in Fenno-Scandia as a case study, we investigate whether net primary production (NPP) and maintenance respiration are constant fractions of gross primary production (GPP) as even-aged mono-specific stands progress from initiation to old age. A model of the ratio of NPP to GPP is developed based on (1) the classical model of respiration, which divides total respiration into construction and maintenance components, and (2) a process-based model, which derives respiration from processes including construction, nitrate uptake and reduction, ion uptake, phloem loading and maintenance. Published estimates of specific respiration and production rates, and some recent measurements of components of dry matter in stands of different ages, are used to quantify the two approaches over the course of stand development in an average environment. Both approaches give similar results, showing a decrease in the NPP/GPP ratio with increasing tree height. In addition, we show that stand-growth models fitted under three different sets of assumptions-(i) annual specific rates of maintenance respiration of sapwood (mW) and photosynthesis (sC) are constant; (ii) m(W) is constant, but sC decreases with increasing tree height; and (iii) total maintenance respiration is a constant fraction of GPP and s(C) decreases with increasing tree height-can lead to nearly identical model projections that agree with empirical observations of NPP and stand-growth variables. Remeasurements of GPP and respiration over time in chronosequences of stands may be needed to discern which set of assumptions is correct. Total (construction + maintenance) sapwood respiration per unit mass of sapwood (kg C (kg C year)-1) decreased with increasing stand age, sapwood stock, and average tree height under all three assumptions. However, total sapwood respiration (kg C (ha year)-1) increased over the course of stand development under (i) and (ii), contributing to a downward trend in the time course of the NPP/GPP ratio after closure. A moderate decrease in mW with increasing tree height or sapwood cross-sectional area had little effect on the downward trend. On the basis of this evidence, we argue that a significant decline in the NPP/GPP ratio with tree size or age seems highly probable, although the decline may appear insignificant over some segments of stand development. We also argue that, because stand-growth models can give correct answers for the wrong reasons, statistical calibration of such models should be avoided whenever possible; instead, values of physiological parameters should come from measurements of the physiological processes themselves.
Trait Variation Along a Forest Successional Gradient in Dry Tropical Forest, Florida Keys
NASA Astrophysics Data System (ADS)
Subedi, S.; Ross, M. S.
2016-12-01
In most part of South Florida tropical dry forests, the early colonized trees on disturbed uplands are mostly deciduous species cable of surviving for several years after establishment. However, trees in mature forests are generally characterized by a suite of evergreen species, most of which are completely absent in younger stands even in seedling stage. This complete transition from one functional group to another in the course of stand development suggests a distinct change in the underlying environment during the course of succession. Such change in hammock functional groups as a function of the changing environmental drivers during succession in tropical dry forests is unknown and addressing this question may help to understand which drivers of change act as filters that select for and against particular groups of species and traits. In this study, we evaluate number of important functional traits (specific leaf area, wood density, leaf d13C, leaf N:P ratio, and architectural traits such as height, crown dimensions, diameter at breast height) for woody plant species occurring along a successional gradient across three ecological scales, community, species, and individual. A significant change in the overall trait distribution across the successional gradient is found. Intraspecific trait variation within the community is increased with increase in forest age. Most of these traits have shown correlation with stand age and showed preference to a certain environment. Stand age is the most important variable explaining the distribution of community characteristics. It is found that early successional forest are mostly shaped by environmental driven processes, and as forest get older and structurally more complex, they are increasingly shaped by competitively driven processes leading to limiting similarity. This study has shown that the patterns of trait shift can be predictable and can be used to characterize habitats and stage of forest succession in dry tropical forest.
NASA Technical Reports Server (NTRS)
2010-01-01
A structural steel beam to support the new thrust measurement system on the A-1 Test Stand at NASA's John C. Stennis Space Center is lifted to waiting employees for installation. The beam is part of the thrust takeout structure needed to support the new measurement system. Four such beams have been installed at the stand in preparation for installation of the system in upcoming weeks. Operators are preparing the stand for testing the next generation of rocket engines for the U.S. space program.
Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure
Miquelajauregui, Yosune; Cumming, Steven G.; Gauthier, Sylvie
2016-01-01
It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity. PMID:26919456
Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.
Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie
2016-01-01
It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.
Advanced Standing and Bridge Courses: Structures and Issues
ERIC Educational Resources Information Center
GlenMaye, Linnea F.; Lause, Timothy W.; Bolin, Brien L.
2010-01-01
This study explores the issue of advanced standing in MSW programs in light of the new Educational Policy and Accreditation Standards (EPAS). Advanced standing structures of MSW programs were studied using a purposive sample consisting of 203 MSW program directors with a response rate of 28% (N=58). The results indicate that slightly more than 15%…
Tree and understory responses to variable-density thinning in western Washington.
Constance A. Harrington; Scott D. Roberts; Leslie C. Brodie
2005-01-01
The Olympic Habitat Development Study was initiated in 1994 to evaluate whether active management in 35- to 70-year-old stands could accelerate development of stand structures and plant and animal communities associated with late-successional forests. The study used a variable-density thinning prescription as the main tool to alter stand structure; the prescription...
Root system structure in planted and seeded loblolly and shortleaf pine
Constance A. Harrington; John C. Brissette; William C. Carlson
1989-01-01
Differences in root system structure attributable to stand origin were examined by pairing seeded and planted stands of loblolly (Pinus taeda L.) and shortleaf pine (P. echinata Mill.). The 17 paired stands were 3 to 9 years old and located in Arkansas, Oklahoma, and Texas on similar soil and site conditions. Root systems from 12...
Michael D. Cain; Michael G. Shelton
2003-01-01
In southeastern Arkansas, pine growth was monitored for 19 yr after mechanically strip thinning a dense, naturally regenerated, even-aged stand of 6-yr-old loblolly pines (Pinus taeda L.) and shortleaf pines (P. echinata Mill.) that averaged 16,600 stems/UC. Prescribed winter burns were conducted biennially between ages 9 and 20...
Optimal uneven-aged stocking guides: an application to spruce-fir stands in New England
Jeffrey H. Gove; Mark J. Ducey
2014-01-01
Management guides for uneven-aged forest stands periodically need to be revisited and updated based on new information and methods. The current silvicultural guide for uneven-aged spruce-fir management in Maine and the northeast (Frank, R.M. and Bjorkbom, J.C. 1973 A silvicultural guide for spruce-fir in the northeast. General Technical Report NE-6, Forest Service. U.S...
Age-size relationships in all-aged northern hardwoods
Barton M. Blum
1961-01-01
During the summer of 1960, a series of clearcuttings in small patches were made in an old-growth stand of northern hardwoods on the Bartlett Experimental Forest, Bartlett, New Hampshire. This provided an opportunity to observe the variation in ages of a wide range of trees of different sites and species. The annual rings of over 100 stumps were counted in this stand of...
Joseph Buongiorno; Benedict Schulte; Kenneth E. Skog
2004-01-01
This paper summarizes research on the management of uneven-aged loblolly pine-hardwood stands in the southern United States. This research was composed of three elements: (1) modeling of biological growth of uneven-aged stands of mixed loblolly pine and hardwood trees, (2) optimization to discover sustainable regimes that would best meet economic and ecological...
Effects of stand and site variables on the lumber value of uneven-aged loblolly pine stands
David W. Patterson; Paul A. Murphy; Michael G. Shelton
2000-01-01
Uneven-aged silviculture using single-tree selection provides the landowner with periodic income from a continuous forest which has a varied canopy. Data were collected from 24 plots of a larger study to determine if site index, basal area, and maximum dbh affected volume and value of lumber from loblolly pine (Pinus taeda L.) trees in uneven-aged...
Baeza, M J; Santana, V M
2015-11-01
Standing dead biomass retention is considered one of the most relevant fuel structural traits to affect plant flammability. However, very little is known about the biological significance of this trait and its distribution between different functional groups. Our aim was to analyse how the proportion of dead biomass produced in Mediterranean species is related to the successional niche of species (early-, mid- and late-successional stages) and the regeneration strategy of species (seeders and resprouters). We evaluated biomass distribution by size classes and standing dead biomass retention in nine dominant species from the Mediterranean Basin in different development stages (5, 9, 14 and 26 years since the last fire). The results revealed significant differences in the standing dead biomass retention of species that presented a distinct successional niche or regeneration strategy. These differences were restricted to the oldest ages studied (>9 years). Tree and small tree resprouters, typical in late-successional stages, presented slight variations with age and a less marked trend to retain dead biomass, while seeder shrubs and dwarf shrubs, characteristic of early-successional stages, showed high dead biomass loads. Our results suggest that the species that tend to retain more dead branches are colonising species that may promote fire in early-successional stages. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Intertree competition in uneven-aged ponderosa pine stands
C.W. Woodall; C.E. Fiedler; K.S. Milner
2003-01-01
Intertree competition indices and effects were examined in 14 uneven-aged ponderosa pine (Pinus ponderosa var. scopulorum Engelm.) stands in eastern Montana. Location, height, diameter at breast height (DBH), basal area increment, crown ratio, and sapwood area were determined for each tree (DBH >3.8 cm) on one stem-mapped plot...
ROOT GROWTH AND TURNOVER IN DIFFERENT AGED PONDEROSA PINE STANDS IN OREGON, USA
The impacts of pollution and climate change on soil carbon dynamics are poorly understood, in part due to a lack of information regarding root production and turnover in natural ecosystems. In order to examine how root dynamics change with stand age in ponderosa pine forests (...
Forest floor and mineral soil respiration rates in a northern Minnesota red pine chronosequence
Matthew Powers; Randall Kolka; John Bradford; Brian Palik; Martin Jurgensen
2017-01-01
We measured total soil CO2 efflux (RS) and efflux from the forest floor layers (RFF) in red pine (Pinus resinosa Ait.) stands of different ages to examine relationships between stand age and belowground C cycling. Soil temperature and RS were often lower in...
James W. Barrett
1978-01-01
This paper presents height growth and site index curves and equations for even-aged, managed stands of ponderosa pine east of the Cascade Range in Oregon and Washington where height growth has not been suppressed by high density or related factors.
S.L. Stout
1991-01-01
Transition stands, those containing species associated with both the northern hardwood and oak-hickory forest types, are important to forest diversity in northwestern Pennsylvania. These stands have high value for a variety of forest uses, including timber production, wildlife habitat, and aesthetics. Diameter distributions are characteristically stratified by species...
Verheyen, K.; Guntenspergen, Glenn R.; Biesbrouck, B.; Hermy, M.
2003-01-01
A framework that summarizes the direct and indirect effects of past land use on forest herb recolonization is proposed, and used to analyse the colonization patterns of forest understorey herbaceous species in a 360-ha mixed forest, grassland and arable landscape in the Dijle river valley (central Belgium).Fine-scale distribution maps were constructed for 14 species. The species were mapped in 15 946 forest plots and outside forests (along parcel margins) in 5188 plots. Forest stands varied in age between 1 and more than 224 years. Detailed land-use history data were combined with the species distribution maps to identify species-specific colonization sources and to calculate colonization distances.The six most frequent species were selected for more detailed statistical analysis.Logistic regression models indicated that species frequency in forest parcels was a function of secondary forest age, distance from the nearest colonization source and their interaction. Similar age and distance effects were found within hedgerows.In 199 forest stands, data about soils, canopy structure and the cover of competitive species were collected. The relative importance of habitat quality and spatio-temporal isolation for the colonization of the forest herb species was quantified using structural equation modelling (SEM), within the framework proposed for the effects of past land use.The results of the SEM indicate that, except for the better colonizing species, the measured habitat quality variables are of minor importance in explaining colonization patterns, compared with the combination of secondary forest age and distance from colonization sources.Our results suggest the existence of a two-stage colonization process in which diaspore availability determines the initial pattern, which is affected by environmental sorting at later stages.
Caviedes, Julián; Ibarra, José Tomás
2017-01-01
Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests < 70-year post-fire event, with the presence of habitat legacies (e.g. snags and CWD), can reach a structural complexity as high as undisturbed plots. Temperate forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests.
2017-01-01
Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests < 70-year post-fire event, with the presence of habitat legacies (e.g. snags and CWD), can reach a structural complexity as high as undisturbed plots. Temperate forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests. PMID:28068349
Ostchega, Y; Harris, T B; Hirsch, R; Parsons, V L; Kington, R; Katzoff, M
2000-09-01
This report provides reliability and prevalence estimates by sex, age, and race/ethnicity of an observed physical performance examination (PPE) assessing mobility and balance. The Third National Health and Nutrition Examination Survey (NHANES III) 1988-1994. A cross-sectional nationally representative survey. All persons aged 60 and older (n = 5,403) who performed the PPE either in the mobile examination center (MEC) or in the home during NHANES III (conducted 1988-1994). The PPE included timed chair stand, full tandem stand, and timed 8-foot walk. Timed chair stand and 8-foot timed walk were reliable measurements (Intraclass Correlations > 0.5). Women were significantly slower (P < .001) than men for both timed chair stands and timed walk. Non-Hispanic white men and women did the maneuvers in significantly less time than non-Hispanic black men and women and Mexican Americans women (P < .001). Lower extremity functions measured by timed chair stand and walk are reliable. Women at every age group were more physically limited than men.
Accelerating development with fertilization in a young natural Piedmont mixed hardwood pine stand
B. J. Berenguer; M. H. Gocke; J. L. Schuler; E. Treasure; D. J. Robison
2010-01-01
A rising two-year-old even-aged naturally regenerated upland Piedmont mixed hardwood-pine stand was broadcast fertilized with N, N + P, and N + P + K to evaluate stand level responses to fertility treatments. There were significant positive stand responses in self thinning and mean stem size measured two growing seasons after fertilizer applications. Findings suggest...
[Post-logging organic matter recovery in forest ecosystems of eastern Baikal region].
Vedrova, E F; Mukhortova, L V; Ivanov, V V; Krivobokov, L V; Boloneva, M V
2010-01-01
The dynamics of organic matter accumulated in the soil and main vegetation elements was analyzed for post-logging forest ecosystem succession series in eastern Baikal region. The phytomass was found to allocate up 63 and 50% of carbon in undisturbed Scots pine and fir stands, respectively. The post-logging phytomass contribution to the total carbon pool appeared to decrease down to 16% in Scots pine and 6% in fir stands. In Scots pine stands, carbon storage was determined to account for almost 70% of the initial carbon 60 years after logging. In 50- to 55-year-old fir stands, carbon recovered its initial pool only by 10%. Soil carbon recorded in recently logged Scots pine and fir sites appeared to be 5 and 16 times that accumulated in the phytomass, respectively. The ratio between phytomass carbon and soil organic matter recovered back to the prelogging level in Scots pine stands by the age of 50-60 years. While phytomass carbon also increased in fir stand of the same age, it did not reach the level of the control stand.
Katz, Noomi; Gilad Izhaky, Smadar; Ziv, Ornit; Revach, Anat
2013-01-01
The "Coffee Stands" project was developed to provide a work place where individuals with long term mental illness can receive job training within the community. It is similar to a supported employment program, except that it does not provide individual job placement services. The objective of the study was to describe the participants who worked at the "coffee stands", with respect to their participation in occupations, functional cognition, executive functions and awareness, perception of their quality of life (QoL), satisfaction and self esteem. Moreover, the study aimed at examining whether changes occurred in these variables during the 6-month period in which participants worked at the coffee stands. Participants included 44 people with chronic mental illness; 27 men and 17 women, mean age 43.43 (SD = 9.02); mean years of education 11.81 (SD = 1.83); mean age of illness onset 27.72 (SD = 11.12) and mean number of hospitalizations 3.27 (SD = 2.64). All signed an informed consent to participate in the study. A battery of eight instruments measuring the various variables was administered at two points in time; at the beginning of the work at the coffee stands and 6 months later. Indicated that the training was successful and that participants were able to maintain an average 3 hours of work daily, demonstrating an improvement in their perception of their ability to work. In the area of planning, they needed structure, suggesting some difficulties in executive functions, but they seemed to be aware of their difficulties. After 6 months, participants showed improvements in health related measures of QoL and satisfaction, but not in self esteem. The findings strengthen the premise that people coping with an emotional disorder place great importance on working, are able to work and derive satisfaction from their work.
Tree diversity promotes insect herbivory in subtropical forests of south-east China.
Schuldt, Andreas; Baruffol, Martin; Böhnke, Martin; Bruelheide, Helge; Härdtle, Werner; Lang, Anne C; Nadrowski, Karin; von Oheimb, Goddert; Voigt, Winfried; Zhou, Hongzhang; Assmann, Thorsten; Fridley, Jason
2010-07-01
1.Insect herbivory can strongly affect ecosystem processes, and its relationship with plant diversity is a central topic in biodiversity-functioning research. However, very little is known about this relationship from complex ecosystems dominated by long-lived individuals, such as forests, especially over gradients of high plant diversity.2.We analysed insect herbivory on saplings of 10 tree and shrub species across 27 forest stands differing in age and tree species richness in an extraordinarily diverse subtropical forest ecosystem in China. We tested whether plant species richness significantly influences folivory in these highly diverse forests or whether other factors play a more important role at such high levels of phytodiversity.3.Leaf damage was assessed on 58 297 leaves of 1284 saplings at the end of the rainy season in 2008, together with structural and abiotic stand characteristics.4.Species-specific mean damage of leaf area ranged from 3% to 16%. Herbivory increased with plant species richness even after accounting for potentially confounding effects of stand characteristics, of which stand age-related aspects most clearly covaried with herbivory. Intraspecific density dependence or other abiotic factors did not significantly influence overall herbivory across forest stands.5.Synthesis.The positive herbivory-plant diversity relationship indicates that effects related to hypotheses of resource concentration, according to which a reduction in damage by specialized herbivores might be expected as host plant concentration decreases with increasing plant diversity, do not seem to be major determinants for overall herbivory levels in our phytodiverse subtropical forest ecosystem. We discuss the potential role of host specificity of dominant herbivores, which are often expected to show a high degree of specialization in many (sub)tropical forests. In the forest system we studied, a much higher impact of polyphagous species than traditionally assumed might explain the observed patterns, as these species can profit from a broad dietary mix provided by high plant diversity. Further testing is needed to experimentally verify this assumption.
NASA Astrophysics Data System (ADS)
Lane, Patrick
2016-04-01
Estimating the water balance of ungauged catchments has been the subject of decades of research. An extension of the fundamental problem of estimating the hydrology is then understanding how do changes in catchment attributes affect the water balance component? This is a particular issue in forest hydrology where vegetation exerts such a strong influence on evapotranspiration (ET), and consequent streamflow (Q). Given the primacy of trees in the water balance, and the potential for change to species and density through logging, fire, pests and diseases and drought, methods that directly relate ET/Q to vegetation structure, species, and stand density are very powerful. Plot studies on tree water use routinely use sapwood area (SA) to calculate transpiration and upscale to the stand/catchment scale. Recent work in south eastern Australian forests have found stand-wide SA to be linearly correlated (R2 = 0.89) with long term mean annual loss (P-Q), and hence, long term mean annual catchment streamflow. Robust relationships can be built between basal area (BA), tree density and stand SA. BA and density are common forest inventory measurements. Until now, no research has related the fundamental stand attribute of SA to streamflow. The data sets include catchments that have been thinned and with varying age classes. Thus far these analyses have been for energy limited systems in wetter forest types. SA has proven to be a more robust biometric than leaf area index which varies seasonally. That long term ET/Q is correlated with vegetation conforms to the Budyko framework. Use of a downscaled (20 m) Aridity Index (AI) has shown distinct correlations with stand SA, and therefore T. Structural patterns at a the hillslope scale not only correlate with SA and T, but also with interception (I) and forest floor evaporation (Es). These correlations between AI and I and Es have given R2 > 0.8. The result of these studies suggest an ability to estimate mean annual ET fluxes at sub hillslope scale using mappable attributes (AI, forest inventory data). Advances in forest inventory techniques, including LiDAR, mean stand attributes can increasingly be mapped over large areas. If combined with process measurements, these mapped attributes provide a powerful platform for simple but robust modelling at the sub-hillslope scale, including exploring hinge points of stand vulnerability to the drier, hotter climate predicted for SE Australia where energy limited systems may face water limitation.
Uneven-aged silviculture can enhance within stand heterogeneity and beetle diversity.
Joelsson, Klara; Hjältén, Joakim; Work, Timothy
2018-01-01
Uneven-aged silviculture may better maintain species assemblages associated with old-growth forests than clear felling in part due to habitat heterogeneity created by maintaining standing retention strips adjacent to harvest trails. Retention strips and harvest trails created at the time of tree removal will likely have different microclimate and may harbor different assemblages. In some cases, the resultant stand heterogeneity associated with uneven-aged silviculture may be similar to natural small-scale disturbances. For beetles, increased light and temperature as well as potential access to young vegetation and deadwood substrates present in harvset trails may harbor beetle assemblages similar to those found in natural gaps. We sampled saproxylic beetles using flight intercept traps placed in harvest corridors and retention strips in 9 replicated uneven-aged spruce stands in central Sweden. We compared abundance, species richness and composition between harvest corridors and retention strips using generalized linear models, rarefaction, permutational multivariate analysis of variance and indicator species analysis. Canopy openness doubled, mean temperature and variability in daily temperature increased and humidity decreased on harvest trails. Beetle richness and abundance were greater in harvests trails than in retention strips and the beetle species composition differed significantly between habitats. Twenty-five species were associated with harvest trails, including three old-growth specialists such as Agathidium discoideum (Erichson), currently red-listed. We observed only one species, Xylechinus pilosus (Ratzeburg) that strongly favored retention strips. Harvest trails foster both open habitat species and old-growth species while retention strips harbored forest interior specialists. The combination of closed canopy, stratified forest in the retention strips and gap-like conditions on the harvest trails thus increases overall species richness and maintains more diverse assemblages at the stand level than would otherwise be seen in less heterogeneous stand types. This suggests that uneven-aged silviculture may provide added conservation benefits for both open habitat and old-growth specialists than silvicultural approaches that reduce stand heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Autumnal leaf senescence in Miscanthus × giganteus and leaf [N] differ by stand age
Boersma, Nicholas N.; Dohleman, Frank G.; Miguez, Fernando E.; Heaton, Emily A.
2015-01-01
Poor first winter survival in Miscanthus × giganteus has been anecdotally attributed to incomplete first autumn senescence, but these assessments never paired first-year with older M. × giganteus in side-by-side trials to separate the effect of weather from stand age. Here CO2 assimilation rate (A), photosystem II efficiency (ΦPSII), and leaf N concentration ([N]) were used to directly compare senescence in first, second, and third-year stands of M. × giganteus. Three M. × giganteus fields were planted with eight plots, one field each in 2009, 2010, and 2011. To quantify autumnal leaf senescence of plants within each stand age, photosynthetic and leaf [N] measurements were made twice weekly from early September until a killing frost. Following chilling events (daily temperature averages below 10 °C), photosynthetic rates in first year plants rebounded to a greater degree than those in second- and third-year plants. By the end of the growing season, first-year M. × giganteus had A and ΦPSII rates up to 4 times greater than third-year M. × giganteus, while leaf [N] was up to 2.4 times greater. The increased photosynthetic capability and leaf N status in first-year M. × giganteus suggests that the photosynthetic apparatus was not dismantled before a killing frost, thus potentially limiting nutrient translocation, and may explain why young M. × giganteus stands do not survive winter when older stands do. Because previous senescence research has primarily focused on annual or woody species, our results suggest that M. × giganteus may be an interesting herbaceous perennial system to investigate the interactive effects of plant ageing and nutrient status on senescence and may highlight management strategies that could potentially increase winter survival rates in first-year stands. PMID:25873682
Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities
Erik A. Lilleskov; Thomas D. Bruns; Thomas R. Horton; D. Lee Taylor; Paul Grogan
2004-01-01
Ectomycorrhizal fungal (EMF) communities are highly diverse at the stand level. To begin to understand what might lead to such diversity, and to improve sampling designs, we investigated the spatial structure of these communities. We used EMF community data from a number of studies carried out in seven mature and one recently fire-initiated forest stand. We applied...
Gunnar C. Carnwath; David W. Peterson; Cara R. Nelson
2012-01-01
There is increasing interest in actively managing forests to increase their resilience to climate-related changes. Although forest managers rely heavily on the use of silvicultural treatments that manipulate stand structure and stand dynamics to modify responses to climate change, few studies have directly assessed the effects of stand structure or canopy position on...
Structural lumber from dense stands of small-diameter Douglas-fir trees.
David W. Green; Eini C. Lowell; Roland Hernandez
2005-01-01
Small-diameter trees growing in overstocked dense stands are often targeted for thinning to reduce fire hazard and improve forest health and ecosystem diversity. In the Pacific Northwest and Intermountain regions, Douglas-fir can be a predominant species in such stands. In this study, mechanical properties and grade yield of structural products were estimated for 2 by...
Alicia A. Sullivan; Robert J. McGaughey; Hans-Erik Andersen; Peter Schiess
2009-01-01
Stand delineation is an important step in the process of establishing a forest inventory and provides the spatial framework for many forest management decisions. Many methods for extracting forest structure characteristics for stand delineation and other purposes have been researched in the past, primarily focusing on high-resolution imagery and satellite data. High-...
John L. Willis; Scott D. Roberts; Constance A. Harrington
2018-01-01
Young stands are commonly assumed to require centuries to develop into late-successional forest habitat. This viewpoint reflects the fact that young stands often lack many of the structural features that define late-successional habitat, and that these features derive from complex stand dynamics that are difficult to mimic with forest management. Variable density...
The Perfect Fire? Aging Stands in the Alaskan Boreal Forest Encounter Global Warming
NASA Astrophysics Data System (ADS)
Mann, D.; Rupp, S.; Duffy, P.
2008-12-01
The ecological responses of the boreal forest to climate change have global significance because of the large amount of carbon stored in its soils and biomass. Fire, mostly ignited by lightning, is the keystone disturbance agent in this forest. It triggers cycles of forest succession in its wake, and burning is the main avenue for carbon release back to the atmosphere. We studied the interactions between climate, fires, forest succession, and the age distributions of forest stands in a 60-million hectare region of Interior Alaska over the past 150 years. First we developed a statistical model relating climate to area burned over the period of record (1950-2005). Next we combined this model with climate reconstructions to extend the estimates of area burned back to A.D. 1860. We checked the resultant fire history against stand-age data from 5000 living trees sampled in the study region. Then we fed the history of area burned into a computer model that simulates forest succession on real landscapes. Results show striking changes in the means and variances of stand ages over the last 150 years in response to interactions between climate change and the successional dynamics of the boreal forest. Average stand age increased steadily between 1880 and 1940 and has fluctuated at high levels since then, indicating a historically unusual abundance of flammable stands. This accumulation of old stands has created the potential for unusually large fires. Some support for this conclusion comes from the unprecedented large sizes of the areas burned in 2004 and 2005. Further support comes when we add to the analysis the forecasts made by global climate models for Alaska over the next twenty years. Bracketing estimates for climate warming and precipitation change suggest that warmer, drier summers combined with aging forest stands will cause a series of unusually large fires, the like of which have not occurred in the region for >150 years. We infer that the enhanced burning of the Alaska boreal forest over the next 20 years will increase the release of trace gases from this region. We speculate that the forest will be transformed from being conifer dominated to one dominated by deciduous tree species, which could have sweeping effects on the region's other biota, its hydrology, and the role of the boreal forest in the global carbon cycle.
Stohlgren, Thomas J.
1992-01-01
The Big Stump Grove of giant sequoia (Sequoiadendron giganteum (Lindl.) Buchholz) was heavily logged between 1883 and 1889 and the stand naturally regenerated from seed following logging. In 1968, as part of a 100% sequoia tree inventory, all living sequoias (n = 3587) and dead trees and stumps (n=588) were measured (diameter at breast height, dbh) and mapped. A comparison of pre- to post-logging (85 years later in 1968) stand characteristics showed the estimated basal area of 56.7 m2 ha−1 in the pre-cut 1883 Big Stump Grove was very similar to the population mean basal area of 30 other giant sequoia groves (with more than 30 trees) in Sequoia and Kings Canyon National Parks. Sequoia density in 1968 was 1.5 times higher than the population mean, and over 45% of the basal area had been recovered after only 85 years. Assuming most re-establishment occurred over roughly a 9 year period (1883–1892), the diameter growth rate of trees less than 1.95 m dbh, averaged 6.1–6.8 mm year−1 but greatly varied as the 24 trees in the 1.8 m size class had a mean diameter growth rate of 21–24 mm year−1. Data generated by dividing the grove into 0.25 ha contiguous plots indicated that only about 3.3 ha of the pre-cut 1883 grove did not have sequoia regeneration whereas 16.5 ha of the 1968 grove had sequoia regeneration but no sign of logs or stumps. The proportion of only-regeneration plots was significantly greater (Pt=0; 1968) stand, overrepresentation of 0.3–1.2 m dbh trees may produce a bimodal size distribution lasting perhaps 800 years or more into the future. Giant sequoia stand characteristics such as age and size structure are not highly resilient and may take several centuries to approach the ‘domain’ of age or size structure typical of old-growth sequoia forests. Grove boundaries may be less stable following a major disturbance.
Wieczorek, Mareike; Kruse, Stefan; Epp, Laura S; Kolmogorov, Alexei; Nikolaev, Anatoly N; Heinrich, Ingo; Jeltsch, Florian; Pestryakova, Lyudmila A; Zibulski, Romy; Herzschuh, Ulrike
2017-09-01
Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field- and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least ~240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning ~130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future. © 2017 by the Ecological Society of America.
Perinetti, Giuseppe; Contardo, Luca; Castaldo, Attilio; McNamara, James A; Franchi, Lorenzo
2016-07-01
To evaluate the capability of both cervical vertebral maturation (CVM) stages 3 and 4 (CS3-4 interval) and the peak in standing height to identify the mandibular growth spurt throughout diagnostic reliability analysis. A previous longitudinal data set derived from 24 untreated growing subjects (15 females and nine males,) detailed elsewhere were reanalyzed. Mandibular growth was defined as annual increments in Condylion (Co)-Gnathion (Gn) (total mandibular length) and Co-Gonion Intersection (Goi) (ramus height) and their arithmetic mean (mean mandibular growth [mMG]). Subsequently, individual annual increments in standing height, Co-Gn, Co-Goi, and mMG were arranged according to annual age intervals, with the first and last intervals defined as 7-8 years and 15-16 years, respectively. An analysis was performed to establish the diagnostic reliability of the CS3-4 interval or the peak in standing height in the identification of the maximum individual increments of each Co-Gn, Co-Goi, and mMG measurement at each annual age interval. CS3-4 and standing height peak show similar but variable accuracy across annual age intervals, registering values between 0.61 (standing height peak, Co-Gn) and 0.95 (standing height peak and CS3-4, mMG). Generally, satisfactory diagnostic reliability was seen when the mandibular growth spurt was identified on the basis of the Co-Goi and mMG increments. Both CVM interval CS3-4 and peak in standing height may be used in routine clinical practice to enhance efficiency of treatments requiring identification of the mandibular growth spurt.
Classroom Standing Desks and Sedentary Behavior: A Systematic Review.
Minges, Karl E; Chao, Ariana M; Irwin, Melinda L; Owen, Neville; Park, Chorong; Whittemore, Robin; Salmon, Jo
2016-02-01
Reducing sedentary behaviors, or time spent sitting, is an important target for health promotion in children. Standing desks in schools may be a feasible, modifiable, and acceptable environmental strategy to this end. To examine the impact of school-based standing desk interventions on sedentary behavior and physical activity, health-related outcomes, and academic and behavioral outcomes in school-aged children. Ovid Embase, Medline, PsycINFO, Web of Science, Global Health, and CINAHL. Full-text peer-reviewed journal publications written in English; samples of school-aged youth (5-18 years of age); study designs including the same participants at baseline and follow-up; and use of a standing desk as a component of the intervention. Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Eight studies satisfied selection criteria and used quasi-experimental (n = 4), randomized controlled trial (n = 3), and pre-post, no control (n = 1) designs. When examined, time spent standing increased in all studies (effect sizes: 0.38-0.71), while sitting time decreased from a range of 59 to 64 minutes (effect sizes: 0.27-0.49). Some studies reported increased physical activity and energy expenditure and improved classroom behavior. One-half of the studies had nonrandomized designs, and most were pilot or feasibility studies. This initial evidence supports integrating standing desks into the classroom environment; this strategy has the potential to reduce sitting time and increase standing time among elementary schoolchildren. Additional research is needed to determine the impact of standing desks on academic performance and precursors of chronic disease risk. Copyright © 2016 by the American Academy of Pediatrics.
Long-Term Muscle Fatigue After Standing Work.
Garcia, Maria-Gabriela; Läubli, Thomas; Martin, Bernard J
2015-11-01
The aims of this study were to determine long-term fatigue effects in the lower limbs associated with standing work and to estimate possible age and gender influences. The progressive accumulation of muscle fatigue effects is assumed to lead to musculoskeletal disorders, as fatigue generated by sustained low-level exertions exhibits long-lasting effects. However, these effects have received little attention in the lower limbs. Fourteen men and 12 women from two different age groups simulated standing work for 5 hr including 5-min seated rest breaks and a 30-min lunch. The younger group was also tested in a control day. Muscle fatigue was quantified by electrically induced muscle twitches (muscle twitch force [MTF]), postural stability, and subjective evaluation of discomfort. MTF showed a significant fatigue effect after standing work that persisted beyond 30 min after the end of the workday. MTF was not affected on the control day. The center of pressure displacement speed increased significantly over time after standing work but was also affected on the control day. Subjective evaluations of discomfort indicated a significant increase in perception of fatigue immediately after the end of standing work; however, this perception did not persist 30 min after. Age and gender did not influence fatigue. Objective measures show the long-term effects of muscle fatigue after 5 hr of standing work; however, this fatigue is no longer perceived after 30 min of rest postwork. The present results suggest that occupational activities requiring prolonged standing are likely to contribute to lower-extremity and/or back disorders. © 2015, Human Factors and Ergonomics Society.
The Not-So-Sudden Results of the Sudden Saw Log Study - Growth and Yield Through Age 45
V. Clark Baldwin; Daniel J. Leduc; Robert B. Ferguson; James B. Baker; Rodney L. Busby
1998-01-01
The Sudden-Saw Log Study, located near Crossett, AR, was established to test the hypothesis that lobfolly pine plantations can produce sawtimber on good sites in 30 years. Study measurements reported at stand age 33 years show that the hypothesis is true. Fortunately, the study was not terminated at that time. Inventory data were also collected at stand ages 36, 39,...
Joseph Buongiorno; Espen Andreas Halvorsen; Ole Martin Bollandsas; Terje Gobakken; Ole Hofstad
2012-01-01
This study sought optimal sustainable management regimes of uneven-aged Norway spruce-dominated stands with multiple objectives. The criteria were financial returns, CO2 sequestration and diversity of tree size and species. At prevailing timber prices, harvest and transport costs, and interest rates, uneven-aged management for timber alone was...
J.D. Burton
1980-01-01
Second-growth even-aged loblolly-shortleaf pine stands on good and medium sites were thinned from above or below to a basal area of 70 ft2, 85 ft2, and 100 ft2/acre, to an increasing basal area, or according to the judgment of a committee. Treatments began at age 20 for original plots and at age 25...
Roosevelt elk selection of temperate rain forest seral stages in western Washington
Schroer, Greg L.; Jenkins, Kurt J.; Moorhead, Bruce B.
1993-01-01
We studied habitat selection by Roosevelt elk (Cervus elaphus roosevelti) in a temperate rain forest in the lower Queets River Valley of the western Olympic Peninsula, Washington from June 1986-July 1987. Elk annual home ranges included predominantly unlogged forests protected within Olympic National Park and logged, regenerating forests adjacent to the park. Radio-collared elk selected valley floors during all seasons except winter, when elk frequently used an adjoining plateau 60 m above the floodplain. In winder, radio-collared elk selected 6-15 year-old clearcuts, which were available on the plateau. Elk selected mature deciduous forests of the valley floor during spring, summer, and autumn, and generally they selected old-age Sitka spruce forests during autumn and winter. Young clearcuts (1-5 years old) and even-aged, regenerating stands (16-150 years old) generally were avoided during all seasons. Management practices that retain preferred habitat of elk, such as deciduous forests, 6-15 yr-old coniferous stands, and old-age coniferous bottomland forests will benefit elk, particularly on elk ranges managed for short-rotation, even-aged stands. Silvicultural alternatives to typical even-aged stand management, such as uneven-aged management and commercial thinning, should also be considered for improving and maintaining interspersion of forage and cover.
Brian R. Lockhart; James S. Meadows; John D. Hodges
2005-01-01
Stand development invloves changes in stand structure over time. Knowledge of stand dvelopment patterns is crucial for effective forest managment, especially of southern botomland hardwood forests. These forests contain more than 70 tree species, many of which ahve commercial timber and wildlife habitat value. In this paper, current techniques in stand development...
Barbour, Kamil E; Lui, Li-Yung; McCulloch, Charles E; Ensrud, Kristine E; Cawthon, Peggy M; Yaffe, Kristine; Barnes, Deborah E; Fredman, Lisa; Newman, Anne B; Cummings, Steven R; Cauley, Jane A
2016-12-01
Prior studies have only considered one measurement of physical performance in its relationship to fractures and mortality. A single measurement is susceptible to large within-person changes over time, and thus, may not capture the true association between physical performance and the outcomes of interest. Using data from the Study of Osteoporotic Fractures, we followed 7,015 women enrolled prior to age 80 years who had outcome information beyond this age. Trajectories of walking speed (m/s) and chair stand speed (stands/s) were estimated up to the last visit prior to age 80 years using mixed-effects linear regression. Physical performance at age 80 (PF_age80) was assessed at the last visit prior to age 80 years. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards regression and multivariate models adjusted for all other covariates. Greatest walking speed decline and chair stand speed decline were both associated with higher risk of hip fracture (HR: 1.28; 95% CI: 1.03, 1.58 and HR: 1.26; 95% CI: 1.03, 1.54, respectively), but not nonspine fractures. Greatest walking speed decline and chair stand speed decline were both associated with a significant 29% (95% CI: 17-42%) and 27% (95% CI: 15-39%) increased risk of mortality, respectively. Greatest declines in walking speed and chair stand speed were both associated with an increased risk of hip fracture and mortality independent of PF_age80 and other important confounders. Both physical performance change and the single physical performance measurement should be considered in the etiology of hip fracture and mortality. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lizard activity and abundance greater in burned habitat of a xeric montane forest
Fouts, Kevin L.; Moore, Clinton; Johnson, Kristine D.; Maerz, John C.
2017-01-01
Restoring the natural or historical state of ecosystems is a common objective among resource managers, but determining whether desired system responses to management actions are occurring is often protracted and challenging. For wildlife, the integration of mechanistic habitat modeling with population monitoring may provide expedited measures of management effectiveness and improve understanding of how management actions succeed or fail to recover populations. Southern Appalachia is a region of high biodiversity that has undergone dramatic change as a result of human activities such as historic logging, exotic invasions, and alteration of disturbance regimes—including reduction in application of fire. Contemporary efforts to restore fire-maintained ecosystems within southern Appalachian forests require tools to assess the effects of fire management practices on individual animal fitness and relate them to corresponding influences on species abundance. Using automated sensing equipment, we investigated the effects of burned forests on reptile habitat suitability within the western portion of Great Smoky Mountains National Park, Tennessee. Specifically, we used microclimate measurements to model northern fence lizard Sceloporus undulatus hyacinthinus diurnal activity budgets in unburned and variable burn age (3–27-y) forest stands. We estimated northern fence lizard occurrence and abundance along transects through burned and unburned forests. Burned forest stands had microclimates that resulted in longer modeled daily activity periods under most conditions during summer. S. undulatus abundance was 4.75 times greater on burned stands compared to paired unburned stands, although the relationship between burn age and abundance was not well determined. Results suggest the more open habitat structure of burned areas within these xeric pine–oak forests may benefit S. undulatus.
Dreischarf, Marcel; Pries, Esther; Bashkuev, Maxim; Putzier, Michael; Schmidt, Hendrik
2016-03-21
The individual lumbar lordosis and lumbar motion have been identified to play an important role in pathogenesis of low back pain and are essential references for preoperative planning and postoperative evaluation. The clinical "gold-standard" for measuring lumbar lordosis and its motion are radiological "snap-shots" taken while standing and during upper-body flexion and extension. The extent to which these clinically assessed values characterise lumbar alignment and its motion in daily life merits discussion. A non-invasive measurement-system was employed to measure lumbar lordosis and lumbar motion in 208 volunteers (age: 20-74yrs; ♀/♂: 115/93). For an initial short-term measurement, comparable with the clinical "snap-shot", lumbar lordosis and its motion were assessed while standing and during flexion and extension. Subsequently, volunteers were released to their daily lives while wearing the device, and measurements were performed during the following 24h. The average lumbar lordosis during 24h (8.0°) differed significantly from the standardised measurement while standing (33.3°). Ranges of motion were significantly different throughout the day compared to standing measurements. The influence of the factors age and gender on lordosis and its motion resulted in conflicting results between long- and short-term-measurements. In conclusion, results of short-term examinations differ considerably from the average values during real-life. These findings might be important for surgical planning and increase the awareness of the biomechanical challenges that spinal structures and implants face in real-life. Furthermore, long-term assessments of spinal alignment and motion during daily life can provide valid data on spinal function and can reveal the importance of influential factors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Philpott, Timothy J; Barker, Jason S; Prescott, Cindy E; Grayston, Sue J
2018-02-01
Fine root litter is the principal source of carbon stored in forest soils and a dominant source of carbon for fungal decomposers. Differences in decomposer capacity between fungal species may be important determinants of fine-root decomposition rates. Variable-retention harvesting (VRH) provides refuge for ectomycorrhizal fungi, but its influence on fine-root decomposers is unknown, as are the effects of functional shifts in these fungal communities on carbon cycling. We compared fungal communities decomposing fine roots (in litter bags) under VRH, clear-cut, and uncut stands at two sites (6 and 13 years postharvest) and two decay stages (43 days and 1 year after burial) in Douglas fir forests in coastal British Columbia, Canada. Fungal species and guilds were identified from decomposed fine roots using high-throughput sequencing. Variable retention had short-term effects on β-diversity; harvest treatment modified the fungal community composition at the 6-year-postharvest site, but not at the 13-year-postharvest site. Ericoid and ectomycorrhizal guilds were not more abundant under VRH, but stand age significantly structured species composition. Guild composition varied by decay stage, with ruderal species later replaced by saprotrophs and ectomycorrhizae. Ectomycorrhizal abundance on decomposing fine roots may partially explain why fine roots typically decompose more slowly than surface litter. Our results indicate that stand age structures fine-root decomposers but that decay stage is more important in structuring the fungal community than shifts caused by harvesting. The rapid postharvest recovery of fungal communities decomposing fine roots suggests resiliency within this community, at least in these young regenerating stands in coastal British Columbia. IMPORTANCE Globally, fine roots are a dominant source of carbon in forest soils, yet the fungi that decompose this material and that drive the sequestration or respiration of this carbon remain largely uncharacterized. Fungi vary in their capacity to decompose plant litter, suggesting that fungal community composition is an important determinant of decomposition rates. Variable-retention harvesting is a forestry practice that modifies fungal communities by providing refuge for ectomycorrhizal fungi. We evaluated the effects of variable retention and clear-cut harvesting on fungal communities decomposing fine roots at two sites (6 and 13 years postharvest), at two decay stages (43 days and 1 year), and in uncut stands in temperate rainforests. Harvesting impacts on fungal community composition were detected only after 6 years after harvest. We suggest that fungal community composition may be an important factor that reduces fine-root decomposition rates relative to those of above-ground plant litter, which has important consequences for forest carbon cycling. Copyright © 2018 American Society for Microbiology.
Growth and Yield Predictions for Thinned Stands of Even-aged Natural Longleaf Pine
Robert M. Farrar
1979-01-01
This paper presents a system of equations and resulting tables that can predict stand volumes for thinned natural longleaf pine. The system can predict current and future total stand volume in cubic feet and merchantable stand volume in cubic feet, cords, and board feet. The system also provides for estimating dry-weight production of wood. The system uses input data...
Chung M. Chen; Dietmar W. Rose; Rolfe A. Leary
1980-01-01
Describes how dynamic programming can be used to solve optimal stand density problems when yields are given by prior simulation or by a new stand growth equation that is a function of the decision variable. Formulations of the latter type allow use of a calculus-based search procedure; they determine exact optimal residual density at each stage.
AmeriFlux US-NMj Northern Michigan Jack Pine Stand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiquan
This is the AmeriFlux version of the carbon flux data for the site US-NMj Northern Michigan Jack Pine Stand. Site Description - The jack pine site is owned by Michigan Technological University. The stand is managed, and thus thinned and harvested depending on stand age. This jack pine site is naturally regenerating following a clearcut around 1989. Heavy snow in December 2001 c
PATTERNS OF ROOT GROWTH, TURNOVER, AND DISTRIBUTION IN DIFFERENT AGED PONDEROSA PINE STANDS
The objectives of this study are to examine the spatial distribution of roots in relation to canopy size and tree distribution, and to determine if rates of fine root production and turnover are similar in the different aged stands. During the fall of 1998, 54 clear plexiglass t...
Yield comparisons from even-aged and uneven-aged loblolly-shortleaf pine stands
James M. Guldin; James B. Baker
1988-01-01
Empirical yields for a 36-year management period are presented for seven long-term studies on similar sites in loblolly-shortleaf pine (Pinus taeda L.-P. echinata Mill.) stands on the upper southern coastal plain of southern Arkansas and northern Louisiana. Total merchantable cubic-fooy yields are highest for conventionally...
An Individual-Tree Growth and Yield Prediction System for Uneven-Aged Shortleaf Pine Stands
Michael M. Huebschmann; Lawrence R. Gering; Thomas B. Lynch; Onesphore Bitoki; Paul A. Murphy
2000-01-01
A system of equations modeling the growth and development of uneven-aged shortleaf pine (Pinus echinata Mill.) stands is described. The prediction system consists of two main components: (1) a distance-independent, individual-tree simulator containing equations that forecast ingrowth, basal-area growth, probability of survival, total and...
Height prediction equations for even-aged upland oak stands
Donald E. Hilt; Martin E. Dale
1982-01-01
Forest growth models that use predicted tree diameters or diameter distributions require a reliable height-prediction model to obtain volume estimates because future height-diameter relationships will not necessarily be the same as the present height-diameter relationship. A total tree height prediction equation for even-aged upland oak stands is presented. Predicted...
Does Prescribed Burning Have a Place in Regenerating Uneven-Aged Loblolly-Shortleaf Pine Stands?
Michael D. Cain; Michael G. Shelton
2002-01-01
Before the 1981 growing season, a study was installed in southeastern Arkansas to examine the effects of three dormant-season burn intervals (low, moderate, and high frequency) and an unburned treatment on natural regeneration in uneven-aged stands of loblolly and shortleaf pines (Pinus taeda and P. echinata, respectively)....
Michael G. Shelton; Paul A. Murphy
1997-01-01
The effects of retaining overstory hardwoods on understory vegetation were determined after implementing uneven-aged silviculture usingsingle-tree selection in a shortleaf pine-oak stand (Pinus echinata Mill. and Quercus spp.) in the Ouachita Mountains. Treatments were the following hardwood basal areas (square feet per acre) and...
Relative size and stand age determine Pinus banksiana mortality
Han Y. H. Chen; Songling Fu; Robert A. Monserud; Ian C. Gillies
2008-01-01
Tree mortality is a poorly understood process in the boreal forest. Whereas large disturbances reset succession by killing all or most trees, background tree mortality was hypothesized to be affected by competition, ageing, and stand composition. We tested these hypotheses on jack pine (Pinus banksiana Lamb.) mortality using data from long-term...
SEASONAL PATTERNS OF FINE ROOT PRODUCTION AND TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES
Root minirhizotron tubes were installed in two ponderosa pine (Pinus ponderosa Laws.) stands around three different tree age classes (16, 45, and > 250 yr old) to examine root spatial distribution in relation to canopy size and tree distribution, and to determine if rates of fine...
FINE ROOT TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES: FIRST-YEAR RESULTS
Root minirhizotron tubs were installed in two ponderosa pine (Pinus ponderosa Laws.) Stands of different ages to examine patterns of root growth and death. The old-growth site (OS) consists of a mixture of old (>250 years) and young trees (ca.45 yrs)< and is located near clamp S...
Assessing regeneration potential
Ivan L. Sander
1989-01-01
When a regeneration harvest cut is planned for even-aged stands or it is time to make another cut in uneven-aged stands, the first thing to do is assess the regeneration potential. Regeneration potential is the likelihood of being successful in reproducing desired species. You need an assessment to be reasonably sure that regeneration and management objectives can be...
A survival model for individual shortleaf pine trees in even-aged natural stands
Thomas B. Lynch; Michael M. Huebschmann; Paul A. Murphy
2000-01-01
A model was developed that predicts the probability of survival for individual shortleaf pine (Pinus echinata Mill.) trees growing in even-aged natural stands. Data for model development were obtained from the first two measurements of permanently established plots located in naturally occurring shortleaf pine forests on the Ouachita and...
A Survival Model for Shortleaf Pine Tress Growing in Uneven-Aged Stands
Thomas B. Lynch; Lawrence R. Gering; Michael M. Huebschmann; Paul A. Murphy
1999-01-01
A survival model for shortleaf pine (Pinus echinata Mill.) trees growing in uneven-aged stands was developed using data from permanently established plots maintained by an industrial forestry company in western Arkansas. Parameters were fitted to a logistic regression model with a Bernoulli dependent variable in which "0" represented...
Callister, Kate E.; Griffioen, Peter A.; Avitabile, Sarah C.; Haslem, Angie; Kelly, Luke T.; Kenny, Sally A.; Nimmo, Dale G.; Farnsworth, Lisa M.; Taylor, Rick S.; Watson, Simon J.; Bennett, Andrew F.; Clarke, Michael F.
2016-01-01
Understanding the age structure of vegetation is important for effective land management, especially in fire-prone landscapes where the effects of fire can persist for decades and centuries. In many parts of the world, such information is limited due to an inability to map disturbance histories before the availability of satellite images (~1972). Here, we describe a method for creating a spatial model of the age structure of canopy species that established pre-1972. We built predictive neural network models based on remotely sensed data and ecological field survey data. These models determined the relationship between sites of known fire age and remotely sensed data. The predictive model was applied across a 104,000 km2 study region in semi-arid Australia to create a spatial model of vegetation age structure, which is primarily the result of stand-replacing fires which occurred before 1972. An assessment of the predictive capacity of the model using independent validation data showed a significant correlation (rs = 0.64) between predicted and known age at test sites. Application of the model provides valuable insights into the distribution of vegetation age-classes and fire history in the study region. This is a relatively straightforward method which uses widely available data sources that can be applied in other regions to predict age-class distribution beyond the limits imposed by satellite imagery. PMID:27029046
C. Perez; J. Frangi; J.F. Goya; A. Luy; M. Arturi; NO-VALUE
2013-01-01
Entre RÃos province is an important center of Eucalyptus spp. plantations in Argentina. It was hypothesized that fine root biomass and litter mass increased with age increasing in plantations. Five, seven and seventeen year old stands of Eucalyptus grandis were sampled. All of them were first rotation stands. We estimated the mass of litter and fine roots (
Managed forest reserves: preserving diversity
Tappeiner, John; Poage, Nathan; Erickson, Janet L.
2003-01-01
As part of the Northwest Forest Plan, large areas have been designated on many federal forests in western Oregon to provide critical habitat for plants and animals that are associated with old-growth habitat. Some of the structural characteristics often considered typical of old forests include large-diameter overstory trees, large standing and fallen dead trees, and one or more understory layers (Figure 1). However, not all of these areas are currently in old-growth conditions. Many of them contain young (<40 years), uniformly dense Douglas-fir stands that regenerated after timber harvest. The original management goal for these stands was to produce high yields of timber and associated wood products. With implementation of the Northwest Forest Plan in 1994, the management objective shifted to accelerating development of old-growth characteristics by enhancing structural and biological diversity of these areas.A major challenge today is how to promote these structural characteristics in younger stands. Researchers have been asking if lessons can be learned from the development of our current old growth and applied to management of younger stands. Dr. John Tappeiner and his university and agency research partners are helping to answer this question by examining the differences in development between old-growth and young stands in western Oregon. Understanding how the structure of these old forests developed may provide a model for management of young stands, especially when the management goal is to provide habitat for species associated with older forests.
Guillemot, Joannès; Delpierre, Nicolas; Vallet, Patrick; François, Christophe; Martin-StPaul, Nicolas K; Soudani, Kamel; Nicolas, Manuel; Badeau, Vincent; Dufrêne, Eric
2014-09-01
The structure of a forest stand, i.e. the distribution of tree size features, has strong effects on its functioning. The management of the structure is therefore an important tool in mitigating the impact of predicted changes in climate on forests, especially with respect to drought. Here, a new functional-structural model is presented and is used to assess the effects of management on forest functioning at a national scale. The stand process-based model (PBM) CASTANEA was coupled to a stand structure module (SSM) based on empirical tree-to-tree competition rules. The calibration of the SSM was based on a thorough analysis of intersite and interannual variability of competition asymmetry. The coupled CASTANEA-SSM model was evaluated across France using forest inventory data, and used to compare the effect of contrasted silvicultural practices on simulated stand carbon fluxes and growth. The asymmetry of competition varied consistently with stand productivity at both spatial and temporal scales. The modelling of the competition rules enabled efficient prediction of changes in stand structure within the CASTANEA PBM. The coupled model predicted an increase in net primary productivity (NPP) with management intensity, resulting in higher growth. This positive effect of management was found to vary at a national scale across France: the highest increases in NPP were attained in forests facing moderate to high water stress; however, the absolute effect of management on simulated stand growth remained moderate to low because stand thinning involved changes in carbon allocation at the tree scale. This modelling approach helps to identify the areas where management efforts should be concentrated in order to mitigate near-future drought impact on national forest productivity. Around a quarter of the French temperate oak and beech forests are currently in zones of high vulnerability, where management could thus mitigate the influence of climate change on forest yield.
Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests.
Schurman, Jonathan S; Trotsiuk, Volodymyr; Bače, Radek; Čada, Vojtěch; Fraver, Shawn; Janda, Pavel; Kulakowski, Dominik; Labusova, Jana; Mikoláš, Martin; Nagel, Thomas A; Seidl, Rupert; Synek, Michal; Svobodová, Kristýna; Chaskovskyy, Oleh; Teodosiu, Marius; Svoboda, Miroslav
2018-05-01
Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large-scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring-based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750-2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long-term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within-stand structural variability. Reconstructed spatial patterns suggest that high small-scale structural variability has historically acted to reduce large-scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region-wide increase in disturbance susceptibility. Increasingly common high-severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events). © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yanai, R. D.; Bae, K.; Levine, C. R.; Lilly, P.; Vadeboncoeur, M. A.; Fatemi, F. R.; Blum, J. D.; Arthur, M.; Hamburg, S.
2013-12-01
Ecosystem nutrient budgets are difficult to construct and even more difficult to replicate. As a result, uncertainty in the estimates of pools and fluxes are rarely reported, and opportunities to assess confidence through replicated measurements are rare. In this study, we report nutrient concentrations and contents of soil and biomass pools in northern hardwood stands in replicate plots within replicate stands in 3 age classes (14-19 yr, 26-29 yr, and > 100 yr) at the Bartlett Experimental Forest, USA. Soils were described by quantitative soil pits in three plots per stand, excavated by depth increment to the C horizon and analyzed by a sequential extraction procedure. Variation in soil mass among pits within stands averaged 28% (coefficient of variation); variation among stands within an age class ranged from 9-25%. Variation in nutrient concentrations were higher still (averaging 38%, within element, depth increment, and extraction type), perhaps because the depth increments contained varying proportions of genetic horizons. To estimate nutrient contents of aboveground biomass, we propagated model uncertainty through allometric equations, and found errors ranging from 3-7%, depending on the stand. The variation in biomass among plots within stands (6-19%) was always larger than the allometric uncertainties. Variability in measured nutrient concentrations of tree tissues were more variable than the uncertainty in biomass. Foliage had the lowest variability (averaging 16% for Ca, Mg, K, N and P within age class and species), and wood had the highest (averaging 30%), when reported in proportion to the mean, because concentrations in wood are low. For Ca content of aboveground biomass, sampling variation was the greatest source of uncertainty. Coefficients of variation among plots within a stand averaged 16%; stands within an age class ranged from 5-25% CV, including uncertainties in tree allometry and tissue chemistry. Uncertainty analysis can help direct research effort to areas most in need of improvement. In systems such as the one we studied, more intensive sampling would be the best approach to reducing uncertainty, as natural spatial variation was higher than model or measurement uncertainties.
Soil surface CO2 flux in a boreal black spruce fire chronosequence
NASA Astrophysics Data System (ADS)
Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.
2003-02-01
Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p < 0.001), but different models were required for each drainage class × aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.
Soil surface CO2 flux in a boreal black spruce fire chronosequence
NASA Astrophysics Data System (ADS)
Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.
2002-02-01
Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p < 0.001), but different models were required for each drainage class × aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.
Sensitive period in stereopsis: random dot stereopsis after long-standing strabismus.
Hatch, S W; Laudon, R
1993-12-01
Bifoveal fixation is a requirement for random dot stereopsis. It is believed that random dot stereopsis is not possible after treatment of long-standing strabismus because binocular cortical cells are permanently damaged when strabismus is present during the sensitive period. Although the sensitive period for amblyopia has been clearly documented, the sensitive period for stereopsis is uncertain. We present a case we have followed from age 22 months to 10 years. This patient had intermittent esotropia until approximately age 3 years 4 months; he then had constant esotropia from about age 3 years 4 months to age 9 years 7 months. After orthoptic treatment at age 9 years, the patient returned to intermittent esotropia. He subsequently developed bifoveal fixation as measured by 30 sec arc of contour stereopsis and 250 to 500 sec arc of random dot stereopsis. This patient demonstrates that bifoveal fixation can be obtained after long-standing strabismus. We suggest that the sensitive period for stereopsis development, for this patient, was from birth to age 3 years.
26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG043535572; Drawing ...
26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 25 of 148; file no. 1320/76. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Justin P. Ziegler; Chad M. Hoffman; Paula J. Fornwalt; Carolyn H. Sieg; Michael A. Battaglia; Marin E. Chambers; Jose M. Iniguez
2017-01-01
Shifting fire regimes alter forest structure assembly in ponderosa pine forests and may produce structural heterogeneity following stand-replacing fire due, in part, to fine-scale variability in growing environments. We mapped tree regeneration in eighteen plots 11 to 15 years after stand-replacing fire in Colorado and South Dakota, USA. We used point pattern analyses...
A.R. Weiskittel; D.A. Maguire; R.A. Monserud
2007-01-01
Crown structure is a key variable influencing stand productivity, but its reported response to various stand factors has differed. This can be partially attributed to lack of a unified study on crown response to intensive management or stand health. In this analysis of several Douglas-fir (Pseudotsuga menziesii var. menziesii [...
Brian S. Hughett; Wayne K. Clatterbuck
2014-01-01
Differences in composition, structure, and growth under canopy gaps created by the mortality of a single stem were analyzed using analysis of variance under two scenarios, with stem removed or with stem left as a standing snag. There were no significant differences in composition and structure of large diameter residual stems within upper canopy strata. Some...
1962-07-03
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of July 3, 1963. All four of its tower legs are well underway.
1963-09-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of September 5, 1963.
1962-10-26
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken October 26, 1962, depicts the excavation process of the single engine F-1 stand.
1963-09-30
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of September 30, 1963.
1963-06-24
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of June 24, 1963. Two if its four tower legs are underway.
1962-11-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken November 15, 1962, depicts the excavation process of the single engine F-1 stand site.
1963-10-22
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Northeast of the massive S-IC test stand, the F-1 Engine test stand was built. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the fuel tanks that housed kerosene and just beyond those is the F-1 test stand.
Yield of Unthinned Yellow-Poplar
Donald E. Beck; Lino Della-Bianca
1970-01-01
Cubic-foot and board-foot yields of unthinned yellow-poplar (Liriodendron Tulipiferi L.) stands are described in relation to stand age, site index, and number of trees per acre. The yield tables are based on analysis of diameter distributions and height-diameter relationships obtained from 141 natural, unthinned yellow-poplar stands in the...
Development of a Southern Appalachian Hardwood Stand After Clearcutting
Donald E. Beck; Ralph M. Hooper
1986-01-01
A mixed hardwood stand composed of 53% oak (Quercus spp.), 33% yellow-poplar(Liriodendron tulipifera L.), and 14% other species, was clearcut in 1963. Twenty years later a developing, even-aged stand of predominantly sprout origin is dominated by yellow-poplar, black locust(Robinia pseudoacacia L.), redmaple (...
Distribution-of-cut guides for thinning in Allegheny hardwoods: a review
Christopher A. Nowak; David A. Marquis
1997-01-01
Distribution-of-cut guidelines describe the amount of stand density to be removed from broad size classes of trees to attain a target residual stand density and stand structure. Current guides for thinning Allegheny hardwoods recommend that 75 percent of the cut relative stand density be taken from below the average stand diameter and 25 percent from above. These...
NASA Astrophysics Data System (ADS)
Fedrigo, Melissa; Newnham, Glenn J.; Coops, Nicholas C.; Culvenor, Darius S.; Bolton, Douglas K.; Nitschke, Craig R.
2018-02-01
Light detection and ranging (lidar) data have been increasingly used for forest classification due to its ability to penetrate the forest canopy and provide detail about the structure of the lower strata. In this study we demonstrate forest classification approaches using airborne lidar data as inputs to random forest and linear unmixing classification algorithms. Our results demonstrated that both random forest and linear unmixing models identified a distribution of rainforest and eucalypt stands that was comparable to existing ecological vegetation class (EVC) maps based primarily on manual interpretation of high resolution aerial imagery. Rainforest stands were also identified in the region that have not previously been identified in the EVC maps. The transition between stand types was better characterised by the random forest modelling approach. In contrast, the linear unmixing model placed greater emphasis on field plots selected as endmembers which may not have captured the variability in stand structure within a single stand type. The random forest model had the highest overall accuracy (84%) and Cohen's kappa coefficient (0.62). However, the classification accuracy was only marginally better than linear unmixing. The random forest model was applied to a region in the Central Highlands of south-eastern Australia to produce maps of stand type probability, including areas of transition (the 'ecotone') between rainforest and eucalypt forest. The resulting map provided a detailed delineation of forest classes, which specifically recognised the coalescing of stand types at the landscape scale. This represents a key step towards mapping the structural and spatial complexity of these ecosystems, which is important for both their management and conservation.
Test stand for Titan 34D SRM static firing
NASA Technical Reports Server (NTRS)
Glozman, Vladimir; Shipway, George
1988-01-01
An existing liquid engine test stand at the AF Astronautics Laboratory was refurbished and extensively modified to accommodate the static firing of the Titan 34D solid rocket motor (SRM) in the vertical nozzle down orientation. The main load restraint structure was designed and built to secure the SRM from lifting off during the firing. In addition, the structure provided weather protection, temperature conditioning of the SRM, and positioning of the measurement and recording equipment. The structure was also used for stacking/de-stacking of SRM segments and other technological processes. The existing stand, its foundation and anchorage were thoroughly examined and reanalyzed. Necessary stand modifications were carried out to comply with the requirements of the Titan 34D SRM static firing.
McDougall, Karen E; Stewart, Alison J; Argiriou, Alison M; Huggins, Catherine E; New, Peter W
2018-02-01
To compare standing height, estimated current height and demi-span estimated height and examine their impact on body mass index (BMI) classification. Cross-sectional data was collected on 104 patients admitted to an adult rehabilitation ward and seen by the dietitian. Patient's standing, estimated current height and demi-span estimated height were collected and grouped by age: 19-64 and ≥65 years. The limits of agreement (95% confidence interval) for estimated current height compared with standing height were +9.9 cm and -7.9 cm, in contrast to +8.7 cm and -14.3 cm for demi-span estimated height. Demi-span underestimated height when compared with standing height in both age groups, 19-64 years: (mean ± SD) 3.0 ± 6.5 cm (P = 0.001, n = 68) and ≥ 65 year age group 4.0 ± 6.0 cm (P < 0.001, n = 36), resulting in a significantly greater mean BMI (analysis of variance P < 0.001, P = 0.02). In the 19-64 and ≥65 year age groups, 3% (2/68) and 10% (4/36) of patients, respectively, had a different BMI classification using demi-span estimated height compared with standing height. Estimated current height is a simple and practical alternative if standing height is unable to be obtained when performing a nutrition assessment. Demi-span estimated height should be used with caution when calculating BMI to assess nutritional status, particularly in the elderly. © 2017 Dietitians Association of Australia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.
Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less
A-3 Test Stand continues with test cell installation
2010-07-20
Employees at Stennis Space Center continue work on the A-3 Test Stand. As shown, a section of the test cell is lifted for installation on the stand's structural steel frame. Work on the A-3 Test Stand began in 2007. It is scheduled for activation in 2012.
DETAIL VIEW OF THE STRUCTURE OF THE BASE OF THE ...
DETAIL VIEW OF THE STRUCTURE OF THE BASE OF THE TEST STAND AND THE TAIL SECTION OF A REDSTONE (JUPITER) ROCKET. NOTE THE FLAME DEFLECTOR BEHIND THE STRUCTURE IN THE FOREGROUND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
John R. Jones; Norbert V. DeByle
1985-01-01
In some areas, many aspen stands are all the same age, dating from a single great fire or a year of widespread fires (fig. 1). The 1879 fire in the Jackson Hole region of Wyoming (Loope and Gruell 1973) and the 1904 fires in Arizona's White Mountains (Kallander 1969) are examples. Choate (1966) found that almost all aspen stands in New Mexico were even-aged, many...
A comparison of dynamic and static economic models of uneven-aged stand management
Robert G. Haight
1985-01-01
Numerical techniques have been used to compute the discrete-time sequence of residual diameter distributions that maximize the present net worth (PNW) of harvestable volume from an uneven-aged stand. Results contradicted optimal steady-state diameter distributions determined with static analysis. In this paper, optimality conditions for solutions to dynamic and static...
A survival model for individual shortleaf pine trees in even-aged natural stands
Thomas B. Lynch; Michael M. Huebschmann; Paul A. Murphy
2000-01-01
A model was developed that predicts the probability of survival for individual shortleaf pine (Pinus echinata Mill.) trees growing in even-aged natural stands. Data for model development were obtained from the first two measurements of permanently established plots located in naturally occurring shortleaf pine forests on the Ouachita and Ozark...
Determining site index accurately in even-aged stands
Gayne G. Erdmann; Ralph M., Jr. Peterson
1992-01-01
Good site index estimates are necessary for intensive forest management. To get tree age used in determining site index, increment cores are commonly used. The diffuse-porous rings of northern hardwoods, though, are difficult to count in cores, so many site index estimates are imprecise. Also, measuring the height of standing trees is more difficult and less accurate...
Growing stock levels in even-aged ponderosa pine
Clifford A. Myers
1967-01-01
Growth of the most widely distributed pine in North America is under joint study by the western Forest and Range Experiment Stations of the U. S. Forest Service. Young, even-aged ponderosa pine (Pinus ponderosa Laws.) stands are being examined over a wide range of tree sizes, stand densities, and site index. The single plan that co-...
Robert G. Haight; J. Douglas Brodie; Darius M. Adams
1985-01-01
The determination of an optimal sequence of diameter distributions and selection harvests for uneven-aged stand management is formulated as a discrete-time optimal-control problem with bounded control variables and free-terminal point. An efficient programming technique utilizing gradients provides solutions that are stable and interpretable on the basis of economic...
Validation of SILVAH for tolerant hardwoods in Ontario
Jacek Bankowski; Daniel C. Dey; Rice Jim; Eric Boysen; Roj Miller
1995-01-01
SILVAH, a stand growth simulator commonly used in the northeastern United States, has been evaluated by comparing predicted and actual growth of tolerant hardwoods in southern Ontario. The data came from 139 stands, unmanaged or managed (thinned), even-aged or uneven-aged. The data were used to test the accuracy of diameter distribution, basal area, mean quadratic DBH...
Economic considerations of uneven-age hardwood management
H. Clay Smith; Gary W. Miller
1987-01-01
Uneven-age management or partial cutting methods as described in this paper allow foresters to manage eastern hardwood stands and harvest forest products without clearcutting. These methods can involve regular periodic harvests, at least for the short term, based on stand conditions and growing-site capabilities. We are not going to make the decision as to which is the...
Associations between regional moisture gradient, tree species dominance, and downed wood abundance
NASA Astrophysics Data System (ADS)
Johnson, A. C.; Mills, J.
2007-12-01
Downed wood functions as a source of nurse logs, physical structure in streams, food, and carbon. Because downed wood is important in upland and aquatic habitats, an understanding of wood recruitment along a continuum from wet to dry landscapes is critical for both preservation of biodiversity and restoration of natural ecosystem structure and function. We assessed downed wood in public and private forests of Washington and Oregon by using a subset of the Forest Inventory and Analysis (FIA) database including 15,842 sampled conditions. Multivariate regression trees, ANOVA, and t-tests were used to discern environmental conditions most closely associated with abundance of woody debris. Of the 16 parameters included in the analysis, rainfall, forest ownership, number of damaged standing trees, and forest elevation were most indicative of woody debris abundance. The Hemlock/spruce Group, including hemlock, spruce, cedar, and white pine, most associated with wetter soils, had significantly more downed wood than 12 other forest groups. The Ponderosa Pine Group, indicative of drier sites with higher fire frequencies, included ponderosa pine, sugar pine, and incense cedar, and had significantly less downed wood volume. Overall, the amount of woody debris in either the Spruce/hemlock Group or the Ponderosa Pine Group did not change significantly as tree age increased from 5 to 350 years. Plots within the Hemlock/spruce with greater standing tree volume also had significantly greater downed wood volume. In contrast, greater downed wood volume was not associated with greater standing tree volume in the Ponderosa Pine Group. Knowledge of linkages among environmental variables and stand characteristics are useful in development of regional forest models aimed at understanding the effects of climate change and disturbance on forest succession.
Energy expenditure during standing in children with cerebral palsy: A brief report1.
Saxena, Shikha; Kumaran, Senthil; Rao, Bhamini K
2016-09-02
The aim of the study was to estimate the energy expenditure (EE) during a quiet standing task in children with bilateral spastic CP (BSCP) in comparison with typically developing (TD) children, using gas analyzer. The study was an observational cross-sectional study of children with BSCP (Gross Motor Function Classification System [GMFCS] levels II and III; n = 30; 10 males, 20 females; mean weight 27.46 kgs; mean age 10 years) and TD children (n = 30; 16 males, 14 females; mean weight 25.35 kgs; mean age 9 years, 9 months). The energy expenditure during quiet standing task was measured by using Cosmed K4b2 gas analyzer and expressed in terms of peak oxygen consumption (VO2 max, ml/kg body weight/min). Children with BSCP expended 1.4 times higher energy during standing than TD children (p< 0.0001). We identified that standing puts an additional energy demand in ambulant children with BSCP. Findings suggest that both dependant and independent ambulating children with BSCP might need to exert more effort to maintain a static standing position. Therefore, clinicians must evaluate standing position for balance control and energy expenditure to evaluate the efficiency of physical therapy and rehabilitation.
[Vertical distribution of fuels in Pinus yunnanensis forest and related affecting factors].
Wang, San; Niu, Shu-Kui; Li, De; Wang, Jing-Hua; Chen, Feng; Sun, Wu
2013-02-01
In order to understand the effects of fuel loadings spatial distribution on forest fire kinds and behaviors, the canopy fuels and floor fuels of Pinus yunnanensis forests with different canopy density, diameter at breast height (DBH), tree height, and stand age and at different altitude, slope grade, position, and aspect in Southwest China were taken as test objects, with the fuel loadings and their spatial distribution characteristics at different vertical layers compared and the fire behaviors in different stands analyzed. The relationships between the fuel loadings and the environmental factors were also analyzed by canonical correspondence analysis (CCA). In different stands, there existed significant differences in the vertical distribution of fuels. Pinus yunnanensis-Qak-Syzygium aromaticum, Pinus yunnanensis-oak, and Pinus yunnanensis forests were likely to occur floor fire but not crown fire, while Pinus yunnanensis-Platycladus orientalis, Pinus yunnanensis-Keteleeria fortune, and Keteleeria fortune-Pinus yunnanensis were not only inclined to occur floor fire, but also, the floor fire could be easily transformed into crown fire. The crown fuels were mainly affected by the stand age, altitude, DBH, and tree height, while the floor fuels were mainly by the canopy density, slope grade, altitude, and stand age.
NASA Astrophysics Data System (ADS)
Abdullahi, Sahra; Schardt, Mathias; Pretzsch, Hans
2017-05-01
Forest structure at stand level plays a key role for sustainable forest management, since the biodiversity, productivity, growth and stability of the forest can be positively influenced by managing its structural diversity. In contrast to field-based measurements, remote sensing techniques offer a cost-efficient opportunity to collect area-wide information about forest stand structure with high spatial and temporal resolution. Especially Interferometric Synthetic Aperture Radar (InSAR), which facilitates worldwide acquisition of 3d information independent from weather conditions and illumination, is convenient to capture forest stand structure. This study purposes an unsupervised two-stage clustering approach for forest structure classification based on height information derived from interferometric X-band SAR data which was performed in complex temperate forest stands of Traunstein forest (South Germany). In particular, a four dimensional input data set composed of first-order height statistics was non-linearly projected on a two-dimensional Self-Organizing Map, spatially ordered according to similarity (based on the Euclidean distance) in the first stage and classified using the k-means algorithm in the second stage. The study demonstrated that X-band InSAR data exhibits considerable capabilities for forest structure classification. Moreover, the unsupervised classification approach achieved meaningful and reasonable results by means of comparison to aerial imagery and LiDAR data.
Classroom Standing Desks and Sedentary Behavior: A Systematic Review
Chao, Ariana M.; Irwin, Melinda L.; Owen, Neville; Park, Chorong; Whittemore, Robin; Salmon, Jo
2016-01-01
CONTEXT: Reducing sedentary behaviors, or time spent sitting, is an important target for health promotion in children. Standing desks in schools may be a feasible, modifiable, and acceptable environmental strategy to this end. OBJECTIVE: To examine the impact of school-based standing desk interventions on sedentary behavior and physical activity, health-related outcomes, and academic and behavioral outcomes in school-aged children. DATA SOURCES: Ovid Embase, Medline, PsycINFO, Web of Science, Global Health, and CINAHL. STUDY SELECTION: Full-text peer-reviewed journal publications written in English; samples of school-aged youth (5–18 years of age); study designs including the same participants at baseline and follow-up; and use of a standing desk as a component of the intervention. DATA EXTRACTION: Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS: Eight studies satisfied selection criteria and used quasi-experimental (n = 4), randomized controlled trial (n = 3), and pre–post, no control (n = 1) designs. When examined, time spent standing increased in all studies (effect sizes: 0.38–0.71), while sitting time decreased from a range of 59 to 64 minutes (effect sizes: 0.27–0.49). Some studies reported increased physical activity and energy expenditure and improved classroom behavior. LIMITATIONS: One-half of the studies had nonrandomized designs, and most were pilot or feasibility studies. CONCLUSIONS: This initial evidence supports integrating standing desks into the classroom environment; this strategy has the potential to reduce sitting time and increase standing time among elementary schoolchildren. Additional research is needed to determine the impact of standing desks on academic performance and precursors of chronic disease risk. PMID:26801914
Last interglacial (MIS5e) sea-levels and uplift along the north-east Gulf of Aqaba
NASA Astrophysics Data System (ADS)
BAR (KOHN), N.; Stein, M.; Agnon, A.; Yehudai, M.; Lazar, B.; Shaked, Y.
2014-12-01
An uplifted flight of coral reef terraces, extending along the north-east margin of the Gulf of Aqaba (GOA), provides evidence for uplift rates and sea level high stands. GOA fills a narrow and deep tectonic depression lying along the southern sector of the Dead Sea Transform where it meets the Red Sea. This special configuration of the GOA and its latitude turn it into a dependable paleo-sea level monitor, sensitive only to global eustatic changes and local tectonic movements. A sequence of five uplifted coral reef terraces were mapped and characterized on basis of morphology and reef-facies, and their elevation above the present sea level was determined. The fossil reefs studied comprise fringing reefs, some with clear reef-structure that includes a reef flat and a shallow back lagoon. Most outcrops in the study area represent a transgressive sequence in which, during its highest stand, formed fringing reef terraces. We use U-Th ages of fossil corals samples found in growth position at various terraces. Corals from three uplifted reef terraces, R1, R2, and R3 were dated to the last interglacial period particularly to marine isotope stage (MIS) 5e. These ages were achieved from mainly calcitic corals (recrystallized in a freshwater phreatic environment). A few ages were derived from aragonite corals. The three terraces represent three sub-stages within MIS5e: R3 formed during a short standstill at ~130 ka BP; R2 formed during a long and steady standstill between ~128 to ~121 ka BP; and R1 represents a short standstill at ~117 ka BP. Assuming that terrace reef flats represent past sea level high stands, we calculated the coast average uplift rate and constrained the original terraces elevations. The reconstructed eustatic sea level variation during MIS 5e at GOA resembles observations from reef terraces in other locations. Combined, all indicate a significant sea-level rise from the MIS 6 low stand at ~134-130 ka and followed by a long and stable sea level high stand between ~128 to ~121 ka, representing a major reef building period. The long and stable sea level was followed by additional sea-level rise at ~118-116 ka that transgressed over the "stable reefs".
Li, Shuaifeng; Lang, Xuedong; Liu, Wande; Ou, Guanglong; Xu, Hui; Su, Jianrong
2018-01-01
The relationship between biodiversity and biomass is an essential element of the natural ecosystem functioning. Our research aims at assessing the effects of species richness on the aboveground biomass and the ecological driver of this relationship in a primary Pinus kesiya forest. We sampled 112 plots of the primary P. kesiya forests in Yunnan Province. The general linear model and the structural equation model were used to estimate relative effects of multivariate factors among aboveground biomass, species richness and the other explanatory variables, including climate moisture index, soil nutrient regime and stand age. We found a positive linear regression relationship between the species richness and aboveground biomass using ordinary least squares regressions. The species richness and soil nutrient regime had no direct significant effect on aboveground biomass. However, the climate moisture index and stand age had direct effects on aboveground biomass. The climate moisture index could be a better link to mediate the relationship between species richness and aboveground biomass. The species richness affected aboveground biomass which was mediated by the climate moisture index. Stand age had direct and indirect effects on aboveground biomass through the climate moisture index. Our results revealed that climate moisture index had a positive feedback in the relationship between species richness and aboveground biomass, which played an important role in a link between biodiversity maintenance and ecosystem functioning. Meanwhile, climate moisture index not only affected positively on aboveground biomass, but also indirectly through species richness. The information would be helpful in understanding the biodiversity-aboveground biomass relationship of a primary P. kesiya forest and for forest management.
Li, Shuaifeng; Lang, Xuedong; Liu, Wande; Ou, Guanglong; Xu, Hui
2018-01-01
The relationship between biodiversity and biomass is an essential element of the natural ecosystem functioning. Our research aims at assessing the effects of species richness on the aboveground biomass and the ecological driver of this relationship in a primary Pinus kesiya forest. We sampled 112 plots of the primary P. kesiya forests in Yunnan Province. The general linear model and the structural equation model were used to estimate relative effects of multivariate factors among aboveground biomass, species richness and the other explanatory variables, including climate moisture index, soil nutrient regime and stand age. We found a positive linear regression relationship between the species richness and aboveground biomass using ordinary least squares regressions. The species richness and soil nutrient regime had no direct significant effect on aboveground biomass. However, the climate moisture index and stand age had direct effects on aboveground biomass. The climate moisture index could be a better link to mediate the relationship between species richness and aboveground biomass. The species richness affected aboveground biomass which was mediated by the climate moisture index. Stand age had direct and indirect effects on aboveground biomass through the climate moisture index. Our results revealed that climate moisture index had a positive feedback in the relationship between species richness and aboveground biomass, which played an important role in a link between biodiversity maintenance and ecosystem functioning. Meanwhile, climate moisture index not only affected positively on aboveground biomass, but also indirectly through species richness. The information would be helpful in understanding the biodiversity-aboveground biomass relationship of a primary P. kesiya forest and for forest management. PMID:29324901
Hall, S. A.; Burke, I.C.; Box, D. O.; Kaufmann, M. R.; Stoker, Jason M.
2005-01-01
The ponderosa pine forests of the Colorado Front Range, USA, have historically been subjected to wildfires. Recent large burns have increased public interest in fire behavior and effects, and scientific interest in the carbon consequences of wildfires. Remote sensing techniques can provide spatially explicit estimates of stand structural characteristics. Some of these characteristics can be used as inputs to fire behavior models, increasing our understanding of the effect of fuels on fire behavior. Others provide estimates of carbon stocks, allowing us to quantify the carbon consequences of fire. Our objective was to use discrete-return lidar to estimate such variables, including stand height, total aboveground biomass, foliage biomass, basal area, tree density, canopy base height and canopy bulk density. We developed 39 metrics from the lidar data, and used them in limited combinations in regression models, which we fit to field estimates of the stand structural variables. We used an information–theoretic approach to select the best model for each variable, and to select the subset of lidar metrics with most predictive potential. Observed versus predicted values of stand structure variables were highly correlated, with r2 ranging from 57% to 87%. The most parsimonious linear models for the biomass structure variables, based on a restricted dataset, explained between 35% and 58% of the observed variability. Our results provide us with useful estimates of stand height, total aboveground biomass, foliage biomass and basal area. There is promise for using this sensor to estimate tree density, canopy base height and canopy bulk density, though more research is needed to generate robust relationships. We selected 14 lidar metrics that showed the most potential as predictors of stand structure. We suggest that the focus of future lidar studies should broaden to include low density forests, particularly systems where the vertical structure of the canopy is important, such as fire prone forests.
Deborah K. Kennard
2002-01-01
Stand structure, species richness and population structures of tree species were characterized in 12 stands representing 50 y of succession following slash-and-burn agriculture in a tropical dry forest in lowland Bolivia. Estimates of tree species richness, canopy cover and basal area reached or surpassed 75% of mature forest levels in the 5-, 8-, and 23-y-old stands...
Chaput, Jean-Philippe; Saunders, Travis J; Tremblay, Mark S; Katzmarzyk, Peter T; Tremblay, Angelo; Bouchard, Claude
2015-02-10
It is increasingly recognized that standing represents a simple solution to extended periods of sitting. However, it is currently unknown whether workplace standing time is prospectively associated with a lower incidence of chronic diseases. The objective of this study was to examine the association between workplace standing time and the incidence of overweight/obesity (OW/OB) and impaired glucose tolerance/type 2 diabetes (IGT/T2D) in adults. A longitudinal analysis from the Quebec Family Study (Canada) was conducted on 293 participants, aged 18 to 65 years, followed for a mean of 6 years. Information on self-reported occupational standing time as well as several covariates was collected at both baseline and follow-up. Outcome measures included the development of OW/OB (i.e. body mass index ≥25 kg/m(2)) and IGT/T2D (i.e. 2-h postload plasma glucose level ≥7.8 mmol/L). The incidence rates of OW/OB and IGT/T2D over the 6-year follow-up period were 17.4% and 12.6%, respectively. Significant negative associations were observed between the amount of occupational standing time and the development of outcome measures. However, the associations were no longer significant after adjustment for age, sex, smoking habits, total annual family income, daily caloric intake, and submaximal working capacity. In age- and sex-adjusted logistic regression analysis, significant negative linear trends were observed across levels of standing time and the outcome variables. However, the associations were no longer significant after further adjustment for the other covariates. Finally, we observed that the change in standing time from baseline to year 6 was significantly associated with the development of outcome measures, with higher incidence rates in adults reporting a reduction in standing time at follow-up. However, the associations became non-significant after adjustment for covariates. Greater occupational standing time is not sufficient in and of itself to prevent the development of OW/OB and IGT/T2D in adults. Future efforts are needed to better understand the potential benefits of higher amounts of standing time throughout the day on the prevention of chronic diseases.
N2-fixation dynamics during ecosystem recovery in longleaf pine savannas
NASA Astrophysics Data System (ADS)
Tierney, J. A.
2016-12-01
Biological nitrogen fixation (BNF) can alleviate nitrogen (N) deficiencies that inhibit ecosystem recovery. BNF may be particularly important in ecosystems recovering from land-use change and perturbations from fire, as these disturbances can exacerbate N limitation. Here, we investigated how BNF dynamics change throughout ecosystem development in restored longleaf pine savannas, and how BNF responds to fire. We conducted this study in 59 1-ha plots of longleaf pine distributed across gradients of stand age and fire frequency at two sites in the southeastern US. We determined BNF contributions by three functional groups of N2-fixers (herbaceous legumes, biological soil crusts, and asymbiotic N2-fixing bacteria) by quantifying their abundances, assessing nitrogenase activity, and scaling these estimates up to the plot-level. To determine aboveground N demands, we measured tree growth using diameter increments and allometric equations paired with tissue-specific N concentrations. We fit linear models to evaluate the effects of stand age and time since fire on BNF and N demands throughout stand development, and performed separate analyses on mature stands to determine how fire return interval affects BNF. We observed distinct temporal patterns of N2-fixation across stand development among the three groups of N2 fixers. N2-fixation by legumes and asymbiotic bacteria remained low until stands reached maturity, while N2-fixation by biological soil crusts (BSCs) was high in juvenile stands and decreased with stand age. These patterns suggest a compensatory shift in the importance of these functional groups throughout stand development such that contributions from BSCs are critical for meeting N demands when disturbances may hinder the establishment of legumes and asymbiotic bacteria. N2-fixation by BSCs and asymbiotic bacteria throughout stand development was not affected by time since fire, but legume abundance increased the year following fire, suggesting a recovery mechanism provided by this group. Our findings suggest that BSCs are the most important source of new N in the early phases of ecosystem restoration. In contrast, legumes appear to be critical in mature longleaf pine stands that burn frequently, and particularly for supplying new N in the year following a fire event.
Three-dimensional measurement of foot arch in preschool children
2012-01-01
Background The prevalence of flexible flatfoot is high among preschool-aged children, but the effects of treatment are inconclusive due to the unclear definitions of normal flatfoot. To date, a universally accepted evaluation method of the foot arch in children has not been completely established. Our aims of this study were to establish a new method to evaluate the foot arch from a three dimensional perspective and to investigate the flexibility of the foot arch among children aged from two to six. Methods A total of 44 children aged from two to six years of age were put into five age groups in this study. The navicular height was measured with one leg standing, and both feet were scanned separately in both sitting and one leg standing positions to compute the foot arch volume. The arch volume index, which represents the ratio of the difference in volume between sitting and one leg standing positions to the volume when sitting was calculated to demonstrate the flexibility of the foot arch. The differences of measured parameters between each aged group were analyzed by one-way ANOVA. Results The arch volumes when sitting and standing were highly correlated with the navicular height. The navicular height ranged from 15.75 to 27 mm, the arch volume when sitting ranged from 6,223 to 11,630 mm3, and the arch volume when standing from 3,111 to 7,848 mm3 from two to six years of age. The arch volume index showed a declining trend as age increased. Conclusion This study is the first to describe the foot arch with volume perspective in preschool-aged children. The foot arch volume was highly correlated with the navicular height. Research results show both navicular height index and arch volume index gradually increase with age from two to six. At the same time the arch also becomes rigid with age from two to six. These results could be applied for clinical evaluation of the foot arch and post-treatment evaluation. PMID:23009315
John F. Lehmkuhl
2004-01-01
cover types in the eastern Washington Cascade range. Cover types represented a temperature/moisture and stand structural complexity gradient. Lichen litterfall biomass increased with increasing stand complexity and moisture. Lichen litterfall biomass was 3.42 kg/ha in open pine stands, 7.51 kg/ha in young mixed-species stands, 8.55 kg/ha in mature mixed-species stands...
1963-01-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. Looking North, this aerial taken January 15, 1963, gives a closer view of the deep hole for the F-1 test stand site in the forefront. The S-IC test stand with towers prominent is to the right of center, and the Block House is seen left of center.
1963-11-20
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo shows the progress of the F-1 Test Stand as of November 20, 1963.
1963-04-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken April 4, 1963 depicts the construction of the F-1 test stand foundation walls.
1963-04-17
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken April 17, 1963 depicts the construction of the F-1 test stand foundation walls.
2010-09-14
CAPE CANAVERAL, Fla. --The Cape Canaveral Lighthouse stands in the midst of space-age structures, a monolith born in another era of exploration. Located near Launch Complex-36 on Cape Canaveral Air Force Station, the Coast Guard transferred ownership in 2000 of the lighthouse structure and its grounds to the U.S. Air Force. A restoration of the lighthouse was completed by the Air Force in 2007. The Coast Guard continues to maintain the beacon as an active navigational aid. The Cape Canaveral Lighthouse Foundation supports the Air Force with activities associated with the lighthouse. For its history, visit www.nasa.gov/centers/kennedy/about/history/lighthouse.html or canaverallight.org. Photo credit: Frankie Martin
Design Difficulties in Stand Density Studies
Frank A. Bennett
1969-01-01
Designing unbiased stand density studies is difficult. An acceptable sample requires stratification of the plots of age, site, and density. When basal area, percent stocking, or Reineke's stand density index is used as the density measure, this stratification forces a high negative correlation between site and number of trees per acre. Mortality in trees per acre...
Sharon M. Hope; Ching-Yan. Li
1997-01-01
Substrate respiration, mineralizable nitrogen, and nitrogen fixation rates, substrate moisture,content, and temperature were measured in trenched and undisturbed plots within two western Oregon Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands. The stands represent two different environments and ages. Woods Creek, the site of the lower...
Stand, Harvest, and Equipment Interactions in Simulated Harvesting Prescriptions
Jingxin Wang; W. Dale Greene; Bryce J. Stokes
1998-01-01
We evaluated potential interactions of stand type, harvesting method, and equipment in an experiment using interactive simulation. We examined three felling methods (chain saw, feller-buncher, harvester) and two extraction methods (grapple skidder and forwarder) performing clearcuts, sheltenvood cuts, and single-tree selection cuts in both an uneven-aged natural stand...
Growth response of managed uneven-aged northern conifer stands
Dale S. Solomon; Robert M. Frank
1983-01-01
The growth response of trees in spruce-fir-hemlock stands was recorded from plots that were managed to control stand density, species composition, length of harvest interval, and salvage of mortality. Basal area, volume, and diameter increment are presented by species and size classification for harvesting intervals of 5, 10, and 20 years.
Longleaf Pine Characterists Associated with Arthropods Available for Red-Cockaded Woodpeckers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanula, J.L.; Franzreb, K.E.; Pepper, W.D.
1999-01-25
The authors sampled arthropods on 300 longleaf pine under varying stand conditions and ranging in age from 20 to 100 years. The most diverse orders were beetles, spiders, ants, wasps and bees. The most abundant were aphids and Hymenoptera with a large number of ants. Arthropod biomass per tree increased in age up to 65-70 years, but biomass was highest in the youngest stands. Arthropods were positively correlated to bark thickness and tree diameter, but negatively related to the stand basal area. No relationships were found between abundance and ground vegetation conditions.
Ten-Year Performance of Eastern White Pine - under a Crop Tree Release Regime on an Outwash Site
Kenneth M. Desmarais; William B. Leak; William B. Leak
2005-01-01
A young stand of eastern white pine aged 38-40 years received a crop tree release cutting reducing stocking to 100 tree/ac. This stocking level reflects the number of sterms per acre that would be contained in a well stocked mature stand at final harvest (20-in. quadratic mean stand diameter). The stand then was monitored for growth and value change. Stems that grew...
James B. Baker; Michael G. Shelton
1998-01-01
Plots in an unmanaged loblolly-shortleaf pine (Pinus taeda L.-P. echinata Mill.) stand that had been cutover 15 yr previously were established to represent five stocking levels: 10, 20, 30, 40, and 50%. The stand was on a good site (site indexLob = 90 ft at 50 yr) and had uneven-aged character. Two competition control treatments (none and individual tree release using...
James B. Baker; Michael G. Shelton
1998-01-01
A 3- to 6 yr-old naturally regenerated, even-aged loblollypine (Pinus taeda L.) stand and a 5- yr-old loblolly pine plantation on good sites (SIbb = 85 to 90 ft at 50 yr ) were cut to density levels of 50, 90, 180,270, and 360 seedlings and/or saplings/ac. Two pine release treatments (none and individual tree release with a herbicide) were applied to the natural stand...
John C. Tappeiner
2013-01-01
Th inning stands (managing their densities) aff ects the development of trees and understory plants as individuals, as well as stand-level characteristics like structure, microclimate, and stand growth, habitat for various species, and fuel and potential fi re severity. Th ese characteristics and the rate of changes are aff ected by thinning severityâthe reduction in...
Cardiovascular responses to postural changes: differences with age for women and men
NASA Technical Reports Server (NTRS)
Frey, M. A.; Tomaselli, C. M.; Hoffler, W. G.
1994-01-01
The cardiovascular responses to postural change, and how they are affected by aging, are inadequately described in women. Therefore, the authors examined the influence of age and sex on the responses of blood pressure, cardiac output, heart rate, and other variables to change in posture. Measurements were made after 10 minutes each in the supine, seated, and standing positions in 22 men and 25 women who ranged in age from 21 to 59 years. Several variables differed, both by sex and by age, when subjects were supine. On rising, subjects' diastolic and mean arterial pressures, heart rate, total peripheral resistance (TPR), and thoracic impedance increased; cardiac output, stroke volume, and mean stroke ejection rate decreased; and changes in all variables, except heart rate, were greater from supine to sitting than sitting to standing. The increase in heart rate was greater in the younger subjects, and increases in TPR and thoracic impedance were greater in the older subjects. Stroke volume decreased less, and TPR and thoracic impedance increased more, in the women than in the men. The increase in TPR was particularly pronounced in the older women. These studies show that the cardiovascular responses to standing differ, in some respects, between the sexes and with age. The authors suggest that the sex differences are, in part, related to greater decrease of thoracic blood volume with standing in women than in men, and that the age differences result, in part, from decreased responsiveness of the high-pressure baroreceptor system.
AmeriFlux US-Wi1 Intermediate hardwood (IHW)
Chen, Jiquan [Michigan State University
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Wi1 Intermediate hardwood (IHW). Site Description - The Wisconsin Intermediate Hardwoods site is located in the Washburn Ranger District of the Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. The intermediate hardwoods site is one of ten sites that collectively represent the successional stages of development in the predominant stand types of a physically homogeneous landscape. In 2001, northern hardwood stands of all ages occupied 45% of the region.
Effects of fir sawyer beetle on spatial structure of Siberian fir stands
Vladimir L. Gavrikov; Valentina P. Vetrova
1991-01-01
Insects not only use plants for food and habitat; they also change plant populations by influencing their structure and dynamics. This influence is evidenced in the alteration of the spatial structure of a stand. The fir sawyer, Monochamus urussovi Fisch. (Coleoptera: Cerambycidae), is the most abundant xylophagous insect injuring siberian fir,...
NASA Technical Reports Server (NTRS)
2009-01-01
Workers erect the first beams of structural steel for the 235-foot tall A-3 Test Stand on Oct. 29, 2008. Ground work for the stand was broken in August 2008 and the final structural steel beam was placed on April 9, 2009.