Sample records for structure thermal stability

  1. Thermal optimum design for tracking primary mirror of Space Telescope

    NASA Astrophysics Data System (ADS)

    Pan, Hai-jun; Ruan, Ping; Li, Fu; Wang, Hong-Wei

    2011-08-01

    In the conventional method, the structural parameters of primary mirror are usually optimized just by the requirement of mechanical performance. Because the influences of structural parameters on thermal stability are not taken fully into account in this simple method, the lightweight optimum design of primary mirror usually brings the bad thermal stability, especially in the complex environment. In order to obtain better thermal stability, a new method about structure-thermal optimum design of tracking primary mirror is discussed. During the optimum process, both the lightweight ratio and thermal stability will be taken into account. The structure-thermal optimum is introduced into the analysis process and commenced after lightweight design as the secondary optimum. Using the engineering analysis of software ANSYS, a parameter finite element analysis (FEA) model of mirror is built. On the premise of appropriate lightweight ratio, the RMS of structure-thermal deformation of mirror surface and lightweight ratio are assigned to be state variables, and the maximal RMS of temperature gradient load to be object variable. The results show that certain structural parameters of tracking primary mirror have different influences on mechanical performance and thermal stability, even they are opposite. By structure-thermal optimizing, the optimized mirror model discussed in this paper has better thermal stability than the old one under the same thermal loads, which can drastically reduce difficulty in thermal control.

  2. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    PubMed

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  3. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    PubMed Central

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-01-01

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics. PMID:29113096

  4. The role of stabilization centers in protein thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magyar, Csaba; Gromiha, M. Michael; Sávoly, Zoltán

    2016-02-26

    The definition of stabilization centers was introduced almost two decades ago. They are centers of noncovalent long range interaction clusters, believed to have a role in maintaining the three-dimensional structure of proteins by preventing their decay due to their cooperative long range interactions. Here, this hypothesis is investigated from the viewpoint of thermal stability for the first time, using a large protein thermodynamics database. The positions of amino acids belonging to stabilization centers are correlated with available experimental thermodynamic data on protein thermal stability. Our analysis suggests that stabilization centers, especially solvent exposed ones, do contribute to the thermal stabilizationmore » of proteins. - Highlights: • Stabilization centers contribute to thermal stabilization of protein structures. • Stabilization center content correlates with melting temperature of proteins. • Exposed stabilization center content correlates with stability even in hyperthermophiles. • Stability changing mutations are frequently found at stabilization centers.« less

  5. Structure-activity relationships between sterols and their thermal stability in oil matrix.

    PubMed

    Hu, Yinzhou; Xu, Junli; Huang, Weisu; Zhao, Yajing; Li, Maiquan; Wang, Mengmeng; Zheng, Lufei; Lu, Baiyi

    2018-08-30

    Structure-activity relationships between 20 sterols and their thermal stabilities were studied in a model oil system. All sterol degradations were found to be consistent with a first-order kinetic model with determination of coefficient (R 2 ) higher than 0.9444. The number of double bonds in the sterol structure was negatively correlated with the thermal stability of sterol, whereas the length of the branch chain was positively correlated with the thermal stability of sterol. A quantitative structure-activity relationship (QSAR) model to predict thermal stability of sterol was developed by using partial least squares regression (PLSR) combined with genetic algorithm (GA). A regression model was built with R 2 of 0.806. Almost all sterol degradation constants can be predicted accurately with R 2 of cross-validation equals to 0.680. Four important variables were selected in optimal QSAR model and the selected variables were observed to be related with information indices, RDF descriptors, and 3D-MoRSE descriptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Engineering Interface Structures and Thermal Stabilities via SPD Processing in Bulk Nanostructured Metals

    DOE PAGES

    Zheng, Shijian; Carpenter, John S.; McCabe, Rodney J.; ...

    2014-02-27

    Nanostructured metals achieve extraordinary strength but suffer from low thermal stability, both a consequence of a high fraction of interfaces. Overcoming this tradeoff relies on making the interfaces themselves thermally stable. In this paper, we show that the atomic structures of bi-metal interfaces in macroscale nanomaterials suitable for engineering structures can be significantly altered via changing the severe plastic deformation (SPD) processing pathway. Two types of interfaces are formed, both exhibiting a regular atomic structure and providing for excellent thermal stability, up to more than half the melting temperature of one of the constituents. Most importantly, the thermal stability ofmore » one is found to be significantly better than the other, indicating the exciting potential to control and optimize macroscale robustness via atomic-scale bimetal interface tuning. As a result, we demonstrate an innovative way to engineer pristine bimetal interfaces for a new class of simultaneously strong and thermally stable materials.« less

  7. The ring residue proline 8 is crucial for the thermal stability of the lasso peptide caulosegnin II.

    PubMed

    Hegemann, Julian D; Fage, Christopher D; Zhu, Shaozhou; Harms, Klaus; Di Leva, Francesco Saverio; Novellino, Ettore; Marinelli, Luciana; Marahiel, Mohamed A

    2016-04-01

    Lasso peptides are fascinating natural products with a unique structural fold that can exhibit tremendous thermal stability. Here, we investigate factors responsible for the thermal stability of caulosegnin II. By employing X-ray crystallography, mutational analysis and molecular dynamics simulations, the ring residue proline 8 was proven to be crucial for thermal stability.

  8. X-ray Crystallographic Structure of Thermophilic Rhodopsin: IMPLICATIONS FOR HIGH THERMAL STABILITY AND OPTOGENETIC FUNCTION.

    PubMed

    Tsukamoto, Takashi; Mizutani, Kenji; Hasegawa, Taisuke; Takahashi, Megumi; Honda, Naoya; Hashimoto, Naoki; Shimono, Kazumi; Yamashita, Keitaro; Yamamoto, Masaki; Miyauchi, Seiji; Takagi, Shin; Hayashi, Shigehiko; Murata, Takeshi; Sudo, Yuki

    2016-06-03

    Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a "thermal sensor." These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    DOE PAGES

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; ...

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore » cathodes is one of the most critical factors in thermal runaway and related safety problems.« less

  10. Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo

    2018-06-01

    The thermal stability of spectrally selective few-layer metallo-dielectric structures is evaluated to analyze their potential as absorber and emitter materials in solar thermophotovoltaic (STPV) systems. High-efficiency (e.g., STPV) systems require materials with spectrally selective properties, especially at high temperatures (>1273 K). Aiming to develop such materials for high-temperature applications, we propose a few-layer structure composed of a refractory metal (i.e., Mo) nanometric film sandwiched between the layers of a dielectric material (i.e., hafnium oxide, HfO2) deposited on a Mo bulk substrate. In vacuum conditions (<5 × 10-2 Pa), the few-layer structure shows thermal stability at 1423 K for at least 1 h. At 1473 K, the spectral selectivity was degraded. This could have been caused by the oxidation of the Mo thin film by the residual oxygen through the grain boundaries of the upper HfO2 layer. This experiment showed the potential stability of few-layer structures for applications working at temperatures greater than 1273 K as well as the degradation mechanism of the few-layer structure. This characteristic is expected to help improve the thermal stability in few-layer structures further.

  11. X-ray Crystallographic Structure of Thermophilic Rhodopsin

    PubMed Central

    Tsukamoto, Takashi; Mizutani, Kenji; Hasegawa, Taisuke; Takahashi, Megumi; Honda, Naoya; Hashimoto, Naoki; Shimono, Kazumi; Yamashita, Keitaro; Yamamoto, Masaki; Miyauchi, Seiji; Takagi, Shin; Hayashi, Shigehiko; Murata, Takeshi; Sudo, Yuki

    2016-01-01

    Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a “thermal sensor.” These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance. PMID:27129243

  12. First-principles calculations of the thermal stability of Ti 3SiC 2(0001) surfaces

    NASA Astrophysics Data System (ADS)

    Orellana, Walter; Gutiérrez, Gonzalo

    2011-12-01

    The energetic, thermal stability and dynamical properties of the ternary layered ceramic Ti3SiC2(0001) surface are addressed by density-functional theory calculations and molecular dynamic (MD) simulations. The equilibrium surface energy at 0 K of all terminations is contrasted with thermal stability at high temperatures, which are investigated by ab initio MD simulations in the range of 800 to 1400 °C. We find that the toplayer (sublayer) surface configurations: Si(Ti2) and Ti2(Si) show the lowest surface energies with reconstruction features for Si(Ti2). However, at high temperatures they are unstable, forming disordered structures. On the contrary, Ti1(C) and Ti2(C) despite their higher surface energies, show a remarkable thermal stability at high temperatures preserving the crystalline structures up to 1400 °C. The less stable surfaces are those terminated in C atoms, C(Ti1) and C(Ti2), which at high temperatures show surface dissociation forming amorphous TiCx structures. Two possible atomic scale mechanisms involved in the thermal stability of Ti3SiC2(0001) are discussed.

  13. Thermal degradation of Lewis acid complexed LDPE films

    NASA Astrophysics Data System (ADS)

    Sreelatha, K.; Predeep, P.

    2017-06-01

    The study highlights the thermal behavior of the semiconducting LDPE films synthesized by SbCl5 doping. The structural peculiarities and the responses of the structure to energetic modifications are studied. TGA and DTG curves are used to determine the thermal stability of the material. Degradation kinetics is elucidated. Activation energy and the entropy of activation for the degradation of the samples are calculated using Coats-Redfern plots and the samples show appreciable thermal stability.

  14. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes’ effects on thermal & cycling stability

    NASA Astrophysics Data System (ADS)

    Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang

    2016-01-01

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).

  15. Sequential events in the irreversible thermal denaturation of human brain-type creatine kinase by spectroscopic methods.

    PubMed

    Gao, Yan-Song; Su, Jing-Tan; Yan, Yong-Bin

    2010-06-25

    The non-cooperative or sequential events which occur during protein thermal denaturation are closely correlated with protein folding, stability, and physiological functions. In this research, the sequential events of human brain-type creatine kinase (hBBCK) thermal denaturation were studied by differential scanning calorimetry (DSC), CD, and intrinsic fluorescence spectroscopy. DSC experiments revealed that the thermal denaturation of hBBCK was calorimetrically irreversible. The existence of several endothermic peaks suggested that the denaturation involved stepwise conformational changes, which were further verified by the discrepancy in the transition curves obtained from various spectroscopic probes. During heating, the disruption of the active site structure occurred prior to the secondary and tertiary structural changes. The thermal unfolding and aggregation of hBBCK was found to occur through sequential events. This is quite different from that of muscle-type CK (MMCK). The results herein suggest that BBCK and MMCK undergo quite dissimilar thermal unfolding pathways, although they are highly conserved in the primary and tertiary structures. A minor difference in structure might endow the isoenzymes dissimilar local stabilities in structure, which further contribute to isoenzyme-specific thermal stabilities.

  16. Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na 3OBr and Na 4OI 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yonggang; Wen, Ting; Park, Changyong

    2016-01-14

    The structure stability under high pressure and thermal expansion behavior of Na 3OBr and Na 4OI 2, two prototypes of alkali-metal-rich antiperovskites, were investigated by in situ synchrotron X-ray diffraction techniques under high pressure and low temp. Both are soft materials with bulk modulus of 58.6 GPa and 52.0 GPa for Na 3OBr and Na 4OI 2, resp. The cubic Na 3OBr structure and tetragonal Na 4OI 2 with intergrowth K 2NiF 4 structure are stable under high pressure up to 23 GPa. Although being a characteristic layered structure, Na 4OI 2 exhibits nearly isotropic compressibility. Neg. thermal expansion wasmore » obsd. at low temp. range (20-80 K) in both transition-metal-free antiperovskites for the first time. The robust high pressure structure stability was examined. and confirmed by first-principles calculations. among various possible polymorphisms qualitatively. The results provide in-depth understanding of the neg. thermal expansion and robust crystal structure stability of these antiperovskite systems and their potential applications.« less

  17. Aging effects on vertical graphene nanosheets and their thermal stability

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Polaki, S. R.; Ajikumar, P. K.; Krishna, N. G.; Kamruddin, M.

    2018-03-01

    The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.

  18. Highly defective oxides as sinter resistant thermal barrier coating

    DOEpatents

    Subramanian, Ramesh

    2005-08-16

    A thermal barrier coating material formed of a highly defective cubic matrix structure having a concentration of a stabilizer sufficiently high that the oxygen vacancies created by the stabilizer interact within the matrix to form multi-vacancies, thereby improving the sintering resistance of the material. The concentration of stabilizer within the cubic matrix structure is greater than that concentration of stabilizer necessary to give the matrix a peak ionic conductivity value. The concentration of stabilizer may be at least 30 wt. %. Embodiments include a cubic matrix of zirconia stabilized by at least 30-50 wt. % yttria, and a cubic matrix of hafnia stabilized by at least 30-50 wt. % gadolinia.

  19. Local time dependence of the thermal structure in the Venusian equatorial region revealed by Akatsuki radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Ando, H.; Fukuhara, T.; Takagi, M.; Imamura, T.; Sugimoto, N.; Sagawa, H.

    2017-12-01

    The radio occultation technique is one of the most useful methods to retrieve vertical temperature profiles in planetary atmospheres. Ultra-Stable Oscillator (USO) onboard Venus Climate Orbiter, Akatsuki, enables us to investigate the thermal structure of the Venus atmosphere between about 40-90 km levels. It is expected that 35 temperature profiles will be obtained by the radio occultation measurements of Akatsuki until August 2017. Static stability derived from the temperature profiles shows its local time dependence above the cloud top level at low-latitudes equatorward of 25˚. The vertical profiles of the static stability in the dawn and dusk regions have maxima at 77 km and 82 km levels, respectively. A general circulation model (GCM) for the Venus atmosphere (AFES-Venus) reproduced the thermal structures above the cloud top qualitatively consistent with the radio occultation measurements; the maxima of the static stability are seen both in the dawn and dusk regions, and the local maximum of the static stability in the dusk region is located at a highler level than in the dawn region. Comparing the thermal structures between the radio occultation measurements and the GCM results, it is suggested that the distribution of the static stability above the cloud top could be strongly affected by the diurnal tide. The thermal tide influences on the thermal structure as well as atmospheric motions above the cloud level. In addition, it is shown that zonally averaged zonal wind at about 80 km altitude could be roughly estimated from the radio occultation measurements using the dispersion relation of the internal gravity wave.

  20. Rational design of Pleurotus eryngii versatile ligninolytic peroxidase for enhanced pH and thermal stability through structure-based protein engineering.

    PubMed

    Gao, Yu; Li, Jian-Jun; Zheng, Lanyan; Du, Yuguang

    2017-11-01

    Versatile peroxidase (VP) from Pleurotus eryngii is a high redox potential peroxidase. It has aroused great biotechnological interest due to its ability to oxidize a wide range of substrates, but its application is still limited due to low pH and thermal stability. Since CiP (Coprinopsis cinerea peroxidase) and PNP (peanut peroxidase) exhibited higher pH and thermal stability than VP, several motifs, which might contribute to their pH and thermal stability, were identified through structure and sequence alignment. Six VP variants incorporating the beneficial motifs were designed and constructed. Most variants were nearly completely inactivated except V1 (Variant 1) and V4. V1 showed comparable activity to WT VP against ABTS, while V4 exhibited reduced activity. V1 displayed improved pH stability than WT VP, at pH 3.0 in particular, whereas the pH stability of V4 did not change a lot. The thermal stabilities of V1 and V4 were enhanced with T50 raised by 3°C. The results demonstrated that variants containing the beneficial motifs of CiP and PNP conferred VP with improved pH and thermal stability. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Correlations of phase structure and thermal stability for Alnico 8 alloys

    NASA Astrophysics Data System (ADS)

    Zhao, J. T.; Sun, Y. L.; Liu, L.; Lee, D.; Liu, Z.; Feng, X. C.; Yan, A. R.

    2017-11-01

    The correlations of phase structure and thermal stability for Alnico 8 alloys is analyzed by three-step aging at 650 °C, 600 °C and 550 °C gradually in this paper. After three-step aging the a1 phase is a chess-like structure in transverse direction and a bamboo-like structure in longitudinal direction. Meanwhile the magnetic energy product ((BH)m) increases from 9.17 MGOe to 10.59 MGOe, and the remanence temperature coefficient a(RT-180 °C) reduces from -2.31 %%/°C to -1.25 %%/°C. The MPMS and VSM measurements indicate that three-step aging makes the a1 phase be single domain particles and dispersed distribution, which plays an important role in optimizing the thermal stability of Alnico alloys.

  2. Thermal expansion of composites: Methods and results. [large space structures

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Tenney, D. R.

    1981-01-01

    The factors controlling the dimensional stability of various components of large space structures were investigated. Cyclic, thermal and mechanical loading were identified as the primary controlling factors of the dimensional stability of cables. For organic matrix composites, such as graphite-epoxy, it was found that these factors include moisture desorption in the space environment, thermal expansion as the structure moves from the sunlight to shadow in its orbit, mechanical loading, and microyielding of the material caused by microcracking of the matrix material. The major focus was placed on the thermal expansion of composites and in particular the development and testing of a method for its measurement.

  3. Structural changes and thermal stability of charged LiNixMnyCozO₂ cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy.

    PubMed

    Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D; Cho, Sung-Jin; Kim, Kwang-Bum; Chung, Kyung Yoon; Yang, Xiao-Qing; Nam, Kyung-Wan

    2014-12-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time-resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3̅m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3̅m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. This systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.

  4. Structural changes and thermal stability of charged LiNi xMn yCo zO 2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy

    DOE PAGES

    Bak, Seong -Min; Hu, Enyuan; Zhou, Yongning; ...

    2014-11-24

    Thermal stability of charged LiNi xMn yCo zO 2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and themore » larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3¯m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3¯m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. As a result, this systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.« less

  5. Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na{sub 3}OBr and Na{sub 4}OI{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yonggang, E-mail: yyggwang@gmail.com, E-mail: yangwg@hpstar.ac.cn, E-mail: yusheng.zhao@unlv.edu; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006; High Pressure Synergetic Consortium

    2016-01-14

    The structure stability under high pressure and thermal expansion behavior of Na{sub 3}OBr and Na{sub 4}OI{sub 2}, two prototypes of alkali-metal-rich antiperovskites, were investigated by in situ synchrotron X-ray diffraction techniques under high pressure and low temperature. Both are soft materials with bulk modulus of 58.6 GPa and 52.0 GPa for Na{sub 3}OBr and Na{sub 4}OI{sub 2}, respectively. The cubic Na{sub 3}OBr structure and tetragonal Na{sub 4}OI{sub 2} with intergrowth K{sub 2}NiF{sub 4} structure are stable under high pressure up to 23 GPa. Although being a characteristic layered structure, Na{sub 4}OI{sub 2} exhibits nearly isotropic compressibility. Negative thermal expansion was observed at lowmore » temperature range (20–80 K) in both transition-metal-free antiperovskites for the first time. The robust high pressure structure stability was examined and confirmed by first-principles calculations among various possible polymorphisms qualitatively. The results provide in-depth understanding of the negative thermal expansion and robust crystal structure stability of these antiperovskite systems and their potential applications.« less

  6. Thermoelectric properties and thermal stability of layered chalcogenides, TlScQ2, Q = Se, Te.

    PubMed

    Aswathy, Vijayakumar Sajitha; Sankar, Cheriyedath Raj; Varma, Manoj Raama; Assoud, Abdeljalil; Bieringer, Mario; Kleinke, Holger

    2017-12-12

    A few thallium based layered chalcogenides of α-NaFeO 2 structure-type are known for their excellent thermoelectric properties and interesting topological insulator nature. TlScQ 2 belongs to this structural category. In the present work, we have studied the electronic structure, electrical and thermal transport properties and thermal stability of the title compounds within the temperature range 2-600 K. Density functional theory (DFT) predicts a metallic nature for TlScTe 2 and a semiconducting nature for TlScSe 2 . DFT calculations also show significant lowering of energies of frontier bands upon inclusion of spin-orbit coupling contribution in the calculation. The electronic structure also shows the simultaneous occurrence of holes and electron pockets for the telluride. Experiments reveal that the telluride shows a semi-metallic behaviour whereas the selenide is a semiconductor. The thermoelectric properties for both the materials were also investigated. Both these materials possess very low thermal conductivity which is an attractive feature for thermoelectrics. However, they lack thermal stability and decompose upon warming above room temperature, as evidenced from high temperature powder X-ray diffraction and thermal analysis.

  7. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    NASA Astrophysics Data System (ADS)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  8. General Characteristics of the Changes in the Thermal Stability of Proteins and Enzymes After the Chemical Modification of Their Functional Groups

    NASA Astrophysics Data System (ADS)

    Kutuzova, G. D.; Ugarova, N. N.; Berezin, Ilya V.

    1984-11-01

    The principal structural and physicochemical factors determining the stability of protein macromolecules in solution and the characteristics of the structure of the proteins from thermophilic microorganisms are examined. The mechanism of the changes in the thermal stability of proteins and enzymes after the chemical modification of their functional side groups and the experimental data concerning the influence of chemical modification on the thermal stability of proteins are analysed. The dependence of the stabilisation effect and of the changes in the structure of protein macromolecules on the degree of modification and on the nature of the modified groups and the groups introduced into proteins in the course of modification (their charge and hydrophobic properties) is demonstrated. The great practical value of the method of chemical modification for the preparation of stabilised forms of biocatalysts is shown in relation to specific examples. The bibliography includes 178 references.

  9. Structural Technology Evaluation Analysis Program (STEAP). Task Order 0029: Thermal Stability of Fatigue Life-Enhanced Structures

    DTIC Science & Technology

    2012-01-01

    and c, we were able to obtain Figure 21: Intensity and Pressure Temporal Profiles Calculated from Pressure Model 0 20 40 60 80 100 0 2 4 6 8...August 2008 – 31 January 2012 4 . TITLE AND SUBTITLE STRUCTURAL TECHNOLOGY EVALUATION ANALYSIS PROGRAM (STEAP) Task Order 0029: Thermal...Stability of Fatigue Life-Enhanced Structures 5a. CONTRACT NUMBER FA8650-04-D-3446-0029 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62201F 6

  10. Thermal Stability of Metal Nanocrystals: An Investigation of the Surface and Bulk Reconstructions of Pd Concave Icosahedra [On the Thermal Stability of Metal Nanocrystals: An Investigation of the Surface and Bulk Reconstructions of Pd Concave Icosahedra

    DOE PAGES

    Gilroy, Kyle D.; Elnabawy, Ahmed O.; Yang, Tung -Han; ...

    2017-04-27

    Despite the remarkable success in controlling the synthesis of metal nanocrystals, it still remains a grand challenge to stabilize and preserve the shapes or internal structures of metastable kinetic products. In this work, we address this issue by systematically investigating the surface and bulk reconstructions experienced by a Pd concave icosahedron when subjected to heating up to 600 °C in vacuum. We used in situ high-resolution transmission electron microscopy to identify the equilibration pathways of this far-from-equilibrium structure. We were able to capture key structural transformations occurring during the thermal annealing process, which were mechanistically rationalized by implementing self-consistent plane-wavemore » density functional theory (DFT) calculations. Specifically, the concave icosahedron was found to evolve into a regular icosahedron via surface reconstruction in the range of 200–400 °C, and then transform into a pseudospherical crystalline structure through bulk reconstruction when further heated to 600 °C. As a result, the mechanistic understanding may lead to the development of strategies for enhancing the thermal stability of metal nanocrystals.« less

  11. Thermodynamic properties of water molecules in the presence of cosolute depend on DNA structure: a study using grid inhomogeneous solvation theory

    PubMed Central

    Nakano, Miki; Tateishi-Karimata, Hisae; Tanaka, Shigenori; Tama, Florence; Miyashita, Osamu; Nakano, Shu-ichi; Sugimoto, Naoki

    2015-01-01

    In conditions that mimic those of the living cell, where various biomolecules and other components are present, DNA strands can adopt many structures in addition to the canonical B-form duplex. Previous studies in the presence of cosolutes that induce molecular crowding showed that thermal stabilities of DNA structures are associated with the properties of the water molecules around the DNAs. To understand how cosolutes, such as ethylene glycol, affect the thermal stability of DNA structures, we investigated the thermodynamic properties of water molecules around a hairpin duplex and a G-quadruplex using grid inhomogeneous solvation theory (GIST) with or without cosolutes. Our analysis indicated that (i) cosolutes increased the free energy of water molecules around DNA by disrupting water–water interactions, (ii) ethylene glycol more effectively disrupted water–water interactions around Watson–Crick base pairs than those around G-quartets or non-paired bases, (iii) due to the negative electrostatic potential there was a thicker hydration shell around G-quartets than around Watson–Crick-paired bases. Our findings suggest that the thermal stability of the hydration shell around DNAs is one factor that affects the thermal stabilities of DNA structures under the crowding conditions. PMID:26538600

  12. The Structure Of The Gaia Deployable Sunshield Assembly

    NASA Astrophysics Data System (ADS)

    Pereira, Carlos; Urgoiti, Eduardo; Pinto, Inaki

    2012-07-01

    GAIA is an ESA mission with launch date in 2013. Its main objective is to map the stars. After launch it will unfold a 10.2 m diameter sunshield .The structure of this shield consists of twelve 3.5 meter long composite trusses which act as scaffold to two multilayer insulation blankets. Due to thermal stability constraints the planarity of the shield must be better than 1.0 mm. The trusses are therefore lightweight structures capable of withstanding the launch loads and once deployed, the thermal environment of the spacecraft with a minimum of distortion. This paper details: • The material selection for the composite structure • Validation of the chosen materials and truss layout • The modification of manufacturing process in order to lightweight the structure • The extensive structural and thermal stability testing The sunshield has been delivered to the satellite prime after successful mechanical, thermal and deployment tests.

  13. Two-dimensional infrared spectroscopic study on the thermally induced structural changes of glutaraldehyde-crosslinked collagen

    NASA Astrophysics Data System (ADS)

    Tian, Zhenhua; Wu, Kun; Liu, Wentao; Shen, Lirui; Li, Guoying

    2015-04-01

    The thermal stability of collagen solution (5 mg/mL) crosslinked by glutaraldehyde (GTA) [GTA/collagen (w/w) = 0.5] was measured by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR), and the thermally induced structural changes were analyzed using two-dimensional (2D) correlation spectra. The denaturation temperature (Td) and enthalpy change (ΔH) of crosslinked collagen were respectively about 27 °C and 88 J/g higher than those of native collagen, illuminating the thermal stability increased. With the increase of temperature, the red-shift of absorption bands and the decreased AIII/A1455 value obtained from FTIR spectra indicated that hydrogen bonds were weakened and the unwinding of triple helix occurred for both native and crosslinked collagens; whereas the less changes in red-shifting and AIII/A1455 values for crosslinked collagen also confirmed the increase in thermal stability. Additionally, the 2D correlation analysis provided information about the thermally induced structural changes. In the 2D synchronous spectra, the intensities of auto-peaks at 1655 and 1555 cm-1, respectively assigned to amide I band (Cdbnd O stretching vibration) and amide II band (combination of Nsbnd H bending and Csbnd N stretching vibrations) in helical conformation were weaker for crosslinked collagen than those for native collagen, indicating that the helical structure of crosslinked collagen was less sensitive to temperature. Moreover, the sequence of the band intensity variations showed that the band at 1555 cm-1 moved backwards owing to the addition of GTA, demonstrating that the response of helical structure of crosslinked collagen to the increased temperature lagged. It was speculated that the stabilization of collagen by GTA was due to the reinforcement of triple helical structure.

  14. Two-dimensional infrared spectroscopic study on the thermally induced structural changes of glutaraldehyde-crosslinked collagen.

    PubMed

    Tian, Zhenhua; Wu, Kun; Liu, Wentao; Shen, Lirui; Li, Guoying

    2015-04-05

    The thermal stability of collagen solution (5 mg/mL) crosslinked by glutaraldehyde (GTA) [GTA/collagen (w/w)=0.5] was measured by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR), and the thermally induced structural changes were analyzed using two-dimensional (2D) correlation spectra. The denaturation temperature (Td) and enthalpy change (ΔH) of crosslinked collagen were respectively about 27°C and 88 J/g higher than those of native collagen, illuminating the thermal stability increased. With the increase of temperature, the red-shift of absorption bands and the decreased AIII/A1455 value obtained from FTIR spectra indicated that hydrogen bonds were weakened and the unwinding of triple helix occurred for both native and crosslinked collagens; whereas the less changes in red-shifting and AIII/A1455 values for crosslinked collagen also confirmed the increase in thermal stability. Additionally, the 2D correlation analysis provided information about the thermally induced structural changes. In the 2D synchronous spectra, the intensities of auto-peaks at 1655 and 1555 cm(-1), respectively assigned to amide I band (CO stretching vibration) and amide II band (combination of NH bending and CN stretching vibrations) in helical conformation were weaker for crosslinked collagen than those for native collagen, indicating that the helical structure of crosslinked collagen was less sensitive to temperature. Moreover, the sequence of the band intensity variations showed that the band at 1555 cm(-1) moved backwards owing to the addition of GTA, demonstrating that the response of helical structure of crosslinked collagen to the increased temperature lagged. It was speculated that the stabilization of collagen by GTA was due to the reinforcement of triple helical structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator.

    PubMed

    Park, Sejoon; Son, Chung Woo; Lee, Sungho; Kim, Dong Young; Park, Cheolmin; Eom, Kwang Sup; Fuller, Thomas F; Joh, Han-Ik; Jo, Seong Mu

    2016-11-11

    Li-ion battery, separator, multicoreshell structure, thermal stability, long-term stability. A nanofibrous membrane with multiple cores of polyimide (PI) in the shell of polyvinylidene fluoride (PVdF) was prepared using a facile one-pot electrospinning technique with a single nozzle. Unique multicore-shell (MCS) structure of the electrospun composite fibers was obtained, which resulted from electrospinning a phase-separated polymer composite solution. Multiple PI core fibrils with high molecular orientation were well-embedded across the cross-section and contributed remarkable thermal stabilities to the MCS membrane. Thus, no outbreaks were found in its dimension and ionic resistance up to 200 and 250 °C, respectively. Moreover, the MCS membrane (at ~200 °C), as a lithium ion battery (LIB) separator, showed superior thermal and electrochemical stabilities compared with a widely used commercial separator (~120 °C). The average capacity decay rate of LIB for 500 cycles was calculated to be approximately 0.030 mAh/g/cycle. This value demonstrated exceptional long-term stability compared with commercial LIBs and with two other types (single core-shell and co-electrospun separators incorporating with functionalized TiO 2 ) of PI/PVdF composite separators. The proper architecture and synergy effects of multiple PI nanofibrils as a thermally stable polymer in the PVdF shell as electrolyte compatible polymers are responsible for the superior thermal performance and long-term stability of the LIB.

  16. Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator

    PubMed Central

    Park, Sejoon; Son, Chung Woo; Lee, Sungho; Kim, Dong Young; Park, Cheolmin; Eom, Kwang Sup; Fuller, Thomas F.; Joh, Han-Ik; Jo, Seong Mu

    2016-01-01

    Li-ion battery, separator, multicoreshell structure, thermal stability, long-term stability. A nanofibrous membrane with multiple cores of polyimide (PI) in the shell of polyvinylidene fluoride (PVdF) was prepared using a facile one-pot electrospinning technique with a single nozzle. Unique multicore-shell (MCS) structure of the electrospun composite fibers was obtained, which resulted from electrospinning a phase-separated polymer composite solution. Multiple PI core fibrils with high molecular orientation were well-embedded across the cross-section and contributed remarkable thermal stabilities to the MCS membrane. Thus, no outbreaks were found in its dimension and ionic resistance up to 200 and 250 °C, respectively. Moreover, the MCS membrane (at ~200 °C), as a lithium ion battery (LIB) separator, showed superior thermal and electrochemical stabilities compared with a widely used commercial separator (~120 °C). The average capacity decay rate of LIB for 500 cycles was calculated to be approximately 0.030 mAh/g/cycle. This value demonstrated exceptional long-term stability compared with commercial LIBs and with two other types (single core-shell and co-electrospun separators incorporating with functionalized TiO2) of PI/PVdF composite separators. The proper architecture and synergy effects of multiple PI nanofibrils as a thermally stable polymer in the PVdF shell as electrolyte compatible polymers are responsible for the superior thermal performance and long-term stability of the LIB. PMID:27833132

  17. Influence of Boehmite Precursor on Aluminosilicate Aerogel Pore Structure, Phase Stability and Resistance to Densification at High Temperatures

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Guo, Haiquan; Newlin, Katy N.

    2011-01-01

    Aluminosilicate aerogels are of interest as constituents of thermal insulation systems for use at temperatures higher than those attainable with silica aerogels. It is anticipated that their effectiveness as thermal insulators will be influenced by their morphology, pore size distribution, physical and skeletal densities. The present study focuses on the synthesis of aluminosilicate aerogel from a variety of Boehmite (precursors as the Al source, and tetraethylorthosilicate (TEOS) as the Si source, and the influence of starting powder on pore structure and thermal stability.

  18. Protein substitution affects glass transition temperature and thermal stability.

    PubMed

    Budhavaram, Naresh K; Miller, Jonathan A; Shen, Ying; Barone, Justin R

    2010-09-08

    When proteins are removed from their native state they suffer from two deficiencies: (1) glassy behavior with glass transition temperatures (Tg) well above room temperature and (2) thermal instability. The glassy behavior originates in multiple hydrogen bonds between amino acids on adjacent protein molecules. Proteins, like most biopolymers, are thermally unstable. Substituting ovalbumin with linear and cyclic substituents using a facile nucleophilic addition reaction can affect Tg and thermal stability. More hydrophobic linear substituents lowered Tg by interrupting intermolecular interactions and increasing free volume. More hydrophilic and cyclic substituents increased thermal stability by increasing intermolecular interactions. In some cases, substituents instituted cross-linking between protein chains that enhanced thermal stability. Internal plasticization using covalent substitution and external plasticization using low molecular weight polar liquids show the same protein structural changes and a signature of plasticization is identified.

  19. Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles.

    PubMed

    Baniasad, Arezou; Ghorbani, Mohsen

    2016-05-01

    In this study, in-situ and ex-situ hydrothermal synthesis procedures were applied to synthesize novel CMC/porous SnO2 nanocomposites from rice husk extracted carboxymethyl cellulose (CMC) biopolymer. In addition, the effects of SnO2 nanoparticles on thermal stability of the prepared nanocomposite were specifically studied. Products were investigated in terms of morphology, particle size, chemical structure, crystallinity and thermal stability by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Presence of characteristic bands in the FTIR spectra of samples confirmed the successful formation of CMC and CMC/SnO2 nanocomposites. In addition, FESEM images revealed four different morphologies of porous SnO2 nanoparticles including nanospheres, microcubes, nanoflowers and olive-like nanoparticles with hollow cores which were formed on CMC. These nanoparticles possessed d-spacing values of 3.35Å. Thermal stability measurements revealed that introduction of SnO2 nanoparticles in the structure of CMC enhanced stability of CMC to 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Thermal and aqueous stability improvement of graphene oxide enhanced diphenylalanine nanocomposites

    NASA Astrophysics Data System (ADS)

    Ryan, Kate; Neumayer, Sabine M.; Maraka, Harsha Vardhan R.; Buchete, Nicolae-Viorel; Kholkin, Andrei L.; Rice, James H.; Rodriguez, Brian J.

    2017-12-01

    Nanocomposites of diphenylalanine (FF) and carbon based materials provide an opportunity to overcome drawbacks associated with using FF micro- and nanostructures in nanobiotechnology applications, in particular their poor structural stability in liquid solutions. In this study, FF/graphene oxide (GO) composites were found to self-assemble into layered micro- and nanostructures, which exhibited improved thermal and aqueous stability. Dependent on the FF/GO ratio, the solubility of these structures was reduced to 35.65% after 30 min as compared to 92.4% for pure FF samples. Such functional nanocomposites may extend the use of FF structures to e.g. biosensing, electrochemical, electromechanical or electronic applications.

  1. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.

    PubMed

    Arrieta, M P; Fortunati, E; Dominici, F; Rayón, E; López, J; Kenny, J M

    2014-07-17

    Cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose by acid hydrolysis were added into poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends to improve the final properties of the multifunctional systems. CNC were also modified with a surfactant (CNCs) to increase the interfacial adhesion in the systems maintaining the thermal stability. Firstly, masterbatch pellets were obtained for each formulation to improve the dispersion of the cellulose structures in the PLA-PHB and then nanocomposite films were processed. The thermal stability as well as the morphological and structural properties of nanocomposites was investigated. While PHB increased the PLA crystallinity due to its nucleation effect, well dispersed CNC and CNCs not only increased the crystallinity but also improved the processability, the thermal stability and the interaction between both polymers especially in the case of the modified CNCs based PLA-PHB formulation. Likewise, CNCs were better dispersed in PLA-CNCs and PLA-PHB-CNCs, than CNC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Influence of Molecular Shape on the Thermal Stability and Molecular Orientation of Vapor-Deposited Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Diane M; Antony, Lucas; de Pablo, Juan

    High thermal stability and anisotropic molecular orientation enhance the performance of vapor-deposited organic semiconductors, but controlling these properties is a challenge in amorphous materials. To understand the influence of molecular shape on these properties, vapor-deposited glasses of three disk-shaped molecules were prepared. For all three systems, enhanced thermal stability is observed for glasses prepared over a wide range of substrate temperatures and anisotropic molecular orientation is observed at lower substrate temperatures. For two of the disk-shaped molecules, atomistic simulations of thin films were also performed and anisotropic molecular orientation was observed at the equilibrium liquid surface. We find that themore » structure and thermal stability of these vapor-deposited glasses results from high surface mobility and partial equilibration toward the structure of the equilibrium liquid surface during the deposition process. For the three molecules studied, molecular shape is a dominant factor in determining the anisotropy of vapor-deposited glasses.« less

  3. Improving the Mechanical Performance and Thermal Stability of a PVA-Clay Nanocomposite by Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Shokuhi Rad, A.; Ebrahimi, D.

    2017-07-01

    The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.

  4. Effect of reflective p-type ohmic contact on thermal reliability of vertical InGaN/GaN LEDs

    NASA Astrophysics Data System (ADS)

    Son, Jun Ho; Song, Yang Hee; Kim, Buem Joon; Lee, Jong-Lam

    2014-11-01

    We report on the enhanced thermal reliability of vertical-LEDs (VLEDs) using novel reflective p-type ohmic contacts with good thermal stability. The reflective p-type ohmic contacts with Ni/Ag-Cu alloy multi-layer structure shows low contact resistivity, as low as 9.3 × 10-6 Ωcm2, and high reflectance of 86% after annealing at 450°C. The V-LEDs with Ni/Ag-Cu alloy multi-layer structure show good thermal reliability with stress time at 300°C in air ambient. The improved thermal stability of the reflective ohmic contacts to p-type GaN is believed to play a critical role in the thermal reliability of V-LEDs. [Figure not available: see fulltext.

  5. Thermodynamic properties of water molecules in the presence of cosolute depend on DNA structure: a study using grid inhomogeneous solvation theory.

    PubMed

    Nakano, Miki; Tateishi-Karimata, Hisae; Tanaka, Shigenori; Tama, Florence; Miyashita, Osamu; Nakano, Shu-Ichi; Sugimoto, Naoki

    2015-12-02

    In conditions that mimic those of the living cell, where various biomolecules and other components are present, DNA strands can adopt many structures in addition to the canonical B-form duplex. Previous studies in the presence of cosolutes that induce molecular crowding showed that thermal stabilities of DNA structures are associated with the properties of the water molecules around the DNAs. To understand how cosolutes, such as ethylene glycol, affect the thermal stability of DNA structures, we investigated the thermodynamic properties of water molecules around a hairpin duplex and a G-quadruplex using grid inhomogeneous solvation theory (GIST) with or without cosolutes. Our analysis indicated that (i) cosolutes increased the free energy of water molecules around DNA by disrupting water-water interactions, (ii) ethylene glycol more effectively disrupted water-water interactions around Watson-Crick base pairs than those around G-quartets or non-paired bases, (iii) due to the negative electrostatic potential there was a thicker hydration shell around G-quartets than around Watson-Crick-paired bases. Our findings suggest that the thermal stability of the hydration shell around DNAs is one factor that affects the thermal stabilities of DNA structures under the crowding conditions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Designing and Thermal Analysis of Safe Lithium Ion Cathode Materials for High Energy Applications

    NASA Astrophysics Data System (ADS)

    Hu, Enyuan

    Safety is one of the most critical issues facing lithium-ion battery application in vehicles. Addressing this issue requires the integration of several aspects, especially the material chemistry and the battery thermal management. First, thermal stability investigation was carried out on an attractive high energy density material LiNi0.5Mn1.5O4. New findings on the thermal-stability and thermal-decomposition-pathways related to the oxygen-release are discovered for the high-voltage spinel Li xNi0.5Mn1.5O4 (LNMO) with ordered (o-) and disordered (d-) structures at fully delithiated (charged) state using a combination of in situ time-resolved x-ray diffraction (TR-XRD) coupled with mass spectroscopy (MS) and x-ray absorption spectroscopy (XAS). Both fully charged o--LixNi0.5Mn1.5O 4 and d-LixNi0.5Mn1.5O 4 start oxygen-releasing structural changes at temperatures below 300 °C, which is in sharp contrast to the good thermal stability of the 4V-spinel LixMn2O4 with no oxygen being released up to 375 °C. This is mainly caused by the presence of Ni4+ in LNMO, which undergoes dramatic reduction during the thermal decomposition. In addition, charged o-LNMO shows better thermal stability than the d-LNMO counterpart, due to the Ni/Mn ordering and smaller amount of the rock-salt impurity phase in o-LNMO. Newly identified two thermal-decomposition-pathways from the initial LixNi0.5Mn1.5O 4 spinel to the final NiMn2O4-type spinel structure with and without the intermediate phases (NiMnO3 and alpha-Mn 2O3) are found to play key roles in thermal stability and oxygen release of LNMO during thermal decomposition. In addressing the safety issue associated with LNMO, Fe is selected to partially substitute Ni and Mn simultaneously utilizing the electrochemical activity and structure-stabilizing high spin Fe3+. The synthesized LiNi1/3Mn4/3Fe1/3O4 showed superior thermal stability and satisfactory electrochemical performance. At charged state, it is able to withstand the temperature as high as 500°C without observable oxygen release. It shows comparable cyclability performance to the LNMO material with better rate capability. The undiminished high voltage capacity is due to the electrochemical activity of Fe in the system. Fe also plays the key role of stabilizing the system at Fe3O4 type spinel phase against further phase transformation to the rock salt phase, accounting for the superior thermal stability of LiNi1/3Mn 4/3Fe1/3O4. Thermal analysis of the lithium-ion battery indicates the key role of electric current in contributing to a thermal runaway. FLUENT simulation on a 10-cell battery shows that under fast discharging conditions, the temperature level can easily reach the threshold of malfunction and the battery temperature features a large distribution of 18°C. Simple air cooling is not effective enough in addressing the problem. Designed air cooling or liquid cooling is required for the normal operation of lithium-ion batteries in vehicles.

  7. Generation of fatty acids from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cardiolipin liposomes that stabilize recombinant human serum albumin.

    PubMed

    Frahm, Grant E; Cameron, Brooke E; Smith, Jeffrey C; Johnston, Michael J W

    2013-06-01

    At elevated temperatures, studies have shown that serum albumin undergoes irreversible changes to its secondary structure. Anionic fatty acids and/or anionic surfactants have been shown to stabilize human serum albumin (HSA) against thermal denaturation through bridging hydrophobic domains and cationic amino acids residues of the protein. As albumin can readily interact with a variety of liposomes, this study proposes that cardiolipin delivered via 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes can improve the thermal stability of recombinant HSA produced in Saccharomyces cerevisiae (ScrHSA) in a similar manner to anionic fatty acids. Thermal stability and structure of ScrHSA in the absence and presence of DPPC/cardiolipin liposomes was assessed with U/V circular dichroism spectropolarimetry and protein thermal stability was confirmed with differential scanning calorimetry. Although freshly prepared DPPC/cardiolipin liposomes did not improve the stability of ScrHSA, DPPC/cardiolipin liposomes incubated at room temperature for 7 d (7dRT) dramatically improved the thermal stability of the protein. Mass spectrometry analysis identified the presence of fatty acids in the 7dRT liposomes, not identified in freshly prepared liposomes, to which the improved stability was attributed. The generation of fatty acids is attributed to either the chemical hydrolysis or oxidative cleavage of the unsaturated acyl chains of cardiolipin. By modulating the lipid composition through the introduction of lipids with higher acyl chain unsaturation, it may be possible to generate the stabilizing fatty acids in a more rapid manner.

  8. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, Tuyen D.; Steckel, Gary L.

    1993-01-01

    The thermal expansion behavior of Long Duration Exposure Facility (LDEF) metal matrix composite materials was studied by (1) analyzing the flight data that was recorded on orbit to determine the effects of orbital time and heating/cooling rates on the performance of the composite materials, and (2) characterizing and comparing the thermal expansion behavior of post-flight LDEF and lab-control samples. The flight data revealed that structures in space are subjected to nonuniform temperature distributions, and thermal conductivity of a material is an important factor in establishing a uniform temperature distribution and avoiding thermal distortion. The flight and laboratory data showed that both Gr/Al and Gr/Mg composites were stabilized after prolonged thermal cycling on orbit. However, Gr/Al composites showed more stable thermal expansion behavior than Gr/Mg composites and offer advantages for space structures particularly where very tight thermal stability requirements in addition to high material performance must be met.

  9. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    DOE PAGES

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatingsmore » are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.« less

  10. Synthesis of multi-hierarchical structured yttria-stabilized zirconia powders and their enhanced thermophysical properties

    NASA Astrophysics Data System (ADS)

    Cao, Fengmei; Gao, Yanfeng; Chen, Hongfei; Liu, Xinling; Tang, Xiaoping; Luo, Hongjie

    2013-06-01

    Multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders were successfully synthesized by a hydrothermal-calcination process. The morphology, crystallinity, and microstructure of the products were characterized by SEM, XRD, TEM, and BET. A possible formation mechanism of the unique structure formed during hydrothermal processing was also investigated. The measured thermophysical results indicated that the prepared YSZ powders had a low thermal conductivity (0.63-1.27 W m-1 K-1), good short-term high-temperature stability up to 1300 °C. The influence of the morphology and microstructure on their thermophysical properties was briefly discussed. The unique multi-hierarchical structure makes the prepared YSZ powders candidates for use in enhanced applications involving thermal barrier coatings.

  11. Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress

    NASA Astrophysics Data System (ADS)

    Joo, Jong Hoon; Jeong, Jaewon; Kim, Se Young; Yoo, Chung-Yul; Jung, Doh Won; Park, Hee Jung; Kwak, Chan; Yu, Ji Haeng

    2014-02-01

    In this study, we propose a novel "mosaic structure" for a SOFC (solid oxide fuel cell) cathode with high thermal expansion to improve the stability against thermal stress. Self-organizing mosaic-shaped cathode has been successfully achieved by controlling the amount of binder in the dip-coating solution. The anode-supported cell with mosaic-shaped cathode shows itself to be highly durable performance for rapid thermal cycles, however, the performance of the cell with a non-mosaic cathode exhibits severe deterioration originated from the delamination at the cathode/electrolyte interface after 7 thermal cycles. The thermal stability of an SOFC cathode can be evidently improved by controlling the surface morphology. In view of the importance of the thermal expansion properties of the cathode, the effects of cathode morphology on the thermal stress stability are discussed.

  12. The novel support structure design of high stability for space borne primary reflector

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Ding, Lin; Tan, Ting; Pei, Jing-yang.; Zhao, Xue-min; Bai, Shao-jun

    2018-01-01

    The novel support structure design of high stability for space borne primary mirror is presented. The structure is supported by a ball head support rod, for statically determinate support of reflector. The ball head assembly includes the supporting rod, nesting, bushing and other important parts. The liner bushing of the resistant material is used to fit for ball head approximated with the reflector material, and then the bad impact of thermal mismatch could be minimized to minimum. In order to ensure that the structure of the support will not be damaged, the glue spots for limitation is added around the reflector, for position stability of reflector. Through analysis and calculation, it can be seen that the novel support structure would not transfer the external stresses to the reflector, and the external stresses usually result from thermal mismatch and assembly misalignment. The novel method is useful for solving the problem of the bad influence form thermal stress and assembly force. In this paper, the supporting structure is introduced and analyzed in detail. The simulation results show that the ball head support reflector works more stably.

  13. Dimensional stability performance of a CFRP sandwich optical bench for microsatellite payload

    NASA Astrophysics Data System (ADS)

    Desnoyers, N.; Goyette, P.; Leduc, B.; Boucher, M.-A.

    2017-09-01

    Microsatellite market requires high performance while minimizing mass, volume and cost. Telescopes are specifically targeted by these trade-offs. One of these is to use the optomechanical structure of the telescope to mount electronic devices that may dissipate heat. However, such approach may be problematic in terms of distortions due to the presence of high thermal gradients throughout the telescope structure. To prevent thermal distortions, Carbon Fiber Reinforced Polymer (CFRP) technology can be used for the optomechanical telescope material structure. CFRP is typically about 100 times less sensitive to thermal gradients and its coefficient of thermal expansion (CTE) is about 200 to 600 times lower than standard aluminum alloys according to inhouse measurements. Unfortunately, designing with CFRP material is not as straightforward as with metallic materials. There are many parameters to consider in order to reach the desired dimensional stability under thermal, moisture and vibration exposures. Designing optomechanical structures using CFRP involves many challenges such as interfacing with optics and sometimes dealing with high CTE mounting interface structures like aluminum spacecraft buses. INO has designed a CFRP sandwich telescope structure to demonstrate the achievable performances of such technology. Critical parameters have been optimized to maximize the dimensional stability while meeting the stringent environmental requirements that microsatellite payloads have to comply with. The telescope structure has been tested in vacuum from -40°C to +50°C and has shown a good fit with finite element analysis predictions.

  14. In Situ Cyclization of Native Proteins: Structure-Based Design of a Bicyclic Enzyme.

    PubMed

    Pelay-Gimeno, Marta; Bange, Tanja; Hennig, Sven; Grossmann, Tom N

    2018-05-30

    Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. So far, macrocyclization approaches utilize a very limited structural diversity which complicates the design process. Here, we report an approach that enables cyclization via the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface exposed cysteines which are reacted with a triselectrophile resulting in the in situ cylization of the protein (INCYPRO). A bicyclic version of Sortase A was designed exhibiting increased tolerance towards thermal as well as chemical denaturation, and proved efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain resulting in up to 24 °C increased thermal stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Structure, thermal expansion coefficient and phase stability of La2(Zr0.7Ce0.3)2O7 studied by molecular dynamic simulation and experiment

    NASA Astrophysics Data System (ADS)

    Che, JunWei; Liu, XiangYang; Wang, XueZhi; Liang, GongYing

    2018-04-01

    This paper presents structure, thermal expansion coefficient and phase stability of La2(Zr0.7Ce0.3)2O7 (LZ7C3) ceramic by both theoretical and experimental results. It was found out that LZ7C3 powders had a pyrochlore structure after being heat-treated at temperatures higher than 1473 K or higher according to XRD and TEM results. The calculated average thermal expansion coefficient (TEC) was 7.12 × 10-6 K-1, which is a little smaller than experiment result, but changes of calculated average TECs of LZ, YSZ and LZ7C3 had the same trend with experimental results. Finally, the radial distribution function (RDF) was calculated to study the phase stability of LZ7C3.

  16. A lightweight thermal heat switch for redundant cryocooling on satellites

    NASA Astrophysics Data System (ADS)

    Dietrich, M.; Euler, A.; Thummes, G.

    2017-04-01

    A previously designed cryogenic thermal heat switch for space applications has been optimized for low mass, high structural stability, and reliability. The heat switch makes use of the large linear thermal expansion coefficient (CTE) of the thermoplastic UHMW-PE for actuation. A structure model, which includes the temperature dependent properties of the actuator, is derived to be able to predict the contact pressure between the switch parts. This pressure was used in a thermal model in order to predict the switch performance under different heat loads and operating temperatures. The two models were used to optimize the mass and stability of the switch. Its reliability was proven by cyclic actuation of the switch and by shaker tests.

  17. Thermal stability analysis of the fine structure of solar prominences

    NASA Technical Reports Server (NTRS)

    Demoulin, Pascal; Malherbe, Jean-Marie; Schmieder, Brigitte; Raadu, Mickael A.

    1986-01-01

    The linear thermal stability of a 2D periodic structure (alternatively hot and cold) in a uniform magnetic field is analyzed. The energy equation includes wave heating (assumed proportional to density), radiative cooling and both conduction parallel and orthogonal to magnetic lines. The equilibrium is perturbed at constant gas pressure. With parallel conduction only, it is found to be unstable when the length scale 1// is greater than 45 Mn. In that case, orthogonal conduction becomes important and stabilizes the structure when the length scale is smaller than 5 km. On the other hand, when the length scale is greater than 5 km, the thermal equilibrium is unstable, and the corresponding time scale is about 10,000 s: this result may be compared to observations showing that the lifetime of the fine structure of solar prominences is about one hour; consequently, our computations suggest that the size of the unresolved threads could be of the order of 10 km only.

  18. Structural and physical properties of collagen extracted from moon jellyfish under neutral pH conditions.

    PubMed

    Miki, Ayako; Inaba, Satomi; Baba, Takayuki; Kihira, Koji; Fukada, Harumi; Oda, Masayuki

    2015-01-01

    We extracted collagen from moon jellyfish under neutral pH conditions and analyzed its amino acid composition, secondary structure, and thermal stability. The content of hydroxyproline was 4.3%, which is lower than that of other collagens. Secondary structure analysis using circular dichroism (CD) showed a typical collagen helix. The thermal stability of this collagen at pH 3.0 was lower than those from fish scale and pig skin, which also correlates closely with jellyfish collagen having lower hydroxyproline content. Because the solubility of jellyfish collagen used in this study at neutral pH was quite high, it was possible to analyze its structural and physical properties under physiological conditions. Thermodynamic analysis using CD and differential scanning calorimetry showed that the thermal stability at pH 7.5 was higher than at pH 3.0, possibly due to electrostatic interactions. During the process of unfolding, fibrillation would occur only at neutral pH.

  19. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage.

    PubMed

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-08-11

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG.

  20. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage

    PubMed Central

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan’gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-01-01

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG. PMID:26261089

  1. Light scattering methods to test inorganic PCMs for application in buildings

    NASA Astrophysics Data System (ADS)

    De Paola, M. G.; Calabrò, V.; De Simone, M.

    2017-10-01

    Thermal performance and stability over time are key parameters for the characterization and application of PCMs in the building sector. Generally, inorganic PCMs are dispersions of hydrated salts and additives in water that counteract phase segregation phenomena and subcooling. Traditional methods or in “house” methods can be used for evaluating thermal properties, while stability can be estimated over time by using optical techniques. By considering this double approach, in this work thermal and structural analyses of Glauber salt based composite PCMs are conducted by means of non-conventional equipment: T-history method (thermal analysis) and Turbiscan (stability analysis). Three samples with the same composition (Glauber salt with additives) were prepared by using different sonication times and their thermal performances were compared by testing both the thermal cycling and the thermal properties. The stability of the mixtures was verified by the identification of destabilization phenomena, the evaluation of the migration velocities of particles and the estimation of variation of particle size.

  2. Synthesis and thermal stability of carborane containing phosphazenes

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Basi, R. J.; Parker, J. A.

    1983-01-01

    Carborane substituted polyphosphazenes were prepared by the thermal polymerization of phenyl-carboranyl penta chlorocyclotriphosphazene. Successive isothermal vacuum pyrolyses were conducted on the polymer and examined for structural changes by infrared spectroscopy. The degradation products were ascertained by gas chromatography-mass spectrometric analysis. It was found that the presence of the carborane group improves the thermal stability of the polymer by retarding the ring chain equilibrium processes of decomposition.

  3. The thermal stability of the nanograin structure in a weak solute segregation system.

    PubMed

    Tang, Fawei; Song, Xiaoyan; Wang, Haibin; Liu, Xuemei; Nie, Zuoren

    2017-02-08

    A hybrid model that combines first principles calculations and thermodynamic evaluation was developed to describe the thermal stability of a nanocrystalline solid solution with weak segregation. The dependence of the solute segregation behavior on the electronic structure, solute concentration, grain size and temperature was demonstrated, using the nanocrystalline Cu-Zn system as an example. The modeling results show that the segregation energy changes with the solute concentration in a form of nonmonotonic function. The change in the total Gibbs free energy indicates that at a constant solute concentration and a given temperature, a nanocrystalline structure can remain stable when the initial grain size is controlled in a critical range. In experiments, dense nanocrystalline Cu-Zn alloy bulk was prepared, and a series of annealing experiments were performed to examine the thermal stability of the nanograins. The experimental measurements confirmed the model predictions that with a certain solute concentration, a state of steady nanograin growth can be achieved at high temperatures when the initial grain size is controlled in a critical range. The present work proposes that in weak solute segregation systems, the nanograin structure can be kept thermally stable by adjusting the solute concentration and initial grain size.

  4. Influence of growth conditions on exchange bias of NiMn-based spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienecke, Anja; Kruppe, Rahel; Rissing, Lutz

    2015-05-07

    As shown in previous investigations, a correlation between a NiMn-based spin valve's thermal stability and its inherent exchange bias exists, even if the blocking temperature of the antiferromagnet is clearly above the heating temperature and the reason for thermal degradation is mainly diffusion and not the loss of exchange bias. Samples with high exchange bias are thermally more stable than samples with low exchange bias. Those structures promoting a high exchange bias are seemingly the same suppressing thermally induced diffusion processes (A. Wienecke and L. Rissing, “Relationship between thermal stability and layer-stack/structure of NiMn-based GMR systems,” in IEEE Transaction onmore » Magnetic Conference (EMSA 2014)). Many investigations were carried out on the influence of the sputtering parameters as well as the layer thickness on the magnetoresistive effect. The influence of these parameters on the exchange bias and the sample's thermal stability, respectively, was hardly taken into account. The investigation described here concentrates on the last named issue. The focus lies on the influence of the sputtering parameters and layer thickness of the “starting layers” in the stack and the layers forming the (synthetic) antiferromagnet. This paper includes a guideline for the evaluated sputtering conditions and layer thicknesses to realize a high exchange bias and presumably good thermal stability for NiMn-based spin valves with a synthetic antiferromagnet.« less

  5. In situ x-ray diffraction studies of a new LiMg{sub 0.125}Ni{sub 0.75}O{sub 2} cathode material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X.Q.; Sun, X.; McBreen, J.

    A Synchrotron x-ray source was used for In Situ x-ray diffraction studies during charge on a new LiMg{sub 0.125}Ti{sub 0.125}Ni{sub 0.75} cathode material synthesized by FMC Corp. It had been demonstrated by Gao that this new material has superior thermal stability than LiNiO{sub 2} and LiCo{sub 0.2}Ni{sub 0.8}O{sub 2} at over-charged state. In this current paper, studies on the relationship between the structural changes and thermal stability at over-charged state for these materials are presented. For the first time, the thermal stability of these materials are related to their structural changes during charge, especially to the formation and lattice constantmore » change of a hexagonal phase (H3). The spectral evidence support the hypothesis that the improvement of thermal stability is obtained by suppressing the formation of H3 phase and reducing the shrinkage of its lattice constant c when charged above 4.3 V.« less

  6. Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge-Discharge Cycling and Heating.

    PubMed

    Hu, Enyuan; Wang, Xuelong; Yu, Xiqian; Yang, Xiao-Qing

    2018-02-20

    The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers' demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today's market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safety issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. In many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution. For example, hard X-ray spectroscopy can yield the bulk information and soft X-ray spectroscopy can give the surface information; X-ray based imaging techniques can obtain spatial resolution of tens of nanometers, and electron-based microcopy can go to angstroms. In addition to challenges associated with different spatial resolution, the dynamic nature of structural changes during high rate cycling and heating requires characterization tools to have the capability of collecting high quality data in a time-resolved fashion. Thanks to the advancement in synchrotron based techniques and high-resolution electron microscopy, high temporal and spatial resolutions can now be achieved. In this Account, we focus on the recent works studying kinetic and thermal properties of layer-structured cathode materials, especially the structural changes during high rate cycling and the thermal stability during heating. Advanced characterization techniques relating to the rate capability and thermal stability will be introduced. The different structure evolution behavior of cathode materials cycled at high rate will be compared with that cycled at low rate. Different response of individual transition metals and the inhomogeneity in chemical distribution will be discussed. For the thermal stability, the relationship between structural changes and oxygen release will be emphatically pointed out. In all these studies being reviewed, advanced characterization techniques are critically applied to reveal complexities at multiscale in layer-structured cathode materials.

  7. Formability and thermal stability of phase in (Fe1-y Coy)-(B, C, N) films

    NASA Astrophysics Data System (ADS)

    Sunaga, K.; Kadowaki, S.; Tsunoda, M.; Takahashi, M.

    2004-06-01

    In order to find a way to obtain stable -Fe16X2 phase, the formability and thermal stability of (bct) phase were discussed. According to a rigid sphere model, we concluded that the less formability of B for the phase is due to its large atomic radius. We elucidated the difference of thermal stability of -Fe-X, taking into account their decomposition process. While, the decomposition of -Fe-N progresses only by the migration of N, without changing the bone structure of Fe lattice, the additional energy is needed to break the original α-Fe lattice in the cases of α-Fe-B and α-Fe-C. Therefore thermal stability of α-Fe-B and α-Fe-C is higher than that of α-Fe-N.

  8. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites

    PubMed Central

    Piazza, Aurèle; Adrian, Michael; Samazan, Frédéric; Heddi, Brahim; Hamon, Florian; Serero, Alexandre; Lopes, Judith; Teulade-Fichou, Marie-Paule; Phan, Anh Tuân; Nicolas, Alain

    2015-01-01

    G-quadruplexes (G4) are polymorphic four-stranded structures formed by certain G-rich nucleic acids, with various biological roles. However, structural features dictating their formation and/or functionin vivo are unknown. InS. cerevisiae, the pathological persistency of G4 within the CEB1 minisatellite induces its rearrangement during leading-strand replication. We now show that several other G4-forming sequences remain stable. Extensive mutagenesis of the CEB25 minisatellite motif reveals that only variants with very short (≤ 4 nt) G4 loops preferentially containing pyrimidine bases trigger genomic instability. Parallel biophysical analyses demonstrate that shortening loop length does not change the monomorphic G4 structure of CEB25 variants but drastically increases its thermal stability, in correlation with thein vivo instability. Finally, bioinformatics analyses reveal that the threat for genomic stability posed by G4 bearing short pyrimidine loops is conserved inC. elegans and humans. This work provides a framework explanation for the heterogeneous instability behavior of G4-forming sequencesin vivo, highlights the importance of structure thermal stability, and questions the prevailing assumption that G4 structures with short or longer loops are as likely to formin vivo. PMID:25956747

  9. New insights into transcription fidelity: thermal stability of non-canonical structures in template DNA regulates transcriptional arrest, pause, and slippage.

    PubMed

    Tateishi-Karimata, Hisae; Isono, Noburu; Sugimoto, Naoki

    2014-01-01

    The thermal stability and topology of non-canonical structures of G-quadruplexes and hairpins in template DNA were investigated, and the effect of non-canonical structures on transcription fidelity was evaluated quantitatively. We designed ten template DNAs: A linear sequence that does not have significant higher-order structure, three sequences that form hairpin structures, and six sequences that form G-quadruplex structures with different stabilities. Templates with non-canonical structures induced the production of an arrested, a slipped, and a full-length transcript, whereas the linear sequence produced only a full-length transcript. The efficiency of production for run-off transcripts (full-length and slipped transcripts) from templates that formed the non-canonical structures was lower than that from the linear. G-quadruplex structures were more effective inhibitors of full-length product formation than were hairpin structure even when the stability of the G-quadruplex in an aqueous solution was the same as that of the hairpin. We considered that intra-polymerase conditions may differentially affect the stability of non-canonical structures. The values of transcription efficiencies of run-off or arrest transcripts were correlated with stabilities of non-canonical structures in the intra-polymerase condition mimicked by 20 wt% polyethylene glycol (PEG). Transcriptional arrest was induced when the stability of the G-quadruplex structure (-ΔG°37) in the presence of 20 wt% PEG was more than 8.2 kcal mol(-1). Thus, values of stability in the presence of 20 wt% PEG are an important indicator of transcription perturbation. Our results further our understanding of the impact of template structure on the transcription process and may guide logical design of transcription-regulating drugs.

  10. New Insights into Transcription Fidelity: Thermal Stability of Non-Canonical Structures in Template DNA Regulates Transcriptional Arrest, Pause, and Slippage

    PubMed Central

    Tateishi-Karimata, Hisae; Isono, Noburu; Sugimoto, Naoki

    2014-01-01

    The thermal stability and topology of non-canonical structures of G-quadruplexes and hairpins in template DNA were investigated, and the effect of non-canonical structures on transcription fidelity was evaluated quantitatively. We designed ten template DNAs: A linear sequence that does not have significant higher-order structure, three sequences that form hairpin structures, and six sequences that form G-quadruplex structures with different stabilities. Templates with non-canonical structures induced the production of an arrested, a slipped, and a full-length transcript, whereas the linear sequence produced only a full-length transcript. The efficiency of production for run-off transcripts (full-length and slipped transcripts) from templates that formed the non-canonical structures was lower than that from the linear. G-quadruplex structures were more effective inhibitors of full-length product formation than were hairpin structure even when the stability of the G-quadruplex in an aqueous solution was the same as that of the hairpin. We considered that intra-polymerase conditions may differentially affect the stability of non-canonical structures. The values of transcription efficiencies of run-off or arrest transcripts were correlated with stabilities of non-canonical structures in the intra-polymerase condition mimicked by 20 wt% polyethylene glycol (PEG). Transcriptional arrest was induced when the stability of the G-quadruplex structure (−ΔGo 37) in the presence of 20 wt% PEG was more than 8.2 kcal mol−1. Thus, values of stability in the presence of 20 wt% PEG are an important indicator of transcription perturbation. Our results further our understanding of the impact of template structure on the transcription process and may guide logical design of transcription-regulating drugs. PMID:24594642

  11. Analysis of protein stability and ligand interactions by thermal shift assay.

    PubMed

    Huynh, Kathy; Partch, Carrie L

    2015-02-02

    Purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in a 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as an initial low-cost screen to discover new protein-ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for small-scale, high-throughput thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye. Copyright © 2015 John Wiley & Sons, Inc.

  12. SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yingyong; Jin, Guoqiang; Tong, Xili

    2011-11-15

    Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ hydrothermal synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and hydrothermal stabilities. Highlights: {yields} SiC-dopped MCM-41 was synthesized by in situ hydrothermal synthesis of molecular sieve precursor combined with SiC. {yields} The dopped MCM-41 materials show a wormhole-like mesoporous structure. {yields} The thermal stability of the dopped materials have an increment of almost 100 {sup o}C compared with the pure MCM-41. {yields} The hydrothermal stability of the dopped materials is also bettermore » than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N{sub 2} physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 {sup o}C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.« less

  13. Precision Composite Space Structures

    DTIC Science & Technology

    2007-10-15

    large structures. 15. SUBJECT TERMS Composite materials, dimensional stability, microcracking, thermal expansion , space structures, degradation...Figure 32. Variation of normalized coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6...coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6 composite lamina with a fiber volume

  14. Purification and Thermal Stability of Intact Bacillus subtilis Flagella

    PubMed Central

    Dimmitt, K.; Simon, M.

    1971-01-01

    Flagella were prepared and purified in a relatively intact form from bacterial lysates. Immunochemical tests showed that over 95% of the protein in the final preparation consisted of flagellar antigen. These flagella are more stable to thermal denaturation than flagella filaments obtained by shearing. Their thermal properties more closely resemble those of flagella in the native state on bacteria. The presence of the hook structure is responsible for this extra stability. Images PMID:4993323

  15. Effect of Filler Concentration on Thermal Stability of Vinyl Copolymer Elastomer (VCE) Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dali; Hubbard, Kevin Mark; Devlin, David James

    To study the thermal stability of vinyl copolymer elastomer (VCE) in its composite form, systematic TGA characterizations were conducted in both nonisothermal and isothermal modes. The effects of filler concentration on the aging behaviors of the VCE/filler composites were investigated under nitroplasticizer (NP) environment. FTIR characterization was used to probe the structural changes in the VCE polymer before and after the thermal treatments. This study suggests that the filler concentration significantly deteriorates the thermal stability of NP at a moderate temperature (< 70 °C). The degradation of NP, in turn, accelerates the aging process of the VCE polymer in itsmore » composite form.« less

  16. Low-Temperature Bainite: A Thermal Stability Study

    NASA Astrophysics Data System (ADS)

    Santajuana, Miguel A.; Rementeria, Rosalia; Kuntz, Matthias; Jimenez, Jose A.; Caballero, Francisca G.; Garcia-Mateo, Carlos

    2018-06-01

    The thermal stability of nanobainitic structures obtained by heat treating two different high-carbon high-silicon steels at temperatures between 200 °C and 600 °C has been investigated by means of three complementary techniques, i.e., field emission gun-scanning electron microscopy, X-ray diffraction, and high-resolution dilatometry. Three main stages have been established, each of them characterized by a distinctive microstructure. Furthermore, the nanocrystalline structure generated by the bainite reaction confers the steel with an extraordinary tempering resistance.

  17. Low-Temperature Bainite: A Thermal Stability Study

    NASA Astrophysics Data System (ADS)

    Santajuana, Miguel A.; Rementeria, Rosalia; Kuntz, Matthias; Jimenez, Jose A.; Caballero, Francisca G.; Garcia-Mateo, Carlos

    2018-04-01

    The thermal stability of nanobainitic structures obtained by heat treating two different high-carbon high-silicon steels at temperatures between 200 °C and 600 °C has been investigated by means of three complementary techniques, i.e., field emission gun-scanning electron microscopy, X-ray diffraction, and high-resolution dilatometry. Three main stages have been established, each of them characterized by a distinctive microstructure. Furthermore, the nanocrystalline structure generated by the bainite reaction confers the steel with an extraordinary tempering resistance.

  18. Bulk Nanolaminated Nickel: Preparation, Microstructure, Mechanical Property, and Thermal Stability

    NASA Astrophysics Data System (ADS)

    Liu, Fan; Yuan, Hao; Goel, Sunkulp; Liu, Ying; Wang, Jing Tao

    2018-02-01

    A bulk nanolaminated (NL) structure with distinctive fractions of low- and high-angle grain boundaries ( f LAGBs and f HAGBs) is produced in pure nickel, through a two-step process of primary grain refinement by equal-channel angular pressing (ECAP), followed by a secondary geometrical refinement via liquid nitrogen rolling (LNR). The lamellar boundary spacings of 2N and 4N nickel are refined to 40 and 70 nm, respectively, and the yield strength of the NL structure in 2N nickel reaches 1.5 GPa. The impacts of the deformation path, material purity, grain boundary (GB) misorientation, and energy on the microstructure, refinement ability, mechanical strength, and thermal stability are investigated to understand the inherent governing mechanisms. GB migration is the main restoration mechanism limiting the refinement of an NL structure in 4N nickel, while in 2N nickel, shear banding occurs and mediates one-fifth of the total true normal rolling strain at the mesoscale, restricting further refinement. Three typical structures [ultrafine grained (UFG), NL with low f LAGBs, and NL with high f LAGBs] obtained through three different combinations of ECAP and LNR were studied by isochronal annealing for 1 hour at temperatures ranging from 433 K to 973 K (160 °C to 700 °C). Higher thermal stability in the NL structure with high f LAGBs is shown by a 50 K (50 °C) delay in the initiation temperature of recrystallization. Based on calculations and analyses of the stored energies of deformed structures from strain distribution, as characterized by kernel average misorientation (KAM), and from GB misorientations, higher thermal stability is attributed to high f LAGBs in this type of NL structure. This is confirmed by a slower change in the microstructure, as revealed by characterizing its annealing kinetics using KAM maps.

  19. Fractionation and physicochemical characterization of lignin from waste jute bags: Effect of process parameters on yield and thermal degradation.

    PubMed

    Ahuja, Dheeraj; Kaushik, Anupama; Chauhan, Ghanshyam S

    2017-04-01

    In this work lignin was extracted from waste jute bags using soda cooking method and effect of varying alkali concentration and pH on yield, purity, structure and thermal degradation of lignin were studied. The Lignin yield, chemical composition and purity were assessed using TAPPI method and UV-vis spectroscopy. Yield and purity of lignin ranged from 27 to 58% and 50-94%, respectively for all the samples and was maximum for 8% alkali concentration and at pH 2 giving higher thermal stability. Chemical structure, thermal stability and elementary analysis of lignin were studied using FTIR, H NMR, thermo gravimetric analysis (TGA) and Elemental analyzer. FTIR and H NMR results showed that core structure of lignin starts breaking beyond 10% alkali concentration. S/G ratio shows the dominance of Syringyl unit over guaiacyl unit. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Assessment of physical stability of an antibody drug conjugate by higher order structure analysis: impact of thiol- maleimide chemistry.

    PubMed

    Guo, Jianxin; Kumar, Sandeep; Prashad, Amarnauth; Starkey, Jason; Singh, Satish K

    2014-07-01

    To provide a systematic biophysical approach towards a better understanding of impact of conjugation chemistry on higher order structure and physical stability of an antibody drug conjugate (ADC). ADC was prepared using thiol-maleimide chemistry. Physical stabilities of ADC and its parent IgG1 mAb were compared using calorimetric, spectroscopic and molecular modeling techniques. ADC and mAb respond differently to thermal stress. Both the melting temperatures and heat capacities are substantially lower for the ADC. Spectroscopic experiments show that ADC and mAb have similar secondary and tertiary structures, but these are more easily destabilized by thermal stress on the ADC indicating reduced conformational stability. Molecular modeling calculations suggest a substantial decrease in the conformational energy of the mAb upon conjugation. The local surface around the conjugation sites also becomes more hydrophobic in the ADC, explaining the lower colloidal stability and greater tendency of the ADC to aggregate. Computational and biophysical analyses of an ADC and its parent mAb have provided insights into impact of conjugation on physical stability and pinpointed reasons behind lower structural stability and increased aggregation propensity of the ADC. This knowledge can be used to design appropriate formulations to stabilize the ADC.

  1. Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: Enhancing thermal stability and hydrophobic property.

    PubMed

    Zhou, Ling; He, Hui; Li, Mei-Chun; Huang, Siwei; Mei, Changtong; Wu, Qinglin

    2018-06-01

    Hydrophobic and thermally-stable cellulose nanocrystals (CNCs) were synthesized by polycarpolactone diol (PCL diol) grafting via click chemistry strategy. The synthesis was designed as a three-step procedure containing azide-modification of CNCs, alkyne-modification of PCL diol and sequent copper(I)-catalyzed azide-alkyne cycloaddition reaction. The structure of azide-modified CNCs and alkyne-modified PCL diol, the structure, hydrophobic ability and thermal stability of click products CNC-PCL were characterized. FTIR, XPS and H 1 NMR results indicated a successful grafting of the N 3 groups onto the CNCs, synthesis of PCL diol-CCH, and formation of the CNC-PCL material. CNC-PCL had enhanced dispersion in the non-polar solvent chloroform owing to the well-maintained microscale size and PCL-induced hydrophobic surface. The thermal stability of CNC-PCL was largely increased due to the grafting of thermally-stable PCL. This work demonstrates that click chemistry is an attractive modification strategy to graft CNCs with polyester chains for further potential application in polymer composites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Flexible all-carbon photovoltaics with improved thermal stability

    NASA Astrophysics Data System (ADS)

    Tang, Chun; Ishihara, Hidetaka; Sodhi, Jaskiranjeet; Chen, Yen-Chang; Siordia, Andrew; Martini, Ashlie; Tung, Vincent C.

    2015-04-01

    The structurally robust nature of nanocarbon allotropes, e.g., semiconducting single-walled carbon nanotubes (SWCNTs) and C60s, makes them tantalizing candidates for thermally stable and mechanically flexible photovoltaic applications. However, C60s rapidly dissociate away from the basal of SWCNTs under thermal stimuli as a result of weak intermolecular forces that "lock up" the binary assemblies. Here, we explore use of graphene nanoribbons (GNRs) as geometrically tailored protecting layers to suppress the unwanted dissociation of C60s. The underlying mechanisms are explained using a combination of molecular dynamics simulations and transition state theory, revealing the temperature dependent disassociation of C60s from the SWCNT basal plane. Our strategy provides fundamental guidelines for integrating all-carbon based nano-p/n junctions with optimized structural and thermal stability. External quantum efficiency and output current-voltage characteristics are used to experimentally quantify the effectiveness of GNR membranes under high temperature annealing. Further, the resulting C60:SWCNT:GNR ternary composites display excellent mechanical stability, even after iterative bending tests.

  3. Stability and thermal behavior of molybdenum disulfide nanotubes: Nonequilibrium molecular dynamics simulation using REBO potential

    NASA Astrophysics Data System (ADS)

    Ahadi, Zohreh; Shadman Lakmehsari, Muhammad; Kumar Singh, Sandeep; Davoodi, Jamal

    2017-12-01

    This study is an attempt to perform equilibrium molecular dynamics and non-equilibrium molecular dynamics (NEMD) to evaluate the stability and thermal behavior of molybdenum disulfide nanotubes (MoS2NTs) by reactive empirical bond order potential. The stability of nanotubes, cohesive energy, isobaric heat capacity, and enthalpies of fusion in armchair and zigzag structures with different radii were calculated. The observed results illustrate that SWMoS2NTs, which have larger diameters, are more stable with more negative energy than the smaller ones. Moreover, it was found that the melting point is increased with an increase in the nanotube's radius. During the melting process, the structural transformation of nanotubes was investigated using a mean-square displacement and radial distribution function diagrams. Afterwards, using a NEMD simulation, the thermal conductivity of nanotubes with various diameters was calculated at a constant nanotube length. The obtained results show that the thermal conductivity coefficient increases with increasing nanotube diameters when the nanotube length is constant.

  4. 2-Methoxypyridine as a Thymidine Mimic in Watson-Crick Base Pairs of DNA and PNA: Synthesis, Thermal Stability, and NMR Structural Studies.

    PubMed

    Novosjolova, Irina; Kennedy, Scott D; Rozners, Eriks

    2017-11-02

    The development of nucleic acid base-pair analogues that use new modes of molecular recognition is important both for fundamental research and practical applications. The goal of this study was to evaluate 2-methoxypyridine as a cationic thymidine mimic in the A-T base pair. The hypothesis was that including protonation in the Watson-Crick base pairing scheme would enhance the thermal stability of the DNA double helix without compromising the sequence selectivity. DNA and peptide nucleic acid (PNA) sequences containing the new 2-methoxypyridine nucleobase (P) were synthesized and studied by using UV thermal melting and NMR spectroscopy. Introduction of P nucleobase caused a loss of thermal stability of ≈10 °C in DNA-DNA duplexes and ≈20 °C in PNA-DNA duplexes over a range of mildly acidic to neutral pH. Despite the decrease in thermal stability, the NMR structural studies showed that P-A formed the expected protonated base pair at pH 4.3. Our study demonstrates the feasibility of cationic unnatural base pairs; however, future optimization of such analogues will be required. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Crystallization, structural relaxation and thermal degradation in Poly(L-lactide)/cellulose nanocrystal renewable nanocomposites.

    PubMed

    Lizundia, E; Vilas, J L; León, L M

    2015-06-05

    In this work, crystallization, structural relaxation and thermal degradation kinetics of neat Poly(L-lactide) (PLLA) and its nanocomposites with cellulose nanocrystals (CNC) and CNC-grafted-PLLA (CNC-g-PLLA) have been studied. Although crystallinity degree of nanocomposites remains similar to that of neat homopolymer, results reveal an increase on the crystallization rate by 1.7-5 times boosted by CNC, which act as nucleating agents during the crystallization process. In addition, structural relaxation kinetics of PLLA chains has been drastically reduced by 53% and 27% with the addition of neat and grafted CNC, respectively. The thermal degradation activation energy (E) has been determined from thermogravimetric analysis in the light of Kissinger's and Ozawa-Flynn-Wall theoretical models. Results reveal a reduction on the thermal stability when in presence of CNC-g-PLLA, while raw CNC slightly increases the thermal stability of PLLA. Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy results confirm that the presence of residual catalyst in CNC-g-PLLA plays a pivotal role in the thermal degradation behavior of nanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The relationship between bond ionicity, lattice energy, coefficient of thermal expansion and microwave dielectric properties of Nd(Nb(1-x)Sb(x))O4 ceramics.

    PubMed

    Zhang, Ping; Zhao, Yonggui; Wang, Xiuyu

    2015-06-28

    The crystalline structure refinement, chemical bond ionicity, lattice energy and coefficient of thermal expansion were carried out for Nd(Nb(1-x)Sb(x))O4 ceramics with a monoclinic fergusonite structure to investigate the correlations between the crystalline structure, phase stability, bond ionicity, lattice energy, coefficient of thermal expansion, and microwave dielectric properties. The bond ionicity, lattice energy, and coefficient of thermal expansion of Nd(Nb(1-x)Sb(x))O4 ceramics were calculated using a semiempirical method based on the complex bond theory. The phase structure stability varied with the lattice energy which was resulted by the substitution constant of Sb(5+). With the increasing of the Sb(5+) contents, the decrease of Nb/Sb-O bond ionicity was observed, which could be contributed to the electric polarization. The ε(r) had a close relationship with the Nb/Sb-O bond ionicity. The increase of the Q×f and |τ(f)| values could be attributed to the lattice energy and the coefficient of thermal expansion. The microwave dielectric properties of Nd(Nb(1-x)Sb(x))O4 ceramics with the monoclinic fergusonite structure were strongly dependent on the chemical bond ionicity, lattice energy and coefficient of thermal expansion.

  7. Small satellite generic bus structure

    NASA Astrophysics Data System (ADS)

    Fiore, John N.; Summers, George D.

    1993-02-01

    A 'Smallsat' generic structure has been developed for LEO and expendable launch vehicles. The structure makes extensive use of Al-alloy honeycomb-stabilized panels in order to satisfy stiffness, weight, strength and thermal stability requirements in the LEO environment, in conjunction with discrete applications of multilayered insulation blankets and silverized Teflon radiators. The Smallsat structure is ideally suited for assembly-line manufacturing and storage until required.

  8. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  9. The impact of thermal treatment on the stability of freeze-dried amorphous pharmaceuticals: II. Aggregation in an IgG1 fusion protein.

    PubMed

    Wang, Bingquan; Cicerone, Marcus T; Aso, Yukio; Pikal, Michael J

    2010-02-01

    The objective of this research was to investigate the impact of thermal treatment on storage stability of an IgG1 fusion protein. IgG1 protein formulations were prepared by freeze-drying the protein with sucrose. Some samples were used as controls, and others were subjected to a further heat treatment (annealing). The protein structure was investigated with Fourier transform infrared spectroscopy (FTIR), and protein aggregation was monitored with size exclusion HPLC. Enthalpy recovery was studied using DSC, and global mobility represented by the structural relaxation time constant (tau(beta)) was characterized by a thermal activity monitor (TAM). The local mobility of the protein system was monitored by both (13)C solid-state NMR and neutron backscattering. Annealing increased the storage stability of the protein, as shown by the smaller aggregation rate and less total aggregation at the end of a storage period. The structural relaxation time constant of an annealed sample was significantly higher than the unannealed control sample, suggesting a decrease in global mobility of the protein system upon annealing. However, annealing does not significantly impact the protein secondary structure or the local mobility. Given the similar protein native structure and specific surface area, the improved stability upon annealing is mainly a result of reduced global molecular mobility. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  10. The effect of radiation on the thermal properties of chitosan/mimosa tenuiflora and chitosan/mimosa tenuiflora/multiwalled carbon nanotubes (MWCNT) composites for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Martel-Estrada, S. A.; Santos-Rodríguez, E.; Olivas-Armendáriz, I.; Cruz-Zaragoza, E.; Martínez-Pérez, C. A.

    2014-07-01

    The purpose of this study is to examine the effect of gamma radiation and UV radiation on the microstructure, chemical structure and thermal stability of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites scaffolds produced by thermally induced phase separation. The composites were irradiated and observed to undergo radiation-induced degradation through chain scission. Morphology, thermal properties and effects on chemical and semi-crystalline structures were obtained by scanning electronic microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR analysis and X-ray Diffraction. A relationship between radiation type and the thermal stability of the composites, were also established. This relationship allows a more accurate and precise control of the life span of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites through the use of radiation in materials for use in tissue engineering.

  11. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    PubMed

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-05-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    PubMed

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-02-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Thermal Stability of RNA Structures with Bulky Cations in Mixed Aqueous Solutions.

    PubMed

    Nakano, Shu-Ichi; Tanino, Yuichi; Hirayama, Hidenobu; Sugimoto, Naoki

    2016-10-04

    Bulky cations are used to develop nucleic-acid-based technologies for medical and technological applications in which nucleic acids function under nonaqueous conditions. In this study, the thermal stability of RNA structures was measured in the presence of various bulky cations in aqueous mixtures with organic solvents or polymer additives. The stability of oligonucleotide, transfer RNA, and polynucleotide structures was decreased in the presence of salts of tetrabutylammonium and tetrapentylammonium ions, and the stability and salt concentration dependences were dependent on cation sizes. The degree to which stability was dependent on salt concentration was correlated with reciprocals of the dielectric constants of mixed solutions, regardless of interactions between the cosolutes and RNA. Our results show that organic solvents affect the strength of electrostatic interactions between RNA and cations. Analysis of ion binding to RNA indicated greater enhancement of cation binding to RNA single strands than to duplexes in media with low dielectric constants. Furthermore, background bulky ions changed the dependence of RNA duplex stability on the concentration of metal ion salts. These unique properties of large tetraalkylammonium ions are useful for controlling the stability of RNA structures and its sensitivity to metal ion salts. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Flexible, High-Wettability and Fire-Resistant Separators Based on Hydroxyapatite Nanowires for Advanced Lithium-Ion Batteries.

    PubMed

    Li, Heng; Wu, Dabei; Wu, Jin; Dong, Li-Ying; Zhu, Ying-Jie; Hu, Xianluo

    2017-11-01

    Separators play a pivotal role in the electrochemical performance and safety of lithium-ion batteries (LIBs). The commercial microporous polyolefin-based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross-linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire-resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as-prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as-prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mechanical and thermal stability of graphene and graphene-based materials

    NASA Astrophysics Data System (ADS)

    Galashev, A. E.; Rakhmanova, O. R.

    2014-10-01

    Graphene has rapidly become one of the most popular materials for technological applications and a test material for new condensed matter ideas. This paper reviews the mechanical properties of graphene and effects related to them that have recently been discovered experimentally or predicted theoretically or by simulation. The topics discussed are of key importance for graphene's use in integrated electronics, thermal materials, and electromechanical devices and include the following: graphene transformation into other sp^2 hybridization forms; stability to stretching and compression; ion-beam-induced structural modifications; how defects and graphene edges affect the electronic properties and thermal stability of graphene and related composites.

  16. Plasticization effect of triacetin on structure and properties of starch ester film.

    PubMed

    Zhu, Jie; Li, Xiaoxi; Huang, Chen; Chen, Ling; Li, Lin

    2013-05-15

    The aim of this work was to evaluate the plasticizing effect of triacetin on the structure and properties of starch ester film and further establish the structure-property relationships. The presence of triacetin resulted in multiple structure changes of the film. The mobility of macromolecular chain was increased to form scattered crystallite during the film formation process. The amorphous region was enlarged to contain more triacetin squeezed from crystalline region. The plasticization of triacetin and restriction of crystallite oppositely influenced the mobility of macromolecular chains in different regions. The thermal stability of triacetin changed along with its fluctuant interaction with macromolecules. Comparatively, the enhanced ether bond and the restriction from crystalline regions on the mobility of the amorphous chain consequently improved the thermal stability of the film matrix. The interaction between triacetin and starch ester was essential to film forming but unexpectedly lowered the triacetin stability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. In Search of Functional Advantages of Knots in Proteins.

    PubMed

    Dabrowski-Tumanski, Pawel; Stasiak, Andrzej; Sulkowska, Joanna I

    2016-01-01

    We analysed the structure of deeply knotted proteins representing three unrelated families of knotted proteins. We looked at the correlation between positions of knotted cores in these proteins and such local structural characteristics as the number of intra-chain contacts, structural stability and solvent accessibility. We observed that the knotted cores and especially their borders showed strong enrichment in the number of contacts. These regions showed also increased thermal stability, whereas their solvent accessibility was decreased. Interestingly, the active sites within these knotted proteins preferentially located in the regions with increased number of contacts that also have increased thermal stability and decreased solvent accessibility. Our results suggest that knotting of polypeptide chains provides a favourable environment for the active sites observed in knotted proteins. Some knotted proteins have homologues without a knot. Interestingly, these unknotted homologues form local entanglements that retain structural characteristics of the knotted cores.

  18. Synthesis, characterization, and thermal stability of SiO2/TiO2/CR-Ag multilayered nanostructures

    NASA Astrophysics Data System (ADS)

    Díaz, Gabriela; Chang, Yao-Jen; Philipossian, Ara

    2018-06-01

    The controllable synthesis and characterization of novel thermally stable silver-based particles are described. The experimental approach involves the design of thermally stable nanostructures by the deposition of an interfacial thick, active titania layer between the primary substrate (SiO2 particles) and the metal nanoparticles (Ag NPs), as well as the doping of Ag nanoparticles with an organic molecule (Congo Red, CR). The nanostructured particles were composed of a 330-nm silica core capped by a granular titania layer (10 to 13 nm in thickness), along with monodisperse 5 to 30 nm CR-Ag NPs deposited on top. The titania-coated support (SiO2/TiO2 particles) was shown to be chemically and thermally stable and promoted the nucleation and anchoring of CR-Ag NPs, which prevented the sintering of CR-Ag NPs when the structure was exposed to high temperatures. The thermal stability of the silver composites was examined by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Larger than 10 nm CR-Ag NPs were thermally stable up to 300 °C. Such temperature was high enough to destabilize the CR-Ag NPs due to the melting point of the CR. On the other hand, smaller than 10 nm Ag NPs were stable at temperatures up to 500 °C because of the strong metal-metal oxide binding energy. Energy dispersion X-ray spectroscopy (EDS) was carried out to qualitatively analyze the chemical stability of the structure at different temperatures which confirmed the stability of the structure and the existence of silver NPs at temperatures up to 500 °C.

  19. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Fergus, Jeffrey W.

    2014-06-01

    One of the important applications of yttria-stabilized zirconia (YSZ) is as a thermal barrier coating for gas turbine engines. While YSZ performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite-derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability, and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatings are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.

  20. Phase evolution and thermal properties of yttria-stabilized hafnia nano-coatings deposited on alumina

    NASA Astrophysics Data System (ADS)

    Rubio, Ernesto Javier

    High-temperature coatings are critical to the future power-generation systems and industries. Thermal barrier coatings (TBCs), which are usually the ceramic materials applied as thin coatings, protect engine components and allow further increase in engine temperatures for higher efficiency. Thus, the durability and reliability of the coating systems have to be more robust compared to current natural gas based engines. While a near and mid-term target is to develop TBC architecture with a 1300 °C surface temperature tolerance, a deeper understanding of the structure evolution and thermal behavior of the TBC-bond coat interface, specifically the thermally grown oxide (TGO), is of primary importance. In the present work, attention is directed towards yttria-stabilized hafnia (YSH) coatings on alumina (α-Al2O 3) to simulate the TBC-TGO interface and understand the phase evolution, microstructure and thermal oxidation of the coatings. YSH coatings were grown on α-Al2O3 substrates by sputter deposition by varying coating thickness in a wide range ˜30-1000 nm. The effect of coating thickness on the structure, morphology and the residual stress has been investigated using X-ray diffraction (XRD) and high resolution scanning electron microscopy (SEM). Thermal oxidation behavior of the coatings has been evaluated using the isothermal oxidation measurements under static conditions. X-ray diffraction analyses revealed the existence of monoclinic hafnia phase for relatively thin coatings indicating that the interfacial phenomena are dominant in phase stabilization. The evolution towards pure stabilized cubic phase of hafnia with the increasing coating thickness is observed. The SEM results indicate the changes in morphology of the coatings; the average grain size increases from 15 to 500 nm with increasing thickness. Residual stress was calculated employing XRD using the variable ψ-angle. Relation between residual stress and structural change is also studied. The results obtained on the thermal oxidation behavior indicate that the YSH coatings exhibit initial mass gain in the first 6 hours and sustained structure for extended hours of thermal treatment.

  1. Comparison of stabilization by Vitamin E and 2,6-di-tert-butylphenols during polyethylene radio-thermal-oxidation

    NASA Astrophysics Data System (ADS)

    Richaud, Emmanuel

    2014-10-01

    This paper reports a compilation of data for PE+Vitamin E and 2,6-di-tert-butylphenols oxidation in radio-thermal ageing. Data unambiguously show that Vitamin E reacts with Prad and POOrad whereas 2,6-di-tert-butyl phenols only react with POOrad. Kinetic parameters of the stabilization reactions for both kinds of antioxidants were tentatively extracted from phenol depletion curves, and discussed regarding the structure of the stabilizer. They were also used for completing an existing kinetic model used for predicting the stabilization by antioxidants. This one permits to compare the efficiency of stabilizer with dose rate or sample thickness.

  2. Thermal Stability of Zone Melting p-Type (Bi, Sb)2Te3 Ingots and Comparison with the Corresponding Powder Metallurgy Samples

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Fan, Xi'an; Hu, Jie; Feng, Bo; Xiang, Qiusheng; Li, Guangqiang; Li, Yawei; He, Zhu

    2018-04-01

    During the past few decades, Bi2Te3-based alloys have been investigated extensively because of their promising application in the area of low temperature waste heat thermoelectric power generation. However, their thermal stability must be evaluated to explore the appropriate service temperature. In this work, the thermal stability of zone melting p-type (Bi, Sb)2Te3-based ingots was investigated under different annealing treatment conditions. The effect of service temperature on the thermoelectric properties and hardness of the samples was also discussed in detail. The results showed that the grain size, density, dimension size and mass remained nearly unchanged when the service temperature was below 523 K, which suggested that the geometry size of zone melting p-type (Bi, Sb)2Te3-based materials was stable below 523 K. The power factor and Vickers hardness of the ingots also changed little and maintained good thermal stability. Unfortunately, the thermal conductivity increased with increasing annealing temperature, which resulted in an obvious decrease of the zT value. In addition, the thermal stabilities of the zone melting p-type (Bi, Sb)2Te3-based materials and the corresponding powder metallurgy samples were also compared. All evidence implied that the thermal stabilities of the zone-melted (ZMed) p-type (Bi, Sb)2Te3 ingots in terms of crystal structure, geometry size, power factor (PF) and hardness were better than those of the corresponding powder metallurgy samples. However, their thermal stabilities in terms of zT values were similar under different annealing temperatures.

  3. A combined interfacial and in-situ polymerization strategy to construct well-defined core-shell epoxy-containing SiO2-based microcapsules with high encapsulation loading, super thermal stability and nonpolar solvent tolerance

    NASA Astrophysics Data System (ADS)

    Jia; Wang; Tian; Li; Xu; Jiao; Cao; Wu

    2016-10-01

    SiO2-based microcapsules containing hydrophobic molecules exhibited potential applications such as extrinsic self-healing, drug delivery, due to outstanding thermal and chemical stability of SiO2. However, to construct SiO2-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue, limiting their further utilization. We herein design a single-batch route, a combined interfacial and in-situ polymerization strategy, to fabricate epoxy-containing SiO2-based microcapsules with both high encapsulation loading and long-term structural stability. The final SiO2-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step. In the subsequent in-situ polymerization step, the initial SiO2-based microcapsules as seeds could efficiently harvest SiO2 precursors and primary SiO2 particles to finely tune the SiO2 wall thickness, thereby enhancing long-term structural stability of the final SiO2-based microcapsules including high thermal stability with almost no any weight loss until 250°C, and strong tolerance against nonpolar solvents such as CCl4 with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days. These SiO2-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.

  4. Thermally stable and high reflectivity Al-doped silver thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Loka, Chadrasekhar; Lee, Kwang; Joo, Sin Yong; Lee, Kee-Sun

    2018-03-01

    Thermally stable, high reflectance thin film coatings are indispensable in optoelectronic devices, especially as a potential back reflector for LEDs and solar cells. The silver has the drawback of agglomerating easily and poor thermal stability, which is limiting its application as a highly reflective coating in various optoelectronic applications. In this study, improved thermal stability by modification of the Ag film into an Ag/Al-doped Ag structure has been confirmed. In this paper, the surface morphology, optical reflectance, and thermal stability of the Ag/Al-doped Ag are investigated. The Ag/Al-doped Ag/sapphire films showed excellent thermal stability after annealing the films at 523 K with the highest reflectance about ∼86% as compared to the pure Ag films. The grain growth analysis results revealed that the Al-doping is effective to restrain the severe grain growth of silver films. The Auger electron spectroscopy results revealed that the outer diffusion of aluminum and the formation of Al-O bond at the outermost silver layer which is beneficial to retard the Ag grain growth.

  5. Protein thermal denaturation is modulated by central residues in the protein structure network.

    PubMed

    Souza, Valquiria P; Ikegami, Cecília M; Arantes, Guilherme M; Marana, Sandro R

    2016-03-01

    Network structural analysis, known as residue interaction networks or graphs (RIN or RIG, respectively) or protein structural networks or graphs (PSN or PSG, respectively), comprises a useful tool for detecting important residues for protein function, stability, folding and allostery. In RIN, the tertiary structure is represented by a network in which residues (nodes) are connected by interactions (edges). Such structural networks have consistently presented a few central residues that are important for shortening the pathways linking any two residues in a protein structure. To experimentally demonstrate that central residues effectively participate in protein properties, mutations were directed to seven central residues of the β-glucosidase Sfβgly (β-D-glucoside glucohydrolase; EC 3.2.1.21). These mutations reduced the thermal stability of the enzyme, as evaluated by changes in transition temperature (Tm ) and the denaturation rate at 45 °C. Moreover, mutations directed to the vicinity of a central residue also caused significant decreases in the Tm of Sfβgly and clearly increased the unfolding rate constant at 45 °C. However, mutations at noncentral residues or at surrounding residues did not affect the thermal stability of Sfβgly. Therefore, the data reported in the present study suggest that the perturbation of the central residues reduced the stability of the native structure of Sfβgly. These results are in agreement with previous findings showing that networks are robust, whereas attacks on central nodes cause network failure. Finally, the present study demonstrates that central residues underlie the functional properties of proteins. © 2016 Federation of European Biochemical Societies.

  6. Independent movement, dimerization and stability of tandem repeats of chicken brain alpha-spectrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusunoki, H.; Minasov, G.; Macdonald, R.I.

    Previous X-ray crystal structures have shown that linkers of five amino acid residues connecting pairs of chicken brain {alpha}-spectrin and human erythroid {beta}-spectrin repeats can undergo bending without losing their {alpha}-helical structure. To test whether bending at one linker can influence bending at an adjacent linker, the structures of two and three repeat fragments of chicken brain {alpha}-spectrin have been determined by X-ray crystallography. The structure of the three-repeat fragment clearly shows that bending at one linker can occur independently of bending at an adjacent linker. This observation increases the possible trajectories of modeled chains of spectrin repeats. Furthermore, themore » three-repeat molecule crystallized as an antiparallel dimer with a significantly smaller buried interfacial area than that of {alpha}-actinin, a spectrin-related molecule, but large enough and of a type indicating biological specificity. Comparison of the structures of the spectrin and {alpha}-actinin dimers supports weak association of the former, which could not be detected by analytical ultracentrifugation, versus strong association of the latter, which has been observed by others. To correlate features of the structure with solution properties and to test a previous model of stable spectrin and dystrophin repeats, the number of inter-helical interactions in each repeat of several spectrin structures were counted and compared to their thermal stabilities. Inter-helical interactions, but not all interactions, increased in parallel with measured thermal stabilities of each repeat and in agreement with the thermal stabilities of two and three repeats and also partial repeats of spectrin.« less

  7. A scalable ultrasonic-assisted and foaming combination method preparation polyvinyl alcohol/phytic acid polymer sponge with thermal stability and conductive capability.

    PubMed

    Li, Yongshen; Song, Yunna; Li, Jihui; Li, Yuehai; Li, Ning; Niu, Shuai

    2018-04-01

    In this article, polyvinyl alcohol/phytic acid polymer (PVA/PA polymer) is synthesized from PVA and PA via the esterification reaction of PVA and PA in the case of acidity and ultrasound irradiation, and PVA/PA polymer sponge is prepared via foaming PVA/PA polymer in the presence of n-pentane and ammonium bicarbonate, and the structure of PVA/PA polymer and the structure, morphology and crystallinity of PVA/PA polymer sponge are characterized, and the thermal stability and surface resistivity of PVA/PA polymer sponge are investigated. Based on these, it has been attested that PVA/PA polymer synthesized under the acidity and ultrasound irradiation and PVA/PA polymer sponge are structured by the chain of PVA and the cricoid PA connected in the form of ether bonds and phosphonate bonds, and the thermal stability of PVA/PA polymer sponge attains 416.5 °C, and the surface resistivity of PVA/PA polymer sponge reaches 5.76 × 10 4  ohms/sq. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.

    PubMed

    Lee, Chi-Wen; Wang, Hsiu-Jung; Hwang, Jenn-Kang; Tseng, Ching-Ping

    2014-01-01

    Protein thermal stability is an important factor considered in medical and industrial applications. Many structural characteristics related to protein thermal stability have been elucidated, and increasing salt bridges is considered as one of the most efficient strategies to increase protein thermal stability. However, the accurate simulation of salt bridges remains difficult. In this study, a novel method for salt-bridge design was proposed based on the statistical analysis of 10,556 surface salt bridges on 6,493 X-ray protein structures. These salt bridges were first categorized based on pairing residues, secondary structure locations, and Cα-Cα distances. Pairing preferences generalized from statistical analysis were used to construct a salt-bridge pair index and utilized in a weighted electrostatic attraction model to find the effective pairings for designing salt bridges. The model was also coupled with B-factor, weighted contact number, relative solvent accessibility, and conservation prescreening to determine the residues appropriate for the thermal adaptive design of salt bridges. According to our method, eight putative salt-bridges were designed on a mesophilic β-glucosidase and 24 variants were constructed to verify the predictions. Six putative salt-bridges leaded to the increase of the enzyme thermal stability. A significant increase in melting temperature of 8.8, 4.8, 3.7, 1.3, 1.2, and 0.7°C of the putative salt-bridges N437K-D49, E96R-D28, E96K-D28, S440K-E70, T231K-D388, and Q277E-D282 was detected, respectively. Reversing the polarity of T231K-D388 to T231D-D388K resulted in a further increase in melting temperatures by 3.6°C, which may be caused by the transformation of an intra-subunit electrostatic interaction into an inter-subunit one depending on the local environment. The combination of the thermostable variants (N437K, E96R, T231D and D388K) generated a melting temperature increase of 15.7°C. Thus, this study demonstrated a novel method for the thermal adaptive design of salt bridges through inference of suitable positions and substitutions.

  9. Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution.

    PubMed

    Goedegebuur, Frits; Dankmeyer, Lydia; Gualfetti, Peter; Karkehabadi, Saeid; Hansson, Henrik; Jana, Suvamay; Huynh, Vicky; Kelemen, Bradley R; Kruithof, Paulien; Larenas, Edmund A; Teunissen, Pauline J M; Ståhlberg, Jerry; Payne, Christina M; Mitchinson, Colin; Sandgren, Mats

    2017-10-20

    Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 °C increase in T m and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 °C. The X-ray crystal structure of the catalytic domain was determined at 2.1 Å resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Thermal properties of black phosphorene and doped phosphorene (C, N & O): A DFT study

    NASA Astrophysics Data System (ADS)

    Devi, Anjna; Singh, Amarjeet

    2018-04-01

    In this work, we present the results from a DFT based computational study of pristine phosphorene and doped (C, N & O) phosphorene. We systematically investigated the lattice thermal properties of black phosphorene and the effect of doping on its thermal properties. We first determined the vibrational properties of pristine and doped phosphorene and from these results we calculated their thermal properties. We doped the phosphorene with C, N and O and observed that the structural stability of doped phosphorene decreases, while the thermal stability is increased as compared to pristine phosphorene. The presence of finite temperature effects in the doped system can contribute to acceleration of progress in future nano-scale technology.

  11. The thermal stability of the carbon-palladium films for hydrogen sensor applications

    NASA Astrophysics Data System (ADS)

    Rymarczyk, Joanna; Czerwosz, ElŻbieta; Diduszko, Ryszard; Kozłowski, Mirosław

    2017-08-01

    The thermal stability of two types of C-Pd films prepared in PVD process were studied. These films are composed of Pd nanograins embedded in a multiphase carbonaceous matrix. These films were distinguished by Pd content. These films were annealed in a range of temperatures 50÷1000°C. The structural, topographical and molecular changes were studied by scanning electron microscopy (SEM), infrared spectroscopy (FTIR) and X-ray diffraction (XRD) methods. The results show that investigated films are thermally stable up to 200°C.

  12. Stabilization of Human Serum Albumin by the Binding of Phycocyanobilin, a Bioactive Chromophore of Blue-Green Alga Spirulina: Molecular Dynamics and Experimental Study

    PubMed Central

    Stanic-Vucinic, Dragana; Nikolic, Milan; Milcic, Milos; Cirkovic Velickovic, Tanja

    2016-01-01

    Phycocyanobilin (PCB) binds with high affinity (2.2 x 106 M-1 at 25°C) to human serum albumin (HSA) at sites located in IB and IIA subdomains. The aim of this study was to examine effects of PCB binding on protein conformation and stability. Using 300 ns molecular dynamics (MD) simulations, UV-VIS spectrophotometry, CD, FT-IR, spectrofluorimetry, thermal denaturation and susceptibility to trypsin digestion, we studied the effects of PCB binding on the stability and rigidity of HSA, as well as the conformational changes in PCB itself upon binding to the protein. MD simulation results demonstrated that HSA with PCB bound at any of the two sites showed greater rigidity and lower overall and individual domain flexibility compared to free HSA. Experimental data demonstrated an increase in the α-helical content of the protein and thermal and proteolytic stability upon ligand binding. PCB bound to HSA undergoes a conformational change to a more elongated conformation in the binding pockets of HSA. PCB binding to HSA stabilizes the structure of this flexible transport protein, making it more thermostable and resistant to proteolysis. The results from this work explain at molecular level, conformational changes and stabilization of HSA structure upon ligand binding. The resultant increased thermal and proteolytic stability of HSA may provide greater longevity to HSA in plasma. PMID:27959940

  13. Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites.

    PubMed

    Goikuria, U; Larrañaga, A; Vilas, J L; Lizundia, E

    2017-09-01

    Due to the potential of CNC-based flexible materials for novel industrial applications, the aim of this work is to improve the thermal stability of cellulose nanocrystals (CNC) films through a straightforward and scalable method. Based of nanocomposite approach, five different metallic nanoparticles (ZnO, SiO 2 , TiO 2 , Al 2 O 3 and Fe 2 O 3 ) have been co-assembled in water with CNCs to obtain free-standing nanocomposite films. Thermogravimetric analysis (TGA) reveals an increased thermal stability upon nanoparticle. This increase in the thermal stability reaches a maximum of 75°C for the nanocomposites having 10wt% of Fe 2 O 3 and ZnO. The activation energies of thermodegradation process (E a ) determined according to Kissinger and Ozawa-Flynn-Wall methods further confirm the delayed degradation of CNC nanocomposites upon heating. Finally, the changes induced in the crystalline structure during thermodegradation were followed by wide angle X-ray diffraction (WAXD). It is also observed that thermal degradation proceeds at higher temperatures for nanocomposites having metallic nanoparticles. Overall, experimental findings here showed make nanocomposite approach a simple low-cost environmentally-friendly strategy to overcome the relatively poor thermal stability of CNCs when extracted via sulfuric acid assisted hydrolysis of cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Thermal, Structural, and Optical Analysis of a Balloon-Based Imaging System

    NASA Astrophysics Data System (ADS)

    Borden, Michael; Lewis, Derek; Ochoa, Hared; Jones-Wilson, Laura; Susca, Sara; Porter, Michael; Massey, Richard; Clark, Paul; Netterfield, Barth

    2017-03-01

    The Subarcsecond Telescope And BaLloon Experiment, STABLE, is the fine stage of a guidance system for a high-altitude ballooning platform designed to demonstrate subarcsecond pointing stability over one minute using relatively dim guide stars in the visible spectrum. The STABLE system uses an attitude rate sensor and the motion of the guide star on a detector to control a Fast Steering Mirror to stabilize the image. The characteristics of the thermal-optical-mechanical elements in the system directly affect the quality of the point-spread function of the guide star on the detector, so a series of thermal, structural, and optical models were built to simulate system performance and ultimately inform the final pointing stability predictions. This paper describes the modeling techniques employed in each of these subsystems. The results from those models are discussed in detail, highlighting the development of the worst-case cold and hot cases, the optical metrics generated from the finite element model, and the expected STABLE residual wavefront error and decenter. Finally, the paper concludes with the predicted sensitivities in the STABLE system, which show that thermal deadbanding, structural pre-loading, and self-deflection under different loading conditions, and the speed of individual optical elements were particularly important to the resulting STABLE optical performance.

  15. Enhanced thermal stability of RuO2/polyimide interface for flexible device applications

    NASA Astrophysics Data System (ADS)

    Music, Denis; Schmidt, Paul; Chang, Keke

    2017-09-01

    We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic-organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru-C and a few Ru-O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.

  16. Chemical and thermal stability of N-heterocyclic ionic liquids in catalytic C-H activation reactions.

    PubMed

    Chen, Guanyi; Kang, Shujuan; Ma, Qisheng; Chen, Weiqun; Tang, Yongchun

    2014-11-01

    (1)H-NMR spectrum analyses are applied to study the chemical and thermal stability of selected N-heterocyclic ionic liquids within the reaction system that can highly efficiently activate a C-H bond of methane and convert it into the C-O bond in methanol. Our results indicate that under such reaction conditions involving using a powerful Pt-based catalyst and strong acidic solvent, the aromatic ring of an imidazolium cation becomes unstable generating an ammonium ion (NH(4)(+)). Our results also suggest that the instability of the imidazolium ring is more chemically (participation in reactions) than thermally based. Modifications of the aromatic ring structure such as pyrazolium and triazolium cations can increase the chemical/thermal stability of ionic liquids under these reaction conditions. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Novel Shape-Stabilized Phase Change Materials Composed of Polyethylene Glycol/Nonsurfactant-Templated Mesoporous Silica: Preparation and Thermal Properties

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zhu, Yingying; Wang, Jinbao; Lv, Mengjiao; Zhang, Xiongjie; Gao, Junkai; Zhang, Zijun; Lei, Hao

    2017-12-01

    A novel shape-stabilized phase change material (PEG/TAMS), fabricated using tannic acid-templated mesoporous silica (TAMS) as a support for polyethylene glycol, was developed for thermal energy storage. The method used to synthesize TAMS was simple, cost effective, environmentally friendly, and free of surfactant. The characterization results indicated that PEG was physically absorbed to TAMS and that TAMS had no influence on the crystal structure of PEG. According to the TGA thermograms, PEG/TAMS has excellent thermal stability and can be applied over a wide temperature range. Additionally, the differential scanning calorimetry results suggested that PEG/TAMS has good thermal properties and that its fusion and solidification enthalpies reached 114.7 J/g and 102.4 J/g, respectively. The results indicated that PEG/TAMS has great potential for practical applications.

  18. Thermal stability of G-rich anti-parallel DNA triplexes upon insertion of LNA and α-L-LNA.

    PubMed

    Kosbar, Tamer R; Sofan, Mamdouh A; Abou-Zeid, Laila; Pedersen, Erik B

    2015-05-14

    G-rich anti-parallel DNA triplexes were modified with LNA or α-L-LNA in their Watson-Crick and TFO strands. The triplexes were formed by targeting a pyrimidine strand to a putative hairpin formed by Hoogsteen base pairing in order to use the UV melting method to evaluate the stability of the triplexes. Their thermal stability was reduced when the TFO strand was modified with LNA or α-L-LNA. The same trend was observed when the TFO strand and the purine Watson-Crick strand both were modified with LNA. When all triad components were modified with α-L-LNA and LNA in the middle of the triplex, the thermal melting was increased. When the pyrimidine sequence was modified with a single insertion of LNA or α-L-LNA the ΔTm increased. Moreover, increasing the number of α-L-LNA in the pyrimidine target sequence to six insertions, leads to a high increase in the thermal stability. The conformational S-type structure of α-L-LNA in anti-parallel triplexes is preferable for triplex stability.

  19. The role of salt bridges on the temperature adaptation of aqualysin I, a thermostable subtilisin-like proteinase.

    PubMed

    Jónsdóttir, Lilja B; Ellertsson, Brynjar Ö; Invernizzi, Gaetano; Magnúsdóttir, Manuela; Thorbjarnardóttir, Sigríður H; Papaleo, Elena; Kristjánsson, Magnús M

    2014-12-01

    Differences in salt bridges are believed to be a structural hallmark of homologous enzymes from differently temperature-adapted organisms. Nevertheless, the role of salt bridges on structural stability is still controversial. While it is clear that most buried salt bridges can have a functional or structural role, the same cannot be firmly stated for ion pairs that are exposed on the protein surface. Salt bridges, found in X-ray structures, may not be stably formed in solution as a result of high flexibility or high desolvation penalty. More studies are thus needed to clarify the picture on salt bridges and temperature adaptation. We contribute here to this scenario by combining atomistic simulations and experimental mutagenesis of eight mutant variants of aqualysin I, a thermophilic subtilisin-like proteinase, in which the residues involved in salt bridges and not conserved in a psychrophilic homolog were systematically mutated. We evaluated the effects of those mutations on thermal stability and on the kinetic parameters. Overall, we show here that only few key charged residues involved in salt bridges really contribute to the enzyme thermal stability. This is especially true when they are organized in networks, as here attested by the D17N mutation, which has the most remarkable effect on stability. Other mutations had smaller effects on the properties of the enzyme indicating that most of the isolated salt bridges are not a distinctive trait related to the enhanced thermal stability of the thermophilic subtilase. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Current Protocols in Protein Science

    PubMed Central

    Huynh, Kathy

    2015-01-01

    The purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables the rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as a low cost, initial screen to discover new protein:ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for the small-scale, high-throughout thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye. PMID:25640896

  1. Study of the thermal stability of studtite by in situ Raman spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Colmenero, Francisco; Bonales, Laura J.; Cobos, Joaquín; Timón, Vicente

    2017-03-01

    The design of a safe spent nuclear fuel repository requires the knowledge of the stability of the secondary phases which precipitate when water reaches the fuel surface. Studtite is recognized as one of the secondary phases that play a key-role in the mobilization of the radionuclides contained in the spent fuel. Thereby, it has been identified as a product formed under oxidation conditions at the surface of the fuel, and recently found as a corrosion product in the Fukushima-Daiichi nuclear plant accident. Thermal stability is one of the properties that should be determined due to the high temperature of the fuel. In this work we report a detailed analysis of the structure and thermal stability of studtite. The structure has been studied both by experimental techniques (SEM, TGA, XRD and Raman spectroscopy) and theoretical DFT electronic structure and spectroscopic calculations. The comparison of the results allows us to perform for the first time the Raman bands assignment of the whole spectrum. The thermal stability of studtite has been analyzed by in situ Raman spectroscopy, with the aim of studying the effect of the heating rate and the presence of water. For this purpose, a new cell has been designed. The results show that studtite is stable under dry conditions only at temperatures below 30 °C, in contrast with the higher temperatures published up to date ( 130 °C). Opposite behaviour has been found when studtite is in contact with water; under these conditions studtite is stable up to 90 °C, what is consistent with the encounter of this phase after the Fukushima-Daiichi accident.

  2. Study of the thermal stability of studtite by in situ Raman spectroscopy and DFT calculations.

    PubMed

    Colmenero, Francisco; Bonales, Laura J; Cobos, Joaquín; Timón, Vicente

    2017-03-05

    The design of a safe spent nuclear fuel repository requires the knowledge of the stability of the secondary phases which precipitate when water reaches the fuel surface. Studtite is recognized as one of the secondary phases that play a key-role in the mobilization of the radionuclides contained in the spent fuel. Thereby, it has been identified as a product formed under oxidation conditions at the surface of the fuel, and recently found as a corrosion product in the Fukushima-Daiichi nuclear plant accident. Thermal stability is one of the properties that should be determined due to the high temperature of the fuel. In this work we report a detailed analysis of the structure and thermal stability of studtite. The structure has been studied both by experimental techniques (SEM, TGA, XRD and Raman spectroscopy) and theoretical DFT electronic structure and spectroscopic calculations. The comparison of the results allows us to perform for the first time the Raman bands assignment of the whole spectrum. The thermal stability of studtite has been analyzed by in situ Raman spectroscopy, with the aim of studying the effect of the heating rate and the presence of water. For this purpose, a new cell has been designed. The results show that studtite is stable under dry conditions only at temperatures below 30°C, in contrast with the higher temperatures published up to date (~130°C). Opposite behaviour has been found when studtite is in contact with water; under these conditions studtite is stable up to 90°C, what is consistent with the encounter of this phase after the Fukushima-Daiichi accident. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of fluoride residue on thermal stability in Cu/porous low-k interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Y.; Ozaki, S.; Nakamura, T.

    2014-06-19

    We have investigated the effects of fluoride residue on the thermal stability of a Cu/barrier metal (BM)/porous low-k film (k < 2.3) structure. We confirmed that the Cu agglomerated more on a BM/inter layer dielectric (ILD) with a fluoride residue. To consider the effect of fluoride residue on Cu agglomeration, the structural state at the Cu/BM interface was evaluated with a cross-section transmission electron microscope (TEM) and atomic force microscope (AFM). In addition, the chemical bonding state at the Cu/BM interface was evaluated with the interface peeling-off method and X-ray photoelectron spectroscopy (XPS). Moreover, we confirmed the ionization of fluoridemore » residue and oxidation of Cu with fluoride and moisture to clarify the effect of fluoride residue on Cu. Our experimental results indicated that the thermal stability in Cu/porous low-k interconnects was degraded by enhancement of Cu oxidation with fluoride ions diffusion as an oxidizing catalyst.« less

  4. Thermal stability characterization of SiC ceramic fibers. II. Fractography and structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawyer, L.C.; Chen, R.T.; Haimbach, F.,IV

    1986-08-01

    SiC ceramic fibers (Nicalon) exhibit tensile strength reduction following thermal treatment in air, argon and nitrogen environments above 1200 C. Grain-size variations have been observed in the treated fibers by X-ray diffraction and electron microscopy. Fractography studies show that strength reduction occurs in all thermal treatments, although the mechanism of fiber failure varies depending upon the specific environment. Structure-property relations will be developed as mechanical testing and fractography of the thermally treated fibers are associated with tensile strength loss mechanisms. 16 references.

  5. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor description (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard power or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increase upon being exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicates that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.

  6. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.

  7. Wide-Field Infrared Survey Telescope (WFIRST) Integrated Modeling

    NASA Technical Reports Server (NTRS)

    Liu, Kuo-Chia; Blaurock, Carl

    2017-01-01

    Contents: introduction to WFIRST (Wide-Field Infrared Survey Telescope) and integrated modeling; WFIRST stability requirement summary; instability mitigation strategies; dynamic jitter results; STOP (structural-thermal-optical performance) (thermal distortion) results; STOP and jitter capability limitations; model validation philosophy.

  8. Ionic Liquids in Electro-active Devices (ILED)

    DTIC Science & Technology

    2013-12-12

    Polyesters: Structure-Property Relationships in Thermal Behavior, Ionic Conductivity , and Morphology , Advanced Functional Materials, (01 2010...and Ionic Conductivities , Macromolecular Chemistry and Physics, (10 2011): . doi: M. Green, C. Schreiner, T. Long. Thermal , Rheological, and Ion...block giving thermal stability and ionic conductivity . Table 1 shows the molecular weight analysis of the triblock copolymers with increasing

  9. Using high thermal stability flexible thin film thermoelectric generator at moderate temperature

    NASA Astrophysics Data System (ADS)

    Zheng, Zhuang-Hao; Luo, Jing-Ting; Chen, Tian-Bao; Zhang, Xiang-Hua; Liang, Guang-Xing; Fan, Ping

    2018-04-01

    Flexible thin film thermoelectric devices are extensively used in the microscale industry for powering wearable electronics. In this study, comprehensive optimization was conducted in materials and connection design for fabricating a high thermal stability flexible thin film thermoelectric generator. First, the thin films in the generator, including the electrodes, were prepared by magnetron sputtering deposition. The "NiCu-Cu-NiCu" multilayer electrode structure was applied to ensure the thermal stability of the device used at moderate temperature in an air atmosphere. A design with metal layer bonding and series accordant connection was then employed. The maximum efficiency of a single PN thermocouple generator is >11%, and the output power loss of the generator is <10% after integration.

  10. Does 1-Allyl-3-methylimidazolium chloride Act as a Biocompatible Solvent for Stem Bromelain?

    PubMed

    Jha, Indrani; Bisht, Meena; Venkatesu, Pannuru

    2016-06-30

    The broader scope of ILs in chemical sciences particularly in pharmaceutical, bioanalytical and many more applications is increasing day by day. Hitherto, a very less amount of research is available in the depiction of conformational stability, activity, and thermal stability of enzymes in the presence of ILs. In the present study, the perturbation in the structure, stability, and activity of stem bromelain (BM) has been observed in the presence of 1-allyl-3-methylimidazolium chloride ([Amim][Cl]) using various techniques. This is the first report in which the influence of [Amim][Cl] has been studied on the enzyme BM. Fluorescence spectroscopy has been utilized to map out the changes in the environment around tryptophan (Trp) residues of BM and also to discuss the variations in the thermal stability of BM as an outcome of its interaction with the IL at different concentrations. Further, the work delineates the denaturing effect of high concentration of IL on enzyme structure and activity. It dictates the fact that low concentrations (0.01-0.10 M) of [Amim][Cl] are only changing the structural arrangement of the protein without having harsh consequences on its activity and stability. However, high concentrations of IL proved to be totally devastating for both activity and stability of BM. The observed decrease in the stability of BM at high concentration may be due to the combined effect of cation and anion interactions with the protein residues. The present work is successful in dictating the probable mechanism of interaction between BM and [Amim][Cl]. These results can prove to be fruitful in the studies of enzymes in aqueous IL systems since the used IL is thermally stable and nonvolatile in nature thereby providing a pathway of alteration in the activity of enzymes in potentially green systems.

  11. Tuning of Thermal Stability in Layered Li(NixMnyCoz)O2.

    PubMed

    Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang; Wei, Yi; Song, Xiaohe; Ren, Yang; Wang, Weidong; Rao, Mumin; Lin, Yuan; Chen, Zonghai; Lu, Jun; Wang, Chongmin; Amine, Khalil; Pan, Feng

    2016-10-12

    Understanding and further designing new layered Li(Ni x Mn y Co z )O 2 (NMC) (x + y + z = 1) materials with optimized thermal stability is important to rechargeable Li batteries (LIBs) for electrical vehicles (EV). Using ab initio calculations combined with experiments, we clarified how the thermal stability of NMC materials can be tuned by the most unstable oxygen, which is determined by the local coordination structure unit (LCSU) of oxygen (TM(Ni, Mn, Co) 3 -O-Li 3-x' ): each O atom bonds with three transition metals (TM) from the TM-layer and three to zero Li from fully discharged to charged states from the Li-layer. Under this model, how the lithium content, valence states of Ni, contents of Ni, Mn, and Co, and Ni/Li disorder to tune the thermal stability of NMC materials by affecting the sites, content, and the release temperature of the most unstable oxygen is proposed. The synergistic effect between Li vacancies and raised valence state of Ni during delithiation process can aggravate instability of oxygen, and oxygen coordinated with more nickel (especially with high valence state) in LSCU becomes more unstable at a fixed delithiation state. The Ni/Li mixing would decrease the thermal stability of the "Ni═Mn" group NMC materials but benefit the thermal stability of "Ni-rich" group, because the Ni in the Li layer would form 180° Ni-O-Ni super exchange chains in "Ni-rich" NMC materials. Mn and Co doping can tune the initial valence state of Ni, local coordination environment of oxygen, and the Ni/Li disorder, thus to tune the thermal stability directly.

  12. Tuning of Thermal Stability in Layered Li(Ni x Mn y Co z )O 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang

    2016-09-19

    Understanding and further designing new layered Li(Ni xMn yCo z)O 2 (NMC) (x + y + z = 1) materials with optimized thermal stability is important to rechargeable Li batteries (LIBs) for electrical vehicles (EV). Using ab initio calculations combined with experiments, we clarified how the thermal stability of NMC materials can be tuned by the most unstable oxygen, which is determined by the local coordination structure unit (LCSU) of oxygen (TM(Ni, Mn, Co) 3-O-Li 3-x'): each O atom bonds with three transition metals (TM) from the TM-layer and three to zero Li from fully discharged to charged states frommore » the Li-layer. Under this model, how the lithium content, valence states of Ni, contents of Ni, Mn, and Co, and Ni/Li disorder to tune the thermal stability of NMC materials by affecting the sites, content, and the release temperature of the most unstable oxygen is proposed. The synergistic effect between Li vacancies and raised valence state of Ni during delithiation process can aggravate instability of oxygen, and oxygen coordinated with more nickel (especially with high valence state) in LSCU becomes more unstable at a fixed delithiation state. The Ni/Li mixing would decrease the thermal stability of the “NiMn” group NMC materials but benefit the thermal stability of “Ni-rich” group, because the Ni in the Li layer would form 180° Ni-O-Ni super exchange chains in “Ni-rich” NMC materials. Mn and Co doping can tune the initial valence state of Ni, local coordination environment of oxygen, and the Ni/Li disorder, thus to tune the thermal stability directly.« less

  13. Enhanced Thermal Properties of Novel Latent Heat Thermal Storage Material Through Confinement of Stearic Acid in Meso-Structured Onion-Like Silica

    NASA Astrophysics Data System (ADS)

    Gao, Junkai; Lv, Mengjiao; Lu, Jinshu; Chen, Yan; Zhang, Zijun; Zhang, Xiongjie; Zhu, Yingying

    2017-12-01

    Meso-structured onion-like silica (MOS), which had a highly ordered, onion-like multilayer; large surface area and pore volume; and highly curved mesopores, were synthesized as a support for stearic acid (SA) to develop a novel shape-stabilized phase change material (SA/MOS). The characterizations of SA/MOS were studied by the analysis technique of scanning electron microscope, infrared spectroscopy, x-ray diffraction, differential scanning calorimeter (DSC), and thermal gravimetry analysis (TGA). The results showed that the interaction between the SA and the MOS was physical adsorption and that the MOS had no effect on the crystal structure of the SA. The DSC results suggested that the melting and solidifying temperature of the SA/MOS were 72.7°C and 63.9°C with a melting latent heat of 108.0 J/g and a solidifying latent heat of 126.0 J/g, respectively, and the TGA results indicated that the SA/MOS had a good thermal stability. All of the results demonstrated that the SA/MOS was a promising thermal energy storage material candidate for practical applications.

  14. A quantum chemical study of the decomposition of Keggin-structured heteropolyacids.

    PubMed

    Janik, Michael J; Bardin, Billy B; Davis, Robert J; Neurock, Matthew

    2006-03-09

    Heterpolyacids (HPAs) demonstrate catalytic activity for oxidative and acid-catalyzed hydrocarbon conversion processes. Deactivation and thermal instability, however, have prevented their widespread use. Herein, ab initio density functional theory is used to study the thermal decomposition of the Keggin molecular HPA structure through the desorption of constitutional water molecules. The overall reaction energy and activation barrier are computed for the overall reaction HnXM12O40-->Hn-2XM12O39+H2O. and subsequently used to predict the effect of HPA composition on thermal stability. For example, the desorption of a constitutional water molecule is found to be increasingly endothermic in the order silicomolybdic acid (H4SiMo12O40)

  15. Thermal stability of Pt nanoclusters interacting to carbon sublattice

    NASA Astrophysics Data System (ADS)

    Baidyshev, V. S.; Gafner, Yu. Ya.; Gafner, S. L.; Redel, L. V.

    2017-12-01

    The catalytic activity of Pt clusters is dependent not only on the nanoparticle size and its composition, but also on its internal structure. To determine the real structure of the nanoparticles used in catalysis, the boundaries of the thermal structure stability of Pt clusters to 8.0 nm in diameter interacting with carbon substrates of two types: a fixed α-graphite plane and a mobile substrate with the diamond structure. The effect of a substrate on the processes melting of Pt nanoclusters is estimated. The role of the cooling rate in the formation of the internal structure of Pt clusters during crystallization is studied. The regularities obtained in the case of "free" Pt clusters and Pt clusters on a substrate are compared. It is concluded that platinum nanoparticles with diameter D ≤ 4.0 nm disposed on a carbon substrate conserve the initial fcc structure during cooling.

  16. Structural stability of purified human CFTR is systematically improved by mutations in nucleotide binding domain 1.

    PubMed

    Yang, Zhengrong; Hildebrandt, Ellen; Jiang, Fan; Aleksandrov, Andrei A; Khazanov, Netaly; Zhou, Qingxian; An, Jianli; Mezzell, Andrew T; Xavier, Bala M; Ding, Haitao; Riordan, John R; Senderowitz, Hanoch; Kappes, John C; Brouillette, Christie G; Urbatsch, Ina L

    2018-05-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is an ABC transporter containing two transmembrane domains forming a chloride ion channel, and two nucleotide binding domains (NBD1 and NBD2). CFTR has presented a formidable challenge to obtain monodisperse, biophysically stable protein. Here we report a comprehensive study comparing effects of single and multiple NBD1 mutations on stability of both the NBD1 domain alone and on purified full length human CFTR. Single mutations S492P, A534P, I539T acted additively, and when combined with M470V, S495P, and R555K cumulatively yielded an NBD1 with highly improved structural stability. Strategic combinations of these mutations strongly stabilized the domain to attain a calorimetric T m  > 70 °C. Replica exchange molecular dynamics simulations on the most stable 6SS-NBD1 variant implicated fluctuations, electrostatic interactions and side chain packing as potential contributors to improved stability. Progressive stabilization of NBD1 directly correlated with enhanced structural stability of full-length CFTR protein. Thermal unfolding of the stabilized CFTR mutants, monitored by changes in intrinsic fluorescence, demonstrated that Tm could be shifted as high as 67.4 °C in 6SS-CFTR, more than 20 °C higher than wild-type. H1402S, an NBD2 mutation, conferred CFTR with additional thermal stability, possibly by stabilizing an NBD-dimerized conformation. CFTR variants with NBD1-stabilizing mutations were expressed at the cell surface in mammalian cells, exhibited ATPase and channel activity, and retained these functions to higher temperatures. The capability to produce enzymatically active CFTR with improved structural stability amenable to biophysical and structural studies will advance mechanistic investigations and future cystic fibrosis drug development. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Correlation of analytical and experimental hot structure vibration results

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Deaton, Vivian C.

    1993-01-01

    High surface temperatures and temperature gradients can affect the vibratory characteristics and stability of aircraft structures. Aircraft designers are relying more on finite-element model analysis methods to ensure sufficient vehicle structural dynamic stability throughout the desired flight envelope. Analysis codes that predict these thermal effects must be correlated and verified with experimental data. Experimental modal data for aluminum, titanium, and fiberglass plates heated at uniform, nonuniform, and transient heating conditions are presented. The data show the effect of heat on each plate's modal characteristics, a comparison of predicted and measured plate vibration frequencies, the measured modal damping, and the effect of modeling material property changes and thermal stresses on the accuracy of the analytical results at nonuniform and transient heating conditions.

  18. Thermoelectric and transport properties of sintered n-type K{sub 8}Ba{sub 16}Ga{sub 40}Sn{sub 96} with type-II clathrate structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koda, Shota; Kishimoto, Kengo, E-mail: kkishi@yamaguchi-u.ac.jp; Asada, Hironori

    This clathrate had a maximum dimensionless figure-of-merit, ZT, of 0.93 at 637 K, which was slightly higher than that of 0.83 for the sintered type-VIII clathrate Ba{sub 8}Ga{sub 16}Sn{sub 30}. We investigated the high-temperature thermoelectric properties, transport properties, electronic structures, and thermal stabilities of the clathrates. The type-II clathrate was found to be superior to the type-VIII clathrate as a thermoelectric material; it had a high thermal stability and melting point, 859 K, high mobility, 141 cm{sup 2}V{sup −1}s{sup −1} at 300 K, because of its low inertial mass, and low high-temperature lattice thermal conductivity, approximately 4 mW cm{sup −1}K{sup −1}, resulting frommore » a larger unit cell and weaker bipolar thermal conduction. We discuss these properties in terms of the electronic structure and the differences between the two types of clathrate.« less

  19. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1982-01-01

    The computational methods used to predict and optimize the thermal structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a different yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  20. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1983-01-01

    The computational methods used to predict and optimize the thermal-structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a difficult yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally-useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  1. The determination of temperature stability of silver nanotubes by the molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Filatov, O.; Soldatenko, S.; Soldatenko, O.

    2018-04-01

    Molecular dynamics simulation using the embedded-atom method is applied to study thermal stability of silver nanotubes and its coefficient of linear thermal expansion. The correspondence of face centered cubic structure potential for this task is tested. Three types of nanotubes are modelled: scrolled from graphene-like plane, scrolled from plane with cubic structure and cut from cylinder. It is established that only the last two of them are stable. The last one describes in details. There is critical temperature when free ends of the nanotube close but the interior surface retains. At higher temperatures, the interior surface collapses and the nanotube is unstable.

  2. Structural, quantum chemical, vibrational and thermal studies of a hydrogen bonded zwitterionic co-crystal (nicotinic acid: pyrogallol)

    NASA Astrophysics Data System (ADS)

    Prabha, E. Arockia Jeya Yasmi; Kumar, S. Suresh; Athimoolam, S.; Sridhar, B.

    2017-02-01

    In the present work, a new co-crystal of nicotinic acid with pyrogallol (NICPY) has been grown in the zwitterionic form and the corresponding structural, vibrational, thermal, solubility and anti-cancer characteristics have been reported. The single crystal X-ray diffraction analysis confirms that the structural molecular packing of the crystal stabilized through N-H⋯O and O-H⋯O hydrogen bond. The stabilization energy of the hydrogen bond motifs were calculated in the solid state. Vibrational spectral studies such as Fourier transform-infrared (FT-IR) and FT-Raman were adopted to understand the zwitterionic co-crystalline nature of the compound, which has been compared with theoretically calculated vibrational frequencies. The thermal stability of the grown co-crystal was analyzed by TG/DTA study. The solubility of the NICPY co-crystal was investigated in water at different temperature and compared with that of the nicotinic acid, which is the parent compound of NICPY co-crystal. The grown crystals were treated with human cervical cancer cell line (HeLa) to analyze the cytotoxicity of NICPY crystals and compared with the parent compound, which shows that NICPY has moderate activity against human cervical cancer cell line.

  3. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries.

    PubMed

    Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo

    2017-12-13

    Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.

  4. CNA web server: rigidity theory-based thermal unfolding simulations of proteins for linking structure, (thermo-)stability, and function.

    PubMed

    Krüger, Dennis M; Rathi, Prakash Chandra; Pfleger, Christopher; Gohlke, Holger

    2013-07-01

    The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein's (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement.

  5. CNA web server: rigidity theory-based thermal unfolding simulations of proteins for linking structure, (thermo-)stability, and function

    PubMed Central

    Krüger, Dennis M.; Rathi, Prakash Chandra; Pfleger, Christopher; Gohlke, Holger

    2013-01-01

    The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein’s (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement. PMID:23609541

  6. High thermal stability and antiferromagnetic properties of a 3D Mn(II)-organic framework with metal carboxylate chains

    NASA Astrophysics Data System (ADS)

    Han, Lei; Zhou, Yan; Wang, Xiu-Teng; Li, Xing; Tong, Ming-Liang

    2009-04-01

    A novel three-dimensional metal-organic framework, [Mn 2(hfipbb) 2(bpy)] n ( 1) (H 2hfipbb = 4,4'-(hexafluoroisopropylidene)bis(benzoic acid), bpy = 4,4'-bipyridine), has been hydrothermally synthesized and structurally characterized. The complex consists of metal carboxylate chains, which are cross-linked to six adjacent chains through organic moieties forming extended three-dimensional networks. Complex 1 exhibits high thermal stability (450 °C) and antiferromagnetic properties.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucci, Fabrizio, E-mail: fapucci@ulb.ac.be; Bourgeas, Raphaël, E-mail: rbourgeas@ulb.ac.be; Rooman, Marianne, E-mail: mrooman@ulb.ac.be

    We have set up and manually curated a dataset containing experimental information on the impact of amino acid substitutions in a protein on its thermal stability. It consists of a repository of experimentally measured melting temperatures (T{sub m}) and their changes upon point mutations (ΔT{sub m}) for proteins having a well-resolved x-ray structure. This high-quality dataset is designed for being used for the training or benchmarking of in silico thermal stability prediction methods. It also reports other experimentally measured thermodynamic quantities when available, i.e., the folding enthalpy (ΔH) and heat capacity (ΔC{sub P}) of the wild type proteins and theirmore » changes upon mutations (ΔΔH and ΔΔC{sub P}), as well as the change in folding free energy (ΔΔG) at a reference temperature. These data are analyzed in view of improving our insights into the correlation between thermal and thermodynamic stabilities, the asymmetry between the number of stabilizing and destabilizing mutations, and the difference in stabilization potential of thermostable versus mesostable proteins.« less

  8. Analysis of the ceramic layer microstructure influence on plasma spray thermal barrier coating performance

    NASA Astrophysics Data System (ADS)

    Bogdanovich, V. I.; Giorbelidze, M. G.

    2017-12-01

    This paper outlines the results of analysis and describes the structure of the thermal protection coatings formed by atomic ion stream deposition in vacuum, and plasma thermal spraying method. Crystallite structure features are considered along with the crystallite dimensions, spatial orientation, and position of the boundaries between separate crystallites. Discontinuity, volume, and morphology of the pores has been evaluated. Experimental studies have been accomplished using various fractions of the powder-like material ZrO2 - 8%Y2O3. The influence of the coating microstructure on the coating performance has been analyzed, such as adhesive strength, thermal stability, and thermal conductivity.

  9. Polyimide composites: Application histories

    NASA Technical Reports Server (NTRS)

    Poveromo, L. M.

    1985-01-01

    Advanced composite hardware exposed to thermal environments above 127 C (260 F) must be fabricated from materials having resin matrices whose thermal/moisture resistance is superior to that of conventional epoxy-matrix systems. A family of polyimide resins has evolved in the last 10 years that exhibits the thermal-oxidative stability required for high-temperature technology applications. The weight and structural benefits for organic-matrix composites can now be extended by designers and materials engineers to include structures exposed to 316 F (600 F). Polyimide composite materials are now commercially available that can replace metallic or epoxy composite structures in a wide range of aerospace applications.

  10. Structural properties of CuAu nanoparticles with different type. Molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Chepkasov, I. V.; Baidyshev, V. S.; Baev, A. Y.

    2018-05-01

    The paper is devoted to the thermal stability of a CuAu nanoparticles structure (D=5 nm) of various type (binary alloy, core-shell, "Janus" type) and of various percentage of copper atoms. The simulation was carried out with molecular dynamics, using the embedded atom potential. The authors defined the most preferable structural options from the standpoint of thermodynamics, as well as studied in detail the influence of different temperatures on the structural stability of CuAu nanoparticles.

  11. Study on optimization of multiionization-chamber system for BNCT.

    PubMed

    Fujii, T; Tanaka, H; Maruhashi, A; Ono, K; Sakurai, Y

    2011-12-01

    In order to monitor stability of doses from the four components such as thermal, epi-thermal, fast neutron and gamma-ray during BNCT irradiation, we are developing a multiionization-chamber system. This system is consisted of four kinds of ionization chamber, which have specific sensitivity for each component, respectively. Since a suitable structure for each chamber depends on the energy spectrum of the irradiation field, the optimization study of the chamber structures for the epi-thermal neutron beam of cyclotron-based epi-thermal neutron source (C-BENS) was performed by using a Monte Carlo simulation code "PHITS" and suitable chamber-structures were determined. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Determination of the thermal stability of perfluoropolyalkyl ethers by tensimetry

    NASA Technical Reports Server (NTRS)

    Helmick, Larry A.; Jones, William R., Jr.

    1992-01-01

    The thermal decomposition temperatures of several perfluoropolyalkyl ether fluids were determined with a computerized tensimeter. In general, the decomposition temperatures of the commercial fluids were all similar and significantly higher than those for noncommercial fluids. Correlation of the decomposition temperatures with the molecular structures of the primary components of the commercial fluids revealed that the stability of the fluids was not affected by carbon chain length, branching, or adjacent difluoroformal groups. Instead, stability was limited by the presence of small quantities of thermally unstable material and/or chlorine-containing material arising from the use of chlorine containing solvents during synthesis. Finally, correlation of decomposition temperatures with molecular weights for two fluids supports a chain cleavage reaction mechanism for one and an unzipping reaction mechanism for the other.

  13. Structural stability, mechanical properties, electronic structures and thermal properties of XS (X = Ti, V, Cr, Mn, Fe, Co, Ni) binary compounds

    NASA Astrophysics Data System (ADS)

    Liu, Yangzhen; Xing, Jiandong; Fu, Hanguang; Li, Yefei; Sun, Liang; Lv, Zheng

    2017-08-01

    The properties of sulfides are important in the design of new iron-steel materials. In this study, first-principles calculations were used to estimate the structural stability, mechanical properties, electronic structures and thermal properties of XS (X = Ti, V, Cr, Mn, Fe, Co, Ni) binary compounds. The results reveal that these XS binary compounds are thermodynamically stable, because their formation enthalpy is negative. The elastic constants, Cij, and moduli (B, G, E) were investigated using stress-strain and Voigt-Reuss-Hill approximation, respectively. The sulfide anisotropy was discussed from an anisotropic index and three-dimensional surface contours. The electronic structures reveal that the bonding characteristics of the XS compounds are a mixture of metallic and covalent bonds. Using a quasi-harmonic Debye approximation, the heat capacity at constant pressure and constant volume was estimated. NiS possesses the largest CP and CV of the sulfides.

  14. Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes

    PubMed Central

    Plasencia, Inés; Survery, Sabeen; Ibragimova, Sania; Hansen, Jesper S.; Kjellbom, Per; Helix-Nielsen, Claus; Johanson, Urban; Mouritsen, Ole G.

    2011-01-01

    Background SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. Conclusion/Significance The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications. PMID:21339815

  15. Structure and stability of the spinach aquaporin SoPIP2;1 in detergent micelles and lipid membranes.

    PubMed

    Plasencia, Inés; Survery, Sabeen; Ibragimova, Sania; Hansen, Jesper S; Kjellbom, Per; Helix-Nielsen, Claus; Johanson, Urban; Mouritsen, Ole G

    2011-02-14

    SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications.

  16. Thermal stability of mullite RMn₂O₅ (R  =  Bi, Y, Pr, Sm or Gd): combined density functional theory and experimental study.

    PubMed

    Li, Chenzhe; Thampy, Sampreetha; Zheng, Yongping; Kweun, Joshua M; Ren, Yixin; Chan, Julia Y; Kim, Hanchul; Cho, Maenghyo; Kim, Yoon Young; Hsu, Julia W P; Cho, Kyeongjae

    2016-03-31

    Understanding and effectively predicting the thermal stability of ternary transition metal oxides with heavy elements using first principle simulations are vital for understanding performance of advanced materials. In this work, we have investigated the thermal stability of mullite RMn2O5 (R  =  Bi, Pr, Sm, or Gd) structures by constructing temperature phase diagrams using an efficient mixed generalized gradient approximation (GGA) and the GGA  +  U method. Simulation predicted stability regions without corrections on heavy elements show a 4-200 K underestimation compared to our experimental results. We have found the number of d/f electrons in the heavy elements shows a linear relationship with the prediction deviation. Further correction on the strongly correlated electrons in heavy elements could significantly reduce the prediction deviations. Our corrected simulation results demonstrate that further correction of R-site elements in RMn2O5 could effectively reduce the underestimation of the density functional theory-predicted decomposition temperature to within 30 K. Therefore, it could produce an accurate thermal stability prediction for complex ternary transition metal oxide compounds with heavy elements.

  17. The thermal and mechanical stability of composite materials for space structures

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Sykes, G. F.; Bowles, D. E.

    1985-01-01

    A continuing research objective of the National Aeronautical and Space Administration (NASA) is to develop advanced composite materials for space structures. The thrust of this research is to gain fundamental understanding of the performance of advanced composites in the space environment. The emphasis has been to identify and model changes in the thermal-physical properties due to induced damage and develop improved materials.

  18. Changes in the state of heat-resistant steel induced by repeated hot deformation

    NASA Astrophysics Data System (ADS)

    Lyubimova, Lyudmila L.; Fisenko, Roman N.; Tashlykov, Alexander A.; Tabakaev, Roman B.

    2018-01-01

    This work deals with the problems of structural regeneration by thermal restoration treatment (TRT). These include the lack of a structural sign showing that TRT is possible, a consensus on TRT modes, the data on the necessary relaxation depth of residual stresses, or criteria of structural restoration. Performing a TRT without solving these problems may deteriorate the properties of steel or even accelerate its destruction. With this in view, the purpose of this work is to determine experimentally how the residual stress state changes under thermal and mechanical loads in order to specify the signs of the restoration of structure and structural stability. The object of this research is unused 12Cr1MoV steel that has been aged naturally for 13 years. Using X-ray dosimetry with X-ray spectral analysis, we study the distribution of internal residual stresses of the first kind during the repeated hot deformation. After repeated thermal deformation, the sample under study transforms from a viscoelastic Maxwell material into a Kelvin-Voigt material, which facilitates structural stabilization. A sign of this is the relaxation limit increase, prevention of continuous decay of an α-solid solution of iron and restoration of the lattice parameter.

  19. Thermal transport in boron nitride nanotorus—towards a nanoscopic thermal shield

    NASA Astrophysics Data System (ADS)

    Loh, G. C.; Baillargeat, D.

    2013-11-01

    Nanotori, or nanorings, are topological variants of nanotubes and are conceived to have different properties from their tubular form. In this study, the toroidal arrangement of boron nitride is introduced. Using classical molecular dynamics simulations, the thermal behaviour (thermal conductivity and thermal stability) of the boron nitride nanotorus and its relationship with the structural characteristics are investigated. Its circumferential thermal rectification strength displays a linear dependence on the bending coefficient of the nanostructure. Surface kinks are relatively inconsequential on its circumferential mode of conduction, as compared to its axial sense. The circumferential conductivity in the diffusive regime is calculated to be approximately 10 W/m K, while the axial conductivity is more than tenfold of this value. All nanotori with different toroidal characters show excellent thermal stability at extremely high temperatures approaching 3400 K. With consideration to its favourable properties, a thermal shield made up of a parallel row of nanotori is proposed as a nanoscale thermal insulation device.

  20. Space structures concepts and materials

    NASA Technical Reports Server (NTRS)

    Nowitzky, A. M.; Supan, E. C.

    1988-01-01

    An extension is preseted of the evaluation of graphite/aluminum metal matrix composites (MMC) for space structures application. A tubular DWG graphite/aluminum truss assembly was fabricated having the structural integrity and thermal stability needed for space application. DWG is a proprietary thin ply continuous graphite reinforced aluminum composite. The truss end fittings were constructed using the discontinuous ceramic particulate reinforced MMC DWAl 20 (trademark). Thermal stability was incorporated in the truss by utilizing high stiffness, negative coefficient of thermal expansion (CTE) P100 graphite fibers in a 6061 aluminum matrix, crossplied to provide minimized CTE in the assembled truss. Tube CTE was designed to be slightly negative to offset the effects of the end fitting and sleeve, CTE values of which are approx. 1/2 that of aluminum. In the design of the truss configuration, the CTE contribution of each component was evaluated to establish the component dimension and layup configuration required to provide a net zero CTE in the subassemblies which would then translate to a zero CTE for the entire truss bay produced.

  1. Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus.

    PubMed

    Brown, I; Dafforn, T R; Fryer, P J; Cox, P W

    2013-12-01

    Hyperthermophilic enzymes are of industrial importance and interest, especially due to their denaturation kinetics at commercial sterilisation temperatures inside safety indicating time-temperature integrators (TTIs). The thermal stability and irreversible thermal inactivation of native extracellular Pyrococcus furiosus α-amylase were investigated using differential scanning calorimetry, circular dichroism and Fourier transform infrared spectroscopy. Denaturation of the amylase was irreversible above a Tm of approximately 106°C and could be described by a one-step irreversible model. The activation energy at 121°C was found to be 316kJ/mol. Using CD and FT-IR spectroscopy it was shown that folding and stability greatly increase with temperature. Under an isothermal holding temperature of 121°C, the structure of the PFA changes during denaturation from an α-helical structure, through a β-sheet structure to an aggregated protein. Such data reinforces the use of P. furiosus α-amylase as a labile species in TTIs. © 2013.

  2. Electrochemical performance of a thermally rearranged polybenzoxazole nanocomposite membrane as a separator for lithium-ion batteries at elevated temperature

    NASA Astrophysics Data System (ADS)

    Lee, Moon Joo; Hwang, Jun-Ki; Kim, Ji Hoon; Lim, Hyung-Seok; Sun, Yang-Kook; Suh, Kyung-Do; Lee, Young Moo

    2016-02-01

    Shape-tunable hydroxyl copolyimide (HPI) nanoparticles are fabricated by a re-precipitation method and are coated onto electrospun HPI membranes, followed by heat treatment to prepare thermally rearranged polybenzoxazole (TR-PBO) composite membranes. The morphology of HPI nanoparticles consisted of sphere and sea-squirt structures, which is controlled by changing the concentration of the stabilizer. The morphological characteristics of TR-PBO nanoparticles convert from HPI nanoparticles by heat treatment and their composite membranes is confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (ATR-IR), thermogravimetric analysis (TGA) analysis, and contact angle measurements. TGA and DSC measurements confirm the excellent thermal stability compared to Celgard, a commercial PP separator for lithium-ion batteries (LIBs). Further, TR-PBO nano-composite membranes used in coin-cell type LIBs as a separator show excellent high power density performance as compared to Celgard. This is due to the fact that sea-squirt structured nanoparticles have better electrochemical properties than sphere structured nanoparticles at high temperature.

  3. Radiative engineering with refractory epsilon-near-zero metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dyachenko, Pavel N.; Molesky, Sean; Petrov, Alexander Y.; Störmer, Michael; Krekeler, Tobias; Lang, Slawa; Ritter, Martin; Jacob, Zubin; Eich, Manfred

    2016-04-01

    Improvement in high-temperature stable spectrally selective absorbers and emitters is integral for the further development of thermophotovoltaic (TPV), lighting and solar thermal applications. However, the high operational temperatures (T>1000oC) required for efficient energy conversion, along with application specific criteria such as the operational range of low bandgap semiconductors, greatly restrict what can be accomplished with natural materials. Motivated by this challenge, we demonstrate the first example of high temperature thermal radiation engineering with metamaterials. By employing the naturally selective thermal excitation of radiative modes that occurs near topological transitions, we show that thermally stable highly selective emissivity features are achieved for temperatures up to 1000°C with low angular dependence in a sub-micron thick refractory tungsten/hafnium dioxide epsilon-near-zero (ENZ) metamaterial. We also investigate the main mechanisms of thermal degradation of the fabricated refractory metamaterial both in terms of optical performance and structural stability using spectral analysis and energy-dispersive X-ray spectroscopy (EDS) techniques. Importantly, we observe chemical stability of the constituent materials for temperatures up to 1000°C and structural stability beyond 1100°C. The scalable fabrication, requiring magnetron sputtering, and thermally robust optical properties of this metamaterial approach are ideally suited to high temperature emitter applications such as lighting or TPV. Our findings provide a first concrete proof of radiative engineering with high temperature topological transition in ENZ metamaterials, and establish a clear path for implementation in TPV energy harvesting applications.

  4. Atomically designed precursors in optical fiber amplifiers: The thermal stability of the heterobimetallic ErAl3(OPri)12 in a solution-coated silica soot

    NASA Astrophysics Data System (ADS)

    Engholm, M.; Lashgari, K.; Edvardsson, S.; Westin, G.; Norin, L.

    2005-06-01

    The thermal stability of the bimetallic alkoxide ErAl3(OPri)12 doped in an unsintered silica (soot) has been investigated. Samples have been heated to different temperatures (up to 1500°C and analyzed by using ultraviolet-visible-near infrared absorption spectroscopy, infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, thermal gravimetric analysis, and powder x-ray diffraction. It is seen that the doped samples heated up to 1000°C show broad glasslike absorption spectra, indicating an amorphous structure, while the high-temperature sample shows an ordered crystallinelike structure with sharp characteristic absorption peaks. X-ray diffraction measurements indicate the formation of an ordered structure at temperatures of 1500°C, revealing a crystal phase of silica and phases of erbium and aluminosilicate. A comparison is also made with a sample doped with aqueous ErCl3 and Al(NO3)3. It is concluded that the local structure of the ErAl3 precursor is not preserved at temperatures above 1000°C. Alternative doping procedures are discussed.

  5. Facile Synthesis of Calcium Borate Nanoparticles and the Annealing Effect on Their Structure and Size

    PubMed Central

    Erfani, Maryam; Saion, Elias; Soltani, Nayereh; Hashim, Mansor; Wan Abdullah, Wan Saffiey B.; Navasery, Manizheh

    2012-01-01

    Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4) nanoparticles and tetraborate (CaB4O7) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures. PMID:23203073

  6. Technology development for cryogenic deployable telescope structures and mechanisms

    NASA Astrophysics Data System (ADS)

    Atkinson, Charles B.; Gilman, Larry; Reynolds, Paul

    2003-12-01

    At 6-7 meters in diameter, the James Webb Space Telescope (JWST) will require structures that remain stable to levels that are on the order of 10 nanometers under dynamic and thermal loading while operating at cryogenic temperatures. Moreover, the JWST will be the first telescope in space that is deployed, resulting in an aperture that is not only segmented, but has hinge-lines and the associated joining systems or latches in it. In order to understand the behavior and reduce the risk associated with very large, deployed structures and the stability of the associated structure and latches, we developed and tested the largest cryogenic structure ever built and then characterized its stability. This paper presents a description of the design of the Development Optical Telescope Assembly (DOTA), the testing performed, and the results of the testing performed on it. We discuss the material selection and characterization processes, give a description of the test configurations, describe the metrology equipment and the validation process for it, provide the test results, and summarize the conclusions drawn from the results. The testing and associated results include characterization of the thermal stability of the large-scale structure, characterization of the micro-dynamic stability of the latching system, and measurements of the deployment capability of the mechanisms. We also describe how the DOTA design relates to the JWST design and how the test results relate to the JWST requirements.

  7. Microstructural, thermal and antibacterial properties of electron beam irradiated Bombyx mori silk fibroin films

    NASA Astrophysics Data System (ADS)

    Asha, S.; Sangappa, Naik, Prashantha; Chandra, K. Sharat; Sanjeev, Ganesh

    2014-04-01

    The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size and lattice strain (g in %)) and thermal stability of the irradiated films have increased with radiation dosage. Agar diffusion method demonstrated the antibacterial activity of SF film which was increased after irradiation on both Gram-positive and Gram-negative species.

  8. Effect of gamma radiation on the stability of UV replicated composite mirrors

    NASA Astrophysics Data System (ADS)

    Zaldivar, Rafael J.; Kim, Hyun I.; Ferrelli, Geena L.

    2018-04-01

    Composite replicated mirrors are gaining increasing attention for space-based applications due to their lower density, tailorable mechanical properties, and rapid manufacturing times over state-of-the-art glass mirrors. Ultraviolet (UV)-cured mirrors provide a route by which high-quality mirrors can be manufactured at relatively low processing temperatures that minimize residual stresses. The successful utilization of these mirrors requires nanometer scale dimensional stability after both thermal cycling and hygrothermal exposure. We investigate the effect of gamma irradiation as a process to improve the stability of UV replicated mirrors. Gamma radiation exposure was shown to increase the cure state of these mirrors as evidenced by an increase in modulus, glass transition temperature, and the thermal degradation behavior with dosage. Gas chromatography-mass spectroscopy also showed evidence of consumption of the primary monomers and initiation of the photosensitive agent with gamma exposure. The gamma-exposed mirrors exhibited significant improvement in stability even after multiple thermal cycling in comparison with nonirradiated composite mirrors. Though improvements in the cure state contribute to the overall stability, the radiation dosage was also shown to reduce the film stress of the mirror by over 80% as evidenced using Stoney replicated specimens. This reduction in residual stress is encouraging considering the utilization of these structures for space applications. This paper shows that replicated composite mirrors are a viable alternative to conventional optical structures.

  9. Investigation of the Thermal Stability of Nd(x)Sc(y)Zr(1-x-y)O(2-δ) Materials Proposed for Inert Matrix Fuel Applications.

    PubMed

    Hayes, John R; Grosvenor, Andrew P; Saoudi, Mouna

    2016-02-01

    Inert matrix fuels (IMF) consist of transuranic elements (i.e., Pu, Am, Np, Cm) embedded in a neutron transparent (inert) matrix and can be used to "burn up" (transmute) these elements in current or Generation IV nuclear reactors. Yttria-stabilized zirconia has been extensively studied for IMF applications, but the low thermal conductivity of this material limits its usefulness. Other elements can be used to stabilize the cubic zirconia structure, and the thermal conductivity of the fuel can be increased through the use of a lighter stabilizing element. To this end, a series of Nd(x)Sc(y)Zr(1-x-y)O(2-δ) materials has been synthesized via a co-precipitation reaction and characterized by multiple techniques (Nd was used as a surrogate for Am). The long-range and local structures of these materials were studied using powder X-ray diffraction, scanning electron microscopy, and X-ray absorption spectroscopy. Additionally, the stability of these materials over a range of temperatures has been studied by annealing the materials at 1100 and 1400 °C. It was shown that the Nd(x)Sc(y)Zr(1-x-y)O(2-δ) materials maintained a single cubic phase upon annealing at high temperatures only when both Nd and Sc were present with y ≥ 0.10 and x + y > 0.15.

  10. Thermo-analytical and physico-chemical characterisation of organoclays and polymer-clay nacomposites

    NASA Astrophysics Data System (ADS)

    Cunningham, Andrew

    A variety of modified clay minerals have been screened to determine their effectiveness as agents for the production of polystyrene-clay nanocomposites. The n-alkylammonium and n-alkyltrimethylammonium surfactants employed to compatibilise the aluminosilicate layers of the minerals were shown to degrade through a series of stages and mechanisms to yield a hydrocarbon product mixture consisting of a homologous series of saturated and unsaturated hydrocarbons, also, the dehydrocyclisation (DHC) of fragmented alkyl chains was shown to lead to the production of various ring compounds which included substituted cycloalkenes, benzene and toluene.The thermal stability of various cation exchanged modification treatments have been analysed. These organoclays have been characterised by XRD, TGA and TG-MS. The evolved gas analysis conducted by TG-MS was employed to identify which products were being thermally desorbed under thermal events previously seen when using TGA. In particular attention was paid to the activity of these materials with respect to the formation of linear, branched and cyclic aliphatics and aromatics from the feedstock surfactants.Intra-series comparisons of different organoclays showed that as the alkyl chain length of the n-alkylammonium surfactants was increased the concentration of thermal desorption products at approximately 400 °C was also increased. However, characterisation of n-alkyltrimethylammonium exchanged MMT showed that the concentration of thermal desorption products at lower temperatures (approximately 250 °C) increased with alkyl chain length between C[n] = 8 - 16. TG-MS analysis showed that this was mostly due to the DHC of alkyl fragments. These compounds appear to have been largely overlooked in related literature.SWa-1, a clay containing greater concentrations of structural iron, showed higher T[max] values for n-alkylammonium surfactant thermal desorption than similarly exchanged SAz-1. This may be evidence of a current theory that structural iron acts as a radical trap. This is thought to significantly reduce the catalytic activity of the clay's acid sites until higher temperatures. The formulation of polystyrene-clay nanocomposites (PSCNs) by in-situ polymerisation led to various results pertaining to their thermal stability. The relative effectiveness of various initiator species for the production of the most thermally stable PSCNs was AIBN > BPO > SPS > APS > AIBA. Lower radical initiator and organic modifier concentrations led to the production of PSCNs with higher thermal stability. The relative effectiveness of these various organoclays for the production of more thermally stable PSCNs was MCBP-Cn > C15A > C20A " C10A. The preparation method was shown to be effective for producing exfoliated nanocomposites for up to 1 wt% of the various organoclays using AIBN and BPO as initiators. The MCBP-Cn PSCNs remained exfoliated up to 5 wt% , they also showed higher thermal stability when compared with the commercial products, which XRD results showed to remain stacked at organoclay loadings > 1 wt%.A novel one-pot synthesis method for the production of PSCN, by the in-situ polymerisation of PS in the presence of decanamide (an uncharged surfactant) and Na-MMT, was shown to be successful. Whereas, other novel PSCN formulations incorporating N-vinylformamide and the amphoteric surfactant foamtaine SCAB were shown to be encouraging but have, so far, had limited success.In contrast, the analysis of industrially produced unsaturated polyester-clay nanocomposites showed very little increase in the thermal stability of the material. Associated analyses indicated increased dimensional stability of the material, AFM analysis showed that imaging of the clay dispersal was possible by this macroscopic technique. Also, ATR-FTIR analysis of the UPR and UPCN, showed that although not exfoliated the silane modified-MMT had a good synergistic effect on the overall material by reducing the formation of combustion products.The thermal stability and associated studies of kaolin-phenylphosphonic acid (KPPA) complexes was also conducted. PPA was shown to intercalate the kaolin crystal structure forming an expanded phase that exhibited remarkable thermal stability (Tmax = 660 °C). 31P MAS NMR of all the KPPA samples showed three peaks (at +1.2, -3.7 and -7.3 ppm) which represented PPA existing in three non-equivalent bonding states at the kaolin surface. The high thermal stability of these hybrid materials was evident from these studies. This research into the use of covalently bound intercalates in nanocomposite manufacture signifies the necessity for further research.

  11. Stability of mixed time integration schemes for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lin, J. I.

    1982-01-01

    A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.

  12. Selection considerations between ZERODUR® and silicon carbide for dimensionally-stable spaceborne optical telescopes in two-earth-orbits

    NASA Astrophysics Data System (ADS)

    Hull, Tony; Westerhoff, Thomas; Weidmann, Gunter

    2015-09-01

    A key consideration in defining a space telescope mission is definition of the optical materials. This selection defines both the performance of the system and system complexity and cost. Optimal material selection for system stability must consider the thermal environment and its variation. Via numerical simulations, we compare the thermal and structural-mechanical behavior of ZERODUR® and SiC as mirror substrates for telescope assemblies in space. SiC has significantly larger CTE values then ZERODUR®, but also its thermal diffusivity k/(ρcp) is larger, and that helps to homogenize thermal gradients in the mirror. Therefore it is not obvious at first glance which material performs with better dimensional stability under realistic unsteady, inhomogeneous thermal loads. We specifically examine the telescope response to transient, gradient driving, thermal environments representative of low- and high-earth- orbits.

  13. Influence of ball milling on atomic structure and magnetic properties of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} glassy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taghvaei, Amir Hossein, E-mail: Amirtaghvaei@gmail.com; Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz; Stoica, Mihai

    2014-06-01

    The influence of ball milling on the atomic structure and magnetic properties of the Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass with a high thermal stability and excellent soft magnetic properties has been investigated. After 14 h of milling, the obtained powders were found to consist mainly of an amorphous phase and a small fraction of the (Co,Fe){sub 21}Ta{sub 2}B{sub 6} nanocrystals. The changes in the reduced pair correlation functions suggest noticeable changes in the atomic structure of the amorphous upon ball milling. Furthermore, it has been shown that milling is accompanied by introduction of compressive and dilatational sites inmore » the glassy phase and increasing the fluctuation of the atomic-level hydrostatic stress without affecting the coordination number of the nearest neighbors. Ball milling has decreased the thermal stability and significantly affected the magnetic properties through increasing the saturation magnetization, Curie temperature of the amorphous phase and coercivity. - Highlights: • Ball milling affected the atomic structure of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass. • Mechanically-induced crystallization started after 4 h milling. • Milling increased the fluctuation of the atomic-level hydrostatic stress in glass. • Ball milling influenced the thermal stability and magnetic properties.« less

  14. Spectroscopic properties and conformational stability of Concholepas concholepas hemocyanin.

    PubMed

    Idakieva, Krassimira; Nikolov, Peter; Chakarska, Irena; Genov, Nicolay; Shnyrov, Valery L

    2008-01-01

    The structure in solution and conformational stability of the hemocyanin from the Chilean gastropod mollusk Concholepas concholepas (CCH) and its structural subunits, CCH-A and CCH-B, were studied using fluorescence spectroscopy and differential scanning calorimetry (DSC). The fluorescence properties of the oxygenated and apo-form (copper-deprived) of the didecamer and its subunits were characterized. Besides tryptophan residues buried in the hydrophobic interior of the protein molecule also exposed fluorophores determine the fluorescence emission of the oxy- and apo-forms of the investigated hemocyanins. The copper-dioxygen system at the binuclear active site quenches the tryptophan emission of the oxy-forms of CCH and its subunits. The removal of this system increases the fluorescence quantum yield and causes structural rearrangement of the microenvironment of the emitting tryptophan residues in the respective apo-forms. Time-resolved fluorescence measurements show that the oxygenated and copper-deprived forms of the CCH and its subunits exist in different conformations. The thermal denaturation of the hemocyanin is an irreversible process, under kinetic control. A successive annealing procedure was applied to obtain the experimental deconvolution of the irreversible thermal transitions. Arrhenius equation parameter for the two-state irreversible model of the thermal denaturation of oxy-CCH at pH 7.2 was estimated. Both factors, oligomerization and the copper-dioxygen system at the active site, are important for stabilizing the structure of the hemocyanin molecule.

  15. Determination of the oxidative stability of perfluoropolyalkyl ethers and correlation with chemical structure

    NASA Technical Reports Server (NTRS)

    Helmick, Larry S.; Jones, William R., Jr.

    1992-01-01

    The oxidative stabilities of several perfluoropolyalkyl ethers (PFPAE) with related chemical structures were determined by thermal gravimetric analysis and correlated with their chemical structures. These results show that oxidative stability increases as the number of difluoroformal groups decreases and as trifluoromethyl substituents are added. They are also consistent with a recently proposed intramolecular disproportionation reaction mechanism involving coordination of successive ether oxygens to a Lewis acid. Since polytetrafluoroethylene contains no oxygen, it provides an indication of the upper limit to oxidative stability of PFPAE fluids. These results also show that oxidative decomposition of PFPAE fluids requires the presence of an active metal as well as air. Consequently, it may be possible to minimize decomposition and thus improve oxidative stability by passivating reactive metal surfaces.

  16. Structural and thermal properties of silk fibroin - Silver nanoparticles composite films

    NASA Astrophysics Data System (ADS)

    Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.

    2018-05-01

    In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.

  17. Structural stability of Amandin, a major allergen from almond (Prunus dulcis), and its acidic and basic polypeptides.

    PubMed

    Albillos, Silvia M; Menhart, Nicholas; Fu, Tong-Jen

    2009-06-10

    Information relating to the resistance of food allergens to thermal and/or chemical denaturation is critical if a reduction in protein allergenicity is to be achieved through food-processing means. This study examined the changes in the secondary structure of an almond allergen, amandin, and its acidic and basic polypeptides as a result of thermal and chemical denaturation. Amandin ( approximately 370 kDa) was purified by cryoprecipitation followed by gel filtration chromatography and subjected to thermal (13-96 degrees C) and chemical (urea and dithiothreitol) treatments. Changes in the secondary structure of the protein were followed using circular dichroism spectroscopy. The secondary structure of the hexameric amandin did not undergo remarkable changes at temperatures up to 90 degrees C, although protein aggregation was observed. In the presence of a reducing agent, irreversible denaturation occurred with the following experimental values: T(m) = 72.53 degrees C (transition temperature), DeltaH = 87.40 kcal/mol (unfolding enthalpy), and C(p) = 2.48 kcal/(mol degrees C) (heat capacity). The concentration of urea needed to achieve 50% denaturation was 2.59 M, and the Gibbs free energy of chemical denaturation was calculated to be DeltaG = 3.82 kcal/mol. The basic and acidic polypeptides of amandin had lower thermal stabilities than the multimeric protein.

  18. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis[S

    PubMed Central

    Lu, Mengxiao; Gantz, Donald L.; Herscovitz, Haya; Gursky, Olga

    2012-01-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, Ea = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion. PMID:22855737

  19. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis.

    PubMed

    Lu, Mengxiao; Gantz, Donald L; Herscovitz, Haya; Gursky, Olga

    2012-10-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.

  20. Characterization of thermal destruction behavior of hybrid composites based on polyoxymethylene, ethylene-octene copolymer impact modifier and ZnO nanofiller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meri, Remo Merijs; Zicans, Janis; Abele, Agnese

    Hybrid polymer nanocomposites, composed of polyoxymethylene (POM), ethylene octene copolymer (EOC) and plasma synthesized tetrapod shaped zinc oxide (ZnO), were prepared by using melt compounding. The content of EOC in the POM based composites was varied between 10 and 50 mass %, while the content of ZnO was constant (2 mass %). Thermal behaviour of POM based systems was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy. The influence of the elastomer content and/or ZnO addition on the thermal stability of POM based systems was evaluated. The influence of the α-octene content in the elastomer on themore » thermal decomposition behaviour of POM and its nanocomposites with ZnO was also evaluated. Results of thermogravimetric analysis showed that, by rising either the elastomer or ZnO content, thermal stability of the investigated POM composites was increased. The modifying effect of EOC17 in respect of thermal resistance was somewhat larger than that of EOC38 because of the smaller amount of tertiary carbon atoms in the macromolecular structure of the former elastomer. Improved thermal resistance of ZnO containing POM based composites was because of impermeable structure the inorganic nanofiller allowing decrease gas exchange rate and facilitating non-combustible gases, such as CO{sub 2}, stay in the zone of burning. Addition of ZnO have a potential to influence structure of the polymer blend matrix itself by improving its barrier characteristics.« less

  1. Evolution of the Structure of Cu-1% Sn Bronze under High Pressure Torsion and Subsequent Annealing

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Popova, E. N.; Stolbovsky, A. V.; Falahutdinov, R. M.

    2018-04-01

    The evolution of the structure of tin bronze under the room-temperature high-pressure torsion with different degrees of deformation and the subsequent annealing has been investigated. The thermal stability of the structure formed, namely, its behavior upon annealing in the temperature range of 150-400°C has been studied. The possibility of alloying copper with tin has been analyzed with the purpose of obtaining a thermally stable nanostructure with high strength characteristics.

  2. Layered Crystal Structure, Color-Tunable Photoluminescence, and Excellent Thermal Stability of MgIn2P4O14 Phosphate-Based Phosphors.

    PubMed

    Zhang, Jing; Cai, Ge-Mei; Yang, Lv-Wei; Ma, Zhi-Yuan; Jin, Zhan-Peng

    2017-11-06

    Single-component white phosphors stand a good chance to serve in the next-generation high-power white light-emitting diodes. Because of low thermal stability and containing lanthanide ions with reduced valence state, most of reported phosphors usually suffer unstable color of lighting for practical packaging and comparably complex synthetic processes. In this work, we present a type of novel color-tunable blue-white-yellow-emitting MgIn 2 P 4 O 14 :Tm 3+ /Dy 3+ phosphor with high thermal stability, which can be easily fabricated in air. Under UV excitation, the MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 white phosphor exhibits negligible thermal-quenching behavior, with a 99.5% intensity retention at 150 °C, relative to its initial value at room temperature. The phosphor host MgIn 2 P 4 O 14 was synthesized and reported for the first time. MgIn 2 P 4 O 14 crystallizes in the space group of C2/c (No. 15) with a novel layered structure built of alternate anionic and cationic layers. Its disordering structure, with Mg and In atoms co-occupying the same site, is believed to facilitate the energy transfer between rare-earth ions and benefit by sustaining the luminescence with increasing temperature. The measured absolute quantum yields of MgIn 2 P 4 O 14 :Dy 0.04 , MgIn 2 P 4 O 14 :Tm 0.01 Dy 0.04 , and MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 phosphors under the excitation of 351 nm ultraviolet radiation are 70.50%, 53.24%, and 52.31%, respectively. Present work indicates that the novel layered MgIn 2 P 4 O 14 is a promising candidate as a single-component white phosphor host with an excellent thermal stability for near-UV-excited white-light-emitting diodes (wLEDs).

  3. A room temperature strategy towards enhanced performance and bias stability of oxide thin film transistor with a sandwich structure channel layer

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Ning, Honglong; Zheng, Zeke; Zhang, Hongke; Fang, Zhiqiang; Yao, Rihui; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao; Lu, Xubing

    2017-04-01

    Thermal annealing is a conventional and effective way to improve the bias stress stability of oxide thin film transistors (TFT) on solid substrates. However, it is still a challenge for enhancing the bias stress stability of oxide TFTs on flexible substrates by high-temperature post-treatment due to the thermal sensitivity of flexible substrates. Here, a room temperature strategy is presented towards enhanced performance and bias stability of oxide TFTs by intentionally engineering a sandwich structure channel layer consisting of a superlattice with aluminum doped zinc oxide (AZO) and Al2O3 thin films. The Al2O3/AZO/Al2O3-TFTs not only exhibit a saturation mobility of 9.27 cm2 V-1 s-1 and a linear mobility of 11.38 cm2 V-1 s-1 but also demonstrate a better bias stress stability than AZO/Al2O3-TFT. Moreover, the underlying mechanism of this enhanced electrical performance of TFTs with a sandwich structure channel layer is that the bottom Al2O3 thin films can obviously improve the crystalline phase of AZO films while decreasing electrical trapping centers and adsorption sites for undesirable molecules such as water and oxygen.

  4. Specific stabilization of CFTR by phosphatidylserine.

    PubMed

    Hildebrandt, Ellen; Khazanov, Netaly; Kappes, John C; Dai, Qun; Senderowitz, Hanoch; Urbatsch, Ina L

    2017-02-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, ABCC7) is a plasma membrane chloride ion channel in the ABC transporter superfamily. CFTR is a key target for cystic fibrosis drug development, and its structural elucidation would advance those efforts. However, the limited in vivo and in vitro stability of the protein, particularly its nucleotide binding domains, has made structural studies challenging. Here we demonstrate that phosphatidylserine uniquely stimulates and thermally stabilizes the ATP hydrolysis function of purified human CFTR. Among several lipids tested, the greatest stabilization was observed with brain phosphatidylserine, which shifted the Tm for ATPase activity from 22.7±0.8°C to 35.0±0.2°C in wild-type CFTR, and from 26.6±0.7°C to 42.1±0.2°C in a more stable mutant CFTR having deleted regulatory insertion and S492P/A534P/I539T mutations. When ATPase activity was measured at 37°C in the presence of brain phosphatidylserine, Vmax for wild-type CFTR was 240±60nmol/min/mg, a rate higher than previously reported and consistent with rates for other purified ABC transporters. The significant thermal stabilization of CFTR by phosphatidylserine may be advantageous in future structural and biophysical studies of CFTR. Copyright © 2016. Published by Elsevier B.V.

  5. Immobilization Effect of Morphological, Thermal and Optical Properties in Biotemplate on Zinc Oxide Nanocomposite from Chitosan

    NASA Astrophysics Data System (ADS)

    Karpuraranjith, M.; Thambidurai, S.

    Biotemplate-based zinc oxide nanocomposite was effectively prepared via simple chemical precipitation route. The functional groups of amino (-NH2), hydroxyl (-OH) and O-Zn-O were confirmed and characterized by FTIR spectroscopy. The structural and morphological properties were confirmed by XRD, UV-Vis DRS, HR-SEM and TEM analyses. The elemental composition of carbon, nitrogen, zinc and oxygen was confirmed by energy-dispersive X-ray analysis (EDAX) and Brunauer-Emmett-Teller high surface area of materials was estimated to be 52.49m2/g, respectively. Thermogravimetric analysis (TGA) shows that biotemplate on zinc oxide nanocomposite has higher thermal stability than chitosan matrix. The results demonstrate that biotemplate on zinc oxide matrix causes immobilization effect among the two components. Therefore, chitosan-ZnO nanocomposite has a microcrystalline morphological structure and also good thermal stability, so it can be a promising material for sensors, medical, tissue engineering and wastewater treatment applications.

  6. Flame-resistant pure and hybrid woven fabrics from basalt

    NASA Astrophysics Data System (ADS)

    Jamshaid, H.; Mishra, R.; Militky, J.

    2017-10-01

    This work has been formulated to investigate the burning behavior of different type of fabrics. The main concentration is to see how long the fabric resists after it catches the fire and the propagation of fire can be reduced by using flame resistant fiber i.e basalt. Basalt fiber is an environmental friendly material with low input, high output, low energy consumption and less emission. The goal of present investigations is to show the dependence of fabric flammability on its structure parameters i.e weave type, blend type etc. Fabric weaves have strong effect on flammability properties. Plain weave has the lowest burning rate as the density of the plain weave fabric is more and the structure is tight which gives less chances of flame passing through the fabric. Thermal stability is evaluated with TGA of all hybrid and nonhybrid fabrics and compared. The thermal stability of the basalt fiber is excellent. When comparing thermal analysis curves for hybrid samples it demonstrates that thermal stability of the samples containing basalt is much higher than the non- hybrid samples. Percentage weight loss is less in hybrid samples as compared to non-hybrid samples. The effectiveness of hybridization on samples may be indicated by substantial lowering of the decomposition mass. Correlation was made between flammability with the infrared radiations (IR)

  7. Structural and spectral comparisons between isomeric benzisothiazole and benzothiazole based aromatic heterocyclic dyes

    NASA Astrophysics Data System (ADS)

    Wang, Yin-Ge; Wang, Yue-Hua; Tao, Tao; Qian, Hui-Fen; Huang, Wei

    2015-09-01

    A pair of isomeric heterocyclic compounds, namely 3-amino-5-nitro-[2,1]-benzisothiazole and 2-amino-6-nitrobenzothiazole, are used as the diazonium components to couple with two N-substituted 4-aminobenzene derivatives. As a result, two pairs of isomeric aromatic heterocyclic azo dyes have been produced and they are structurally and spectrally characterized and compared including single-crystal structures, electronic spectra, solvatochromism and reversible acid-base discoloration, thermal stability and theoretically calculations. It is concluded that both benzisothiazole and benzothiazole based dyes show planar molecular structures and offset π-π stacking interactions, solvatochromism and reversible acid-base discoloration. Furthermore, benzisothiazole based aromatic heterocyclic dyes exhibit higher thermal stability, larger solvatochromic effects and maximum absorption wavelengths than corresponding benzothiazole based ones, which can be explained successfully by the differences of their calculated isomerization energy, dipole moment and molecular band gaps.

  8. Structural and denaturation studies of two mutants of a cold adapted superoxide dismutase point to the importance of electrostatic interactions in protein stability.

    PubMed

    Merlino, Antonello; Russo Krauss, Irene; Castellano, Immacolata; Ruocco, Maria Rosaria; Capasso, Alessandra; De Vendittis, Emmanuele; Rossi, Bianca; Sica, Filomena

    2014-03-01

    A peculiar feature of the psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis (PhSOD) is the presence in its amino acid sequence of a reactive cysteine (Cys57). To define the role of this residue, a structural characterization of the effect of two PhSOD mutations, C57S and C57R, was performed. Thermal and denaturant-induced unfolding of wild type and mutant PhSOD followed by circular dichroism and fluorescence studies revealed that C→R substitution alters the thermal stability and the resistance against denaturants of the enzyme, whereas C57S only alters the stability of the protein against urea. The crystallographic data on the C57R mutation suggest an involvement of the Arg side chain in the formation of salt bridges on protein surface. These findings support the hypothesis that the thermal resistance of PhSOD relies on optimization of charge-charge interactions on its surface. Our study contributes to a deeper understanding of the denaturation mechanism of superoxide dismutases, suggesting the presence of a structural dimeric intermediate between the native state and the unfolded state. This hypothesis is supported by the crystalline and solution data on the reduced form of the enzyme. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Tailoring characteristic thermal stability of Ni-Au binary nanocrystals via structure and composition engineering: theoretical insights into structural evolution and atomic inter-diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bangquan; Wang, Hailong; Xing, Guozhong

    We report on the structural evolution and atomic inter-diffusion characteristics of the bimetallic Ni-Au nanocrystals (NCs) by molecular dynamics simulations studies. Our results reveal that the thermal stability dynamics of Ni-Au NCs strongly depends on the atomic configurations. By engineering the structural construction with Ni:Au = 1:1 atomic composition, compared with core-shell Au@Ni and alloy NCs, the melting point of core-shell Ni@Au NCs is significantly enhanced up to 1215 K. Unexpectedly, with atomic ratio of Au:Ni= 1:9, the melting process initiates from the atoms in the shell of Ni@Au and alloy NCs, while starts from the core of Au@Ni NCs.more » The corresponding features and evolution process of structural motifs, mixing and segregation are illustrated via a series of dynamic simulations videos. Moreover, our results revealed that the face centered cubic phase Au{sub 0.75}Ni{sub 0.25} favorably stabilizes in NCs form but does not exist in the bulk counterpart, which elucidates the anomalies of previously reported experimental results on such bimetallic NCs.« less

  10. "What Controls the Structure and Stability of the Ocean Meridional Overturning Circulation: Implications for Abrupt Climate Change?"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Alexey

    2013-11-23

    The central goal of this research project is to understand the properties of the ocean meridional overturning circulation (MOC) – a topic critical for understanding climate variability and stability on a variety of timescales (from decadal to centennial and longer). Specifically, we have explored various factors that control the MOC stability and decadal variability in the Atlantic and the ocean thermal structure in general, including the possibility abrupt climate change. We have also continued efforts on improving the performance of coupled ocean-atmosphere GCMs.

  11. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    NASA Technical Reports Server (NTRS)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  12. Superior Thermally Stable and Nonflammable Porous Polybenzimidazole Membrane with High Wettability for High-Power Lithium-Ion Batteries.

    PubMed

    Li, Dan; Shi, Dingqin; Xia, Yonggao; Qiao, Lin; Li, Xianfeng; Zhang, Huamin

    2017-03-15

    Separators with high security, reliability, and rate capacity are in urgent need for the advancement of high power lithium ion batteries. The currently used porous polyolefin membranes are critically hindered by their low thermal stability and poor electrolyte wettability, which further lead to low rate capacity. Here we present a novel promising porous polybenzimidazole (PBI) membrane with super high thermal stability and electrolyte wettability. The rigid structure and functional groups in the PBI chain enable membranes to be stable at temperature as high as 400 °C, and the unique flame resistance of PBI could ensure the high security of a battery as well. In particular, the prepared membrane owns 328% electrolyte uptake, which is more than two times higher than commercial Celgard 2325 separator. The unique combination of high thermal stability, high flame resistance and super high electrolyte wettability enable the PBI porous membranes to be highly promising for high power lithium battery.

  13. Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures.

    PubMed

    Jia, Chao; Bian, Huiyang; Gao, Tingting; Jiang, Feng; Kierzewski, Iain Michael; Wang, Yilin; Yao, Yonggang; Chen, Liheng; Shao, Ziqiang; Zhu, J Y; Hu, Liangbing

    2017-08-30

    Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.

  14. Significant improvement of thermal stability of glucose 1-dehydrogenase by introducing disulfide bonds at the tetramer interface.

    PubMed

    Ding, Haitao; Gao, Fen; Liu, Danfeng; Li, Zeli; Xu, Xiaohong; Wu, Min; Zhao, Yuhua

    2013-12-10

    Rational design was applied to glucose 1-dehydrogenase (LsGDH) from Lysinibacillus sphaericus G10 to improve its thermal stability by introduction of disulfide bridges between subunits. One out of the eleven mutants, designated as DS255, displayed significantly enhanced thermal stability with considerable soluble expression and high specific activity. It was extremely stable at pH ranging from 4.5 to 10.5, as it retained nearly 100% activity after incubating at different buffers for 1h. Mutant DS255 also exhibited high thermostability, having a half-life of 9900min at 50°C, which was 1868-fold as that of its wild type. Moreover, both of the increased free energy of denaturation and decreased entropy of denaturation of DS255 suggested that the enzyme structure was stabilized by the engineered disulfide bonds. On account of its robust stability, mutant DS255 would be a competitive candidate in practical applications of chiral chemicals synthesis, biofuel cells and glucose biosensors. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Influence of the silicon carbide deposit on the thermal resistance of fire protection

    NASA Astrophysics Data System (ADS)

    Kim, K. A.; Lemeshev, D. O.

    2018-04-01

    The ceramics samples with structure of SiC-Al2O3-Fireclay having good thermal resistance were received. As materials were used: black α-SiC F-120, corundum α-Al2O3 F-1000 and Kudinovsky fire-clay. As a temporary technological bundle used polyvinyl alcohol (PVA). Thermal stability was determined by method of heat changes.

  16. Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers

    PubMed Central

    2017-01-01

    We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions. PMID:28291942

  17. Microstructural, thermal and antibacterial properties of electron beam irradiated Bombyx mori silk fibroin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asha, S.; Sanjeev, Ganesh, E-mail: ganeshsanjeev@rediffmail.com; Sangappa

    The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size and lattice strain (g in %)) and thermal stability of the irradiated films have increased with radiation dosage. Agar diffusion method demonstrated themore » antibacterial activity of SF film which was increased after irradiation on both Gram-positive and Gram-negative species.« less

  18. Thermal stability of detonation-produced micro and nanodiamonds

    NASA Astrophysics Data System (ADS)

    Efremov, V. P.; Zakatilova, E. I.; Maklashova, I. V.; Shevchenko, N. V.

    2018-01-01

    Detonation nanodiamonds are produced at utilization of high explosives. When an explosive blasts in a water environment, the detonation products contain microdiamonds, and in a gaseous medium, nanodiamonds. It is known that with decreasing size the influence of the surface energy of particles on their properties increases. Thus, it is interesting to compare the properties of detonation nano and microdiamonds. In this study, we have examined the thermal stability of diamond materials by synchronous thermal analysis. The experiments were performed at atmospheric pressure in argon flow for different heating rates in a range from room temperature to 1500 °C. Samples of initial and annealed micro and nanomaterials were studied using electron microscopy, x-ray and x-ray-fluorescence analysis. It was established that thermal and structural properties of micro and nanodiamonds differ substantially.

  19. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 8: Thermal control panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology deficiencies in the area of thermal control for future space missions are identified with emphasis on large space structures and cold controlled environments. Thermal control surfaces, heat pipes, and contamination are considered along with cryogenics, insulation, and design techniques. Major directions forecast for thermal control technology development and space experiments are: (1) extend the useful lifetime of cryogenic systems for space, (2) reduce temperature gradients, and (3) improve temperature stability.

  20. Physico-chemical and immunological examination of the thermal stability of tetanus toxoid conjugate vaccines.

    PubMed

    Ho, Mei M; Mawas, Fatme; Bolgiano, Barbara; Lemercinier, Xavier; Crane, Dennis T; Huskisson, Rachel; Corbel, Michael J

    2002-10-04

    The thermal stability of meningococcal C (MenC)- and Haemophilus influenzae b (Hib)-tetanus toxoid (TT) conjugate vaccines was investigated using spectroscopic and chromatographic techniques and immunogenicity assays in animal models. In this stability study, both the bulk concentrate and final fills were incubated at -20, 4, 23, 37 or 55 degrees C for 5 weeks or subjected to cycles of freeze-thawing. The structural stability, hydrodynamic size and molecular integrity of the treated vaccines were monitored by circular dichroism (CD), fluorescence and nuclear magnetic resonance (NMR) spectroscopic techniques, size exclusion chromatography (FPLC-SEC), and high performance anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). Only storage at 55 degrees C for 5 weeks caused some slight unfolding and modification in the tertiary structure of the carrier protein in the MenC-TT conjugate. Substantial loss of saccharide content from the MenC conjugates was observed at 37 and 55 degrees C. Unexpectedly, the experimental immunogenicity of MenC-TT vaccine adsorbed to Alhydrogel was significantly reduced only by repeated freeze-thawing, but not significantly decreased by thermal denaturation. Neither the molecular integrity nor the immunogenicity of the lyophilised Hib-TT vaccines was significantly affected by freeze-thawing or by storage at high temperature. In conclusion, the MenC- and Hib-TT conjugate vaccines were relatively stable when stored at higher temperatures, though when MenC-TT vaccine was adsorbed to Alhydrogel, it was more vulnerable to repeated freeze-thawing. When compared with CRM(197) conjugate vaccines studied previously using similar techniques, the tetanus toxoid conjugates were found to have higher relative thermal stability in that they retained immunogenicity following storage at elevated temperatures.

  1. Design guidelines for high dimensional stability of CFRP optical bench

    NASA Astrophysics Data System (ADS)

    Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe

    2013-09-01

    In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.

  2. Thermal instability in gravitationally stratified plasmas: implications for multiphase structure in clusters and galaxy haloes

    NASA Astrophysics Data System (ADS)

    McCourt, Michael; Sharma, Prateek; Quataert, Eliot; Parrish, Ian J.

    2012-02-01

    We study the interplay among cooling, heating, conduction and magnetic fields in gravitationally stratified plasmas using simplified, plane-parallel numerical simulations. Since the physical heating mechanism remains uncertain in massive haloes such as groups or clusters, we adopt a simple, phenomenological prescription which enforces global thermal equilibrium and prevents a cooling flow. The plasma remains susceptible to local thermal instability, however, and cooling drives an inward flow of material. For physically plausible heating mechanisms in clusters, the thermal stability of the plasma is independent of its convective stability. We find that the ratio of the cooling time-scale to the dynamical time-scale tcool/tff controls the non-linear evolution and saturation of the thermal instability: when tcool/tff≲ 1, the plasma develops extended multiphase structure, whereas when tcool/tff≳ 1 it does not. (In a companion paper, we show that the criterion for thermal instability in a more realistic, spherical potential is somewhat less stringent, tcool/tff≲ 10.) When thermal conduction is anisotropic with respect to the magnetic field, the criterion for multiphase gas is essentially independent of the thermal conductivity of the plasma. Our criterion for local thermal instability to produce multiphase structure is an extension of the cold versus hot accretion modes in galaxy formation that applies at all radii in hot haloes, not just to the virial shock. We show that this criterion is consistent with data on multiphase gas in galaxy groups and clusters; in addition, when tcool/tff≳ 1, the net cooling rate to low temperatures and the mass flux to small radii are suppressed enough relative to models without heating to be qualitatively consistent with star formation rates and X-ray line emission in groups and clusters.

  3. Gadolinia doped hafnia (Gd2O3- HfO 2) thermal barrier coatings for gas turbine applications

    NASA Astrophysics Data System (ADS)

    Gullapalli, Satya Kiran

    Thermal efficiency of the gas turbines is influenced by the operating temperature of the hot gas path components. The material used for the hot gas path components can only withstand temperature up to a certain limit. Thermal barrier coatings (TBC) provide the additional thermal protection for these components and help the gas turbine achieve higher firing temperatures. Traditionally available yttria stabilized zirconia (YSZ) TBCs have a limitation up to 1200 C due to their phase transformation. The present work focuses on gadolinia based hafnia (GSH) TBCs to study their potential to replace the YSZ coatings. Different compositions of gadolinia doped hafnia coatings have been deposited using electron beam physical vapor deposition (EB-PVD) technique and characterized using x-ray diffraction (XRD) and scanning electron microscope (SEM). The crystal structure analysis performed using XRD confirmed the stabilization of the high temperature cubic phase of hafnia. Cross sectional analysis confirmed the presence of columnar structure in the coatings which is a signature of the EB-PVD coatings. Mechanical properties of the coatings were investigated using nanoindentation and nano impact testing at both room temperature and high temperature. Indentation tests indicate a reduction in hardness with an increase in temperature and gadolinia content in hafnia. Impact testing reveals the fracture resistance of the coatings as a function of stabilizer content and heat treatment. Thermal measurements and impedance testing was performed on the bulk material to study the effect of gadolinia content. Thermal cycling was performed to study the spallation behavior of the as deposited and aged samples. Finite element models were developed to study the interfacial stress development in the coatings subjected to thermal cycling.

  4. Response Surface Methodology for Design of Porous Hollow Sphere Thermal Insulator

    NASA Astrophysics Data System (ADS)

    Shohani, Nazanin; Pourmahdian, Saeed; Shirkavand Hadavand, Behzad

    2017-11-01

    In this study, response surface method is used for synthesizing polystyrene (PS) as sacrificial templates and optimizing the particle size. Three factors of initiator, stabilizer concentration and also stirring rate were selected as variable factors. Then, three different concentration of tetraethyl orthosilicate (TEOS) added to reaction media and core-shell structure with PS core and silica shell was developed. Finally, core-shell structure was changed to hollow silica sphere for using as thermal insulator. We observed that increased initiator concentration caused to larger PS particles, increase the stirring rate caused the smaller PS and also with increased the stabilizer concentration obtained that particle size decrease then after 2.5% began to increase. Also the optimum amount of TEOS was found.

  5. Optomechanical stability design of space optical mapping camera

    NASA Astrophysics Data System (ADS)

    Li, Fuqiang; Cai, Weijun; Zhang, Fengqin; Li, Na; Fan, Junjie

    2018-01-01

    According to the interior orientation elements and imaging quality requirements of mapping application to mapping camera and combined with off-axis three-mirror anastigmat(TMA) system, high optomechanical stability design of a space optical mapping camera is introduced in this paper. The configuration is a coaxial TMA system used in off-axis situation. Firstly, the overall optical arrangement is described., and an overview of the optomechanical packaging is provided. Zerodurglass, carbon fiber composite and carbon-fiber reinforced silicon carbon (C/SiC) are widely used in the optomechanical structure, because their low coefficient of thermal expansion (CTE) can reduce the thermal sensitivity of the mirrors and focal plane. Flexible and unloading support are used in reflector and camera supporting structure. Epoxy structural adhesives is used for bonding optics to metal structure is also introduced in this paper. The primary mirror is mounted by means of three-point ball joint flexures system, which is attach to the back of the mirror. Then, In order to predict flexural displacements due to gravity, static finite element analysis (FEA) is performed on the primary mirror. The optical performance peak-to-valley (PV) and root-mean-square (RMS) wavefront errors are detected before and after assemble. Also, the dynamic finite element analysis(FEA) of the whole optical arrangement is carried out as to investigate the performance of optomechanical. Finally, in order to evaluate the stability of the design, the thermal vacuum test and vibration test are carried out and the Modulation Transfer Function (MTF) and elements of interior orientation are presented as the evaluation index. Before and after the thermal vacuum test and vibration test, the MTF, focal distance and position of the principal point of optical system are measured and the result is as expected.

  6. Unidirectional thermal expansion in edge-sharing BO4 tetrahedra contained KZnB3O6

    PubMed Central

    Lou, Yanfang; Li, Dandan; Li, Zhilin; Jin, Shifeng; Chen, Xiaolong

    2015-01-01

    Borates are among a class of compounds that exhibit rich structural diversity and find wide applications. The formation of edge-sharing (es-) BO4 tetrahedra is extremely unfavored according to Pauling’s third and fourth rules. However, as the first and the only es-borate obtained under ambient pressure, es-KZnB3O6 shows an unexpected high thermal stability up to its melting point. The origin of this extraordinary stability is still unclear. Here, we report a novel property in KZnB3O6: unidirectional thermal expansion, which plays a role in preserving es-BO4 from disassociation at elevated temperatures. It is found that this unusual thermal behavior originates from cooperative rotations of rigid groups B6O12 and Zn2O6, driven by anharmonic thermal vibrations of K atoms. Furthermore, a detailed calculation of phonon dispersion in association with this unidirectional expansion predicts the melting initiates with the breakage of the link between BO3 and es-BO4. These findings will broaden our knowledge of the relationship between structure and property and may find applications in future. PMID:26047175

  7. Investigation of Thermal Stability of P2-NaxCoO2 Cathode Materials for Sodium Ion Batteries Using Real-Time Electron Microscopy.

    PubMed

    Hwang, Sooyeon; Lee, Yongho; Jo, Eunmi; Chung, Kyung Yoon; Choi, Wonchang; Kim, Seung Min; Chang, Wonyoung

    2017-06-07

    Here, we take advantage of in situ transmission electron microscopy (TEM) to investigate the thermal stability of P2-type Na x CoO 2 cathode materials for sodium ion batteries, which are promising candidates for next-generation lithium ion batteries. A double-tilt TEM heating holder was used to directly characterize the changes in the morphology and the crystallographic and electronic structures of the materials with increase in temperature. The electron diffraction patterns and the electron energy loss spectra demonstrated the presence of cobalt oxides (Co 3 O 4 , CoO) and even metallic cobalt (Co) at higher temperatures as a result of reduction of Co ions and loss of oxygen. The bright-field TEM images revealed that the surface of Na x CoO 2 becomes porous at high temperatures. Higher cutoff voltages result in degrading thermal stability of Na x CoO 2 . The observations herein provide a valuable insight that thermal stability is one of the important factors to be considered in addition to the electrochemical properties when developing new electrode materials for novel battery systems.

  8. Investigation of Thermal Stability of P2–Na xCoO 2 Cathode Materials for Sodium Ion Batteries Using Real-Time Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Sooyeon; Lee, Yongho; Jo, Eunmi

    In this paper, we take advantage of in situ transmission electron microscopy (TEM) to investigate the thermal stability of P2-type Na xCoO 2 cathode materials for sodium ion batteries, which are promising candidates for next-generation lithium ion batteries. A double-tilt TEM heating holder was used to directly characterize the changes in the morphology and the crystallographic and electronic structures of the materials with increase in temperature. The electron diffraction patterns and the electron energy loss spectra demonstrated the presence of cobalt oxides (Co 3O 4, CoO) and even metallic cobalt (Co) at higher temperatures as a result of reduction ofmore » Co ions and loss of oxygen. The bright-field TEM images revealed that the surface of Na xCoO 2 becomes porous at high temperatures. Higher cutoff voltages result in degrading thermal stability of Na xCoO 2. Finally, the observations herein provide a valuable insight that thermal stability is one of the important factors to be considered in addition to the electrochemical properties when developing new electrode materials for novel battery systems.« less

  9. Microstructure and Mechanical Properties of Ultrafine-Grained Al-6061 Prepared Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Wu, Zhaozhi; Liu, Zhiyuan; Guo, Dengji; Lou, Yan; Ruan, Shuangchen

    2017-10-01

    Equal-channel angular pressing (ECAP) is an efficient technique to achieve grain refinement in a wide range of materials. However, the extrusion process requires an excessive extrusion force, the microstructure of ECAPed specimens scatters heterogeneously because of considerable fragmentation of the structure and strain heterogeneity, and the resultant ultrafine grains exhibit poor thermal stability. The intermittent ultrasonic-assisted ECAP (IU-ECAP) approach was proposed to address these issues. In this work, ECAP and IU-ECAP were applied to produce ultrafine-grained Al-6061 alloys, and the differences in their mechanical properties, microstructural characteristics, and thermal stability were investigated. Mechanical testing demonstrated that the necessary extrusion force for IU-ECAP was significantly reduced; even more, the microhardness and ultimate tensile strength were strengthened. In addition, the IU-ECAPed Al alloy exhibited a smaller grain size with a more homogeneous microstructure. X-ray diffraction analysis indicated that the intensities of the textures were weakened using IU-ECAP, and a more homogeneous microstructure and larger dislocation densities were obtained. Investigation of the thermal stability revealed that the ultrafine-grained materials produced using IU-ECAP recrystallized at higher temperature or after longer time; the materials thus exhibited improved thermal stability.

  10. Investigation of Thermal Stability of P2–Na xCoO 2 Cathode Materials for Sodium Ion Batteries Using Real-Time Electron Microscopy

    DOE PAGES

    Hwang, Sooyeon; Lee, Yongho; Jo, Eunmi; ...

    2017-05-11

    In this paper, we take advantage of in situ transmission electron microscopy (TEM) to investigate the thermal stability of P2-type Na xCoO 2 cathode materials for sodium ion batteries, which are promising candidates for next-generation lithium ion batteries. A double-tilt TEM heating holder was used to directly characterize the changes in the morphology and the crystallographic and electronic structures of the materials with increase in temperature. The electron diffraction patterns and the electron energy loss spectra demonstrated the presence of cobalt oxides (Co 3O 4, CoO) and even metallic cobalt (Co) at higher temperatures as a result of reduction ofmore » Co ions and loss of oxygen. The bright-field TEM images revealed that the surface of Na xCoO 2 becomes porous at high temperatures. Higher cutoff voltages result in degrading thermal stability of Na xCoO 2. Finally, the observations herein provide a valuable insight that thermal stability is one of the important factors to be considered in addition to the electrochemical properties when developing new electrode materials for novel battery systems.« less

  11. Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability.

    PubMed

    Chen, Lingli; Bai, Guangling; Yang, Rui; Zang, Jiachen; Zhou, Ting; Zhao, Guanghua

    2014-04-15

    Carotenoids may play a number of potential health benefits for human. However, their use in food industry is limited mostly because of their poor water-solubility and low thermal stability. Ferritins are widely distributed in nature with a shell-like structure which offers a great opportunity to improve the water-solubility and thermal stability of the carotenoids by encapsulation. In this work, recombinant human H-chain ferritin (rHuHF) was prepared and used to encapsulate β-carotene, a typical compound among carotenoids, by taking advantage of the reversible dissociation and reassembly characteristic of apoferritin in different pH environments. Results from high-performance liquid chromatography (HPLC), UV/Vis spectroscopy and transmission electron microscope (TEM) indicated that β-carotene molecules were successfully encapsulated within protein cages with a β-carotene/protein molar ratio of 12.4-1. Upon such encapsulation, these β-carotene-containing apoferritin nanocomposites were water-soluble. Interestingly, the thermal stability of the β-carotene encapsulated within apoferritin nanocages was markedly improved as compared to free β-carotene. These new properties might be favourable to the utilisation of β-carotene in food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Improvement of the thermal stability of Nb:TiO2-x samples for uncooled infrared detectors

    NASA Astrophysics Data System (ADS)

    Reddy, Y. Ashok Kumar; Kang, In-Ku; Shin, Young Bong; Lee, Hee Chul

    2018-01-01

    In order to reduce the sun-burn effect in a sample of the bolometric material Nb:TiO2-x , oxygen annealing was carried out. This effect can be examined by comparing thermal stability test results between the as-deposited and oxygen-atmosphere-annealed samples under high-temperature exposure conditions. Structural studies confirm the presence of amorphous and rutile phases in the as-deposited and annealed samples, respectively. Composition studies reveal the offset of oxygen vacancies in the Nb:TiO2-x samples through oxygen-atmosphere annealing. The oxygen atoms were diffused and seemed to occupy the vacant sites in the annealed samples. As a result, the annealed samples show better thermal stability performance than the as-deposited samples. The universal bolometric parameter (β) values were slightly decreased in the oxygen-annealed Nb:TiO2-x samples. Although bolometric performance was slightly decreased in the oxygen-annealed samples, high thermal stability would be the most essential factor in the case of special applications, such as the military and space industries. Finally, these results will be very useful for reducing the sun-burn effect in infrared detectors.

  13. Determination of the thermal stability of perfluoroalkylethers

    NASA Technical Reports Server (NTRS)

    Helmick, Larry S.; Jones, William R., Jr.

    1990-01-01

    The thermal decomposition temperatures of several commercial and custom synthesized perfluoroalkylether fluids were determined with a computerized tensimeter. In general, the decomposition temperatures of the commercial fluids were all similar and significantly higher than those for custom synthesized fluids. Correlation of the decomposition temperatures with the molecular structures of the primary components of the commercial fluids revealed that the stability of the fluids is not affected by intrinsic factors such as carbon chain length, branching, or cumulated difluoroformal groups. Instead, correlation with extrinsic factors revealed that the stability may be limited by the presence of small quantities of thermally unstable material and/or chlorine-containing material arising from the use of chlorine-containing solvents during synthesis. Finally, correlation of decomposition temperatures with molecular weights for Demnum and Krytox fluids supports a chain cleavage reaction mechanism for Demnum fluids and an unzipping reaction mechanism for Krytox fluids.

  14. Thermal stability of Mn-Ir-based specular spin valve structure

    NASA Astrophysics Data System (ADS)

    Yoon, S. Y.; Lee, D. H.; Jeon, D. M.; Kim, J. H.; Yoon, D. H.; Suh, S. J.

    2004-05-01

    We studied the thermal properties of specular and conventional spin valves. The specular spin valve showed better thermal properties (e.g. slow MR degradation and sheet resistance increment) than those of conventional spin valve. It is considered that the Mn-Co-Fe-O is formed in the NOL at 543-578 K and this acts as a diffusion barrier for Mn during high-temperature annealing process.

  15. Assembly of DNA Architectures in a Non-Aqueous Solution

    DTIC Science & Technology

    2012-08-31

    environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical structure and thermal stability...transitioned to a non-aqueous environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical...techniques were first validated using a more widely studied DNA system, genomic salmon sperm DNA (saDNA) [19]. The saDNA samples were reacted with two

  16. Improved pharmacokinetics of mercaptopurine afforded by a thermally robust hemihydrate.

    PubMed

    Kersten, Kortney M; Matzger, Adam J

    2016-04-18

    Structural and thermal data were obtained for a novel hemihydrate of 6-mercaptopurine. The hemihydrate shows increased solubility and bioavailability when compared to the monohydrate form, better stability against conversion in aqueous media than the anhydrate form, and a dehydration temperature of 240 °C, the highest of any known hydrate crystal.

  17. Effect of sexual maturation on thermal stability, viscoelastic properties, and texture of rainbow trout, Oncorhynchus mykiss, fillets

    USDA-ARS?s Scientific Manuscript database

    The nutrient and energy demand of sexual maturation in many fish cultivars causes structural change to key contractile proteins and thereby, affects fillet firmness. Thermal denaturation and viscoelastic properties of white muscle from diploid (2N; fertile) and triploid (3N; sterile) female rainbow...

  18. Bio-composites of cassava starch-green coconut fiber: part II-Structure and properties.

    PubMed

    Lomelí-Ramírez, María Guadalupe; Kestur, Satyanarayana G; Manríquez-González, Ricardo; Iwakiri, Setsuo; de Muniz, Graciela Bolzon; Flores-Sahagun, Thais Sydenstricker

    2014-02-15

    Development of any new material requires its complete characterization to find potential applications. In that direction, preparation of bio-composites of cassava starch containing up to 30 wt.% green coconut fibers from Brazil by thermal molding process was reported earlier. Their characterization regarding physical and tensile properties of both untreated and treated matrices and their composites were also reported. Structural studies through FTIR and XRD and thermal stability of the above mentioned composites are presented in this paper. FT-IR studies revealed decomposition of components in the matrix; the starch was neither chemically affected nor modified by either glycerol or the amount of fiber. XRD studies indicated increasing crystallinity of the composites with increasing amount of fiber content. Thermal studies through TGA/DTA showed improvement of thermal stability with increasing amount of fiber incorporation, while DMTA showed increasing storage modulus, higher glass transition temperature and lower damping with increasing fiber content. Improved interfacial bonding between the matrix and fibers could be the cause for the above results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. TES development for a frequency selective bolometer camera.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datesman, A. M.; Downes, T. P.; Perera, T. A.

    2009-06-01

    We discuss the development, at Argonne National Laboratory (ANL), of a four-pixel camera with four spectral channels centered at 150, 220, 270, and 360 GHz. The scientific motivation involves photometry of distant dusty galaxies located by Spitzer and SCUBA, as well as the study of other millimeter-wave sources such as ultra-luminous infrared galaxies, the Sunyaev-Zeldovich effect in clusters, and galactic dust. The camera incorporates Frequency Selective Bolometer (FSB) and superconducting Transition-Edge Sensor (TES) technology. The current generation of TES devices we examine utilizes proximity effect superconducting bilayers of Mo/Au, Ti, or Ti/Au as TESs, located along with frequency selective absorbingmore » structures on silicon nitride membranes. The detector incorporates lithographically patterned structures designed to address both TES device stability and detector thermal transport concerns. The membrane is not perforated, resulting in a detector which is comparatively robust mechanically. In this paper, we report on the development of the superconducting bilayer TES technology, the design and testing of the detector thermal transport and device stability control structures, optical and thermal test results, and the use of new materials.« less

  20. A thermal study on the structural changes of bimetallic ZrO2-modified TiO2 nanotubes synthesized using supercritical CO2.

    PubMed

    Lucky, R A; Charpentier, P A

    2009-05-13

    In this study the thermal behavior of bimetallic ZrO(2)-TiO(2) (10/90 mol/mol) nanotubes are discussed which were synthesized via a sol-gel process in supercritical carbon dioxide (scCO(2)). The effects of calcination temperature on the morphology, phase structure, mean crystallite size, specific surface area and pore volume of the nanotubes were investigated by using a variety of physiochemical techniques. We report that SEM and TEM images showed that the nanotubular structure was preserved at up to 800 degrees C calcination temperature. When exposed to higher temperatures (900-1000 degrees C) the ZrO(2)-TiO(2) tubes deformed and the crystallites fused together, forming larger crystallites, and a bimetallic ZrTiO(4) species was detected. These results were further examined using TGA, FTIR, XRD and HRTEM analysis. The BET textural properties demonstrated that the presence of a small amount of Zr in the TiO(2) matrix inhibited the grain growth, stabilized the anatase phase and increased the thermal stability.

  1. Folding thermodynamics of pseudoknotted chain conformations

    PubMed Central

    Kopeikin, Zoia; Chen, Shi-Jie

    2008-01-01

    We develop a statistical mechanical framework for the folding thermodynamics of pseudoknotted structures. As applications of the theory, we investigate the folding stability and the free energy landscapes for both the thermal and the mechanical unfolding of pseudoknotted chains. For the mechanical unfolding process, we predict the force-extension curves, from which we can obtain the information about structural transitions in the unfolding process. In general, a pseudoknotted structure unfolds through multiple structural transitions. The interplay between the helix stems and the loops plays an important role in the folding stability of pseudoknots. For instance, variations in loop sizes can lead to the destabilization of some intermediate states and change the (equilibrium) folding pathways (e.g., two helix stems unfold either cooperatively or sequentially). In both thermal and mechanical unfolding, depending on the nucleotide sequence, misfolded intermediate states can emerge in the folding process. In addition, thermal and mechanical unfoldings often have different (equilibrium) pathways. For example, for certain sequences, the misfolded intermediates, which generally have longer tails, can fold, unfold, and refold again in the pulling process, which means that these intermediates can switch between two different average end-end extensions. PMID:16674261

  2. Fabrication and characterization of Co{sub 40}Fe{sub 22}Ta{sub 8-x}Y{sub x}B{sub 30} (x = 0, 2.5, 4, 6, and 8) metallic glasses with high thermal stability and good soft magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taghvaei, Amir Hossein, E-mail: amirtaghvaei@gmail.com; Shahabi, Hamed Shakur; Bednarčik, Jozef

    2014-11-14

    Atomic structure and thermal behavior of Co{sub 40}Fe{sub 22}Ta{sub 8-x}Y{sub x}B{sub 30} (x = 0, 2.5, 4, 6, and 8) metallic glasses with good soft magnetic properties have been investigated by high-energy synchrotron X-ray diffraction and differential scanning calorimeter, respectively. It has been shown that the extension of the supercooled liquid region first increases and reaches a large value of 95 K and subsequently decreases as a function of Y content. Analysis of the structure factors and pair correlation functions in the reciprocal-space and real-space have indicated that the addition of Y noticeably changes the atomic structure and reduces the degree of themore » medium-range order. Magnetic measurements have implied that the introduction of Y enhances both saturation magnetization and Curie temperatures of the ribbons, while keeping their coercivity very small. The underlying mechanisms for changes in the atomic structure, improving the thermal stability and magnetic properties upon Y addition have been discussed.« less

  3. Synthesis and thermal stability of W/WS{sub 2} inorganic fullerene-like nanoparticles with core-shell structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Lianxia; Yang Haibin; Fu Wuyou

    W/WS{sub 2} inorganic fullerene-like (IF) nanoparticles with core-shell structure are synthesized by the reaction of tungsten nanospheres and sulfur at relatively low temperatures (380-600 deg. C) under hydrogen atmosphere, in which tungsten nanospheres were prepared by wire electrical explosion method. Images of transmission electron microscopy and high-resolution transmission electron microscopy show that the composite particles are of core-shell structure with spherical shape and the shell thickness is about 10 nm. X-ray powder diffraction results indicate that the interlayer spacing of IF-WS{sub 2} shell decreases and approaches that of 2H-WS{sub 2} with increasing annealing temperatures, representing an expansion of 3.3-1.6%. Amore » mechanism of IF-WS{sub 2} formation via sulfur diffusion into fullerene nanoparticles is discussed. Thermal analysis shows that the nanoparticles obtained at different temperatures exhibit similar thermal stability and the onset temperature of oxidization is about 410 deg. C. Encapsulating hard tungsten core into IF-WS{sub 2} and the spherical shape of the core-shell structures may enhance their performance in tribological applications.« less

  4. Thermal decomposition of fullerene nanowhiskers protected by amorphous carbon mask

    NASA Astrophysics Data System (ADS)

    Guo, Hongxuan; Wang, Chengxiang; Miyazawa, Kun'Ichi; Wang, Hongxin; Masuda, Hideki; Fujita, Daisuke

    2016-12-01

    Fullerene nanostructures are well known for their unique morphology, physical and mechanical properties. The thermal stability of fullerene nanostructures, such as their sublimation at high temperature is also very important for studying their structures and applications. In this work, We observed fullerene nanowhiskers (FNWs) in situ with scanning helium ion microscopy (HIM) at elevated temperatures. The FNWs exhibited different stabilities with different thermal histories during the observation. The pristine FNWs were decomposed at the temperatures higher than 300 °C in a vacuum environment. Other FNWs were protected from decomposition with an amorphous carbon (aC) film deposited on the surface. Based on high spacial resolution, aC film with periodic structure was deposited by helium ion beam induced deposition (IBID) on the surface of FNWs. Annealed at the high temperature, the fullerene molecules were selectively sublimated from the FNWs. The periodic structure was formed on the surface of FNWs and observed by HIM. Monte Carlo simulation and Raman characterization proved that the morphology of the FNWs was changed by helium IBID at high temperature. This work provides a new method of fabricating artificial structure on the surface of FNWs with periodic aC film as a mask.

  5. Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.

    2015-01-01

    The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.

  6. Effects of electron irradiation on LDPE/MWCNT composites

    NASA Astrophysics Data System (ADS)

    Yang, Jianqun; Li, Xingji; Liu, Chaoming; Rui, Erming; Wang, Liqin

    2015-12-01

    In this study, mutiwalled carbon nanotubes (MWCNTs) were incorporated into low density polyethylene (LDPE) in different concentrations (2%, 4% and 8%) using a melt blending process. Structural, thermal stability and tensile property of the unirradiated/irradiated LDPE/MWCNT composites by 110 keV electrons were investigated by means of scanning electron microscopy (SEM), small angle X-ray scattering (SAXS), Raman spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, thermogravimetric analysis (TGA) and uniaxial tensile techniques. Experimental results show that the addition of MWCNTs obviously increases the ultimate tensile strength of LDPE and decreases the elongation at break, which is attributed to the homogeneous distribution of the MWCNTs in LDPE and intense interaction between MWCNTs and LDPE matrix. Also, the electron irradiation further increases the ultimate tensile strength of LDPE/MWCNT composites, which can be ascribed to the more intense interaction between MWCNTs and LDPE matrix, and the formation of crosslinking sites in LDPE matrix induced by the electron irradiation. The addition of MWCNTs significantly enhances thermal stability of the LDPE due to the hindering effect and the scavenging free radicals, while the electron irradiation decreases thermal stability of the LDPE/MWCNT composites since the structure of the MWCNTs and LDPE matrix damages.

  7. Improvement of heavy dopant doped Ni-silicide using ytterbium interlayer for nano-scale MOSFETS with an ultra shallow junction.

    PubMed

    Shin, Hong-Sik; Oh, Se-Kyung; Kang, Min-Ho; Li, Shi-Guang; Lee, Ga-Won; Lee, Hi-Deok

    2011-07-01

    In this paper, a novel Ni silicide with Yb interlayer (Yb/Ni/TiN) on a boron cluster (B18H22) implanted source/drain junction is proposed for the first time, and its thermal stability characteristics are analyzed in depth. The proposed Ni-silicide exhibits a wider RTP temperature window for uniform sheet resistance, surface roughness and better thermal stability than the conventional structure (Ni/TiN). In addition, the cross-sectional profile of the proposed Ni-silicide showed less agglomeration despite the high temperature post-silicidation annealing, and it can be said that the proposed structure was little dependence on the temperature post-silicidation annealing. The improvement of Ni silicide properties is analyzed and found to be due to the formation of the rare earth metal--NiSi (YbNi2Si2), whose peaks were confirmed by XRD. The junction leakage current of the p + -n junction with Yb/Ni/TiN and B18H22 implantation is smaller than that with Ni/TiN by almost one order of magnitude as well as improving the thermal stability of ultra shallow junction.

  8. Self aligning electron beam gun having enhanced thermal and mechanical stability

    DOEpatents

    Scarpetti, Jr., Raymond D.; Parkison, Clarence D.; Switzer, Vernon A.; Lee, Young J.; Sawyer, William C.

    1995-01-01

    A compact, high power electron gun having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the "triple point" where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques.

  9. Thermal stability of MBE-grown epitaxial MoSe2 and WSe2 thin films

    NASA Astrophysics Data System (ADS)

    Chang, Young Jun; Choy, Byoung Ki; Phark, Soo-Hyon; Kim, Minu

    Layered transition metal dichalcogenides (TMDs) draw much attention, because of its unique optical properties and band structures depending on the layer thicknesses. However, MBE growth of epitaxial films demands information about thermal stability of stoichiometry and related electronic structure for high temperature range. We grow epitaxial MoSe2 and WSe2 ultrathin films by using molecular beam epitaxy (MBE). We characterize stoichiometry of films grown at various growth temperature by using various methods, XPS, EDX, and TOF-MEIS. We further test high temperature stability of electronic structure for those films by utilizing in-situ ellipsometry attached to UHV chamber. We discuss threshold temperatures up to 700~1000oC, at which electronic phases changes from semiconductor to metal due to selenium deficiency. This information can be useful for potential application of TMDs for fabrication of Van der Waals multilayers and related devices. This research was supported by Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), NRF-2014R1A1A1002868.

  10. Thermal stability and molecular ordering of organic semiconductor monolayers: effect of an anchor group.

    PubMed

    Jones, Andrew O F; Knauer, Philipp; Resel, Roland; Ringk, Andreas; Strohriegl, Peter; Werzer, Oliver; Sferrazza, Michele

    2015-06-08

    The thermal stability and molecular order in monolayers of two organic semiconductors, PBI-PA and PBI-alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI-PA, are reported. In situ X-ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure. PBI-PA monolayers have a high degree of order at room temperature and a stable film exists up to 250 °C, but decomposes rapidly above 300 °C. In contrast, stable physisorbed PBI-alkyl monolayers only exist up to 100 °C. Above the bulk melting point at 200 °C no more order exists. The results encourage using anchor groups in monolayers for various applications as it allows enhanced stability at the interface with the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Metal Hydride Nanoparticles with Ultrahigh Structural Stability and Hydrogen Storage Activity Derived from Microencapsulated Nanoconfinement.

    PubMed

    Zhang, Jiguang; Zhu, Yunfeng; Lin, Huaijun; Liu, Yana; Zhang, Yao; Li, Shenyang; Ma, Zhongliang; Li, Liquan

    2017-06-01

    Metal hydrides (MHs) have recently been designed for hydrogen sensors, switchable mirrors, rechargeable batteries, and other energy-storage and conversion-related applications. The demands of MHs, particular fast hydrogen absorption/desorption kinetics, have brought their sizes to nanoscale. However, the nanostructured MHs generally suffer from surface passivation and low aggregation-resisting structural stability upon absorption/desorption. This study reports a novel strategy named microencapsulated nanoconfinement to realize local synthesis of nano-MHs, which possess ultrahigh structural stability and superior desorption kinetics. Monodispersed Mg 2 NiH 4 single crystal nanoparticles (NPs) are in situ encapsulated on the surface of graphene sheets (GS) through facile gas-solid reactions. This well-defined MgO coating layer with a thickness of ≈3 nm efficiently separates the NPs from each other to prevent aggregation during hydrogen absorption/desorption cycles, leading to excellent thermal and mechanical stability. More interestingly, the MgO layer shows superior gas-selective permeability to prevent further oxidation of Mg 2 NiH 4 meanwhile accessible for hydrogen absorption/desorption. As a result, an extremely low activation energy (31.2 kJ mol -1 ) for the dehydrogenation reaction is achieved. This study provides alternative insights into designing nanosized MHs with both excellent hydrogen storage activity and thermal/mechanical stability exempting surface modification by agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of osmolytes on protein and water structure: a step to understanding the mechanism of protein stabilization.

    PubMed

    Bruździak, Piotr; Panuszko, Aneta; Stangret, Janusz

    2013-10-03

    Results concerning the thermostability of hen egg white lysozyme in aqueous solutions with stabilizing osmolytes, trimethylamine-N-oxide (TMAO), glycine (Gly), and its N-methyl derivatives, N-methylglycine (NMG), N,N-dimethylglycine (DMG), and N,N,N-trimethylglycine (betaine, TMG), have been presented. The combination of spectroscopic (IR) and calorimetric (DSC) data allowed us to establish a link between osmolytes' influence on water structure and their ability to thermally stabilize protein molecule. Structural and energetic characteristics of stabilizing osmolytes' and lysozyme's hydration water appear to be very similar. The osmolytes increase lysozyme stabilization in the order bulk water < TMAO < TMG < Gly < DMG < NMG, which is consistent with the order corresponding to the value of the most probable oxygen-oxygen distance of water molecules affected by osmolytes in their surrounding. Obtained results verified the hypothesis concerning the role of water molecules in protein stabilization, explained the osmophobic effect, and finally helped to bring us nearer to the exact mechanism of protein stabilization by osmolytes.

  13. Opportunities for functional oxides in yttrium oxide-titanium oxide-zirconium oxide system: Applications for novel thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Francillon, Wesley

    This dissertation is an investigation of materials and processed under consideration for next generation thermal structural oxides with potential applications as thermal barrier coatings; wherein, high temperature stability and mechanical properties affect durability. Two notable next generation materials systems under investigation are pyrochlore and co-doped zirconia oxides. The motivation for this work is based on current limitations of the currently used thermal barrier material of yttria stabilized zirconia (YSZ) deposited by the plasma spray processes. The rapid quenching associated with the plasma spray process, results in a metastable structure that is a non-transformable tetragonal structure in the yttria partially stabilized zirconia system rather than the equilibrium anticipated two phase mixture of cubic and monoclinic phases. It has been shown that this metastable structure offers enhanced toughness and thus durability during thermomechanical cycling from the operating temperatures in excess of 1000C to ambient. However, the metastable oxides are susceptible to partitioning at temperatures greater than 1200C, thus resulting in a transformation of the tetragonal phase oxides. Transformations of the tetragonal prime phase into the parent cubic and tetragonal prime phase result in coating degradation. Several of the emerging oxides are based on rare earth additions to zirconia. However, there is limited information of the high temperature stability of these oxide coatings and more notably these compositions exhibit limited toughness for durable performance. A potential ternary composition based on the YSZ system that offers the ability to tailor the phase structure is based YO1.5-TiO2 -ZrO2. The ternary of YO1.5-TiO2-ZrO 2 has the current TBC composition of seven molar percent yttria stabilized zirconia, pyrochlore phase oxide and zirconia doped with yttria and titania additions (Ti-YSZ). The Ti-YSZ phase field is of interest because at equilibrium it is a single tetragonal phase. Thus, compositions are of single phase tetragonal phase, theoretically, should not undergo high temperature partitioning. Single Tetragonal phase oxides of Ti-YSZ also offer the possibility of enhanced toughness and higher temperature stability akin to those observed in yttria partially stabilized zirconia. Many pyrochlore oxides are under review because they have shown to have lower thermal conductivity than YSZ oxides. This study focused on chemically synthesizing homogeneous starting material compositions in a metastable state (preferably amorphous), following its evolution according to the phase hierarchy under conditions of kinetic constraints. The current equilibrium diagram of YO1.5-TiO2-ZrO 2 is based on theoretical calculations. One of the contributions of this work is the redefined phase fields in YO1.5-TiO2-ZrO 2 based on our experimental results. Investigated compositions were based on tie lines of Y2-xTi2ZrxO7+x/2 and Y2Ti2-yZryO7 representing substitution of Zr4+ for Y3+ and Zr4+ for Ti4+ respectively. More notably, we observed extended metastable phases in pyrochlore and fluorite oxides at low temperature. The significance of this result is that it offers a larger compositional range for investing pyrochlore oxides with associated high temperature phase stability for TBC applications. In tetragonal oxides, our results showed that Ti-YSZ results have slower partitioning kinetics in comparison to YSZ at high temperature. This study also emphasized the deposition of advanced ceramic coatings by plasma spray for tetragonal and pyrochlore systems, compositionally complex functional oxides that may potentially have lower thermal conductivity values compared to current YSZ oxides. Next generation thermal barrier coatings require powders with high chemical purity, chemical homogeneity, controlled particle size/shape and pertinent phase state. Thermal spray offers an avenue to create novel materials and deposits directly from the precursor and compositionally controlled powder feedstock. This study contributed to investigating an unexplored field that offers a variety of opportunities in materials synthesis that would not be possible by conventional methods. Understanding processing-microstructure-property correlations is of considerable importance in thermal spray of functional oxide materials. This thesis demonstrated by radio-frequency thermal spray that the complex pyrochlore oxide Y 2Ti2O7 could be deposited by directly injecting molecularly mixed precursors to form oxide coatings. Structural analysis revealed the metastable fluorite phase; however, with thermal treatments at relatively low temperature of 700°C the pyrochlore phase was obtained. For Ti-YSZ coatings, the tetragonal phase oxides were obtained with unique microstructures, however, the tetragonal prime destabilized at 1200°C. This dissertation explored novel oxide compositions through detailed structural analysis. The approach presented a comprehensive and integrated investigation as it pertains to phase evolution of oxides in powder feedstock to coating characteristics (phase/properties).

  14. Structural control of side-chain chromophores to achieve highly efficient electro-optic activity.

    PubMed

    Yang, Yuhui; Chen, Zhuo; Liu, Jialei; Xiao, Hongyan; Zhen, Zhen; Liu, Xinhou; Jiang, Guohua

    2017-05-10

    A series of chromophores J1-J4 have been synthesized based on julolidine donors modified with different rigid steric hindrance groups. Compared with the chromophore (J1) without the isolation group, chromophores J2, J3 and J4 show better stability. Structural analysis and photophysical property measurements were carried out to compare the molecular mobility and steric hindrance effect of the different donor-modified chromophores. All of these chromophores with isolation groups showed superb thermal stabilities with high thermal decomposition temperatures above 250 °C. Furthermore, with rigid steric hindrance, chromophores J3 and J4 showed more enhanced thermal stabilities with thermal decomposition temperatures of 269 °C and 275 °C, respectively. Density functional theory was used to calculate the hyperpolarizability (β), and the high molecular hyperpolarizability of these chromophores can be effectively translated into large electro-optic coefficients. The electro-optic coefficients of poled films containing 20 wt% of these new chromophores doped in amorphous polycarbonate were 127, 266 and 209 pm V -1 at 1310 nm for chromophores J1-J3, respectively, while the film containing chromophore J4 showed the largest r 33 value of only 97 pm V -1 at 25 wt%. These results indicated that the introduced isolation group can reduce intermolecular electrostatic interactions, thus enhancing the macroscopic electro-optic activity, while the size of the isolation group should be suitable.

  15. The mechanical and thermal characteristics of phenolic foam reinforced with kaolin powder and glass fiber fabric

    NASA Astrophysics Data System (ADS)

    Xiao, Wenya; Huang, Zhixiong; Ding, Jie

    2017-12-01

    In this work, kaolin powder and glass fiber fabric were added to PF in order to improve its thermal stability and mechanical property. Micro-structures of carbonized PF with kaolin powder were inspected by scanning electron microscopy (SEM) to demonstrate the filler’s pinning effect. SEM results illustrated modified PF had well morphology after high-temperature heat treatment. The Fourier transform infrared spectrometer (FTIR) test was carried out and found that kaolin powder only physically dispersed in PF. The compression test and thermal weight loss test were done on two groups of modified PF (Group A: add powder and fabric; Group B: add powder only). Results showed that all modified PF were better than pure PF, while foams with powder and fabric showed better mechanical characteristic and thermal stability compared with foams with powder only.

  16. Intrinsic Flame-Retardant and Thermally Stable Epoxy Endowed by a Highly Efficient, Multifunctional Curing Agent

    PubMed Central

    Dong, Chunlei; Wirasaputra, Alvianto; Luo, Qinqin; Liu, Shumei; Yuan, Yanchao; Zhao, Jianqing; Fu, Yi

    2016-01-01

    It is difficult to realize flame retardancy of epoxy without suffering much detriment in thermal stability. To solve the problem, a super-efficient phosphorus-nitrogen-containing reactive-type flame retardant, 10-(hydroxy(4-hydroxyphenyl)methyl)-5,10-dihydrophenophosphazinine-10-oxide (HB-DPPA) is synthesized and characterized. When it is used as a co-curing agent of 4,4′-methylenedianiline (DDM) for curing diglycidyl ether of bisphenol A (DGEBA), the cured epoxy achieves UL-94 V-0 rating with the limiting oxygen index of 29.3%. In this case, the phosphorus content in the system is exceptionally low (0.18 wt %). To the best of our knowledge, it currently has the highest efficiency among similar epoxy systems. Such excellent flame retardancy originates from the exclusive chemical structure of the phenophosphazine moiety, in which the phosphorus element is stabilized by the two adjacent aromatic rings. The action in the condensed phase is enhanced and followed by pressurization of the pyrolytic gases that induces the blowing-out effect during combustion. The cone calorimeter result reveals the formation of a unique intumescent char structure with five discernible layers. Owing to the super-efficient flame retardancy and the rigid molecular structure of HB-DPPA, the flame-retardant epoxy acquires high thermal stability and its initial decomposition temperature only decreases by 4.6 °C as compared with the unmodified one. PMID:28774127

  17. Thermodynamic insights into 2-thiouridine-enhanced RNA hybridization

    PubMed Central

    Larsen, Aaron T.; Fahrenbach, Albert C.; Sheng, Jia; Pian, Julia; Szostak, Jack W.

    2015-01-01

    Nucleobase modifications dramatically alter nucleic acid structure and thermodynamics. 2-thiouridine (s2U) is a modified nucleobase found in tRNAs and known to stabilize U:A base pairs and destabilize U:G wobble pairs. The recently reported crystal structures of s2U-containing RNA duplexes do not entirely explain the mechanisms responsible for the stabilizing effect of s2U or whether this effect is entropic or enthalpic in origin. We present here thermodynamic evaluations of duplex formation using ITC and UV thermal denaturation with RNA duplexes containing internal s2U:A and s2U:U pairs and their native counterparts. These results indicate that s2U stabilizes both duplexes. The stabilizing effect is entropic in origin and likely results from the s2U-induced preorganization of the single-stranded RNA prior to hybridization. The same preorganizing effect is likely responsible for structurally resolving the s2U:U pair-containing duplex into a single conformation with a well-defined H-bond geometry. We also evaluate the effect of s2U on single strand conformation using UV- and CD-monitored thermal denaturation and on nucleoside conformation using 1H NMR spectroscopy, MD and umbrella sampling. These results provide insights into the effects that nucleobase modification has on RNA structure and thermodynamics and inform efforts toward improving both ribozyme-catalyzed and nonenzymatic RNA copying. PMID:26240387

  18. Probing the thermal stability and the decomposition mechanism of a magnesium-fullerene polymer via X-ray Raman spectroscopy, X-ray diffraction and molecular dynamics simulations.

    PubMed

    Aramini, Matteo; Niskanen, Johannes; Cavallari, Chiara; Pontiroli, Daniele; Musazay, Abdurrahman; Krisch, Michael; Hakala, Mikko; Huotari, Simo

    2016-02-21

    We report the microscopic view of the thermal structural stability of the magnesium intercalated fullerene polymer Mg2C60. With the application of X-ray Raman spectroscopy and X-ray diffraction, we study in detail the decomposition pathways of the polymer system upon annealing at temperatures between 300 and 700 °C. We show that there are at least two energy scales involved in the decomposition reaction. Intermolecular carbon bonds, which are responsible for the formation of a 2D fullerene polymer, are broken with a relatively modest thermal energy, while the long-range order of the original polymer remains intact. With an increased thermal energy, the crystal structure in turn is found to undergo a transition to a novel intercalated cubic phase that is stable up to the highest temperature studied here. The local structure surrounding magnesium ions gets severely modified close to, possibly at, the phase transition. We used density functional theory based calculations to study the thermodynamic and kinetic aspects of the collapse of the fullerene network, and to explain the intermediate steps as well as the reaction pathways in the break-up of this peculiar C60 intermolecular bonding architecture.

  19. Crystal structure, detonation performance, and thermal stability of a new polynitro cage compound: 2, 4, 6, 8, 10, 12, 13, 14, 15-nonanitro-2, 4, 6, 8, 10, 12, 13, 14, 15-nonaazaheptacyclo [5.5.1.1(3, 11).1 (5, 9)] pentadecane.

    PubMed

    Zhang, Jian-ying; Du, Hong-chen; Wang, Fang; Gong, Xue-dong; Ying, San-jiu

    2012-06-01

    A new polynitro cage compound 2, 4, 6, 8, 10, 12, 13, 14, 15-nonanitro-2, 4, 6, 8, 10, 12, 13, 14, 15-nonaazaheptcyclo [5.5.1.1(3,11).1(5,9)] pentadecane (NNNAHP) was designed in the present work. Its molecular structure was optimized at the B3LYP/6-31 G(d,p) level of density functional theory (DFT) and crystal structure was predicted using the Compass and Dreiding force fields and refined by DFT GGA-RPBE method. The obtained crystal structure of NNNAHP belongs to the P-1 space group and the lattice parameters are a = 9.99 Å, b = 10.78 Å, c = 9.99 Å, α = 90.01°, β = 120.01°, γ = 90.00°, and Z = 2, respectively. Based on the optimized crystal structure, the band gap, density of state, thermodynamic properties, infrared spectrum, strain energy, detonation characteristics, and thermal stability were predicted. Calculation results show that NNNAHP has detonation properties close to those of CL-20 and is a high energy density compound with moderate stability.

  20. Structural and Biochemical Consequences of Disease-Causing Mutations in the Ankyrin Repeat Domain of the Human TRPV4 Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inada, Hitoshi; Procko, Erik; Sotomayor, Marcos

    2012-10-23

    The TRPV4 calcium-permeable cation channel plays important physiological roles in osmosensation, mechanosensation, cell barrier formation, and bone homeostasis. Recent studies reported that mutations in TRPV4, including some in its ankyrin repeat domain (ARD), are associated with human inherited diseases, including neuropathies and skeletal dysplasias, probably because of the increased constitutive activity of the channel. TRPV4 activity is regulated by the binding of calmodulin and small molecules such as ATP to the ARD at its cytoplasmic N-terminus. We determined structures of ATP-free and -bound forms of human TRPV4-ARD and compared them with available TRPV-ARD structures. The third inter-repeat loop region (Fingermore » 3 loop) is flexible and may act as a switch to regulate channel activity. Comparisons of TRPV-ARD structures also suggest an evolutionary link between ARD structure and ATP binding ability. Thermal stability analyses and molecular dynamics simulations suggest that ATP increases stability in TRPV-ARDs that can bind ATP. Biochemical analyses of a large panel of TRPV4-ARD mutations associated with human inherited diseases showed that some impaired thermal stability while others weakened ATP binding ability, suggesting molecular mechanisms for the diseases.« less

  1. Effect of thermal behavior of β-lactoglobulin on the oxidative stability of menhaden oil-in-water emulsions.

    PubMed

    Phoon, Pui Yeu; Narsimhan, Ganesan; San Martin-Gonzalez, Maria Fernanda

    2013-02-27

    This study reports how emulsion oxidative stability was affected by the interfacial structure of β-lactoglobulin due to different heat treatments. Four percent (v/v) menhaden oil-in-water emulsions, stabilized by 1% (w/v) β-lactoglobulin at pH 7, were prepared by homogenization under different thermal conditions. Oxidative stability was monitored by the ferric thiocyanate peroxide value assay. Higher oxidative stability was attained by β-lactoglobulin in the molten globule state than in the native or denatured state. From atomic force microscopy of β-lactoglobulin adsorbed onto highly ordered pyrolytic graphite in buffer, native β-lactoglobulin formed a relatively smooth interfacial layer of 1.2 GPa in Young's modulus, whereas additional aggregates of similar stiffness were found when β-lactoglobulin was preheated to the molten globule state. For denatured β-lactoglobulin, although aggregates were also observed, they were larger and softer (Young's modulus = 0.45 GPa), suggesting increased porosity and thus an offset in the advantage of increased layer coverage on oxidative stability.

  2. Conductive buffer layers and overlayers for the thermal stability of coated conductors

    NASA Astrophysics Data System (ADS)

    Cantoni, C.; Aytug, T.; Verebelyi, D. T.; Paranthaman, M.; Specht, E. D.; Norton, D. P.; Christen, D. K.

    2001-03-01

    We analyze fundamental issues related to the thermal and electrical stability of a coated conductor during its operation. We address the role of conductive buffer layers in the stability of Ni-based coated conductors, and the effect of a metallic cap layer on the electrical properties of Ni alloy-based superconducting tapes. For the first case we report on the fabrication of a fully conductive RABiTS architecture formed of bilayers of conductive oxides SrRuO3 and LaNiO3 on textured Ni tapes. For the second case we discuss measurements of current-voltage relations on Ag/YBa2Cu3O7-d and Cu/Ag/ YBa2Cu3O7-d prototype multilayers on insulating substrates. Limitations on the overall tape structure and properties that are posed by the stability requirement are presented.

  3. Impact of deglycosylation and thermal stress on conformational stability of a full length murine IgG2a monoclonal antibody: observations from molecular dynamics simulations.

    PubMed

    Wang, Xiaoling; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K

    2013-03-01

    With the rise of antibody based therapeutics as successful medicines, there is an emerging need to understand the fundamental antibody conformational dynamics and its implications towards stability of these medicines. Both deglycosylation and thermal stress have been shown to cause conformational destabilization and aggregation in monoclonal antibodies. Here, we study instabilities caused by deglycosylation and by elevated temperature (400 K) by performing molecular dynamic simulations on a full length murine IgG2a mAb whose crystal structure is available in the Protein Data bank. C(α)-atom root mean square deviation and backbone root mean square fluctuation calculations show that deglycosylation perturbs quaternary and tertiary structures in the C(H) 2 domains. In contrast, thermal stress pervades throughout the antibody structure and both Fabs and Fc regions are destabilized. The thermal stress applied in this study was not sufficient to cause large scale unfolding within the simulation time and most amino acid residues showed similar average solvent accessible surface area and secondary structural conformations in all trajectories. C(H) 3 domains were the most successful at resisting the conformational destabilization. The simulations helped identify aggregation prone regions, which may initiate cross-β motif formation upon deglycosylation and upon applying thermal stress. Deglycosylation leads to increased backbone fluctuations and solvent exposure of a highly conserved APR located in the edge β-strand A of the C(H) 2 domains. Aggregation upon thermal stress is most likely initiated by two APRs that overlap with the complementarity determining regions. This study has important implications for rational design of antibody based therapeutics that are resistant towards aggregation. Copyright © 2012 Wiley Periodicals, Inc.

  4. Highly Adsorptive, MOF-Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition

    DTIC Science & Technology

    2014-03-20

    ligands, [ 3 ] exhibit high surface area, good thermal stability, and have signifi cant synthetic versatility, ena- bling structures with tunable pore...sizes and adjustable internal functionality. [ 4 ] MOF synthesis usually follows wet solvo- thermal batch methods, producing pow- ders that require...surface areas—limiting applicability. For example, Kuesgens et al. grew HKUST-1 crystals on pulp fibers using direct solvo- thermal synthesis and found

  5. Target for production of X-rays

    NASA Astrophysics Data System (ADS)

    Korenev, S. A.

    2004-09-01

    The patented new type of X-ray target is considered in this report. The main concept of the target consists in developing a sandwich structure depositing a coating of materials with high Z on the substrate with low Z, high thermal conductivity and high thermal stability. The target presents multiple layers system. The thermal conditions for X-ray target are discussed. The experimental results for Ta target on the Al and Cu substrates are presented.

  6. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, Czesława; Ślósarczyk, Anna; Pijocha, Dawid; Sitarz, Maciej; Bućko, Mirosław; Zima, Aneta; Chróścicka, Anna; Lewandowska-Szumieł, Małgorzata

    2010-07-01

    Hydroxyapatite (HA) - Ca 10(PO 4) 6(OH) 2 is a basic inorganic model component of hard biological tissues, such as bones and teeth. The significant property of HA is its ability to exchange Ca 2+ ions, which influences crystallinity, physico-chemical and biological properties of modified hydroxyapatite materials. In this work, FTIR, Raman spectroscopy, XRD, SEM and EDS techniques were used to determine thermal stability, chemical and phase composition of Mn containing hydroxyapatite (MnHA). Described methods confirmed thermal decomposition and phase transformation of MnHA to αTCP, βTCP and formation of Mn 3O 4 depending on sintering temperature and manganese content. In vitro biological evaluation of Mn-modified HA ceramics was also performed using human osteoblast cells.

  7. Effect of amino acid dopants on the spectral, optical, mechanical and thermal properties of potassium acid phthalate crystals for possible optoelectronic and frequency doubling applications

    NASA Astrophysics Data System (ADS)

    Prakash, J. Thomas Joseph; Gnanaraj, J. Martin Sam; Dhavud, S. Shek; Ekadevasena, S.

    2015-09-01

    Undoped and amino acid (L-Arginine and L-Valine) doped KAP crystals were grown by slow evaporation solution growth technique. The changes in the structural, spectral, optical, mechanical and thermal properties were observed. The sharp prominent peaks in the indexed powder XRD pattern confirms the crystalline nature of the sample. Optical studies reveal that the crystal is transparent in the entire visible light region. Thermal stability was checked by TG/DTA analysis. The mechanical stability was evaluated from Vicker's microhardness test. The SHG efficiency for the title materials was tested with different particle sizes by the Kurtz and Perry powder method, which established the existence of phase matching.

  8. Calcium Binding and Disulfide Bonds Regulate the Stability of Secretagogin towards Thermal and Urea Denaturation

    PubMed Central

    Weiffert, Tanja; Ní Mhurchú, Niamh; O’Connell, David; Linse, Sara

    2016-01-01

    Secretagogin is a calcium-sensor protein with six EF-hands. It is widely expressed in neurons and neuro-endocrine cells of a broad range of vertebrates including mammals, fishes and amphibia. The protein plays a role in secretion and interacts with several vesicle-associated proteins. In this work, we have studied the contribution of calcium binding and disulfide-bond formation to the stability of the secretagogin structure towards thermal and urea denaturation. SDS-PAGE analysis of secretagogin in reducing and non-reducing conditions identified a tendency of the protein to form dimers in a redox-dependent manner. The denaturation of apo and Calcium-loaded secretagogin was studied by circular dichroism and fluorescence spectroscopy under conditions favoring monomer or dimer or a 1:1 monomer: dimer ratio. This analysis reveals significantly higher stability towards urea denaturation of Calcium-loaded secretagogin compared to the apo protein. The secondary and tertiary structure of the Calcium-loaded form is not completely denatured in the presence of 10 M urea. Reduced and Calcium-loaded secretagogin is found to refold reversibly after heating to 95°C, while both oxidized and reduced apo secretagogin is irreversibly denatured at this temperature. Thus, calcium binding greatly stabilizes the structure of secretagogin towards chemical and heat denaturation. PMID:27812162

  9. Minimum mass design of large-scale space trusses subjected to thermal gradients

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Agnes, Gregory S.

    2006-01-01

    Lightweight, deployable trusses are commonly used to support space-borne instruments including RF reflectors, radar panels, and telescope optics. While in orbit, these support structures are subjected to thermal gradients that vary with altitude, location in orbit, and self-shadowing. Since these instruments have tight dimensional-stability requirements, their truss members are often covered with multi-layer insulation (MLI) blankets to minimize thermal distortions. This paper develops a radiation heat transfer model to predict the thermal gradient experienced by a triangular truss supporting a long, linear radar panel in Medium Earth Orbit (MEO). The influence of self-shadowing effects of the radar panel are included in the analysis, and the influence of both MLI thickness and outer covers/coatings on the magnitude of the thermal gradient are formed into a simple, two-dimensional analysis. This thermal model is then used to size and estimate the structural mass of a triangular truss that meets a given set of structural requirements.

  10. Unexpected Effects of K+ and Adenosine Triphosphate on the Thermal Stability of Na+,K+-ATPase.

    PubMed

    Placenti, M Agueda; Kaufman, Sergio B; González Flecha, F Luis; González Lebrero, Rodolfo M

    2017-05-18

    Na + ,K + -ATPase is an integral membrane protein which couples ATP hydrolysis to the transport of three Na + out and two K + into the cell. The aim of this work is to characterize the effect of K + , ATP, and Mg 2+ (essential activator) on the Na + ,K + -ATPase thermal stability. Under all conditions tested, thermal inactivation of the enzyme is concomitant with a structural change involving the ATP binding site and membrane-associated regions. Both ligands exert a clear stabilizing effect due to both enthalpic and entropic contributions. Competition experiments between ATP and K + showed that, when ATP is present, the inactivation rate coefficient exhibits a biphasic dependence on K + concentration. At low [K + ], destabilization of the enzyme is observed, while stabilization occurred at larger cation concentrations. This is not expected for a simple competition between the enzyme and two ligands that individually protect the enzyme. A model that includes enzyme species with none, one, or two K + and/or one molecule of ATP bound explains the experimental data. We concluded that, despite both ligands stabilizing the enzyme, the species with one K + and one ATP simultaneously bound is unstable.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yan; Cai, Lu; Liu, Zengcai

    Our letter reports the correlation of anisotropy and directional conduction in the fast Li + conductor β-Li 3PS 4, one of the low-symmetry crystalline electrolyte candidates. The material has both high conductivity and good stability that serves well for the large-scale energy storage applications of all-solid-state lithium ion batteries. The anisotropic physical properties, demonstrated here by the thermal expansion coefficients, are crucial for compatibility in the solid-state system and battery performance. Neutron and X-ray powder diffraction measurements were done to determine the crystal structure and thermal stability. Moreover, the crystallographic b-axis was revealed as a fast expansion direction, while negligiblemore » thermal expansion was observed along the a-axis around the battery operating temperatures. The anisotropic behavior has its structural origin from the Li + conduction channels with incomplete Li occupancy and a flexible connection of LiS 4 and PS 4 tetrahedra within the framework. This indicates a strong correlation in the direction of the ionic transport in the low-symmetry Li + conductor.« less

  12. Effects of gliadin addition on the rheological, microscopic and thermal characteristics of wheat gluten.

    PubMed

    Khatkar, B S; Barak, Sheweta; Mudgil, Deepak

    2013-02-01

    In the present study, micro-structural, thermal and rheological changes in the gluten network upon addition of gliadins at 5% and 10% levels were investigated using scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic rheometry. The addition of gliadins decreased the peak dough height inferring decrease in dough strength. The dough stability also decreased from 3.20 to 1.40 min upon addition of 10% gliadin to the base flour. The TGA profile and the glass transition behavior of the control gluten and gluten obtained from dough with gliadin added at 5% and 10% levels showed decrease in thermal stability. The SEM micrograph of the control gluten showed foam like protein matrix. As the gliadin percentage in the gluten was increased, the compactness of the gluten structure reduced considerably leading to the formation of a more open weak gluten network. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Thermally Stable and Electrically Conductive, Vertically Aligned Carbon Nanotube/Silicon Infiltrated Composite Structures for High-Temperature Electrodes.

    PubMed

    Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng

    2017-10-25

    Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm -1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.

  14. Delipidation of Cytochrome c Oxidase from Rhodobacter sphaeroides Destabilizes its Quaternary Structure

    PubMed Central

    Musatov, Andrej; Varhač, Rastislav; Hosler, Jonathan P.; Sedlák, Erik

    2016-01-01

    Delipidation of detergent-solubilized cytochrome c oxidase isolated from Rhodobacter sphaeroides (Rbs-CcO) has no apparent structural and/or functional effect on the protein, however affects its resistance against thermal or chemical denaturation. Phospholipase A2 (PLA2) hydrolysis of phospholipids that are co-purified with the enzyme removes all but two tightly bound phosphatidylethanolamines. Replacement of the removed phospholipids with nonionic detergent decreases both thermal stability of the enzyme and its resilience against the effect of chemical denaturants such as urea. In contrast to nondelipidated Rbs-CcO, the enzymatic activity of PLA2-treated Rbs-CcO is substantially diminished after exposure to high (>4M) urea concentration at room temperature without an alteration of its secondary structure. Absorbance spectroscopy and sedimentation velocity experiments revealed a strong correlation between intact tertiary structure of heme regions and quaternary structure, respectively, and the enzymatic activity of the protein. We concluded that phospholipid environment of Rbs-CcO has the protective role for stability of its tertiary and quaternary structures. PMID:26923069

  15. Determination of Physical and Chemical Structure of New High-Temperature Polymers

    DTIC Science & Technology

    toward determination of the molecular weight of both perfluorosebacate and perfluoroalkyl ether-linked polymers. In addition, solubility, thermal...thermal properties, and molecular weight. Several samples of the perfluoroalkyl bibenzoxazole polymers were examined. Considerable effort was directed...stability and subambient DTA of the perfluoroalkyl ether- linked polymers (elastomers) were investigated. Samples of the aromatic heterocyclic-ladder type

  16. Thermal Response Analysis of Phospholipid Bilayers Using Ellipsometric Techniques.

    PubMed

    González-Henríquez, Carmen M; Villegas-Opazo, Vanessa A; Sagredo-Oyarce, Dallits H; Sarabia-Vallejos, Mauricio A; Terraza, Claudio A

    2017-08-18

    Biomimetic planar artificial membranes have been widely studied due to their multiple applications in several research fields. Their humectation and thermal response are crucial for reaching stability; these characteristics are related to the molecular organization inside the bilayer, which is affected by the aliphatic chain length, saturations, and molecule polarity, among others. Bilayer stability becomes a fundamental factor when technological devices are developed-like biosensors-based on those systems. Thermal studies were performed for different types of phosphatidylcholine (PC) molecules: two pure PC bilayers and four binary PC mixtures. These analyses were carried out through the detection of slight changes in their optical and structural parameters via Ellipsometry and Surface Plasmon Resonance (SPR) techniques. Phospholipid bilayers were prepared by Langmuir-Blodgett technique and deposited over a hydrophilic silicon wafer. Their molecular inclination degree, mobility, and stability of the different phases were detected and analyzed through bilayer thickness changes and their optical phase-amplitude response. Results show that certain binary lipid mixtures-with differences in its aliphatic chain length-present a co-existence of two thermal responses due to non-ideal mixing.

  17. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site.

    PubMed

    Truongvan, Ngoc; Chung, Hye-Shin; Jang, Sei-Heon; Lee, ChangWoo

    2016-03-01

    An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr(182) in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr(182) was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr(182) significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures.

  18. Thermal stability and electrochemical properties of PVP-protected Ru nanoparticles synthesized at room temperature

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Devi, Pooja; Shivling, V. D.

    2017-08-01

    Stable ruthenium nanoparticles (RuNPs) have been synthesized by the chemical reduction of ruthenium trichloride trihydrate (RuCl3 · 3H2O) using sodium borohydride (NaBH4) as a reductant and polyvinylpyrrolidone (PVP) as a protecting agent in the aqueous medium at room temperature. The nanoparticles thus prepared were characterized by their morphology and structural analysis from transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis spectroscopy, Fourier transformation infrared and thermogravimetric analysis (TGA) techniques. The TEM image suggested a homogeneous distribution of PVP-protected RuNPs having a small average diameter of 2-4 nm with a chain-like network structure. The XRD pattern also confirmed that a crystallite size is around 2 nm of PVP-protected RuNPs having a single broad peak. The thermal stability studied using TGA, indicated good stability and the electrochemical properties of these nanoparticles revealed that saturation current increases for PVP-protected RuNPs/GC.

  19. SiC-Based Composite Materials Obtained by Siliconizing Carbon Matrices

    NASA Astrophysics Data System (ADS)

    Shikunov, S. L.; Kurlov, V. N.

    2017-12-01

    We have developed a method for fabrication of parts of complicated configuration from composite materials based on SiC ceramics, which employs the interaction of silicon melt with the carbon matrix having a certain composition and porosity. For elevating the operating temperatures of ceramic components, we have developed a method for depositing protective silicon-carbide coatings that is based on the interaction of the silicon melt and vapor with carbon obtained during thermal splitting of hydrocarbon molecules. The new structural ceramics are characterized by higher operating temperatures; chemical stability; mechanical strength; thermal shock, wear and radiation resistance; and parameters stability.

  20. Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine.

    PubMed

    Tang, Y; Ghirlanda, G; Vaidehi, N; Kua, J; Mainz, D T; Goddard III, W A; DeGrado, W F; Tirrell, D A

    2001-03-06

    Substitution of leucine residues by 5,5,5-trifluoroleucine at the d-positions of the leucine zipper peptide GCN4-p1d increases the thermal stability of the coiled-coil structure. The midpoint thermal unfolding temperature of the fluorinated peptide is elevated by 13 degrees C at 30 microM peptide concentration. The modified peptide is more resistant to chaotropic denaturants, and the free energy of folding of the fluorinated peptide is 0.5-1.2 kcal/mol larger than that of the hydrogenated form. A similarly fluorinated form of the DNA-binding peptide GCN4-bZip binds to target DNA sequences with affinity and specificity identical to those of the hydrogenated form, while demonstrating enhanced thermal stability. Molecular dynamics simulation on the fluorinated GCN4-p1d peptide using the Surface Generalized Born implicit solvation model revealed that the coiled-coil binding energy is 55% more favorable upon fluorination. These results suggest that fluorination of hydrophobic substructures in peptides and proteins may provide new means of increasing protein stability, enhancing protein assembly, and strengthening receptor-ligand interactions.

  1. Engineering an improved IgG4 molecule with reduced disulfide bond heterogeneity and increased Fab domain thermal stability.

    PubMed

    Peters, Shirley J; Smales, C Mark; Henry, Alistair J; Stephens, Paul E; West, Shauna; Humphreys, David P

    2012-07-13

    The integrity of antibody structure, stability, and biophysical characterization are becoming increasingly important as antibodies receive increasing scrutiny from regulatory authorities. We altered the disulfide bond arrangement of an IgG4 molecule by mutation of the Cys at the N terminus of the heavy chain constant domain 1 (C(H)1) (Kabat position 127) to a Ser and introduction of a Cys at a variety of positions (positions 227-230) at the C terminus of C(H)1. An inter-LC-C(H)1 disulfide bond is thus formed, which mimics the disulfide bond arrangement found in an IgG1 molecule. The antibody species present in the supernatant following transient expression in Chinese hamster ovary cells were analyzed by immunoblot to investigate product homogeneity, and purified product was analyzed by a thermofluor assay to determine thermal stability. We show that the light chain can form an inter-LC-C(H)1 disulfide bond with a Cys when present at several positions on the upper hinge (positions 227-230) and that such engineered disulfide bonds can consequently increase the Fab domain thermal stability between 3 and 6.8 °C. The IgG4 disulfide mutants displaying the greatest increase in Fab thermal stability were also the most homogeneous in terms of disulfide bond arrangement and antibody species present. Importantly, mutations did not affect the affinity for antigen of the resultant molecules. In combination with the previously described S241P mutation, we present an IgG4 molecule with increased Fab thermal stability and reduced product heterogeneity that potentially offers advantages for the production of IgG4 molecules.

  2. Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres.

    PubMed

    Leib, Elisabeth W; Vainio, Ulla; Pasquarelli, Robert M; Kus, Jonas; Czaschke, Christian; Walter, Nils; Janssen, Rolf; Müller, Martin; Schreyer, Andreas; Weller, Horst; Vossmeyer, Tobias

    2015-06-15

    Zirconia microparticles produced by sol-gel synthesis have great potential for photonic applications. To this end, identifying synthetic methods that yield reproducible control over size uniformity is important. Phase transformations during thermal cycling can disintegrate the particles. Therefore, understanding the parameters driving these transformations is essential for enabling high-temperature applications. Particle morphology is expected to influence particle processability and stability. Yttria-doping should improve the thermal stability of the particles, as it does in bulk zirconia. Zirconia and YSZ particles were synthesized by improved sol-gel approaches using fatty acid stabilizers. The particles were heated to 1500 °C, and structural and morphological changes were monitored by SEM, ex situ XRD and high-energy in situ XRD. Zirconia particles (0.4-4.3 μm in diameter, 5-10% standard deviation) synthesized according to the modified sol-gel approaches yielded significantly improved monodispersities. As-synthesized amorphous particles transformed to the tetragonal phase at ∼450 °C with a volume decrease of up to ∼75% and then to monoclinic after heating from ∼650 to 850 °C. Submicron particles disintegrated at ∼850 °C and microparticles at ∼1200 °C due to grain growth. In situ XRD revealed that the transition from the amorphous to tetragonal phase was accompanied by relief in microstrain and the transition from tetragonal to monoclinic was correlated with the tetragonal grain size. Early crystallization and smaller initial grain sizes, which depend on the precursors used for particle synthesis, coincided with higher stability. Yttria-doping reduced grain growth, stabilized the tetragonal phase, and significantly improved the thermal stability of the particles. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Framework Stabilization of Si-Rich LTA Zeolite Prepared in Organic-Free Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conato, Marlon T.; Oleksiak, Matthew D.; McGrail, B. Peter

    2014-10-16

    Zeolite HOU-2 (LTA type) is prepared with the highest silica content (Si/Al = 2.1) reported for Na-LTA zeolites without the use of an organic structure-directing agent. The rational design of Si-rich zeolites has the potential to improve their thermal stability for applications in catalysis, gas storage, and selective separations.

  4. Preparation and thermal stability of the spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} core–shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xin; Niu, Yongan; Li, Yang

    2014-03-15

    The spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} core–shell nanoparticles (NPs) are prepared via hydrothermal synthesis and modified Stöber method. During these processes, shell thicknesses could be easily adjusted by the amount of tetraethylorthosilicate (TEOS), and the formation of core-free SiO{sub 2} could be effectively avoided. The structures and compositions of α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are investigated by transmission electron microscope (TEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV–vis) absorption spectroscopy. These results reveal that the α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs with certain sizes are monodisperse and homogeneous. To estimate the thermal stability, the α-Fe{sub 2}O{submore » 3}, α-Fe{sub 2}O{sub 3}@SiO{sub 2} and SiO{sub 2} NPs are annealed at 600, 800 and 1000 °C for 1 h under air atmosphere, respectively. Furthermore, the stabilities of these NPs are confirmed by thermal analysis methods. The structure and shape stabilities of these as-prepared α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are investigated by XRD and scanning electron microscope (SEM). -- Graphical abstract: Schematic of preparation of the monodisperse spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} nanoparticles (NPs). Highlights: • The spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} nanoparticles (NPs) are successfully prepared by hydrothermal synthesis and modified Stöber method. • Optical properties are estimated and calculated by UV vis absorption spectrum. • Thermal stability of the α-Fe{sub 2}O{sub 3}, α-Fe{sub 2}O{sub 3}@SiO{sub 2} and SiO{sub 2} NPs are compared and analyzed by the SEM technique. • The structural changes of α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are measured by XRD measurement.« less

  5. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    NASA Astrophysics Data System (ADS)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  6. Mossbauer spectroscopic studies in ferroboron

    NASA Astrophysics Data System (ADS)

    Yadav, Ravi Kumar; Govindaraj, R.; Amarendra, G.

    2017-05-01

    Mossbauer spectroscopic studies have been carried out in a detailed manner on ferroboron in order to understand the local structure and magnetic properties of the system. Evolution of the local structure and magnetic properties of the amorphous and crystalline phases and their thermal stability have been addressed in a detailed manner in this study. Role of bonding between Fe 4s and/or 4p electrons with valence electrons of boron (2s,2p) in influencing the stability and magnetic properties of Fe-B system is elucidated.

  7. Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43).

    PubMed

    Prakash, Amresh; Kumar, Vijay; Meena, Naveen Kumar; Hassan, Md Imtaiyaz; Lynn, Andrew M

    2018-01-10

    TAR DNA-binding protein 43 (TDP-43) inclusions have been found in Amyotrophic lateral sclerosis (ALS) and several other neurodegenerative diseases. Many studies suggest the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy. To elucidate the structural stability and the unfolding dynamics of RRMs, we have carried out atomistic molecular dynamics simulations at two different temperatures (300 and 500 K). The simulations results indicate that there are distinct structural differences in the unfolding pathway between the two domains and RRM1 unfolds faster than RRM2 in accordance with the lower thermal stability found experimentally. The unfolding behaviors of secondary structures showed that the α-helix was more stable than β-sheet and structural rearrangements of β-sheets results in formation of additional α-helices. At higher temperature, RRM1 exhibit increased overall flexibility and unfolding than RRM2. The temperature-dependent free energy landscapes consist of multiple metastable states stabilized by non-native contacts and hydrogen bonds in RRM2, thus rendering the RRM2 more prone to misfolding. The structural rearrangements of RRM2 could lead to aberrant protein-protein interactions that may account for enhanced aggregation and toxicity of TDP-43. Our analysis, thus identify the structural and thermodynamic characteristics of the RRMs of TDP-43, which will serve to uncover molecular mechanisms and driving forces in TDP-43 misfolding and aggregation.

  8. Lattice stability and thermal properties of Fe2VAl and Fe2TiSn Heusler compounds

    NASA Astrophysics Data System (ADS)

    Shastri, Shivprasad S.; Pandey, Sudhir K.

    2018-04-01

    Fe2VAl and Fe2TiSn are two full-Heusler compounds with non-magnetic ground states. They have application as potential thermoelectric materials. Along with first-principles electronic structure calculations, phonon calculation is one of the important tools in condensed matter physics and material science. Phonon calculations are important in understanding mechanical properties, thermal properties and phase transitions of periodic solids. A combination of electronic structure code and phonon calculation code - phonopy is employed in this work. The vibrational spectra, phonon DOS and thermal properties are studied for these two Heusler compounds. Two compounds are found to be dynamically stable with absence of negative frequencies (energy) in the phonon band structure.

  9. The differential emission measure of nested hot and cool magnetic loops

    NASA Technical Reports Server (NTRS)

    Van Hoven, G.; Mok, Y.

    1993-01-01

    The detailed thermal structure of the magnetized solar transition region, as measured by its differential emission measure (DEM(T)), is poorly known. Building on the fact that the solar surface is strongly magnetized and thereby structured, proposals have been made that envision a significant lower-temperature contribution to the energy balance from (ion) heat flux across an arcade of different temperature loops. In this paper, we describe a self-consistent 2D MHD simulation, which includes the full thermal effects of parallel stability and anisotropic conduction, of a nested-loop model of the thermal and magnetic structure of the transition region. We then demonstrate that the predicted DEM agrees with observations in the conceptually elusive T less than 10 exp 5 K regime.

  10. Thermal expansion in FeCrCoNiGa high-entropy alloy from theory and experiment

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Vida, Ádám; Li, Wei; Molnár, Dávid; Kyun Kwon, Se; Holmström, Erik; Varga, Béla; Károly Varga, Lajos; Vitos, Levente

    2017-06-01

    First-principle alloy theory and key experimental techniques are applied to determine the thermal expansion of FeCrCoNiGa high-entropy alloy. The magnetic transition, observed at 649 K, is accompanied by a significant increase in the thermal expansion coefficient. The phase stability is analyzed as a function of temperature via the calculated free energies accounting for the structural, magnetic, electronic, vibrational and configurational contributions. The single- and polycrystal elastic modulus for the ferro- and paramagnetic states of the face-centered and body-centered cubic phases are presented. By combining the measured and theoretically predicted temperature-dependent lattice parameters, we reveal the structural and magnetic origin of the observed anomalous thermal expansion behavior.

  11. Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity.

    PubMed

    Imani, Mehdi; Hosseinkhani, Saman; Ahmadian, Shahin; Nazari, Mahboobeh

    2010-08-01

    The thermal sensitivity and pH-sensitive spectral properties of firefly luciferase have hampered its application in a variety of fields. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make two separate mutant enzymes with a single bridge. Even though the A103C/S121C mutant showed remarkable thermal stability, its specific activity decreased, whereas the A296C/A326C mutant showed tremendous thermal stability, relative pH insensitivity and 7.3-fold increase of specific activity. Moreover, the bioluminescence emission spectrum of A296C/A326C was resistant against higher temperatures (37 degrees C). Far-UV CD analysis showed slight secondary structure changes for both mutants. Thermal denaturation analysis showed that conformational stabilities of A103C/S121C and A296C/A326C are more than native firefly luciferase. It is proposed that since A296 and A326 are situated in the vicinity of the enzyme active site microenvironment in comparison with A103 and S121, the formation of a disulfide bridge in this region has more impact on enzyme kinetic characteristics.

  12. Thermal precipitation fluorescence assay for protein stability screening.

    PubMed

    Fan, Junping; Huang, Bo; Wang, Xianping; Zhang, Xuejun C

    2011-09-01

    A simple and reliable method of protein stability assessment is desirable for high throughput expression screening of recombinant proteins. Here we described an assay termed thermal precipitation fluorescence (TPF) which can be used to compare thermal stabilities of recombinant protein samples directly from cell lysate supernatants. In this assay, target membrane proteins are expressed as recombinant fusions with a green fluorescence protein tag and solubilized with detergent, and the fluorescence signals are used to report the quantity of the fusion proteins in the soluble fraction of the cell lysate. After applying a heat shock, insoluble protein aggregates are removed by centrifugation. Subsequently, the amount of remaining protein in the supernatant is quantified by in-gel fluorescence analysis and compared to samples without a heat shock treatment. Over 60 recombinant membrane proteins from Escherichia coli were subject to this screening in the presence and absence of a few commonly used detergents, and the results were analyzed. Because no sophisticated protein purification is required, this TPF technique is suitable to high throughput expression screening of recombinant membrane proteins as well as soluble ones and can be used to prioritize target proteins based on their thermal stabilities for subsequent large scale expression and structural studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification.

    PubMed

    Hu, Weixiong; Liu, Xiaoyun; Li, Yufeng; Liu, Daling; Kuang, Zhihe; Qian, Chuiwen; Yao, Dongsheng

    2017-02-01

    β-Mannanase has been widely used in industries such as food and feed processing and thus has been a target enzyme for biotechnological development. In this study, we sought to improve the stability and protease resistance of a recombinant β-mannanase, MAN47 from Armillariella tabescens, through rationally designed N-glycosylation. Based on homology modeling, molecular docking, secondary structure analysis and glycosylation feasibility analysis, an enhanced aromatic sequon sequence was introduced into specific MAN47 loop regions to facilitate N-glycosylation. The mutant enzymes were expressed in Pichia pastoris SMD1168, and their thermal stability, pH stability, trypsin resistance and pepsin resistance were determined. Two mutant MAN47 enzymes, g-123 and g-347, were glycosylated as expected when expressed in yeast, and their thermal stability, pH stability, and protease resistance were significantly improved compared to the wild-type enzyme. An enzyme with multiple stability characterizations has broad prospects in practical applications, and the rational design N-glycosylation strategy may have applications in simultaneously improving several properties of other biotechnological targets. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Thermal stability and adhesion of low-emissivity electroplated Au coatings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorenby, Jeff W.; Hachman, John T., Jr.; Yang, Nancy Y. C.

    We are developing a low-emissivity thermal management coating system to minimize radiative heat losses under a high-vacuum environment. Good adhesion, low outgassing, and good thermal stability of the coating material are essential elements for a long-life, reliable thermal management device. The system of electroplated Au coating on the adhesion-enhancing Wood's Ni strike and 304L substrate was selected due to its low emissivity and low surface chemical reactivity. The physical and chemical properties, interface bonding, thermal aging, and compatibility of the above Au/Ni/304L system were examined extensively. The study shows that the as-plated electroplated Au and Ni samples contain submicron columnarmore » grains, stringers of nanopores, and/or H{sub 2} gas bubbles, as expected. The grain structure of Au and Ni are thermally stable up to 250 C for 63 days. The interface bonding is strong, which can be attributed to good mechanical locking among the Au, the 304L, and the porous Ni strike. However, thermal instability of the nanopore structure (i.e., pore coalescence and coarsening due to vacancy and/or entrapped gaseous phase diffusion) and Ni diffusion were observed. In addition, the study also found that prebaking 304L in the furnace at {ge} 1 x 10{sup -4} Torr promotes surface Cr-oxides on the 304L surface, which reduces the effectiveness of the intended H-removal. The extent of the pore coalescence and coarsening and their effect on the long-term system integrity and outgassing are yet to be understood. Mitigating system outgassing and improving Au adhesion require a further understanding of the process-structure-system performance relationships within the electroplated Au/Ni/304L system.« less

  15. Synthesis, vibrational spectrometry and thermal characterizations of coordination polymers derived from divalent metal ions and hydroxyl terminated polyurethane as ligand

    NASA Astrophysics Data System (ADS)

    Laxmi; Khan, Shabnam; Kareem, Abdul; Zafar, Fahmina; Nishat, Nahid

    2018-01-01

    A series of novel coordination polyurethanes [HTPU-M, where M = Mn(II) 'd5', Ni(II) 'd8', and Zn(II) 'd10'] have been synthesized to investigate the effect of divalent metal ions coordination on structure, thermal and adsorption properties of low molecular weight hydroxyl terminated polyurethane (HTPU). HTPU-M have been synthesized in situ where, sbnd OH group of HTPU (synthesized by the condensation polymerization reaction of ethylene glycol (EG) and toluene diisocyanate (TDI) in presence of catalyst) on condensation polymerization with metal acetate in presence of acid catalyst synthesized HTPU-M followed by coordination of metal ions with hetero atoms. The structure, composition and geometry of HTPU-M have been confirmed by vibrational spectrometry (FTIR), 1H NMR, elemental analysis and UV-Visible spectroscopy. Morphological structures of HTPU-M were analyzed by X-Ray Diffraction analysis (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray spectroscopy (EDX) and High Resolution Transmission Electron Microscope (HR-TEM) techniques. The thermal degradation pattern and thermal stability of HTPU-M in comparison to HTPU was investigated by thermal-gravimetric (TG)/differential thermal (DT), analyses along with Integral procedure decomposition temperature (IPDT) by Doyle method. The molecular weight of HTPU was determined by gel permeation chromatography (GPC). The preliminary adsorption/desorption studies of HTPU-M for Congo red (CR) was studied by batch adsorption techniques. The results indicated that HTPU-M have amorphous, layered morphology with higher number of nano-sized grooves in comparison to HTPU. Coordination of metal to HTPU plays a key role in enhancing the thermal stability [HTPU-Ni(II) > HTPU-Mn(II) > HTPU-Zn(II) > HTPU]. The HTPU-M can be utilized for industrial waste water treatment by removing environmental pollutants.

  16. Effect of lithium on thermal and structural properties of zinc vanadate tellurite glass

    NASA Astrophysics Data System (ADS)

    Rani, Sunita; Kundu, R. S.; Ahlawat, Neetu; Rani, Suman; Sangwan, Kanta Maan; Ahlawat, Navneet

    2018-04-01

    Glasses having composition 60TeO2-15V2O5-(25-x) ZnO-xLi2O where x= 0, 5, 10 mol% were prepared by standard melt quench technique. The glass transition temperature is measured by DSC technique using TA instrument and found to decrease with increase in Li2O signifies that glass formation tendency, thermal stability and compactness of glass structure decreases. The deconvolution of FTIR spectra evidenced the existence of TeO4, TeO3 and TeO6 structural units in glass network and vanadium exists as VO4 and VO5 structural units.

  17. Refractometric sensitivity and thermal stabilization of fluorescent core microcapillary sensors: theory and experiment.

    PubMed

    Lane, S; Marsiglio, F; Zhi, Y; Meldrum, A

    2015-02-20

    Fluorescent-core microcapillaries (FCMs) present a robust basis for the application of optical whispering gallery modes toward refractometric sensing. An important question concerns whether these devices can be rendered insensitive to local temperature fluctuations, which may otherwise limit their refractometric detection limits, mainly as a result of thermorefractive effects. Here, we first use a standard cylindrical cavity formalism to develop the refractometric and thermally limited detection limits for the FCM structure. We then measure the thermal response of a real device with different analytes in the channel and compare the result to the theory. Good stability against temperature fluctuations was obtained for an ethanol solvent, with a near-zero observed thermal shift for the transverse magnetic modes. Similarly good results could in principle be obtained for any other solvent (e.g., water), if the thickness of the fluorescent layer can be sufficiently well controlled.

  18. Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties.

    PubMed

    Ionita, Mariana; Pandele, Madalina Andreea; Iovu, Horia

    2013-04-15

    Sodium alginate/graphene oxide (Al/GO) nanocomposite films with different loading levels of graphene oxide were prepared by casting from a suspension of the two components. The structure, morphologies and properties of Al/GO films were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning (SEM) and transmission electron microscopy (TEM), thermal gravimetric (TG) analysis, and tensile tests. The results revealed that hydrogen bonding and high interfacial adhesion between GO filler and Al matrix significantly changed thermal stability and mechanical properties of the nanocomposite films. The tensile strength (σ) and Young's modulus (E) of Al films containing 6 wt% GO increased from 71 MPa and 0.85 GPa to 113 MPa and 4.18 GPa, respectively. In addition, TG analysis showed that the thermal stability of Al/GO composite films was better than that of neat Al film. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Structural Stability of Light-harvesting Protein LH2 Adsorbed on Mesoporous Silica Supports.

    PubMed

    Shibuya, Yuuta; Itoh, Tetsuji; Matsuura, Shun-ichi; Yamaguchi, Akira

    2015-01-01

    In the present study, we examined the reversible thermal deformation of the membrane protein light-harvesting complex LH2 adsorbed on mesoporous silica (MPS) supports. The LH2 complex from Thermochromatium tepidum cells was conjugated to MPS supports with a series of pore diameter (2.4 to 10.6 nm), and absorption spectra of the resulting LH2/MPS conjugates were observed over a temperature range of 273 - 313 K in order to examine the structure of the LH2 adsorbed on the MPS support. The experimental results confirmed that a slight ellipsoidal deformation of LH2 was induced by adsorption on the MPS supports. On the other hand, the structural stability of LH2 was not perturbed by the adsorption. Since the pore diameter of MPS support did not influence the structural stability of LH2, it could be considered that the spatial confinement of LH2 in size-matches pore did not improve the structural stability of LH2.

  20. Investigation of mRNA quadruplex formation in Escherichia coli.

    PubMed

    Wieland, Markus; Hartig, Jörg S

    2009-01-01

    The protocol presented here allows for the investigation of the formation of unusual nucleic acid structures in the 5'-untranslated region (UTR) of bacteria by correlating gene expression levels to the in vitro stability of the respective structure. In particular, we describe the introduction of G-quadruplex forming sequences close to the ribosome-binding site (RBS) on the mRNA of a reporter gene and the subsequent read-out of the expression levels. Insertion of a stable secondary structure results in the cloaking of RBS and eventually reduced gene expression levels. The structures and stability of the introduced sequences are further characterized by circular dichroism (CD) spectroscopy and thermal melting experiments. The extent of inhibition is then correlated to the stability of the respective quadruplex structure, allowing judgement of whether factors other than thermodynamic stability affect the formation of a given quadruplex sequence in vivo. Measuring gene expression levels takes 2 d including cloning; CD experiments take 5 hours per experiment.

  1. The role of plastic β-hairpin and weak hydrophobic core in the stability and unfolding of a full sequence design protein

    NASA Astrophysics Data System (ADS)

    Lei, Hongxing; Duan, Yong

    2004-12-01

    In this study, the thermal stability of a designed α/β protein FSD (full sequence design) was studied by explicit solvent simulations at three moderate temperatures, 273 K, 300 K, and 330 K. The average properties of the ten trajectories at each temperature were analyzed. The thermal unfolding, as judged by backbone root-mean-square deviation and percentage of native contacts, was displayed with increased sampling outside of the native basin as the temperature was raised. The positional fluctuation of the hairpin residues was significantly higher than that of the helix residues at all three temperatures. The hairpin segment displayed certain plasticity even at 273 K. Apart from the terminal residues, the highest fluctuation was shown in the turn residues 7-9. Secondary structure analysis manifested the structural heterogeneity of the hairpin segment. It was also revealed by the simulation that the hydrophobic core was vulnerable to thermal denaturation. Consistent with the experiment, the I7Y mutation in the double mutant FSD-EY (FSD with mutations Q1E and I7Y) dramatically increased the protein stability in the simulation, suggesting that the plasticity of the hairpin can be partially compensated by a stronger hydrophobic core. As for the unfolding pathway, the breathing of the hydrophobic core and the separation of the two secondary structure elements (α helix and β hairpin) was the initiation step of the unfolding. The loss of global contacts from the separation further destabilized the hairpin structure and also led to the unwinding of the helix.

  2. The role of plastic beta-hairpin and weak hydrophobic core in the stability and unfolding of a full sequence design protein.

    PubMed

    Lei, Hongxing; Duan, Yong

    2004-12-15

    In this study, the thermal stability of a designed alpha/beta protein FSD (full sequence design) was studied by explicit solvent simulations at three moderate temperatures, 273 K, 300 K, and 330 K. The average properties of the ten trajectories at each temperature were analyzed. The thermal unfolding, as judged by backbone root-mean-square deviation and percentage of native contacts, was displayed with increased sampling outside of the native basin as the temperature was raised. The positional fluctuation of the hairpin residues was significantly higher than that of the helix residues at all three temperatures. The hairpin segment displayed certain plasticity even at 273 K. Apart from the terminal residues, the highest fluctuation was shown in the turn residues 7-9. Secondary structure analysis manifested the structural heterogeneity of the hairpin segment. It was also revealed by the simulation that the hydrophobic core was vulnerable to thermal denaturation. Consistent with the experiment, the I7Y mutation in the double mutant FSD-EY (FSD with mutations Q1E and I7Y) dramatically increased the protein stability in the simulation, suggesting that the plasticity of the hairpin can be partially compensated by a stronger hydrophobic core. As for the unfolding pathway, the breathing of the hydrophobic core and the separation of the two secondary structure elements (alpha helix and beta hairpin) was the initiation step of the unfolding. The loss of global contacts from the separation further destabilized the hairpin structure and also led to the unwinding of the helix. (c) 2004 American Institute of Physics

  3. Structure-activity relationships on the study of β-galactosidase folding/unfolding due to interactions with immobilization additives: Triton X-100 and ethanol.

    PubMed

    Soto, Dayana; Escobar, Sindy; Guzmán, Fanny; Cárdenas, Constanza; Bernal, Claudia; Mesa, Monica

    2017-03-01

    Improving the enzyme stability is a challenge for allowing their practical application. The surfactants are stabilizing agents, however, there are still questions about their influence on enzyme properties. The structure-activity/stability relationship for β-galactosidase from Bacillus circulans is studied here by Circular Dichroism and activity measurements, as a function of temperature and pH. The tendency of preserving the β-sheet and α-helix structures at temperatures below 65°C and different pH is the result of the balance between the large- and short-range effects, respecting to the active site. This information is fundamental for explaining the structural changes of this enzyme in the presence of Triton X-100 surfactant and ethanol. The enzyme thermal stabilization in the presence of this surfactant responds to the rearrangement of the secondary structure for having optimal activity/stability. The effect of ethanol is more related with changes in the dielectric properties of the aqueous solution than with protein structural transformations. These results contribute to understand the effects of surfactant-enzyme interactions on the enzyme behavior, from the structural point of view and to rationalize the surfactant-based stabilizing strategies for β-galactosidades. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis*

    PubMed Central

    Park, Young-Guen; Jung, Min-Cheol; Song, Heesang; Jeong, Ki-Woong; Bang, Eunjung; Hwang, Geum-Sook; Kim, Yangmee

    2016-01-01

    Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3–17), helix II (residues 39–53), helix III (residues 60–64), and helix IV (residues 68–78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe45 in helix II and Phe18 in the α1α2 loop and a hydrogen bonding between Ser15 in helix I and Ile20 in the α1α2 loop, resulting in its high thermal stability. Phe45-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser58 in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains. PMID:26631734

  5. Ordered and layered structure of liquid nitromethane within a graphene bilayer: toward stabilization of energetic materials through nanoscale confinement.

    PubMed

    Liu, Yingzhe; Yu, Tao; Lai, Weipeng; Kang, Ying; Ge, Zhongxue

    2015-03-01

    The structural characteristics involving thermal stabilities of liquid nitromethane (NM)—one of the simplest energetic materials—confined within a graphene (GRA) bilayer were investigated by means of all-atom molecular dynamics simulations and density functional theory calculations. The results show that ordered and layered structures are formed at the confinement of the GRA bilayer induced by the van der Waals attractions of NM with GRA and the dipole-dipole interactions of NM, which is strongly dependent on the confinement size, i.e., the GRA bilayer distance. These unique intermolecular arrangements and preferred orientations of confined NM lead to higher stabilities than bulk NM revealed by bond dissociation energy calculations.

  6. Thermal Stability and Flammability of Styrene-Butadiene Rubber-Based (SBR) Ceramifiable Composites

    PubMed Central

    Anyszka, Rafał; Bieliński, Dariusz M.; Pędzich, Zbigniew; Rybiński, Przemysław; Imiela, Mateusz; Siciński, Mariusz; Zarzecka-Napierała, Magdalena; Gozdek, Tomasz; Rutkowski, Paweł

    2016-01-01

    Ceramifiable styrene-butadiene (SBR)-based composites containing low-softening-point-temperature glassy frit promoting ceramification, precipitated silica, one of four thermally stable refractory fillers (halloysite, calcined kaolin, mica or wollastonite) and a sulfur-based curing system were prepared. Kinetics of vulcanization and basic mechanical properties were analyzed and added as Supplementary Materials. Combustibility of the composites was measured by means of cone calorimetry. Their thermal properties were analyzed by means of thermogravimetry and specific heat capacity determination. Activation energy of thermal decomposition was calculated using the Flynn-Wall-Ozawa method. Finally, compression strength of the composites after ceramification was measured and their micromorphology was studied by scanning electron microscopy. The addition of a ceramification-facilitating system resulted in the lowering of combustibility and significant improvement of the thermal stability of the composites. Moreover, the compression strength of the mineral structure formed after ceramification is considerably high. The most promising refractory fillers for SBR-based ceramifiable composites are mica and halloysite. PMID:28773726

  7. Multifunctional cyanate ester nanocomposites reinforced by hexagonal boron nitride after noncovalent biomimetic functionalization.

    PubMed

    Wu, Hongchao; Kessler, Michael R

    2015-03-18

    Boron nitride (BN) reinforced polymer nanocomposites have attracted a growing research interest in the microelectronic industry for their uniquely thermal conductive but electrical insulating properties. To overcome the challenges in surface functionalization, in this study, hexagonal boron nitride (h-BN) nanoparticles were noncovalently modified with polydopamine in a solvent-free aqueous condition. The strong π-π interaction between the hexagonal structural BN and aromatic dopamine molecules facilitated 15 wt % polydopamine encapsulating the nanoparticles. High-performance bisphenol E cyanate ester (BECy) was incorporated by homogeneously dispersed h-BN at different loadings and functionalities to investigate their effects on thermo-mechanical, dynamic-mechanical, and dielectric properties, as well as thermal conductivity. Different theoretical and empirical models were successfully applied to predict thermal and dielectric properties of h-BN/BECy nanocomposites. Overall, the prepared h-BN/BECy nanocomposites exhibited outstanding performance in dimensional stability, dynamic-mechanical properties, and thermal conductivity, together with the controllable dielectric property and preserved thermal stability for high-temperature applications.

  8. Roles of strain and domain boundaries on the phase transition stability of VO2 thin films

    NASA Astrophysics Data System (ADS)

    Jian, Jie; Chen, Aiping; Chen, Youxing; Zhang, Xinghang; Wang, Haiyan

    2017-10-01

    The fundamental phase transition mechanism and the stability of the semiconductor-to-metal phase transition properties during multiple thermal cycles have been investigated on epitaxial vanadium dioxide (VO2) thin films via both ex situ heating and in situ heating by transmission electron microscopy (TEM). VO2 thin films were deposited on c-cut sapphire substrates by pulsed laser deposition. Ex situ studies show the broadening of transition sharpness (ΔT) and the width of thermal hysteresis (ΔH) after 60 cycles. In situ TEM heating studies reveal that during thermal cycles, large strain was accumulated around the domain boundaries, which was correlated with the phase transition induced lattice constant change and the thermal expansion. It suggests that the degradation of domain boundary structures in the VO2 films not only caused the transition property reduction (e.g., the decrease in ΔT and ΔH) but also played an important role in preventing the film from fracture during thermal cycles.

  9. Stabilization of the predominant disease-causing aldolase variant (A149P) with zwitterionic osmolytes.

    PubMed

    Stopa, Jack D; Chandani, Sushil; Tolan, Dean R

    2011-02-08

    Hereditary fructose intolerance (HFI) is a disease of carbohydrate metabolism that can result in hyperuricemia, hypoglycemia, liver and kidney failure, coma, and death. Currently, the only treatment for HFI is a strict fructose-free diet. HFI arises from aldolase B deficiency, and the most predominant HFI mutation is an alanine to proline substitution at position 149 (A149P). The resulting aldolase B with the A149P substitution (AP-aldolase) has activity that is <100-fold that of the wild type. The X-ray crystal structure of AP-aldolase at both 4 and 18 °C reveals disordered adjacent loops of the (α/β)(8) fold centered around the substitution, which leads to a dimeric structure as opposed to the wild-type tetramer. The effects of osmolytes were tested for restoration of structure and function. An initial screen of osmolytes (glycerol, sucrose, polyethylene glycol, 2,4-methylpentanediol, glutamic acid, arginine, glycine, proline, betaine, sarcosine, and trimethylamine N-oxide) reveals that glycine, along with similarly structured compounds, betaine and sarcosine, protects AP-aldolase structure and activity from thermal inactivation. The concentration and functional moieties required for thermal protection show a zwitterion requirement. The effects of osmolytes in restoring structure and function of AP-aldolase are described. Testing of zwitterionic osmolytes of increasing size and decreasing fractional polar surface area suggests that osmolyte-mediated AP-aldolase stabilization occurs neither primarily through excluded volume effects nor through transfer free energy effects. These data suggest that AP-aldolase is stabilized by binding to the native structure, and they provide a foundation for developing stabilizing compounds for potential therapeutics for HFI.

  10. Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei

    2015-12-01

    Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.

  11. Thermal stability of DNA quadruplex-duplex hybrids.

    PubMed

    Lim, Kah Wai; Khong, Zi Jian; Phan, Anh Tuân

    2014-01-14

    DNA has the capacity to adopt several distinct structural forms, such as duplex and quadruplex helices, which have been implicated in cellular processes and shown to exhibit important functional properties. Quadruplex-duplex hybrids, generated from the juxtaposition of these two structural elements, could find applications in therapeutics and nanotechnology. Here we used NMR and CD spectroscopy to investigate the thermal stability of two classes of quadruplex-duplex hybrids comprising fundamentally distinct modes of duplex and quadruplex connectivity: Construct I involves the coaxial orientation of the duplex and quadruplex helices with continual base stacking across the two components; Construct II involves the orthogonal orientation of the duplex and quadruplex helices with no base stacking between the two components. We have found that for both constructs, the stability of the quadruplex generally increases with the length of the stem-loop incorporated, with respect to quadruplexes comprising nonstructured loops of the same length, which showed a continuous drop in stability with increasing loop length. The stability of these complexes, particularly Construct I, can be substantially influenced by the base-pair steps proximal to the quadruplex-duplex junction. Bulges at the junction are largely detrimental to the adoption of the desired G-quadruplex topology for Construct I but not for Construct II. These findings should facilitate future design and prediction of quadruplex-duplex hybrids.

  12. Structure evolution and thermal stability of high-energy density Li-ion battery cathode Li 2VO 2F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoya; Huang, Yiqing; Ji, Dongsheng

    Lithium-ion batteries (LIBs) provide high-energy-density electrochemical energy storage, which plays a central role in advancing technologies ranging from portable electronics to electric vehicles (EVs). However, a demand for lighter, more compact devices and for extended range EVs continues to fuel the need for higher energy density storage systems. Li 2VO 2F, which is synthesized in its lithiated state, allows two-electron transfer per formula during the electrochemical reaction providing a high theoretical capacity of 462 mAh/g. Herein, the synthesis and electrochemical performance of Li 2VO 2F are optimized. The thermal stability of Li 2VO 2F, which is related to the safetymore » of a battery is studied by thermal gravimetric analysis. The structure and vanadium oxidation state evolution along Li cycling are studied by ex-situ X-ray diffraction and absorption techniques. It is shown that the rock-salt structure of pristine Li 2VO 2F is stable up to at least 250°C, and is preserved upon Li cycling, which proceeds by the solid-solution mechanism. However, not all Li can be removed from the structure upon charge to 4.5 V, limiting the experimentally obtained capacity.« less

  13. Structure evolution and thermal stability of high-energy density Li-ion battery cathode Li 2VO 2F

    DOE PAGES

    Wang, Xiaoya; Huang, Yiqing; Ji, Dongsheng; ...

    2017-05-24

    Lithium-ion batteries (LIBs) provide high-energy-density electrochemical energy storage, which plays a central role in advancing technologies ranging from portable electronics to electric vehicles (EVs). However, a demand for lighter, more compact devices and for extended range EVs continues to fuel the need for higher energy density storage systems. Li 2VO 2F, which is synthesized in its lithiated state, allows two-electron transfer per formula during the electrochemical reaction providing a high theoretical capacity of 462 mAh/g. Herein, the synthesis and electrochemical performance of Li 2VO 2F are optimized. The thermal stability of Li 2VO 2F, which is related to the safetymore » of a battery is studied by thermal gravimetric analysis. The structure and vanadium oxidation state evolution along Li cycling are studied by ex-situ X-ray diffraction and absorption techniques. It is shown that the rock-salt structure of pristine Li 2VO 2F is stable up to at least 250°C, and is preserved upon Li cycling, which proceeds by the solid-solution mechanism. However, not all Li can be removed from the structure upon charge to 4.5 V, limiting the experimentally obtained capacity.« less

  14. Wholly aromatic liquid crystalline polyetherimide (LC-PEI) resins

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); Dingemans, Theodorus J. (Inventor); St. Clair, Terry L. (Inventor); Hinkley, Jeffrey A. (Inventor)

    2011-01-01

    The benefits of liquid crystal polymers and polyetherimides are combined in an all-aromatic thermoplastic liquid crystalline polyetherimide. Because of the unique molecular structure, all-aromatic thermotropic liquid crystal polymers exhibit outstanding processing properties, excellent barrier properties, low solubilities and low coefficients of thermal expansion in the processing direction. These characteristics are combined with the strength, thermal, and radiation stability of polyetherimides.

  15. Utilizing environmental friendly iron as a substitution element in spinel structured cathode materials for safer high energy lithium-ion batteries

    DOE PAGES

    Hu, Enyuan; Bak, Seong -Min; Liu, Yijin; ...

    2015-12-03

    Suppressing oxygen release from lithium ion battery cathodes during heating is a critical issue for the improvement of the battery safety characteristics because oxygen can exothermically react with the flammable electrolyte and cause thermal runaway. Previous studies have shown that oxygen release can be reduced by the migration of transition metal cations from octahedral sites to tetrahedral sites during heating. Such site-preferred migration is determined by the electronic structure of cations. In addition, taking advantage of the unique electronic structure of the environmental friendly Fe, this is selected as substitution element in a high energy density material LiNi 0.5Mn 1.5Omore » 4 to improve the thermal stability. The optimized LiNi 0.33Mn 1.33Fe 0.33O 4 material shows significantly improved thermal stability compared with the unsubstituted one, demonstrated by no observed oxygen release at temperatures as high as 500°C. Due to the electrochemical contribution of Fe, the high energy density feature of LiNi 0.5Mn 1.5O 4 is well preserved.« less

  16. Engineering glycoside hydrolase stability by the introduction of zinc binding

    DOE PAGES

    Ellinghaus, Thomas L.; Pereira, Jose H.; McAndrew, Ryan P.; ...

    2018-06-27

    The development of robust enzymes, in particular cellulases, is a key step in the success of biological routes to `second-generation' biofuels. The typical sources of the enzymes used to degrade biomass include mesophilic and thermophilic organisms. The endoglucanase J30 from glycoside hydrolase family 9 was originally identified through metagenomic analyses of compost-derived bacterial consortia. These studies, which were tailored to favor growth on targeted feedstocks, have already been shown to identify cellulases with considerable thermal tolerance. The amino-acid sequence of J30 shows comparably low identity to those of previously analyzed enzymes. As an enzyme that combines a well measurable activitymore » with a relatively low optimal temperature (50°C) and a modest thermal tolerance, it offers the potential for structural optimization aimed at increased stability. Here, the crystal structure of wild-type J30 is presented along with that of a designed triple-mutant variant with improved characteristics for industrial applications. Through the introduction of a structural Zn 2+ site, the thermal tolerance was increased by more than 10°C and was paralleled by an increase in the catalytic optimum temperature by more than 5°C.« less

  17. Engineering glycoside hydrolase stability by the introduction of zinc binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellinghaus, Thomas L.; Pereira, Jose H.; McAndrew, Ryan P.

    The development of robust enzymes, in particular cellulases, is a key step in the success of biological routes to `second-generation' biofuels. The typical sources of the enzymes used to degrade biomass include mesophilic and thermophilic organisms. The endoglucanase J30 from glycoside hydrolase family 9 was originally identified through metagenomic analyses of compost-derived bacterial consortia. These studies, which were tailored to favor growth on targeted feedstocks, have already been shown to identify cellulases with considerable thermal tolerance. The amino-acid sequence of J30 shows comparably low identity to those of previously analyzed enzymes. As an enzyme that combines a well measurable activitymore » with a relatively low optimal temperature (50°C) and a modest thermal tolerance, it offers the potential for structural optimization aimed at increased stability. Here, the crystal structure of wild-type J30 is presented along with that of a designed triple-mutant variant with improved characteristics for industrial applications. Through the introduction of a structural Zn 2+ site, the thermal tolerance was increased by more than 10°C and was paralleled by an increase in the catalytic optimum temperature by more than 5°C.« less

  18. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials.

    PubMed

    Feng, Yanhui; Wei, Runzhi; Huang, Zhi; Zhang, Xinxin; Wang, Ge

    2018-03-14

    Carbon nanotubes (CNTs) filled with lauric acid (LA) as a kind of shape-stabilized phase change material were prepared and their structures and phase change properties were characterized. The results showed that the melting point and latent heat of LA confined in carbon nanotubes were lower than those of the bulk material, and both decrease as the diameters of CNTs and the filling ratios of LA decrease. Molecular dynamics (MD) simulations indicated that LA molecules form a liquid layer near pore walls and crystallize at the pore center. When the LA filling ratio was reduced to a certain value, all LA molecules were attached to the inner walls of CNTs, hindering their crystallization. A linear relationship between the melting temperature shift and structural properties was obtained based on the modified Gibbs-Thomson equation, which gives a reliable interpretation of the size effect of nanochannels in phase change materials. We also found that the thermal conductivity of the composite CNTs/LA was four times larger than that of pure LA. This study will provide insights into the design of novel composite phase change materials with better thermal properties by the selection of suitable porous materials and tailoring their pore structures.

  19. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes

    NASA Astrophysics Data System (ADS)

    Liao, Qilong; Wang, Fu; Chen, Kuiru; Pan, Sheqi; Zhu, Hanzhen; Lu, Mingwei; Qin, Jianfa

    2015-07-01

    30 wt.% simulated nuclear wastes were successfully immobilized by B2O3-doped iron phosphate base glasses. The structure and thermal stability of the prepared wasteforms were characterized by Fourier transform infrared spectroscopy and differential thermal analysis, respectively. The subtle structural variations attributed to different B2O3 doping modes have been discussed in detail. The results show that the thermal stability and glass forming tendency of the iron borophosphate glass wasteforms are faintly affected by different B2O3 doping modes. The main structural networks of iron borophosphate glass wasteforms are PO43-, P2O74-, [BO4] groups. Furthermore, for the wasteform prepared by using 10B2O3-36Fe2O3-54P2O5 as base glass, the distributions of Fe-O-P bonds, [BO4], PO43- and P2O74- groups are optimal. In general, the dissolution rate (DR) values of the studied iron borophosphate wasteforms are about 10-8 g cm-2 min-1. The obtained conclusions can offer some useful information for the disposal of high-level radioactive wastes using boron contained phosphate glasses.

  20. The Enhanced Red Emission and Improved Thermal Stability of CaAlSiN3:Eu2+ Phosphors by Using Nano-EuB6 as Raw Material

    PubMed Central

    Liu, Wen-Quan; Wu, Dan; Chang, Hugejile; Duan, Ru-Xia; Wu, Wen-Jie; Amu, Guleng; Bao, Fu-Quan; Tegus, Ojiyed

    2018-01-01

    Synthesizing phosphors with high performance is still a necessary work for phosphor-converted white light-emitting diodes (W-LEDs). In this paper, three series of CaAlSiN3:Eu2+ (denoted as CASN:Eu2+) phosphors using Eu2O3, EuN and EuB6 as raw materials respectively are fabricated by under the alloy precursor normal pressure nitridation synthesis condition. We demonstrate that CASN:Eu2+ using nano-EuB6 as raw material shows higher emission intensity than others, which is ascribed to the increment of Eu2+ ionic content entering into the crystal lattice. An improved thermal stability can also be obtained by using nano-EuB6 due to the structurally stable status, which is assigned to the partial substitution of Eu–O (Eu–N) bonds by more covalent Eu–B ones that leads to a higher structural rigidity. In addition, the W-LEDs lamp was fabricated to explore its possible application in W-LEDs based on blue LEDs. Our results indicate that using EuB6 as raw materials can provide an effective way of enhancing the red emission and improving the thermal stability of the CASN:Eu2+ red phosphor. PMID:29370148

  1. Coherency strain engineered decomposition of unstable multilayer alloys for improved thermal stability

    NASA Astrophysics Data System (ADS)

    Forsén, R.; Ghafoor, N.; Odén, M.

    2013-12-01

    A concept to improve hardness and thermal stability of unstable multilayer alloys is presented based on control of the coherency strain such that the driving force for decomposition is favorably altered. Cathodic arc evaporated cubic TiCrAlN/Ti1-xCrxN multilayer coatings are used as demonstrators. Upon annealing, the coatings undergo spinodal decomposition into nanometer-sized coherent Ti- and Al-rich cubic domains which is affected by the coherency strain. In addition, the growth of the domains is restricted by the surrounding TiCrN layer compared to a non-layered TiCrAlN coating which together results in an improved thermal stability of the cubic structure. A significant hardness increase is seen during decomposition for the case with high coherency strain while a low coherency strain results in a hardness decrease for high annealing temperatures. The metal diffusion paths during the domain coarsening are affected by strain which in turn is controlled by the Cr-content (x) in the Ti1-xCrxN layers. For x = 0 the diffusion occurs both parallel and perpendicular to the growth direction but for x > =0.9 the diffusion occurs predominantly parallel to the growth direction. Altogether this study shows a structural tool to alter and fine-tune high temperature properties of multicomponent materials.

  2. An ammonia-stabilized mixed-cation borohydride: synthesis, structure and thermal decomposition behavior.

    PubMed

    Yang, Yanjing; Liu, Yongfeng; Wu, Hui; Zhou, Wei; Gao, Mingxia; Pan, Hongge

    2014-01-07

    We demonstrate the synthesis, crystal structure and thermal decomposition behavior of a novel ammonia-stabilized mixed-cation borohydride where the NH3 groups enable the coexistence of Li and Mg cations as an "assistant". Li2Mg(BH4)4·6NH3, which is comprised of orderly arranged Mg[NH3]6(2+) ammine complexes and Li2[BH4]4(2-) complex anions, was synthesized by the mechanochemical reaction between Mg(BH4)2·6NH3 and LiBH4. This novel compound crystallizes in a tetragonal P4(3)2(1)2 (No. 96) structure with lattice parameters a = b = 10.7656(8) Å and c = 13.843(1) Å with very short dihydrogen bonds, which determine a very low onset temperature of 80 °C for hydrogen release and are also responsible for the nucleation of Li2Mg(BH4)4·3NH3 as a decomposition intermediate. Mechanistic investigations on the thermal decomposition showed that the H(δ+)-H(δ-) combination in the ammonia-stabilized mixed-cation borohydride was significantly enhanced due to the strengthened Mg-N bonds. Upon heating, 11.02 moles of H2 (equivalent to 11.1 wt%) and 3.07 moles of NH3 are evolved from one mole of Li2Mg(BH4)4·6NH3 with a three-step reaction. The insights into the formation mechanism of ammonia-stabilized mixed-cation borohydride and the role played by NH3 group are very useful as a guideline for the design and synthesis of novel B-N-based materials with high hydrogen content.

  3. Physics and evolution of thermophilic adaptation.

    PubMed

    Berezovsky, Igor N; Shakhnovich, Eugene I

    2005-09-06

    Analysis of structures and sequences of several hyperthermostable proteins from various sources reveals two major physical mechanisms of their thermostabilization. The first mechanism is "structure-based," whereby some hyperthermostable proteins are significantly more compact than their mesophilic homologues, while no particular interaction type appears to cause stabilization; rather, a sheer number of interactions is responsible for thermostability. Other hyperthermostable proteins employ an alternative, "sequence-based" mechanism of their thermal stabilization. They do not show pronounced structural differences from mesophilic homologues. Rather, a small number of apparently strong interactions is responsible for high thermal stability of these proteins. High-throughput comparative analysis of structures and complete genomes of several hyperthermophilic archaea and bacteria revealed that organisms develop diverse strategies of thermophilic adaptation by using, to a varying degree, two fundamental physical mechanisms of thermostability. The choice of a particular strategy depends on the evolutionary history of an organism. Proteins from organisms that originated in an extreme environment, such as hyperthermophilic archaea (Pyrococcus furiosus), are significantly more compact and more hydrophobic than their mesophilic counterparts. Alternatively, organisms that evolved as mesophiles but later recolonized a hot environment (Thermotoga maritima) relied in their evolutionary strategy of thermophilic adaptation on "sequence-based" mechanism of thermostability. We propose an evolutionary explanation of these differences based on physical concepts of protein designability.

  4. Thermal stability of lightweight graphite glass sandwich reflectors for far infrared astronomy

    NASA Technical Reports Server (NTRS)

    Bluege, J. H.; Mayor, R. A.; Hoffman, W. F.

    1986-01-01

    Graphite fiber-reinforced glass matrix composites are being developed for a variety of structural applications requiring excellent thermomechanical stability. These materials are ideally suited for lightweight, high strength, thermally stable infrared mirrors because of their low density, low thermal expansion, high strength and stiffness, and their ability to be machined, replicated and figured using standard polishing techniques. These properties are particularly promising for applications such as a 3-meter balloon-borne far-infrared and submillimeter telescope mirror which must be both very lightweight and able to retain its figure accuracy when cycled between room temperature and its operating temperature of -50 C. This paper presents the results of a set of low temperature optical tests conducted to determine the figure stability of a 30-cm diameter, frit-bonded graphite/glass mirror in the +20 to -60 C temperature range using a 10.6 micron laser interferometer. The results indicate that the residual change in figure was less than 0.3 microns, rms.

  5. Preparation of polyvinyl alcohol graphene oxide phosphonate film and research of thermal stability and mechanical properties.

    PubMed

    Li, Jihui; Song, Yunna; Ma, Zheng; Li, Ning; Niu, Shuai; Li, Yongshen

    2018-05-01

    In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A Study of Al-Mn Transition Edge Sensor Engineering for Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, E. M.; et al.

    2013-11-10

    The stability of Al-Mn transition edge sensor (TES) bolometers is studied as we vary the engineered TES transition, heat capacity, and/or coupling between the heat capacity and TES. We present thermal structure measurements of each of the 39 designs tested. The data is accurately fit by a two-body bolometer model, which allows us to extract the basic TES parameters that affect device stability. We conclude that parameters affecting device stability can be engineered for optimal device operation, and present the model parameters extracted for the different TES designs.

  7. Chemical modification of nanocellulose with canola oil fatty acid methyl ester

    Treesearch

    Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark

    2017-01-01

    Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...

  8. Conductivity study of thermally stabilized RuO2/polythiophene nanocomposites

    NASA Astrophysics Data System (ADS)

    Hebbar, Vidyashree; Bhajantri, R. F.

    2018-04-01

    The polymer nanocomposites of Ruthenium oxide (RuO2) filled polythiophene (PT) were synthesized by polymerization using chemical method. The purity of the synthesized polymer composite is verified using X-Ray diffraction (XRD). The structural discrepancies of the RuO2 filled PT composites are studied by Fourier transform infrared (FT-IR) spectroscopy. The phase transition and thermal stability of the prepared composite is revised by thermal characterization such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DC conductivity of RuO2 filled PT composite in the form of pellets is calculated using current-voltage (I-V) characterization by two-probe method. The enhancement in conductivity with increased RuO2 content in PT matrix is examined, which is the required property for electrical and electronic applications in supercapacitors.

  9. Designing Stability into Thermally Reactive Plumbylenes.

    PubMed

    Bačić, Goran; Zanders, David; Mallick, Bert; Devi, Anjana; Barry, Seán T

    2018-06-26

    Lead analogues of N-heterocyclic carbenes (NHPbs) are the least understood members of this increasingly important class of compounds. Here we report the design, preparation, isolation, structure, volatility, and decomposition pathways of a novel aliphatic NHPb: rac- N  2 , N  3 -di- tert-butylbutane-2,3-diamido lead(II) (1Pb). The large steric bulk of the tert-butylamido moieties and rac-butane backbone successfully hinder redox decomposition pathways observed for diamidoethylene and -ethane backbone analogues, pushing the onset of thermal decomposition from below 0 °C to above 150 °C. With an exceptionally high vapor pressure of 1 Torr at 94 ± 2 °C and excellent thermal stability among Pb(II) complexes, 1Pb is a promising precursor for the chemical vapor deposition (CVD) and atomic layer deposition (ALD) of functional lead-containing materials.

  10. Advanced thermally stable jet fuels. Technical progress report, January 1995--March 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    Quantitative structure-property relationships have been applied to study the thermal stability of pure hydrocarbons typical of jet fuel components. A simple method of chemical structure description in terms of Benson groups was tested in searching for structure-property relationships for the hydrocarbons tested experimentally in this program. Molecular connectivity as a structure-based approach to chemical structure-property relationship analysis was also tested. Further development of both the experimental data base and computational methods will be necessary. Thermal decomposition studies, using glass tube reactors, were extended to two additional model compounds: n-decane and n-dodecane. Efforts on refining the deposit growth measurement and characterizationmore » of suspended matter in stressed fuels have lead to improvements in the analysis of stressed fuels. Catalytic hydrogenation and dehydrogenation studies utilizing a molybdenum sulfide catalyst are also described.« less

  11. In situ X-ray and neutron diffraction of the Ruddlesden–Popper compounds (RE 2–xSr x)₀.₉₈(Fe₀.₈Co₀.₂) 1–yMg yO 4–δ (RE=La, Pr): Structure and CO₂ stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzichristodoulou, C., E-mail: ccha@dtu.dk; Hauback, B.C.; Hendriksen, P.V.

    2013-05-01

    The crystal structure of the Ruddlesden–Popper compounds (La₁.₀Sr₁.₀)₀.₈Fe₁.₀Co₀.₂O 4–δ and (La₁.₂Sr₀.₈)₀.₉₈(Fe₀.₈Co₀.₂)₀.₈Mg₀.₂O 4–δ was investigated at 1000 °C in N₂ (a O₂=1×10₋₄ by in-situ powder neutron diffraction. In-situ powder X-ray diffraction (PXD) was also employed to investigate the temperature dependence of the lattice parameters of the compounds in air and the oxygen activity dependence of the lattice parameters at 800 °C and 1000 °C. The thermal and chemical expansion coefficients, determined along the two crystallographic directions of the tetragonal unit cell, are highly anisotropic. The equivalent pseudo-cubic thermal and chemical expansion coefficients are in agreement with values determined by dilatometry. Themore » chemical stability in CO₂ containing environments of various Ruddlesden–Popper compounds with chemical formula (RE 2-xSr x)₀.₉₈(Fe₀.₈Co₀.₂) 1-yMg yO 4–δ (RE=La, Pr), as well as their stability limit in H₂/H₂O=4.5 were also determined by in-situ PXD for x=0.9, 1.0 and y=0, 0.2. - Graphical abstract: Influence of electronic configuration on bond length, lattice parameters and anisotropic thermal and chemical expansion. Highlights: • The thermal and chemical expansion coefficients are largely anisotropic. • The expansion of the perovskite layers is constrained along the a direction. • The studied compositions show remarkable thermodynamic stability upon reduction. • The thermal and chemical expansion coefficients are lower than related perovskites. • The investigated materials decompose in CO₂ containing atmospheres.« less

  12. Thermomechanical Properties of Sb2O3-TeO2-V2O5 Glassy Systems: Thermal Stability, Glass Forming Tendency and Vickers Hardness

    NASA Astrophysics Data System (ADS)

    Souri, Dariush; Torkashvand, Ziba

    2017-04-01

    Three-component 40TeO2-(60- x)V2O5- xSb2O3 glasses with 0 ≤ x ≤ 10 (in mol.%) were obtained by the rapid melt-quenching method. These glasses were studied with respect to some mechanical properties with the goal of obtaining information about their structure. The Vickers hardness test was employed to obtain Vickers micro-hardness ( H V) at two different loads, which was within the range of 13.187-17.557 GPa for a typical 0.1 HV (0.9807 N) load. In addition, theoretical micro-hardness ( H) was investigated and compared with experimental H V, showing the elevating trend with increase of Sb2O3 content, as for H V. Furthermore, differential scanning calorimetry (DSC) was employed within the range of 150-500°C at heating rates of φ = 3 K/min, 6 K/min, 9 K/min, 10 K/min, and 13 K/min. In this work, thermal stability ( T s = T cr - T x) and glass forming tendency ( K gl) were measured and reported for these glasses to determine the relationship between the chemical composition and the thermal stability, in order to interpret the structure of glass. Generally, from the ascertained outputs [analysis of mechanical data, titration study, the values of reduced fraction of vanadium ions ( C V) and oxygen molar volume ( V_{{O}}^{*} )], it was found that the micro-hardness had an increasing trend with increasing the Sb2O3 content. Among the studied glasses, the sample with x = 8 had a higher average micro-hardness value, the highest average thermal stability and glass forming tendency with respect to the other samples, which makes it a useful material (owning very good resistance against thermal attacks) for device manufacturing.

  13. Self aligning electron beam gun having enhanced thermal and mechanical stability

    DOEpatents

    Scarpetti, R.D. Jr.; Parkison, C.D.; Switzer, V.A.; Lee, Y.J.; Sawyer, W.C.

    1995-05-16

    A compact, high power electron gun is disclosed having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the ``triple point`` where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques. 12 Figs.

  14. Stable Optical Phase Modulation With Micromirrors

    DTIC Science & Technology

    2012-01-27

    Stable optical phase modulation with micromirrors Caleb Knoernschild, Taehyun Kim, Peter Maunz, Stephen G. Crain, and Jungsang Kim∗ Fitzpatrick...position stability of the micromirror is dominated by the thermal mechanical noise of the structure. With this level of stability, we utilize the... micromirror to realize an optical phase modulator by simply reflecting light off the mirror and modulating its position. The resonant frequency of the

  15. Improved Electroformed Structural Copper and Copper Alloys

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Hudson, W.; Babcock, B.; Edwards, R.

    1998-01-01

    Electroforming offers a superior means for fabricating internally cooled heat exchangers and structures subjected to thermal environments. Copper is deposited from many such applications because of the good thermal conductivity. It suffers from mediocre yield strength as a structural material and loses mechanical strength at intermediate temperatures. Mechanical properties similar to those of electroformed nickel are desired. Phase 1 examined innovative means to improve deposited copper structural performance. Yield strengths as high as 483 MPa (70 ksi) were obtained with useful ductility while retaining a high level of purity essential to good thermal conductivity. Phase 2 represents a program to explore new additive combinations in copper electrolytes to produce a more fine, equiaxed grain which can be thermally stabilized by other techniques such as alloying in modest degrees and dispersion strengthening. Evaluation of new technology - such as the codeposition of fullerness (diamond-like) particles were made to enhance thermal conductivity in low alloys. A test fire quality tube-bundle engine was fabricated using these copper property improvement concepts to show the superiority of the new coppers and fabrications methods over competitive technologies such as brazing and plasma deposition.

  16. Rare-earth metals in nickel aluminide-based alloys: III. Structure and properties of multicomponent Ni3Al-based alloys

    NASA Astrophysics Data System (ADS)

    Bazyleva, O. A.; Povarova, K. B.; Kazanskaya, N. K.; Drozdov, A. A.

    2009-04-01

    The possibility of increasing the life of heterophase cast light Ni3Al-based superalloys at temperatures higher than 0.8 T m of Ni3Al is studied when their directional structure is additionally stabilized by nanoprecipitates, which form upon additional alloying of these alloys by refractory and active metals, and using special methods for preparing and melting of an alloy charge. The effect of the method of introducing the main components and refractory reaction-active and surface-active alloying elements into Ni3Al-based cast superalloys, which are thermally stable natural composite materials of the eutectic type, on the structure-phase state and the life of these alloys is studied. When these alloys are melted, it is necessary to perform a set of measures to form particles of refractory oxide cores covered with the β-NiAl phase and, then, γ'prim-Ni3Al phase precipitates during solidification. The latter phase forms the outer shell of grain nuclei, which provides high thermal stability and hot strength of an intermetallic compound-based alloy. As a result, a modified structure that is stabilized by the nanoprecipitates of nickel and aluminum lanthanides and the nanoprecipitates of phases containing refractory metals is formed. This structure enhances the life of the alloy at 1000 °C by a factor of 1.8-2.5.

  17. New RTM/RI Resins for the HSCT

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1999-01-01

    In the first portion of this work, 1,2,3,3,4,4-hexafluoro-1,2-bis[4-(dimethylhydroxysilyl)phenoxy]cyclobutane and 1,2,3,3,4,4-hexafluoro-1,2-bis[3-(dimethylhydroxysilyl)phenoxy]cyclobutane were prepared and homopolymerized to afford polymers with excellent thermal stability and Tgs of 27 C and -12 C, respectively. Despite the moderately high wt% of fluorin in the polymer structure (23.8%), these polymers had poor fuel resistance. In fact, swelling measurements indicate that these polymers had apparent solubility parameters of about 18.2 J (exp 1/2) m (exp -3/2) (toluene). Copolymerization of the disilanol monomers with fluorosilicone monomers afforded copolymers containing 20-30 wt% of the perfluorocyclobutane-containing structure displayed adequate fuel resistance, enhanced thermal stability, and a Tg low enough to meet the requirements of a High Speed Civil Transport (HSCT) fuel tank sealant. In the second part of this work, trifluorovinylether-terminated oligomers were prepared and polymerized via cyclodimerization. Initially, an alpha, omega-silanol-terminated fluorosilicone was endcapped with trifluorovinylether end groups via a two-step synthetic sequence. The oligomer was thermally cyclodimerized to a polymer that displayed thermal stability similar to that of a fluorosilicone homopolymer. Second, 1,3-bis[4-trifluorovinyl(oxy)phenyl]-1,3-(3,3,3-trifluoropropyl)dimethyldisiloxane and 1,3-bis{3-trifluorovinyl(oxy)phenyl]-1,3-(3,3,3-trifluoropropyl)dimethyldisiloxane were prepared and cyclodimerized to afford polymers that contained pendant trifluoropropyl groups. The pendant trifluoropropyl groups did enhance solvent resistance in aliphatic hydrocarbon solvents, however, no improvement was observed in aromatic hydrocarbon solvents. These polymers also displayed excellent thermal stability. In the last part of this work, a series of monomers was prepared by the DCC-promoted esterification of 4-[trifluorovinyl(oxy)benzoic acid with alpha, omega-functionalized hydrogenated and partially fluorinated alcohols. The monomers were cyclodimerized to the corresponding polymers. The polymers that did not contain beta hydrogens displayed significantly higher thermal stability than the fully hydrogenated polymers. A commercially-available alpha,omega-hydroxy-terminated perfluoropolyether was then functionalized with 4-[trifluorovinyl(oxy)benzoylchloride. An attempt was made to polymerize the resulting oligomer via the cyclodimerization of the terminal trifluorovinylether moieties. Although the viscosity of the oligomer increased significantly during polymerization, Gel Permeation Chromatography (GPC) analysis revealed that the Tetrahydrofuran (THF) soluble portion of the polymer did not have high molecular weight.

  18. Thermal stabilization of neutron Larmor diffractometers

    NASA Astrophysics Data System (ADS)

    Keller, T.; Tralmer, F.

    2017-06-01

    We report on the design of a support unit for the radio frequency (RF) coils of a Larmor diffractometer (LD) eliminating fluctuations of the Larmor phase resulting from thermal expansion of the support structures. The key component defining the spacing between the RF coils is a Zerodur bar with a very low thermal expansion coefficient (α = 7 × 10-8 K-1). This support unit will allow for LD measurements on the 10-6 accuracy level even if the ambient temperature is fluctuating.

  19. Wind-tunnel experiments of turbulent flow over a surface-mounted 2-D block in a thermally-stratified boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-11-01

    Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).

  20. SiC lightweight telescopes for advanced space applications. II - Structures technology

    NASA Technical Reports Server (NTRS)

    Anapol, Michael I.; Hadfield, Peter; Tucker, Theodore

    1992-01-01

    A critical technology area for lightweight SiC-based telescope systems is the structural integrity and thermal stability over spaceborne environmental launch and thermal operating conditions. Note, it is highly desirable to have an inherently athermal design of both SiC mirrors and structure. SSG has developed an 8 inch diameter SiC telescope system for brassboard level optical and thermal testing. The brassboard telescope has demonstrated less than 0.2 waves P-V in the visible wavefront change over +50 C to -200 C temperature range. SSG has also fabricated a SiC truss structural assembly and successfully qualified this hardware at environmental levels greater than 3 times higher than normal Delta, Titan, and ARIES launch loads. SSG is currently developing two SiC telescopes; an 20 cm diameter off-axis 3 mirror re-imaging and a 60 cm aperture on-axis 3 mirror re-imager. Both hardware developments will be tested to flight level environmental, optical, and thermal specifications.

  1. Engineering spin-orbit torque in Co/Pt multilayers with perpendicular magnetic anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kuo-Feng; Wang, Ding-Shuo; Lai, Chih-Huang, E-mail: chlai@mx.nthu.edu.tw

    To address thermal stability issues for spintronic devices with a reduced size, we investigate spin-orbit torque in Co/Pt multilayers with strong perpendicular magnetic anisotropy. Note that the spin-orbit torque arises from the global imbalance of the spin currents from the top and bottom interfaces for each Co layer. By inserting Ta or Cu layers to strengthen the top-down asymmetry, the spin-orbit torque efficiency can be greatly modified without compromised perpendicular magnetic anisotropy. Above all, the efficiency builds up as the number of layers increases, realizing robust thermal stability and high spin-orbit-torque efficiency simultaneously in the multilayers structure.

  2. Potential applications of MMC and aluminum-lithium alloys in cameras for CRAF spacecraft. [Comet Rendezvous Asteroid Flyby Mission

    NASA Technical Reports Server (NTRS)

    Lane, Marc; Hsieh, Cheng; Adams, Lloyd

    1989-01-01

    In undertaking the design of a 2000-mm focal length camera for the Mariner Mark II series of spacecraft, JPL sought novel materials with the requisite dimensional and thermal stability, outgassing and corrosion resistance, low mass, high stiffness, and moderate cost. Metal-matrix composites and Al-Li alloys have, in addition to excellent mechanical properties and low density, a suitably low coefficient of thermal expansion, high specific stiffness, and good electrical conductivity. The greatest single obstacle to application of these materials to camera structure design is noted to have been the lack of information regarding long-term dimensional stability.

  3. Interactions of DNA binding proteins with G-Quadruplex structures at the single molecule level

    NASA Astrophysics Data System (ADS)

    Ray, Sujay

    Guanine-rich nucleic acid (DNA/RNA) sequences can form non-canonical secondary structures, known as G-quadruplex (GQ). Numerous in vivo and in vitro studies have demonstrated formation of these structures in telomeric and non-telomeric regions of the genome. Telomeric GQs protect the chromosome ends whereas non-telomeric GQs either act as road blocks or recognition sites for DNA metabolic machinery. These observations suggest the significance of these structures in regulation of different metabolic processes, such as replication and repair. GQs are typically thermodynamically more stable than the corresponding Watson-Crick base pairing formed by G-rich and C-rich strands, making protein activity a crucial factor for their destabilization. Inside the cell, GQs interact with different proteins and their enzymatic activity is the determining factor for their stability. We studied interactions of several proteins with GQs to understand the underlying principles of protein-GQ interactions using single-molecule FRET and other biophysical techniques. Replication Protein-A (RPA), a single stranded DNA (ssDNA) binding protein, is known to posses GQ unfolding activity. First, we compared the thermal stability of three potentially GQ-forming DNA sequences (PQS) to their stability against RPA-mediated unfolding. One of these sequences is the human telomeric repeat and the other two, located in the promoter region of tyrosine hydroxylase gene, are highly heterogeneous sequences that better represent PQS in the genome. The thermal stability of these structures do not necessarily correlate with their stability against protein-mediated unfolding. We conclude that thermal stability is not necessarily an adequate criterion for predicting the physiological viability of GQ structures. To determine the critical structural factors that influence protein-GQ interactions we studied two groups of GQ structures that have systematically varying loop lengths and number of G-tetrad layers. We observed a linear increase in the steady-state stability of the GQ against RPA-mediated unfolding with increasing number of layers or decreasing loop length. The stability demonstrated by different GQ structures varied by at least three orders of magnitude. Finally, we studied another protein-GQ system where a protein complex works synergistically with a GQ to suppress DNA damage signals by preventing RPA to bind to telomeric DNA. Human telomeres that terminate with a single-stranded 3' G-overhang can be recognized as a DNA damage site by RPA. The protection of telomere-1 (POT1) and POT1-interacting protein (TPP1) heterodimer, binds specifically to telomeric DNA and protects it against RPA binding. Using model telomeric DNA, we studied the competition between POT1/TPP1 and RPA to access telomeric GQs in vitro. Under physiological salt and pH conditions, POT1/TPP1 stably load to a minimal DNA sequence adjacent to a folded GQ and unfolds the anti-parallel GQ as the parallel conformation remains folded. We showed that GQ formation of telomeres enhances the ability of POT1/TPP1 to block RPA's access to telomeres by two orders of magnitude and contributes to suppress DNA damage signals.

  4. Synthesis, Structure, Te Alloying, and Physical Properties of CuSbS 2

    DOE PAGES

    Hobbis, Dean; Wei, Kaya; Wang, Hsin; ...

    2017-10-30

    Materials with very low thermal conductivities continue to be of interest for a variety of applications. In this paper, we synthesized CuSbS 2 employing a mechanical alloying technique in order to investigate its physical properties. The trigonal pyramid arrangement of the S atoms around the Sb atoms allows for lone-pair electron formation that results in very low thermal conductivity. Finally, in addition to thermal properties, the structural, electrical, and optical properties, as well as compositional stability measurements, are also discussed. CuSbS 1.8Te 0.2 was similarly synthesized and characterized in order to compare its structural and transport properties with that ofmore » CuSbS 2, in addition to investigating the effect of Te alloying on these properties.« less

  5. Synthesis, Structure, Te Alloying, and Physical Properties of CuSbS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbis, Dean; Wei, Kaya; Wang, Hsin

    Materials with very low thermal conductivities continue to be of interest for a variety of applications. In this paper, we synthesized CuSbS 2 employing a mechanical alloying technique in order to investigate its physical properties. The trigonal pyramid arrangement of the S atoms around the Sb atoms allows for lone-pair electron formation that results in very low thermal conductivity. Finally, in addition to thermal properties, the structural, electrical, and optical properties, as well as compositional stability measurements, are also discussed. CuSbS 1.8Te 0.2 was similarly synthesized and characterized in order to compare its structural and transport properties with that ofmore » CuSbS 2, in addition to investigating the effect of Te alloying on these properties.« less

  6. A novel highly porous ceramic foam with efficient thermal insulation and high temperature resistance properties fabricated by gel-casting process

    NASA Astrophysics Data System (ADS)

    Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao

    2018-01-01

    The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.

  7. Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers

    NASA Technical Reports Server (NTRS)

    Mess, Derek

    2003-01-01

    yttria in suitable proportions has shown promise of being a superior thermal- barrier coating (TBC) material, relative to zirconia stabilized with yttria only. More specifically, a range of compositions in the zirconia/scandia/yttria material system has been found to afford increased resistance to deleterious phase transformations at temperatures high enough to cause deterioration of yttria-stabilized zirconia. Yttria-stabilized zirconia TBCs have been applied to metallic substrates in gas turbine and jet engines to protect the substrates against high operating temperatures. These coatings have porous and microcracked structures, which can accommodate strains induced by thermal-expansion mismatch and thermal shock. The longevity of such a coating depends upon yttria as a stabilizing additive that helps to maintain the zirconia in an yttria-rich, socalled non-transformable tetragonal crystallographic phase, thus preventing transformation to the monoclinic phase with an associated deleterious volume change. However, at a temperature greater than about 1,200 C, there is sufficient atomic mobility that the equilibrium, transformable zirconia phase is formed. Upon subsequent cooling, this phase transforms to the monoclinic phase, with an associated volume change that adversely affects the integrity of the coating. Recently, scandia was identified as a stabilizer that could be used instead of, or in addition to, yttria. Of particular interest are scandia-and-yttria-stabilized zirconia (SYSZ) compositions of about 6 mole percent scandia and 1 mole percent yttria, which have been found to exhibit remarkable phase stability at a temperature of 1,400 C in simple aging tests. Unfortunately, scandia is expensive, so that the problem becomes one of determining whether there are compositions with smaller proportions of scandia that afford the required high-temperature stability. In an attempt to solve this problem, experiments were performed on specimens made with reduced proportions of scandia. The criterion used to judge these specimens was whether they retained the non-transformable tetragonal phase after a severe heat treatment of 140 hours at 1,400 C.

  8. Thermal Stability and X-ray Attenuation Studies on α-Bi₂O₃, β-Bi₂O₃ and Bi Based Nanocomposites for Radiopaque Fabrics.

    PubMed

    Jayakumar, Sangeetha; Saravanan, T; Philip, John

    2018-06-01

    Nanocomposites containing α-Bi2O3, β-Bi2O3 and Bi nanoparticles as nanofillers in vulcanized silicone resin as a matrix are prepared and their diagnostic X-ray attenuation property is studied. The nanocomposites are prepared using a simple solution casting technique, with nanofiller concentration varying from 2-50 wt%. Thermogravimetric analysis and differential scanning calorimetry are performed to study the thermal stability of the nanocomposites. The attenuation property is studied by exposing the nanocomposites containing α-Bi2O3, β-Bi2O3 and Bi nanoparticles to X-rays of energy 30-60 keV. Nanocomposites containing β-Bi2O3 nanoparticles are found to exhibit the highest attenuation than nanocomposites of α-Bi2O3 and Bi nanoparticles of similar concentration. Nanocomposites containing 50 wt% of β-Bi2O3 nanoparticles exhibit an X-ray attenuation of 93, 86, 71, 45 and 10% at an X-ray photon energy of 40, 45, 50, 55 and 59 keV, respectively. Further increase in photon energy is found to saturate the flat panel detector owing to the lower thickness of the nanocomposites. Analysis of high resolution X-ray radiographs of the nanocomposites confirms the uniform distribution of nanofillers in the matrix. Thermal analysis confirms the structural integrity and thermal stability of the nanocomposites. Heat flow curves also confirm the interaction of nanofillers with the matrix, corroborated by a change in the peak position and its endothermic/exothermic nature, corresponding to the phase transition of the nanofillers. It is also interpreted from thermal analysis of nanocomposites that the nanofillers interact with the matrix either by intercalating in the bridging polymer chain of silicone resin network structure or by occupying the interchain space. Thermal analysis of X-ray exposed nanocomposites shows no significant change in heat flow rates, thus, confirming the stability of the nanocomposites. Our study shows that nanocomposites containing β-Bi2O3 nanofiller are potential candidates for radiopaque fabrics which can find application in diagnostic X-ray shielding in mammography, dental scan, etc.

  9. Morphological, spectroscopic and thermal studies of samarium chloride coordinated single crystal grown by slow evaporation method

    NASA Astrophysics Data System (ADS)

    Slathia, Goldy; Raina, Bindu; Gupta, Rashmi; Bamzai, K. K.

    2018-05-01

    The synthesis of samarium chloride coordinated single crystal was carried out at room temperature by slow evaporation method. The crystal possesses a well defined hexagonal morphology with six symmetrically equivalent growth sectors separated by growth boundaries. The theoretical morphology has been established by structural approach using Bravaise-Friedele-Donnaye-Harker (BFDH) law. Fourier transform infra red spectroscopy was carried in order to study the geometry and structure of the crystal. The detailed thermogravimetric analysis elucidates the thermal stability of the complex.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Che, Guang-Bo, E-mail: guangboche@jlnu.edu.cn; Liu, Shu-Yu; Zhang, Qing

    Four new lanthanide complexes [Ln(O–NCP){sub 2}(NO{sub 3})]{sub n} based on multifunctional N,O-donor ligand 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (O–HNCP) and Ln(NO{sub 3}){sub 3}·6H{sub 2}O (Ln=Nd(1), La(2), Sm(3), Eu(4)) have been achieved under hydrothermal conditions and characterized by elemental analyses, infrared spectra and single crystal X-ray diffraction. Structural analyses revealed that all of these four complexes possess similar two-dimensional layer structures. In addition, thermal stability and luminescent properties of these complexes were also investigated. - Graphical abstract: A series of lanthanide(III) coordination polymers with intriguing structures based on 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline ligand have been hydrothermally synthesized. The thermal stabilities and photoluminescence properties of these complexes have beenmore » investigated. - Highlights: • Four lanthanide(III) complexes have been hydrothermally synthesized. • The N,O-donor O–HNCP was used as the ligand. • TGA and PL properties of complexes 1–4 have been investigated.« less

  11. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Synthesis, Amphiphilic Property and Thermal Stability of Novel Main-chain Poly(o-carborane-benzoxazines)

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoxue; Han, Guo; Yang, Zhen; Zhang, Xiaoa; Jiang, Shengling; Lyu, Yafei

    2017-10-01

    Five poly(o-carborane-benzoxazines) were synthesized via Mannich reaction of o-carborane bisphenol, paraformaldehyde, and diamine, and their structures were well characterized. Light transmission and 1H NMR in D2O confirmed that poly(o-carborane-benzoxazines) with PEG segments showed excellent water solubility and amphiphilic property. TGA analyses were conducted under nitrogen and air, and the results showed that the polymers own high initial decomposition temperatures owing to the shielding effect of carborane moiety on its adjacent aromatic structures. Besides, poly(o-carborane-benzoxazines) own high char yield at elevated temperatures, for the boron atom could combine with oxygen from the polymer structure or/and the air and be oxidized to form boron oxide, and thus the polymer weight is retained to a large extent. PEG segments had an adverse effect on the initial decomposition and char yield, and thus their concentration should be adjusted to control the polymer’s thermal stability.

  13. Electrical isolation, thermal stability and rf loss in a multilayer GaAs planar doped barrier diode structure bombarded by H+ and Fe+ ions

    NASA Astrophysics Data System (ADS)

    Vo, V. T.; Koon, K. L.; Hu, Z. R.; Dharmasiri, C. N.; Subramaniam, S. C.; Rezazadeh, A. A.

    2004-04-01

    Electrical isolation in multilayer GaAs planar doped barrier (PDB) diode structures produced by H+ and Fe+ ion implantation were investigated. For an H+ bombardment with a dose of 1×1015cm-2, a sheet resistivity as high as 3×108 Ω/sq and thermal stability up to 400 °C has been achieved. For samples bombarded by Fe+ ions, a similar high sheet resistivity has also been achieved although a longer annealing time (15 min) and a higher annealing temperature (550 °C) were needed. The rf dissipation losses of coplanar waveguide (CPW) "thru" lines fabricated on bombarded multilayer PDBD structure samples were also examined. The measured rf losses were 1.65 dB/cm at 10 GHz and 3 dB/cm at 40 GHz, similar to the values that a CPW line exhibits on a semi-isolating GaAs substrate.

  14. Evaluation of Sc-Bearing Aluminum Alloy C557 for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Dicus, Dennis L.

    2002-01-01

    The performance of the Al-Mg-Sc alloy C557 was evaluated to assess its potential for a broad range of aerospace applications, including airframe and launch vehicle structures. Of specific interest were mechanical properties at anticipated service temperatures and thermal stability of the alloy. Performance was compared with conventional airframe aluminum alloys and with other emerging aluminum alloys developed for specific service environments. Mechanical properties and metallurgical structure were evaluated for commercially rolled sheet in the as-received H116 condition and after thermal exposures at 107 C. Metallurgical analyses were performed to de.ne grain morphology and texture, strengthening precipitates, and to assess the effect of thermal exposure.

  15. Synthesis, structural, thermal and optical studies of 1-ethyl-2,6-dimethyl-4-hydroxy pyridinium halides.

    PubMed

    Dhanuskodi, S; Manivannan, S; Kirschbaum, K

    2006-05-15

    1-Ethyl-2,6-dimethyl-4-hydroxy pyridinium chloride dihydrate and bromide dihydrate salts have been synthesized and their single crystals were grown by the slow evaporation of aqueous solution at 30 degrees C. The grown crystals were characterized by elemental analysis, FT-NMR and FT-IR techniques to confirm the formation of the expected compound. Optical transmittance window in aqueous solution was found to be 275-1100 nm by UV-vis-NIR technique. Thermogravimetric and differential thermal analyses reveal thermal stability and the presence of two water molecules in the crystal lattices. The crystal structure of chloride salt was also determined by X-ray diffraction method.

  16. Synthesis, crystal structure, thermal and nonlinear optical properties of new metal-organic single crystal: Tetrabromo (piperazinium) zincate (II) (TBPZ)

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Babu, S. Moorthy; Ramasamy, P.

    2018-04-01

    Tetrabromo (piperazinium) zincate, a new metal-organic crystal has been synthesized and its single crystal grown by slow evaporation method. The grown crystal has characterized by structural, spectral, thermal, linear and nonlinear optical properties. Single crystal X-ray diffractions study reveals that grown crystal belongs to orthorhombic crystal system with space group P212121. The presence of functional groups is identified by FT-IR spectral analysis. Thermal stability of the crystal was ascertained by TG-DTA measurement. The second order harmonic generation efficiency was measured using Kurtz and Perry technique and it was found to be 1.5 times that of KDP.

  17. Evaluation of high temperature structural adhesives for extended service, phase 4

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Hale, J. N.

    1985-01-01

    The evaluation of three phenylquinoxaline polymers as high temperature structural adhesives is presented. These included an experimental crisskubjabke oiktner (X-PQ) and two experimental materials (PPQ-2501) and (PPQ-HC). Lap shear, crack extension, and climing drum peel specimens were fabricated from all three polymers, and tested after thermal, combined thermal/humidity, and stressed Skydrol exposure. All three polymers generally performed well as adhesives at initial test temperatures from 219K (-67 F) to 505K (450 F) and after humidity exposure. The 644K (700 F) cured test specimens exhibited superior Skydrol resistance and thermal stability at 505K (450 F) when compared to the 602K (625 F) cured test specimens.

  18. POSS Ionic Liquid.

    PubMed

    Tanaka, Kazuo; Ishiguro, Fumiyasu; Chujo, Yoshiki

    2010-12-22

    We report the synthesis of a stable room-temperature ionic liquid consisting of an octacarboxy polyhedral oligomeric silsesquioxane (POSS) anion and an imidazolium cation. The introduction of the POSS moiety enhances the thermal stability and reduces the melting temperature. From an evaluation of the thermodynamic parameters during the melting, it was found that the rigidity and cubic structure of POSS can contribute to the enhancement of these thermal properties.

  19. Polymorphism in phenobarbital: discovery of a new polymorph and crystal structure of elusive form V.

    PubMed

    Roy, Saikat; Goud, N Rajesh; Matzger, Adam J

    2016-03-21

    This report highlights the discovery of a new polymorph of the anticonvulsant drug phenobarbital (PB) using polymer-induced heteronucleation (PIHn) and unravelling the crystal structure of the elusive form V. Both forms are characterized by structural, thermal and VT-Raman spectroscopy methods to elucidate phase transformation behavior and shed light on stability relationships.

  20. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: Improved thermal stability and high-voltage performance

    NASA Astrophysics Data System (ADS)

    Lee, Suk-Woo; Kim, Myeong-Seong; Jeong, Jun Hui; Kim, Dong-Hyun; Chung, Kyung Yoon; Roh, Kwang Chul; Kim, Kwang-Bum

    2017-08-01

    A surface coating of Li3PO4 was applied to a Ni-rich LiNi0.6Co0.2Mn0.2O2 (NCM) material to improve its thermal stability and electrochemical properties via a citric acid assisted sol-gel method. The addition of citric acid effectively suppressed the instant formation of Li3PO4 in solution, resulting in successful coating of the NCM surface. The improved thermal stability of NCM after Li3PO4 surface coating was demonstrated by differential scanning calorimetry (DSC) analysis and in situ time-resolved X-ray diffraction (TR-XRD). In particular, the TR-XRD results showed that the improved thermal stability after Li3PO4 surface coating originates from suppression of the phase transition of charged NCM at high temperatures. Furthermore, the charge-discharge tests demonstrated that Li3PO4-coated LiNi0.6Co0.2Mn0.2O2 (LP-NCM) has excellent electrochemical properties. LP-NCM exhibited a specific capacity of 192.7 mAh g-1, a capacity retention of 44.1% at 10 C, and a capacity retention of 79.7% after 100 cycles at a high cut-off voltage of 4.7 V; these values represent remarkably improved electrochemical properties compared with those of bare NCM. These improved thermal and electrochemical properties were mainly attributed to the improvement of the structural stability of the material and the suppression of the interface reaction between the cathode and the electrolyte owing to the Li3PO4 coating.

  1. Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films.

    PubMed

    Lizundia, E; Urruchi, A; Vilas, J L; León, L M

    2016-01-20

    In this work we attempt to improve the functional properties and thermal stability of cellulose nanocrystal (CNC) films by means of eco-friendly materials and processes. Mechanically flexible films of closely packed CNCs with concentrations up to 5 wt.% of zinc oxide (ZnO) nanoparticles have been prepared by a simple, standard and environmentally friendly method using solely water. Results reveal that ultraviolet light is blocked by 98.5% at 1 wt.% ZnO while good transparency is maintained. A sharp hydrophobicity increase is observed with the addition of ZnO which would enhance the durability of films by decreasing the water diffusion through the material. The thermal degradation activation energy (E) presents an increase of 141%, denoting a high thermal stability of films, which would result beneficial for their potential application in the field of flexible electronics. Mechanical results demonstrate a high structural integrity of CNC/ZnO as a result of the occurring strong cellulosic inter- and intramolecular interactions within the closely packed CNC network. In overall, this work highlights the potential for environmentally friendly processing of sustainable nanostructured functional materials based on cellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Use of thermal analysis coupled with differential scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy (TG-DSC-QMS-FTIR) to monitor chemical properties and thermal stability of fulvic and humic acids.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia; Skic, Kamil

    2017-01-01

    Thermogravimetry-coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR)-was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere) and chemical properties of natural polymers, fulvic (FA) and humic acids (HA), isolated from chemically different soils. Three temperature ranges, R1, 40-220°C; R2, 220-430°C; and R3, 430-650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss). Weight loss (ΔM) estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1), volatile and labile functional groups (at R2) as well as recalcitrant and refractory structures (at R3). QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively) of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44), DSC (MaxDSC) and TG (ΔM) at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to their various origin.

  3. Use of thermal analysis coupled with differential scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy (TG-DSC-QMS-FTIR) to monitor chemical properties and thermal stability of fulvic and humic acids

    PubMed Central

    Sokołowska, Zofia; Skic, Kamil

    2017-01-01

    Thermogravimetry–coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR)–was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere) and chemical properties of natural polymers, fulvic (FA) and humic acids (HA), isolated from chemically different soils. Three temperature ranges, R1, 40–220°C; R2, 220–430°C; and R3, 430–650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss). Weight loss (ΔM) estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1), volatile and labile functional groups (at R2) as well as recalcitrant and refractory structures (at R3). QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively) of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44), DSC (MaxDSC) and TG (ΔM) at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to their various origin. PMID:29240819

  4. Performance evaluation of a non-woven lithium ion battery separator prepared through a paper-making process

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosong

    2014-06-01

    Porous separator functions to electrically insulate the negative and positive electrodes yet communicate lithium ions between the two electrodes when infiltrated with a liquid electrolyte. The separator must fulfill numerous requirements (e.g. permeability, wettability, and thermal stability) in order to optimize the abuse tolerance and electrochemical performance of a battery. Non-woven mat separators have advantages such as high porosity and heat resistance. However, their applications in lithium ion batteries are very limited as their inadequate pore structures could cause accelerated battery performance degradation and even internal short. This work features the development of thermally stable non-woven composite separators using a low cost paper-making process. The composite separators offer significantly improved thermal dimensional stability and exhibit superior wettability by the liquid electrolyte compared to a conventional polypropylene separator. The open porous structures of the non-woven composite separators also resulted in high effective ionic conductivities. The electrochemical performance of the composite separators was tested in coin cells. Stable cycle performances and improved rate capabilities have been observed for the coin cells with these composite separators.

  5. Unusual phonon behavior and ultra-low thermal conductance of monolayer InSe.

    PubMed

    Zhou, Hangbo; Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2017-12-21

    Monolayer indium selenide (InSe) possesses numerous fascinating properties, such as high electron mobility, quantum Hall effect and anomalous optical response. However, its phonon properties, thermal transport properties and the origin of its structural stability remain unexplored. Using first-principles calculations, we show that the atoms in InSe are highly polarized and such polarization causes strong long-range dipole-dipole interaction (DDI). For acoustic modes, DDI is essential for maintaining its structural stability. For optical modes, DDI causes a significant frequency shift of its out-of-phase vibrations. Surprisingly, we observed that there were two isolated frequency regimes, which were completely separated from other frequency regimes with large frequency gaps. Within each frequency regime, only a single phonon mode exists. We further reveal that InSe possesses the lowest thermal conductance among the known two-dimensional materials due to the low cut-off frequency, low phonon group velocities and the presence of large frequency gaps. These unique behaviors of monolayer InSe can enable the fabrication of novel devices, such as thermoelectric module, single-mode phonon channel and phononic laser.

  6. Correlation of anisotropy and directional conduction in β-Li 3PS 4 fast Li + conductor

    DOE PAGES

    Chen, Yan; Cai, Lu; Liu, Zengcai; ...

    2015-07-06

    Our letter reports the correlation of anisotropy and directional conduction in the fast Li + conductor β-Li 3PS 4, one of the low-symmetry crystalline electrolyte candidates. The material has both high conductivity and good stability that serves well for the large-scale energy storage applications of all-solid-state lithium ion batteries. The anisotropic physical properties, demonstrated here by the thermal expansion coefficients, are crucial for compatibility in the solid-state system and battery performance. Neutron and X-ray powder diffraction measurements were done to determine the crystal structure and thermal stability. Moreover, the crystallographic b-axis was revealed as a fast expansion direction, while negligiblemore » thermal expansion was observed along the a-axis around the battery operating temperatures. The anisotropic behavior has its structural origin from the Li + conduction channels with incomplete Li occupancy and a flexible connection of LiS 4 and PS 4 tetrahedra within the framework. This indicates a strong correlation in the direction of the ionic transport in the low-symmetry Li + conductor.« less

  7. The role of glycosylation and domain interactions in the thermal stability of human angiotensin-converting enzyme.

    PubMed

    O'Neill, Hester G; Redelinghuys, Pierre; Schwager, Sylva L U; Sturrock, Edward D

    2008-09-01

    The N and C domains of somatic angiotensin-converting enzyme (sACE) differ in terms of their substrate specificity, inhibitor profiling, chloride dependency and thermal stability. The C domain is thermally less stable than sACE or the N domain. Since both domains are heavily glycosylated, the effect of glycosylation on their thermal stability was investigated by assessing their catalytic and physicochemical properties. Testis ACE (tACE) expressed in mammalian cells, mammalian cells in the presence of a glucosidase inhibitor and insect cells yielded proteins with altered catalytic and physicochemical properties, indicating that the more complex glycans confer greater thermal stabilization. Furthermore, a decrease in tACE and N-domain N-glycans using site-directed mutagenesis decreased their thermal stability, suggesting that certain N-glycans have an important effect on the protein's thermodynamic properties. Evaluation of the thermal stability of sACE domain swopover and domain duplication mutants, together with sACE expressed in insect cells, showed that the C domain contained in sACE is less dependent on glycosylation for thermal stabilization than a single C domain, indicating that stabilizing interactions between the two domains contribute to the thermal stability of sACE and are decreased in a C-domain-duplicating mutant.

  8. Investigating the Thermal and Phase Stability of Nanocrystalline Ni-W Produced by Electrodeposition, Sputtering, and Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Marvel, Christopher Jonathan

    The development of nanocrystalline materials has been increasingly pursued over the last few decades. They have been shown to exhibit superior properties compared to their coarse-grain counterparts, and thus present a tremendous opportunity to revolutionize the performance of nanoscale devices or bulk structural materials. However, nanocrystalline materials are highly prone to grain growth, and if the nanocrystalline grains coarsen, the beneficial properties are lost. There is a strong effort to determine the most effective thermal stability mechanisms to avoid grain growth, but the physical nature of nanocrystalline grain growth is still unclear due to a lack of detailed understanding of nanocrystalline microstructures. Furthermore, the influence of contamination has scarcely been explored with advanced transmission electron microscopy techniques, nor has there been a direct comparison of alloys fabricated with different bulk processes. Therefore, this research has applied aberration-corrected scanning transmission electron microscopy to characterize nanocrystalline Ni-W on the atomic scale and elucidate the physical grain growth behavior. Three primary objectives were pursued: (1) explore the thermal stability mechanisms of nanocrystalline Ni-W, (2) evaluate the phase stability of Ni-W and link any findings to grain growth behavior, and (3) compare the influences of bulk fabrication processing, including electrodeposition, DC magnetron sputtering, and mechanical alloying, on the thermal stability and phase stability of Ni-W. Several thermal stability mechanisms were identified throughout the course of this research. First and foremost, W-segregation was scarcely observed to grain boundaries, and it is unclear if W-segregation improves thermal stability contrary to most reports in the 2 literature. Long-range Ni4W chemical ordering was observed in alloys with more than 20 at.% W, and it is likely Ni4W domains reduce grain boundary mobility. In addition, lattice diffusivity calculations conceptually suggested that increasing W alloying concentrations can decrease the grain growth rate. The strongest evidence of grain growth stagnation was via nanoscale oxide particle drag in highly contaminated electrodeposited alloys. Interestingly, W-segregation was also detected to the oxide phase boundaries and revealed a potential indirect mechanism of thermal stability. The phase stability of pure and contaminated Ni-W alloys was investigated with density functional theory. Primarily, the calculations suggested that the intermetallic phases NiW and NiW2 are thermodynamically unstable, meaning the binary phase diagram is incorrect, but the ternary carbides Ni 6W6C and Ni2W4C are stable. Several Ni-W binary and Ni-W-C ternary phase diagrams were constructed using a simplified CALPHAD approach to improve the understanding of Ni-W phase stability. Lastly, it was determined that the fabrication process greatly influences the impurity types and concentrations of the alloys, and therefore greatly dictate which thermal stability mechanisms are active. Mechanically alloyed samples were found to be the most resistant to grain growth. The findings of this research will hopefully guide future efforts to design more thermally stable nanocrystalline alloys. The link between phase stability and grain growth behavior of Ni-W was thoroughly discussed, as well as the dependence of bulk fabrication processing on the contamination found in the alloys. Ultimately, this research has greatly expanded the general understanding of nanocrystalline Ni-W microstructures, and it is likely that similar phenomena occur in other nanocrystalline systems.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Enyuan; Wang, Xuelong; Yu, Xiqian

    The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less

  10. Thermal stability and structural characterization of organic/inorganic hybrid nonlinear optical material containing a two-dimensional chromophore.

    PubMed

    Chang, Po-Hsun; Tsai, Hsieh-Chih; Chen, Yu-Ren; Chen, Jian-Yu; Hsiue, Ging-Ho

    2008-10-21

    In this study, two nonlinear optic hybrid materials with different dimensional alkoxysilane dyes were prepared and characterized. One NLO silane (Cz2PhSO 2OH- TES), a two-dimensional structure based on carbazole, had a larger rotational volume than the other (DR19-TES). Second harmonic ( d 33) analysis verified there is an optimum heating process for the best poling efficiency. The maximum d 33 value of NLO hybrid film containing Cz2PhSO 2OH was obtained for 10.7 pm/V after precuring at 150 degrees C for 3 h and poling at 210 degrees C for 60 min. The solid-state (29)Si NMR spectrum shows that the main factor influencing poling efficiency and thermal stability was cross-linking degree of NLO silane, but not that of TMOS. In particular, the two-dimensional sol-gel system has a greater dynamic and temporary stability than the one-dimensional system due to Cz2PhSO 2OH-TES requiring a larger volume to rotate in the hybrid matrix after cross-linking.

  11. Existence, stability, and nonlinear dynamics of detached Bridgman growth states under zero gravity

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Derby, Jeffrey J.

    2011-01-01

    A thermocapillary model is used to study the existence, stability, and nonlinear dynamics of detached melt crystal growth in a vertical Bridgman system under zero gravity conditions. The model incorporates time-dependent heat, mass, and momentum transport, and accounts for temperature-dependent surface tension effects at the menisci bounding the melt. The positions of the menisci and phase-change boundary are computed to satisfy the conservation laws rigorously. A rich bifurcation structure in gap width versus pressure difference is uncovered, demarcating conditions under which growth with a stable gap is feasible. Thermal effects shift the bifurcation diagram to a slightly different pressure range, but do not alter its general structure. Necking and freeze-off are shown to be two different manifestations of the same instability mechanism. Supercooling of melt at the meniscus and low thermal gradients in the melt ahead of the crystal-melt-gas triple phase line, either of which may be destabilizing, are both observed under some conditions. The role of wetting and growth angles in dynamic shape stability is clarified.

  12. Synthesis, fluorescence, TGA and crystal structure of thiazolyl-pyrazolines derived from chalcones

    NASA Astrophysics Data System (ADS)

    Suwunwong, T.; Chantrapromma, S.; Fun, H.-K.

    2015-04-01

    Thiazolyl-pyrazolines 3a-3d were synthesized in a three step procedure using chalcones as starting materials and characterized by FT-IR, UV-Vis, and 1H NMR techniques. The crystal structure of compound 3a was also determined by X-ray diffraction analysis. Compound 3a crystallized out in the orthorhombic P212121 space group with the unit cell dimensions: a = 5.2106(2) Å, b = 12.4341(5) Å, c = 33.3254(13) Å, α = β = γ = 90°, V = 2159.12(15) Å3, Z = 4, D cald = 1.372 M gm-3 and F(000) = 928. Fluorescence of 3a-3d were studied in solid state and acetonitrile solution. It was found that, these compounds exhibit the green fluorescence light (506-508 nm) in both solid and solution states. The pH stability on fluorescence property and the thermal gravimetric analysis of compound 3a were specifically carried out. It was revealed that 3a shows high thermal stability up to around 250°C and presenting high stability in various pH ranges in the acetonitrilewater matrix.

  13. State-of-the-Art Study for High-speed Deceleration and Stabilization Devices

    NASA Technical Reports Server (NTRS)

    Alexander, W. C.; Lau, R. A.

    1966-01-01

    Documented aerodynamic deployable decelerator performance data above Mach 1. 0 is presented. The state of the art of drag and stability characteristics for reentry and recovery applications is defined for a wide range of decelerator configurations. Structural and material data and other design information also are presented. Emphasis is given to presentation of basic aero, thermal, and structural design data, which points out basic problem areas and voids in existing technology. The basic problems and voids include supersonic "buzzing" of towed porous decelerators in the wake of the forebody, the complete lack of dynamic stability data, and the general lack of aerothermal data at speeds above Mach 5.

  14. Protein thermal stabilization in aqueous solutions of osmolytes.

    PubMed

    Bruździak, Piotr; Panuszko, Aneta; Jourdan, Muriel; Stangret, Janusz

    2016-01-01

    Proteins' thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared with FTIR hydration studies' results. Selected osmolytes increased lysozyme's thermal stability in the following order: Gly>NMG>TMAO≈DMG>TMG. Theoretical calculations (DFT) showed clearly that osmolytes' amino group protons and water molecules interacting with them played a distinctive role in protein thermal stabilization. The results brought us a step closer to the exact mechanism of protein stabilization by osmolytes.

  15. Effects of thermal cycling on graphie-fiber-reinforced 6061 aluminum

    NASA Technical Reports Server (NTRS)

    Dries, G. A.; Tompkins, S. S.

    1986-01-01

    Graphite-reinforced aluminum alloy metal-matrix composites are among materials being considered for structural components in dimensionally stable space structures. This application requires materials with low values of thermal expansions and high specific stiffnesses. They must remain stable during exposures to the space environment for periods extending to 20 years. The effects of thermal cycling on the thermal expansion behavior and mechanical properties of Thornel P100 graphite 6061 aluminum composites, as fabricated and after thermal processing to eliminate thermal strain hysteresis, have been investigated. Two groups of composites were studied: one was fabricated by hot roll bonding and the other by diffusion bonding. Processing significantly reduced strain hysteresis during thermal cycling in both groups and improved the ultimate tensile strength and modulus in the diffusion-bonded composites. Thermal cycling stabilized the as-fabricated composites by reducing the residual fabrication stress and increased the matrix strength by metallurgical aging. Thermal expansion behavior of both groups after processing was insensitive to thermal cycling. Data scatter was too large to determine effects of thermal cycling on the mechanical properties. The primary effects of processing and thermal cycling can be attributed to changes in the metallurgical condition and stress state of the matrix.

  16. Multi-Functional BN-BN Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Bryant, Robert G. (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Gibbons, Luke (Inventor); Lowther, Sharon (Inventor); Thibeault, Sheila A. (Inventor); Fay, Catharine C. (Inventor)

    2017-01-01

    Multifunctional Boron Nitride nanotube-Boron Nitride (BN-BN) nanocomposites for energy transducers, thermal conductors, anti-penetrator/wear resistance coatings, and radiation hardened materials for harsh environments. An all boron-nitride structured BN-BN composite is synthesized. A boron nitride containing precursor is synthesized, then mixed with boron nitride nanotubes (BNNTs) to produce a composite solution which is used to make green bodies of different forms including, for example, fibers, mats, films, and plates. The green bodies are pyrolized to facilitate transformation into BN-BN composite ceramics. The pyrolysis temperature, pressure, atmosphere and time are controlled to produce a desired BN crystalline structure. The wholly BN structured materials exhibit excellent thermal stability, high thermal conductivity, piezoelectricity as well as enhanced toughness, hardness, and radiation shielding properties. By substituting with other elements into the original structure of the nanotubes and/or matrix, new nanocomposites (i.e., BCN, BCSiN ceramics) which possess excellent hardness, tailored photonic bandgap and photoluminescence, result.

  17. Structural, microstructural and thermal analysis of U-(6-x)Zr-xNb alloys (x = 0, 2, 4, 6)

    NASA Astrophysics Data System (ADS)

    Kaity, Santu; Banerjee, Joydipta; Parida, S. C.; Bhasin, Vivek

    2018-06-01

    Uranium-rich U-Zr-Nb alloy is considered as a good alternative fuel for fast reactors from the perspective of excellent dimensional stability and desired thermo-physical properties to achieve higher burnup. Detailed investigations related to the structural and microstructural characterization, thermal expansion, phase transformation, microhardness were carried out on U-6Zr, U-4Zr-2Nb, U-2Zr-4Nb and U-6Nb alloys (composition in wt%) where the total amount of alloying elements was restricted to 6 wt%. Structural, microstructural and thermal analysis studies revealed that these alloys undergo a series of transformations from high temperature bcc γ-phase to a variety of equilibrium and intermediate phases depending upon alloy composition, cooling rate and quenching. The structural analysis was carried out by Rietveld refinement. The data of U-Nb and U-Zr-Nb alloys have been highlighted and compared with binary U-Zr alloy.

  18. Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials.

    PubMed

    Fang, Guiyin; Li, Hui; Chen, Zhi; Liu, Xu

    2010-09-15

    Flame retardant n-hexadecane/silicon dioxide (SiO(2)) composites as thermal energy storage materials were prepared using sol-gel methods. In the composites, n-hexadecane was used as the phase change material for thermal energy storage, and SiO(2) acted as the supporting material that is fire resistant. In order to further improve flame retardant property of the composites, the expanded graphite (EG) was added in the composites. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine chemical structure, crystalloid phase and microstructure of flame retardant n-hexadecane/SiO(2) composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the n-hexadecane was well dispersed in the porous network of the SiO(2). The DSC results indicated that the melting and solidifying latent heats of the composites are 147.58 and 145.10 kJ/kg when the mass percentage of the n-hexadecane in the composites is 73.3%. The TGA results showed that the loading of the EG increased the charred residue amount of the composites at 700 degrees C, contributing to the improved thermal stability of the composites. It was observed from SEM photographs that the homogeneous and compact charred residue structure after combustion improved the flammability of the composites. Copyright 2010 Elsevier B.V. All rights reserved.

  19. A Thermal and Electrical Analysis of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Vafai, Kambiz

    1997-01-01

    The state-of-art power semiconductor devices require a thorough understanding of the thermal behavior for these devices. Traditional thermal analysis have (1) failed to account for the thermo-electrical interaction which is significant for power semiconductor devices operating at high temperature, and (2) failed to account for the thermal interactions among all the levels involved in, from the entire device to the gate micro-structure. Furthermore there is a lack of quantitative studies of the thermal breakdown phenomenon which is one of the major failure mechanisms for power electronics. This research work is directed towards addressing. Using a coupled thermal and electrical simulation, in which the drift-diffusion equations for the semiconductor and the energy equation for temperature are solved simultaneously, the thermo-electrical interactions at the micron scale of various junction structures are thoroughly investigated. The optimization of gate structure designs and doping designs is then addressed. An iterative numerical procedure which incorporates the thermal analysis at the device, chip and junction levels of the power device is proposed for the first time and utilized in a BJT power semiconductor device. In this procedure, interactions of different levels are fully considered. The thermal stability issue is studied both analytically and numerically in this research work in order to understand the mechanism for thermal breakdown.

  20. Implications of recent research on microstructure modifications, through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, metabolic characteristics and nutrition in cool-climate cereal grains and other types of seeds with advanced molecular techniques.

    PubMed

    Ying, Yuguang; Zhang, Huihua; Yu, Peiqiang

    2018-02-16

    The cutting-edge synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy have recently been developed. These novel techniques are able to reveal structure features at cellular and molecular levels with the tested tissues being intact. However, to date, the advanced techniques are unfamiliar or unknown to food and feed scientists and have not been used to study the molecular structure changes in cool-climate cereal grain seeds and other types of bio-oil and bioenergy seeds. This article aims to provide some recent research in cool-climate cereal grains and other types of seeds on molecular structures and metabolic characteristics of carbohydrate and protein, and implication of microstructure modification through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, and nutrition with advanced molecular techniques- synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy in the areas of (1) Inherent microstructure of cereal grain seeds; (2) The nutritional values of cereal grains; (3) Impact and modification of heat-related processing to cereal grain; (4) Conventional nutrition evaluation methodology; (5) Synchrotron radiation-based and globar-sourced vibrational (micro)-spectroscopy for molecular structure study and molecular thermal stability and mobility, and (6) Recent molecular spectroscopic technique applications in research on raw, traits altered and processed cool-climate cereal grains and other types of seeds. The information described in this article gives better insights of research progress and update in cool-climate cereal grains and other seeds with advanced molecular techniques.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Bhadbhade, Mohan; Karatchevtseva, Inna

    Three new coordination polymers of uranium(VI) with pyromellitic acid (H{sub 4}btca) have been synthesized and structurally characterized. (ED)[(UO{sub 2})(btca)]·(DMSO)·3H{sub 2}O (1) (ED=ethylenediammonium; DMSO=dimethylsulfoxide) has a lamellar structure with intercalation of ED and DMSO. (NH{sub 4}){sub 2}[(UO{sub 2}){sub 6}O{sub 2}(OH){sub 6}(btca)]·~6H{sub 2}O (2) has a 3D framework built from 7-fold coordinated uranyl trinuclear units and btca ligands with 1D diamond-shaped channels (~8.5 Å×~8.6 Å). [(UO{sub 2}){sub 2}(H{sub 2}O)(btca)]·4H{sub 2}O (3) has a 3D network constructed by two types of 7-fold coordinated uranium polyhedron. The unique μ{sub 5}-coordination mode of btca in 3 enables the formation of 1D olive-shaped large channels (~4.5more » Å×~19 Å). Vibrational modes, thermal stabilities and fluorescence properties have been investigated. - Graphical abstract: Table of content: three new uranium(VI) coordination polymers with pyromellitic acid (H{sub 4}btca) have been synthesized via room temperature and hydrothermal synthesis methods, and structurally characterized. Two to three dimensional (3D) frameworks are revealed. All 3D frameworks have unique 1D large channels. Their vibrational modes, thermal stabilities and photoluminescence properties have been investigated. - Highlights: • Three new coordination polymers of U(VI) with pyromellitic acid (H{sub 4}btca). • Structures from a 2D layer to 3D frameworks with unique 1D channels. • Unusual µ{sub 5}-(η{sub 1}:η{sub 2}:η{sub 1}:η{sub 2:}η{sub 1}) coordination mode of btca ligand. • Vibrational modes, thermal stabilities and luminescent properties reported.« less

  2. Study of thermal stability of Cu{sub 2}Se thermoelectric material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohra, Anil, E-mail: anilbohra786@gmail.com; Bhatt, Ranu; Bhattacharya, Shovit

    2016-05-23

    Sustainability of thermoelectric parameter in operating temperature range is a key consideration factor for fabricating thermoelectric generator or cooler. In present work, we have studied the stability of thermoelectric parameter of Cu{sub 2}Se within the temperature range of 50-800°C. Temperature dependent Seebeck coefficients and electrical resistivity measurement are performed under three continuous thermal cycles. X-ray diffraction pattern shows the presence of mixed cubic-monoclinic Cu{sub 2}Se phase in bare pellet which transforms to pure α-Cu{sub 2}Se phase with repeating thermal cycle. Significant enhancement in Seebeck coefficient and electrical resistivity is observed which may be attributed to (i) Se loss observed inmore » EDS and (ii) the phase transformation from mixed cubic-monoclinic structure to pure monoclinic α-Cu{sub 2}Se phase.« less

  3. Kinetics and Mechanism of in situ Simultaneous Formation of Metal Nanoparticles in Stabilizing Polymer Matrix

    NASA Astrophysics Data System (ADS)

    Pomogailo, Anatolii D.; Dzhardimalieva, Gulzhian I.; Rozenberg, Aleksander S.; Muraviev, Dmitri N.

    2003-12-01

    The kinetic peculiarities of the thermal transformations of unsaturated metal carboxylates (transition metal acrylates and maleates as well as their cocrystallites) and properties of metal-polymer nanocomposites formed have been studied. The composition and structure of metal-containing precursors and the products of the thermolysis were identified by X-ray analysis, optical and electron microscopy, magnetic measurements, EXAFS, IR and mass spectroscopy. The thermal transformations of metal-containing monomers studied are the complex process including dehydration, solid phase polymerization, and thermolysis process which proceed at varied temperature ranges. At 200-300°C the rate of thermal decay can be described by first-order equations. The products of decompositions are nanometer-sized particles of metal or its oxides with a narrow size distribution (the mean particle diameter of 5-10nm) stabilized by the polymer matrix.

  4. Fabrication and characterization of poly (bisphenol A borate) with high thermal stability

    NASA Astrophysics Data System (ADS)

    Wang, Shujuan; Wang, Xiao; Jia, Beibei; Jing, Xinli

    2017-01-01

    In this work, poly (bisphenol A borate) (PBAB), which has excellent thermal resistance and a high char yield, was synthesized via a convenient A2 + B3 strategy by using bisphenol A (BPA) and boric acid (BA). The chemical reaction between BPA and BA and the chemical structure of PBAB were investigated. The results demonstrate that PBAB consists of aromatic, Ph-O-B and B-O-B structures, as well as a small number of boron hydroxyl groups and phenolic hydroxyl groups. The thermal properties of PBAB were studied by DMA and TGA. The results indicate that the glass transition temperature and char yield are gradually enhanced by increasing the boron content, where the char yield of PBAB at 800 °C in nitrogen (N2) reaches up to 71.3%. It is of particular importance that PBAB show excellent thermal resistance in N2 and air atmospheres. By analysing the pyrolysis of PBAB, the high char yield of PBAB can be attributed to the formation of boron oxide and boron carbide at high temperatures, which reduced the release of volatile carbon dioxide and improved the thermal stability of the carbonization products. This study provides a new perspective on the design of novel boron-containing polymers and possesses significant potential for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  5. Improved contact resistance stability in a MEMS separable electrical connector

    NASA Astrophysics Data System (ADS)

    Larsson, M. P.

    2005-12-01

    A MEMS in-line separable electrical connector with improved contact resistance stability to thermal fluctuations and mating cycles is described. The design allows sliding, in-line connection between separate halves, inducing vertical deflections on a set of flexible conductors to establish stable electrical contacts. Features are present on both halves to ensure precise lateral and vertical self-alignment; preventing shorts and maintaining consistent conductor deflections. Characterisation on early prototypes revealed significant variability in contact resistance with thermal fluctuations and mating cycle history. As flexible conductors are multi-layered structures of Au supported by a thick structural layer of Ni, they undergo differential thermal expansion, introducing variability in contact resistance with temperature. Sliding contact wear during repeated mating leads to removal of portions of the Au surface coating, and electrical contact between underlying (non-noble) Ni layers. By using a harder Co-Au alloy as the contact surface layer and modifying the arrangement of constituent conductor layers to balance thermal stresses, improvements to both wear and thermal tolerance of contact resistance can be obtained. Devices implementing the above design modifications show stable contact resistance over 100 mating cycles and an increase in contact resistance of between 3.5 and 7% over a temperature rise of 60°C. The electrical performance improvements increase the attractiveness of the MEMS in-line separable connector concept for applications in portable electronics and MEMS integration.

  6. In situ soft XAS study on nickel-based layered cathode material at elevated temperatures: A novel approach to study thermal stability

    DOE PAGES

    Yoon, Won -Sub; Yang, Xiao -Qing; Haas, Otto; ...

    2014-10-29

    Tracking thermally induced reactions has always been challenging for electrode materials of electrochemical battery systems. Traditionally, a variety of calorimetric techniques and in situ XRD at elevated temperatures has been used to evaluate the thermal stability of electrode materials. These techniques are capable of providing variations in heat capacity, mass and average bulk composition of materials only. Herein, we report investigation of thermal characteristics of Li 0.33Ni 0.8Co 0.15Al 0.05O 2 by using in situ soft XAS measurements in combination with XRD. Fluorescence yield and partial electron yield measurements are used simultaneously to obtain element selective surface and bulk information.more » Fluorescence yield measurements reveal no energy change of the absorption peak and thus no valence state change in the bulk. However, electron yield measurements indicate that NiO-type rock salt structure is formed at the surface at temperatures above 200°C while no evidence for a surface reaction near Co sites in investigated temperature range is found. These results clearly show that in situ soft XAS can give a unique understanding of the role of each element in the structural transformation under thermal abuse offering a useful guidance in developing new battery system with improved safety performance.« less

  7. How do bendy straws bend? A study of re-configurability of multi-stable corrugated shells

    NASA Astrophysics Data System (ADS)

    Bende, Nakul; Selden, Sarah; Evans, Arthur; Santangelo, Christian; Hayward, Ryan

    Shape programmable systems have evolved to allow for reconfiguration of structures through a variety of mechanisms including swelling, stress-relaxation, and thermal expansion. Particularly, there has been a recent interest in systems that exhibit bi-stability or multi-stability to achieve transformation between two or more pre-programmed states. Here, we study the ubiquitous architecture of corrugated shells, such as drinking straws or bellows, which has been well known for centuries. Some of these structures exhibit almost continuous stability amongst a wide range of reconfigurable shapes, but the underlying mechanisms are not well understood. To understand multi-stability in `bendy-straw' structures, we study the unit bi-conical segment using experiments and finite element modeling to elucidate the key geometrical and mechanical factors responsible for its multi-stability. The simple transformations of a unit segment - a change in length or angle can impart complex re-configurability of a structure containing many of these units. The fundamental understanding provided of this simple multi-stable building block could yield improvements in shape re-configurability for a wide array of applications such as corrugated medical tubing, robotics, and deployable structures. NSF EFRI ODISSEI-1240441.

  8. Engineering Proteins for Thermostability with iRDP Web Server

    PubMed Central

    Ghanate, Avinash; Ramasamy, Sureshkumar; Suresh, C. G.

    2015-01-01

    Engineering protein molecules with desired structure and biological functions has been an elusive goal. Development of industrially viable proteins with improved properties such as stability, catalytic activity and altered specificity by modifying the structure of an existing protein has widely been targeted through rational protein engineering. Although a range of factors contributing to thermal stability have been identified and widely researched, the in silico implementation of these as strategies directed towards enhancement of protein stability has not yet been explored extensively. A wide range of structural analysis tools is currently available for in silico protein engineering. However these tools concentrate on only a limited number of factors or individual protein structures, resulting in cumbersome and time-consuming analysis. The iRDP web server presented here provides a unified platform comprising of iCAPS, iStability and iMutants modules. Each module addresses different facets of effective rational engineering of proteins aiming towards enhanced stability. While iCAPS aids in selection of target protein based on factors contributing to structural stability, iStability uniquely offers in silico implementation of known thermostabilization strategies in proteins for identification and stability prediction of potential stabilizing mutation sites. iMutants aims to assess mutants based on changes in local interaction network and degree of residue conservation at the mutation sites. Each module was validated using an extensively diverse dataset. The server is freely accessible at http://irdp.ncl.res.in and has no login requirements. PMID:26436543

  9. Engineering Proteins for Thermostability with iRDP Web Server.

    PubMed

    Panigrahi, Priyabrata; Sule, Manas; Ghanate, Avinash; Ramasamy, Sureshkumar; Suresh, C G

    2015-01-01

    Engineering protein molecules with desired structure and biological functions has been an elusive goal. Development of industrially viable proteins with improved properties such as stability, catalytic activity and altered specificity by modifying the structure of an existing protein has widely been targeted through rational protein engineering. Although a range of factors contributing to thermal stability have been identified and widely researched, the in silico implementation of these as strategies directed towards enhancement of protein stability has not yet been explored extensively. A wide range of structural analysis tools is currently available for in silico protein engineering. However these tools concentrate on only a limited number of factors or individual protein structures, resulting in cumbersome and time-consuming analysis. The iRDP web server presented here provides a unified platform comprising of iCAPS, iStability and iMutants modules. Each module addresses different facets of effective rational engineering of proteins aiming towards enhanced stability. While iCAPS aids in selection of target protein based on factors contributing to structural stability, iStability uniquely offers in silico implementation of known thermostabilization strategies in proteins for identification and stability prediction of potential stabilizing mutation sites. iMutants aims to assess mutants based on changes in local interaction network and degree of residue conservation at the mutation sites. Each module was validated using an extensively diverse dataset. The server is freely accessible at http://irdp.ncl.res.in and has no login requirements.

  10. Effects of cathode thickness and thermal treatment on the design of balanced blue light-emitting polymer device

    NASA Astrophysics Data System (ADS)

    Chin, Byung Doo; Duan, Lian; Kim, Moo-Hyun; Lee, Seong Taek; Chung, Ho Kyoon

    2004-11-01

    The interface between layered conjugated polymer and electrode is a most important factor to improve the performance and lifetime of polymeric light-emitting devices (PLEDs). In this work, a blue PLED with improved stability was achieved by the combination of optimized cathode structure as well as thermal treatment of light-emitting polymer (LEP). Experimental evidence of the initial luminance "settling in" stage was found to be dependent upon the cathode structure, while the long-term slope of luminance as a function of elapsed time is governed by the annealing conditions. Our study revealed the importance of extrinsic design of device for the improvement of PLED stability. Experimental data shows that a blue PLED annealed at 170°C and 6nm LiF at LiF /Ca/Al cathode retained the best lifetime, which can be explained by the improved polymer-metal interface and LEP's charge mobility.

  11. Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives

    DOE PAGES

    Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M; ...

    2016-06-23

    In this work we investigated the feasibility of five quaternary (aprotic) and four tertiary (protic) ammonium ionic liquids (ILs) with an identical organophosphate anion as lubricant antiwear additives. Viscosity, oil solubility, thermal stability, and corrosivity of the candidate ILs were characterized and correlated to the molecular structure. The protic group exhibits higher oil solubility than the aprotic group, and longer alkyl chains seem to provide better oil solubility and higher thermal stability. Selected ILs were applied as oil additives in steel-cast iron tribological tests and demonstrated promising anti-scuffing and anti-wear functionality. The thickness, nanostructure, coverage and composition of the tribofilmmore » formed by the besting performing IL were revealed by surface characterization for mechanistic understanding of the tribochemical interactions between the IL and metal surface. Results provide fundamental insights of the correlations among the molecular structure, physiochemical properties and lubricating performance for ammonium-phosphate ILs.« less

  12. Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M

    In this work we investigated the feasibility of five quaternary (aprotic) and four tertiary (protic) ammonium ionic liquids (ILs) with an identical organophosphate anion as lubricant antiwear additives. Viscosity, oil solubility, thermal stability, and corrosivity of the candidate ILs were characterized and correlated to the molecular structure. The protic group exhibits higher oil solubility than the aprotic group, and longer alkyl chains seem to provide better oil solubility and higher thermal stability. Selected ILs were applied as oil additives in steel-cast iron tribological tests and demonstrated promising anti-scuffing and anti-wear functionality. The thickness, nanostructure, coverage and composition of the tribofilmmore » formed by the besting performing IL were revealed by surface characterization for mechanistic understanding of the tribochemical interactions between the IL and metal surface. Results provide fundamental insights of the correlations among the molecular structure, physiochemical properties and lubricating performance for ammonium-phosphate ILs.« less

  13. Low-temperature phase transitions in a soluble oligoacene and their effect on device performance and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, J. W.; Goetz, K. P.; Obaid, A.

    The use of organic semiconductors in high-performance organic field-effect transistors requires a thorough understanding of the effects that processing conditions, thermal, and bias-stress history have on device operation. Here, we evaluate the temperature dependence of the electrical properties of transistors fabricated with 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene, a material that has attracted much attention recently due to its exceptional electrical properties. We have discovered a phase transition at T = 205 K and discuss its implications on device performance and stability. We examined the impact of this low-temperature phase transition on the thermodynamic, electrical, and structural properties of both single crystals and thin films of this material.more » Our results show that while the changes to the crystal structure are reversible, the induced thermal stress yields irreversible degradation of the devices.« less

  14. Thermal characterization of Titan's tholins by simultaneous TG-MS, DTA, DSC analysis

    NASA Astrophysics Data System (ADS)

    Nna-Mvondo, Delphine; de la Fuente, José L.; Ruiz-Bermejo, Marta; Khare, Bishun; McKay, Christopher P.

    2013-09-01

    Three samples of Titan's tholins synthesized in laboratory under simulated Titan's conditions and presenting different degrees of exposure to ambient atmosphere have been used to study in detail their thermal behavior using thermogravimetry coupled with a mass spectrometer (TG-MS), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). The degradation of Titan's tholins under inert atmosphere follows a three-step consecutive decomposition: a drying stage (>150 °C) where moisture is desorbed, this stage indicated the high hydrophilicity of the tholins; a second stage, the main pyrolysis stage (150-575 °C) where endothermic decomposition begins releasing mainly ammonia, HCN, acetonitrile, and methane over a broad temperature range. Few other hydrocarbon fragments such as ethylene and propane are released but no cyclic molecules, aliphatic or aromatic, are observed. The last stage (>575 °C) is the carbonization of the material leading to a non-crystalline graphitic residue. The thermal degradation under oxygen atmosphere shows the same stages as in argon, with a shift of the thermogravimetric peaks toward lower temperatures indicating a lower thermal stability. The last stage in this case is an oxidative combustion of the char residue. This research concludes that even if Titan tholins, subjected to air contamination for few minutes to several years (varying with the storage conditions) transform to produce different C/N and C/O ratios and thermal stabilities, they undergo the same thermal degradation phases and products. This suggests that the studied three tholins have a similar main chemical structure which does not alter by the air exposure. We discuss on the possible nature of this structure.

  15. Anharmonic contribution to the stabilization of Mg(OH)2 from first principles.

    PubMed

    Treviño, P; Garcia-Castro, A C; López-Moreno, S; Bautista-Hernández, A; Bobocioiu, E; Reynard, B; Caracas, R; Romero, A H

    2018-06-20

    Geometrical and vibrational characterization of magnesium hydroxide was performed using density functional theory. Four possible crystal symmetries were explored: P3[combining macron] (No. 147, point group -3), C2/m (No. 12, point group 2), P3m1 (No. 156, point group 3m) and P3[combining macron]m1 (No. 164, point group -3m) which are the currently accepted geometries found in the literature. While a lot of work has been performed on Mg(OH)2, in particular for the P3[combining macron]m1 phase, there is still a debate on the observed ground state crystal structure and the anharmonic effects of the OH vibrations on the stabilization of the crystal structure. In particular, the stable positions of hydrogen are not yet defined precisely, which have implications in the crystal symmetry, the vibrational excitations, and the thermal stability. Previous work has assigned the P3[combining macron]m1 polymorph as the low energy phase, but it has also proposed that hydrogens are disordered and they could move from their symmetric position in the P3[combining macron]m1 structure towards P3[combining macron]. In this paper, we examine the stability of the proposed phases by using different descriptors. We compare the XRD patterns with reported experimental results, and a fair agreement is found. While harmonic vibrational analysis shows that most phases have imaginary modes at 0 K, anharmonic vibrational analysis indicates that at room temperature only the C2/m phase is stabilized, whereas at higher temperatures, other phases become thermally competitive.

  16. Homology modeling reveals the structural background of the striking difference in thermal stability between two related [NiFe]hydrogenases.

    PubMed

    Szilágyi, András; Kovács, Kornél L; Rákhely, Gábor; Závodszky, Péter

    2002-02-01

    Hydrogenases are redox metalloenzymes in bacteria that catalyze the uptake or production of molecular hydrogen. Two homologous nickel-iron hydrogenases, HupSL and HydSL from the photosynthetic purple sulfur bacterium Thiocapsa roseopersicina, differ substantially in their thermal stabilities despite the high sequence similarity between them. The optimum temperature of HydSL activity is estimated to be at least 50 degrees C higher than that of HupSL. In this work, homology models of both proteins were constructed and analyzed for a number of structural properties. The comparison of the models reveals that the higher stability of HydSL can be attributed to increased inter-subunit electrostatic interactions: the homology models reliably predict that HydSL contains at least five more inter-subunit ion pairs than HupSL. The subunit interface of HydSL is more polar than that of HupSL, and it contains a few extra inter-subunit hydrogen bonds. A more optimized cavity system and amino acid replacements resulting in increased conformational rigidity may also contribute to the higher stability of HydSL. The results are in accord with the general observation that with increasing temperature, the role of electrostatic interactions in protein stability increases. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00894-001-0071-8.

  17. Brownian dynamics of sterically-stabilized colloidal suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TeGrotenhuis, W.E.; Radke, C.J.; Denn, M.M.

    1994-02-01

    One application where microstructure plays a critical role is in the production of specialty ceramics, where colloidal suspensions act as precursors; here the microstructure influences the structural, thermal, optical and electrical properties of the ceramic products. Using Brownian dynamics, equilibrium and dynamic properties are calculated for colloidal suspensions that are stabilized through the Milner, Witten and Cates (1988) steric potential. Results are reported for osmotic pressures, radial distributions functions, static structure factors, and self-diffusion coefficients. The sterically-stabilized systems are also approximated by equivalent hard spheres, with good agreement for osmotic pressure and long-range structure. The suitability of the potential tomore » model the behavior of a real system is explored by comparing static structure factors calculated from Brownian dynamics simulations to those measured using SANS. Finally, the effects of Hamaker and hydrodynamic forces on calculated properties are investigated.« less

  18. Molecular basis of thermal stability in truncated (2/2) hemoglobins.

    PubMed

    Bustamante, Juan P; Bonamore, Alessandra; Nadra, Alejandro D; Sciamanna, Natascia; Boffi, Alberto; Estrin, Darío A; Boechi, Leonardo

    2014-07-01

    Understanding the molecular mechanism through which proteins are functional at extreme high and low temperatures is one of the key issues in structural biology. To investigate this phenomenon, we have focused on two instructive truncated hemoglobins from Thermobifida fusca (Tf-trHbO) and Mycobacterium tuberculosis (Mt-trHbO); although the two proteins are structurally nearly identical, only the former is stable at high temperatures. We used molecular dynamics simulations at different temperatures as well as thermal melting profile measurements of both wild type proteins and two mutants designed to interchange the amino acid residue, either Pro or Gly, at E3 position. The results show that the presence of a Pro at the E3 position is able to increase (by 8°) or decrease (by 4°) the melting temperature of Mt-trHbO and Tf-trHbO, respectively. We observed that the ProE3 alters the structure of the CD loop, making it more flexible. This gain in flexibility allows the protein to concentrate its fluctuations in this single loop and avoid unfolding. The alternate conformations of the CD loop also favor the formation of more salt-bridge interactions, together augmenting the protein's thermostability. These results indicate a clear structural and dynamical role of a key residue for thermal stability in truncated hemoglobins. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Evaluation of Thermal Stability of Ausferrite in Austempered Ductile Iron Using Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Warsinski, Karl C.

    Austempered Ductile Iron (ADI) is prone to changes in microstructure and mechanical properties when exposed to elevated service temperatures. Differential Scanning Calorimetry has been used to evaluate the stabilizing effects of copper, nickel, molybdenum, and cobalt on the ausferrite structure. Previous studies have conflated the effects of various alloy additions, and little effort has been made to systematically catalog the effects of individual elements. The focus of the current research has been to identify alloying elements that more strongly stabilize the ausferrite structure in order to improve service life of ADI at elevated temperatures. Nickel has been shown to have a moderate stabilizing effect, while copper and molybdenum cause a much sharper increase in activation energy. Cobalt has a high stabilizing effect at 0.5% addition by weight, but a further increase to 2.36% results in a slight decrease in activation energy.

  20. Thermal behavior of extracted and delignified pine wood flour

    Treesearch

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark; Yongming Fan; Rebecca E. Ibach

    2014-01-01

    To investigate the effect of extractives and lignin on the thermal stability of wood flour (WF), thermogravimetric analysis was used to determine thermal degradation behavior of extracted and delignified mixed pine WF. The contribution of lignin to thermal stability was greater than that of extractives. Removing extractives resulted in improved thermal stability by...

  1. System overview on electromagnetic compensation for reflector antenna surface distortion

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.; Zaman, A. J.; Terry, J. D.

    1993-01-01

    The system requirements and hardware implementation for electromagnetic compensation of antenna performance degradations due to thermal effects was investigated. Future commercial space communication antenna systems will utilize the 20/30 GHz frequency spectrum and support very narrow multiple beams (0.3 deg) over wide angle field of view (15-20 beamwidth). On the ground, portable and inexpensive very small aperture terminals (VSAT) for transmitting and receiving video, facsimile and data will be employed. These types of communication system puts a very stringent requirement on spacecraft antenna beam pointing stability (less than .01 deg), high gain (greater than 50 dB) and very lowside lobes (less than -25 dB). Thermal analysis performed on the advanced communication technology satellite (ACTS) has shown that the reflector surfaces, the mechanical supporting structures and metallic surfaces on the spacecraft body will distort due thermal effects from a varying solar flux. The antenna performance characteristics (e.g., pointing stability, gain, side lobe, etc.) will degrade due to thermal distortion in the reflector surface and supporting structures. Specifically, antenna RF radiation analysis has shown that pointing error is the most sensitive antenna performance parameter to thermal distortions. Other antenna parameters like peak gain, cross polarization level (beam isolation), and side lobe level will also degrade with thermal distortions. In order to restore pointing stability and in general antenna performance several compensation methods were proposed. In general these compensation methods can be classified as being either of mechanical or electromagnetic type. This paper will address only the later one. In this approach an adaptive phased array antenna feed is used to compensate for the antenna performance degradation. Extensive work has been devoted to demonstrate the feasibility of adaptive feed compensation on space communication antenna systems. This paper addresses the system requirements for such a system and identify candidate technologies (analog and digital) for possible hardware implementation.

  2. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage.

    PubMed

    Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad

    2013-04-29

    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.

  3. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage

    PubMed Central

    Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad

    2013-01-01

    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems. PMID:28809232

  4. Synthesis of Polyimides Produced from Novel High Temperature Polyhedral Oligomeric Silsesquioxane Dianilines

    DTIC Science & Technology

    2009-03-26

    spacecraft materials including solar arrays, thermal insulation blankets , and space inflatable structures, and in components in modern aircraft. PIs are...well known for their thermal stability but are prone to long-term oxidative degadation and are notorious for having hygrothermal issues, especially...applications such as circuit-printing 61ms and semiconductor coatings in the micmle~tronics industry1, spacecraft materials2 including solar arrays, thennal

  5. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2003-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  6. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    1990-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  7. Fluorescence-based thermal shift data on multidrug regulator AcrR from Salmonella enterica subsp. entrica serovar Typhimurium str. LT2.

    PubMed

    Manjasetty, Babu A; Halavaty, Andrei S; Luan, Chi-Hao; Osipiuk, Jerzy; Mulligan, Rory; Kwon, Keehwan; Anderson, Wayne F; Joachimiak, Andrzej

    2016-06-01

    The fluorescence-based thermal shift (FTS) data presented here include Table S1 and Fig. S1, and are supplemental to our original research article describing detailed structural, FTS, and fluorescence polarization analyses of the Salmonella enterica subsp. entrica serovar Typhimurium str. LT2 multidrug transcriptional regulator AcrR (StAcrR) (doi:10.1016/j.jsb.2016.01.008) (Manjasetty et al., 2015 [1]). Table S1 contains chemical formulas, a Chemical Abstracts Service (CAS) Registry Number (CAS no.), FTS rank (a ligand with the highest rank) has the largest difference in the melting temperature (ΔT m), and uses as drug molecules against various pathological conditions of sixteen small-molecule ligands that increase thermal stability of StAcrR. Thermal stability of human enolase 1, a negative control protein, was not affected in the presence of various concentrations of the top six StAcrR binders (Fig. S1).

  8. JWST ISIM Primary Structure and Kinematic Mount Configuration

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew; Carnahan, Tim; Hendricks, Steve; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz

    2004-01-01

    In this presentation we will review the evolution of the ISIM primary structure tube topology and kinematic mount configuration to the current baseline concept. We will also show optimization procedures used and challenges resulting from complex joints under launch loads. Two additional key ISIM structure challenges of meeting thermal distortion and stability requirements and metal-composite bonded joint survivability at cryogenic temperatures are covered in other presentations.

  9. Origin of negative thermal expansion in Zn2GeO4 revealed by high pressure study

    NASA Astrophysics Data System (ADS)

    Cheng, Xuerui; Yuan, Jie; Zhu, Xiang; Yang, Kun; Liu, Miao; Qi, Zeming

    2018-03-01

    Zn2GeO4, as an open-framework structure compound, exhibits negative thermal expansion (NTE) below room temperature. In this work, we investigated the structural stability and phonon modes employing the x-ray diffraction and Raman spectroscopy under high pressure up to 23.0 GPa within a diamond anvil cell, and we observed that a pressure-induced irreversible amorphization took place around 10.1 GPa. Bulk modulus, pressure coefficients, and Grüneisen parameters were measured for the initial rhombohedral structure. Several low-frequency rigid-unit modes are found to have negative Grüneisen parameter, which accounts for the primary part of NTE in Zn2GeO4. These results further confirm the hypothesis that the pressure-induced amorphization and the negative thermal expansion are correlated phenomena.

  10. Thermal and urea-induced unfolding in T7 RNA polymerase: Calorimetry, circular dichroism and fluorescence study

    PubMed Central

    Griko, Yuri; Sreerama, Narasimha; Osumi-Davis, Patricia; Woody, Robert W.; Woody, A-Young Moon

    2001-01-01

    Structural changes in T7 RNA polymerase (T7RNAP) induced by temperature and urea have been studied over a wide range of conditions to obtain information about the structural organization and the stability of the enzyme. T7RNAP is a large monomeric enzyme (99 kD). Calorimetric studies of the thermal transitions in T7RNAP show that the enzyme consists of three cooperative units that may be regarded as structural domains. Interactions between these structural domains and their stability strongly depend on solvent conditions. The unfolding of T7RNAP under different solvent conditions induces a highly stable intermediate state that lacks specific tertiary interactions, contains a significant amount of residual secondary structure, and undergoes further cooperative unfolding at high urea concentrations. Circular dichroism (CD) studies show that thermal unfolding leads to an intermediate state that has increased β-sheet and reduced α-helix content relative to the native state. Urea-induced unfolding at 25°C reveals a two-step process. The first transition centered near 3 M urea leads to a plateau from 3.5 to 5.0 M urea, followed by a second transition centered near 6.5 M urea. The CD spectrum of the enzyme in the plateau region, which is similar to that of the enzyme thermally unfolded in the absence of urea, shows little temperature dependence from 15° to 60°C. The second transition leads to a mixture of poly(Pro)II and unordered conformations. As the temperature increases, the ellipticity at 222 nm becomes more negative because of conversion of poly(Pro)II to the unordered conformation. Near-ultraviolet CD spectra at 25°C at varying concentrations of urea are consistent with this picture. Both thermal and urea denaturation are irreversible, presumably because of processes that follow unfolding. PMID:11274475

  11. Effect of tungsten on the phase-change properties of Ge8Sb2Te11 thin films for the phase-change device

    NASA Astrophysics Data System (ADS)

    Park, Cheol-Jin; Kong, Heon; Lee, Hyun-Yong; Yeo, Jong-Bin

    2017-07-01

    In this study, the electrical, optical, and structural properties of tungsten (W)-doped Ge8Sb2Te11 thin films were investigated. Previously, GeSbTe alloys were doped with various materials in an attempt to improve the thermal stability. Ge8Sb2Te11 and W-doped Ge8Sb2Te11 films with a thickness of 200 nm were fabricated by using an RF magnetron reactive co-sputtering system at room temperature on Si ( p-type, 100) and glass substrate. The fabricated thin films were annealed in a furnace in the 0 - 400 ° C temperature range. The optical properties were analyzed using a UV-Vis-IR spectrophotometer, and by using Beer's Law equation, the optical-energy band gap ( E op ), slope B 1/2, and slope 1/ F were calculated. For the crystalline materials, an increase in the slope B 1/2 and 1/ F was observed, exhibiting a good effect on the thermal stability in the amorphous state after the phase change. The structural properties were analyzed by X-ray diffraction, and the result showed that the W-doped Ge8Sb2Te11 had a face-centered-cubic (fcc) crystalline structure increased crystallization temperature ( T c ). An increase in the T c increased the thermal stability in the amorphous state. The electrical properties were analyzed using a 4-point probe, exhibiting an increase in the sheet resistance ( R s ) in the amorphous and the crystalline states indicating a reduced programming current in the memory device.

  12. Understanding the Thermal Stability of Palladium–Platinum Core–Shell Nanocrystals by In Situ Transmission Electron Microscopy and Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vara, Madeline; Roling, Luke T.; Wang, Xue

    Core–shell nanocrystals offer many advantages for heterogeneous catalysis, including precise control over both the surface structure and composition, as well as reduction in loading for rare and costly metals. Although many catalytic processes are operated at elevated temperatures, the adverse impacts of heating on the shape and structure of core–shell nanocrystals are yet to be understood. In this work, we used ex situ heating experiments to demonstrate that Pd@Pt 4L core–shell nanoscale cubes and octahedra are promising for catalytic applications at temperatures up to 400 °C. We also used in situ transmission electron microscopy to monitor the thermal stability ofmore » the core–shell nanocrystals in real time. Our results demonstrate a facet dependence for the thermal stability in terms of shape and composition. Specifically, the cubes enclosed by {100} facets readily deform shape at a temperature 300 °C lower than that of the octahedral counterparts enclosed by {111} facets. A reversed trend is observed for composition, as alloying between the Pd core and the Pt shell of an octahedron occurs at a temperature 200 °C lower than that for the cubic counterpart. Density functional theory calculations provide atomic-level explanations for the experimentally observed behaviors, demonstrating that the barriers for edge reconstruction determine the relative ease of shape deformation for cubes compared to octahedra. Furthermore, the opposite trend for alloying of the core–shell structure can be attributed to a higher propensity for subsurface Pt vacancy formation in octahedra than in cubes.« less

  13. Understanding the Thermal Stability of Palladium–Platinum Core–Shell Nanocrystals by In Situ Transmission Electron Microscopy and Density Functional Theory

    DOE PAGES

    Vara, Madeline; Roling, Luke T.; Wang, Xue; ...

    2017-05-09

    Core–shell nanocrystals offer many advantages for heterogeneous catalysis, including precise control over both the surface structure and composition, as well as reduction in loading for rare and costly metals. Although many catalytic processes are operated at elevated temperatures, the adverse impacts of heating on the shape and structure of core–shell nanocrystals are yet to be understood. In this work, we used ex situ heating experiments to demonstrate that Pd@Pt 4L core–shell nanoscale cubes and octahedra are promising for catalytic applications at temperatures up to 400 °C. We also used in situ transmission electron microscopy to monitor the thermal stability ofmore » the core–shell nanocrystals in real time. Our results demonstrate a facet dependence for the thermal stability in terms of shape and composition. Specifically, the cubes enclosed by {100} facets readily deform shape at a temperature 300 °C lower than that of the octahedral counterparts enclosed by {111} facets. A reversed trend is observed for composition, as alloying between the Pd core and the Pt shell of an octahedron occurs at a temperature 200 °C lower than that for the cubic counterpart. Density functional theory calculations provide atomic-level explanations for the experimentally observed behaviors, demonstrating that the barriers for edge reconstruction determine the relative ease of shape deformation for cubes compared to octahedra. Furthermore, the opposite trend for alloying of the core–shell structure can be attributed to a higher propensity for subsurface Pt vacancy formation in octahedra than in cubes.« less

  14. Understanding the Thermal Stability of Palladium-Platinum Core-Shell Nanocrystals by In Situ Transmission Electron Microscopy and Density Functional Theory.

    PubMed

    Vara, Madeline; Roling, Luke T; Wang, Xue; Elnabawy, Ahmed O; Hood, Zachary D; Chi, Miaofang; Mavrikakis, Manos; Xia, Younan

    2017-05-23

    Core-shell nanocrystals offer many advantages for heterogeneous catalysis, including precise control over both the surface structure and composition, as well as reduction in loading for rare and costly metals. Although many catalytic processes are operated at elevated temperatures, the adverse impacts of heating on the shape and structure of core-shell nanocrystals are yet to be understood. In this work, we used ex situ heating experiments to demonstrate that Pd@Pt 4L core-shell nanoscale cubes and octahedra are promising for catalytic applications at temperatures up to 400 °C. We also used in situ transmission electron microscopy to monitor the thermal stability of the core-shell nanocrystals in real time. Our results demonstrate a facet dependence for the thermal stability in terms of shape and composition. Specifically, the cubes enclosed by {100} facets readily deform shape at a temperature 300 °C lower than that of the octahedral counterparts enclosed by {111} facets. A reversed trend is observed for composition, as alloying between the Pd core and the Pt shell of an octahedron occurs at a temperature 200 °C lower than that for the cubic counterpart. Density functional theory calculations provide atomic-level explanations for the experimentally observed behaviors, demonstrating that the barriers for edge reconstruction determine the relative ease of shape deformation for cubes compared to octahedra. The opposite trend for alloying of the core-shell structure can be attributed to a higher propensity for subsurface Pt vacancy formation in octahedra than in cubes.

  15. Native Cellulose: Structure, Characterization and Thermal Properties

    PubMed Central

    Poletto, Matheus; Ornaghi Júnior, Heitor L.; Zattera, Ademir J.

    2014-01-01

    In this work, the relationship between cellulose crystallinity, the influence of extractive content on lignocellulosic fiber degradation, the correlation between chemical composition and the physical properties of ten types of natural fibers were investigated by FTIR spectroscopy, X-ray diffraction and thermogravimetry techniques. The results showed that higher extractive contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the thermal stability of the lignocellulosic fibers studied. On the other hand, the thermal decomposition of natural fibers is shifted to higher temperatures with increasing the cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of natural fibers. This study showed that through the methods used, previous information about the structure and properties of lignocellulosic fibers can be obtained before use in composite formulations. PMID:28788179

  16. Spectroscopic and calorimetric characterization of spermine oxidase and its association forms.

    PubMed

    Leonetti, Alessia; Cervoni, Laura; Polticelli, Fabio; Kanamori, Yuta; Yurtsever, Zuleyha Nihan; Agostinelli, Enzo; Mariottini, Paolo; Stano, Pasquale; Cervelli, Manuela

    2017-12-14

    Spermine oxidase (SMOX) is a flavin-containing enzyme that oxidizes spermine to produce spermidine, 3-aminopropanaldehyde, and hydrogen peroxide. SMOX has been shown to play key roles in inflammation and carcinogenesis; indeed, it is differentially expressed in several human cancer types. Our previous investigation has revealed that SMOX purified after heterologous expression in Escherichia coli actually consists of monomers, covalent homodimers, and other higher-order forms. All association forms oxidize spermine and, after treatment with dithiothreitol, revert to SMOX monomer. Here, we report a detailed investigation on the thermal denaturation of SMOX and its association forms in native and reducing conditions. By combining spectroscopic methods (circular dichroism, fluorescence) and thermal methods (differential scanning calorimetry), we provide new insights into the structure, the transformation, and the stability of SMOX. While the crystal structure of this protein is not available yet, experimental results are interpreted also on the basis of a novel SMOX structural model, obtained in silico exploiting the recently solved acetylspermine oxidase crystal structure. We conclude that while at least one specific intermolecular disulfide bond links two SMOX molecules to form the homodimer, the thermal denaturation profiles can be justified by the presence of at least one intramolecular disulfide bond, which also plays a critical role in the stabilization of the overall three-dimensional SMOX structure, and in particular of its flavin adenine dinucleotide-containing active site. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. Optical limiting in gelatin stabilized Cu-PVP nanocomposite colloidal suspension

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Thakare, N. B.; Talwatkar, S. S.; Sunatkari, A. L.; Muley, G. G.

    2018-05-01

    This article illustrates investigations on optical limiting properties of Cu-PVP nanocomposite colloidal suspension. Gelatin stabilized Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD), Ultraviolet-visible (UV-vis) spectroscopy, etc. for structural and linear optical studies. Optical limiting properties of Colloidal Cu-PVP nanocomposites have been investigated at 808 nm diode CW laser. Minimum optical limiting threshold was found for GCu3-PVP nanocomposites sample. The strong optical limiting is thermal in origin as CW laser is used and effects are attributed to thermal lensing effect.

  18. Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study

    NASA Astrophysics Data System (ADS)

    Zilnyk, K. D.; Pradeep, K. G.; Choi, P.; Sandim, H. R. Z.; Raabe, D.

    2017-08-01

    Oxide-dispersion strengthened materials are important candidates for several high-temperature structural applications in advanced nuclear power plants. Most of the desirable mechanical properties presented by these materials are due to the dispersion of stable nanoparticles in the matrix. Samples of ODS-Eurofer steel were annealed for 4320 h (6 months) at 800 °C. The material was characterized using atom probe tomography in both conditions (prior and after heat treatment). The particles number density, size distribution, and chemical compositions were determined. No significant changes were observed between the two conditions indicating a high thermal stability of the Y-rich nanoparticles at 800 °C.

  19. Synthesis and characterization of processable polyimides with enhanced thermal stability

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1987-01-01

    Many of the emerging applications of polymers on space vehicles require materials with outstanding thermal stability. These polymers must also be readily processable in order to facilitate their use. The syntheses and polymerization of a cardo dianhydride were investigated. This monomer was prepared via the reaction of N-methyl 4-nitrophthalimide with a cardo diol. Polyimides containing oxyalkylene linkages were studied. The effects of two additional structural modifications on the polymers' properties were investigated. The effects of carrying out the preparation of poly(amic acid)s under non-equilibrium conditions were examined. Approaches that were investigated included the in-situ neutralization of the generated amic acid and its in-situ esterification.

  20. Flame structure and stabilization in miniature liquid film combustors

    NASA Astrophysics Data System (ADS)

    Pham, Trinh Kim

    Liquid-fueled miniature combustion systems can be promising portable power devices when high specific power and long operation duration are required. A uniquely viable fueling option for small scale combustion is to introduce the liquid fuel as a film on the combustor walls. As one example of such systems, this dissertation characterizes 1-cm-diameter tubular combustors fed by liquid fuel films, and seeks to identify the mechanisms by which flames are stabilized within them. Early experimental work demonstrates that flame behavior is dependent upon steadiness in fuel and air injection and in geometric symmetry and uniformity. Significant discoveries in later work include the impact of direct strain on the flame by the airflow, the fact that no local recirculation zone appears to exist for stabilization as was previously believed, and that the film thickness, uniformity, and location directly affect the flame's characteristics and stability. A gradient in film thickness is required for stable operation, and this requirement may explain why the combustor maintains overall rich conditions. Initial numerical simulations of two-dimensional cold and reacting flows in a simplified model of the combustor yields flame shape and flow field results that do not match experiments in the burning case, therefore suggesting that local turbulence in the fuel injection region provides the necessary degree of mixing. A three-dimensional model of the combustor is needed if reacting flows are to be simulated accurately. It was also found that thermal conduction from the chamber exit to the chamber base plays an important role in fuel vaporization and the stability of the flame. Consequently, flames cannot be sustained in quartz and other transparent but thermally insulating materials for the selected geometry, so observation of the flame's entire structure cannot be accomplished without either the addition of other flameholding elements or the employment of a more thermally conductive chamber material. Such a material is sapphire, and successful operation of a chamber constructed from tubes of sapphire and other metals upon a steel base permitted the identification of stable operational envelopes for materials of various thermal conductivities. The sapphire chamber also allowed for chemiluminescence measurements, and a combination of flame observations, exit temperature measurements, and supporting evidence provided in literature demonstrate conclusively that the flame is stabilized at its ignition point by a triple flame structure created when the fuel rich zone near the wall film fades to a fuel lean region near the center of the chamber.

  1. First-principles study on structural, thermal, mechanical and dynamic stability of T'-MoS2.

    PubMed

    Liu, Y C; Wang, V; Xia, M G; Zhang, S L

    2017-03-08

    Using first-principles density functional theory calculations, we investigate the structure, stability, optical modes and electronic band gap of a distorted tetragonal MoS 2 monolayer (T'-MoS 2 ). Our simulated scanning tunnel microscopy (STM) images of T'-MoS 2 are dramatically similar to those STM images which were identified as K x (H 2 O) y MoS 2 from a previous experimental study. This similarity suggests that T'-MoS 2 might have already been experimentally observed, but due to being unexpected was misidentified. Furthermore, we verify the stability of T'-MoS 2 from the thermal, mechanical and dynamic aspects, by ab initio molecular dynamics simulation, elastic constants evaluation and phonon band structure calculation based on density functional perturbation theory, respectively. In addition, we calculate the eigenfrequencies and eigenvectors of the optical modes of T'-MoS 2 at [Formula: see text] point and distinguish their Raman and infrared activity by pointing out their irreducible representations using group theory. At the same time, we compare the Raman modes of T'-MoS 2 with those of H-MoS 2 and T-MoS 2 . Our results provide useful guidance for further experimental identification and characterization of T'-MoS 2 .

  2. Structural and biophysical characterization of the α-carbonic anhydrase from the gammaproteobacterium Thiomicrospira crunogena XCL-2: insights into engineering thermostable enzymes for CO2 sequestration.

    PubMed

    Díaz-Torres, Natalia A; Mahon, Brian P; Boone, Christopher D; Pinard, Melissa A; Tu, Chingkuang; Ng, Robert; Agbandje-McKenna, Mavis; Silverman, David; Scott, Kathleen; McKenna, Robert

    2015-08-01

    Biocatalytic CO2 sequestration to reduce greenhouse-gas emissions from industrial processes is an active area of research. Carbonic anhydrases (CAs) are attractive enzymes for this process. However, the most active CAs display limited thermal and pH stability, making them less than ideal. As a result, there is an ongoing effort to engineer and/or find a thermostable CA to fulfill these needs. Here, the kinetic and thermal characterization is presented of an α-CA recently discovered in the mesophilic hydrothermal vent-isolate extremophile Thiomicrospira crunogena XCL-2 (TcruCA), which has a significantly higher thermostability compared with human CA II (melting temperature of 71.9°C versus 59.5°C, respectively) but with a tenfold decrease in the catalytic efficiency. The X-ray crystallographic structure of the dimeric TcruCA shows that it has a highly conserved yet compact structure compared with other α-CAs. In addition, TcruCA contains an intramolecular disulfide bond that stabilizes the enzyme. These features are thought to contribute significantly to the thermostability and pH stability of the enzyme and may be exploited to engineer α-CAs for applications in industrial CO2 sequestration.

  3. Comparison between rice husk ash grown in different regions for stabilizing fly ash from a solid waste incinerator.

    PubMed

    Benassi, L; Bosio, A; Dalipi, R; Borgese, L; Rodella, N; Pasquali, M; Depero, L E; Bergese, P; Bontempi, E

    2015-08-15

    The Stabilization of heavy metals from municipal solid waste incineration (MSWI) fly ash by rice husk ash (RHA) is under intense study as an effective strategy to recover and reuse industrial and agricultural waste together. We compare the metal entrapment performances of RHA from different Asian rice sources – namely from Japonica rice grown in Italy and Indica rice grown in India – Physicochemical and morphological characterization of the final stabilized material show that the same thermal treatment may result in marked structural differences in the silica contained in the two RHA. Remarkably, one of them displays a crystalline silica content, although obtained by a thermal treatment below 800 °C. We also find that the presence of an alkali metal ion (potassium) in the rice husk plays a crucial role in the attainment of the final silica phase. These physicochemical differences are mirrored by different stabilization yields by the two RHA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass

    PubMed Central

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-01-01

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant. PMID:26658671

  5. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass.

    PubMed

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-12-14

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant.

  6. Structural, optical and thermal characterization of PVC/SnO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Taha, T. A.; Ismail, Z.; Elhawary, M. M.

    2018-04-01

    The structural, optical, and thermal properties of PVC/SnO2 nanocomposites were investigated. XRD patterns were used to explore the structures of these prepared samples. Optical UV-Vis measurements were analyzed to calculate the spectroscopic optical constants of the prepared PVC/SnO2 nanocomposites. Both direct and indirect optical band gaps decreased with increasing SnO2 content. The refractive index, high frequency dielectric constant, plasma frequency, and optical conductivity values increased with SnO2. The single oscillator energy increased from 5.64 to 10.97 eV and the dispersion energy increased from 6.35 to 19.80 eV with the addition of SnO2. The other optical parameters such as optical moments, single oscillator strength, volume energy loss, and surface energy loss were calculated for different SnO2 concentrations. Raman spectra of the PVC/SnO2 nanocomposite films revealed the characteristic vibrational modes of PVC and surface phonon modes of SnO2. The thermal stability of PVC/SnO2 nanocomposite films was studied using DTA and thermogravimetric analysis. The glass transition ( T g) values abruptly changed from 46 °C for PVC to an average value of 59 °C for the polymer films doped with 2.0, 4.0, and 6.0 wt% SnO2. The weight loss decreased as the SnO2 concentration increased in the temperature range of 350-500 °C, corresponding to enhanced thermal stability.

  7. Diagnostics and control of wavenumber stability and purity of tunable diode lasers relevant to their use as local oscillators in heterodyne systems

    NASA Technical Reports Server (NTRS)

    Poultney, S.; Chen, D.; Steinberg, G.; Wu, F.; Pires, A.; Miller, M. D.; Mcnally, M.

    1980-01-01

    Initial operation of the tunable diode lasers (TDL) showed that it was not possible to adjust the wavenumber to one selected a priori in the TDL tuning range. During operation, the operating point would change by 0.1/cm over the longer term with even larger changes occurring during some thermal cycles. Most changes during thermal cycling required using lower temperatures and higher currents to reach the former wavenumber (when it could be reached). In many cases, an operating point could be selected by changing TDL current and temperature to give both the desired wavenumber and most of the power in a single mode. The selection procedure had to be used after each thermal cycling. Wavenumber nonlinearities of about 10% over a 0.5 cm tuning range were observed. Diagnostics of the single mode selected by a grating monochromator showed wavenumber fine structure under certain operating conditions. The characteristics due to the TDL environment included short term wavenumber stability, the instrument lineshape function, and intermediate term wavenumber stability.

  8. Investigation of thermal stability and spectroscopic properties in Er3+/Yb3+-codoped TeO2-Li2O-B2O3-GeO2 glasses.

    PubMed

    Nie, Qiu-Hua; Gao, Yuan; Xu, Tie-Feng; Shen, Xiang

    2005-06-01

    The new Er3+/Yb3+ co-doped 70TeO2-5Li2O-(25-x)B2O3-xGeO2 (x = 0, 5, 10, 15 fand 20 mol.%) glasses were prepared. The thermal stability, absorption spectra, emission spectra and lifetime of the 4I(13/2) level of Er3+ ions were measured and studied. The FT-IR spectra were carried out in order to investigate the structure of local arrangements in glasses. It is found that the thermal stability, absorption cross-section of Yb3+, emission intensity and lifetime of the 4I(13/2) level of Er3+ increase with increasing GeO2 content in the glass composition, while the fluorescence width at half maximum (FWHM) at 1.5 um of Er3+ is about 70 nm. The obtained data suggest that this system glass can be used as a candidate host material for potential broadband optical amplifiers.

  9. Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Cofield, Richard E.; Kasl, Eldon P.

    2011-01-01

    The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission in [180,680] GHz. SMLS, planned for the NRC Decadal Survey's Global Atmospheric Composition Mission, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. This provides better horizontal and temporal resolution and coverage than were possible with elevation-only scanning in the two previous MLS satellite instruments. SMLS is diffraction-limited in the vertical plane but highly astigmatic in the horizontal (beam aspect ratio approx. 1:20). Nadir symmetry ensures that beam shape is nearly invariant over plus or minus 65 deg azimuth. A low-noise receiver FOV is swept over the reflector system by a small azimuth-scanning mirror. We describe the fabrication and thermal-stability test of a composite demonstration primary reflector, having full 4m height and 1/3 the width planned for flight. Using finite-element models of reflectors and structure, we evaluate thermal deformations and optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during soak tests in a chamber. The test temperature range exceeds predicted orbital ranges by large factors, implying in-orbit thermal stability of 0.21 micron rms (root mean square)/C, which meets SMLS requirements.

  10. Vertical thermal structure of the Venus atmosphere from temperature and pressure measurements

    NASA Technical Reports Server (NTRS)

    Linkin, V. M.; Blamon, Z.; Lipatov, A. P.; Devyatkin, S. I.; Dyachkov, A. V.; Ignatova, S. I.; Kerzhanovich, V. V.; Malyk, K.; Stadny, V. I.; Sanotskiy, Y. V.

    1986-01-01

    Accurate temperature and pressure measurements were made on the Vega-2 lander during its entire descent. The temperature and pressure at the surface were 733 K and 89.3 bar, respectively. A strong temperature inversion was found in the upper troposphere. Several layers with differing static stability were visible in the atmospheric structure.

  11. Thermally induced degradation of sulfur-containing aliphatic glucosinolates in broccoli sprouts (Brassica oleracea var. italica) and model systems.

    PubMed

    Hanschen, Franziska S; Platz, Stefanie; Mewis, Inga; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W

    2012-03-07

    Processing reduces the glucosinolate (GSL) content of plant food, among other aspects due to thermally induced degradation. Since there is little information about the thermal stability of GSL and formation of corresponding breakdown products, the thermally induced degradation of sulfur-containing aliphatic GSL was studied in broccoli sprouts and with isolated GSL in dry medium at different temperatures as well as in aqueous medium at different pH values. Desulfo-GSL have been analyzed with HPLC-DAD, while breakdown products were estimated using GC-FID. Whereas in the broccoli sprouts structural differences of the GSL with regard to thermal stability exist, the various isolated sulfur-containing aliphatic GSL degraded nearly equally and were in general more stable. In broccoli sprouts, methylsulfanylalkyl GSL were more susceptible to degradation at high temperatures, whereas methylsulfinylalkyl GSL were revealed to be more affected in aqueous medium under alkaline conditions. Besides small amounts of isothiocyanates, the main thermally induced breakdown products of sulfur-containing aliphatic GSL were nitriles. Although they were most rapidly formed at comparatively high temperatures under dry heat conditions, their highest concentrations were found after cooking in acidic medium, conditions being typical for domestic processing.

  12. Structural design considerations for micromachined solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Srikar, V. T.; Turner, Kevin T.; Andrew Ie, Tze Yung; Spearing, S. Mark

    Micromachined solid-oxide fuel cells (μSOFCs) are among a class of devices being investigated for portable power generation. Optimization of the performance and reliability of such devices requires robust, scale-dependent, design methodologies. In this first analysis, we consider the structural design of planar, electrolyte-supported, μSOFCs from the viewpoints of electrochemical performance, mechanical stability and reliability, and thermal behavior. The effect of electrolyte thickness on fuel cell performance is evaluated using a simple analytical model. Design diagrams that account explicitly for thermal and intrinsic residual stresses are presented to identify geometries that are resistant to fracture and buckling. Analysis of energy loss due to in-plane heat conduction highlights the importance of efficient thermal isolation in microscale fuel cell design.

  13. Novel Multidisciplinary Models Assess the Capabilities of Smart Structures to Manage Vibration, Sound, and Thermal Distortion in Aeropropulsion Components

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1997-01-01

    The development of aeropropulsion components that incorporate "smart" composite laminates with embedded piezoelectric actuators and sensors is expected to ameliorate critical problems in advanced aircraft engines related to vibration, noise emission, and thermal stability. To facilitate the analytical needs of this effort, the NASA Lewis Research Center has developed mechanics and multidisciplinary computational models to analyze the complicated electromechanical behavior of realistic smart-structure configurations operating in combined mechanical, thermal, and acoustic environments. The models have been developed to accommodate the particular geometries, environments, and technical challenges encountered in advanced aircraft engines, yet their unique analytical features are expected to facilitate application of this new technology in a variety of commercial applications.

  14. Native fat globules of different sizes selected from raw milk: thermal and structural behavior.

    PubMed

    Michalski, Marie-Caroline; Ollivon, Michel; Briard, Valérie; Leconte, Nadine; Lopez, Christelle

    2004-12-01

    The aim of this study was to characterize differences in the thermal and structural behavior between different sized native milk fat globules. A novel microfiltration process permits the selection of native small fat globules (SFG, 1-3 microm) and large fat globules (LFG, >5 microm) in raw milk, that were analyzed by X-ray diffraction (XRD) coupled to differential scanning calorimetry (DSC). There were no major differences in triglyceride crystalline structures between SFG and LFG, after eliminating thermal history and the influence of cooling rates. The three main 3L and 2L crystalline structures appearing under slow cooling existed regardless of globule size. The supercooling increased for the SFG, mainly due to heterogeneous nucleation in winter milk, and also to compositional variations in spring milk. Differences appeared regarding stabilized crystalline forms at 20 degrees C and subsequent cooling: the SFG contained less 2L triglyceride structures than the LFG. These results can be important in dairy manufactures using tempering periods.

  15. Biophysical Characterization and Thermal Stability of Pneumococcal Histidine Triad Protein D in the Presence of Zinc and Manganese.

    PubMed

    Ausar, Salvador F; Jayasundara, Kavisha; Akawi, Lamees; Roque, Cristopher; Sheung, Anthony; Hu, Jian; Kirkitadze, Marina; Rahman, Nausheen

    2017-10-01

    The pneumococcal histidine triad protein D (PhtD) is believed to play a central role in pneumococcal metal ion homeostasis and has been proposed as a promising vaccine candidate against pneumococcal disease. To investigate for potential stabilizers, a panel of physiologically relevant metals was screened using the thermal shift assay and it was found that only Zn 2+ and Mn 2+ were able to increase PhtD melting temperature. Differential scanning calorimetry analysis revealed a sequential unfolding of PhtD and the presence of at least 3 independent folding domains that can be stabilized by Zn 2+ and Mn 2+ . UV spectroscopy and fluorescence quenching studies showed significant Zn 2+ -induced tertiary structure changes in PhtD characterized by decreased accessibility of inner tryptophan residues to the aqueous solvent. Isothermal titration calorimetry data show no apparent binding to Mn 2+ but revealed a Zn 2+ :PhtD exothermic interaction stoichiometry of 3:1 with strong enthalpic contribution, suggesting that 3 of the 5 histidine triads are accessible binding sites for Zn 2+ . Only Zn +2 , but not Mn +2 , was able to increase the thermal stability of PhtD in the presence of aluminum hydroxide adjuvant, making it a promising stabilizer excipient candidate in vaccine products containing PhtD. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Thermal static bending of deployable interlocked booms

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L.; Predmore, R. E.

    1973-01-01

    Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.

  17. Materials and structures

    NASA Astrophysics Data System (ADS)

    Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul

    1992-08-01

    Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.

  18. Thermal Properties of Oxides With Magnetoplumbite Structure for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2007-01-01

    Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 C. The average CTE value was found to be approx.9.6x10(exp -6)/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Thermal conductivity testing of LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma sprayed on NiCrAlY/Rene N5 superalloy substrates indicated resistance of these coatings to sintering even at temperatures as high as 1600 C.

  19. Electrical characteristics and thermal stability of HfO{sub 2} metal-oxide-semiconductor capacitors fabricated on clean reconstructed GaSb surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Noriyuki, E-mail: nori.miyata@aist.go.jp; Mori, Takahiro; Yasuda, Tetsuji

    2014-06-09

    HfO{sub 2}/GaSb interfaces fabricated by high-vacuum HfO{sub 2} deposition on clean reconstructed GaSb surfaces were examined to explore a thermally stable GaSb metal-oxide-semiconductor structure with low interface-state density (D{sub it}). Interface Sb-O bonds were electrically and thermally unstable, and post-metallization annealing at temperatures higher than 200 °C was required to stabilize the HfO{sub 2}/GaSb interfaces. However, the annealing led to large D{sub it} in the upper-half band gap. We propose that the decomposition products that are associated with elemental Sb atoms act as interface states, since a clear correlation between the D{sub it} and the Sb coverage on the initial GaSbmore » surfaces was observed.« less

  20. Nanostructure templating using low temperature atomic layer deposition

    DOEpatents

    Grubbs, Robert K [Albuquerque, NM; Bogart, Gregory R [Corrales, NM; Rogers, John A [Champaign, IL

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  1. Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization

    NASA Astrophysics Data System (ADS)

    Itobe, Hiroki; Nakagawa, Yosuke; Mizumoto, Yuta; Kangawa, Hiroi; Kakinuma, Yasuhiro; Tanabe, Takasumi

    2016-05-01

    We fabricated a calcium fluoride (CaF2) whispering gallery mode (WGM) microcavity with a computer controlled ultra-precision cutting process. We observed a thermo-opto-mechanical (TOM) oscillation in the CaF2 WGM microcavity, which may influence the stability of the optical output when the cavity is employed for Kerr comb generation. We studied experimentally and numerically the mechanism of the TOM oscillation and showed that it is strongly dependent on cavity diameter. In addition, our numerical study suggests that a microcavity structure fabricated with a hybrid material (i.e. CaF2 and silicon), which is compatible with an ultra-high Q and high thermal conductivity, will allow us to reduce the TOM oscillation and stabilize the optical output.

  2. Studies of neutron-rich nuclei far from stability at TRISTAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, R.L.

    The ISOL facility, TRISTAN, is a user facility located at Brookhaven National Laboratory's High Flux Beam Reactor. Short-lived, neutron-rich nuclei, far from stability, are produced by thermal neutron fission of /sup 235/U. An extensive array of experimental end stations are available for nuclear structure studies. These studies are augmented by a variety of long-lived ion sources suitable for use at a reactor facility. Some recent results at TRISTAN are presented as examples of using an ISOL facility to study series of nuclei, whereby an effective means of conducting nuclear structure investigations is available.

  3. Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity.

    PubMed

    Pang, Zhenqian; Gu, Xiaokun; Wei, Yujie; Yang, Ronggui; Dresselhaus, Mildred S

    2017-01-11

    Low-dimensional carbon allotropes, from fullerenes, carbon nanotubes, to graphene, have been broadly explored due to their outstanding and special properties. However, there exist significant challenges in retaining such properties of basic building blocks when scaling them up to three-dimensional materials and structures for many technological applications. Here we show theoretically the atomistic structure of a stable three-dimensional carbon honeycomb (C-honeycomb) structure with superb mechanical and thermal properties. A combination of sp 2 bonding in the wall and sp 3 bonding in the triple junction of C-honeycomb is the key to retain the stability of C-honeycomb. The specific strength could be the best in structural carbon materials, and this strength remains at a high level but tunable with different cell sizes. C-honeycomb is also found to have a very high thermal conductivity, for example, >100 W/mK along the axis of the hexagonal cell with a density only ∼0.4 g/cm 3 . Because of the low density and high thermal conductivity, the specific thermal conductivity of C-honeycombs is larger than most engineering materials, including metals and high thermal conductivity semiconductors, as well as lightweight CNT arrays and graphene-based nanocomposites. Such high specific strength, high thermal conductivity, and anomalous Poisson's effect in C-honeycomb render it appealing for the use in various engineering practices.

  4. Site preferences of actinide cations in [NZP] compounds

    NASA Astrophysics Data System (ADS)

    Hawkins, H. T.; Spearing, D. R.; Smith, D. M.; Hampel, F. G.; Veirs, D. K.; Scheetz, B. E.

    2000-07-01

    Compounds adopting the sodium dizirconium tris(phosphate) (NaZr2(PO4)3) structure type belong to the [NZP] structural family of compounds. [NZP] compounds possess desirable properties that would permit their application as hosts for the actinides. These properties include compositional flexibility (i.e., three structural sites that can accommodate a variety of different cations), high thermal stability, negligible thermal expansion, and resistance to radiation damage. Experimental data indicate that [NZP] compounds resist dissolution and release of constituents over a wide range of experimental conditions. Moreover, [NZP] compounds may be synthesized by both conventional and novel methods and may be heat treated or sintered at modest temperatures (800 °C-1350 °C) in open or restricted systems.

  5. Characteristics of mutants designed to incorporate a new ion pair into the structure of a cold adapted subtilisin-like serine proteinase.

    PubMed

    Sigurdardóttir, Anna Gudný; Arnórsdóttir, Jóhanna; Thorbjarnardóttir, Sigrídur H; Eggertsson, Gudmundur; Suhre, Karsten; Kristjánsson, Magnús M

    2009-03-01

    Structural comparisons of VPR, a subtilisin-like serine proteinase from a psychrotrophic Vibrio species and a thermophilic homologue, aqualysin I, have led us to hypothesize about the roles of different residues in the temperature adaptation of the enzymes. Some of these hypotheses are now being examined by analysis of mutants of the enzymes. The selected substitutions are believed to increase the stability of the cold adapted enzyme based on structural analysis of the thermostable structure. We report here on mutants, which were designed to incorporate an ion pair into the structure of VPR. The residues Asp17 and Arg259 are assumed to form an ion pair in aqualysin I. The cold adapted VPR contains Asn (Asn15) and Lys (Lys257) at corresponding sites in its structure. In VPR, Asn 15 is located on a surface loop with its side group pointing towards the side chain of Lys257. By substituting Asn15 by Asp (N15D) it was considered feasible that a salt bridge would form between the oppositely charged groups. To mimic further the putative salt bridge from the thermophile enzyme the corresponding double mutant (N15D/K257R) was also produced. The N15D mutation increased the thermal stability of VPR by approximately 3 degrees C, both in T(50%) and T(m). Addition of the K257R mutation did not however, increase the stability of the double mutant any further. Despite this stabilization of the VPR mutants the catalytic activity (k(cat)) against the substrate Suc-AAPF-NH-Np was increased in the mutants. Molecular dynamics simulations on wild type and the two mutant proteins suggested that indeed a salt bridge was formed in both cases. Furthermore, a truncated form of the N15D mutant (N15DDeltaC) was produced, lacking a 15 residue long C-terminal extended sequence not present in the thermophilic enzyme. In wild type VPR this supposedly moveable, negatively charged arm on the protein molecule might interfere with the new salt bridge introduced as a result of the N15D mutation. Removal of the C-terminal arm improved the thermal stability (T(m) approximately +1.5 degrees C) of the truncated enzyme (VPRDeltaC) as compared to the wild type VPR. Introduction of the N15D substitution into VPRDeltaC improved the thermal stability further by about 3 degrees C, or to about the same extent as in the wild type. However, contrary to what was observed for the wild type, the introduction of the putative salt bridge did not affect the catalytic properties (k(cat)) of the C-terminal truncated enzyme.

  6. A Simple Approach to Enhance the Water Stability of a Metal-Organic Framework.

    PubMed

    Shih, Yung-Han; Kuo, Yu-Ching; Lirio, Stephen; Wang, Kun-Yun; Lin, Chia-Her; Huang, Hsi-Ya

    2017-01-01

    A facile method to improve the feasibility of water-unstable metal-organic frameworks in an aqueous environment has been developed that involves imbedding in a polymer monolith. The effect of compartment type during polymerization plays a significant role in maintaining the crystalline structure and thermal stability of the MOFs, which was confirmed by powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA), respectively. The MOF-polymer composite prepared in a narrow compartment (column, ID 0.8 mm) has better thermal and chemical stability than that prepared in a broad compartment (vial, ID 7 mm). The developed MOF-polymer composite was applied as an adsorbent in solid-phase microextraction of nine non-steroidal anti-inflammatory drugs (NSAIDs) and could be used for extraction more than 30 times, demonstrating that the proposed approach has potential for industrial applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Predictive Thermal Control Applied to HabEx

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas E.

    2017-01-01

    Exoplanet science can be accomplished with a telescope that has an internal coronagraph or with an external starshade. An internal coronagraph architecture requires extreme wavefront stability (10 pm change/10 minutes for 10(exp -10) contrast), so every source of wavefront error (WFE) must be controlled. Analysis has been done to estimate the thermal stability required to meet the wavefront stability requirement. This paper illustrates the potential of a new thermal control method called predictive thermal control (PTC) to achieve the required thermal stability. A simple development test using PTC indicates that PTC may meet the thermal stability requirements. Further testing of the PTC method in flight-like environments will be conducted in the X-ray and Cryogenic Facility (XRCF) at Marshall Space Flight Center (MSFC).

  8. Predictive thermal control applied to HabEx

    NASA Astrophysics Data System (ADS)

    Brooks, Thomas E.

    2017-09-01

    Exoplanet science can be accomplished with a telescope that has an internal coronagraph or with an external starshade. An internal coronagraph architecture requires extreme wavefront stability (10 pm change/10 minutes for 10-10 contrast), so every source of wavefront error (WFE) must be controlled. Analysis has been done to estimate the thermal stability required to meet the wavefront stability requirement. This paper illustrates the potential of a new thermal control method called predictive thermal control (PTC) to achieve the required thermal stability. A simple development test using PTC indicates that PTC may meet the thermal stability requirements. Further testing of the PTC method in flight-like environments will be conducted in the X-ray and Cryogenic Facility (XRCF) at Marshall Space Flight Center (MSFC).

  9. Design and fabrication of absorber coupled TES microbolometers on continuous silicon-nitride windows.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C. L.; Carlstrom, J. E.; Datesman, A.

    2008-04-01

    The implementation of TES based microbolometer arrays will achieve unprecedented sensitivities for mm and sub-mm astronomy through fabrication of large format arrays and improved linearity and stability arising from strong electro-thermal feedback. We report on progress in developing TES microbolometers using Mo/Au thin films and Au absorbing structures. We present measurements of suppressing the thermal conductance through the etching of features on a continuous Silicon-Nitride window.

  10. Thermal Analysis and Microhardness Mapping in Hybrid Laser Welds in a Structural Steel

    DTIC Science & Technology

    2003-01-01

    conditions. Via the keyhole the laser beam brings about easier ignition of the arc, stabilization of the arc welding process, and penetration of the...with respect to the conventional GMAW or GTAW processes without the need for very close fit-up. This paper will compare an autogenous laser weld to a...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP017864 TITLE: Thermal Analysis and Microhardness Mapping in Hybrid Laser

  11. Thermal preparation of lysozyme-imprinted microspheres by using ionic liquid as a stabilizer.

    PubMed

    Qian, Li-Wei; Hu, Xiao-Ling; Guan, Ping; Gao, Bo; Wang, Dan; Wang, Chao-Li; Li, Ji; Du, Chun-Bao; Song, Wen-Qi

    2014-11-01

    Thermal preparation of lysozyme-imprinted microspheres was firstly investigated by using biocompatible ionic liquid (IL) as a thermal stabilizer. The imprinted microspheres made with IL could obtain the good recognition ability to template protein, whereas the imprinted polymer synthesized in the absence of it had a similar adsorption capacity to the non-imprinted one. Furthermore, the preparation conditions of imprinted polymers (MIPs) including the content of IL, temperature of polymerization, and types of functional monomers and crosslinkers were systematically analyzed via circular dichroism spectrum and activity assay. The results illustrated that using hydroxyethyl acrylate as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, 5 % IL as the stabilizer, and 75 °C as the reaction temperature could retain the structure of template protein as much as possible. The obtained MIPs showed excellent recognition ability to the template protein with the separation factor and selectivity factor value of 4.30 and 2.21, respectively. Consequently, it is an effective way to accurately imprint and separate template protein by cooperatively using circular dichroism spectroscopy and activity assay during the preparation of protein MIPs. The method of utilizing IL to stabilizing protein at high temperature would offer a good opportunity for various technologies to improve the development of macromolecules imprinting.

  12. Thermal perturbation correlation of calcium binding Human centrin 3 and its structural changes

    NASA Astrophysics Data System (ADS)

    Pastrana-Rios, Belinda

    2014-07-01

    Perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy was applied for the determination of the individual transition temperatures of different vibrational modes located within structural components of a calcium binding protein known as Human centrin 3. This crucial information served to understand the contribution individual calcium binding sites made towards the stability of the EF-hand and therefore the protein without the use of probes. We are convinced that the general application of PCMW2D correlation spectroscopy can be applied to the study of proteins in general to ascertain the differences in the stability of structural motifs within proteins and its relationship to the actual transition temperature of unfolding.

  13. Thermal stability and unfolding pathways of hyperthermophilic and mesophilic periplasmic binding proteins studied by molecular dynamics simulation.

    PubMed

    Chen, Lin; Li, Xue; Wang, Ruige; Fang, Fengqin; Yang, Wanli; Kan, Wei

    2016-07-01

    The ribose binding protein (RBP), a sugar-binding periplasmic protein, is involved in the transport and signaling processes in both prokaryotes and eukaryotes. Although several cellular and structural studies have been reported, a description of the thermostability of RBP at the molecular level remains elusive. Focused on the hyperthermophilic Thermoytoga maritima RBP (tmRBP) and mesophilic Escherichia coli homolog (ecRBP), we applied molecular dynamics simulations at four different temperatures (300, 380, 450, and 500 K) to obtain a deeper insight into the structural features responsible for the reduced thermostability of the ecRBP. The simulations results indicate that there are distinct structural differences in the unfolding pathway between the two homologs and the ecRBP unfolds faster than the hyperthermophilic homologs at certain temperatures in accordance with the lower thermal stability found experimentally. Essential dynamics analysis uncovers that the essential subspaces of ecRBP and tmRBP are non-overlapping and these two proteins show different directions of motion within the simulations trajectories. Such an understanding is required for designing efficient proteins with characteristics for a particular application.

  14. High Reynolds Number Thermal Stability Experiments

    NASA Technical Reports Server (NTRS)

    Emens, Jessica M.; Brown, Sarah P.; Frederick Robert A., Jr.; Wood, A. John

    2004-01-01

    This work represents preliminary thermal stability results for liquid hydrocarbon fuels. High Reynolds Number Thermal Stability experiments with Jet A and RP-1 resulted in a quantitative measurement of the thermal stability. Each fuel flowed through a heated capillary tube that held the outlet temperature at 290 C. An optical pyrometer measured the surface temperature of the tube at 12 locations as a function of time. The High Reynolds Number Thermal Stability number was then determined using standards published by the American Society for Testing and Materials. The results for Jet A showed lower thermal stability than similar tests conducted at another facility. The RP-1 results are the first reported using this technique. Because the temperature rise on the capillary tube during testing for the RP-1 fuels was not significant, a new standard for the testing conditions should be developed for these types of fuels.

  15. Characterization of Al-Cu-Mg-Ag Alloy RX226-T8 Plate

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Domack, Marcia S.

    2003-01-01

    Aluminum-copper-magnesium-silver (Al-Cu-Mg-Ag) alloys that were developed for thermal stability also offer attractive ambient temperature strength-toughness combinations, and therefore, can be considered for a broad range of airframe structural applications. The current study evaluated Al-Cu-Mg-Ag alloy RX226-T8 in plate gages and compared performance with sheet gage alloys of similar composition. Uniaxial tensile properties, plane strain initiation fracture toughness, and plane stress tearing resistance of RX226-T8 were examined at ambient temperature as a function of orientation and thickness location in the plate. Properties were measured near the surface and at the mid-plane of the plate. Tensile strengths were essentially isotropic, with variations in yield and ultimate tensile strengths of less than 2% as a function of orientation and through-thickness location. However, ductility varied by more than 15% with orientation. Fracture toughness was generally higher at the mid-plane and greater for the L-T orientation, although the differences were small near the surface of the plate. Metallurgical analysis indicated that the microstructure was primarily recrystallized with weak texture and was uniform through the plate with the exception of a fine-grained layer near the surface of the plate. Scanning electron microscope analysis revealed Al-Cu-Mg second phase particles which varied in composition and were primarily located on grain boundaries parallel to the rolling direction. Fractography of toughness specimens for both plate locations and orientations revealed that fracture occurred predominantly by transgranular microvoid coalescence. Introduction High-strength, low-density Al-Cu-Mg-Ag alloys were initially developed to replace conventional 2000 (Al-Cu-Mg) and 7000 (Al-Zn-Cu-Mg) series aluminum alloys for aircraft structural applications [1]. During the High Speed Civil Transport (HSCT) program, improvements in thermal stability were demonstrated for candidate aircraft wing and fuselage skin materials through the addition of silver to Al-Cu-Mg alloys based on Al 2519 chemistry [2]. Thermal stability of the resulting Al-Cu-Mg-Ag alloys, C415-T8 and C416-T8, was due to co-precipitation of the thermally stable . (AlCu) and ' (Al2Cu) strengthening phases [1-4]. The strength and toughness behavior was investigated for these alloys produced as 0.090-inch thick rolled sheet in the T8 condition and after various thermal exposures. The mechanical properties were shown to be competitive with conventional aircraft alloys, 2519-T8 and 2618-T8 [2]. During the Integral Airframe Structure (IAS) program, advanced aluminum alloys were examined for use in an integrally stiffened airframe structure where the skin and stiffeners would be machined from plate and extruded frames would be mechanically attached (see Figure 1) [5]. Advantages of integrally stiffened structure include reduced part count, and reduced assembly times compared to conventional built-up airframe structure. The near-surface properties of a thick plate are of significance for a machined integrally stiffened airframe structure since this represents the skin location. Properties measured at the mid-plane of the plate are more representative of the stiffener web. RX226 was developed to exploit strength-toughness improvements and thermal stability benefits of Al-Cu-Mg-Ag alloys in plate gages. This study evaluated the microstructure and properties of three gages of plate produced in the T8 condition.

  16. Thermal Improvement and Stability of Si3N4/GeNx/p- and n-Ge Structures Prepared by Electron-Cyclotron-Resonance Plasma Nitridation and Sputtering at Room Temperature

    NASA Astrophysics Data System (ADS)

    Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Izumi, Kohei; Otani, Yohei; Ishizaki, Hiroki; Ono, Toshiro

    2012-09-01

    This paper reports on the thermal improvement of Si3N4/GeNx/Ge structures. After the Si3N4 (5 nm)/GeNx (2 nm) stacks were prepared on Ge substrates by electron-cyclotron-resonance plasma nitridation and sputtering at room temperature, they were thermally annealed in atmospheric N2 + 10% H2 ambient at temperatures from 400 to 600 °C. It was demonstrated that the electronic properties of the GeNx/Ge interfaces were thermally improved at temperatures of up to 500 °C with a minimum interface trap density (Dit) of ˜1×1011 cm-2 eV-1 near the Ge midgap, whereas the interface properties were slightly degraded after annealing at 600 °C with a minimum Dit value of ˜4×1011 cm-2 eV-1.

  17. Synthesis and Performance of Highly Stable Star-Shaped Polyaniline Electrochromic Materials with Triphenylamine Core

    NASA Astrophysics Data System (ADS)

    Xiong, Shanxin; Li, Shuaishuai; Zhang, Xiangkai; Wang, Ru; Zhang, Runlan; Wang, Xiaoqin; Wu, Bohua; Gong, Ming; Chu, Jia

    2018-02-01

    The molecular architecture of conducting polymers has a significant impact on their conjugated structure and electrochemical properties. We have investigated the influence of star-shaped structure on the electrochemical and electrochromic properties of polyaniline (PANI). Star-shaped PANI (SPANI) was prepared by copolymerization of aniline with triphenylamine (TPA) using an emulsion polymerization method. With addition of less than 4.0 mol.% TPA, the resulting SPANI exhibited good solubility in xylene with dodecylbenzenesulfonic acid (DBSA) as doping acid. The structure and thermal stability of the SPANI were characterized using Fourier-transform infrared spectroscopy, Raman spectroscopy, and thermogravimetric analysis, and the electrochemical behavior was analyzed by cyclic voltammetry (CV). The electrochromic properties of SPANI were tested using an electrochemical workstation combined with an ultraviolet-visible (UV-Vis) spectrometer. The results show that, with increasing TPA loading, the thermal stability of SPANI increased. With addition of 4.0 mol.% TPA, the weight loss of SPANI was 36.9% at 700°C, much lower than the value of 71.2% for PANI at the same temperature. The low oxidation potential and large enclosed area of the CV curves indicate that SPANI possesses higher electrochemical activity than PANI. Enhanced electrochromic properties including higher optical contrast and better electrochromic stability of SPANI were also obtained. SPANI with 1.6 mol.% TPA loading exhibited the highest optical contrast of 0.71, higher than the values of 0.58 for PANI, 0.66 for SPANI-0.4%, or 0.63 for SPANI-4.0%. Overdosing of TPA resulted in slow switching speed due to slow ion transport in short branched chains of star-shaped PANI electrochromic material. Long-term stability testing confirmed that all the SPANI-based devices exhibited better stability than the PANI-based device.

  18. Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Li, Decong; Deng, Shuping; Tang, Yu; Sun, Luqi; Liu, Wenting; Shen, Lanxian; Yang, Peizhi; Deng, Shukang

    2018-06-01

    In this study, n-type Bi-doped single-crystal PbTe thermoelectric materials were prepared by melting and slow cooling method according to the stoichiometric ratio of Pb:Bi:Te = 1-x:x:1 (x = 0, 0.1, 0.15, 0.2, 0.25). The X-ray diffraction patterns of Pb1-xBixTe samples show that all main diffraction peaks are well matched with the PbTe matrix, which has a face-centered cubic structure with the space group Fm 3 bar m . Electron probe microanalysis reveals that Pb content decreases gradually, and Te content remains invariant basically with the increase of Bi content, indicating that Bi atoms are more likely to replace Pb atoms. Thermal analysis shows that the prepared samples possess relatively high thermal stability. Simultaneously, transmission electron microscopy and selected area electron diffraction pattern indicate that the prepared samples have typical single-crystal structures with good mechanical properties. Moreover, the electrical conductivity of the prepared samples improved significantly compared with that of the pure sample, and the maximum ZT value of 0.84 was obtained at 600 K by the sample with x = 0.2.

  19. Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO 3, U 2O 7, and UO 4

    DOE PAGES

    Guo, Xiaofeng; Wu, Di; Xu, Hongwu; ...

    2016-09-01

    The thermal decomposition of studtite (UO 2)O 2(H 2O) 2·2H 2O results in a series of intermediate X-ray amorphous materials with general composition UO 3+x (x = 0, 0.5, 1). As an extension of a structural study on U 2O 7, this work provides detailed calorimetric data on these amorphous oxygen-rich materials since their energetics and thermal stability are unknown. These were characterized in situ by thermogravimetry, and mass spectrometry. Ex situ X-ray diffraction and infrared spectroscopy characterized their chemical bonding and local structures. This detailed characterization formed the basis for obtaining formation enthalpies by high temperature oxide melt solutionmore » calorimetry. The thermodynamic data demonstrate the metastability of the amorphous UO 3+x materials, and explain their irreversible and spontaneous reactions to generate oxygen and form metaschoepite. Thus, formation of studtite in the nuclear fuel cycle, followed by heat treatment, can produce metastable amorphous UO 3+x materials that pose the risk of significant O 2 gas. Quantitative knowledge of the energy landscape of amorphous UO 3+x was provided for stability analysis and assessment of conditions for decomposition.« less

  20. Thermal Stability of Goethite-Bound Natural Organic Matter Is Impacted by Carbon Loading.

    PubMed

    Feng, Wenting; Klaminder, Jonatan; Boily, Jean-François

    2015-12-24

    Dissolved natural organic matter (NOM) sorption at mineral surfaces can significantly affect the persistence of organic carbon in soils and sediments. Consequently, determining the mechanisms that stabilize sorbed NOM is crucial for predicting the persistence of carbon in nature. This study determined the effects of loadings and pH on the thermal stability of NOM associated with synthetic goethite (α-FeOOH) particle surfaces, as a proxy for NOM-mineral interactions taking place in nature. NOM thermal stability was investigated using temperature-programmed desorption (TPD) in the 30-700 °C range to collect vibration spectra of thermally decomposing goethite-NOM assemblages, and to concomitantly analyze evolved gases using mass spectrometry. Results showed that NOM thermal stability, indicated by the range of temperatures in which CO2 evolved during thermal decomposition, was greatest in unbound NOM and lowest when NOM was bound to goethite. NOM thermal stability was also loading dependent. It decreased when loadings were in increased the 0.01 to 0.42 mg C m(-2) range, where the upper value corresponds to a Langmuirian adsorption maximum. Concomitant Fourier transform infrared (FTIR) spectroscopy measurement showed that these lowered stabilities could be ascribed to direct NOM-goethite interactions that dominated the NOM binding environment. Mineral surface interactions at larger loadings involved, on the contrary, a smaller fraction of the sorbed NOM, thus increasing thermal stability toward that of its unbound counterpart. This study thus identifies a sorption threshold below which NOM sorption to goethite decreases NOM thermal stability, and above which no strong effects are manifested. This should likely influence the fate of organic carbon exposed to thermal gradients in natural environments.

  1. Process for making carbon foam

    DOEpatents

    Klett, James W.

    2000-01-01

    The process obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  2. Increasing the Stability of Metal-Organic Frameworks

    DOE PAGES

    Bosch, Mathieu; Zhang, Muwei; Zhou, Hong-Cai

    2014-01-01

    Metal-organic frameworks (MOFs) are a new category of advanced porous materials undergoing study by many researchers for their vast variety of both novel structures and potentially useful properties arising from them. Their high porosities, tunable structures, and convenient process of introducing both customizable functional groups and unsaturated metal centers have afforded excellent gas sorption and separation ability, catalytic activity, luminescent properties, and more. However, the robustness and reactivity of a given framework are largely dependent on its metal-ligand interactions, where the metal-containing clusters are often vulnerable to ligand substitution by water or other nucleophiles, meaning that the frameworks may collapsemore » upon exposure even to moist air. Other frameworks may collapse upon thermal or vacuum treatment or simply over time. This instability limits the practical uses of many MOFs. In order to further enhance the stability of the framework, many different approaches, such as the utilization of high-valence metal ions or nitrogen-donor ligands, were recently investigated. This review details the efforts of both our research group and others to synthesize MOFs possessing drastically increased chemical and thermal stability, in addition to exemplary performance for catalysis, gas sorption, and separation.« less

  3. Tungsten Incorporation into Gallium Oxide: Crystal Structure, Surface and Interface Chemistry, Thermal Stability and Interdiffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio, E. J.; Mates, T. E.; Manandhar, S.

    Tungsten (W) incorporated gallium oxide (Ga2O3) (GWO) thin films were deposited by radio-frequency magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying sputtering power applied to the W-target in order to achieve variable W-content (0-12 at%) into Ga2O3 while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-deposited and annealed GWO films were evaluated as a function of W-content. The structural and chemical analyses indicate that the samples deposited without any W-incorporation are stoichiometric, nanocrystalline Ga2O3 films, which crystallize in β-phase monoclinic structure. While GWO films alsomore » crystallize in monoclinic β-Ga2O3 phase, W-incorporation induces surface amorphization as revealed by structural studies. The chemical valence state of Ga ions probed by X-ray photoelectron spectroscopic (XPS) analyses is characterized by the highest oxidation state i.e., Ga3+. No changes in Ga chemical state are noted for variable W-incorporation in the range of 0-12 at%. Rutherford backscattering spectrometry (RBS) analyses indicate the uniform distribution of W-content in the GWO films. However, XPS analyses indicate the formation of mixed valence states for W ions, which may be responsible for surface amorphization in GWO films. GWO films were stable up to 900 oC, at which point thermally induced secondary phase (W-oxide) formation was observed. A transition to mesoporous structure coupled with W interdiffusion occurs due to thermal annealing as derived from the chemical analyses at the GWO films’ surface as well as depth-profiling towards the GWO-Si interface. A model has been formulated to account for the mechanism of W-incorporation, thermal stability and interdiffusion via pore formation in GWO films.« less

  4. Gamma and proton irradiation effects and thermal stability of electrical characteristics of metal-oxide-silicon capacitors with atomic layer deposited Al 2O 3 dielectric

    DOE PAGES

    J. M. Rafi; Lynn, D.; Pellegrini, G.; ...

    2015-12-11

    The radiation hardness and thermal stability of the electrical characteristics of atomic layer deposited Al 2O 3 layers to be used as passivation films for silicon radiation detectors with slim edges are investigated. To directly measure the interface charge and to evaluate its change with the ionizing dose, metal-oxide-silicon (MOS) capacitors implementing differently processed Al 2O 3 layers were fabricated on p-type silicon substrates. Qualitatively similar results are obtained for degradation of capacitance–voltage and current–voltage characteristics under gamma and proton irradiations up to equivalent doses of 30 Mrad and 21.07 Mrad, respectively. While similar negative charge densities are initially extractedmore » for all non-irradiated capacitors, superior radiation hardness is obtained for MOS structures with alumina layers grown with H 2O instead of O 3 as oxidant precursor. Competing effects between radiation-induced positive charge trapping and hydrogen release from the H 2O-grown Al 2O 3 layers may explain their higher radiation resistance. Finally, irradiated and non-irradiated MOS capacitors with differently processed Al 2O 3 layers have been subjected to thermal treatments in air at temperatures ranging between 100 °C and 200 °C and the thermal stability of their electrical characteristics has been evaluated. Partial recovery of the gamma-induced degradation has been noticed for O 3-grown MOS structures. Lastly, this can be explained by a trapped holes emission process, for which an activation energy of 1.38 ± 0.15 eV has been extracted.« less

  5. Thermal Expansion of Vitrified Blood Vessels Permeated with DP6 and Synthetic Ice Modulators

    PubMed Central

    Eisenberg, David P.; Taylor, Michael J.; Jimenez-Rios, Jorge L.; Rabin, Yoed

    2014-01-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. PMID:24769313

  6. Comparative thermal and thermodynamic study of DNA chemically modified with antitumor drug cisplatin and its inactive analog transplatin.

    PubMed

    Lando, Dmitri Y; Chang, Chun-Ling; Fridman, Alexander S; Grigoryan, Inessa E; Galyuk, Elena N; Hsueh, Ya-Wei; Hu, Chin-Kun

    2014-08-01

    Antitumor activity of cisplatin is exerted by covalent binding to DNA. For comparison, studies of cisplatin-DNA complexes often employ the very similar but inactive transplatin. In this work, thermal and thermodynamic properties of DNA complexes with these compounds were studied using differential scanning calorimetry (DSC) and computer modeling. DSC demonstrates that cisplatin decreases thermal stability (melting temperature, Tm) of long DNA, and transplatin increases it. At the same time, both compounds decrease the enthalpy and entropy of the helix-coil transition, and the impact of transplatin is much higher. From Pt/nucleotide molar ratio rb=0.001, both compounds destroy the fine structure of DSC profile and increase the temperature melting range (ΔT). For cisplatin and transplatin, the dependences δTm vs rb differ in sign, while δΔT vs rb are positive for both compounds. The change in the parameter δΔT vs rb demonstrates the GC specificity in the location of DNA distortions. Our experimental results and calculations show that 1) in contrast to [Pt(dien)Cl]Cl, monofunctional adducts formed by transplatin decrease the thermal stability of long DNA at [Na(+)]>30mM; 2) interstrand crosslinks of cisplatin and transplatin only slightly increase Tm; 3) the difference in thermal stability of DNA complexes with cisplatin vs DNA complexes with transplatin mainly arises from the different thermodynamic properties of their intrastrand crosslinks. This type of crosslink appears to be responsible for the antitumor activity of cisplatin. At any [Na(+)] from interval 10-210mM, cisplatin and transplatin intrastrand crosslinks give rise to destabilization and stabilization, respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Ji, Luo; Zhang, Lin; Dong, Xiao-Yan; Sun, Yan

    2010-06-01

    Molecular dynamics simulations of chymotrypsin inhibitor 2 in different polyols (glycerol, xylitol, sorbitol, trehalose, and sucrose) at 363 K were performed to probe the molecular basis of the stabilizing effect, and the data in water, ethanol, and glycol were compared. It is found that protein protection by polyols is positively correlated with both the molecular volume and the fractional polar surface area, and the former contributes more significantly to the protein's stability. Polyol molecules have only a few direct hydrogen bonds with the protein, and the number of hydrogen bonds between a polyol and the protein is similar for different polyols. Thus, it is concluded that the direct interactions contribute little to the stabilizing effect. It is clarified that the preferential exclusion of the polyols is the origin of their protective effects, and it increases with increasing polyol size. Namely, there is preferential hydration on the protein surface (2 Å), and polyol molecules cluster around the protein at a distance of about 4 Å. The preferential exclusion of polyols leads to indirect interactions that prevent the protein from thermal unfolding. The water structure becomes more ordered with increasing the polyol size. So, the entropy of water in the first hydration shell decreases, and a larger extent of decrease is observed with increasing polyol size, leading to larger transfer free energy. The findings suggest that polyols protect the protein from thermal unfolding via indirect interactions. The work has thus elucidated the molecular mechanism of structural stability of the protein in polyol solutions.

  8. Confined Rayleigh-Bénard, Rotating Rayleigh-Bénard, and Double Diffusive Convection: A Unifying View on Turbulent Transport Enhancement through Coherent Structure Manipulation

    NASA Astrophysics Data System (ADS)

    Chong, Kai Leong; Yang, Yantao; Huang, Shi-Di; Zhong, Jin-Qiang; Stevens, Richard J. A. M.; Verzicco, Roberto; Lohse, Detlef; Xia, Ke-Qing

    2017-08-01

    Many natural and engineering systems are simultaneously subjected to a driving force and a stabilizing force. The interplay between the two forces, especially for highly nonlinear systems such as fluid flow, often results in surprising features. Here we reveal such features in three different types of Rayleigh-Bénard (RB) convection, i.e., buoyancy-driven flow with the fluid density being affected by a scalar field. In the three cases different stabilizing forces are considered, namely (i) horizontal confinement, (ii) rotation around a vertical axis, and (iii) a second stabilizing scalar field. Despite the very different nature of the stabilizing forces and the corresponding equations of motion, at moderate strength we counterintuitively but consistently observe an enhancement in the flux, even though the flow motion is weaker than the original RB flow. The flux enhancement occurs in an intermediate regime in which the stabilizing force is strong enough to alter the flow structures in the bulk to a more organized morphology, yet not too strong to severely suppress the flow motions. Near the optimal transport enhancements all three systems exhibit a transition from a state in which the thermal boundary layer (BL) is nested inside the momentum BL to the one with the thermal BL being thicker than the momentum BL. The observed optimal transport enhancement is explained through an optimal coupling between the suction of hot or fresh fluid and the corresponding scalar fluctuations.

  9. ESI-MS Investigation of an Equilibrium between a Bimolecular Quadruplex DNA and a Duplex DNA/RNA Hybrid

    NASA Astrophysics Data System (ADS)

    Birrento, Monica L.; Bryan, Tracy M.; Samosorn, Siritron; Beck, Jennifer L.

    2015-07-01

    Electrospray ionization mass spectrometry (ESI-MS) conditions were optimized for simultaneous observation of a bimolecular qDNA and a Watson-Crick base-paired duplex DNA/RNA hybrid. The DNA sequence used was telomeric DNA, and the RNA contained the template for telomerase-mediated telomeric DNA synthesis. Addition of RNA to the quadruplex DNA (qDNA) resulted in formation of the duplex DNA/RNA hybrid. Melting profiles obtained using circular dichroism spectroscopy confirmed that the DNA/RNA hybrid exhibited greater thermal stability than the bimolecular qDNA in solution. Binding of a 13-substituted berberine ( 1) derivative to the bimolecular qDNA stabilized its structure as evidenced by an increase in its stability in the mass spectrometer, and an increase in its circular dichroism (CD) melting temperature of 10°C. The DNA/RNA hybrid did not bind the ligand extensively and its thermal stability was unchanged in the presence of ( 1). The qDNA-ligand complex resisted unfolding in the presence of excess RNA, limiting the formation of the DNA/RNA hybrid. Previously, it has been proposed that DNA secondary structures, such as qDNA, may be involved in the telomerase mechanism. DNA/RNA hybrid structures occur at the active site of telomerase. The results presented in the current work show that if telomeric DNA was folded into a qDNA structure, it is possible for a DNA/RNA hybrid to form as is required during template alignment. The discrimination of ligand ( 1) for binding to the bimolecular qDNA over the DNA/RNA hybrid positions it as a useful compound for probing the role(s), if any, of antiparallel qDNA in the telomerase mechanism.

  10. Thermally Stabilized Transmit/Receive Modules

    NASA Technical Reports Server (NTRS)

    Hoffman, James; DelCastillo, Linda; Miller, Jennifer; Birur, Gaj

    2011-01-01

    RF-hybrid technologies enable smaller packaging and mass reduction in radar instruments, especially for subsystems with dense electronics, such as electronically steered arrays. We are designing thermally stabilized RF-hybrid T/R modules using new materials for improved thermal performance of electronics. We are combining advanced substrate and housing materials with a thermal reservoir material, and develop new packaging techniques to significantly improve thermal-cycling reliability and performance stability over temperature.

  11. Enhanced ferroelectric properties and thermal stability of nonstoichiometric 0.92(Na0.5Bi0.5)TiO3-0.08(K0.5Bi0.5)TiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Haiwu; Chen, Chao; Zhao, Xiangyong; Deng, Hao; Li, Long; Lin, Di; Li, Xiaobing; Ren, Bo; Luo, Haosu; Yan, Jun

    2013-11-01

    Bi deficient, Mn doped 0.92(Na0.5Bi0.5)TiO3-0.08(K0.5Bi0.5)TiO3 single crystals were grown by carefully controlled top-seeded solution growth method. Local structures were investigated by transmission electron microscopy. The site occupation and valence state of manganese were characterized by electron paramagnetic resonance spectrum. The leakage current density in the as-grown single crystals is effectively depressed. The introduced defect complexes suppress the temperature induced phase transformation, increasing the depolarization temperature (165 °C) and thermal stability of ferroelectric properties.

  12. Green-light-emitting electroluminescent device based on a new cadmium complex

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Srivastava, Ritu; Kumar, Akshay; Kamalasanan, M. N.; Singh, K.

    2010-06-01

    A new cadmium complex is synthesized to investigate its stability and applicability for a luminescent device. The as-prepared Cd(Bpy)q sample is characterized by Fourier-transformed infra-red spectroscopy (FTIR), thermal gravimetric analyzer (TGA) and photoluminescence (PL). The prepared sample shows excellent thermal stability up to 380 °C. A maximum is observed at 240 nm in absorption spectra which is attributed to the π-π* transition. An organic-light-emitting diode (OLED) has been fabricated using this material. The fundamental structures of the device exhibit ITO/α-NPD/Cd(Bpy)q/BCP/Alq3/LiF/Al. The electroluminescence (EL) device emits bright green light with maximum luminescence 1683 cd/m2 at 20 V.

  13. SS-mPEG chemical modification of recombinant phospholipase C for enhanced thermal stability and catalytic efficiency.

    PubMed

    Fang, Xian; Wang, Xueting; Li, Guiling; Zeng, Jun; Li, Jian; Liu, Jingwen

    2018-05-01

    PEGylation is one of the most promising and extensively studied strategies for improving the properties of proteins as well as enzymic physical and thermal stability. Phospholipase C, hydrolyzing the phospholipids offers tremendous applications in diverse fields. However, the poor thermal stability and higher cost of production have restricted its industrial application. This study focused on improving the stabilization of recombinant PLC by chemical modification with methoxypolyethylene glycol-Succinimidyl Succinate (SS-mPEG, MW 5000). PLC gene from isolate Bacillus cereus HSL3 was fused with SUMO, a novel small ubiquitin-related modifier expression vector and over expressed in Escherichia coli. The soluble fraction of SUMO-PLC reached 80% of the total recombinant protein. The enzyme exhibited maximum catalytic activity at 80 °C and was relatively thermostable at 40-70 °C. It showed extensive substrate specificity pattern and marked activity toward phosphatidylcholine, which made it a typical non-specific PLC for industrial purpose. SS-mPEG-PLC complex exhibited an enhanced thermal stability at 70-80 °C and the catalytic efficiency (K cat /K m ) had increased by 3.03 folds compared with free PLC. CD spectrum of SS-mPEG-PLC indicated a possible enzyme aggregation after chemical modification, which contributed to the higher thermostability of SS-mPEG-PLC. The increase of antiparallel β sheets in secondary structure also made it more stable than parallel β sheets. The presence of SS-mPEG chains on the enzyme molecule surface somewhat changed the binding rate of the substrates, leading to a significant improvement in catalytic efficiency. This study provided an insight into the addition of SS-mPEG for enhancing the industrial applications of phospholipase C at higher temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Thermal denaturation of the BRCT tandem repeat region of human tumour suppressor gene product BRCA1.

    PubMed

    Pyrpassopoulos, Serapion; Ladopoulou, Angela; Vlassi, Metaxia; Papanikolau, Yannis; Vorgias, Constantinos E; Yannoukakos, Drakoulis; Nounesis, George

    2005-04-01

    Reduced stability of the tandem BRCT domains of human BReast CAncer 1 (BRCA1) due to missense mutations may be critical for loss of function in DNA repair and damage-induced checkpoint control. In the present thermal denaturation study of the BRCA1 BRCT region, high-precision differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy provide evidence for the existence of a denatured state that is structurally very similar to the native. Consistency between theoretical structure-based estimates of the enthalpy (DeltaH) and heat capacity change (DeltaCp) and the calorimetric results is obtained when considering partial thermal unfolding contained in the region of the conserved hydrophobic pocket formed at the interface of the two BRCT repeats. The structural integrity of this region has been shown to be crucial for the interaction of BRCA1 with phosphorylated peptides. In addition, cancer-causing missense mutations located at the inter-BRCT-repeat interface have been linked to the destabilization of the tandem BRCT structure.

  15. Electroless nickel – phosphorus coating on crab shell particles and its characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulvel, S., E-mail: gs.arulvel.research@gmail.com; Elayaperumal, A.; Jagatheeshwaran, M.S.

    Being hydrophilic material, crab shell particles have only a limited number of applications. It is, therefore, necessary to modify the surface of the crab shell particles. To make them useful ever for the applications, the main theme we proposed in this article is to utilize crab shell particles (CSP) with the core coated with nickel phosphorus (NiP) as a shell using the electroless coating process. For dealing with serious environmental problems, utilization of waste bio-shells is always an important factor to be considered. Chelating ability of crab shell particles eliminates the surface activation in this work proceeding to the coatingmore » process. The functional group, phase structure, microstructure, chemical composition and thermal analysis of CSP and NiP/CSP were characterized using Fourier transform infra-red spectroscopy (FTIR), x-ray diffraction analyzer (XRD), scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The combination of an amorphous and crystalline structure was exhibited by CSP and NiP/CSP. NiP/CSP has shown a better thermal stability when compared to uncoated CSP. Stability test, adsorption test, and conductivity test were conducted for the study of adsorption behavior and conductivity of the particles. CSP presented a hydrophilic property in contrast to hydrophobic NiP/CSP. NiP/CSP presented a conductivity of about 44% greater compared to the CSP without any fluctuations. - Highlights: • Utilization of crab shell waste is focused on. • NiP coating on crab shell particle is fabricated using electroless process. • Thermal analysis, stability test, adsorption test and conductivity test were done. • Organic matrix of crab shell particle favors the coating process. • Results demonstrate the characterization of CSP core – NiP shell structure.« less

  16. Influence of gamma irradiation on structural, thermal and antibacterial properties of HPMC/ZnO nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, B. Lakshmeesha; Madhukumar, R.; Latha, S.

    This work was carried out to evaluate the effect of gamma irradiation on the structural, thermal and antibacterial properties of HPMC/ZnO nanocomposite films exposed to Cobalt-60 (Average energy: 1.25 MeV). The X-ray diffraction study revealed that the crystallite size (L in Å) decreased as irradiation dose increased. The crystallinity (X{sub c}) of the nanocomposites initially increased and at higher doses it was decreased. The thermal stability of the nanocomposites increased up to 50 kGy and after that decreased as the irradiation dose increased. But, HPMC/ZnO nanocomposite films, showed a promising range of antimicrobial activity against tested micro-organisms making nanocomposites suitablemore » for food packing and other biomedical applications.« less

  17. Synthesis, structural, thermal and Hirshfeld surface analysis of novel [1,2,4]triazolo[3,4-b][1,3,4] thiadiazine carrying 1,4-benzothiazine-3-one moiety

    NASA Astrophysics Data System (ADS)

    Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet

    2018-05-01

    Needle shaped single crystal of the title compound was grown by slow evaporation solution growth technique using ethanol as solvent. The grown single crystal was characterized using FT-IR, Single crystal XRD and Thermal analysis. The FT-IR spectrum confirms the molecular structure and identifies the different functional groups present in the compound. Single crystal XRD study reveals that the crystallized compound belongs to the monoclinic crystal system with P21/c space group and the corresponding cell parameters were identified. The thermal stability of the material was determined using both TGA and DTA analysis. The intermolecular interaction of each individual atom in the crystal lattice was estimated using Hirshfeld surface and finger print analysis.

  18. Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.

    PubMed

    Gromiha, M Michael; Anoosha, P; Huang, Liang-Tsung

    2016-01-01

    Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5-25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/ . ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.

  19. Chemical denaturation as a tool in the formulation optimization of biologics

    PubMed Central

    Freire, Ernesto; Schön, Arne; Hutchins, Burleigh M.; Brown, Richard K.

    2013-01-01

    Biologics have become the fastest growing segment in the pharmaceutical industry. As is the case with all proteins, biologics are susceptible to denature or to aggregate; conditions that, if present, preclude their use as pharmaceuticals. Identifying the solvent conditions that maximize their structural stability is crucial during development. Since the structural stability of a protein is susceptible to different chemical and physical conditions, the use of several complementary techniques can be expected to provide the best answers. Stability measurements that rely on temperature or chemical [urea or guanidine hydrochloride (GuHCl)] denaturation have been the preferred ones in research laboratories and together provide a thorough evaluation of protein stability. In this review, we will discuss chemical denaturation as a tool in the optimization of formulation conditions for biologics, and how chemical denaturation complements the role of thermal denaturation for this purpose. PMID:23796912

  20. Stability limits and transformation pathways of α-quartz under high pressure

    NASA Astrophysics Data System (ADS)

    Hu, Q. Y.; Shu, J.-F.; Yang, W. G.; Park, C.; Chen, M. W.; Fujita, T.; Mao, H.-K.; Sheng, H. W.

    2017-03-01

    Ubiquitous on Earth, α-quartz plays an important role in modern science and technology. However, despite extensive research in the past, the mechanism of the polymorphic transitions of α-quartz at high pressures remains poorly understood. Here, combining in situ single-crystal x-ray diffraction experiment and advanced ab initio modeling, we report two stability limits and competing transition pathways of α-quartz under high pressure. Under near-equilibrium compression conditions at room temperature, α-quartz transits to a new P 2 /c silica phase via a structural intermediate. If the thermally activated transition is kinetically suppressed, the ultimate stability of α-quartz is controlled by its phonon instability and α-quartz collapses into a different crystalline phase. Our studies reveal that pressure-induced solid-state transformation of α-quartz undergoes a succession of structural stability limits, due to thermodynamic and mechanical catastrophes, and exhibits a hierarchy of transition pathways contingent upon kinetic conditions.

  1. Biophysical insight into structure-function relation of Allium sativum Protease Inhibitor by thermal, chemical and pH-induced modulation using comprehensive spectroscopic analysis.

    PubMed

    Shamsi, Tooba Naz; Parveen, Romana; Naz, Huma; Haque, Md Anzarul; Fatima, Sadaf

    2017-10-01

    In this study, we have analyzed the structural and functional changes in the nature of Allium sativum Protease Inhibitor (ASPI) on undergoing various denaturation with variable range of pH, temperature and urea (at pH 8.2). ASPI being anti-tryptic in nature has native molecular mass of ∼15kDa. The conformational stability, functional parameters and their correlation were estimated under different conditions using circular dichroism, fluorescence and activity measurements. ASPI was found to fall in belongs to α+β protein. It demonstrated structural and functional stability in the pH range 5.0-12.0 and up to70°C temperature. Further decrease in pH and increase in temperature induces unfolding followed by aggregation. Chemical induced denaturation was found to be cooperative and transitions were reversible and sigmoid. T m (midpoint of denaturation), ΔC p (constant pressure heat capacity change) and ΔH m (van't Hoff enthalpy change at T m were calculated to be 41.25±0.2°C, 1.3±0.07kcalmol -1 K -1 and 61±2kcalmol -1 respectively for thermally denatured ASPI earlier. The reversibility of the protein was confirmed for both thermally and chemically denatured ASPI. The results obtained from trypsin inhibitory activity assay and structural studies are found to be in a significant correlation and hence established structure-function relationship of ASPI. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V.; Pahurkar, V. G.

    2016-05-06

    This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.

  3. In situ thermal polymerisation of natural oils as novel sustainable approach in nanographite particle production

    NASA Astrophysics Data System (ADS)

    Datsyuk, Vitaliy; Trotsenko, Svitlana; Reich, Stephanie

    2018-01-01

    A sustainable approach to graphite exfoliation via in situ thermal polymerization of fish oil results in the production of nanographite particles. The material was characterized by elemental analysis, transmission electron microscopy, and Raman spectroscopy. The thermal polymerization of fish oil was controlled by monitoring the viscosity and measuring the iodine number. The number of structural defects on the graphitic surface remained constant during the synthesis. The protocol leads to a hydrophobization of the nanographite surface. Immobilized polyoil islands create sterical hindrance and stabilize the nanographite particles in engineering polymers.

  4. Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning

    NASA Astrophysics Data System (ADS)

    Barzegar, Farshad; Bello, Abdulhakeem; Fabiane, Mopeli; Khamlich, Saleh; Momodu, Damilola; Taghizadeh, Fatemeh; Dangbegnon, Julien; Manyala, Ncholu

    2015-02-01

    We report on the synthesis and characterization of electrospun polyvinyl alcohol (PVA)/graphene nanofibers. The samples produced were characterized by Raman spectroscopy for structural and defect density analysis, scanning electron microscopy (SEM) for morphological analysis, and thermogravimetric (TGA) for thermal analysis. SEM measurements show uniform hollow PVA fibers formation and excellent graphene dispersion within the fibers, while TGA measurements show the improved thermal stability of PVA in the presence of graphene. The synthesized polymer reinforced nanofibers have potential to serve in many different applications such as thermal management, supercapacitor electrodes and biomedical materials for drug delivery.

  5. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment

    PubMed Central

    Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho

    2016-01-01

    An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100–130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130–140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization. PMID:27349719

  6. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices.

    PubMed

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T; Durrant, James R

    2015-10-15

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced "burn-in" effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

  7. Thermally resistant polymers for fuel tank sealants

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1973-01-01

    Imide-linked perfluoroalkylene ether polymers, that were developed for the high temperature fuel tank sealant application, are discussed. Modifications of polymer structure and properties were realized through use of a new aromatic dianhydride intermediate containing an ether-linked perfluoroalkylene segment. Tests of thermal, oxidative and hydrolytic stability, fuel resistance, and adhesion are discussed along with tensile strength and elongation results. Efforts to effect a low temperature condensation of amic acid prepolymer to form imide links inside are described.

  8. Synthesis, characterization and thermal decomposition of tetramethylammonium rare earth double selenates

    NASA Astrophysics Data System (ADS)

    Divekar, Sandesh K.; Achary, S. Nagabhusan; Ajgaonkar, Vishnu R.

    2018-06-01

    A series of double selenates, as (CH3)4NLn(SeO4)2rad 4H2O (Ln = Rare earth ion like La, Pr, Nd, Sm, Gd, Tb, Dy) was crystallized from mixed solution and characterized in detail for their structure, vibrational and optical properties as well as thermal stabilities. The crystal structure of the praseodymium compound was obtained by single crystal X-ray diffraction (XRD) and revealed a monoclinic (C2/c) lattice with chains formed by PrO8 and SeO4 units. The chains with compositions [Pr(SeO4)4(H2O)4]- are stacked in three dimensions and the (CH3)4N+ ions located in between them provide charge neutrality to the structure. The characterization of other compounds were carried out from powder XRD data and revealed that they all are isostructural to Pr-compound. All the functional groups were identified by Raman and IR spectroscopic studies. Solid state 77Se NMR revealed noticeable changes in selenium environment in these compounds. The optical absorption studies on the compounds show strong band edge absorptions in UV region. Thermal stabilities of the compounds, as investigated by simultaneous TG-DTA techniques indicate their sequential decompositions due to loss of H2O, (CH3)4N+ group, SeO2 and finally leaving their corresponding rare earth oxides.

  9. Six new complexes constructed from silver(I) and 2-(dinitromethylene)-1,3-diazacyclopentane (DNDZ): Synthesis, crystal structure and properties

    NASA Astrophysics Data System (ADS)

    Feng, Zhicun; Zhang, Hang; Xu, Kangzhen; Song, Jirong; Zhao, Fengqi

    2018-04-01

    Six different energetic silver complexes of 2-(dinitromethylene)-1,3-diazacyclopentane (DNDZ), Ag(DNDZ) (1), [Ag2(H2O)(DNDZ)]n (2), Ag(NH3)DNDZ (3), Ag(CH3NH2)(DNDZ) (4), Ag(C2H5NH2)(DNDZ) (5) and Ag(C3H7NH2)(DNDZ) (6), were first synthesized and structurally characterized. Complexes 2, 3, 5 and 6 were characterized by the single crystal X-ray diffraction analysis. Complexes 2, 5 and 6 crystallize in the monoclinic crystal system with space group P21/n containing four molecules per unit cell, but the crystal of complex 3 is triclinic with space group P-1 containing two molecules in each unit cell. Complexes 2 and 3 possess Ag⋯Ag interaction and corresponding central symmetric structure, but complexes 5 and 6 do not. Thermal behaviors of complexes 1-6 were determined and analyzed. The order of thermal stability for the six complexes is 4 > 3 >1 > 2 >5 > 6. Impact sensitivities for complexes 1-6 are >12 J, > 4 J, > 13 J, > 16 J, > 8 J and >7 J respectively, which corresponds well to the results of thermal stability for the six complexes except for complex 2. Moreover, natural bond orbital (NBO) analysis was used to investigate the bonding and hybridization of complex 3.

  10. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    NASA Astrophysics Data System (ADS)

    Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie

    2015-04-01

    Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.

  11. A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network

    NASA Astrophysics Data System (ADS)

    Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.

  12. Thermodynamic properties of hydrate phases immersed in ice phase

    NASA Astrophysics Data System (ADS)

    Belosludov, V. R.; Subbotin, O. S.; Krupskii, D. S.; Ikeshoji, T.; Belosludov, R. V.; Kawazoe, Y.; Kudoh, J.

    2006-01-01

    Thermodynamic properties and the pressure of hydrate phases immersed in the ice phase with the aim to understand the nature of self-preservation effect of methane hydrate in the framework of macroscopic and microscopic molecular models was studied. It was show that increasing of pressure is happen inside methane hydrate phases immersed in the ice phase under increasing temperature and if the ice structure does not destroy, the methane hydrate will have larger pressure than ice phase. This is because of the thermal expansion of methane hydrate in a few times larger than ice one. The thermal expansion of the hydrate is constrained by the thermal expansion of ice because it can remain in a region of stability within the methane hydrate phase diagram. The utter lack of preservation behavior in CS-II methane- ethane hydrate can be explain that the thermal expansion of ethane-methane hydrate coincide with than ice one it do not pent up by thermal expansion of ice. The pressure and density during the crossing of interface between ice and hydrate was found and dynamical and thermodynamic stability of this system are studied in accordance with relation between ice phase and hydrate phase.

  13. Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge–Discharge Cycling and Heating

    DOE PAGES

    Hu, Enyuan; Wang, Xuelong; Yu, Xiqian; ...

    2018-01-19

    The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less

  14. A fully integrated oven controlled microelectromechanical oscillator – Part II. Characterization and measurement

    DOE PAGES

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/°C, over the commercial temperature range while using tensmore » of milliwatts of supply power and with a volume of 2.3 mm 3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 °C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.« less

  15. Conformational assembly and biological properties of collagen mimetic peptides and their thermally responsive polymer conjugates

    NASA Astrophysics Data System (ADS)

    Krishna, Ohm Divyam

    2011-12-01

    Collagens are one of the most abundant proteins found in body tissues and organs, endowing structural integrity, mechanical strength, and multiple biological functions. Destabilized collagen inside human body leads to various degenerative diseases (ex. osteoarthritis) and ageing. This has continued to motivate the design of synthetic peptides and bio-synthetic polypeptides to closely mimic the native collagens in terms of triple helix structure and stability, potential for higher order assembly, and biological properties. However, the widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures. To address this continued need, a hydroxyproline-free, thermally stable collagen-mimetic peptide (CLP-Cys) was rationally designed via the incorporation of electrostatically stabilized amino acid triplets. CLP-Cys was synthesized via solid phase peptide synthesis. The formation and stability of the triple helical structure were indicated via circular dichroism (CD) experiments and confirmed via differential scanning calorimetry (DSC) results. CLP-Cys also self-assembled into nano-rods and micro-fibrils, as evidenced via a combination of dynamic light scattering and transmission electron microscopy. Given the high thermal stability and its propensity for higher-order assembly, CLP-Cys was further functionalized at both the ends with a thermally responsive polymer, poly(diethylene glycol methyl ether methacrylate), (PDEGMEMA) to synthesize a biohybrid triblock copolymer. The CD results indicated that the triple helical form is retained, the thermal unfolding is sustained and helix to coil transition is reversible in the triblock hybrid context. The LCST of PDEGMEMA homopolymer (26 °C) is increased (to 35 °C) upon conjugation to the hydrophilic collagen peptide domain. Further, a combination of static light scattering, Cryo-SEM, TEM and confocal microscopy elucidated that the collapse of the thermo-responsive polymer upon heating (to above the LCST) leads to the assembly of these hybrid materials as micrometer sized spheres. At 75 °C a morphological transformation from spheres to fibrils were observed. These studies provided unique perspectives about the impact of stimuli-responsive polymers and the triple-helix forming peptides on each other; and how temperature as a stimulus can be employed to sequentially guide the assembly. The development of self-assembling hybrid materials with multiple sensitivities to temperature would offer useful opportunities in the design of stimuli-responsive nano-materials. The CLP-Cys peptide sequence has been designed to incorporate biologically relevant amino acid triplets (GEKGER) and its positive impact was seen via recruitment of human mesenchymal stem cells (hMSCs) for adhesion, spreading and proliferation on CLP-Cys functionalized glass and hyaluronic acid based hydrogel surfaces. Therefore, the prospects of these materials in biomedical applications including wound healing and tissue engineering are promising.

  16. Effect of α-damage on fission-track annealing in zircon

    USGS Publications Warehouse

    Kasuya, Masao; Naeser, Charles W.

    1988-01-01

    The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e., different amounts of ??-damage) has been studied by one-hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon.

  17. Automated selection of stabilizing mutations in designed and natural proteins.

    PubMed

    Borgo, Benjamin; Havranek, James J

    2012-01-31

    The ability to engineer novel protein folds, conformations, and enzymatic activities offers enormous potential for the development of new protein therapeutics and biocatalysts. However, many de novo and redesigned proteins exhibit poor hydrophobic packing in their predicted structures, leading to instability or insolubility. The general utility of rational, structure-based design would greatly benefit from an improved ability to generate well-packed conformations. Here we present an automated protocol within the RosettaDesign framework that can identify and improve poorly packed protein cores by selecting a series of stabilizing point mutations. We apply our method to previously characterized designed proteins that exhibited a decrease in stability after a full computational redesign. We further demonstrate the ability of our method to improve the thermostability of a well-behaved native protein. In each instance, biophysical characterization reveals that we were able to stabilize the original proteins against chemical and thermal denaturation. We believe our method will be a valuable tool for both improving upon designed proteins and conferring increased stability upon native proteins.

  18. Automated selection of stabilizing mutations in designed and natural proteins

    PubMed Central

    Borgo, Benjamin; Havranek, James J.

    2012-01-01

    The ability to engineer novel protein folds, conformations, and enzymatic activities offers enormous potential for the development of new protein therapeutics and biocatalysts. However, many de novo and redesigned proteins exhibit poor hydrophobic packing in their predicted structures, leading to instability or insolubility. The general utility of rational, structure-based design would greatly benefit from an improved ability to generate well-packed conformations. Here we present an automated protocol within the RosettaDesign framework that can identify and improve poorly packed protein cores by selecting a series of stabilizing point mutations. We apply our method to previously characterized designed proteins that exhibited a decrease in stability after a full computational redesign. We further demonstrate the ability of our method to improve the thermostability of a well-behaved native protein. In each instance, biophysical characterization reveals that we were able to stabilize the original proteins against chemical and thermal denaturation. We believe our method will be a valuable tool for both improving upon designed proteins and conferring increased stability upon native proteins. PMID:22307603

  19. Size-selective breaking of the core-shell structure of gallium nanoparticles.

    PubMed

    Catalán Gómez, Sergio; Redondo-Cubero, Andres; Palomares Simon, Francisco Javier; Vazquez Burgos, Luis; Nogales, Emilio; Nucciarelli, Flavio; Mendez, Bianchi; Gordillo, Nuria; Pau, Jose Luis

    2018-06-11

    Core-shell gallium nanoparticles (Ga NPs) have recently been proposed as an ultraviolet plasmonic material for different applications but only at room temperature. Here, the thermal stability as a function of the size of the NPs is reported over a wide range of temperatures. We analyse the chemical and structural properties of the oxide shell by x-ray photoelectron spectroscopy and atomic force microscopy. We demonstrate the inverse dependence of the shell breaking temperature with the size of the NPs. Spectroscopic ellipsometry is used for tracking the rupture and its mechanism is systematically investigated by scanning electron microscopy, grazing incidence x-ray diffraction and cathodoluminescence. Taking advantage of the thermal stability of the NPs, we perform complete oxidations that lead to homogenous gallium oxide NPs. Thus, this study set the physical limits of Ga NPs to last at high temperatures, and opens up the possibility to achieve totally oxidized NPs while keeping their sphericity. © 2018 IOP Publishing Ltd.

  20. A Broad Stability Investigation of Nb-Doped SrCoO 2.5+δ as a Reversible Oxygen Electrode for Intermediate-Temperature Solid Oxide Fuel Cells

    DOE PAGES

    Wang, Jie; Jiang, Long; Xiong, Xiaolei; ...

    2016-06-10

    The present work reports a systematic study on the structural, thermal, electrical and electrochemical stability of SrCo 1–xNb xO 2.5+δ series as a potential reversible oxygen-electrode for intermediate-temperature solid oxide fuel cells. The identified best composition is x = 0.10, which exhibits a stable pseudo primitive cubic structure at <700°C and a reversible oxygen redox reaction at 350°C. The conductivity of this material is p-type and also exhibits a peak at 350°C, implying that the electron hole conduction is closely associated with the oxygen nonstoichiometry. Electrochemical impedance spectroscopy analysis indicates a low polarization resistance rate-limited by a slower surface Omore » 2 dissociation step. Altogether, the material is thermally stable and oxygen redox reversible below 700°C, above which a catalytically less active brownmillerite SrCoO 2.5 is formed.« less

  1. Microstructural parameters and high third order nonlinear absorption characteristics of Mn-doped PbS/PVA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Ramezanpour, B.; Mahmoudi Chenari, Hossein; Sadigh, M. Khadem

    2017-11-01

    In this work, undoped and Mn-doped PbS/PVA nanocomposite films have been successfully fabricated using the simple solution-casting method. Their crystalline structure was examined by X-ray powder diffraction (XRD). XRD pattern show the formation of cubic structure of PbS for Mn-doped PbS in PVA matrix. Microstructure parameters of Mn-doped PbS/PVA nanocomposite films were obtained through the size-strain plot (SSP) method. The thermal stability of the nanocomposite film was determined using Thermogravimetric analysis (TGA). Furthermore, Z-scan technique was used to investigate the optical nonlinearity of nanocomposite films by a continuous-wave laser irradiation at the wavelength of 655 nm. This experimental results show that undoped PbS/PVA nanocomposite films indicate high nonlinear absorption characteristics. Moreover, the nanocomposite films with easy preparation characteristics, high thermal stability and nonlinear absorption properties can be used as an active element in optics and photonic devices.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yan; Cai, Lu; An, Ke, E-mail: kean@ornl.gov

    This letter reports the correlation of anisotropy and directional conduction in the fast Li{sup +} conductor β-Li{sub 3}PS{sub 4}, one of the low-symmetry crystalline electrolyte candidates. The material has both high conductivity and good stability that serves well for the large-scale energy storage applications of all-solid-state lithium ion batteries. The anisotropic physical properties, demonstrated here by the thermal expansion coefficients, are crucial for compatibility in the solid-state system and battery performance. Neutron and X-ray powder diffraction measurements were done to determine the crystal structure and thermal stability. The crystallographic b-axis was revealed as a fast expansion direction, while negligible thermalmore » expansion was observed along the a-axis around the battery operating temperatures. The anisotropic behavior has its structural origin from the Li{sup +} conduction channels with incomplete Li occupancy and a flexible connection of LiS{sub 4} and PS{sub 4} tetrahedra within the framework. This indicates a strong correlation in the direction of the ionic transport in the low-symmetry Li{sup +} conductor.« less

  3. Molecular insights into the mechanism of thermal stability of actinomycete mannanase.

    PubMed

    Kumagai, Yuya; Uraji, Misugi; Wan, Kun; Okuyama, Masayuki; Kimura, Atsuo; Hatanaka, Tadashi

    2016-09-01

    Streptomyces thermolilacinus mannanase (StMan), which requires Ca(2+) for its enhanced thermal stability and hydrolysis activity, possesses two Ca(2+) -binding sites in loop6 and loop7. We evaluated the function of the Ca(2+) -binding site in loop7 and the hydrogen bond between residues Ser247 in loop6 and Asp279 in loop7. The Ca(2+) -binding in loop7 was involved only in thermal stability. Mutations of Ser247 or Asp279 retained the Ca(2+) -binding ability; however, mutants showed less thermal stability than StMan. Phylogenetic analysis indicated that most glycoside hydrolase family 5 subfamily 8 mannanases could be stabilized by Ca(2+) ; however, the mechanism of StMan thermal stability was found to be quite specific in some actinomycete mannanases. © 2016 Federation of European Biochemical Societies.

  4. Theoretical studies on the crystal structure, thermodynamic properties, detonation performance and thermal stability of cage-tetranitrotetraazabicyclooctane as a novel high energy density compound.

    PubMed

    Zhao, Guo-zheng; Lu, Ming

    2013-01-01

    The B3LYP/6-31G (d) method of density functional theory (DFT) was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. The heat of formation (HOF) and calculated density were estimated to evaluate the detonation properties using Kamlet-Jacobs equations. Thermal stability of 3,5,7,10,12,14,15,16-octanitro- 3,5,7,10,12,14,15,16-octaaza-heptacyclo[7.5.1.1(2,8).0(1,11).0(2,6).0(4,13).0(6,11)]hexadecane (cage-tetranitrotetraazabicyclooctane) was investigated by calculating the bond dissociation energy (BDE) at unrestricted B3LYP/6-31G (d) level. The calculated results show that the N-NO2 bond is a trigger bond during thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to Pna2(1) space group, with cell parameters a=12.840 Å, b=9.129 Å, c=14.346 Å, Z=6 and ρ=2.292 g·cm(-3). Both the detonation velocity of 9.96 km·s(-1) and the detonation pressure of 47.47 GPa are better than those of CL-20. According to the quantitative standard of energetics and stability, as a high energy density compound (HEDC), cage-tetranitrotetraazabicyclooctane essentially satisfies this requirement.

  5. The improvement of moisture resistance and thermal stability of Ca 3SiO 4Cl 2:Eu 2+ phosphor coated with SiO 2

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiaqing; Xia, Zhiguo; Liu, Haikun; Zhang, Zepeng; Liao, Libing

    2011-02-01

    Green-emitting phosphors Ca3SiO4Cl2:Eu2+ were prepared by the high temperature solid-state method. Sol-gel process was adopted to encapsulate the as-prepared phosphors with tetraethylorthosilicate (TEOS) as silicon coating reagent. Fluorescence spectrometer, scanning electron microscopy (SEM) and powder X-ray diffraction (XRD) patterns were employed to characterize the emission spectra, the surface morphologies and the phase structures, respectively. The chemical stability testing was operated by the method of soaking the phosphors in deionized water and roasting them at different temperatures. The results indicated that the surfaces of the green phosphors were evenly coated by SiO2 and the phase structure of the coated phosphors remained the same as the uncoated samples. The luminance centre of Eu2+ did not shift after surface treatment and the luminance intensity of coated phosphors was lower than that of the uncoated samples. The results demonstrated that the water-resistance stability of the coated phosphor was improved to some degree because the pH value and the luminance intensity variation were both smaller than the uncoated phosphor after steeping within the same time. Moreover, the thermal stability of coated phosphors was enhanced obviously compared to the original samples based on the temperature dependent emission spectra measurement.

  6. Picometer resolution interferometric characterization of the dimensional stability of zero CTE CFRP

    NASA Astrophysics Data System (ADS)

    Cordero Machado, Jorge; Heinrich, Thomas; Schuldt, Thilo; Gohlke, Martin; Lucarelli, Stefano; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus

    2008-07-01

    Highly stable but lightweight structural materials are essential for the realization of spaceborne optical instruments, for example telescopes. In terms of optical performance, usually tight tolerances on the absolute spacing between telescope mirrors have to be maintained from integration on ground to operation in final orbit. Furthermore, a certain stability of the telescope structure must typically be ensured in the measurement band. Particular challenging requirements have to be met for the LISA Mission (Laser Interferometer Space Antenna), where the spacing between primary and secondary mirror must be stable to a few picometers. Only few materials offer sufficient thermal stability to provide such performance. Candidates are for example Zerodur and Carbon-Fiber Reinforced Plastic (CFRP), where the latter is preferred in terms of mechanical stiffness and robustness. We are currently investigating the suitability of CFRP with respect to the LISA requirements by characterization of its dimensional stability with heterodyne laser interferometry. The special, highly symmetric interferometer setup offers a noise level of 2 pm/√Hz at 0.1Hz and above, and therefore represents a unique tool for this purpose. Various procedures for the determination of the coefficient of thermal expansion (CTE) have been investigated, both on a test sample with negative CTE, as well as on a CFRP tube specifically tuned to provide a theoretical zero expansion in the axial dimension.

  7. Main reinforcement effects of precipitation phase Mg2Cu3Si, Mg2Si and MgCu2 on Mg-Cu-Si alloys by ab initio investigation

    NASA Astrophysics Data System (ADS)

    Shi, Xue-Feng; Wang, Hai-Chen; Tang, Ping-Ying; Tang, Bi-Yu

    2017-09-01

    To predict and compare the main reinforcement effects of the key precipitation phases Mg2Cu3Si, Mg2Si and MgCu2 in Mg-Cu-Si alloy, the structural, mechanical and electronic properties of these phases have been studied by ab initio calculations. The lowest formation enthalpy and cohesive energy indicate that Mg2Cu3Si has the strongest alloying ability and structural stability. The mechanical modulus indicates that Mg2Cu3Si has the strongest resistance to reversible shear/volume distortion and has maximum hardness. The characterization of brittle (ductile) behavior manifests that MgCu2 has favorable ductility. Meanwhile the evaluation of elastic anisotropy indicates that Mg2Si possesses elastic isotropy. Debye temperature prediction shows that Mg2Si and Mg2Cu3Si have better thermal stability. To achieve an unbiased interpretation on the phase stability and mechanical behavior of these precipitation phases, the density of states and differential charge densities are also analyzed. The current study deepens the comprehensive understanding of main reinforcement effects of these precipitation phases on Mg-Cu-Si alloys, and also benefits to optimize the overall performances of Mg-Cu-Si alloy from the hardness, ductility and thermal stability by controlling these second precipitation phases during the heat treatment process.

  8. Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases

    PubMed Central

    Felsovalyi, Flora; Patel, Tushar; Mangiagalli, Paolo; Kumar, Sanat K; Banta, Scott

    2012-01-01

    Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior. PMID:22619179

  9. Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases.

    PubMed

    Felsovalyi, Flora; Patel, Tushar; Mangiagalli, Paolo; Kumar, Sanat K; Banta, Scott

    2012-08-01

    Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior. Copyright © 2012 The Protein Society.

  10. Thermal cracking of poly α-olefin aviation lubricating base oil

    NASA Astrophysics Data System (ADS)

    Fei, Yiwei; Wu, Nan; Ma, Jun; Hao, Jingtuan

    2018-02-01

    Thermal cracking of poly α-olefin (PAO) was conducted under different temperatures among 190 °C to 300 °C. The reacted mixtures were sequentially detected by gas chromatography-mass spectrometer (GC/MS). A series of small molecular normal alkanes, branched alkanes and olefins were identified. PAO perfect structure of aligned comb-likely side-chains has been seriously cracked under high temperatures. Property changes about kinematic viscosity and pour point of PAO samples reacted under high temperatures were also investigated. The appearance of small molecular compounds weakened the thermal stability, viscosity temperature performance and low temperature fluidity of PAO samples. Property of PAO samples was deteriorated due to thermal cracking under high temperatures.

  11. Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Zhao, Liang; Chen, Lijie; Song, Guolin; Tang, Guoyi

    2017-12-01

    We designed a photocurable pickering emulsion polymerization to create microencapsulated phase change materials (MicroPCM) with polymer-silica hybrid shell. The emulsion was stabilized by modified SiO2 particles without any surfactant or dispersant. The polymerization process can be carried out at ambient temperature only for 5 min ultraviolet radiation, which is a low-energy procedure. The resultant capsules were shown a good core-shell structure and uniform in size. The surface of the microcapsules was covered by SiO2 particles. According to the DSC and TGA examinations, the microcapsules has good thermal energy storage-release performance, enhanced thermal reliability and thermal stability. When ratio of MMA/n-octadecane was 1.5/1.5. The encapsulation efficiency of the microcapsules reached 62.55%, accompanied with 122.31 J/g melting enthalpy. The work is virtually applicable to the construction of a wide variety of organic-inorganic hybrid shell MicroPCM. Furthermore, with the application of this method, exciting opportunities may arise for realizing rapid, continuous and large-scale industrial preparation of MicroPCM.

  12. Porous materials for thermal management under extreme conditions.

    PubMed

    Clyne, T W; Golosnoy, I O; Tan, J C; Markaki, A E

    2006-01-15

    A brief analysis is presented of how heat transfer takes place in porous materials of various types. The emphasis is on materials able to withstand extremes of temperature, gas pressure, irradiation, etc. i.e. metals and ceramics, rather than polymers. A primary aim is commonly to maximize either the thermal resistance (i.e. provide insulation) or the rate of thermal equilibration between the material and a fluid passing through it (i.e. to facilitate heat exchange). The main structural characteristics concern porosity (void content), anisotropy, pore connectivity and scale. The effect of scale is complex, since the permeability decreases as the structure is refined, but the interfacial area for fluid-solid heat exchange is, thereby, raised. The durability of the pore structure may also be an issue, with a possible disadvantage of finer scale structures being poor microstructural stability under service conditions. Finally, good mechanical properties may be required, since the development of thermal gradients, high fluid fluxes, etc. can generate substantial levels of stress. There are, thus, some complex interplays between service conditions, pore architecture/scale, fluid permeation characteristics, convective heat flow, thermal conduction and radiative heat transfer. Such interplays are illustrated with reference to three examples: (i) a thermal barrier coating in a gas turbine engine; (ii) a Space Shuttle tile; and (iii) a Stirling engine heat exchanger. Highly porous, permeable materials are often made by bonding fibres together into a network structure and much of the analysis presented here is oriented towards such materials.

  13. Advanced study of thermal behaviour of CSZ comparing with the classic YSZ coating

    NASA Astrophysics Data System (ADS)

    Dragomirescu, A.; Constantin, N.; Ştefan, A.; Manoliu, V.; Truşcă, R.

    2017-01-01

    Thermal barrier coatings (TBC) are advanced materials typically applied to metal surfaces subjected to extreme temperatures to protect them and increase their lifetime. Ceria stabilized zirconia ceramic layer (CSZ) is increasingly used as an alternative improved as replace for classical TBC system - yttria stabilized zirconia - thanks to superior properties, including mechanical and high resistance to thermal corrosion. The paper describes the thermal shock testing of two types of thermal barrier coatings used to protect a nickel super alloy. For the experimental procedure, it was used plate samples from nickel super alloy with a bond coat and a ceramic top coat. The top coat was different: on some samples, it was used YSZ and on others CSZ. Ni based super alloys have good corrosion resistance in reducing environments action, but poor in oxidizing conditions. Extreme environments can lead to loss of material by oxidation / corrosion, along with decreased mechanical properties of the substrate due to damaging elements which diffuses into the substrate at high temperatures. Using laboratory equipment, the TBC systems were exposed repeatedly to extreme high temperatures for a short time and then cooled. After the thermal shock tests, the samples were morph-structured characterized using electronic microscopy to analyze the changes. The experimental results were compared to rank the TBC systems in order of performance.

  14. The glass-like thermal conductivity in ZrO2-Dy3TaO7 ceramic for promising thermal barrier coating application

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Hu, Ming Yu; Chong, Xiao Yu; Feng, Jing

    2018-03-01

    Using the solid-state reaction method, the (ZrO2)x-(Dy3TaO7)1-x (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.1) ceramics are synthesized in this work. The identification of the crystal structures indicates that the (ZrO2)x-(Dy3TaO7)1-x ceramics belong to the orthorhombic system, and the space group is C2221 in spite of the value of x increasing to 0.1. The thermal conductivities of the (ZrO2)x-(Dy3TaO7)1-x ceramics range from 1.3 W/(m K) to 1.8 W/(m K), and this value is much lower than that of 7-8 YSZ (yttria-stabilized zirconia). Besides, the (ZrO2)x-(Dy3TaO7)1-x ceramics possess the glass-like thermal conductivity caused by intrinsic oxygen vacancies existing in the lattice of Dy3TaO7. Moreover, the results of thermal expansion rates demonstrate that the (ZrO2)x-(Dy3TaO7)1-x ceramics possess excellent high temperature phase stability, and the thermal expansion coefficients [(9.7-11) × 10-6 K-1] are comparable to that of 7-8 YSZ.

  15. Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Liu, Jingzhou; Wang, Li; Li, Xiaowei; Ke, Peiling; Wang, Aiying

    2017-02-01

    Ti2AlN belongs to a family of ternary nano-laminate alloys known as the MAX phases, which exhibit a unique combination of metallic and ceramic properties. In the present work, the dense and high-stability Ti2AlN coating has been successfully prepared through the combined cathodic arc/sputter deposition, followed by heat post-treatment. It was found that the as-deposited Ti-Al-N coating behaved a multilayer structure, where (Ti, N)-rich layer and Al-rich layer grew alternately, with a mixed phase constitution of TiN and TiAlx. After annealing at 800 °C under vacuum condition for 1.5 h, although the multilayer structure still was found, part of multilayer interfaces became indistinct and disappeared. In particular, the thickness of the Al-rich layer decreased in contrast to that of as-deposited coating due to the inner diffusion of the Al element. Moreover, the Ti2AlN MAX phase emerged as the major phase in the annealed coatings and its formation mechanism was also discussed in this study. The vacuum thermal analysis indicated that the formed Ti2AlN MAX phase exhibited a high-stability, which was mainly benefited from the large thickness and the dense structure. This advanced technique based on the combined cathodic arc/sputter method could be extended to deposit other MAX phase coatings with tailored high performance like good thermal stability, high corrosion and oxidation resistance etc. for the next protective coating materials.

  16. Thermodynamic effects of proline introduction on protein stability.

    PubMed

    Prajapati, Ravindra Singh; Das, Mili; Sreeramulu, Sridhar; Sirajuddin, Minhajuddin; Srinivasan, Sankaranarayanan; Krishnamurthy, Vaishnavi; Ranjani, Ranganathan; Ramakrishnan, C; Varadarajan, Raghavan

    2007-02-01

    The amino acid Pro is more rigid than other naturally occurring amino acids and, in proteins, lacks an amide hydrogen. To understand the structural and thermodynamic effects of Pro substitutions, it was introduced at 13 different positions in four different proteins, leucine-isoleucine-valine binding protein, maltose binding protein, ribose binding protein, and thioredoxin. Three of the maltose binding protein mutants were characterized by X-ray crystallography to confirm that no structural changes had occurred upon mutation. In the remaining cases, fluorescence and CD spectroscopy were used to show the absence of structural change. Stabilities of wild type and mutant proteins were characterized by chemical denaturation at neutral pH and by differential scanning calorimetry as a function of pH. The mutants did not show enhanced stability with respect to chemical denaturation at room temperature. However, 6 of the 13 single mutants showed a small but significant increase in the free energy of thermal unfolding in the range of 0.3-2.4 kcal/mol, 2 mutants showed no change, and 5 were destabilized. In five of the six cases, the stabilization was because of reduced entropy of unfolding. However, the magnitude of the reduction in entropy of unfolding was typically several fold larger than the theoretical estimate of -4 cal K(-1) mol(-1) derived from the relative areas in the Ramachandran map accessible to Pro and Ala residues, respectively. Two double mutants were constructed. In both cases, the effects of the single mutations on the free energy of thermal unfolding were nonadditive. Copyright 2006 Wiley-Liss, Inc.

  17. Conceptual design and structural analysis of the spectroscopy of the atmosphere using far infrared emission (SAFIRE) instrument

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Averill, Robert D.

    1992-01-01

    The conceptual design and structural analysis for the Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Instrument are provided. SAFIRE, which is an international effort, is proposed for the Earth Observing Systems (EOS) program for atmospheric ozone studies. A concept was developed which meets mission requirements and is the product of numerous parametric studies and design/analysis iterations. Stiffness, thermal stability, and weight constraints led to a graphite/epoxy composite design for the optical bench and supporting struts. The structural configuration was determined by considering various mounting arrangements of the optical, cryo, and electronic components. Quasi-static, thermal, modal, and dynamic response analyses were performed, and the results are presented for the selected configuration.

  18. Magnesium dititanate (MgTi2O5) with pseudobrookite structure: a review.

    PubMed

    Suzuki, Yoshikazu; Shinoda, Yutaka

    2011-06-01

    Magnesium dititanate (MgTi 2 O 5 , MT 2 ) has been synthesized since the early 1930s. It has the pseudobrookite structure (general formula Me 3 O 5 ), corresponding to the Mg-enriched artificial endmember of the Fe 2 TiO 5 (pseudobrookite)-FeTi 2 O 5 (ferropseudobrookite)-Mg 0.5 Fe 0.5 Ti 2 O 5 (armalcolite) solid solution. Since MgTi 2 O 5 has relativity high thermal stability among pseudobrookite-type phases, it is expected to be a well-balanced low-thermal-expansion material. Here we review both the historical and recent studies on MgTi 2 O 5 , particularly on its crystal structure, cation order-disorder, physical properties and synthesis methods.

  19. Finding the Stable Structures of N1-xWx with an Ab Initio High-Throughput Approach

    DTIC Science & Technology

    2015-05-26

    W. These include borides , carbides, oxides, and other nitrides. We also invented many structures to mimic the random pattern of vacancies on both the...structures. These include nitrides, oxides, borides , and carbides, as well as supercells of standard structures with atoms removed to mimic the random patter...1930). [15] R. Kiessling and Y. H. Liu, Thermal stability of the chromium, iron, and tungsten borides in streaming ammonia and the existence of a new

  20. The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.

    PubMed

    Metrick, Michael A; Temple, Joshua E; MacDonald, Gina

    2013-12-31

    The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions. © 2013. Published by Elsevier B.V. All rights reserved.

Top