NASA Technical Reports Server (NTRS)
Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.
1993-01-01
An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.
First-Principles Fe L 2,3 -Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sassi, Michel; Pearce, Carolyn I.; Bagus, Paul S.
X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectramore » of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green’s function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.« less
Solid energy calibration standards for P K-edge XANES: electronic structure analysis of PPh4Br.
Blake, Anastasia V; Wei, Haochuan; Donahue, Courtney M; Lee, Kyounghoon; Keith, Jason M; Daly, Scott R
2018-03-01
P K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs 2 CuCl 4 ) and S (Na 2 S 2 O 3 ·5H 2 O), but not neighboring P. This paper presents a review of common P K-edge XANES energy calibration standards and analysis of PPh 4 Br as a potential alternative. The P K-edge XANES region of commercially available PPh 4 Br revealed a single, highly resolved pre-edge feature with a maximum at 2146.96 eV. PPh 4 Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh 3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh 3 and PPh 4 + revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time-dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre-edge feature in the P K-edge XANES spectrum of PPh 4 Br was assigned to P 1s → P-C π* transitions, whereas those at higher energy were P 1s → P-C σ*. Overall, the analysis suggests that PPh 4 Br is an excellent alternative to other solid energy calibration standards commonly used in P K-edge XANES experiments.
Gorczyca, Agnes; Moizan, Virginie; Chizallet, Celine; Proux, Olivier; Del Net, William; Lahera, Eric; Hazemann, Jean-Louis; Raybaud, Pascal; Joly, Yves
2014-11-10
Platinum nanoclusters highly dispersed on γ-alumina are widely used as heterogeneous catalysts. To understand the chemical interplay between the Pt nanoparticles, the support, and the reductive atmosphere, we performed X-ray absorption near edge structure (XANES) in situ experiments recorded in high energy resolution fluorescence detection (HERFD) mode. Spectra are assigned by comparison with simulated XANES spectra on models obtained by molecular dynamics (DFT-MD). We propose platinum cluster morphologies and quantify the hydrogen coverages compatible with XANES spectra recorded at variable hydrogen pressures and temperatures. Using cutting-edge methodologies to assign XANES spectra, this work gives unequalled atomic insights into the characterization of supported nanoclusters. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spanjers, Charles S.; Guillo, Pascal; Tilley, T. Don
X-ray absorption near-edge structure (XANES) is a common technique for elucidating oxidation state and first shell coordination geometry in transition metal complexes, among many other materials. However, the structural information obtained from XANES is often limited to the first coordination sphere. In this study, we show how XANES can be used to differentiate between C, Si, and Ge in the second coordination shell of Ti–O–(C, Si, Ge) molecular complexes based on differences in their Ti K-edge XANES spectra. Experimental spectra were compared with theoretical spectra calculated using density functional theory structural optimization and ab initio XANES calculations. The unique featuresmore » for second shell C, Si, and Ge present in the Ti K pre-edge XANES are attributed to the interaction between the Ti center and the O–X (X = C, Si, or Ge) antibonding orbitals.« less
Kappen, P; Ferrando-Miguel, G; Reichman, S M; Innes, L; Welter, E; Pigram, P J
2017-05-05
The surface chemistry and bulk chemical speciation of solid industrial wastes containing 8wt-% antimony (Sb) were investigated using synchrotron X-ray Absorption Near Edge Structure (XANES) and Time-of-Flight Ion Secondary Mass Spectrometry (ToF-SIMS). Leaching experiments were conducted in order to better understand the behavior of Sb in waste streams and to inform regulatory management of antimony-containing wastes. The experiments also demonstrate how a combination of XANES and ToF-SIMS adds value to the field of waste investigations. Leaching treatments (acid and base) were performed at a synchrotron over 24h time periods. Surface analyses of the wastes before leaching showed the presence of Sb associated with S and O. Bulk analyses revealed Sb to be present, primarily, as trivalent sulfide species. Both acid and base leaching did not change the antimony speciation on the solid. Leaching transferred about 1% of the total Sb into solution where Sb was found to be present as Sb(V). XANES data showed similarities between leachate and FeSbO 4 . During base leaching, the Sb content in solution gradually increased over time, and potential desorption mechanisms are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Timoshenko, Janis; Lu, Deyu; Lin, Yuewei; ...
2017-09-29
Tracking the structure of heterogeneous catalysts under operando conditions remains a challenge due to the paucity of experimental techniques that can provide atomic-level information for catalytic metal species. Here we report on the use of X-ray absorption near edge structure (XANES) spectroscopy and supervised machine learning (SML) for refining the three-dimensional geometry of metal catalysts. SML is used to unravel the hidden relationship between the XANES features and catalyst geometry. To train our SML method, we rely on ab-initio XANES simulations. Our approach allows one to solve the structure of a metal catalyst from its experimental XANES, as demonstrated heremore » by reconstructing the average size, shape and morphology of well-defined platinum nanoparticles. This method is applicable to the determination of the nanoparticle structure in operando studies and can be generalized to other nanoscale systems. In conclusion, it also allows on-the-fly XANES analysis, and is a promising approach for high-throughput and time-dependent studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timoshenko, Janis; Lu, Deyu; Lin, Yuewei
Tracking the structure of heterogeneous catalysts under operando conditions remains a challenge due to the paucity of experimental techniques that can provide atomic-level information for catalytic metal species. Here we report on the use of X-ray absorption near edge structure (XANES) spectroscopy and supervised machine learning (SML) for refining the three-dimensional geometry of metal catalysts. SML is used to unravel the hidden relationship between the XANES features and catalyst geometry. To train our SML method, we rely on ab-initio XANES simulations. Our approach allows one to solve the structure of a metal catalyst from its experimental XANES, as demonstrated heremore » by reconstructing the average size, shape and morphology of well-defined platinum nanoparticles. This method is applicable to the determination of the nanoparticle structure in operando studies and can be generalized to other nanoscale systems. In conclusion, it also allows on-the-fly XANES analysis, and is a promising approach for high-throughput and time-dependent studies.« less
NASA Astrophysics Data System (ADS)
Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D. D.
2005-11-01
Hole-doped perovskites such as La1-xCaxMnO3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K -edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K -edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds.
XAS Characterization of the Zn Site of Non-structural Protein 3 (NS3) from Hepatitis C Virus
NASA Astrophysics Data System (ADS)
Ascone, I.; Nobili, G.; Benfatto, M.; Congiu-Castellano, A.
2007-02-01
XANES spectra of non structural protein 3 (NS3) have been calculated using 4 Zn coordination models from three crystallographic structures in the Protein Data Base (PDB): 1DY9, subunit B, 1CU1 subunit A and B, and 1JXP subunit B. Results indicate that XANES is an appropriate tool to distinguish among them. Experimental XANES spectra have been simulated refining crystallographic data. The model obtained by XAS is compared with the PDB models.
Polarized XANES Monitors Femtosecond Structural Evolution of Photoexcited Vitamin B 12
Miller, Nicholas A.; Deb, Aniruddha; Alonso-Mori, Roberto; ...
2017-01-30
Ultrafast, polarization-selective time-resolved X-ray absorption near-edge structure (XANES) was used to characterize the photochemistry of vitamin B 12, cyanocobalamin (CNCbl), in solution. Cobalamins are important biological cofactors involved in methyl transfer, radical rearrangement, and light-activated gene regulation, while also holding promise as light-activated agents for spatiotemporal controlled delivery of therapeutics. We introduce polarized femtosecond XANES, combined with UV–visible spectroscopy, to reveal sequential structural evolution of CNCbl in the excited electronic state. Femtosecond polarized XANES provides the crucial structural dynamics link between computed potential energy surfaces and optical transient absorption spectroscopy. Polarization selectivity can be used to uniquely identify electronic contributionsmore » and structural changes, even in isotropic samples when well-defined electronic transitions are excited. Our XANES measurements reveal that the structural changes upon photoexcitation occur mainly in the axial direction, where elongation of the axial Co–CN bond and Co–N Im bond on a 110 fs time scale is followed by corrin ring relaxation on a 260 fs time scale. In conclusion, these observations expose features of the potential energy surfaces controlling cobalamin reactivity and deactivation.« less
Polarized XANES Monitors Femtosecond Structural Evolution of Photoexcited Vitamin B 12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Nicholas A.; Deb, Aniruddha; Alonso-Mori, Roberto
Ultrafast, polarization-selective time-resolved X-ray absorption near-edge structure (XANES) was used to characterize the photochemistry of vitamin B 12, cyanocobalamin (CNCbl), in solution. Cobalamins are important biological cofactors involved in methyl transfer, radical rearrangement, and light-activated gene regulation, while also holding promise as light-activated agents for spatiotemporal controlled delivery of therapeutics. We introduce polarized femtosecond XANES, combined with UV–visible spectroscopy, to reveal sequential structural evolution of CNCbl in the excited electronic state. Femtosecond polarized XANES provides the crucial structural dynamics link between computed potential energy surfaces and optical transient absorption spectroscopy. Polarization selectivity can be used to uniquely identify electronic contributionsmore » and structural changes, even in isotropic samples when well-defined electronic transitions are excited. Our XANES measurements reveal that the structural changes upon photoexcitation occur mainly in the axial direction, where elongation of the axial Co–CN bond and Co–N Im bond on a 110 fs time scale is followed by corrin ring relaxation on a 260 fs time scale. In conclusion, these observations expose features of the potential energy surfaces controlling cobalamin reactivity and deactivation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popa, Karin; Raison, Philippe E., E-mail: philippe.raison@ec.europa.eu; Martel, Laura
2015-10-15
PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis ofmore » room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, Manas Ranjan, E-mail: manasranjan056@gmail.com; Bhowmik, R. N.; Sinha, A. K.
2015-06-24
The Co{sub 2.25}Fe{sub 0.75}O{sub 4} ferrite composition has been prepared by chemical co-precipitation route. The as-prepared sample after annealing at 900°C in air formed single phase cubic spinel structure. Synchrotron X-ray diffraction and X-ray absorption near edge structure (XANES) measurements were used to study charge states of the cations in octahedral and tetrahedral sites of the cubic spinel structure. Raman spectra indicated normal cubic spinel structure. XANES data suggested the existence of Fe{sup 4+} ions in the spinel structure.
Experimental and theoretical XANES of CdSxSe1-x nanostructures
NASA Astrophysics Data System (ADS)
Yiu, Y. M.; Murphy, M. W.; Liu, L.; Hu, Y.; Sham, T. K.
2014-03-01
The morphology and electronic properties of the CdSxSe1-x nanostructures with varying alloy compositions have been acquired experimentally by X-ray Absorption Near-Edge Structures (XANES) at the Cd, Se and S K-edge and L3,2-edges. The theoretical XANES spectra have been calculated using the density functional approach. It is found that the optical band-gap emission of these CdSxSe1-x nano-ribbons can be tuned to the range between that of pure CdS (2.43 eV) and CdSe (1.74 eV) by changing the S and Se ratio. This gradual shift in (optical and structural) properties from CdS character to CdSe character is also seen in the electronic structures. The densities of states and band structures show that with the addition of Se replacing S in CdS, the band gap shrinks. The K and L3,2 edges of Cd, Se, and S of the XANES structures of both the CdS and CdSe in B4 (wurtzite) and B3 (cubic zinc-blende) structures have been calculated and compared.
NASA Astrophysics Data System (ADS)
D'Angelo, Paola; Migliorati, Valentina; Mancini, Giordano; Barone, Vincenzo; Chillemi, Giovanni
2008-02-01
The structural and dynamic properties of the solvated Hg2+ ion in aqueous solution have been investigated by a combined experimental-theoretical approach employing x-ray absorption spectroscopy and molecular dynamics (MD) simulations. This method allows one to perform a quantitative analysis of the x-ray absorption near-edge structure (XANES) spectra of ionic solutions using a proper description of the thermal and structural fluctuations. XANES spectra have been computed starting from the MD trajectory, without carrying out any minimization in the structural parameter space. The XANES experimental data are accurately reproduced by a first-shell heptacoordinated cluster only if the second hydration shell is included in the calculations. These results confirm at the same time the existence of a sevenfold first hydration shell for the Hg2+ ion in aqueous solution and the reliability of the potentials used in the MD simulations. The combination of MD and XANES is found to be very helpful to get important new insights into the quantitative estimation of structural properties of disordered systems.
Smith, Anna L; Colineau, Eric; Griveau, Jean-Christophe; Popa, Karin; Kauric, Guilhem; Martin, Philippe; Scheinost, Andreas C; Cheetham, Anthony K; Konings, Rudy J M
2017-05-15
The physicochemical properties of the potassium neptunate K 2 NpO 4 have been investigated in this work using X-ray diffraction, X-ray absorption near edge structure (XANES) spectroscopy at the Np-L 3 edge, and low-temperature heat capacity measurements. A Rietveld refinement of the crystal structure is reported for the first time. The Np(VI) valence state has been confirmed by the XANES data, and the absorption edge threshold of the XANES spectrum has been correlated to the Mössbauer isomer shift value reported in the literature. The standard entropy and heat capacity of K 2 NpO 4 have been derived at 298.15 K from the low-temperature heat capacity data. The latter suggest the existence of a magnetic ordering transition around 25.9 K, most probably of the ferromagnetic type.
Identification of F impurities in F-doped ZnO by synchrotron X-ray absorption near edge structures
NASA Astrophysics Data System (ADS)
Na-Phattalung, Sutassana; Limpijumnong, Sukit; Min, Chul-Hee; Cho, Deok-Yong; Lee, Seung-Ran; Char, Kookrin; Yu, Jaejun
2018-04-01
Synchrotron X-ray absorption near edge structure (XANES) measurements of F K-edge in conjunction with first-principles calculations are used to identify the local structure of the fluorine (F) atom in F-doped ZnO. The ZnO film was grown by pulsed laser deposition with an Nd:YAG laser, and an oxyfluoridation method was used to introduce F ions into the ZnO films. The measured XANES spectrum of the sample was compared against the first-principles XANES calculations based on various models for local atomic structures surrounding F atoms. The observed spectral features are attributed to ZnF2 and FO defects in wurtzite bulk ZnO.
Aluminium X-ray absorption Near Edge Structure in model compounds and Earth's surface minerals
NASA Astrophysics Data System (ADS)
Ildefonse, P.; Cabaret, D.; Sainctavit, P.; Calas, G.; Flank, A.-M.; Lagarde, P.
Aluminium K-edge X-ray absorption near edge spectra (XANES) of a suite of silicate and oxides minerals consist of electronic excitations occurring in the edge region, and multiple scattering resonances at higher energies. The main XANES feature for four-fold Al is at around 2 eV lower energy than the main XANES feature for six-fold Al. This provides a useful probe for coordination numbers in clay minerals, gels, glasses or material with unknown Al-coordination number. Six-fold aluminium yields a large variety of XANES features which can be correlated with octahedral point symmetry, number of aluminium sites and distribution of Al-O distances. These three parameters may act together, and the quantitative interpretation of XANES spectra is difficult. For a low point symmetry (1), variations are mainly related to the number of Al sites and distribution of Al-O distances: pyrophyllite, one Al site, is clearly distinguished from kaolinite and gibbsite presenting two Al sites. For a given number of Al-site (1), variations are controlled by changes in point symmetry, the number of XANES features being increased as point symmetry decreases. For a given point symmetry (1) and a given number of Al site (1), variations are related to second nearest neighbours (gibbsite versus kaolinite). The amplitude of the XANES feature at about 1566 eV is a useful probe for the assessment of AlIV/Altotal ratios in 2/1 phyllosilicates. Al-K XANES has been performed on synthetic Al-bearing goethites which cannot be studied by 27Al NMR. At low Al content, Al-K XANES is very different from that of α-AlOOH but at the highest level, XANES spectrum tends to that of diaspore. Al-K XAS is thus a promising tool for the structural study of poorly ordered materials such as clay minerals and natural alumino-silicate gels together with Al-subsituted Fe-oxyhydroxides.
Della-Longa, S; Chen, L X; Frank, P; Hayakawa, K; Hatada, K; Benfatto, M
2009-05-04
Full multiple scattering (FMS) Minuit XANES (MXAN) has been combined with laser pump-probe K-edge X-ray absorption spectroscopy (XAS) to determine the structure of photoexcited Ni(II)tetramesitylporphyrin, Ni(II)TMP, in dilute toluene solution. It is shown that an excellent simulation of the XANES spectrum is obtained, excluding the lowest-energy bound-state transitions. In ground-state Ni(II)TMP, the first-shell and second-shell distances are, respectively, d(Ni-N) = (1.93 +/- 0.02) A and d(Ni-C) = (2.94 +/- 0.03) A, in agreement with a previous EXAFS result. The time-resolved XANES difference spectrum was obtained (1) from the spectra of Ni(II)TMP in its photoexcited T(1) state and its ground state, S(0). The XANES difference spectrum has been analyzed to obtain both the structure and the fraction of the T(1) state. If the T(1) fraction is kept fixed at the value (0.37 +/- 0.10) determined by optical transient spectroscopy, a 0.07 A elongation of the Ni-N and Ni-C distances [d(Ni-N) and d(Ni-C)] is found, in agreement with the EXAFS result. However, an evaluation of both the distance elongation and the T(1) fraction can also be obtained using XANES data only. According to experimental evidence, and MXAN simulations, the T(1) fraction is (0.60 +/- 0.15) with d(Ni-N) = (1.98 +/- 0.03) A (0.05 A elongation). The overall uncertainty of these results depends on the statistical correlation between the distances and T(1) fraction, and the chemical shift of the ionization energy because of subtle changes of metal charge between the T(1) and S(0) states. The T(1) excited-state structure results, independently obtained without the excited-state fraction from optical transient spectroscopy, are still in agreement with previous EXAFS investigations. Thus, full multiple scattering theory applied through the MXAN formalism can be used to provide structural information, not only on the ground-state molecules but also on very short-lived excited states through differential analysis applied to transient photoexcited species from time-resolved experiments.
D'Angelo, Paola; Zitolo, Andrea; Migliorati, Valentina; Persson, Ingmar
2010-01-11
The structural properties of the hydrated lanthanoid(III) ions in aqueous solution and in the isostructural trifluoromethanesulfonate salts have been investigated by a quantitative analysis of the X-ray absorption near-edge structure (XANES) spectra at the K- and L(3)-edges. The XANES analysis has provided a clear description of the variation of lanthanoid(III) hydration properties across the series. It was found that all of the lanthanoid(III) hydration complexes retain a tricapped trigonal prism (TTP) geometry, and along the series two of the capping water molecules become less and less strongly bound, before finally, on average, one of them leaves the hydration cluster. This gives rise to an eight-coordinated distorted bicapped trigonal prism with two different Ln--O capping distances for the smallest lanthanoid(III) ions. This systematic study has shown that for lanthanoid compounds more accurate structural information is obtained from the analysis of the L(3)-edge than from K-edge XANES data. Moreover, whereas the second hydration shells provide a detectable contribution to the L(3)-edge XANES spectra of the lighter lanthanoid ions, the K-edge spectra are insensitive to the more distant coordination spheres.
NASA Astrophysics Data System (ADS)
Guo, X. X.; Sham, T. K.; Zhu, Y. J.; Hu, Y. F.
2013-04-01
Mesoporous calcium silicate hydrate (CSH) nanostructure has been proven to be bioactive and biocompatible, and has a bright future in the application of bone treatment among other applications. X-ray absorption near edge structure (XANES) is a powerful tool for the study of the interactions of calcium silicate hydrates with drug molecules because it is element specific and it probes the unoccupied electronic states. Herein, we report the use of the calcium, silicon and oxygen K-edge XANES spectroscopy to identify how drug molecules interact with different groups in calcium silicate hydrate mesoporous nano-carriers with different morphologies. Significant changes are observed in XANES spectra after drug loading into the calcium silicate hydrate system, especially at the Si and O K-edge. The implications of these findings are discussed.
Bone char effects on soil: sequential fractionations and XANES spectroscopy
NASA Astrophysics Data System (ADS)
Morshedizad, Mohsen; Panten, Kerstin; Klysubun, Wantana; Leinweber, Peter
2018-01-01
The acceptability of novel bone char fertilizers depends on their P release, but reactions at bone char surfaces and impacts on soil P speciation are insufficiently known. By using sequential fractionation and synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy we investigated whether and how the chemical composition of bone char particles has been altered in soil and has consequently affected the P speciation of amended soils. Therefore, two different kinds of bone char particles (BC produced by the pyrolysis of degreased animal bone chips at 800 °C and BCplus, a BC enriched with reduced sulfur compounds) were manually separated from the soil at the end of two different experiments: incubation leaching and ryegrass cultivation. Sequential P fractionation of amended soils showed P enrichment in all fractions compared to the control. The most P increase between all treatments significantly occurred in the NaOH-P and resin-P fractions in response to BCplus application in both incubation-leaching and ryegrass cultivation experiments. This increase in the readily available P fraction in BCplus-treated soils was confirmed by linear combination fitting (LCF) analysis on P K-edge XANES spectra of BC particles and amended soils. The proportion of Ca hydroxyapatite decreased, whereas the proportion of CaHPO4 increased in BCplus particles after amended soils had been incubated and leached and cropped by ryegrass. Based on P XANES speciation as determined by LCF analysis, the proportion of inorganic Ca(H2PO4)2 increased in amended soils after BCplus application. These results indicate that soil amendment with BCplus particles leads to elevated P concentration and maintains more soluble P species than BC particles even after 230 days of ryegrass cultivation.
NASA Astrophysics Data System (ADS)
Ildefonse, Ph.; Calas, G.; Flank, A. M.; Lagarde, P.
1995-05-01
Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaOsbnd MgOsbnd 2SiO2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mgsbnd O distances of 2.01Å. In aluminosilicate gels, Alsbnd K XANES has been used to investigate the [4]Al/Altotal ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Sisbnd K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si= 1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels.
Near-edge X-ray absorption spectra for metallic Cu and Mn
NASA Astrophysics Data System (ADS)
Greaves, G. N.; Durham, P. J.; Diakun, G.; Quinn, P.
1981-11-01
The measurement of X-ray absorption fine structure of metals- both in the extended region (EXAFS) as well as in the near edge region (XANES)-has been widely discussed (see refs 1-6 for Cu and refs 7-9 for Mn). The recent availability of intense X-ray fluxes from storage rings has usually been exploited for EXAFS leaving the XANES often with poorer resolution than earlier work performed on conventional sources (for example, compare the near edge structure for copper in ref. 1 with refs 3 or 6). In addition, whilst the theory and analysis of EXAFS is relatively well-established2,10, a theory for the strong scattering regime near to the absorption edge has only recently been developed11. We report here the first high resolution XANES spectra for Cu and Mn which were performed at the SRS storage ring at Daresbury. Although both metals have close-packed structures consisting of atoms of similar size their local atomic structure is different in detail. Significant differences are found in their respective XANES reflecting the senstivity of this region of the X-ray absorption fine structure to the local atomic structure. Spectra for the two metals have been analysed using the new multiple scattering formalism. This is a real space calculation and unlike a conventional band structure approach it does not require structural periodicity but works from the local arrangement of atoms.
Yang, Jianjun; Liu, Jin; Dynes, James J; Peak, Derek; Regier, Tom; Wang, Jian; Zhu, Shenhai; Shi, Jiyan; Tse, John S
2014-02-01
Molecular-level understanding of soil Cu speciation and distribution assists in management of Cu contamination in mining sites. In this study, one soil sample, collected from a mining site contaminated since 1950s, was characterized complementarily by multiple synchrotron-based bulk and spatially resolved techniques for the speciation and distribution of Cu as well as other related elements (Fe, Ca, Mn, K, Al, and Si). Bulk X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that soil Cu was predominantly associated with Fe oxides instead of soil organic matter. This agreed with the closest association of Cu to Fe by microscopic X-ray fluorescence (U-XRF) and scanning transmission X-ray microscopy (STXM) nanoanalysis, along with the non-occurrence of photoreduction of soil Cu(II) by quick Cu L3,2-edge XANES spectroscopy (Q-XANES) which often occurs when Cu organic complexes are present. Furthermore, bulk-EXAFS and STXM-coupled Fe L3,2-edge nano-XANES analysis revealed soil Cu adsorbed primarily to Fe(III) oxides by inner-sphere complexation. Additionally, Cu K-edge μ-XANES, L3,2-edge bulk-XANES, and successive Q-XANES results identified the presence of Cu2S rather than radiation-damage artifacts dominant in certain microsites of the mining soil. This study demonstrates the great benefits in use of multiple combined synchrotron-based techniques for comprehensive understanding of Cu speciation in heterogeneous soil matrix, which facilitates our prediction of Cu reactivity and environmental fate in the mining site.
Waychunas, G.A.; Fuller, C.C.; Davis, J.A.; Rehr, J.J.
2003-01-01
X-ray absorption near-edge spectroscopy (XANES) analysis of sorption complexes has the advantages of high sensitivity (10- to 20-fold greater than extended X-ray absorption fine structure [EXAFS] analysis) and relative ease and speed of data collection (because of the short k-space range). It is thus a potentially powerful tool for characterization of environmentally significant surface complexes and precipitates at very low surface coverages. However, quantitative analysis has been limited largely to "fingerprint" comparison with model spectra because of the difficulty of obtaining accurate multiple-scattering amplitudes for small clusters with high confidence. In the present work, calculations of the XANES for 50- to 200-atom clusters of structure from Zn model compounds using the full multiple-scattering code Feff 8.0 accurately replicate experimental spectra and display features characteristic of specific first-neighbor anion coordination geometry and second-neighbor cation geometry and number. Analogous calculations of the XANES for small molecular clusters indicative of precipitation and sorption geometries for aqueous Zn on ferrihydrite, and suggested by EXAFS analysis, are in good agreement with observed spectral trends with sample composition, with Zn-oxygen coordination and with changes in second-neighbor cation coordination as a function of sorption coverage. Empirical analysis of experimental XANES features further verifies the validity of the calculations. The findings agree well with a complete EXAFS analysis previously reported for the same sample set, namely, that octahedrally coordinated aqueous Zn2+ species sorb as a tetrahedral complex on ferrihydrite with varying local geometry depending on sorption density. At significantly higher densities but below those at which Zn hydroxide is expected to precipitate, a mainly octahedral coordinated Zn2+ precipitate is observed. An analysis of the multiple scattering paths contributing to the XANES demonstrates the importance of scattering paths involving the anion sublattice. We also describe the specific advantages of complementary quantitative XANES and EXAFS analysis and estimate limits on the extent of structural information obtainable from XANES analysis. ?? 2003 Elsevier Science Ltd.
Influence of point defects on the near edge structure of hexagonal boron nitride
NASA Astrophysics Data System (ADS)
McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.
2017-10-01
Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.
2016-12-12
X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Pt n/SiO 2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O 2 exposure and annealing in H 2. Here, the clusters are found tomore » be stable during deposition and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L 3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.« less
A X-Ray Absorption Study of Transition Metal Oxides
NASA Astrophysics Data System (ADS)
Bunker, Grant Byrd
This work is an experimental and theoretical study of the x-ray absorption near-edge structure of selected 3d transition metal compounds. The goal is to understand the physical mechanisms of XANES, using the competing multiple scattering (MS) and single scattering formalisms of Durham et al, and of Muller and Schaich, respectively. Careful experimental measurements of the K edge absorption of Mn oxides and KMnO(,4) at 300(DEGREES)K, 140(DEGREES)K and 80(DEGREES)K were made. These materials were chosen because they exhibit a variety of structures and oxidation states. Computer simulations of the XANES using the formalisms above were also performed. The experimental results show that atoms beyond the first coordination shell significantly affect the XANES near and above the edge; in particular the temperature dependent XANES and the "white line" in MnO establish this. We conclude that XANES, like EXAFS, is primarily sensitive to geometrical structure, except within about 1 Rydberg of the Fermi level. Two types of MS are distinguished: type 1 (forward scattering) is important in both XANES and EXAFS regions; type 2 (large angle scattering) is important only at and below the edge. MS of the photoelectron among the first shell Oxygen atoms in KMnO(,4) is observed experimentally, and found to become negligible above (DBLTURN) 1 Rydberg past the edge. The sharp features in XANES are primarily due to scattering from distant atoms, rather than localized states, except below the edge. This is supported by the observation that (alpha)-Mn(,2)O(,3) and Mn(,3)O(,4) spectra are nearly identical; their structures are the same, but the average oxidation states are different. We find the bond length strongly affects the edge position and the intensity of the 3d absorption in tetrahedrally coordinated transition metals. Other new results are the first shell EXAFS amplitude in MnO shows an anomalous energy dependence, which apparently cannot be explained by current theory. A new deconvolution algorithm is proposed to minimize truncation effects in Fourier filtering.
NASA Astrophysics Data System (ADS)
Tanaka, Isao; Mizoguchi, Teruyasu; Yamamoto, Tomoyuki
2009-03-01
Both electron energy loss near edge structure (ELNES) spectroscopy and x-ray absorption near edge structure (XANES) spectroscopy provide information on the local structural and chemical environments of selected elements of interest. Recent technological progress in scanning transmission electron microscopy has enabled ELNES measurements with atomic column spatial resolution. Very dilute concentrations (nanograms per milliliter or ppb level) of dopants can be observed using third-generation synchrotron facilities when x-ray fluorescence is measured with highly efficient detectors. With such technical developments, ELNES and XANES have become established as essential tools in a large number of fields of natural science, including condensed matter physics, chemistry, mineralogy and materials science. In addition to these developments in experimental methodology, notable progress in reproducing spectra using theoretical methods has recently been made. Using first-principles methods, one can analyze and interpret spectra without reference to experiment. This is quite important since we are often interested in the analysis of exotic materials or specific atoms located at lattice discontinuities such as surfaces and interfaces, where appropriate experimental data are difficult to obtain. Using the structures predicted by reliable first-principles calculations, one can calculate theoretical ELNES and XANES spectra without too much difficulty even in such cases. Despite the fact that ELNES and XANES probe the same phenomenon—essentially the electric dipole transition from a core orbital to an unoccupied band—there have not been many opportunities for researchers in the two areas to meet and discuss. Theoretical calculations of ELNES spectra have been mainly confined to the electron microscopy community. On the other hand, the theory of XANES has been developed principally by researchers in the x-ray community. Publications describing the methods have been written more-or-less independently by the two communities. The three-day workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) was planned to help remedy this situation. It aimed to demonstrate capability of state-of-the-art theoretical techniques to explain and predict ELNES and XANES spectra, and to allow deep discussion between scientists in the two communities. It also provided an excellent opportunity to introduce experimentalists to the computational techniques available. Invited talks and poster presentations by leading scientists were given on the first day, which was followed by tutorial sessions for five computer programs on the second and third days. Excellent lectures were given by Peter Blaha (Vienna, Austria) on the WIEN2k code, Chris J Pickard (St Andrews, UK) on the CASTEP code, John J Rehr (Seattle, USA) on the FEFF8 code, Frank de Groot (Utrecht, The Netherlands) on the CTM4XAS code, and Hidekazu Ikeno (Kyoto, Japan) on the first-principles CI-multiplet code. Thanks to the enthusiastic participation of more than 100 scientists from around the world, the workshop was a complete success. The aim of this special issue in Journal of Physics: Condensed Matter is to share with the readers the most up-to-date knowledge presented at the workshop. We believe this will prove useful as a reference for researchers in many different fields, as well as an overview of the current status and future directions of theoretical calculations for ELNES and XANES. TEX2008 was a satellite meeting of the First International Symposium on Advanced Microscopy and Theoretical Calculations (AMTC1) (Nagoya, Japan, 29-30 June 2008), which was held in commemoration of the establishment of the Nanostuctures Research Laboratory (NSRL) at the Japan Fine Ceramics Center (JFCC) and as a daughter event of EXPO 2005, Aichi, Japan. A Grant-in-Aid for Scientific Research on Priority Areas 'Nano Materials Science for Atomic-Scale Modification' from the Ministry of Education, Culture, Sports and Technology (MEXT) and support from the Chubu Economic Federation for the workshop are gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Ching, Wai-Yim; Rulis, Paul
2009-03-01
Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a Σ31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B12) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.
NASA Technical Reports Server (NTRS)
Sutton, S. R.; Jones, K. W.; Gordon, B.; Rivers, M. L.; Bajt, S.; Smith, J. V.
1993-01-01
The oxidation state of Cr in 200-micron regions within individual lunar olivine and pyroxene grains from lunar basalt 15555 was inferred using X-ray Absorption Near Edge Structure (XANES). Reference materials had previously been studied by optical absorption spectroscopy and included Cr-bearing borosilicate glasses synthesized under controlled oxygen fugacity and Cr-doped olivines. The energy dependence of XANES spectral features defined by these reference materials indicated that Cr is predominantly divalent in the lunar olivine and trivalent in the pyroxene. These results, coupled with the apparent f(02)-independence of partitioning coefficients for Cr into olivine, imply that the source magma was dominated by divalent Cr at the time of olivine crystallization.
Tack, Pieter; Vekemans, Bart; Laforce, Brecht; Rudloff-Grund, Jennifer; Hernández, Willinton Y; Garrevoet, Jan; Falkenberg, Gerald; Brenker, Frank; Van Der Voort, Pascal; Vincze, Laszlo
2017-02-07
Using X-ray absorption near edge structure (XANES) spectroscopy, information on the local chemical structure and oxidation state of an element of interest can be acquired. Conventionally, this information can be obtained in a spatially resolved manner by scanning a sample through a focused X-ray beam. Recently, full-field methods have been developed to obtain direct 2D chemical state information by imaging a large sample area. These methods are usually in transmission mode, thus restricting the use to thin and transmitting samples. Here, a fluorescence method is displayed using an energy-dispersive pnCCD detector, the SLcam, characterized by measurement times far superior to what is generally applicable. Additionally, this method operates in confocal mode, thus providing direct 3D spatially resolved chemical state information from a selected subvolume of a sample, without the need of rotating a sample. The method is applied to two samples: a gold-supported magnesia catalyst (Au/MgO) and a natural diamond containing Fe-rich inclusions. Both samples provide XANES spectra that can be overlapped with reference XANES spectra, allowing this method to be used for fingerprinting and linear combination analysis of known XANES reference compounds.
Lin, Huirong; Ye, Chengsong; Lv, Lu; Zheng, Clark Renjun; Zhang, Shenghua; Zheng, Lei; Zhao, Yidong; Yu, Xin
2014-08-01
A combined approach of physicochemical extraction and sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to characterize the extracellular polymeric substances (EPS) of typical bacterial biofilms in this study. Physicochemical analysis showed variation of the contents of DNA, polysaccharide and protein in different fractions of EPS in different mediums. The sulfur K-edge XANES analysis yielded a variety of spectra. Spectral fitting of the XANES spectra utilizing a large set of model compounds showed that there was more reduced sulfur in both LB-EPS (loosely bound EPS) and TB-EPS (tightly bound EPS) of all the biofilms in LB medium than in R2A medium. More oxidized sulfur was identified in LB-EPS than that in TB-EPS, suggesting different niches and physiological heterogeneity in the biofilms. Our results suggested that the sulfur K-edge XANES can be a useful tool to analyze the sulfur speciation in EPS of biofilms. Copyright © 2014. Published by Elsevier B.V.
Konishi, Yasuhiro; Tsukiyama, Takeshi; Saitoh, Norizoh; Nomura, Toshiyuki; Nagamine, Shinsuke; Takahashi, Yoshio; Uruga, Tomoya
2007-06-01
X-ray absorption near-edge structure spectroscopy (XANES) was successfully employed to determine the gold valence in the metal-reducing bacterium Shewanella algae after exposure to a 1 mM aqueous HAuCl4 solution for 10-120 min. XANES spectra revealed the oxidation state of gold in the bacterial cells to be Au(0) without any contribution from Au(III), demonstrating that S. algae cells can reduce AuCl4- ions to elemental gold. Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis confirmed that gold nanoparticles 5-15 nm in size were deposited in the periplasmic space of the bacterial cells; a preferable, cell surface location for the easy recovery of biogenic nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kugler, E.L.; Gardner, T.H.; Campos, Andrew
2008-04-01
Metallic Ni formation near the mirror cation site, Ba in this study, is believed to cause the partial oxidation activity observed in Ni-substituted hexaaluminate catalysts. The BaNi1.0Al11.6O19-d catalyst was prepared by coprecipitation with nitrate salt precursors; following the coprecipitation procedure, the catalyst was calcined at 1400°C to create the hexaaluminate structure. TPR XANES in fluorescence was used to probe the local structure of the BaNi1.0Al11.6O19-d catalyst to determine whether metallic nickel forms at different temperatures: 825°C, 875°C, 925°C. The XANES results indicate that the Ni in the hexaaluminate catalyst only reduces if the temperature is maintained at 925°C. Once themore » metallic state is formed, the oxidation state is stable; even in the POX environment. Future work using a theoretical approach to the XANES data using FEFF 8.4 gives information on the interactions between Ni and Ba, which will be used to further optimize the catalyst.« less
Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui
2016-03-07
The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.
NASA Astrophysics Data System (ADS)
Domashevskaya, E. P.; Guda, A. A.; Chernyshev, A. V.; Sitnikov, V. G.
2017-02-01
Multilayered nanostructures (MN) were prepared by ion-beam successive sputtering from two targets, one of which was a metallic Co45Fe45Zr10 alloy plate and another target was a quartz (SiO2) or silicon plate on the surface of a rotating glass-ceramic substrate in an argon atmosphere. The Co and Fe K edges X-ray absorption fine structure of XANES in the (CoFeZr/SiO2)32 sample with oxide interlayers was similar to XANES of metallic Fe foil. This indicated the existence in metallic layers of multilayered CoFeZr nanocrystals with a local environment similar to the atomic environment in solid solutions on the base of bcc Fe structure, which is also confirmed by XRD data. XANES near the Co and Fe K edges absorption in another multilayered nanostructure with silicon interlayers (CoFeZr/ a-Si)40 differs from XANES of MN with dielectric SiO2 interlayer, which demonstrates a dominant influence of the Fe-Si and Co-Si bonds in the local environment of 3 d Co and Fe metals when they form CoFeSi-type silicide phases in thinner bilayers of this MN.
zhang, Bangmin; Chen, Jingsheng; Venkatesan, T.; ...
2016-01-28
In this study, the Mn K edge X-ray absorption near edge structure (XANES) of Pr 0.67Sr 0.33MnO 3 films with different thicknesses on (001) LaAlO 3 substrate were measured, and the effects of strain relaxation on film properties were investigated. The films experienced in-plane compressive strain and out-of-plane tensile strain. Strain relaxation evolved with the film thickness. In the polarization dependent XANES measurements, the in-plane (parallel) and out-of-plane (perpendicular) XANES spectrocopies were anisotropic with different absorption energy E r. The resonance energy Er along two directions shifted towards each other with increasing film thickness. Based on the X-ray diffraction results,more » it was suggested that the strain relaxation weakened the difference of the local environment and probability of electronic charge transfer (between Mn 3d and O 2p orbitals) along the in-plane and out-of-plane directions, which was responsible for the change of E r. XANES is a useful tool to probe the electronic structures, of which the effects on magnetic properties with the strain relaxation was also been studied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Fei; Tao, Ye; Zhao, Haifeng
Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions.R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure changemore » in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3spin crossover complex and yielded reliable distance change and excitation population.« less
Zhan, Fei; Tao, Ye; Zhao, Haifeng
2017-07-01
Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.
The coordination of sulfur in synthetic and biogenic Mg calcites: The red coral case
NASA Astrophysics Data System (ADS)
Perrin, J.; Rivard, C.; Vielzeuf, D.; Laporte, D.; Fonquernie, C.; Ricolleau, A.; Cotte, M.; Floquet, N.
2017-01-01
Sulfur has been recognized in biogenic calcites for a long time. However, its structural position is matter of debate. For some authors, sulfur is a marker of the organic matrix while it is part of the calcite structure itself for others. To better understand the place of sulfur in calcite, sulfated magnesian calcites (S-MgCalcite) have been synthetized at high pressure and temperature and studied by μ-XANES spectroscopy. S-MgCalcite XANES spectra show two different types of sulfur: sulfate (SO42-) as a predominant species and a small contribution of sulfite (SO32-), both substituting for carbonate ions in the calcite structure. To address the question of the position of sulfur in biogenic calcites, the oxidation states of sulfur in the skeleton and organic tissues of Corallium rubrum have been investigated by micro X-ray fluorescence (μ-XRF) and sulfur K-edge micro X-ray absorption near edge structure (μ-XANES) spectroscopy at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) on beamline ID21. In the skeleton, sulfur is mainly present as oxidized sulfur SO42- (+VI), plus a weak sulfite contribution. XANES spectra indicate that sulfur is inorganically incorporated as sulfur structurally substituted to carbonate ions (SSS). Although an organic matrix is present in the red coral skeleton, reduced organic sulfur could not be detected by μ-XANES spectroscopy in the skeleton probably due to low organic/inorganic sulfur ratio. In the organic tissues surrounding the skeleton, several sulfur oxidation states have been detected including disulfide (S-S), thioether (R-S-CH3), sulfoxide (SO2), sulfonate (SO2O-) and sulfate (SO42-). The unexpected occurrence of inorganic sulfate within the organic tissues suggests the presence of pre-organized organic/inorganic complexes in the circulatory system of the red coral, precursors to biomineralization ahead of the growth front.
Hesse, Bernhard; Salome, Murielle; Castillo-Michel, Hiram; Cotte, Marine; Fayard, Barbara; Sahle, Christoph J; De Nolf, Wout; Hradilova, Jana; Masic, Admir; Kanngießer, Birgit; Bohner, Marc; Varga, Peter; Raum, Kay; Schrof, Susanne
2016-04-05
Here, we show results on X-ray absorption near edge structure spectroscopy in both transmission and X-ray fluorescence full-field mode (FF-XANES) at the calcium K-edge on human bone tissue in healthy and diseased conditions and for different tissue maturation stages. We observe that the dominating spectral differences originating from different tissue regions, which are well pronounced in the white line and postedge structures are associated with polarization effects. These polarization effects dominate the spectral variance and must be well understood and modeled before analyzing the very subtle spectral variations related to the bone tissue variations itself. However, these modulations in the fine structure of the spectra can potentially be of high interest to quantify orientations of the apatite crystals in highly structured tissue matrices such as bone. Due to the extremely short wavelengths of X-rays, FF-XANES overcomes the limited spatial resolution of other optical and spectroscopic techniques exploiting visible light. Since the field of view in FF-XANES is rather large the acquisition times for analyzing the same region are short compared to, for example, X-ray diffraction techniques. Our results on the angular absorption dependence were verified by both site-matched polarized Raman spectroscopy, which has been shown to be sensitive to the orientation of bone building blocks and by mathematical simulations of the angular absorbance dependence. As an outlook we further demonstrate the polarization based assessment of calcium-containing crystal orientation and specification of calcium in a beta-tricalcium phosphate (β-Ca3(PO4)2 scaffold implanted into ovine bone. Regarding the use of XANES to assess chemical properties of Ca in human bone tissue our data suggest that neither the anatomical site (tibia vs jaw) nor pathology (healthy vs necrotic jaw bone tissue) affected the averaged spectral shape of the XANES spectra.
Local structural variation with oxygen fugacity in Fe 2SiO 4+x fayalitic iron silicate melts
Alderman, O.L.G.; Lazareva, L.; Wilding, M. C.; ...
2017-01-07
Here, the structure of molten Fe 2SiO 4+x has been studied using both high-energy X-ray diffraction and Fe K-edge X-ray absorption near-edge structure (XANES) spectroscopy, combined with aerodynamic levitation and laser beam heating. A wide range of Fe 3+ contents were accessed by varying the levitation and atmospheric gas composition. Diffraction measurements were made in the temperature ( T) and oxygen partial pressure ranges 1624(21) < T < 2183(94) K (uncertainties in parentheses) and –5.6(3) < ΔFMQ < +2.8(5) log units (relative to the Fayalite-Magnetite-Quartz buffer). Iron K-edge XANES measurements covered the ranges 1557(33) < T < 1994(36) K andmore » –2.1(3) < ΔFMQ < +4.4(3) log units. Fe 3+ contents, x = Fe 3+/ΣFe, estimated directly from the pre-edge peaks of the XANES spectra varied between 0.15(1) and 0.40(2). While these agree in some cases with semi-empirical models, notable discrepancies are discussed in the context of the redox kinetics and the limitations in both the models and in the calibrations used to derive oxidation state from XANES spectra. XANES pre-edge peak areas imply average Fe–O coordination numbers, n FeO, close to 5 for all Fe 3+/ΣFe. Diffraction measurements yielded values of 4.4(2) < n FeO < 4.7(1). There is limited evidence for a linear trend n FeO(x) = 4.46(3) + 0.4(1)x. Asymmetric Fe–O bond length distributions peak at around 1.96 Å and have a shoulder arising from longer interatomic distances. Mean r FeO lie close to 2.06 Å, consistent with n FeO close to 5. These observations suggest that Fe 2+ is less efficient at stabilizing tetrahedral Fe 3+ compared to large monovalent alkali cations. Comparison of in-situ XANES estimates of Fe 3+/ΣFe in the melts to those of the quenched solids obtained from XANES as well as Mössbauer spectroscopy indicate rapid oxidation during cooling, enabled by stirring of the melt by the levitation gas flow. As such, the oxidation state of hot komatiitic and other highly fluid melts may not be retained, even during rapid cooling, as it is for cooler basaltic and more silicic magmas.« less
Local structural variation with oxygen fugacity in Fe2SiO4+x fayalitic iron silicate melts
NASA Astrophysics Data System (ADS)
Alderman, O. L. G.; Lazareva, L.; Wilding, M. C.; Benmore, C. J.; Heald, S. M.; Johnson, C. E.; Johnson, J. A.; Hah, H.-Y.; Sendelbach, S.; Tamalonis, A.; Skinner, L. B.; Parise, J. B.; Weber, J. K. R.
2017-04-01
The structure of molten Fe2SiO4+x has been studied using both high-energy X-ray diffraction and Fe K-edge X-ray absorption near-edge structure (XANES) spectroscopy, combined with aerodynamic levitation and laser beam heating. A wide range of Fe3+ contents were accessed by varying the levitation and atmospheric gas composition. Diffraction measurements were made in the temperature (T) and oxygen partial pressure ranges 1624(21) < T < 2183(94) K (uncertainties in parentheses) and -5.6(3) < ΔFMQ < +2.8(5) log units (relative to the Fayalite-Magnetite-Quartz buffer). Iron K-edge XANES measurements covered the ranges 1557(33) < T < 1994(36) K and -2.1(3) < ΔFMQ < +4.4(3) log units. Fe3+ contents, x = Fe3+/ΣFe, estimated directly from the pre-edge peaks of the XANES spectra varied between 0.15(1) and 0.40(2). While these agree in some cases with semi-empirical models, notable discrepancies are discussed in the context of the redox kinetics and the limitations in both the models and in the calibrations used to derive oxidation state from XANES spectra. XANES pre-edge peak areas imply average Fe-O coordination numbers, nFeO, close to 5 for all Fe3+/ΣFe. Diffraction measurements yielded values of 4.4(2) < nFeO < 4.7(1). There is limited evidence for a linear trend nFeO(x) = 4.46(3) + 0.4(1)x. Asymmetric Fe-O bond length distributions peak at around 1.96 Å and have a shoulder arising from longer interatomic distances. Mean rFeO lie close to 2.06 Å, consistent with nFeO close to 5. These observations suggest that Fe2+ is less efficient at stabilizing tetrahedral Fe3+ compared to large monovalent alkali cations. Comparison of in-situ XANES estimates of Fe3+/ΣFe in the melts to those of the quenched solids obtained from XANES as well as Mössbauer spectroscopy indicate rapid oxidation during cooling, enabled by stirring of the melt by the levitation gas flow. As such, the oxidation state of hot komatiitic and other highly fluid melts may not be retained, even during rapid cooling, as it is for cooler basaltic and more silicic magmas.
Surface modification study of borate materials from B K-edge X-ray absorption spectroscopy
NASA Astrophysics Data System (ADS)
Kasrai, Masoud; Fleet, Michael E.; Muthupari, Swaminathan; Li, D.; Bancroft, G. M.
The B K-edge X-ray absorption near-edge structure (XANES) spectra of two borates with tetrahedrally-coordinated B [[4]B; natural danburite (CaB2Si2O8) and synthetic boron phosphate (BPO4)] have been recorded in total electron yield (TEY) and fluorescence yield (FY) modes to investigate the surface and bulk structure of these materials. The TEY XANES measurement shows that danburite is susceptible to surface damage involving conversion of [4]B sites to [3]B sites by reaction with moisture and/or mechanical abrasion (grinding, polishing, etc.). The bulk of the mineral is essentially unaffected. Commercial boron phosphate powder exhibits more extensive surface and bulk damage, which increases with air exposure but is recovered on heating at 650°C. In contrast to ELNES, the XANES technique is not affected by beam damage and when collected in the FY mode is capable of yielding meaningful information on the coordination and intermediate-range structure of B in borate and borosilicate materials.
Magnesium K-edge XANES spectroscopy of geological standards.
Yoshimura, Toshihiro; Tamenori, Yusuke; Iwasaki, Nozomu; Hasegawa, Hiroshi; Suzuki, Atsushi; Kawahata, Hodaka
2013-09-01
Magnesium K-edge X-ray absorption near-edge structure (XANES) spectra have been investigated to develop a systematic understanding of a suite of Mg-bearing geological materials such as silicate and carbonate minerals, sediments, rocks and chemical reagents. For the model compounds the Mg XANES was found to vary widely between compounds and to provide a fingerprint for the form of Mg involved in geologic materials. The energy positions and resonance features obtained from these spectra can be used to specify the dominant molecular host site of Mg, thus shedding light on Mg partitioning and isotope fractionation in geologic materials and providing a valuable complement to existing knowledge of Mg geochemistry.
Characterization of local atomic structure in Co/Zn based ZIFs by XAFS
NASA Astrophysics Data System (ADS)
Podkovyrina, Yulia; Butova, Vera; Bulanova, Elena; Budnyk, Andriy; Kremennaya, Maria; Soldatov, Alexander; Lamberti, Carlo
2018-03-01
The local atomic structure in bimetallic Co/Zn zeolitic imidazolate frameworks (ZIFs) was studied using X-ray Absorption Fine Structure (XAFS) spectroscopy and theoretical calculations. The experimental Co K-edge and Zn K-edge XANES (X-ray Absorption Near Edge Structure) spectra of Zn1-xCoxC8H10N4 samples (x = 0.05, 0.25, 0.75) synthesized by microwave synthesis were compared with the data for the ZIF-67 (x=1) and ZIF-8 (x=0). Theoretical XANES spectra for the bimetallic ZIFs were calculated. It was shown that in bimetallic ZIFs the Co and Zn atoms have the similar local environment.
Site-selective XAFS spectroscopy tuned to surface active sites of Cu/ZnO and Cr/SiO2 catalysts.
Izumi, Y; Nagamori, H; Kiyotaki, F; Minato, T
2001-03-01
XAFS (X-ray absorption fine structure) spectra were measured by using the fluorescence spectrometer for the emitted X-ray from sample. The chemical shifts between Cu0 and Cu1 and between CrIII and CrVI were evaluated. Tuning the fluorescence spectrometer to each energy, the Cu0 and CuI site-selective XANES for Cu/ZnO catalyst were measured. The first one was similar to the XANES of Cu metal and the second one was the 5 : 5 average of XANES for CuI sites + Cu metal. The population ratio of copper site of the Cu/ZnO catalyst was found to be Cu metal: Cu2O : CuI atomically dispersed on surface = 70(+/-23) : 22(+/-14) : 8(+/-5). Site-selective XANES for CrIII site of Cr/SiO2 catalyst was also studied.
XANES study on Fe, U and Th in hydrous melts at high temperature and pressure
NASA Astrophysics Data System (ADS)
Wilke, M.; Schmidt, C.; Farges, F.; Borchert, M.; Simionovici, A.; Hahn, M.
2005-12-01
Insight to the structural units of melts is an important key to model properties of magmas. The effect of water and pressure on the local structure around minor to trace elements in silicate melts was investigated at in-situ conditions. The study was performed using XANES spectroscopy and a diamond anvil-cell. This was done to characterize spurious effects observed on glasses that are potentially invoked by quenching [1] and to understand better the processes occurring during the quench. We present results of in-situ XANES measurements on iron, uranium and thorium in hydrous silicate melt up to 1 GPa and 700° C. In-situ XANES spectra were recorded at the ESRF (Grenoble, France), beamline ID 22, using a hydrothermal diamond anvil cell with a design optimized for such measurements [2], i.e. recesses on the front and the back-side of one of the diamond anvils that provide the possibility to collect spectra at relatively low energies (down to 7 keV) and relatively low concentrations (0.1-1 wt%). In-situ Fe K-edge XANES spectra of Fe(II) in hydrous haplogranitic melt at 700° C and 500 MPa suggests that the local structure around Fe in hydrous glass observed previously is probably due to ordering during the quench. Additionally, the XANES is very similar to in-situ spectra taken on Fe(II) in anhydrous haplogranitic melt at 1150° C and ambient pressure. This indicates that the combined effect of water and pressure (0-500 MPa range) does not influence drastically the local structure of Fe in this type of melt composition. In-situ LIII-edge XANES of U in hydrous haplogranitic melt (1 wt% U) at 700° C and 620 MPa show that, upon reduction, U precipitated as uraninite. This suggests a low amount of NBO's (to which tetravalent actinides preferentially bond [3]) in this water-saturated melt. In contrast, U-bearing (1000 ppm) hydrous sodium-tri-silicate melt shows the presence of U(IV) dissolved in the melt as 6-7 coordinated species, as in dry glasses [3]. Similar structural information is obtained for Th(IV). Spectra taken above and below the complete miscibility of the silicate and aqueous phase (ca. 460° C) also reveal no difference in speciation. The aqueous fluid measured at ambient conditions after the run did not show any significant amount of dissolved tetravalent actinides [1] Wilke et al. (2002) Chem. Geol., 189, 55-67. [2] Schmidt C., Rickers K. (2003) Am. Mineral., 88, 288-292. [3] Farges F. (1991) Geochim. Cosmochim. Acta, 55, 3303-3319.
Franz, Bettina; Lichtenberg, Henning; Hormes, Josef; Dahl, Christiane; Prange, Alexander
2009-11-01
Over the last decade X-ray absorption near edge structure (XANES) spectroscopy has been used in an increasing number of microbiological studies. In addition to other applications it has served as a valuable tool for the investigation of the sulphur globules deposited intra- or extracellularly by certain photo- and chemotrophic sulphur-oxidizing (Sox) bacteria. For XANES measurements, these deposits can easily be concentrated by filtration or sedimentation through centrifugation. However, during oxidative metabolism of reduced sulphur compounds, such as sulphide or thiosulphate, sulphur deposits are not the only intermediates formed. Soluble intermediates such as sulphite may also be produced and released into the medium. In this study, we explored the potential of XANES spectroscopy for the detection and speciation of sulphur compounds in culture supernatants of the phototrophic purple sulphur bacterium Allochromatium vinosum. More specifically, we investigated A. vinosum DeltasoxY, a strain with an in frame deletion of the soxY gene. This gene encodes an essential component of the thiosulphate-oxidizing Sox enzyme complex. Improved sample preparation techniques developed for the DeltasoxY strain allowed for the first time not only the qualitative but also the quantitative analysis of bacterial culture supernatants by XANES spectroscopy. The results thus obtained verified and supplemented conventional HPLC analysis of soluble sulphur compounds. Sulphite and also oxidized organic sulphur compounds were shown by XANES spectroscopy to be present, some of which were not seen when standard HPLC protocols were used.
XANES study of Fe-implanted strontium titanate
NASA Astrophysics Data System (ADS)
Lobacheva, O.; Goncharova, L. V.; Chavarha, M.; Sham, T. K.
2014-03-01
Properties of strontium titanate SrTiO3 (STO) depend to a great extent on the substitutional dopants and defects of crystal structure. The ion beam implantation method was used for doping STO (001) crystals with Fe at different doses. Implanted samples were then annealed at 350°C in oxygen to induce recrystallization and remove oxygen vacancies produced during ion implantation process. The effect of Fe doping and post-implantation annealing was studied by X-ray Absorption Near Edge Spectroscopy (XANES) method and Superconducting Quantum Interference Device (SQUID). XANES allowed to monitor the change in structure of STO crystals and in the local environment of Fe following the implantation and annealing steps. SQUID measurements revealed correlation between magnetic moment and Fe implantation dose. Ferromagnetic hysteresis was observed on selected Fe-implanted STO at 5 K. The observed magnetic properties can be correlated with the several Fe oxide phases in addition to the presence of O/Ti vacancies.
XANES and EXAFS study of Au-substituted YBa2Cu3O(7-delta)
NASA Technical Reports Server (NTRS)
Ruckman, Mark W.; Hepp, Aloysius F.
1990-01-01
The near-edge structure (XANES) of the Au L3 and Cu K edges of YBa2Au(0.3)Cu(2.7)O(7-delta) was studied. X ray diffraction suggests that Au goes on the Cu(1) site and XANES shows that this has little effect on the oxidation state of the remaining copper. The gold L3 edge develops a white line feature whose position lies between that of trivalent gold oxide (Au2O3) and monovalent potassium gold cyanide (KAu(CN)2) and whose intensity relative to the edge step is smaller than in the two reference compounds. The L3 EXAFS for Au in the superconductor resembles that of Au2O3. However, differences in the envelope of the Fourier filtered component for the first shell suggest that the local structure of the Au in the superconductor is not equivalent to Au2O3.
Correlation between bonding structure and microstructure in fullerenelike carbon nitride thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gago, R.; Abendroth, B.; Moeller, W.
2005-03-15
The bonding structure of highly ordered fullerenelike (FL) carbon nitride (CN{sub x}) thin films has been assessed by x-ray absorption near-edge spectroscopy (XANES). Samples with different degrees of FL character have been analyzed to discern spectral signatures related to the FL microstructure. The XANES spectra of FL-CN{sub x} films resemble that of graphitic CN{sub x}, evidencing the sp{sup 2} hybridization of both C and N atoms. The FL structure is achieved with the promotion of N in threefold positions over pyridinelike and cyanidelike bonding environments. In addition, the relative {pi}{sup *}/{sigma}* XANES intensity ratio at the C(1s) edge is independentmore » of the FL character, while it decreases {approx}40% at the N(1s) edge with the formation of FL arrangements. This result indicates that there is no appreciable introduction of C-sp{sup 3} hybrids with the development of FL structures and, additionally, that a different spatial localization of {pi} electrons at C and N sites takes place in curved graphitic structures. The latter has implications for the elastic properties of graphene sheets and could, as such, explain the outstanding elastic properties of FL-CN{sub x}.« less
MAX: Multiplatform Applications for XAFS
NASA Astrophysics Data System (ADS)
Alain, Michalowicz; Jacques, Moscovici; Diane, Muller-Bouvet; Karine, Provost
2009-11-01
MAX is a new EXAFS and XANES analysis package, replacing our old "EXAFS pour le Mac" software suite. The major improvement is the ability to work with strictly the same code, compiled at once for Microsoft Windows, Apple MacOSX and LINUX systems, justifying the title "Multiplatform Applications for XAFS". It is organized as four modules: ABSORBIX (X-ray absorbance and fluorescence self-absorption calculations), CHEROKEE (EXAFS and XANES data treatment), ROUNDMIDNIGHT (EXAFS modeling and fit) and CRYSTALFFREV (from crystal structures and molecular modeling to FEFF EXAFS and XANES theoretical calculations). Most features developed in "EXAFS pour le Mac" are still available, but with much improvements in the user's interface, data treatment algorithms and new functionalities.
Electronic structure of transition metal-cysteine complexes from X-ray absorption spectroscopy.
Leung, Bonnie O; Jalilehvand, Farideh; Szilagyi, Robert K
2008-04-17
The electronic structures of HgII, NiII, CrIII, and MoV complexes with cysteine were investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. The covalency in the metal-sulfur bond was determined by analyzing the intensities of the electric-dipole allowed pre-edge features appearing in the XANES spectra below the ionization threshold. Because of the well-defined structures of the selected cysteine complexes, the current work provides a reference set for further sulfur K-edge XAS studies of bioinorganic active sites with transition metal-sulfur bonds from cysteine residues as well as more complex coordination compounds with thiolate ligands.
Study of distorted octahedral structure in 3d transition metal complexes using XAFS
NASA Astrophysics Data System (ADS)
Gaur, A.; Nitin Nair, N.; Shrivastava, B. D.; Das, B. K.; Chakrabortty, Monideepa; Jha, S. N.; Bhattacharyya, D.
2018-01-01
Distortion in octahedral structure of 3d transition metal complexes (Mn, Fe, Co, Ni, Cu, Zn) has been studied using XAFS showing divergent nature of Cu complex. EXAFS analysis showed elongated metal-oxygen bonds for Cu complex leading to more distorted structure. Derivative XANES spectrum at Cu K-edge exhibits splitting of main edge which is correlated to elongated Cu-O bond length. Using these coordination geometry around metal centers, theoretical XANES spectra have been generated and features observed have been correlated to the corresponding metals p-DOS. It has been shown that distorted octahedral field in Cu complex is responsible for splitting of p-DOS.
Fan, Jian-Xin; Wang, Yu-Jun; Liu, Cun; Wang, Li-Hua; Yang, Ke; Zhou, Dong-Mei; Li, Wei; Sparks, Donald L
2014-08-30
The geochemical behavior and speciation of arsenic (As) in paddy soils is strongly controlled by soil redox conditions and the sequestration by soil iron oxyhydroxides. Hence, the effects of iron oxide reductive dissolution on the adsorption, transformation and precipitation of As(III) and As(V) in soils were investigated using batch experiments and synchrotron based techniques to gain a deeper understanding at both macroscopic and microscopic scales. The results of batch sorption experiments revealed that the sorption capacity of As(V) on anoxic soil was much higher than that on control soil. Synchrotron based X-ray fluorescence (μ-XRF) mapping studies indicated that As was heterogeneously distributed and was mainly associated with iron in the soil. X-ray absorption near edge structure (XANES), micro-X-ray absorption near edge structure (μ-XANES) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the primary speciation of As in the soil is As(V). These results further suggested that, when As(V) was introduced into the anoxic soil, the rapid coprecipitation of As(V) with ferric/ferrous ion prevented its reduction to As(III), and was the main mechanism controlling the immobilization of As. This research could improve the current understanding of soil As chemistry in paddy and wetland soils. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Renqin; Helling, Kathy; McEwen, Jean-Sabin
2016-03-29
Copper-exchanged SAPO-34 (Cu-SAPO-34) provides excellent catalytic activity and hydrothermal sta-bility in the selective catalytic reduction (SCR) of NOxby using NH3as a reductant. Here, we find that the6-membered ring (6MR) site is the most energetically favorable for a Cu+ion while the 8-memberedring (8MR) sites are less favorable by about 0.5 eV with respect to the 6MR site in Cu-SAPO-34. Uponadsorption of molecular species (H2O, O, OH, O2), the energy differences between Cu in the 8MR and 6MRsites decreases and almost disappears. Further, a thermodynamic phase diagram study shows that a Cu+ion bound to a single H2O molecule is the most stablemore » species at low oxygen potential values while aCu2+ion bound to 2 OH species is more stable when the oxygen chemical potential is sufficiently high. Bycomparing Cu K-edge XANES between Cu-SSZ-13 and Cu-SAPO-34 with Cu in different oxidation states,we conclude that it is difficult to differentiate the simulated XANES of Cu in these structures at a givenoxidation state. By studying the Cu K-edge XANES of several favorable structures in Cu-SAPO-34 in thepresence of adspecies, the simulated XANES results capture the real trend of the edge shift with oxidationstate and gives new insights into the experimentally determined XANES of Cu-SAPO-34 obtained understandard SCR conditions.« less
NASA Astrophysics Data System (ADS)
Head, E.; Lanzirotti, A.; Sutton, S.; Newville, M.
2017-12-01
Sulfur (S), vanadium (V), and iron (Fe) K-edge micro-X-ray absorption near edge structure (micro-XANES) spectroscopy of melt inclusions (MI) from Nyamuragira volcano (D.R. Congo, Africa) shows that diffusive loss of H from olivine-hosted melt inclusions may lead to crystallization of submicron magnetite and sulfide crystallites that are imperceptible petrographically or via electron microscopy. Micro-XANES was used to constrain the evolution of oxygen fugacity (fO2) and sulfur speciation for MI preserved in Nyamuragira tephra (1986 and 2006) and lava (1938 and 1948). The S, V, and Fe valence state oxybarometry for 1938, 1948, and 2006 MI are all consistent with equilibration at FMQ-1, and sulfur in MI from these three eruptions are sulfide-dominated (< 9% sulfate). However, Fe and V micro-XANES data for 1986 MI appear to be more reduced by 1-2 log units, while S micro-XANES data indicate more variable sulfate content. The 1986 results are best explained by diffusive loss of H from the entrapped melt. Submicron magnetite forms as Fe oxidizes in the melt in response to the loss of H, and V strongly partitions into these magnetite nanolites due to its compatibility. The nanolites are consistently analyzed within the beam volume and, thus, the measured V XANES appears more ordered. Magnetite crystallization from the melt also triggers precipitation of crystalline FeS phases within the inclusion, leading to a more ordered S XANES spectra as well. This may suggest a different magma storage history for the 1986 eruption compared to the others. Results demonstrate that coupled S, V, and Fe micro-XANES analysis of alkalic MI can provide accurate measures of the fO2 of entrapped melts, and that S and V micro-XANES spectroscopy are potentially highly sensitive tools for identifying diffusive water loss in olivine-hosted MIs.
NASA Astrophysics Data System (ADS)
Head, Elisabet; Lanzirotti, Antonio; Newville, Matthew; Sutton, Stephen
2018-04-01
This study describes microscale sulfur (S), vanadium (V), and iron (Fe) K-edge X-ray absorption near edge structure (μ-XANES) spectroscopy measurements on olivine-hosted melt inclusions (MI) preserved in tephras (1986 and 2006) and lavas (1938 and 1948) erupted from Nyamuragira volcano (D.R. Congo, Africa). The S, V, and Fe spectroscopic data are used to constrain the evolution of oxygen fugacity (fO2) and sulfur speciation for the entrapped melts. Melt inclusions from lavas show evidence of post-entrapment crystallization and were thus reheated prior to μ-XANES analysis. The MI from tephra show no evidence of post-entrapment crystallization and were, therefore, not reheated. Sulfur, V, and Fe μ-XANES results from 1938, 1948, and 2006 eruptive materials are all similar within analytical uncertainty and provide similar average calculated melt fO2's based on XANES oxybarometry. However, olivine-hosted MI from the 1986 tephras yield significantly different S, V, and Fe XANES spectra when compared to MI from the other eruptions, with disagreement between calculated fO2's from the three valence state oxybarometers beyond the uncertainty of the calibration models. Their V μ-XANES spectra are also significantly more ordered and yield more reduced average V valence. The S μ-XANES spectra display a significantly more intense low-energy spectral resonance, which indicates differences in Fe-S bonding character, and greater variability in their measured sulfate content. These V and S spectroscopic features are best explained by crystallization of sub-micrometer magnetite and sulfide crystallites within the 1986 inclusions. The sensitivity of XANES spectroscopy to short-range order allows these crystallites to be recognized even though they are not easily detected by imaging analysis. This shows that V and S μ-XANES are potentially highly sensitive tools for identifying the presence of volumetrically minor amounts of spinel and sulfide within inclusions extracted from rapidly-cooled samples of tephra. Additionally, the observation that rehomogenized 1938 and 1948 inclusions from lava yield similar S, V, and Fe XANES spectra to the 2006 inclusions from tephra may be an encouraging indication that rehomogenization appears to have enabled the successful recovery of their pre-eruptive fO2, despite their complex post-eruptive histories.
Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite.
Zougrou, I M; Katsikini, M; Brzhezinskaya, M; Pinakidou, F; Papadopoulou, L; Tsoukala, E; Paloura, E C
2016-08-01
Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.
Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite
NASA Astrophysics Data System (ADS)
Zougrou, I. M.; Katsikini, M.; Brzhezinskaya, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.
2016-08-01
Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.
NASA Astrophysics Data System (ADS)
Sarret, Géraldine; Connan, Jacques; Kasrai, Masoud; Bancroft, G. Michael; Charrié-Duhaut, Armelle; Lemoine, Sylvie; Adam, Pierre; Albrecht, Pierre; Eybert-Bérard, Laurent
1999-11-01
Asphaltene samples extracted from archeological and geological bitumens from the Middle East, France, and Spain were studied by sulfur K- and L-edge X-ray absorption near-edge structure (XANES) spectroscopy in combination with isotopic analyses (δ 13C and δD). Within each series, the samples were genetically related by their δ 13C values. The gross and elemental composition and the δD values were used to characterize the weathering state of the samples. Sulfur K- and L-edge XANES results show that in all the samples, dibenzothiophenes are the dominant forms of sulfur. In the least oxidized asphaltenes, minor species include disulfides, alkyl and aryl sulfides, and sulfoxides. With increasing alteration the proportion of oxidized sulfur (sulfoxides, sulfones, sulfonates and sulfates) increases, whereas the disulfide and sulfide content decreases. This evolution is observed in all the series, regardless of the origin of the asphaltenes. This work illustrates the advantages of XANES spectroscopy as a selective probe for determining sulfur speciation in natural samples. It also shows that S K- and L-edge XANES spectroscopy are complementary for identifying the oxidized and reduced forms of sulfur, respectively.
Ab-initio Calculation of the XANES of Lithium Phosphates and LiFePO4
NASA Astrophysics Data System (ADS)
Yiu, Y. M.; Yang, Songlan; Wang, Dongniu; Sun, Xueliang; Sham, T. K.
2013-04-01
Lithium iron phosphate has been regarded as a promising cathode material for the next generation lithium ion batteries due to its high specific capacity, superior thermal and cyclic stability [1]. In this study, the XANES (X-ray Absorption Near Edge Structure) spectra of lithium iron phosphate and lithium phosphates of various compositions at the Li K, P L3,2, Fe M3,2 and O K-edges have been simulated self-consistently using ab-initio calculations based on multiple scattering theory (the FEFF9 code) and DFT (Density Functional Theory, the Wien2k code). The lithium phosphates under investigation include LiFePO4, γ-Li3PO4, Li4P2O7 and LiPO3. The calculated spectra are compared to the experimental XANES recorded in total electron yield (TEY) and fluorescence yield (FLY). This work was carried out to assess the XANES of possible phases presented in LiFePO4 based Li ion battery applications [2].
Phosphorus K-edge XANES spectroscopy of mineral standards
Ingall, Ellery D.; Brandes, Jay A.; Diaz, Julia M.; de Jonge, Martin D.; Paterson, David; McNulty, Ian; Elliott, W. Crawford; Northrup, Paul
2011-01-01
Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens. PMID:21335905
NASA Astrophysics Data System (ADS)
Liang, Xianqing; Pan, Deyou; Lao, Ming; Liang, Shuiying; Huang, Dan; Zhou, Wenzheng; Guo, Jin
2017-05-01
The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.
An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.
Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L
2013-01-30
The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.
In situ spectroscopic and solution analyses of the reductive dissolution of Mn02 by Fe(II)
Villinski, John E.; O'Day, Peggy A.; Corley, Timothy L.; Conklin, Martha H.
2001-01-01
The reductive dissolution of MnO2 by Fe(II) under conditions simulating acid mine drainage (pH 3, 100 mM SO42-) was investigated by utilizing a flow-through reaction cell and synchrotron X-ray absorption spectroscopy. This configuration allows collection of in situ, real-time X-ray absorption near-edge structure (XANES) spectra and bulk solution samples. Analysis of the solution chemistry suggests that the reaction mechanism changed (decreased reaction rate) as MnO2 was reduced and Fe(III) precipitated, primarily as ferrihydrite. Simultaneously, we observed an additional phase, with the local structure of jacobsite (MnFe2O4), in the Mn XANES spectra of reactants and products. The X-ray absorbance of this intermediate phase increased during the experiment, implying an increase in concentration. The presence of this phase, which probably formed as a surface coating, helps to explain the reduced rate of dissolution of manganese(IV) oxide. In natural environments affected by acid mine drainage, the formation of complex intermediate solid phases on mineral surfaces undergoing reductive dissolution may likewise influence the rate of release of metals to solution.
Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong
2015-07-01
Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest in both bulk soil and clay-size soil fraction, and it was the most major forms in soil organic nitrogen functional groups. Compared with the FALL treatment, the relative proportion of amide/amine-N was lower whereas that of Pyrrole-N was higher in the CK treatment. In the treatments with combined chemical fertilizers and organic manure, the relative proportion of amide/amine-N decreased with increasing application rates of organic manure, while that of Pyrrole-N had an opposite trend. In bulk soil, the relative proportion of amide/amine-N was the highest for the NPKS treatment than for the other treatments. On the other hand, the relative proportion of nitrile/aromatic-N was the highest for the Fallow treatment than for the other treatments in clay-size soil fraction. It is feasible to use N K-edge XANES spectroscopy for characterizing in situ the changes of organic N functional groups in soil under different fertilization practices.
Parsons, J G; Lopez, M L; Castillo-Michel, H; Peralta-Videa, J R; Gardea-Torresdey, J L
2009-08-01
The speciation of elements without pre-edge features preformed with X-ray absorption near edge structure (XANES) can lead to problems when the energy difference between two species is small. The speciation of arsenic (As) in plant samples was investigated using the mixtures As2S3/As2O5, As2S3/As2O3, or As2O3/As2O5. The data showed that the energy separation (eV) between As2O5 and As2S3 was 5.8, between As2O3 and As2O5 was 3.6, and between As2S3 and As2O3 was 2.1. From the intensity of the white-line feature and the concentration of As species, calibration curves showing a limit of detection of approximately 10% were generated. In addition, an error of +/-10% was determined for the linear combination-XANES (LC-XANES) fitting technique. The difference between the LC-XANES fittings and calculations from the calibration curves was <10%. The data also showed that the speciation of As in a sample can be determined using EXAFS (extended X-ray absorption fine structure). Finally, it was also shown that both EXAFS and XANES of the sample should be examined to determine the true speciation of an element. Even though there is a difference of 2 eV between As(III) bound to O and As(III) bound to S, in the EXAFS region the As(III)-S and As(III)-O ligands are clearly visible. However, distinction between the As(III)-O and As(V)-O ligands in the EXAFS spectra was not clearly visible in this study.
Diversity in C-Xanes Spectra Obtained from Carbonaceous Solid Inclusions from Monahans Halite
NASA Technical Reports Server (NTRS)
Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Kilcoyne, A. L. D.; Rahman, Z.; Cody, G. D.
2014-01-01
Monahans meteorite (H5) contains fluid inclusion- bearing halite (NaCl) crystals [1]. Microthermometry and Raman spectroscopy showed that the fluid in the inclusions is an aqueous brine and they were trapped near 25degC [1]. Their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid was post metamorphism [2]. Abundant solid inclusions are also present in the halites. The solid inclusions include abundant and widely variable organics [2]. Analyses by Raman microprobe, SEM/EDX, synchrotron X-ray diffraction and TEM reveal that these grains include macromolecular carbon similar in structure to CV3 chondrite matrix carbon, aliphatic carbon compounds, olivine (Fo99-59), high- and low-Ca pyroxene, feldspars, magnetite, sulfides, lepidocrocite, carbonates, diamond, apatite and possibly the zeolite phillipsite [3]. Here we report organic analyses of these carbonaceous residues in Monahans halite using C-, N-, and O- X-ray absorption near edge structure (XANES). Samples and Methods: Approximately 100 nm-thick sections were extracted with a focused ion beam (FIB) at JSC from solid inclusions from Monahans halite. The sections were analyzed using the scanning transmission X-ray microscope (STXM) on beamline 5.3.2.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory for XANES spectroscopy. Results and Discussion: C-XANES spectra of the solid inclusions show micrometer-scale heterogeneity, indicating that the macromolecular carbon in the inclusions have complex chemical variations. C-XANES features include 284.7 eV assigned to aromatic C=C, 288.4-288.8 eV assigned to carboxyl, and 290.6 eV assigned to carbonate. The carbonyl features obtained by CXANES might have been caused by the FIB used in sample preparation. No specific N-XANES features are observed. The CXANES spectra obtained from several areas in the FIB sections include type 1&2 chondritic IOM like, type 3 chondritic IOM like, and none of the above. The natures of the macromolecular carbon in the solid inclusions observed by C-XANES are consistent with the previous studies showing that the carbonaceous solid inclusions have not originated from Monahans parent body [1-3], and have various origins, including various chondritic meteorite parent bodies as well as other unknown source(s).
Diamond xenolith and matrix organic matter in the Sutter's Mill meteorite measured by C-XANES
NASA Astrophysics Data System (ADS)
Kebukawa, Yoko; Zolensky, Michael E.; Kilcoyne, A. L. David; Rahman, Zia; Jenniskens, Peter; Cody, George D.
2014-11-01
The Sutter's Mill (SM) meteorite fell in El Dorado County, California, on April 22, 2012. This meteorite is a regolith breccia composed of CM chondrite material and at least one xenolithic phase: oldhamite. The meteorite studied here, SM2 (subsample 5), was one of three meteorites collected before it rained extensively on the debris site, thus preserving the original asteroid regolith mineralogy. Two relatively large (10 μm sized) possible diamond grains were observed in SM2-5 surrounded by fine-grained matrix. In the present work, we analyzed a focused ion beam (FIB) milled thin section that transected a region containing these two potential diamond grains as well as the surrounding fine-grained matrix employing carbon and nitrogen X-ray absorption near-edge structure (C-XANES and N-XANES) spectroscopy using a scanning transmission X-ray microscope (STXM) (Beamline 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory). The STXM analysis revealed that the matrix of SM2-5 contains C-rich grains, possibly organic nanoglobules. A single carbonate grain was also detected. The C-XANES spectrum of the matrix is similar to that of insoluble organic matter (IOM) found in other CM chondrites. However, no significant nitrogen-bearing functional groups were observed with N-XANES. One of the possible diamond grains contains a Ca-bearing inclusion that is not carbonate. C-XANES features of the diamond-edges suggest that the diamond might have formed by the CVD process, or in a high-temperature and -pressure environment in the interior of a much larger parent body.
Sulfur Speciation in Biochars by Very High Resolution Benchtop Kα X-ray Emission Spectroscopy.
Holden, William M; Seidler, Gerald T; Cheah, Singfoong
2018-05-30
The analytical chemistry of sulfur-containing materials poses substantial technical challenges, especially due to the limitations of 33 S NMR and the time-intensive preparations required for wet-chemistry analyses. A number of prior studies have found that synchrotron-based X-ray absorption near edge structure (XANES) measurements can give detailed speciation of sulfur chemistry in such cases. However, due to the obvious access limitations, synchrotron XANES of sulfur cannot be part of routine analytical practice across the chemical sciences community. Here, in a study of the sulfur chemistry in biochars, we compare and contrast the chemical inferences available from synchrotron XANES with that given by benchtop, extremely high resolution wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, also often called X-ray emission spectroscopy (XES). While the XANES spectra have higher total information content, often giving differentiation between different moieties having the same oxidation state, the lower sensitivity of the S Kα XES to coordination and local structure provides pragmatic benefit for the more limited goal of quantifying the S oxidation state distribution. Within that constrained metric, we find good agreement between the two methods. As the sulfur concentrations were as low as 150 ppm, these measurements provide proof-of-principle for characterization of the sulfur chemistry of biochars and potential applications to other areas such as soils, batteries, catalysts, and fossil fuels and their combustion products.
Sulfur Speciation in Biochars by Very High Resolution Benchtop Ka X-Ray Emission Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheah, Singfoong; Holden, William M.; Seidler, Gerald T.
The analytical chemistry of sulfur-containing materials poses substantial technical challenges, especially due to the limitations of 33S NMR and the time-intensive preparations required for wet-chemistry analyses. A number of prior studies have found that synchrotron-based X-ray absorption near edge structure (XANES) measurements can give detailed speciation of sulfur chemistry in such cases. However, due to the obvious access limitations, synchrotron XANES of sulfur cannot be part of routine analytical practice across the chemical sciences community. Here, in a study of the sulfur chemistry in biochars, we compare and contrast the chemical inferences available from synchrotron XANES with that given bymore » benchtop, extremely high resolution wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, also often called X-ray emission spectroscopy (XES). While the XANES spectra have higher total information content, often giving differentiation between different moieties having the same oxidation state, the lower sensitivity of the S Ka XES to coordination and local structure provides pragmatic benefit for the more limited goal of quantifying the S oxidation state distribution. Within that constrained metric, we find good agreement between the two methods. As the sulfur concentrations were as low as 150 ppm, these measurements provide proof-of-principle for characterization of the sulfur chemistry of biochars and potential applications to other areas such as soils, batteries, catalysts, and fossil fuels and their combustion products.« less
Origin of luminescence from ZnO/CdS core/shell nanowire arrays
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Wang, Jian; Sham, Tsun-Kong; Yang, Shaoguang
2014-07-01
Chemical imaging, electronic structure and optical properties of ZnO/CdS nano-composites have been investigated using scanning transmission X-ray microscopy (STXM), X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL) spectroscopy. STXM and XANES results confirm that the as-prepared product is ZnO/CdS core/shell nanowires (NWs), and further indicate that ZnS was formed on the surface of ZnO NWs as the interface between ZnO and CdS. The XEOL from ZnO/CdS NW arrays exhibits one weak ultraviolet (UV) emission at 375 nm, one strong green emission at 512 nm, and two broad infrared (IR) emissions at 750 and 900 nm. Combining XANES and XEOL, it is concluded that the UV luminescence is the near band gap emission (BGE) of ZnO; the green luminescence comes from both the BGE of CdS and defect emission (DE, zinc vacancies) of ZnO; the IR luminescence is attributed to the DE (bulk defect related to the S site) of CdS; ZnS contributes little to the luminescence of the ZnO/CdS NW arrays. Interestingly, the BGE and DE from oxygen vacancies of ZnO in the ZnO/CdS nano-composites are almost entirely quenched, while DE from zinc vacancies changes little.Chemical imaging, electronic structure and optical properties of ZnO/CdS nano-composites have been investigated using scanning transmission X-ray microscopy (STXM), X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL) spectroscopy. STXM and XANES results confirm that the as-prepared product is ZnO/CdS core/shell nanowires (NWs), and further indicate that ZnS was formed on the surface of ZnO NWs as the interface between ZnO and CdS. The XEOL from ZnO/CdS NW arrays exhibits one weak ultraviolet (UV) emission at 375 nm, one strong green emission at 512 nm, and two broad infrared (IR) emissions at 750 and 900 nm. Combining XANES and XEOL, it is concluded that the UV luminescence is the near band gap emission (BGE) of ZnO; the green luminescence comes from both the BGE of CdS and defect emission (DE, zinc vacancies) of ZnO; the IR luminescence is attributed to the DE (bulk defect related to the S site) of CdS; ZnS contributes little to the luminescence of the ZnO/CdS NW arrays. Interestingly, the BGE and DE from oxygen vacancies of ZnO in the ZnO/CdS nano-composites are almost entirely quenched, while DE from zinc vacancies changes little. Electronic supplementary information (ESI) available: PL spectra of the ZnO NW arrays before/after CdS coating. S K-edge XANES spectra of the ZnO/CdS core/shell NW arrays. See DOI: 10.1039/c4nr02231a
Solvation structure of the halides from x-ray absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antalek, Matthew; Hedman, Britt; Sarangi, Ritimukta, E-mail: ritis@slac.stanford.edu
2016-07-28
Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, andmore » a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (−0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.« less
Electronic Structures and Optical Properties of α-Al2O3Nanowires
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Li, Chunlei; Liu, Lijia; Sham, Tsun-Kong
2013-04-01
The electronic structure and optical properties of α-Al2O3 nanowires (NWs) have been investigated using X-ray absorption near-edge structures (XANES) and X-ray excited optical luminescence (XEOL). The XANES were recorded in total electron yield (TEY) and total fluorescence yield (TFY) across the K- and L3,2-edges of aluminium and the K-edge of oxygen. The results indicate that the NWs are of a core/shell structure with a single-crystalline core and an amorphous shell. The XEOL spectra of the NWs show an intense peak at 404 nm, which comes from the F centre located in the amorphous shell of the NWs. The implication of these findings and the sensitivity of XEOL for defect detection are discussed.
Li, Dien; Seaman, John C; Chang, Hyun-Shik; Jaffe, Peter R; Koster van Groos, Paul; Jiang, De-Tong; Chen, Ning; Lin, Jinru; Arthur, Zachary; Pan, Yuanming; Scheckel, Kirk G; Newville, Matthew; Lanzirotti, Antonio; Kaplan, Daniel I
2014-05-01
Uranium speciation and retention mechanisms onto Savannah River Site (SRS) wetland sediments was studied using batch (ad)sorption experiments, sequential extraction, U L3-edge X-ray absorption near-edge structure (XANES) spectroscopy, fluorescence mapping and μ-XANES. Under oxidized conditions, U was highly retained by the SRS wetland sediments. In contrast to other similar but much lower natural organic matter (NOM) sediments, significant sorption of U onto the SRS sediments was observed at pH < 4 and pH > 8. Sequential extraction indicated that the U species were primarily associated with the acid soluble fraction (weak acetic acid extractable) and organic fraction (Na-pyrophosphate extractable). Uranium L3-edge XANES spectra of the U-bound sediments were nearly identical to that of uranyl acetate. Based on fluorescence mapping, U and Fe distributions in the sediment were poorly correlated, U was distributed throughout the sample and did not appear as isolated U mineral phases. The primary oxidation state of U in these oxidized sediments was U(VI), and there was little evidence that the high sorptive capacity of the sediments could be ascribed to abiotic or biotic reduction to the less soluble U(IV) species or to secondary mineral formation. Collectively, this study suggests that U may be strongly bound to wetland sediments, not only under reducing conditions by reductive precipitation, but also under oxidizing conditions through NOM-uranium bonding. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alp, E.E.; Mini, S.M.; Ramanathan, M.
1990-04-01
The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less
XPS and XANES studies of biomimetic composites based on B-type nano-hydroxyapatite
NASA Astrophysics Data System (ADS)
Goloshchapov, D. L.; Gushchin, M. S.; Kashkarov, V. M.; Seredin, P. V.; Ippolitov, Y. A.; Khmelevsky, N. O.; Aksenenko, A. Yu.
2018-06-01
The paper presents an investigation of the local atomic structure of nanocrystalline carbonate-substituted hydroxyapatite (CHAP) contained in biomimetic composites - analogues of intact human tooth tissues. Using the XPS technique, the presence of impurity Mg and F atoms and structurally bound carbon in CHAP, at the concentrations typical of apatite enamel and dentine was determined. The XANES method was used to study the changes occurring in P L2,3 spectra of biocomposites with CHAP, depending on the percentage of the amino acid matrix. The appearance of maxima in the spectra of XANES P L2,3 near 135.7 eV for the samples with the composition of amino acid complex/hydroxyapatite - 5/95, 25/75 and the splitting of a broad peak of 146.9 eV in the spectrum of a biocomposite with a composition of 40/60 indicates at the interaction of molecular complex of amino acids with atomic environment of phosphorus. This fact can be used in the fundamental medicine for synthesizing of new biomaterials in dentistry.
NASA Astrophysics Data System (ADS)
Poumellec, B.; Kraizman, V.; Aifa, Y.; Cortès, R.; Novakovich, A.; Vedrinskii, R.
1998-09-01
Angular dependence of the vanadium K-edge x-ray appearance near-edge structure (XANES) for the VOPO4.2H2O xerogel is thoroughly studied both experimentally and theoretically. The main attention is paid to the pre-edge fine structure (PEFS) of the spectra which was shown earlier to be a useful tool for the atomic short order investigations. Good quantitative agreement between theory and experiment obtained for both dipole and quadrupole contributions to the spectra proves validity of the calculation method developed and enables us to ascertain the nature of all the features in the PEFS's. The p-d mixture effect due to distortion of the central coordination octahedron and the quadrupole transitions are proved to be the only mechanisms responsible for the PEFS formation in the case considered. We show that in order to achieve quantitative agreement between experimental and theoretical spectra, it is necessary to include the effect of atomic vibrations, which makes the forbidden transitions to molecular orbitals of the central octahedron (MOCO's) dipole allowed, and to take into account deviation of the crystal layers from the substrate plane, which is not a single crystal but a texture.
Speciation of Soil Phosphorus Assessed by XANES Spectroscopy at Different Spatial Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hesterberg, Dean; McNulty, Ian; Thieme, Juergen
Precise management of soil phosphorus (P) to meet competing demands of agriculture and environmental protection can benefit from more comprehensive characterization of P speciation in soils. Our objectives were to provide spatial context for spectroscopic analyses of soil P speciation in relation to molecular-scale species and landscape-scale management of P, and to compare soil P-species diversity from spectroscopic measurements at submicron and millimeter scales. The spatial range of ~26 orders of magnitude between atomic and field scales presents a challenge to upscaling and downscaling information from spectroscopic analyses of soils. Scanning fluorescence X-ray microscopy images of a 50-mm ´ 45-mmmore » area of an organic soil sample showed heterogeneous distributions of P, Al, and Si. Microscale X-ray absorption near edge structure (μ-XANES) spectra collected at the P K-edge from 12 spots on the soil sample exhibited diverse features that indicated variations in highly localized P speciation. Linear combination fitting analysis of the μ-XANES spectra included various proportions of three standards that appeared in fits for most spots and five standards that appeared in fits for one spot each. The fit to a bulk-soil spectrum was dominated by two of the common standards in the μ-XANES fits, and a fit to the sum of m-XANES spectra included four of the standards. Lastly, these results illustrate a gain in P species sensitivity from spatially resolved XANES analysis. Integrating spectroscopic analyses from multiple scales determines soil P species diversity and will ultimately help connect speciation to the chemical reactivity and mobility of P in soils.« less
Speciation of Soil Phosphorus Assessed by XANES Spectroscopy at Different Spatial Scales
Hesterberg, Dean; McNulty, Ian; Thieme, Juergen
2017-07-27
Precise management of soil phosphorus (P) to meet competing demands of agriculture and environmental protection can benefit from more comprehensive characterization of P speciation in soils. Our objectives were to provide spatial context for spectroscopic analyses of soil P speciation in relation to molecular-scale species and landscape-scale management of P, and to compare soil P-species diversity from spectroscopic measurements at submicron and millimeter scales. The spatial range of ~26 orders of magnitude between atomic and field scales presents a challenge to upscaling and downscaling information from spectroscopic analyses of soils. Scanning fluorescence X-ray microscopy images of a 50-mm ´ 45-mmmore » area of an organic soil sample showed heterogeneous distributions of P, Al, and Si. Microscale X-ray absorption near edge structure (μ-XANES) spectra collected at the P K-edge from 12 spots on the soil sample exhibited diverse features that indicated variations in highly localized P speciation. Linear combination fitting analysis of the μ-XANES spectra included various proportions of three standards that appeared in fits for most spots and five standards that appeared in fits for one spot each. The fit to a bulk-soil spectrum was dominated by two of the common standards in the μ-XANES fits, and a fit to the sum of m-XANES spectra included four of the standards. Lastly, these results illustrate a gain in P species sensitivity from spatially resolved XANES analysis. Integrating spectroscopic analyses from multiple scales determines soil P species diversity and will ultimately help connect speciation to the chemical reactivity and mobility of P in soils.« less
In situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids
Apblett, Christopher A.; Stewart, David M.; Fryer, Robert T.; ...
2015-10-23
We apply in situ X-Ray Absorption Near Edge Spectroscopy (XANES) and Extended X-Ray Absorption Fine Structure (EXAFS) techniques to a metal center ionic liquid undergoing oxidation and reduction in a three electrode spectroscopic cell. Furthermore, the determination of the extent of reduction under negative bias on the working electrode and the extent of oxidation are determined after pulse voltammetry to quiescence. While the ionic liquid undergoes full oxidation, it undergoes only partial reduction, likely due to transport issues on the timescale of the experiment. Nearest neighbor Fe-O distances in the fully oxidized state match well to expected values for similarlymore » coordinated solids, but reduction does not result in an extension of the Fe-O bond length, as would be expected from comparisons to the solid phase. Instead, little change in bond length is observed. Finally, we suggest that this may be due to a more complex interaction between the monodentate ligands of the metal center anion and the surrounding charge cloud, rather than straightforward electrostatics between the metal center and the nearest neighbor grouping.« less
NASA Astrophysics Data System (ADS)
Pankin, I. A.; Polozhentsev, O. E.; Soldatov, M. A.; Bugaev, A. L.; Tsaturyan, A.; Lomachenko, K. A.; Guda, A. A.; Budnyk, A. P.; Lamberti, C.; Soldatov, A. V.
2018-06-01
This article is devoted to the spectroscopic characterization of ZnS-ZnO nanoscale heterostructures synthesized by the microwave-assisted solvothermal method. The synthesized samples were investigated by means of X-ray powder diffraction (XRPD), high energy resolution fluorescence detected X-ray absorption near-edge-structure (HERFD-XANES) spectroscopy, valence-to-core X-ray emission spectroscopy (VtC-XES) and high resolution transmission electron microscopy (HR-TEM) as well as energy dispersive X-ray spectroscopy (EDX). The average crystallite size estimated by the broadening of XRPD peaks increases from 2.7 nm to 3.7 nm in the temperature range from 100 °C to 150 °C. HR-TEM images show that nanoparticles are arranged in aggregates with the 60-200 nm size. Theoretical estimation shows that the systems synthesized at higher temperatures more prone to the agglomeration. The full profile Reitveld analysis of XRPD data reveals the formation of hexagonal zinc sulfide structure, whereas electron diffraction data reveal also the formation of cubic zinc sulfide and claim the polymorphous character of the system. High energy resolution Zn K-edge XANES data unambiguously demonstrate the presence of a certain amount of the zinc oxide which is likely to have an amorphous structure and could not be detected by XRPD. Qualitative analysis of XANES data allows deriving ZnS/ZnO ratio as a function of synthesis temperature. EDX analysis depicts homogeneous distribution of ZnS and amorphous ZnO phases across the conglomerates. A complementary element-selective valence to core X-ray emission spectroscopy evidences formation of two-component system and confirms estimations of ZnS/ZnO fractions obtained by linear combination fit of XANES data.
XANES study of hydrogen incorporation in a Pd-capped Nb thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruckman, M.W.; Reisfeld, G.; Jisrawi, N.M.
X-ray absorption near-edge structure (XANES) measurements were used to probe the H-charging-induced electronic structure changes of a 2400 {Angstrom} Nb film capped with Pd. These results are discussed in terms of {ital ab initio} linear augmented plane-wave (LAPW) band-structure calculations for this material. The Pd-L{sub 3}-edge XANES clearly manifested the spectral (Pd-d state related) changes expected for Pd-hydride formation, a white line feature degradation, and the appearance of a Pd-H antibonding feature at 6 eV above the threshold. The Nb-L{sub 2,3} edge changes with H charging show a distinct enhancement of the white line strength; a feature 6 eV abovemore » the edges, associated with Nb-H antibonding states in analogy with the Pd results; the suppression of a threshold-onset feature of Nb metal; and a shift of the centrum of the white line feature towards the threshold. Comparison of the Nb sphere projection of the d{sub 3/2} component of the LAPW density of states (DOS) to the Nb-L{sub 2}-edge spectra yields good basic agreement with the observed spectral changes. In particular, the substantial theoretical reduction in the DOS at, and just above, the Fermi energy (E{sub f}) is directly related to the near threshold Nb-L{sub 2,3} spectral changes. The more modest white line enhancement in the theoretical DOS is noted and discussed. Nb-K-edge XANES are also discussed in terms of the Nb-site p-state projected LAPW DOS. This last comparison indicates a p-state reduction near E{sub f} upon H charging of the Nb. {copyright} {ital 1998} {ital The American Physical Society}« less
Manceau, Alain; Lemouchi, Cyprien; Rovezzi, Mauro; Lanson, Martine; Glatzel, Pieter; Nagy, Kathryn L; Gautier-Luneau, Isabelle; Joly, Yves; Enescu, Mironel
2015-12-21
We present results obtained from high energy-resolution L3-edge XANES spectroscopy and first-principles calculations for the structure, bonding, and stability of mercury(II) complexes with thiolate and thioether ligands in crystalline compounds, aqueous solution, and macromolecular natural organic matter (NOM). Core-to-valence XANES features that vary in intensity differentiate with unprecedented sensitivity the number and identity of Hg ligands and the geometry of the ligand environment. Post-Hartree-Fock XANES calculations, coupled with natural population analysis, performed on MP2-optimized Hg[(SR)2···(RSR)n] complexes show that the shape, position, and number of electronic transitions observed at high energy-resolution are directly correlated to the Hg and S (l,m)-projected empty densities of states and occupations of the hybridized Hg 6s and 5d valence orbitals. Linear two-coordination, the most common coordination geometry in mercury chemistry, yields a sharp 2p to 6s + 5d electronic transition. This transition varies in intensity for Hg bonded to thiol groups in macromolecular NOM. The intensity variation is explained by contributions from next-nearest, low-charge, thioether-type RSR ligands at 3.0-3.3 Å from Hg. Thus, Hg in NOM has two strong bonds to thiol S and k additional weak Hg···S contacts, or 2 + k coordination. The calculated stabilization energy is -5 kcal/mol per RSR ligand. Detection of distant ligands beyond the first coordination shell requires precise measurement of, and comparison to, spectra of reference compounds as well as accurate calculation of spectra for representative molecular models. The combined experimental and theoretical approaches described here for Hg can be applied to other closed-shell atoms, such as Ag(I) and Au(I). To facilitate further calculation of XANES spectra, experimental data, a new crystallographic structure of a key mercury thioether complex, Cartesian coordinates of the computed models, and examples of input files are provided as Supporting Information .
Investigation of arsenic species in tailings and windblown dust from a gold mining area.
Ono, F B; Tappero, R; Sparks, D; Guilherme, L R G
2016-01-01
Research has shown the presence of high levels of arsenic (up to 2666 mg As kg(-1)) in tailings from a gold mining area of Brazil. This is an important point of attention, generating concerns about impacts on human health. Yet, a recent study showed that As bioaccessibility in the same area was very low (<4.4%). Thus, determination of the direct solid-phase speciation of As in the mine tailings and windblown dust is needed to explain this low bioaccessibility. Mine samples were collected from four subareas and windblown dust from eight sites. Synchrotron-based bulk-X-ray absorption near-edge structure (bulk-XANES) spectroscopy, micro-X-ray absorption near-edge structure (μ-XANES), and μ-X-ray fluorescence (μ-SXRF) spectroscopy were applied to determine As speciation. Bulk-XANES spectra indicated that As occurs as the As(V) oxidation state. Micro-XANES and μ-SXRF analyses revealed that As was also present as arsenopyrite (FeAsS) and its weathering products, but mostly it was As(V) as poorly crystalline ferric arsenate. This supports the findings of low bioaccessible As and highlights the importance of Fe oxides in immobilizing As in the terrestrial environment. All air particulate samples exhibited As-rich particles (up to 313 mg As kg(-1)). The air particulates exhibited solid-phase As species very similar to those found in the mine samples, which indicates that As in the windblown dust is not easily available.
Experimental evidence of six-fold oxygen coordination for phosphorus and XANES calculations
NASA Astrophysics Data System (ADS)
Flank, A.-M.; Trcera, N.; Brunet, F.; Itié, J.-P.; Irifune, T.; Lagarde, P.
2009-11-01
Phosphorus, a group V element, has always been found so far in minerals, biological systems and synthetic compounds with an oxygen coordination number of four (i.e, PO4 groups). We demonstrate here using phosphorus K-edge XANES spectroscopy that this element can also adopt a six-fold oxygen coordination (i.e, PO6 groups). This new coordination was achieved in AlPO4 doped SiO2 stishovite synthesized at 18 GPa and 1873 K and quenched down to ambient conditions. The well-crystallized P-bearing stishovite grains (up to 100μm diameter) were embedded in the back-transformation products of high pressure form of AlPO4 matrix. They were identified by elemental mapping (μ-XRF). μ-XANES spectra collected at the Si and P K edges in the Si rich region with a very low concentration of P present striking resemblance, Si itself being characteristic of pure stishovite. We can therefore infer that phosphorus in the corresponding stishovite crystal is involved in an octahedral coordination made of six oxygen atoms. First principle XANES calculations using a plane-wave density functional formalism with core-hole effects treated in a supercell approach at the P K edge for a P atom substituting an Si one in the stishovite structure confirm this assertion. This result shows that in the lower-mantle where all silicon is six-fold coordinated, phosphorus has the crystal-chemical ability to remain incorporated into silicate structures.
NASA Astrophysics Data System (ADS)
Naftel, S. J.; Coulthard, I.; Sham, T. K.; Xu, D.-X.; Erickson, L.; Das, S. R.
1999-05-01
We report a Ni and Si L3,2-edge x-ray absorption near edge structures (XANES) study of nickel-silicon interaction in submicron (0.15 and 0.2 μm) lines on a n-Si(100) wafer as well as a series of well characterized Ni-Si blanket films. XANES measurements recorded in both total electron yield and soft x-ray fluorescence yield indicate that under the selected silicidation conditions, the more desirable low resistivity phase, NiSi, is indeed the dominant phase in the subhalf-micron lines although the formation of this phase is less complete as the line becomes narrower and this is accompanied by a Ni rich surface.
XANES Analysis of Organic Residues Produced from the UV Irradiation of Astrophysical Ice Analogs
NASA Technical Reports Server (NTRS)
Nuevo, M.; Milam, S N.; Sandford, S A.; De Gregorio, B T.; Cody, G D.; Kilcoyne, A L.
2011-01-01
Organic residues formed in the laboratory from the ultraviolet (UV) photo-irradiation or ion bombardment of astrophysical ice analogs have been extensively studied for the last 15 years with a broad suite of techniques, including infrared (IR) and UV spectroscopies, as well as mass spectrometry. Analyses of these materials show that they consist of complex mixtures of organic compounds stable at room temperature, mostly soluble, that have not been fully characterized. However, the hydrolysis products of these residues have been partly identified using chromatography techniques, which indicate that they contain molecular precursors of prebiotic interest such as amino acids, nitrile-bearing compounds, and amphiphilic compounds. In this study, we present the first X-ray absorption near-edge structure (XANES) spectroscopy measurements of three organic residues made from the UV irradiation of ices having different starting compositions. XANES spectra confirm the presence of different chemical functions in these residues, and indicate that they are rich in nitrogenand oxygen-bearing species. These data can be compared with XANES measurements of extraterrestrial materials. Finally, this study also shows how soft X rays can alter the chemical composition of samples.
Chuang, C-H; Wang, Y-F; Shao, Y-C; Yeh, Y-C; Wang, D-Y; Chen, C-W; Chiou, J W; Ray, Sekhar C; Pong, W F; Zhang, L; Zhu, J F; Guo, J H
2014-04-10
Electronic structures of graphene oxide (GO) and hydro-thermally reduced graphene oxides (rGOs) processed at low temperatures (120-180°C) were studied using X-ray absorption near-edge structure (XANES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). C K-edge XANES spectra of rGOs reveal that thermal reduction restores C = C sp(2) bonds and removes some of the oxygen and hydroxyl groups of GO, which initiates the evolution of carbonaceous species. The combination of C K-edge XANES and Kα XES spectra shows that the overlapping π and π* orbitals in rGOs and GO are similar to that of highly ordered pyrolytic graphite (HOPG), which has no band-gap. C Kα RIXS spectra provide evidence that thermal reduction changes the density of states (DOSs) that is generated in the π-region and/or in the gap between the π and π* levels of the GO and rGOs. Two-dimensional C Kα RIXS mapping of the heavy reduction of rGOs further confirms that the residual oxygen and/or oxygen-containing functional groups modify the π and σ features, which are dispersed by the photon excitation energy. The dispersion behavior near the K point is approximately linear and differs from the parabolic-like dispersion observed in HOPG.
XANES mapping of organic sulfate in three scleractinian coral skeletons
NASA Astrophysics Data System (ADS)
Cuif, Jean-Pierre; Dauphin, Yannicke; Doucet, Jean; Salome, Murielle; Susini, Jean
2003-01-01
The presence and localization of organic sulfate within coral skeletons are studied by using X-ray absorption near edge structure spectroscopy (XANES) fluorescence. XANES spectra are recorded from four reference sulfur-bearing organic molecules: three amino acids (H-S-C bonds in cysteine; C-S-C bonds in methionine; one disulfide bond C-S-S-C bonds in cystine) and a sulfated sugar (C-SO 4 bonds in chondroitin sulfate). Spectral responses of three coral skeletons show that the sulfated form is extremely dominant in coral aragonite, and practically exclusive within both centres of calcification and the surrounding fibrous tissues of coral septa. Mapping of S-sulfate concentrations in centres and fibres gives us direct evidence of high concentration of organic sulfate in centres of calcification. Additionally, a banding pattern of S-sulfate is visible in fibrous part of the coral septa, evidencing a biochemical zonation that corresponds to the step-by-step growth of fibres.
Guda, Sergey A; Guda, Alexander A; Soldatov, Mikhail A; Lomachenko, Kirill A; Bugaev, Aram L; Lamberti, Carlo; Gawelda, Wojciech; Bressler, Christian; Smolentsev, Grigory; Soldatov, Alexander V; Joly, Yves
2015-09-08
Accurate modeling of the X-ray absorption near-edge spectra (XANES) is required to unravel the local structure of metal sites in complex systems and their structural changes upon chemical or light stimuli. Two relevant examples are reported here concerning the following: (i) the effect of molecular adsorption on 3d metals hosted inside metal-organic frameworks and (ii) light induced dynamics of spin crossover in metal-organic complexes. In both cases, the amount of structural models for simulation can reach a hundred, depending on the number of structural parameters. Thus, the choice of an accurate but computationally demanding finite difference method for the ab initio X-ray absorption simulations severely restricts the range of molecular systems that can be analyzed by personal computers. Employing the FDMNES code [Phys. Rev. B, 2001, 63, 125120] we show that this problem can be handled if a proper diagonalization scheme is applied. Due to the use of dedicated solvers for sparse matrices, the calculation time was reduced by more than 1 order of magnitude compared to the standard Gaussian method, while the amount of required RAM was halved. Ni K-edge XANES simulations performed by the accelerated version of the code allowed analyzing the coordination geometry of CO and NO on the Ni active sites in CPO-27-Ni MOF. The Ni-CO configuration was found to be linear, while Ni-NO was bent by almost 90°. Modeling of the Fe K-edge XANES of photoexcited aqueous [Fe(bpy)3](2+) with a 100 ps delay we identified the Fe-N distance elongation and bipyridine rotation upon transition from the initial low-spin to the final high-spin state. Subsequently, the X-ray absorption spectrum for the intermediate triplet state with expected 100 fs lifetime was theoretically predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aluri, Esther Rani; Hayes, John R.; Walker, James D.S.
2016-03-24
Rare-earth titanate and stannate pyrochlore-type oxides have been investigated in the past for the sequestration of nuclear waste elements because of their resistance to radiation-induced structural damage. In order to enhance this property, it is necessary to understand the effect of radioactive decay of the incorporated actinide elements on the local chemical environment. In this study, Gd 2Ti 2–xSn xO 7 materials have been implanted with Au– ions to simulate radiation-induced structural damage. Glancing angle X-ray absorption near-edge spectroscopy (GA-XANES), glancing angle X-ray absorption fine structure (GA-EXAFS) analysis, and powder X-ray diffraction have been used to investigate changes in themore » local coordination environment of the metal atoms in the damaged surface layer. Examination of GA-XANES/EXAFS spectra from the implanted Gd 2Ti 2–xSn xO 7 materials collected at various glancing angles allowed for an investigation of how the local coordination environment around the absorbing atoms changed at different depths in the damaged surface layer. This study has shown the usefulness of GA-XANES to the examination of ion-implanted materials and has suggested that Gd 2Ti 2–xSn xO 7 becomes more susceptible to ion-beam-induced structural damage with increasing Sn concentration.« less
Chemical species of sulfur in prostate cancer cells studied by XANES spectroscopy
NASA Astrophysics Data System (ADS)
Czapla, Joanna; Kwiatek, Wojciech M.; Lekki, Janusz; Dulińska-Litewka, Joanna; Steininger, Ralph; Göttlicher, Jörg
2013-12-01
The role of sulfur in prostate cancer progression may be significant for understanding the process of carcinogenesis. This work, based on X-ray Absorption Near Edge Structure (XANES) spectroscopy, is focused on determination of sulfur chemical species occurring in prostate cancer cell lines. The experimental material consisted of four commercially available cell lines: three from metastasized prostate cancer (PC3, LNCaP, and DU145) and one, used as a control, from the non-tumourigenic peripheral zone of the prostate (PZ-HPV-7). The experiment was performed at the SUL-X beamline of the synchrotron radiation source ANKA, Karlsruhe (Germany). The K-edge XANES spectra of sulfur were analyzed by deconvolution in order to establish sulfur species that occur in prostate cancer cells and to find out whether there are any differences in their content between various cell lines. Experimental spectra were fitted in two ways: with two Gaussian peaks and one arctangent step function, and additionally by a Linear Combination Fit with spectra of reference compounds in order to obtain quantitative chemical information. All fitting procedures were performed with the Athena code (Ravel and Newville, 2005) and the results of deconvolution were used to determine the fraction of each sulfur form. The results of data analysis showed that cell lines from different metastasis had different ratio of reduced to oxidized sulfur species. The LCF analysis demonstrated that the highest content of GSH, one of the most important sulfur-bearing compounds in cells, was observed in DU145 cells. These findings may confirm the hypothesis of changes in redox balance in case of cancer initiation and progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beauchemin, Suzanne; MacLean, Lachlan C.W.; Rasmussen, Pat E.
Residents in older homes may experience increased lead (Pb) exposures due to release of lead from interior paints manufactured in past decades, especially pre-1960s. The objective of the study was to determine the speciation of Pb in settled dust from an urban home built during WWII. X-ray absorption near-edge structure (XANES) and micro-X-ray diffraction (XRD) analyses were performed on samples of paint (380-2,920 mg Pb kg{sup -1}) and dust (200-1,000 mg Pb kg{sup -1}) collected prior to renovation. All dust samples exhibited a Pb XANES signature similar to that of Pb found in paint. Bulk XANES and micro-XRD identified Pbmore » species commonly found as white paint pigments (Pb oxide, Pb sulfate, and Pb carbonate) as well as rutile, a titanium-based pigment, in the <150 {micro}m house dust samples. In the dust fraction <36 {micro}m, half of the Pb was associated with the Fe-oxyhydroxides, suggesting additional contribution of outdoor sources to Pb in the finer dust. These results confirm that old paints still contribute to Pb in the settled dust for this 65-year-old home. The Pb speciation also provided a clearer understanding of the Pb bioaccessibility: Pb carbonate > Pb oxide > Pb sulfate. This study underscores the importance of taking precautions to minimize exposures to Pb in house dust, especially in homes where old paint is exposed due to renovations or deterioration of painted surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
S Beauchemin; L MacLean; P Rasmussen
Residents in older homes may experience increased lead (Pb) exposures due to release of lead from interior paints manufactured in past decades, especially pre-1960s. The objective of the study was to determine the speciation of Pb in settled dust from an urban home built during WWII. X-ray absorption near-edge structure (XANES) and micro-X-ray diffraction (XRD) analyses were performed on samples of paint (380-2,920 mg Pb kg{sup -1}) and dust (200-1,000 mg Pb kg{sup -1}) collected prior to renovation. All dust samples exhibited a Pb XANES signature similar to that of Pb found in paint. Bulk XANES and micro-XRD identified Pbmore » species commonly found as white paint pigments (Pb oxide, Pb sulfate, and Pb carbonate) as well as rutile, a titanium-based pigment, in the <150 m house dust samples. In the dust fraction <36 {mu}m, half of the Pb was associated with the Fe-oxyhydroxides, suggesting additional contribution of outdoor sources to Pb in the finer dust. These results confirm that old paints still contribute to Pb in the settled dust for this 65-year-old home. The Pb speciation also provided a clearer understanding of the Pb bioaccessibility: Pb carbonate > Pb oxide > Pb sulfate. This study underscores the importance of taking precautions to minimize exposures to Pb in house dust, especially in homes where old paint is exposed due to renovations or deterioration of painted surfaces.« less
Chatterjee, Ruchira; Han, Guangye; Kern, Jan; Gul, Sheraz; Fuller, Franklin D.; Garachtchenko, Anna; Young, Iris; Weng, Tsu-Chien; Nordlund, Dennis; Alonso-Mori, Roberto; Bergmann, Uwe; Sokaras, Dimosthenis; Hatakeyama, Makoto; Yachandra, Vittal K.; Yano, Junko
2016-01-01
The Mn4CaO5 cluster in Photosystem II catalyzes the four-electron redox reaction of water oxidation in natural photosynthesis. This catalytic reaction cycles through four intermediate states (Si, i = 0 to 4), involving changes in the redox state of the four Mn atoms in the cluster. Recent studies suggest the presence and importance of isomorphous structures within the same redox/intermediate S-state. It is highly likely that geometric and electronic structural flexibility play a role in the catalytic mechanism. Among the catalytic intermediates that have been identified experimentally thus far, there is clear evidence of such isomorphism in the S2 state, with a high-spin (5/2) (HS) and a low spin (1/2) (LS) form, identified and characterized by their distinct electron paramagnetic resonance (EPR spectroscopy) signals. We studied these two S2 isomers with Mn extended X-ray absorption fine structure (EXAFS) and absorption and emission spectroscopy (XANES/XES) to characterize the structural and electronic structural properties. The geometric and electronic structure of the HS and LS S2 states are different as determined using Mn EXAFS and XANES/XES, respectively. The Mn K-edge XANES and XES for the HS form are different from the LS and indicate a slightly lower positive charge on the Mn atoms compared to the LS form. Based on the EXAFS results which are clearly different, we propose possible structural differences between the two spin states. Such structural and magnetic redox-isomers if present at room temperature, will likely play a role in the mechanism for water-exchange/oxidation in photosynthesis. PMID:28044099
Chatterjee, Ruchira; Han, Guangye; Kern, Jan; ...
2016-05-09
The Mn 4CaO 5 cluster in photosystem II catalyzes the four-electron redox reaction of water oxidation in natural photosynthesis. This catalytic reaction cycles through four intermediate states (S i, i = 0 to 4), involving changes in the redox state of the four Mn atoms in the cluster. Recent studies suggest the presence and importance of isomorphous structures within the same redox/intermediate S-state. It is highly likely that geometric and electronic structural flexibility play a role in the catalytic mechanism. Among the catalytic intermediates that have been identified experimentally thus far, there is clear evidence of such isomorphism in themore » S2 state, with a high-spin (5/2) (HS) and a low spin (1/2) (LS) form, identified and characterized by their distinct electron paramagnetic resonance (EPR spectroscopy) signals. We studied these two S2 isomers with Mn extended X-ray absorption fine structure (EXAFS) and absorption and emission spectroscopy (XANES/XES) to characterize the structural and electronic structural properties. The geometric and electronic structure of the HS and LS S2 states are different as determined using Mn EXAFS and XANES/XES, respectively. The Mn K-edge XANES and XES for the HS form are different from the LS and indicate a slightly lower positive charge on the Mn atoms compared to the LS form. Based on the EXAFS results which are clearly different, we propose possible structural differences between the two spin states. As a result, such structural and magnetic redox-isomers if present at room temperature, will likely play a role in the mechanism for water-exchange/oxidation in photosynthesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueoka, Y.; Ishikawa, Y.; Maejima, N.
2013-10-28
The electronic structures of amorphous indium gallium zinc oxide (a-IGZO) on a SiO{sub 2} layers before and after annealing were observed by constant final state X-ray photoelectron spectroscopy (CFS-XPS) and X-ray adsorption near-edge structure spectroscopy (XANES). From the results of angle-resolved CFS-XPS, the change in the electronic state was clearly observed in the a-IGZO bulk rather than in the a-IGZO/SiO{sub 2} interface. This suggests that the electronic structures of the a-IGZO bulk strongly affected the thin-film transistor characteristics. The results of XANES indicated an increase in the number of tail states upon atmospheric annealing (AT). We consider that the increasemore » in the number of tail states decreased the channel mobility of AT samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx; Fuentes-Cobas, L. E.; Macías-Ríos, E.
2015-07-23
The maghemite-like oxide system γ-Fe{sub 2-x}Cr{sub x}O{sub 3} (x=0.75, 1 and 1.25) was studied by X-ray absorption fine structure (XAFS) and by synchrotron radiation X-ray diffraction (XRD). Measurements were performed at the Stanford Synchrotron Radiation Lightsource at room temperature, at beamlines 2-1, 2-3 and 4-3. High-resolution XRD patterns were processed by means of the Rietveld method. In cases of atoms being neighbors in the Periodic Table, the order/disorder degree of the considered solutions is indiscernible by “normal” (absence of “anomalous scattering”) diffraction experiments. Thus, maghemite-like materials were investigated by XAFS in both Fe and Cr K-edges to clarify, via short-rangemore » structure characterization, the local ordering of the investigated system. Athena and Artemis graphic user interfaces for IFEFFIT and FEFF8.4 codes were employed for XAFS spectra interpretation. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure (XANES) transitions were performed. By analysis of the Cr K-edge XANES, it has been confirmed that Cr is located in an octahedral environment. Fitting of the extended X-ray absorption fine structure (EXAFS) spectra was performed under the consideration that the central atom of Fe is allowed to occupy octa- and tetrahedral positions, while Cr occupies only octahedral ones. Coordination number of neighboring atoms, interatomic distances and their quadratic deviation average were determined for x=1, by fitting simultaneously the EXAFS spectra of both Fe and Cr K-edges. The results of fitting the experimental spectra with theoretical standards showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO{sub 3})« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakrishnan, Girish; Wu, Qiyuan; Moon, Juhyuk
An investigation of the adsorptive property of hydrated cement particle system for sulfur dioxide (SO2) removal was conducted. In situ and ex situ experiments using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and X-ray Absorption Near Edge Spectroscopy (XANES) characterization techniques were employed to identify surface species formed during the exposure to SO2. Oxidation of SO2 to sulfate and sulfite species observed during these experiments indicated dominant reaction pathways for SO2 reaction with concrete constituents, such as calcium hydroxide, which were also moderated by adsorption on porous surfaces of crushed aggregates. The impact of variable composition of concrete on itsmore » adsorption capacity and reaction mechanisms was also proposed in this work.« less
XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots
NASA Astrophysics Data System (ADS)
Demchenko, I. N.; Chernyshova, M.; He, X.; Minikayev, R.; Syryanyy, Y.; Derkachova, A.; Derkachov, G.; Stolte, W. C.; Piskorska-Hommel, E.; Reszka, A.; Liang, H.
2013-04-01
The presented investigations aimed at development of inexpensive method for synthesized materials suitable for utilization of solar energy. This important issue was addressed by focusing, mainly, on electronic local structure studies with supporting x-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of colloidal galena nano-particles (NPs) and quantum dots (QDs) synthesized using wet chemistry under microwave irradiation. Performed x-ray absorption near edge structure (XANES) analysis revealed an evidence of quantum confinement for the sample with QDs, where the bottom of the conduction band was shifted to higher energy. The QDs were found to be passivated with oxides at the surface. Existence of sulfate/sulfite and thiosulfate species in pure PbS and QDs, respectively, was identified.
Zanzen, Ulrike; Bovenkamp-Langlois, Lisa; Klysubun, Wantana; Hormes, Josef; Prange, Alexander
2018-04-01
The antimicrobial properties of copper ions have been known for a long time. However, the exact mechanism of action of the transition metal on microorganisms has long been unclear. X-ray absorption near-edge structure (XANES) spectroscopy at the Cu K edge allows the determination of copper speciation in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa that have been treated with Cu(II) and Cu(I) solutions. The death/inactivation of the bacteria was observed using plate counting and light microscopy. The Cu K-XANES spectra of the two Gram-negative bacteria are different than those of the Gram-positive strain. The results clearly show that the Cu + -S bond contributes to the antibacterial activity of copper, as in the case of silver. The detailed evaluation of the differentiated absorption spectra shows that Cu + (not Cu 2+ ) is the dominant ion that binds to the bacteria. Because Cu + is not the most common copper ion, copper is not as effective an antibacterial agent as silver, whose common valency is actually + 1. Any reaction of copper with phosphorus from the bacteria can be excluded after the evaluation of the absorption spectra.
NASA Astrophysics Data System (ADS)
Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.
1997-02-01
Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.
NASA Astrophysics Data System (ADS)
Nonaka, T.; Okuda, C.; Seno, Y.; Nakano, H.; Koumoto, K.; Ukyo, Y.
We have applied in situ X-ray absorption fine structure (XAFS) and in situ micro-XAFS techniques to study LiNi 0.8Co 0.15Al 0.05O 2 cathode materials in Li-ion coin cells that show various levels of capacity fading: fresh cell, cycle tested cell and aging tested cell. The change in the oxidation state and local structure of Ni and Co during charge has been investigated. Ni and Co K-edge X-ray absorption near edge structure (XANES) show that the Ni oxidation state is converted from Ni 3+ to Ni 4+ upon charging, whereas the Co oxidation state hardly changes. Ni K-edge extended X-ray absorption fine structure (EXAFS) reveals that the Jahn-Teller distorted NiO 6 octahedron turns into the symmetric octahedron upon charging, which is consistent with the change in the Ni oxidation state. Ni K-edge micro-XANES show that the oxidation of Ni proceeds homogeneously in a grain of LiNi 0.8Co 0.15Al 0.05O 2 within the special resolution of ∼2 μm, and proceeds independently of the grain size. All the behaviors of Ni and Co observed in these experiments for the fresh cell remain unchanged after the capacity fade is induced by cycle tests or aging tests, which demonstrates the considerable stability of the LiNi 0.8Co 0.15Al 0.05O 2 cathode material.
Study of the Warm Dense Matter with XANES spectroscopy - Applications to planetary interiors
NASA Astrophysics Data System (ADS)
Denoeud, Adrien
With the recent discovery of many exoplanets, modelling the interior of these celestial bodies is becoming a fascinating scientific challenge. In this context, it is crucial to accurately know the equations of state and the macroscopic and microscopic physical properties of their constituent materials in the Warm Dense Matter regime (WDM). Moreover, planetary models rely almost exclusively on physical properties obtained using first principles simulations based on density functional theory (DFT) predictions. It is thus of paramount importance to validate the basic underlying mechanisms occurring for key planetary constituents (metallization, dissociation, structural modifications, phase transitions, etc....) as pressure and temperature both increase. In this work, we were interested in two materials that can be mainly found in the Earth-like planets: silica, or SiO2, as a model compound of the silicates that constitute the major part of their mantles, and iron, which is found in abundance in their cores. These two materials were compressed and brought to the WDM regime by using strong shock created by laser pulses during various experiments performed on the LULI2000 (Palaiseau, France) and the JLF (Livermore, US) laser facilities and on the LCLS XFEL (Stanford, US). In order to penetrate this dense matter and to have access to its both ionic and electronic structures, we have probed silica and iron with time-resolved X-ray Absorption Near Edge Structure (XANES). In parallel with these experiments, we performed quantum molecular dynamics simulations based on DFT at conditions representative of the region investigated experimentally so as to extract the interesting physical processes and comprehend the limits of the implemented models. In particular, these works allowed us to highlight the metallization processes of silica in temperature and the structural changes of its liquid in density, as well as to more constrain the melting curve of iron at very high pressures.
NASA Astrophysics Data System (ADS)
Danyushevsky, V. Ya.; Murzin, V. Yu.; Kuznetsov, P. S.; Shamsiev, R. S.; Katsman, E. A.; Khramov, E. V.; Zubavichus, Y. V.; Berenblyum, A. S.
2018-01-01
Results on the conversion of stearic acid to olefins over Ni-Ag/γ-Al2O3 catalysts are presented. XANES and EXAFS experiments in situ and DFT calculations were applied to reveal the structure of active sites therein. It is shown that the introduction of Ag to Ni catalysts leads to an increase in the olefin yield. After a reduction in hydrogen (350°C, 3 h) alumina-supported nanoparticles of nickel sulfides and metallic Ag are formed. The role of metal hydrides formed during the reaction is extensively discussed.
Effect of Fe-substitution on the structure and magnetism of single crystals Mn2-xFexBO4
NASA Astrophysics Data System (ADS)
Platunov, M. S.; Kazak, N. V.; Knyazev, Yu. V.; Bezmaternykh, L. N.; Moshkina, E. M.; Trigub, A. L.; Veligzhanin, A. A.; Zubavichus, Y. V.; Solovyov, L. A.; Velikanov, D. A.; Ovchinnikov, S. G.
2017-10-01
Single crystalline Mn2-xFexBO4 with x = 0.3, 0.5, 0.7 grown by the flux method have been studied by means of X-ray diffraction and X-ray absorption spectroscopy at both Mn and Fe K edges. The compounds were found to crystallize in an orthorhombic warwickite structure (sp. gr. Pnam). The lattice parameters change linearly with x thus obeying the Vegard's law. The Fe3+ substitution for Mn3+ has been deduced from the X-ray absorption near-edge structure (XANES) spectra. Two energy positions of the absorption edges have been observed in Mn K-edge XANES spectra indicating the presence of manganese in two different oxidation states. Extended X-ray absorption fine structure (EXAFS) analysis has shown the reduction of local structural distortions upon Fe substitution. The magnetization data have revealed a spin-glass transition at TSG = 11, 14 and 18 K for x = 0.3, 0.5 and 0.7, respectively.
Forensic analysis of tire rubbers based on their sulfur chemical states.
Funatsuki, Atsushi; Shiota, Kenji; Takaoka, Masaki; Tamenori, Yusuke
2015-05-01
The chemical states of sulfur in 11 tires were analyzed using X-ray absorption near-edge structure (XANES) in order to discriminate between various tire rubbers. All tires had peaks around 2471.5 and 2480.5eV, and the shapes and heights of these peaks differed among tires, suggesting that the sulfur chemical state could be used for discrimination between tire rubbers. Based on t-tests on the results of XANES, 43 of 55 combinations were different at a significance level of 5%. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong
2016-01-01
Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.
Atomistic simulation and XAS investigation of Mn induced defects in Bi{sub 12}TiO{sub 20}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezende, Marcos V dos S.; Santos, Denise J.; Jackson, Robert A.
2016-06-15
This work reports an investigation of the valence and site occupancy of Mn dopants in Bi{sub 12}TiO{sub 20} (BTO: Mn) host using X-ray Absorption (XAS) and atomistic simulation techniques based on energy minimisation. X-ray Absorption Near Edge Structure (XANES) at the Mn K-edges gave typical results for Mn ions with mixed valences of 3+ and 4+. Extended X-ray Absorption Fine Structure (EXAFS) results indicated that Mn ions are probably substituted at Ti sites. Atomistic simulation was performed assuming the incorporation of Mn{sup 2+}, Mn{sup 3+} and Mn{sup 4+} ions at either Bi{sup 3+} or Ti{sup 4+} sites, and the resultsmore » were compared to XANES and EXAFS measurements. Electrical conductivity for pure and doped samples was used to evaluate the consistency of the proposed model. - Graphical abstract: The structure of Bi{sub 12}TiO{sub 20} (BTO). Display Omitted - Highlights: • Pure and Mn-doped Bi{sub 12}TiO{sub 20} samples were studied by experimental techniques combined with atomistic simulation. • Good agreement between experimental and simulation results was obtained. • XANES results suggest a mixture of 3+ and 4+ valences for Mn, occupying the Ti4+ site in both cases. • Charge compensation by holes is most energetically favoured, explaining the enhancement observed in AC dark conductivity.« less
Chuang, C.-H.; Wang, Y.-F.; Shao, Y.-C.; Yeh, Y.-C.; Wang, D.-Y.; Chen, C.-W.; Chiou, J. W.; Ray, Sekhar C.; Pong, W. F.; Zhang, L.; Zhu, J. F.; Guo, J. H.
2014-01-01
Electronic structures of graphene oxide (GO) and hydro-thermally reduced graphene oxides (rGOs) processed at low temperatures (120–180°C) were studied using X-ray absorption near-edge structure (XANES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). C K-edge XANES spectra of rGOs reveal that thermal reduction restores C = C sp2 bonds and removes some of the oxygen and hydroxyl groups of GO, which initiates the evolution of carbonaceous species. The combination of C K-edge XANES and Kα XES spectra shows that the overlapping π and π* orbitals in rGOs and GO are similar to that of highly ordered pyrolytic graphite (HOPG), which has no band-gap. C Kα RIXS spectra provide evidence that thermal reduction changes the density of states (DOSs) that is generated in the π-region and/or in the gap between the π and π* levels of the GO and rGOs. Two-dimensional C Kα RIXS mapping of the heavy reduction of rGOs further confirms that the residual oxygen and/or oxygen-containing functional groups modify the π and σ features, which are dispersed by the photon excitation energy. The dispersion behavior near the K point is approximately linear and differs from the parabolic-like dispersion observed in HOPG. PMID:24717290
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vjunov, Aleksei; Wang, Meng; Govind, Niranjan
We report the structural changes induced by Brønsted acidic site deprotonation in a zeolite with MFI structure as a function of temperature up to 430°C using in situ Al K-edge X-ray absorption fine structure spectroscopy (XAFS). At ambient conditions, the protons are present as hydrated hydronium ions (H3O+(H2O)n) that are ion-paired to the anionic, Al tetrahedral (T) site. At elevated temperatures, loss of water molecules hydrating the hydronium ions leads to an unstable free hydronium ion that disso-ciates to form the hydroxylated T-site. The formation of this (-O3)-Al-(OH-) species leads to the elongation of one of the four Al-O bondsmore » and causes significant distortion of the tetrahedral symmetry about the Al atom. This distortion leads to the appearance of new pre-edge features in the Al K-edge X-ray absorption near edge structure (XANES) spectra. The pre-edge peak assignment is confirmed by time-dependent density functional theory calculation of the XANES spectrum. The XANES spectra are also sensitive to solutes or solvent that are in proximity to the T-site. A second structural transition occurs at about the same temperature, namely the conversion of a minor fraction of extra-framework octahedral Al present in the sample at ambient conditions to a tetrahedral species through the de-coordination of H2O-ligands. Both IR spectroscopy and thermogravimetric analysis (TGA) are further used to confirm the overall chemical transformation of the T-site.« less
Feng, Y.; Alonso-Mori, R.; Barends, T. R. M.; ...
2015-04-10
Multiplexing of the Linac Coherent Light Source beam was demonstrated for hard X-rays by spectral division using a near-perfect diamond thin-crystal monochromator operating in the Bragg geometry. The wavefront and coherence properties of both the reflected and transmitted beams were well preserved, thus allowing simultaneous measurements at two separate instruments. In this report, the structure determination of a prototypical protein was performed using serial femtosecond crystallography simultaneously with a femtosecond time-resolved XANES studies of photoexcited spin transition dynamics in an iron spin-crossover system. The results of both experiments using the multiplexed beams are similar to those obtained separately, using amore » dedicated beam, with no significant differences in quality.« less
NASA Astrophysics Data System (ADS)
Shimada, Hiroyuki; Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji
2015-05-01
X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5'-monophosphate (CMP), 2'-deoxythymidine 5'-monophosphate (dTMP), and uridine 5'-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, Hiroyuki, E-mail: hshimada@cc.tuat.ac.jp; Minami, Hirotake; Okuizumi, Naoto
2015-05-07
X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5′-monophosphate (CMP), 2′-deoxythymidine 5′-monophosphate (dTMP), and uridine 5′-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations.more » This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.« less
4d Electronic structure analysis of ruthenium in the perovskite oxides by Ru K- and L-edge XAS.
Kim, J Y; Hwang, S H; Kim, S J; Demazeau, G; Choy, J H; Shimada, H
2001-03-01
The 4d electronic structure of ruthenium in the perovskite oxides, La2MRuIVO6 (M = Zn, Mg, and Li) and Ba2YRuVO6, has been investigated by the Ru K-and L-edge XANES and EXAFS analyses. Such X-ray absorption spectroscopic results clarify that the RuIV (d4) and RuV (d3) ions are stabilized in nearly regular Oh site. Comparing the Ru L-edge XANES spectra of perovskites containing isovalent ruthenium, it has been found that the t2g state is mainly influenced by A site cation, whereas the eg is mainly affected by neighboring B site cation. The experimental EXAFS spectra in the range of R < or = approximately 4.5 A are well reproduced by ab-initio calculation based on crystallographic data, which supports the long-range structure presented by Rietveld refinement.
XANES analysis of dried and calcined bones.
Rajendran, Jayapradhi; Gialanella, Stefano; Aswath, Pranesh B
2013-10-01
The structure of dried and calcined bones from chicken, bovine, deer, pig, sheep and chamois was examined using X-ray Absorption Near Edge Structure (XANES) spectroscopy. The oxygen K-edge absorption edge indicates that the surface of dried bone has a larger proportion of carbonate than the interior that is made up of phosphates. The phosphorus L and K edge clearly indicate that pyrophosphates, α-tricalcium phosphate (α-TCP) and hydrogen phosphates of Ca do not exist in either the dried bone or calcined bone and phosphorus exists as either β-tricalcium phosphate (β-TCP) or hydroxyapatite, both in the dried and calcined conditions. The Ca K-edge analysis indicates that β-TCP is the likely form of phosphate in both the dried and calcined conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
Brinza, Loredana; Schofield, Paul F.; Hodson, Mark E.; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W.
2014-01-01
The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced. PMID:24365942
NASA Astrophysics Data System (ADS)
Bao, Liang-Man; Zhang, Gui-Lin; Zhang, Yuan-Xim; Li, Yan; Lin, Jun; Liu, Wei; Cao, Qing-Chen; Zhao, Yi-Dong; Ma, Chen-Yan; Han, Yong
2009-11-01
The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The Sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO2-4. It can monitor the sulfur pollution in atmosphere.
Speciation and Elemental Mapping of Metal Containing Aerosols
NASA Astrophysics Data System (ADS)
Fraund, M. W.; Moffet, R.; Harder, T.; Williams, G.; Chen-Wiegart, Y. C. K.; Laskin, A.; Gilles, M. K.; Schoonen, M. A.; Thieme, J.
2017-12-01
Transition metals play a key roles in biogeochemical processes and health effects of aerosols. The Submicron Resolution X-ray (SRX) beamline at the second National Synchrotron Light Source (NSLS-II) can be used to obtain spatially resolved elemental composition using X-ray fluorescence (XRF) as well as element specific molecular information through X-ray absorption near edge structure (XANES) spectroscopy. Here, XANES spectroscopy was used to identify the oxidation state of iron-rich particles collected from the Cape Hedo Observatory on the island of Okinawa, Japan which is subject to aerosols from both biogenic (Gobi desert) and anthropogenic sources (e.g. Beijing and Shanghai). This data was compared with standards to help classify the minerology and source of these aerosol particles with regards to their potential solubility and bioavailability. In another application of the XRF/XANES measurements from NSLS-II, Pb rich particles from Mexico City were probed for distribution and speciation of Pb. Prior study has indicated that elevated concentrations of Pb occur in an industrialized section of northern Mexico City. It has been established that Pb and Zn are internally mixed in atmospheric aerosol and that Zn primarily exists as ZnCl2 and Zn(NO3)2. Based on these observations, it is hypothesized that Pb also exists as PbCl2 and Pb(NO3)2. In this study it is shown that X-ray absorption near edge structure (XANES) spectroscopy at the Pb L-edge supports Pb being present as PbCl2 and Pb(NO3)2. Submicron resolution X-ray fluorescence mapping is also used to provide complimentary information on the collocation of other high-Z elements.
Bugaev, Lusegen A; Bokhoven, Jeroen A van; Khrapko, Valerii V
2009-04-09
Experimental Si K edge X-ray absorption near-edge fine structure (XANES) of zeolite faujasite, mordenite, and beta are interpreted by means of the FEFF8 code, replacing the theoretical atomic background mu(0) by a background that was extracted from an experimental spectrum. To some extent, this diminished the effect of the inaccuracy introduced by the MT potential and accounted for the intrinsic loss of photoelectrons. The agreement of the theoretical and experimental spectra at energies above the white lines enabled us to identify structural distortion around silicon, which occurs with increasing aluminum content. The Si K edge XANES spectra are very sensitive to slight distortions in the silicon coordination. Placing an aluminum atom on a nearest neighboring T site causes a distortion in the silicon tetrahedron, shortening one of the silicon-oxygen bonds relative to the other three.
279 - Xanes Studies on UV-Irradiated Interstellar Ice Analogs: A Comparison to STARDUST Samples
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.; Cody, George D.; Kilcoyne, A. L. David; Nuevo, Michel; Sandford, Scott A.; Stroud, Rhonda M.; DeGregorio, Bradley T.
2010-01-01
We present C-, N-, and O-XANES (X-ray Absorption Near-Edge Spectroscopy) results of organic residues produced in the laboratory from the UV irradiation of astrophysical ice analogs containing H20, CO, CH30H, NH31 in order to mimic processes that may occur in cold icy bodies of the outer Solar System, particularly in comets, Such analyses showed that laboratory-formed organic residues mainly consist of a solid phase and an oily phase. C-XANES analysis of the solid phase suggests a rich distribution of organic functionalities, among which carbonyl groups, C=C bonds, and alcohols are present. Results from N-XANES indicate the possible presence of amide, amine, and nitrile groups, The O-XANES spectra confirmed the a-bearing groups, These results are compared with the XANES spectra obtained from STARDUST cometary samples,
Shakeri Yekta, Sepehr; Gustavsson, Jenny; Svensson, Bo H; Skyllberg, Ulf
2012-01-30
The effect of sequential extraction of trace metals on sulfur (S) speciation in anoxic sludge samples from two lab-scale biogas reactors augmented with Fe was investigated. Analyses of sulfur K-edge X-ray absorption near edge structure (S XANES) spectroscopy and acid volatile sulfide (AVS) were conducted on the residues from each step of the sequential extraction. The S speciation in sludge samples after AVS analysis was also determined by S XANES. Sulfur was mainly present as FeS (≈ 60% of total S) and reduced organic S (≈ 30% of total S), such as organic sulfide and thiol groups, in the anoxic solid phase. Sulfur XANES and AVS analyses showed that during first step of the extraction procedure (the removal of exchangeable cations), a part of the FeS fraction corresponding to 20% of total S was transformed to zero-valent S, whereas Fe was not released into the solution during this transformation. After the last extraction step (organic/sulfide fraction) a secondary Fe phase was formed. The change in chemical speciation of S and Fe occurring during sequential extraction procedure suggests indirect effects on trace metals associated to the FeS fraction that may lead to incorrect results. Furthermore, by S XANES it was verified that the AVS analysis effectively removed the FeS fraction. The present results identified critical limitations for the application of sequential extraction for trace metal speciation analysis outside the framework for which the methods were developed. Copyright © 2011 Elsevier B.V. All rights reserved.
X-ray absorption studies of chlorine valence and local environments in borosilicate waste glasses
NASA Astrophysics Data System (ADS)
McKeown, David A.; Gan, Hao; Pegg, Ian L.; Stolte, W. C.; Demchenko, I. N.
2011-01-01
Chlorine (Cl) is a constituent of certain types of nuclear wastes and its presence can affect the physical and chemical properties of silicate melts and glasses developed for the immobilization of such wastes. Cl K-edge X-ray absorption spectra (XAS) were collected and analyzed to characterize the unknown Cl environments in borosilicate waste glass formulations, ranging in Cl-content from 0.23 to 0.94 wt.%. Both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data for the glasses show trends dependent on calcium (Ca) content. Near-edge data for the Ca-rich glasses are most similar to the Cl XANES of CaCl 2, where Cl - is coordinated to three Ca atoms, while the XANES for the Ca-poor glasses are more similar to the mineral davyne, where Cl is most commonly coordinated to two Ca in one site, as well as Cl and oxygen nearest-neighbors in other sites. With increasing Ca content in the glass, Cl XANES for the glasses approach that for CaCl 2, indicating more Ca nearest-neighbors around Cl. Reliable structural information obtained from the EXAFS data for the glasses is limited, however, to Cl sbnd Cl, Cl sbnd O, and Cl sbnd Na distances; Cl sbnd Ca contributions could not be fit to the glass data, due to the narrow k-space range available for analysis. Structural models that best fit the glass EXAFS data include Cl sbnd Cl, Cl sbnd O, and Cl sbnd Na correlations, where Cl sbnd O and Cl sbnd Na distances decrease by approximately 0.16 Å as glass Ca content increases. XAS for the glasses indicates Cl - is found in multiple sites where most Cl-sites have Ca neighbors, with oxygen, and possibly, Na second-nearest neighbors. EXAFS analyses suggest that Cl sbnd Cl environments may also exist in the glasses in minor amounts. These results are generally consistent with earlier findings for silicate glasses, where Cl - was associated with Ca 2+ and Na + in network modifier sites.
Martini, A.; Lomachenko, K. A.; Pankin, I. A.; Negri, C.; Berlier, G.; Beato, P.; Falsig, H.; Bordiga, S.; Lamberti, C.
2017-01-01
The small pore Cu-CHA zeolite is attracting increasing attention as a versatile platform to design novel single-site catalysts for deNOx applications and for the direct conversion of methane to methanol. Understanding at the atomic scale how the catalyst composition influences the Cu-species formed during thermal activation is a key step to unveil the relevant composition–activity relationships. Herein, we explore by in situ XAS the impact of Cu-CHA catalyst composition on temperature-dependent Cu-speciation and reducibility. Advanced multivariate analysis of in situ XANES in combination with DFT-assisted simulation of XANES spectra and multi-component EXAFS fits as well as in situ FTIR spectroscopy of adsorbed N2 allow us to obtain unprecedented quantitative structural information on the complex dynamics during the speciation of Cu-sites inside the framework of the CHA zeolite. PMID:29147509
Borosilicate glass structure: An investigation of high resolution B K-edge XANES
NASA Astrophysics Data System (ADS)
Dong, S.; Henderson, G. S.; Galoisy, L.; Calas, G.
2009-05-01
The Alkali-borosilicate glasses in the systems Na2O-B2O3-SiO2 and K2O- B2O3-SiO2 have been prepared by melting/quenching in air and studied using synchrotron radiation B K-edge XANES to estimate the evolution of boron coordination as a function of composition. The ratio of alkali/B2O3 (R) and SiO2/B2O3 (K) in the glasses are respectively between 0.5 to 2.0 and 0.5 to 7.0. The edge features of trigonal B ([3]B) and tetrahedral B ([4]B) in B K-edge XANES spectra have been interpreted carefully from B standards such as (B2O3 and BPO4), as well as, a wide range of borate minerals. We find that the proportion of tetrahedral B in glass is increasing as a function of both R and K, similar to previous studies. Contributions of the [3]B and [4]B features to the B K-edge XANES is complex with 6-7 individual transitions contributing to the overall spectral envelope. Many of these transitions are common to both B coordination states making extraction of quantitative [4]B numbers difficult. However, we can calculate the proportion of tetrahedral B accurately by appropriate curve- fitting.
NASA Technical Reports Server (NTRS)
Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.
2014-01-01
Nickel in the extraterrestrial world is commonly found in both Fe-Ni sulfide and Fe-Ni met-al forms [1] and in the pure metal state in the interior of iron meteorites where it is not easily oxidized. Ni is also found in olivine, pyroxene and glasses and in some melts the partitioning of Ni between the olivines and glass is controlled by the amount of S in the melt [2]. Its most common valence state is Ni(2+) but Ni also occurs as Ni(0), Ni(+), and Ni(3+) and rarely as Ni(2-), Ni(1-) and Ni(4+) [3]. It's valence state in olivines is Ni(2+) in octa-hedral coordination on the M1 site and rarely on the M2 site.[4]. The chemical sensitivity of X-ray absorp-tion near-edge structure (XANES) spectroscopy is well established and can be used to determine not only va-lence states but also coordination sites [5]. We report here Ni XANES spectroscopy and elemental maps collected from 2 carbonaceous chondrites, 2 large clus-ter IDPs, 1 ureilite and 1 LL3 orginary chondrite.Using XANES it may be possible to find a common trait in the large cluster IDPs that will also be found in mete-orite samples.
Indium local geometry in In-Sb-Te thin films using XANES and DFT calculations
NASA Astrophysics Data System (ADS)
Bilovol, V.; Gil Rebaza, A. V.; Mudarra Navarro, A. M.; Errico, L.; Fontana, M.; Arcondo, B.
2017-12-01
In-Sb-Te when is a thin film presents a huge difference in its electrical resistivity when transform from the amorphous (insulating) to the crystalline (conducting) phase. This property made this system one of the main phase-change materials used in the data storage industry. The change in the electrical conductivity is probably associated to a change in the bonding geometry of some of its constituents. To explore this point, we present in this work an study of the bonding geometry of In atoms in In-Sb-Te films by means of In K-edge X-ray absorption near edge structure (XANES) spectroscopy using synchrotron radiation in both as deposited (amorphous) and crystalline thin films obtained as a result of resistance (R) vs temperature (T) measurements. Comparison of the XANES spectra obtained for ternary amorphous films and binary crystalline reference films suggests that in amorphous films the bonding geometry of In atoms is tetrahedral-like. After the thermal annealing has been carried out the differences in the XANES spectra of the as deposited and the annealed films indicate that the bonding geometry of In atoms changes. Based on X-ray diffraction results and ab initio calculations in the framework of the Density Functional Theory (DFT) we show that the new coordination geometry is associated with a tendency of In atoms towards octahedral-like.
Vlachos, Dimitrios; Craven, Alan J; McComb, David W
2005-03-01
The effects of specimen charging on X-ray absorption spectroscopy using total electron yield have been investigated using powder samples of zirconia stabilized by a range of oxides. The stabilized zirconia powder was mixed with graphite to minimize the charging but significant modifications of the intensities of features in the X-ray absorption near-edge fine structure (XANES) still occurred. The time dependence of the charging was measured experimentally using a time scan, and an algorithm was developed to use this measured time dependence to correct the effects of the charging. The algorithm assumes that the system approaches the equilibrium state by an exponential decay. The corrected XANES show improved agreement with the electron energy-loss near-edge fine structure obtained from the same samples.
Fate of zinc in an electroplating sludge during electrokinetic treatments.
Liu, Shou-Heng; Wang, H Paul
2008-08-01
Chemical structure of zinc in the electrokinetic treatments of an electroplating sludge has been studied by in situ extended X-ray absorption fine structural (EXAFS) and X-ray absorption near edge structural (XANES) spectroscopies in the present work. The least-square fitted XANES spectra indicate that the main zinc compounds in the sludge were ZnCO(3) (75%), ZnOSiO(2) (17%) and Zn(OH)(2) (7%). Zinc in the sludge possessed a Zn-O bond distance of 2.07 A with a coordination number (CN) of 5. In the second shells, the bond distance of Zn-(O)-Si was 3.05 A (CN=2). An increase of Zn-(O)-Si (0.05 A) with a decrease of its CN (from 5 to <1) was found in the early stage of the electrokinetic treatment. Prolong the electrokinetic treatment time to 180 min, about 34% of Zn(II) was dissolved into the aqueous phase and about 68% of Zn(II) in the sludge (or 23% of total zinc) was migrated to the cathode under the electric field (5 V cm(-1)). The dissolution and electromigration rates of Zn(II) in the sludge were 1.0 and 0.6 mmol h(-1)g(-1) sludge, respectively during the electrokinetic treatment. This work also exemplifies the utilization of in situ EXAFS and XANES for revealing speciation and possible reaction pathways during the course of zinc recycling from the sludge by electrokinetic treatments.
NASA Astrophysics Data System (ADS)
Janots, Emilie; Bernier, Felix; Brunet, Fabrice; Muñoz, Manuel; Trcera, Nicolas; Berger, Alfons; Lanson, Martine
2015-03-01
The distribution of trivalent and tetravalent cerium, Ce(III) and Ce(IV) respectively, in a lateritic profile from Madagascar, has been characterized by X-ray-absorption near-edge structure (XANES) spectroscopy at the Ce LIII-edge on the LUCIA beamline (SOLEIL synchrotron, France). XANES spectra were acquired on bulk-rock samples as well as on specific lateritic minerals or polymineral zones (in-situ measurements) of the tonalite bedrock and the three overlying weathered horizons (C-, B- and A-horizons). Geochemically, the bedrock, and the A- and C-horizons show similar rare earth element content (REE = 363-405 mg/kg). They also display the same positive Ce-anomaly (CeCN/Ce∗ = 1.12-1.45), which is therefore likely to be inherited from the bedrock. In the B-horizon, the higher REE content (REE = 2194 mg/kg) and the larger Ce-anomaly (CeCN/Ce∗ = 4.26) are consistent with an accumulation zone caused by the evaporation of groundwater during the dry season. There is a good agreement between the Ce(III)/Cetotal ratio (XCe(III)) deduced from the positive Ce-anomaly (bulk-rock geochemical data) and that derived from XANES spectroscopy on the same bulk-rock samples (BR-XCe(III)-XANES) in the bedrock, and the C- and B-horizons. In the A-horizon, XANES measurements on bulk rock and minerals revealed a higher BR-XCe(III)-XANES (up to 100%) compared to the XCe(III) deduced from geochemical data (XCe(III) = 79%). The preservation of a positive Ce-anomaly in the A-horizon suggests that the Ce mobilization and redistribution during weathering occurred with no significant Ce fractionation from other trivalent REE. Remarkably, the only investigated sample where cerianite is observed belongs to the B-horizon. Within this horizon, Ce oxidation state varies depending on the microstructural position (porosity, cracks, clay-rich groundmass). The highest Ce(IV) concentrations are measured in cerianite (and aluminophosphates) localized in pores at the vicinity of Mn-rich domains (XCe(III)-XANES = 30-51%). Therefore, Ce fractionation from other REE is attributed to a Ce oxidation and precipitation potentially assisted by oxyhydroxide scavenging. In the C-horizon, Ce(III) and Ce(IV) are mainly distributed in REE-minerals of the rhabdophane group found in pores and cracks. The similarity between the Ce(III) proportion of rhabdophane grains (XCe(III)-XANES = 74-89%) with that of the bedrock (BR-XCe(III)-XANES = 79%) suggests no significant fractionation of Ce(III) and Ce(IV) between solution and mineral during the successive stages of primary REE-mineral alteration, transport in solution and secondary precipitation in the incipient stages of weathering. Overall, our novel spectroscopic approach shows that Ce is not necessarily oxidized nor fractionated from other REE during weathering in lateritic conditions. This implies that like Ce(III), Ce(IV) can be mobilized in aqueous fluids during weathering, possibly thanks to complexation with organic molecules, and can precipitate together with Ce(III) in secondary REE-bearing minerals. The corollary is that (paleo)redox reconstructions in soils and/or sediments based on Ce-anomaly in weathered rocks or minerals must be interpreted with caution.
Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei
2016-01-01
Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water. PMID:27095387
NASA Astrophysics Data System (ADS)
Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei
2016-04-01
Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water.
Visser, Hendrik; Anxolabéhère-Mallart, Elodie; Bergmann, Uwe; Glatzel, Pieter; Robblee, John H.; Cramer, Stephen P.; Girerd, Jean-Jacques; Sauer, Kenneth; Klein, Melvin P.; Yachandra, Vittal K.
2014-01-01
Two structurally homologous Mn compounds in different oxidation states were studied to investigate the relative influence of oxidation state and ligand environment on Mn K-edge X-ray absorption near-edge structure (XANES) and Mn Kβ X-ray emission spectroscopy (Kβ XES). The two manganese compounds are the di-μ-oxo compound [L′2MnIIIO2MnIVL′2](ClO4)3, where L′ is 1,10-phenanthroline (Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623–6630) and the linear mono-μ-oxo compound [LMnIIIOMnIIIL](ClO4)2, where L− is the monoanionic N,N-bis(2-pyridylmethyl)-N′-salicylidene-1,2-diaminoethane ligand (Horner, O.; Anxolabéhère-Mallart, E.; Charlot, M. F.; Tchertanov, L.; Guilhem, J.; Mattioli, T. A.; Boussac, A.; Girerd, J.-J. Inorg. Chem. 1999, 38, 1222–1232). Preparative bulk electrolysis in acetonitrile was used to obtain higher oxidation states of the compounds: the MnIVMnIV species for the di-μ-oxo compound and the MnIIIMnIV and MnIVMnIV species for the mono-μ-oxo compound. IR, UV/vis, EPR, and EXAFS spectra were used to determine the purity and integrity of the various sample solutions. The Mn K-edge XANES spectra shift to higher energy upon oxidation when the ligand environment remains similar. However, shifts in energy are also observed when only the ligand environment is altered. This is achieved by comparing the di-μ-oxo and linear mono-μ-oxo Mn–Mn moieties in equivalent oxidation states, which represent major structural changes. The magnitude of an energy shift due to major changes in ligand environment can be as large as that of an oxidation-state change. Therefore, care must be exercised when correlating the Mn K-edge energies to manganese oxidation states without taking into account the nature of the ligand environment and the overall structure of the compound. In contrast to Mn K-edge XANES, Kβ XES spectra show less dependence on ligand environment. The Kβ1,3 peak energies are comparable for the di-μ-oxo and mono-μ-oxo compounds in equivalent oxidation states. The energy shifts observed due to oxidation are also similar for the two different compounds. The study of the different behavior of the XANES pre-edge and main-edge features in conjunction with Kβ XES provides significant information about the oxidation state and character of the ligand environment of manganese atoms. PMID:11459481
The effect of nitrogen incorporation on the bonding structure of hydrogenated carbon nitride films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camero, M.; Buijnsters, J. G.; Gomez-Aleixandre, C.
2007-03-15
This work describes the composition and bonding structure of hydrogenated carbon nitride (a-CN{sub x}:H) films synthesized by electron cyclotron resonance chemical vapor deposition using as precursor gases argon, methane, and nitrogen. The composition of the films was derived from Rutherford backscattering and elastic recoil detection analysis and the bonding structure was examined by infrared (IR) spectroscopy and x-ray absorption near edge spectroscopy (XANES). By varying the nitrogen to methane ratio in the applied gas mixture, polymeric a-CN{sub x}:H films with N/C contents varying from 0.06 to 0.49 were obtained. Remarkably, the H content of the films ({approx}40 at. %) wasmore » rather unaffected by the nitrogenation process. The different bonding states as detected in the measured XANES C(1s) and N(1s) spectra have been correlated with those of a large number of reference samples. The XANES and IR spectroscopy results indicate that N atoms are efficiently incorporated into the amorphous carbon network and can be found in different bonding environments, such as pyridinelike, graphitelike, nitrilelike, and amino groups. The nitrogenation of the films results in the formation of N-H bonding environments at the cost of C-H structures. Also, the insertion of N induces a higher fraction of double bonds in the structure at the expense of the linear polymerlike chains, hence resulting in a more cross-linked solid. The formation of double bonds takes place through complex C=N structures and not by formation of graphitic aromatic rings. Also, the mechanical and tribological properties (hardness, friction, and wear) of the films have been studied as a function of the nitrogen content. Despite the major modifications in the bonding structure with nitrogen uptake, no significant changes in these properties are observed.« less
Determination of oxidation state of iron in normal and pathologically altered human aortic valves
NASA Astrophysics Data System (ADS)
Czapla-Masztafiak, J.; Lis, G. J.; Gajda, M.; Jasek, E.; Czubek, U.; Bolechała, F.; Borca, C.; Kwiatek, W. M.
2015-12-01
In order to investigate changes in chemical state of iron in normal and pathologically altered human aortic valves X-ray absorption spectroscopy was applied. Since Fe is suspected to play detrimental role in aortic valve stenosis pathogenesis the oxidation state of this element has been determined. The experimental material consisted of 10 μm sections of valves excised during routine surgery and from autopsies. The experiment was performed at the MicroXAS beamline of the SLS synchrotron facility in Villigen (Switzerland). The Fe K-edge XANES spectra obtained from tissue samples were carefully analyzed and compared with the spectra of reference compounds containing iron in various chemical structures. The analysis of absorption edge position and shape of the spectra revealed that both chemical forms of iron are presented in valve tissue but Fe3+ is the predominant form. Small shift of the absorption edge toward higher energy in the spectra from stenotic valve samples indicates higher content of the Fe3+ form in pathological tissue. Such a phenomenon suggests the role of Fenton reaction and reactive oxygen species in the etiology of aortic valve stenosis. The comparison of pre-edge regions of XANES spectra for control and stenotic valve tissue confirmed no differences in local symmetry or spin state of iron in analyzed samples.
Direct Determination of the Intracellular Oxidation State of Plutonium
Gorman-Lewis, Drew; Aryal, Baikuntha P.; Paunesku, Tatjana; Vogt, Stefan; Lai, Barry; Woloschak, Gayle E.; Jensen, Mark P.
2013-01-01
Microprobe X-ray absorption near edge structure (μ-XANES) measurements were used to determine directly, for the first time, the oxidation state of intracellular plutonium in individual 0.1 μm2 areas within single rat pheochromocytoma cells (PC12). The living cells were incubated in vitro for 3 hours in the presence of Pu added to the media in different oxidation states (Pu(III), Pu(IV), and Pu(VI)) and in different chemical forms. Regardless of the initial oxidation state or chemical form of Pu presented to the cells, the XANES spectra of the intracellular Pu deposits was always consistent with tetravalent Pu even though the intracellular milieu is generally reducing. PMID:21755934
DOE Office of Scientific and Technical Information (OSTI.GOV)
Just, J.; Lützenkirchen-Hecht, D.; Müller, O.
The depth distribution of secondary phases in the solar cell absorber material Cu 2ZnSnS 4 (CZTS) is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES) analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.
Just, J.; Lützenkirchen-Hecht, D.; Müller, O.; ...
2017-12-12
The depth distribution of secondary phases in the solar cell absorber material Cu 2ZnSnS 4 (CZTS) is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES) analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.
Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes.
Sun, Chia-Liang; Pao, Chih-Wen; Tsai, Huang-Ming; Chiou, Jau-Wern; Ray, Sekhar C; Wang, Houng-Wei; Hayashi, Michitoshi; Chen, Li-Chyong; Lin, Hong-Ji; Lee, Jyh-Fu; Chang, Li; Tsai, Min-Hsiung; Chen, Kuei-Hsien; Pong, Way-Faung
2013-08-07
The atomistic nucleation sites of Pt nanoparticles (Pt NPs) on N-doped carbon nanotubes (N-CNTs) were investigated using C and N K-edge and Pt L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. Transmission electron microscopy and XANES/EXAFS results revealed that the self-organized Pt NPs on N-CNTs are uniformly distributed because of the relatively high binding energies of the adsorbed Pt atoms at the imperfect sites. During the atomistic nucleation process of Pt NPs on N-CNTs, stable Pt-C and Pt-N bonds are presumably formed, and charge transfer occurs at the surface/interface of the N-CNTs. The findings in this study were consistent with density functional theory calculations performed using cluster models for the undoped, substitutional-N-doped and pyridine-like-N-doped CNTs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McPeak, Kevin M.; Becker, Matthew A.; Britton, Nathan G.
2010-12-03
Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. Here we report the first use of in situ X-ray absorption spectroscopy during CBD, enabling detailed investigation of both reaction mechanisms and kinetics of ZnO nanowire growth from zinc nitrate and hexamethylenetetramine (HMTA) precursors. Time-resolved X-ray absorption near-edge structure (XANES) spectra were used to quantify Zn(II) speciation in both solution and solid phases. ZnO crystallizes directly from [Zn(H{sub 2}O){sub 6}]{sup 2+} without long-lived intermediates. Using ZnO nanowire deposition as an example,more » this study establishes in situ XANES spectroscopy as an excellent quantitative tool to understand CBD of nanomaterials.« less
Zanzen, Ulrike; Krishna, Katla Sai; Hormes, Josef
2013-01-01
Silver ions are widely used as antibacterial agents, but the basic molecular mechanism of this effect is still poorly understood. X-ray absorption near-edge structure (XANES) spectroscopy at the Ag LIII, S K, and P K edges reveals the chemical forms of silver in Staphylococcus aureus and Escherichia coli (Ag+ treated). The Ag LIII-edge XANES spectra of the bacteria are all slightly different and very different from the spectra of silver ions (silver nitrate and silver acetate), which confirms that a reaction occurs. Death or inactivation of bacteria was observed by plate counting and light microscopy. Silver bonding to sulfhydryl groups (Ag-S) in cysteine and Ag-N or Ag-O bonding in histidine, alanine, and dl-aspartic acid was detected by using synthesized silver-amino acids. Significantly lower silver-cysteine content, coupled with higher silver-histidine content, in Gram-positive S. aureus and Listeria monocytogenes cells indicates that the peptidoglycan multilayer could be buffering the biocidal effect of silver on Gram-positive bacteria, at least in part. Bonding of silver to phosphate groups was not detected. Interaction with DNA or proteins can occur through Ag-N bonding. The formation of silver-cysteine can be confirmed for both bacterial cell types, which supports the hypothesis that enzyme-catalyzed reactions and the electron transport chain within the cell are disrupted. PMID:23934494
The Development of Molybdenum Speciation as a Paleoredox Tool
NASA Astrophysics Data System (ADS)
Rodley, J.; Peacock, C.; Mosselmans, J. F. W.; Poulton, S.
2017-12-01
The redox state of the oceans has changed throughout geological time and an understanding of these changes is essential to elucidate links between ocean chemistry, climate and life. Due to its abundance in seawater and redox-sensitive nature, molybdenum has enormous potential as a paleoredox proxy. Although a significant amount of research has been done on molybdenum in ancient and modern sediments in terms of its concentrations and isotopic ratios there remains a limited understanding of the drawdown mechanisms of molybdenum under different redox conditions restricting its use in identifying a range of redox states. In order to address these uncertainties, we have developed a novel sequential extraction technique to examine molybdenum concentrations in six sediment fractions from modern samples that represent oxic, nitrogenous, ferruginous and euxinic environments. In addition we use µ-XRF and µ-XANES synchrotron spectroscopy to examine the molybdenum speciation within these fractions and environments. To interpret our µ-XANES data we have developed an extensive library of molybdenum XANES standards that represent molybdenum sequestration by the sediment fractions identified from the sequential extraction. To further verify our synchrotron results we developed a series of µ-XANES micro-column experiments to examine preferential uptake pathways of molybdenum to different sediment phases under a euxinic water column. The initial data from both the sequential extraction and µ-XANES methods indicate that molybdenum is not limited to a single burial pathway in any of the redox environments. We find that each of the redox environments can be characterised by a limited set of molybdenum phase associations, with molybdenum adsorption to pyrite likely the dominant burial pathway. These findings agree with existing research for molybdenum speciation in euxinic environments suggesting that both pyrite and sulphidised organic matter act as important molybdenum sinks. Our new research shows that pyrite is also an important sink for molybdenum in other redox environments.
Structural Transformations in High-Capacity Li 2 Cu 0.5 Ni 0.5 O 2 Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruther, Rose E.; Samuthira Pandian, Amaresh; Yan, Pengfei
2017-03-21
Cathode materials that can cycle > 1 Li+ per transition metal are of substantial interest to increase the overall energy density of lithium-ion batteries. Li2Cu0.5Ni0.5O2 has a very high theoretical capacity of ~ 500 mAh/g assuming both Li+ are cycled reversibly. The Cu2+/3+ and Ni2+/3+/4+ redox couples are also at high voltage, which could further boost the energy density of this system. Despite such promise, Li2Cu0.5Ni0.5O2 undergoes irreversible phase changes during charge (delithiation) that result in large first-cycle irreversible loss and poor long-term cycling stability. Oxygen is evolved before the Cu2+/3+ or Ni3+/4+ transitions are accessed. In this contribution, XRD,more » TEM, and TXM-XANES are used to follow the chemical and structural changes that occur in Li2Cu0.5Ni0.5O2 during electrochemical cycling. Li2Cu0.5Ni0.5O2 is a solid solution of orthorhombic Li2CuO2 and Li2NiO2, but the structural changes more closely mimic the Li2NiO2 endmember. Li2Cu0.5Ni0.5O2 loses long-range order during charge, but TEM analysis provides clear evidence for particle exfoliation and the transformation from orthorhombic to a partially layered structure. Linear combination fitting and principal component analysis of TXM-XANES are used to map the different phases that emerge during cycling ex situ and in situ. Significant changes in the XANES at the Cu and Ni K-edges correlate with the onset of oxygen evolution.« less
NASA Astrophysics Data System (ADS)
Gehlen, M.; Beck, L.; Calas, G.; Flank, A.-M.; Van Bennekom, A. J.; Van Beusekom, J. E. E.
2002-05-01
We used X-ray absorption spectroscopy at the Al K-edge to investigate the atomic structure of biogenic silica and to assess the effect of Al on its crystal chemistry. Our study provides the first direct evidence for a structural association of Al and Si in biogenic silica. In samples of cultured diatoms, Al is present exclusively in fourfold coordination. The location and relative intensity of X-ray absorption near-edge structure (XANES) features suggests the structural insertion of tetrahedral Al inside the silica framework synthesized by the organism. In diatom samples collected in the marine environment, Al is present in mixed six- and fourfold coordination. The relative intensity of XANES structures indicates the coexistence of structural Al with a clay component, which most likely reflects sample contamination by adhering mineral particles. Extended X-ray absorption fine structure spectroscopy has been used to get Al-O distances in biogenic silica of cultured diatoms, confirming a tetrahedral coordination. Because of its effect on solubility and reaction kinetics of biogenic silica, the structural association between Al and biogenic silica at the stage of biosynthesis has consequences for the use of sedimentary biogenic silica as an indicator of past environmental conditions.
Synchrotron applications in wood preservation and deterioration
Barbara L. Illman
2003-01-01
Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...
NASA Astrophysics Data System (ADS)
Miyano, Yumiko; Yoshiasa, Akira; Tobase, Tsubasa; Isobe, Hiroshi; Hongu, Hidetomo; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa
2016-05-01
Ni, Cr, Fe, Ca and Mn K-edge XANES and EXAFS spectra were measured on K-T boundary clays from Stevns Klint in Denmark. According to XANES spectra and EXAFS analyses, the local structures of Ni, Cr and Fe in K-T boundary clays is similar to Ni(OH)2, Cr2O3 and FeOOH, respectively. It is assumed that the Ni, Cr and Fe elements in impact related glasses is changing into stable hydrate and oxide by the weathering and diagenesis at the surface of the Earth. Ca in K-T boundary clays maintains the diopside-like structure. Local structure of Ca in K-T clays seems to keep information on the condition at meteorite impact. Mn has a local structure like MnCO3 with divalent state. It is assumed that the origin on low abundant of Mn in the Fe-group element in K-T clays was the consumption by life activity and the diffusion to other parts.
NASA Astrophysics Data System (ADS)
Prüßmann, T.; Denecke, M. A.; Geist, A.; Rothe, J.; Lindqvist-Reis, P.; Löble, M.; Breher, F.; Batchelor, D. R.; Apostolidis, C.; Walter, O.; Caliebe, W.; Kvashnina, K.; Jorissen, K.; Kas, J. J.; Rehr, J. J.; Vitova, T.
2013-04-01
N-donor ligands such as n-Pr-BTP (2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine) studied here preferentially bind An(III) over Ln(III) in liquid-liquid separation of trivalent ac-tinides from spent nuclear fuel. The chemical and physical processes responsible for this selectivity are not yet well understood. We present systematic comparative near-edge X-ray absorption structure (XANES) spectroscopy investigations at the Gd L3 edge of [GdBTP3](NO3)3, [Gd(BTP)3](OTf)3, Gd(NO3)3, Gd(OTf)3 and N K edge of [Gd(BTP)3](NO3)3, Gd(NO3)3 complexes. The pre-edge absorption resonance in Gd L3 edge high-energy resolution X-ray absorption near edge structure spectra (HR-XANES) is explained as arising from 2p3/2 → 4f/5d electronic transitions by calculations with the FEFF9.5 code. Experimental evidence is found for higher electronic density on Gd in [Gd(BTP)3](NO3)3 and [Gd(BTP)3](OTf)3 compared to Gd in Gd(NO3)3 and Gd(OTf)3, and on N in [Gd(BTP)3](NO3)3 compared to n-Pr-BTP. The origin of the pre-edge structure in the N K edge XANES is explained by density functional theory (DFT) with the ORCA code. Results at the N K edge suggest a change in ligand orbital occupancies and mixing upon complexation but further work is necessary to interpret observed spectral variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitova, Tonya; Pidchenko, Ivan; Biswas, Saptarshi
The dehydration of studtite, [UO 2(2-O 2)(H 2O)2]·2H 2O, to metastudtite, [UO 2(2-O 2)(H 2O) 2], uranyl peroxide minerals that are major oxidative alteration phases of UO2 under conditions of geological storage, has been studied using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy. XPS of the U 4f region shows small but significant differences between studtite and metastudtite, with the 4f binding energy of studtite the highest reported for a uranyl mineral studied by this technique. Further information on the changes in the electronic structure was elucidated using U M4-edge High Energy Resolution XANES (HR-XANES) spectroscopy, which directly probesmore » f-orbital states. The transition from the 3d to the 5f* orbital is sensitive to variations of the U=Oaxial bond length and to changes in the bond covalency. We report evidences that the covalence in the uranyl fragment decreases upon dehydration. Photoluminescence spectroscopy at near liquid helium temperatures reveals significant spectral differences between the two materials, correlating with the X-ray spectroscopy results. A theoretical investigation has been conducted on the structures of both studtite and metastudtite and benchmarked to the HR-XANES spectra. These illustrate the sensitivity of the 3d to the 5f * transition towards U=Oaxial bond variation.« less
NASA Astrophysics Data System (ADS)
Flynn, George
Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter Chondritic, porous interplanetary dust particles (CP IDPs), the most primitive samples of extraterrestrial material available for laboratory analysis [1], are unequilibrated aggregates of mostly submicron, anhydrous grains of a diverse mineralogy. They contain organic matter not produced by parent body aqueous processing [2], some carrying H and N isotopic anomalies consistent with molecular cloud or outer Solar System material [3]. Scanning Transmission X-Ray Microscope (STXM) imaging at the C K-edge shows the individual grains in 10 micron aggregate CP IDPs are coated by a layer of carbonaceous material 100 nm thick. This structure implies a three-step formation sequence. First, individual grains condensed from the cooling nebular gas. Then complex, refractory organic molecules covered the surfaces of the grains either by deposition, formation in-situ, or a combination of both processes. Finally, the grains collided and stuck together forming the first dust-size material in the Solar System. Ultramicrotome sections, 70 to 100 nm thick were cut from several CP IDPs, embedded in elemental S to avoid exposure to C-based embedding media. X-ray Absorption Near Edge Structure (XANES) spectra were derived from image stacks obtained using a STXM. "Cluster analysis" was used to compare the C-XANES spectra from each of the pixels in an image stack and identify pixels exhibiting similar spectra. When applied to a CP IDP, cluster analysis identifies most carbonaceous grain coatings in a particle as having similar C-XANES spectra. Two processes are commonly suggested in the literature for production of organic grain coatings. The similarity in thickness and C-XANES spectra of the coatings on different minerals in the same IDP indicates the first, mineral specific catalysis, was not the process that produced these organic rims. Our results are consistent with this primitive organic matter being produced by the alternative process of condensation of C-bearing ices onto the grain surfaces and production of refractory organic matter by UV or other ionizing radiation bombardment of the ices [4]. The processes by which primitive grains aggregate to form the first dust of our Solar System are not well understood. Collision experiments indicate that bare rocky grains bounce apart at collision speeds ¡30 to 50 m/s and shatter at larger speeds [5]. However, experiments indicate grains coated with organic matter stick quite easily, even at speeds up to 5 m/s -an order of magnitude higher than the speed at which silicate grains accrete [6]. Thus the organic grain coatings we identified likely played a critical role in dust aggregation in the early Solar System. References: [1] Ishii, H. et al. Science 2009. [2] Flynn, G. J. et al. (2003) Geochim. Cosmochim. Acta, 67, 4791-4806. [3] Keller L. P. et al. GCA (2004) Geochim. Cosmochim. Acta, 68, 2577-2589. [4] Bernstein, M. P. et al. (1995) Astrophys. J., 454, 327-344. [5] Hartmann, W. K. (1978) Icarus, 33, 50-61. [6] Kudo, T. et al. (2002) Meteoritics Planet. Sci., 37, 1975-1983.
XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate.
Qiu, Muqing; Wang, Min; Zhao, Qingzhou; Hu, Baowei; Zhu, Yuling
2018-06-01
Effect of phosphate on the reduction of U(VI) on nZVI was determined by batch, XPS, XANES and EXAFS techniques. The batch experiments showed that nZVI was quite effective for the removal of uranium under the anaerobic conditions, whereas the addition of phosphate enhanced uranium removal over wide pH range. At low pH, the reduction of U(VI) to U(IV) significantly decreased with increasing phosphate concentration by XPS and XANES analysis. According to EXAFS analysis, the occurrence of UU shell at 10 mg/L phosphate and pH 4.0 was similar to that of U (IV) O 2 (s), whereas the UP and UFe shells were observed at 50 mg/L phosphate, revealing that reductive co-precipitate (U (IV) O 2 (s)) and precipitation of uranyl-phosphate were observed at low and high phosphate, respectively. The findings are crucial for the prediction of the effect of phosphate on the speciation and binding of uranium by nZVI at low pH, which is significant in controlling the mobility of U(VI) in contaminated environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
X-ray absorption studies of gamma irradiated Nd doped phosphate glass
NASA Astrophysics Data System (ADS)
Rai, V. N.; Rajput, Parasmani; Jha, S. N.; Bhattacharyya, D.
2015-06-01
This paper presents the X-ray absorption near edge structure (XANES) studies of Nd doped phosphate glasses before and after gamma irradiation. The intensity and location of LIII edge white line peak of Nd changes depending on its concentration as well as on the ratio of O/Nd in the glass matrix. The decrease in the peak intensity of white line after gamma irradiation indicates towards reduction of Nd3+ to Nd2+ in the glass matrix, which increases with an increase in the doses of gamma irradiation. Similarity in the XANES spectra of Nd doped phosphate glasses and Nd2O3 suggests that coordination geometry around Nd3+ in glass samples may be identical to that of Nd2O3.
Ganio, Monica; Pouyet, Emeline S.; Webb, Samuel M.; ...
2017-09-22
As one of the most desired and expensive artists’ materials throughout history, there has long been interest in studying natural lapis lazuli. The traditional method of extracting the blue component, lazurite, from lapis lazuli, as outlined in Cennini’s Il Libro dell’Arte, involves a lengthy purification process: (1) finely grind the rock; (2) mix with pine rosin, gum mastic, and beeswax; (3) massage in water to collect the lazurite. Repeating the process produces several grades of the pigment, typically referred to as ultramarine blue. Here, we investigate the sulfur environment within the aluminosilicate framework of lazurite during its extraction from lapismore » lazuli. The sulfur XANES fingerprint from samples taken at the different stages in Cennini’s extraction method were examined. All spectra contain a strong absorption peak at 2483 eV, attributable to sulfate present in the lazurite structure. However, intensity variations appear in the broad envelope of peaks between 2470 and 2475 eV and the pre-peak at 2469.1 eV, indicating a variation in the content of trisulfur (S 3 –˙) radicals. By studying the effect of each step of Cennini’s process, this study elucidates the changes occurring during the extraction and the variability within different grades of the precious coloring material. The increasing application of XANES to the study of artist’s materials and works of art motivated extending the research to assess the possibility of X-ray induced damage. Direct comparison of micro-focused and unfocused beam experiments suggests an increase of the S 3 –˙ radicals with prolonged exposure. Furthermore, analysis indicates that induced damage follows first-order kinetics, providing a first assessment on the acceptable amount of radiation exposure to define the optimal acquisition parameters to allow safe analyses of lapis lazuli and ultramarine pigments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganio, Monica; Pouyet, Emeline S.; Webb, Samuel M.
As one of the most desired and expensive artists’ materials throughout history, there has long been interest in studying natural lapis lazuli. The traditional method of extracting the blue component, lazurite, from lapis lazuli, as outlined in Cennini’s Il Libro dell’Arte, involves a lengthy purification process: (1) finely grind the rock; (2) mix with pine rosin, gum mastic, and beeswax; (3) massage in water to collect the lazurite. Repeating the process produces several grades of the pigment, typically referred to as ultramarine blue. Here, we investigate the sulfur environment within the aluminosilicate framework of lazurite during its extraction from lapismore » lazuli. The sulfur XANES fingerprint from samples taken at the different stages in Cennini’s extraction method were examined. All spectra contain a strong absorption peak at 2483 eV, attributable to sulfate present in the lazurite structure. However, intensity variations appear in the broad envelope of peaks between 2470 and 2475 eV and the pre-peak at 2469.1 eV, indicating a variation in the content of trisulfur (S 3 –˙) radicals. By studying the effect of each step of Cennini’s process, this study elucidates the changes occurring during the extraction and the variability within different grades of the precious coloring material. The increasing application of XANES to the study of artist’s materials and works of art motivated extending the research to assess the possibility of X-ray induced damage. Direct comparison of micro-focused and unfocused beam experiments suggests an increase of the S 3 –˙ radicals with prolonged exposure. Furthermore, analysis indicates that induced damage follows first-order kinetics, providing a first assessment on the acceptable amount of radiation exposure to define the optimal acquisition parameters to allow safe analyses of lapis lazuli and ultramarine pigments.« less
Chemical Behavior of Sulfur in Minerals and Silicate Glasses Studied Using Inner Shell Spectroscopy
NASA Astrophysics Data System (ADS)
Alonso Mori, R.; Paris, E.; Glatzel, P.; Giuli, G.; Scaillet, B.
2008-12-01
Understanding the chemical behaviour of sulfur is of fundamental importance in explaining different geological mechanisms ranging from volcano-climatic interactions to the genesis of ore deposits. Understanding how sulphur behaves is also of great economic importance in industrial activities including glass-forming processes and the treatment of vitreous waste material from refuse incineration. The chemical behaviour of sulfur in minerals and glasses has been widely studied via X-ray absorption near edge structure (XANES) spectroscopy, which probes the unoccupied density of states and thus provides information on the oxidation state and local structure of the species under study. However, the XANES spectral shape is influenced by various effects, namely the local symmetry, the ligand type, even up to high coordination spheres, and the valence electron occupation, making it difficult to systematically analyze the different spectral contributions. We use X-ray emission spectroscopy (XES) as a complementary technique to avoid some of the inherent difficulties of XANES analysis, and to extract additional information on the electronic structure. The Kb lines, close to the K-edge, directly yield the p-density of occupied valence states, giving valuable information on the local coordination. We have compared XANES and Kb XES experimental data on sulfur- bearing minerals with ab initio quantum-chemical calculations based on density functional theory (DFT), in order to visualize the molecular orbitals and to extract information about the chemical bonding in these compounds. The S Ka emission lines, which arise from 2p to 1s transitions, are expected to be mostly free from chemical bond effects except for small energy shifts that reflect the valence orbital electron population via screening effects. S Ka shifts can be readily used to determine the speciation of sulfur in silicate glasses. The electronic configuration of the sulfur atoms is obtained by calculating the effective charge around the sulfur atom based on the Mulliken population analysis generated by DFT calculations, and then successfully correlated with the observed experimental shifts. In order to check these results using a theoretical framework other than DFT, we also performed calculations using a multiple scattering approach (FEFF8.4). X-ray absorption and emission spectroscopy has been applied to three series of peralkaline rhyolitic obsidians each with different alkali/alumina ratios ((Na2O + K2O)/Al2O3). The occurrence of sulfur was accurately determined by using the energy shift of the S Ka emission lines to make a quantitative analysis. We observe that we can follow the evolution of sulfur as a function of controlled formation conditions with respect to pressure, temperature or oxygen fugacity, and determine whether it is present as sulfate or sulfide. XANES and Kb emission lines also yield detailed information on the local chemistry and structure, and thus help us to understand the geochemical role of S in these systems.
Structural transformations in high-capacity Li 2Cu 0.5Ni 0.5O 2 cathodes
Ruther, Rose E.; Pandian, Amaresh Samuthira; Yan, Pengfei; ...
2017-03-09
Cathode materials that can cycle >1 Li + per transition metal are of substantial interest for increasing the overall energy density of lithium-ion batteries. Li 2Cu 0.5Ni 0.5O 2 has a very high theoretical capacity of ~500 mAh/g assuming both Li+ ions are cycled reversibly. The Cu 2+/3+ and Ni 2+/3+/4+ redox couples are also at high voltage, which could further boost the energy density of this system. Despite such promise, Li 2Cu 0.5Ni 0.5O 2 undergoes irreversible phase changes during charge (delithiation) that result in large first-cycle irreversible loss and poor long-term cycling stability. Oxygen evolves before the Cumore » 2+/3+ or Ni 3+/4+ transitions are accessed. In this contribution, X-ray diffraction, transmission electron microscopy (TEM), and transmission X-ray microscopy combined with X-ray absorption near edge structure (TXM–XANES) are used to follow the chemical and structural changes that occur in Li 2Cu 0.5Ni 0.5O 2 during electrochemical cycling. Li 2Cu 0.5Ni 0.5O 2 is a solid solution of orthorhombic Li2CuO2 and Li2NiO2, but the structural changes more closely mimic the changes that the Li 2NiO 2 endmember undergoes. Li 2Cu 0.5Ni 0.5O 2 loses long-range order during charge, but TEM analysis provides clear evidence of particle exfoliation and the transformation from orthorhombic to a partially layered structure. Linear combination fitting and principal component analysis of TXM–XANES are used to map the different phases that emerge during cycling ex situ and in situ. Lastly, significant changes in the XANES at the Cu and Ni K-edges correlate with the onset of oxygen evolution.« less
Jacobs, Gary; Pendyala, Venkat Ramana Rao; Martinelli, Michela; ...
2017-06-06
XANES K-edge spectra of potassium promoter in precipitated Fe catalysts were acquired following activation by carburization in CO and as a function of time on-stream during the course of a Fischer–Tropsch synthesis run for a 100Fe:2K catalyst by withdrawing catalysts, sealed in wax product, for analysis. CO-activated and end-of-run spectra of the catalyst were also obtained for a 100Fe:5K catalyst. Peaks representing electronic transitions and multiple scattering were observed and resembled reference spectra for potassium carbonate or potassium formate. The shift in the multiple scattering peak to higher energy was consistent with sintering of potassium promoter during the course ofmore » the reaction test. The catalyst, however, retained its carbidic state, as demonstrated by XANES and EXAFS spectra at the iron K-edge, suggesting that sintering of potassium did not adversely affect the carburization rate, which is important for preventing iron carbides from oxidizing. This method serves as a starting point for developing better understanding of the chemical state and changes in structure occurring with alkali promoter.« less
NASA Astrophysics Data System (ADS)
Borg, A.; King, P. L.; Pianetta, P.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.; Soldatov, A. V.; della Longa, S.; Bianconi, A.
1992-10-01
The high-resolution Ca L2,3 x-ray-absorption near-edge-structure (XANES) spectrum of a Bi2Sr2CaCu2O8 single crystal has been measured by use of a magnetic-projection x-ray microscope probing a surface area of 200×200 μm2. The Ca L2,3 XANES spectrum is analyzed by performing a multiple-scattering XANES calculation in real space and comparing the results with the spectrum of CaF2. Good agreement between the calculated and experimental crystal-field splitting Δf of the Ca 3d final states is found and the splitting is shown to be smaller by 0.5 eV than in the initial state. The Ca 3d partial density of states is found to be close to the Fermi level in the initial state. The Ca-O(in plane) distance is shown to be a critical parameter associated with the shift of the Ca 3d states relative to the Fermi level; in particular, we have studied the effect of the out-of-plane dimpling mode of the in-plane oxygen atoms O(in plane) that will move the Ca 3d states on or off the Fermi level. This mode can therefore play a role in modulating the charge transfer between the two CuO2 planes separated by the Ca ions.
NASA Astrophysics Data System (ADS)
Chiou, J. W.; Chang, S. Y.; Huang, W. H.; Chen, Y. T.; Hsu, C. W.; Hu, Y. M.; Chen, J. M.; Chen, C.-H.; Kumar, K.; Guo, J.-H.
2011-03-01
X-ray absorption near-edge structure (XANES), X-ray emission spectroscopy (XES), and X-ray photoemission spectroscopy (XPS) were used to characterize the Cr secondary oxide phases in ZnO films that had been prepared using a co-sputtering method. Analysis of the Cr L3,2-edge XANES spectra reveals that the intensity of white-line features decreases subtly as the sputtering power increases, indicating that the occupation of Cr 3 d orbitals increases with Cr concentration in (Zn, Cr)O films. The O K-edge spectra show that the intensity of XANES features of (Zn, Cr)O films is lower than those of ZnO film, suggesting enhanced occupation of O 2 p-derived states through O 2 p-Cr 3 d hybridization. The XES and XPS spectra indicate that the line shapes in the valence band of (Zn, Cr)O films are quite different from those of ZnO and that the Cr 2O 3 phase dominates the spinel structure of (Zn, Cr)O films increasingly as the Cr sputtering power is increased. Over all results suggest that the non-ferromagnetic behavior of (Zn, Cr)O films can be attributed to the dominant presence of Cr 2O 3, whereas the bulk comprise phase segregations of Cr 2O 3 and/or ZnCr 2O 4, which results them the most stable TM-doped ZnO material against etching.
Crystal structure and electronic states of Co and Gd ions in a Gd0.4Sr0.6CoO2.85 single crystal
NASA Astrophysics Data System (ADS)
Platunov, M. S.; Dudnikov, V. A.; Orlov, Yu. S.; Kazak, N. V.; Solovyov, L. A.; Zubavichus, Ya. V.; Veligzhanin, A. A.; Dorovatovskii, P. V.; Vereshchagin, S. N.; Shaykhutdinov, K. A.; Ovchinnikov, S. G.
2016-02-01
X-ray diffraction and X-ray absorption near edge structure (XANES) spectra have been measured at the Co K-edge and Gd L 3-edge in GdCoO3 and Gd0.4Sr0.6CoO2.85 cobaltites. The effect of Sr substitution on the crystal structure and electronic and magnetic states of Co3+ ions in a Gd0.4Sr0.6CoO2.85 single crystal has been analyzed. The XANES measurements at the Co K-edge have not showed a noticeable shift of the absorption edge with an increase in the concentration of Sr. This indicates that the effective valence of cobalt does not change. An increase in the intensity of absorption at the Gd L 3-edge is due to an increase in the degree of hybridization of the Gd(5 d) and O(2 p) states. The effect of hole doping on the magnetic properties results in the appearance of the ferromagnetic component and in a significant increase in the magnetic moment.
Akolekar, Deepak B; Foran, Garry; Bhargava, Suresh K
2004-05-01
Au L(3)-edge X-ray absorption spectroscopic measurements were carried out over a series of mesoporous and microporous materials containing gold nanoparticles to investigate the effects of the host matrix and preparation methods on the properties of gold nanoparticles. The materials of structure type MCM-41, ZSM-5, SAPO-18 and LSX with varying framework composition containing low concentrations of gold nanoparticles were prepared and characterized. In these materials the size of the gold nanoparticles varied in the range approximately 1 to 4 nm. A series of gold nanoparticles within different mesoporous and microporous materials have been investigated using X-ray absorption fine structure (XANES, EXAFS) and other techniques. Information such as atomic distances, bonding and neighbouring environment obtained from XAFS measurements was useful in elucidating the nature and structure of gold nanoparticles on these catalytic materials. The influence of the high-temperature (823, 1113, 1273 K) treatment on gold nanoparticles inside the mesoporous matrix was investigated using the XAFS technique. The XAFS and XANES results confirm various characteristics of gold nanoparticles in these materials suitable for catalysis, fabrication of nanodevices and other applications.
Torgersen, Jan; Acharya, Shinjita; Dadlani, Anup Lal; ...
2016-03-24
Atomic layer deposition allows the fabrication of BaTiO 3 (BTO) ultrathin films with tunable dielectric properties, which is a promising material for electronic and optical technology. Industrial applicability necessitates a better understanding of their atomic structure and corresponding properties. Through the use of element-specific X-ray absorption near edge structure (XANES) analysis, O K-edge of BTO as a function of cation composition and underlying substrate (RuO 2 and SiO 2) is revealed. By employing density functional theory and multiple scattering simulations, we analyze the distortions in BTO’s bonding environment captured by the XANES spectra. The spectral weight shifts to lower energymore » with increasing Ti content and provides an atomic scale (microscopic) explanation for the increase in leakage current density. Differences in film morphologies in the first few layers near substrate–film interfaces reveal BTO’s homogeneous growth on RuO 2 and its distorted growth on SiO 2. As a result, this work links structural changes to BTO thin-film properties and provides insight necessary for optimizing future BTO and other ternary metal oxide-based thin-film devices.« less
NASA Astrophysics Data System (ADS)
Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit
2017-10-01
Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.
Experimental constrain of hydrogen production during early serpentinization stages
NASA Astrophysics Data System (ADS)
Clément, M.; Munoz, M.; Vidal, O.; Parra, T.
2009-04-01
Hydrothermal alteration of mantellic peridotites and ultramafic rocks along axial valleys of low spread oceanic ridges plays a key role in different fundamental domains like, 1) energetic gaz production (H2 and hydrocarbons) representing a potential source of energy for future generations, 2) formation of organic pre-biotic molecules in potential relation with the origin of life. Moreover, such complex volcanic-related alteration processes play fundamental role in economic geology, being widely associated to important polymetallic sulphides ore deposits. Recent researches proposed an initial hydrogen production due to the integration of ferric iron in Fe,Mg-serpentine. To better understand the early stages of hydrogen production, a series of natural peridotite rocks have been experimentally exposed to hydrothermal conditions, up to 300°C, 300 bars during different time scales. Experiments have been performed in using autoclaves with a sampling gas system. A systematic mineralogical characterization of the new products was carried out using classical spectroscopic tools. In particular, we focused on the iron behaviour using a redox and structural micro-XANES investigation. Redox information has been accurately derived from the pre-peak features previously calibrated from model compounds, while structural information about short and medium range order around iron has been extracted from the XANES region of the spectra, based both on experimental standards and ab-initio theoretical calculations. Two processes of oxidation emerged. Before two month experiment duration, serpentine displays a not negligible oxidation of ferrous iron in his structure (up to 60%), while after two months, iron oxides and hydroxides appear in the system. These results seem to correspond to natural observations. The iron coordination decreases linearly with time. It means that iron also integrates the serpentine tetrahedral sites. Moreover, high resolution µ-XAS maps on experimental samples were collected on the iron K-edge (7712 eV). These maps give valuable information concerning both kinetic of mineral phases transformation and spatial speciation of iron through the altered part of the samples. Finally, these results allow us to define a non linear model of "Fe3+ in serpentine vs hydrogen production" as a function of time.
High spin state driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3
NASA Astrophysics Data System (ADS)
Maurya, V. K.; Dong, C. L.; Chen, C. L.; Asokan, K.; Patnaik, S.
2018-06-01
We report on the synthesis, and structural - magnetic characterizations of Mn doped Bi2Se3 towards achieving a magnetically doped topological insulator. High quality single crystals of MnxBi2-xSe3 (x = 0, 0.03, 0.05, 0.1) are grown and analysed by X-ray diffraction (XRD), Low Energy Electron Diffraction (LEED), Scanning electron microscopy (SEM), and X-ray absorption near-edge structure spectroscopy (XANES). Magnetic properties of these samples under ZFC-FC protocol and isothermal magnetization confirm ferromagnetic correlation above x = 0.03 value. XANES measurements confirm that the dopant Mn is in Mn2+ state. This is further reconfirmed to be in high spin state by fitting magnetic data with Brillouin function for J = 5/2. Both Hall and Seebeck measurements indicate a sign change of charge carriers above x = 0.03 value of Mn doping. We propose Mn doped Bi2Se3 to be a potential candidate for electromagnetic and thermoelectric device applications involving topological surface states.
Stoichiometry of mercury-thiol complexes on bacterial cell envelopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Bhoopesh; Shoenfelt, Elizabeth; Yu, Qiang
We have examined the speciation of Hg(II) complexed with intact cell suspensions (1013 cells L- 1) of Bacillus subtilis, a common gram-positive soil bacterium, Shewanella oneidensis MR-1, a facultative gram-negative aquatic organism, and Geobacter sulfurreducens, a gram-negative anaerobic bacterium capable of Hg-methylation at Hg(II) loadings spanning four orders of magnitude (120 nM to 350 μM) at pH 5.5 (± 0.2). The coordination environments of Hg on bacterial cells were analyzed using synchrotron based X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the Hg LIII edge. The abundance of thiols on intact cells wasmore » determined by a fluorescence-spectroscopy based method using a soluble bromobimane, monobromo(trimethylammonio)bimane (qBBr) to block thiol sites, and potentiometric titrations of biomass with and without qBBr treatment. The chemical forms of S on intact bacterial cells were determined using S k-edge XANES spectroscopy.« less
Cui, Peixin; Wang, Yu; Chu, Wangsheng; Guo, Xiaoyun; Yang, Feifei; Yu, Meijuan; Zhao, Haifeng; Dong, Yuhui; Xie, Yaning; Gong, Weimin; Wu, Ziyu
2014-12-12
Peptide deformylase (PDF) is a prokaryotic enzyme that catalyzes the deformylation of nascent peptides generated during protein synthesis and water molecules play a key role in these hydrolases. Using X-ray absorption near edge spectroscopy (XANES) and ab initio calculations we accurately probe the local atomic environment of the metal ion binding in the active site of PDF at different pH values and with different metal ions. This new approach is an effective way to monitor existing correlations among functions and structural changes. We show for the first time that the enzymatic activity depends on pH values and metal ions via the bond length of the nearest coordinating water (Wat1) to the metal ion. Combining experimental and theoretical data we may claim that PDF exhibits an enhanced enzymatic activity only when the distance of the Wat1 molecule with the metal ion falls in the limited range from 2.15 to 2.55 Å.
Silicon K-edge XANES spectra of silicate minerals
NASA Astrophysics Data System (ADS)
Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.
1995-03-01
Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.
Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition.
Niazi, Nabeel Khan; Burton, Edward D
2016-11-01
Nanoparticulate mackinawite (FeS) can be an important host-phase for arsenic (As) in sulfidic, subsurface environments. Although not previously investigated, phosphate (PO 4 3- ) may compete with As for available sorption sites on FeS, thereby enhancing As mobility in FeS-bearing soils, sediments and groundwater systems. In this study, we examine the effect of PO 4 3- on sorption of arsenate (As(V)) and arsenite (As(III)) to nanoparticulate FeS at pH 6, 7 and 9. Results show that PO 4 3- (at 0.01-1.0 mM P) did not significantly affect sorption of either As(V) or As(III) to nanoparticulate FeS at initial aqueous As concentrations ranging from 0.01 to 1.0 mM. At pH 9 and 7, sorption of both As(III) and As(V) to nanoparticulate FeS was similar, with distribution coefficient (K d ) values spanning 0.76-15 L g -1 (which corresponds to removal of 87-98% of initial aqueous As(III) and As(V) concentrations). Conversely, at pH 6, the sorption of As(III) was characterized by substantially higher K d values (6.3-93.4 L g -1 ) than those for As(V) (K d = 0.21-0.96 L g -1 ). Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that up to 52% of the added As(V) was reduced to As(III) in As(V) sorption experiments, as well as the formation of minor amounts of an As 2 S 3 -like species. In As(III) sorption experiments, XANES spectroscopy also demonstrated the formation of an As 2 S 3 -like species and the partial oxidation of As(III) to As(V) (despite the strictly O 2 -free experimental conditions). Overall, the XANES data indicate that As sorption to nanoparticulate FeS involves several redox transformations and various sorbed species, which display a complex dependency on pH and As loading but that are not influenced by the co-occurrence of PO 4 3- . This study shows that nanoparticulate FeS can help to immobilize As(III) and As(V) in sulfidic subsurface environments where As co-exists with PO 4 3- . Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Daengsakul, Sujittra; Saengplot, Saowalak; Kidkhunthod, Pinit; Pimsawat, Adulphan; Maensiri, Santi
2018-04-01
This work presents the structural study of La0.99-xSrx(Na, K, Ba)0.01MnO3 or LSAM nanoparticles synthesized using thermal-hydro decomposition method where A denotes Na, K, Sr and Ba, respectively. The effect of ionic radii size of A dopants or rA from the substitution of A for La and Sr on the MnO6 octrahedral structure, where the average size of the cations occupying in A-site or 〈rA〉 is fixed at ∼ 1.24 Å, is focused. The LSAM nanoparticles are carefully studied using X-ray diffraction (XRD) including Rietveld refinement and X-ray Absorption Spectroscopy (XAS) including X-ray Absorption Near edge Structure (XANES) and X-ray Absorption Fine Structure (EXAFS). The Rietveld refinement shows all nano-powder samples have rhombohedral structure. By XANES technique we found that the effect of A substitutions at A-site causes a slight change of mean oxidation state of Mn between 3.54 and 3.60. Furthermore, the structural distortion of MnO6 octrahedral in samples is analysed and obtained from EXAFS. The observed trend of ferromagnetism for all LSAM samples can be clearly explained by evidences of A-site doping, structural distortion around Mn atoms and mixing Mn3+/Mn4+ valence states.
A Study of Ziegler–Natta Propylene Polymerization Catalysts by Spectroscopic Methods
Tkachenko, Olga P.; Kucherov, Alexey V.; Kustov, Leonid M.; Virkkunen, Ville; Leinonen, Timo; Denifl, Peter
2017-01-01
Ziegler–Natta polymerization catalysts were characterized by a complex of surface- and bulk-sensitive methods (DRIFTS, XPS, ESR, and XAS = XANES + EXAFS). A diffuse-reflectance Fourier-transform IR spectroscopy (DRIFTS) study showed the presence of strong Lewis acid sites in different concentrations and absence of strong basic sites in the polymerization catalysts. X-ray photoelectron spectroscopy (XPS), electron-spin resonance (ESR), and (X-ray absorption near-edge structure (XANES) analysis revealed the presence of Ti4+, Ti3+, Ti2+, and Ti1+ species in the surface layers and in the bulk of catalysts. The samples under study differ drastically in terms of the number of ESR-visible paramagnetic sites. The EXAFS study shows the presence of a Cl atom as a nearest neighbor of the absorbing Ti atom. PMID:28772850
NASA Astrophysics Data System (ADS)
Wang
2015-01-01
Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared.Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04445b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Nitin; Payzant, E Andrew; Jothimurugesan, K
2011-01-01
A 10% Co 4% Re/(2% Zr/SiO2) catalyst was prepared by co-impregnation using a silica support modified by 2% Zr. The catalyst was characterized by temperature programmed reduction (TPR), in situ XRD and in situ XANES analysis where it was simultaneously exposed to H2 using a temperature programmed ramp. The results showed the two step reduction of large crystalline Co3O4 with CoO as an intermediate. TPR results showed that the reduction of highly dispersed Co3O4 was facilitated by reduced rhenium by a H2-spillover mechanism. In situ XRD results showed the presence of both, Co-hcp and Co-fcc phases in the reduced catalystmore » at 400 C. However, the Co-hcp phase was more abundant, which is thought to be the more active phase as compared to the Co-fcc phase for CO hydrogenation. CO hydrogenation at 270 C and 5 bar pressure produces no detectable change in the phases during the time of experiment. In situ XANES results showed a decrease in the metallic cobalt in the presence of H2/CO, which can be attributed due to oxidation of the catalyst by reaction under these conditions.« less
Souza-Neto, N. M.; Haskel, D.; dos Reis, R. D.; ...
2016-07-26
Here, we describe how first principle calculations can play a key role in the interpretation of X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectra for a better understanding of emergent phenomena in condensed matter physics at high applied pressure. Eu compounds are used as case study to illustrate the advantages of this methodology, ranging from studies of electronic charge transfer probed by quadrupolar and dipolar contributions, to accurately determining electronic valence, and to inform about the influence of pressure on RKKY interactions and magnetism. This description should help advance studies where the pressure dependence of XANESmore » and XMCD data must be tackled with the support of theoretical calculations for a proper understanding of the electronic properties of materials.« less
Altman, Alison B; Pemmaraju, C D; Camp, Clément; Arnold, John; Minasian, Stefan G; Prendergast, David; Shuh, David K; Tyliszczak, Tolek
2015-08-19
Polarized aluminum K-edge X-ray absorption near edge structure (XANES) spectroscopy and first-principles calculations were used to probe electronic structure in a series of (BDI)Al, (BDI)AlX2, and (BDI)AlR2 coordination compounds (X = F, Cl, I; R = H, Me; BDI = 2,6-diisopropylphenyl-β-diketiminate). Spectral interpretations were guided by examination of the calculated transition energies and polarization-dependent oscillator strengths, which agreed well with the XANES spectroscopy measurements. Pre-edge features were assigned to transitions associated with the Al 3p orbitals involved in metal-ligand bonding. Qualitative trends in Al 1s core energy and valence orbital occupation were established through a systematic comparison of excited states derived from Al 3p orbitals with similar symmetries in a molecular orbital framework. These trends suggested that the higher transition energies observed for (BDI)AlX2 systems with more electronegative X(1-) ligands could be ascribed to a decrease in electron density around the aluminum atom, which causes an increase in the attractive potential of the Al nucleus and concomitant increase in the binding energy of the Al 1s core orbitals. For (BDI)Al and (BDI)AlH2 the experimental Al K-edge XANES spectra and spectra calculated using the eXcited electron and Core-Hole (XCH) approach had nearly identical energies for transitions to final state orbitals of similar composition and symmetry. These results implied that the charge distributions about the aluminum atoms in (BDI)Al and (BDI)AlH2 are similar relative to the (BDI)AlX2 and (BDI)AlMe2 compounds, despite having different formal oxidation states of +1 and +3, respectively. However, (BDI)Al was unique in that it exhibited a low-energy feature that was attributed to transitions into a low-lying p-orbital of b1 symmetry that is localized on Al and orthogonal to the (BDI)Al plane. The presence of this low-energy unoccupied molecular orbital on electron-rich (BDI)Al distinguishes its valence electronic structure from that of the formally trivalent compounds (BDI)AlX2 and (BDI)AlR2. The work shows that Al K-edge XANES spectroscopy can be used to provide valuable insight into electronic structure and reactivity relationships for main-group coordination compounds.
Silver, Sunshine C; Gardenghi, David J; Naik, Sunil G; Shepard, Eric M; Huynh, Boi Hanh; Szilagyi, Robert K; Broderick, Joan B
2014-03-01
Spore photoproduct lyase (SPL), a member of the radical S-adenosyl-L-methionine (SAM) superfamily, catalyzes the direct reversal of the spore photoproduct, a thymine dimer specific to bacterial spores, to two thymines. SPL requires SAM and a redox-active [4Fe-4S] cluster for catalysis. Mössbauer analysis of anaerobically purified SPL indicates the presence of a mixture of cluster states with the majority (40 %) as [2Fe-2S](2+) clusters and a smaller amount (15 %) as [4Fe-4S](2+) clusters. On reduction, the cluster content changes to primarily (60 %) [4Fe-4S](+). The speciation information from Mössbauer data allowed us to deconvolute iron and sulfur K-edge X-ray absorption spectra to uncover electronic (X-ray absorption near-edge structure, XANES) and geometric (extended X-ray absorption fine structure, EXAFS) structural features of the Fe-S clusters, and their interactions with SAM. The iron K-edge EXAFS data provide evidence for elongation of a [2Fe-2S] rhomb of the [4Fe-4S] cluster on binding SAM on the basis of an Fe···Fe scatterer at 3.0 Å. The XANES spectra of reduced SPL in the absence and presence of SAM overlay one another, indicating that SAM is not undergoing reductive cleavage. The X-ray absorption spectroscopy data for SPL samples and data for model complexes from the literature allowed the deconvolution of contributions from [2Fe-2S] and [4Fe-4S] clusters to the sulfur K-edge XANES spectra. The analysis of pre-edge features revealed electronic changes in the Fe-S clusters as a function of the presence of SAM. The spectroscopic findings were further corroborated by density functional theory calculations that provided insights into structural and electronic perturbations that can be correlated by considering the role of SAM as a catalyst or substrate.
XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries
NASA Astrophysics Data System (ADS)
Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-08-01
X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.
Light in the darkening on Naica gypsum crystals
NASA Astrophysics Data System (ADS)
Castillo-Sandoval, I.; Fuentes-Cobas, L. E.; Fuentes-Montero, M. E.; Esparza-Ponce, H. E.; Carreno-Márquez, J.; Reyes-Cortes, M.; Montero-Cabrera, M. E.
2015-07-01
Naica mine is located in a semi-desertic region at the central-south of Chihuahua State. The Cave of Swords was discovered in 1910 and the Cave of Crystals 90 years later at Naica mines. It is expected that during the last century the human presence has changed the microclimatic conditions inside the cave, resulting in the deterioration of the crystals and the deposition of impurities on gypsum surfaces. As a contribution to the clarification of the mentioned issues, the present work refers to the use of synchrotron radiation for the identification of phases on these surfaces. All the experiments were performed at the Stanford Synchrotron Radiation Lightsource. Grazing incidence X-ray diffraction (GIXRD) and radiography-aided X-ray diffraction (RAXRD) experiments were performed at beamline 11-3. X-Ray micro-fluorescence (μ-SXRF) and micro-X-ray absorption (μ-XANES) were measured at beamline 2-3. Representative results obtained may be summarized as follows: a) Gypsum, galena, sphalerite, hematite and cuprite at the surface of the gypsum crystals were determined. b) The samples micro-structure is affected by impurities. c) The elemental distributions and correlations (0.6-0.9) of Cu, K, Fe, Mn, Pb, Zn, Ca and S were identified by μ-SXRF. The correlations among elemental contents confirmed the phase identification, with the exception of manganese and potassium due to the amorphous nature of some impurity compounds in these samples. The compounds hematite (Fe2O3), β-MnO2, Mn2O3, MnO and/or MnCO3, PbS, PbCO3 and/or PbSO4, ZnO4, ZnS and/or smithsonite (ZnCO3), CuS + Cu Oxide were identified by XANES. Plausibly, these latter compounds do not form crystalline phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wongmaneerung, R., E-mail: re_nok@yahoo.com; Tipakontitikul, R.; Jantaratana, P.
2016-03-15
Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3}–xPb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edgemore » Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Sally L; Clausen, Ingrid; Chappell, Mark A
2012-10-23
The safety of urban farming has been questioned due to the potential for contamination in urban soils. A laboratory incubation, a field trial, and a second laboratory incubation were conducted to test the ability of high-Fe biosolids–based composts to reduce the bioaccessibility of soil Pb and As in situ. Lead and As bioaccessibility were evaluated using an in vitro assay. Changes in Pb, As, and Fe speciation were determined on select samples after the second laboratory incubation using μ–X-ray fluorescence mapping followed by μ–X-ray absorption near-edge structure (XANES). A compost with Fe added to wastewater treatment residuals (Fe WTR compost)more » added to soils at 100 g kg -1 decreased Pb bioaccessibility in both laboratory incubations. Mixed results were observed for As. Composts tested in the field trial (Fe added as Fe powder or FeCl 2) did not reduce bioaccessible Pb, and limited reductions were observed in bioaccessible As. These composts had no effect on Pb bioaccessibility during the second laboratory incubation. Bulk XANES showed association of Pb with sulfates and carbonates in the control soil. μ-XANES for three points in the Fe WTR amended soil showed Pb present as Fe-sorbed Pb (88 and 100% of two points) and pyromorphite (12 and 53% of two points). Bulk XANES of the Fe WTR compost showed 97% of total Fe present as Fe 3+. The results of this study indicate that addition of high-Fe biosolids compost is an effective means to reduce Pb accessibility only for certain types of Fe-rich materials.« less
Gueriau, Pierre; Rueff, Jean -Pascal; Bernard, Sylvain; ...
2017-09-13
Carbon compounds are ubiquitous and occur in a diversity of chemical forms in many systems including ancient and historic materials ranging from cultural heritage to paleontology. Determining their speciation cannot only provide unique information on their origin but may also elucidate degradation processes. Synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge (280–350 eV) is a very powerful method to probe carbon speciation. However, the short penetration depth of soft X-rays imposes stringent constraints on sample type, preparation, and analytical environment. A hard X-ray probe such as X-ray Raman scattering (XRS) can overcome many of these difficulties. Heremore » we report the use of XRS at ~6 keV incident energy to collect carbon K-edge XANES data and probe the speciation of organic carbon in several specimens relevant to cultural heritage and natural history. This methodology enables the measurement to be done in a nondestructive way, in air, and provides information that is not compromised by surface contamination by ensuring that the dominant signal contribution is from the bulk of the probed material. Using the backscattering geometry at large photon momentum transfer maximizes the XRS signal at the given X-ray energy and enhances nondipole contributions compared to conventional XANES, thereby augmenting the speciation sensitivity. The capabilities and limitations of the technique are discussed. As a result, we show that despite its small cross section, for a range of systems the XRS method can provide satisfactory signals at realistic experimental conditions. XRS constitutes a powerful complement to FT-IR, Raman, and conventional XANES spectroscopy, overcoming some of the limitations of these techniques.« less
Xiong, Wenhui; Peng, Jian; Hu, Yongfeng
2012-02-15
This paper presents a novel technique integrating bulk-sensitive and surface-sensitive XANES methods to distinguish between physisorption and chemisorption for phosphate adsorption onto ferrihydrite-modified diatomite (FHMD). XANES P K-edge, L-edge, and Fe M-edge spectra were obtained for reference samples (K(2)HPO(4) and FePO(4)·2H(2)O) and test samples (phosphate adsorbed onto FHMD (FHMD-Ps) and Si-containing ferrihydrite (FHYD-Ps)). A resolvable pre-edge peak in the P K-edge spectra of FHMD-Ps and FHYD-Ps provided direct evidence for the formation of P-O-Fe(III) coordination and the occurrence of chemisorption. The resemblance between the P L-edge spectra of K(2)HPO(4) and FHMD-Ps and the marked difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O indicated the intact existence of the adsorbate and the adsorbent. The similarity between Fe M-edge spectra of FHMD and FHMD-Ps and the difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O confirmed the findings from P L-edge analyses. Therefore, chemisorption and physisorption coexisted during phosphate adsorption onto FHMD. Phosphate chemisorption occurred in the deeper zone of FHMD (from 50 nm to 5 μm); whereas physisorption occurred in the zone of FHMD shallower than 50 nm since the probing depth of XANES P K-edge method is 5 μm and that of P L-edge and Fe M-edge methods is 50 nm. Copyright © 2011 Elsevier Inc. All rights reserved.
In Situ XANES of U and Th in Silicate Liquids at High Pressure and Temperature
NASA Astrophysics Data System (ADS)
Mallmann, G.; Wykes, J.; Berry, A.; O'Neill, H. S.; Cline, C. J., II; Turner, S.; Rushmer, T. A.
2016-12-01
Although the chemical environments of elements in silicate melts at specific conditions of temperature, pressure and oxygen fugacity (fO2) are often inferred from measurements after quenching the melts to glasses, it is widely recognized that changes may occur during the quenching process, making measurements in situ at high pressure and temperature highly desirable. A case of importance in geochemistry is the speciation of uranium in silicate melts as a function of pressure. Evidence from mineral-melt partitioning and XANES (X-ray Absorption Near-Edge Structure) spectroscopy of glasses suggests that U5+ may be stable at low pressures in the Earth's crust (along with U4+ or U6+, depending on fO2) where basaltic liquids crystallize, but not in the Earth's upper mantle where peridotite partially melts to produce such liquids. To test these observations we recorded in situ transmission U and Th L3-edge XANES spectra of U and Th-doped silicate liquids at 1.6 GPa and 1350°C using the D-DIA apparatus at the X-ray Absorption Spectroscopy Beamline of the Australian Synchrotron. Data for thorium, which occurs exclusively as a tetravalent cation under terrestrial fO2 conditions, were collected as a `control' to monitor for changes in coordination. The cell assembly consisted of a boron-epoxy cube as pressure medium, alumina sleeve and cylindrical graphite heater. The starting mix, a powdered synthetic average MORB silicate glass doped with 2 wt.% of U and Th, was loaded into San Carlos olivine capsules along with solid oxygen buffers (either Re-ReO2 or Ru-RuO2) in a sandwich arrangement. The capsule was then placed inside the graphite heater and insulated with crushable MgO powder. Temperature was monitored using a type D thermocouple. U and Th L3-edge XANES spectra were recorded throughout the heating/compression cycle and then after quenching. Our preliminary assessment indicates that the U-XANES spectra recorded for the liquid in situ at high pressure and temperature and subsequently for the quenched glass are very similar, which would suggest no apparent change in uranium coordination and/or valence state on cooling/decompression.
Sequestration of Tellurium From Seawater by Ferromanganese Crusts: A XANES/EXAFS Perspective
NASA Astrophysics Data System (ADS)
Hein, J. R.; Bargar, J.; Koschinsky, A.; Dunham, R.; Halliday, A. N.
2007-12-01
Marine iron-oxyhydroxide/manganese-oxide crusts (Fe-Mn crusts) provide the richest known source of tellurium (Te). Te averages about 50 ppm in Fe-Mn crusts distributed globally, with concentrations locally up to 210 ppm. The sorption of Te onto Fe-Mn crusts likely controls the dominant redox species and concentration of Te in the global ocean (Hein et al., 2003). However, little is known about the mechanisms by which Te is sequestered by Fe-Mn crusts and Fe-Mn colloids in the water column, and then stabilized in the Fe/Mn oxyhydroxide/oxide framework. Two primary hypotheses are being tested: (a) Te(IV) is initially the predominant adsorbed species, which is subsequently oxidized on the Fe-oxyhydroxide and/or Mn oxide phases in natural systems and in sorption experiments. (b) Once oxidized, Te(VI) remains tightly bound to the Fe phase in Fe-Mn crusts as adsorbed surface complexes. These hypotheses are being examined by using the Stanford Synchrotron Radiation Laboratory's (SSRL) synchrotron-based XANES (x-ray absorption near-edge structure) spectroscopy to assess Te oxidation state in natural samples and samples in which Te(IV) and Te(VI) were sorbed onto synthetic and natural FeOOH and Mn oxides. EXAFS (extended x-ray absorption fine structure) spectroscopy is being used to resolve the local molecular-scale structure around Te in these same samples. Data have thus far been obtained for six Fe-Mn crusts from a variety of geographic locations and water depths of occurrence, with differing chemical compositions; and two model compounds, Te(IV) sorbed on FeOOH and Te(IV) sorbed on MnO2. XANES data show that for all six Fe-Mn crust samples, 85 to 100 percent of the Te occurs as Te(VI). For the model compounds, about 65 percent of the Te(IV) sorbed onto the MnO2 had oxidized to Te(VI) by the time (one week) the sample was analyzed, whereas Te sorbed onto FeOOH remained at about 100 percent Te(IV). The most striking result from the EXAFS data is that all spectra for the six Fe-Mn crust samples are virtually identical, regardless of location, depositional conditions, or chemical and mineralogical compositions. This uniformity indicates that the local structure around Te is similar for all samples and, therefore, the mode of incorporation of Te into the Fe-Mn crusts does not vary despite varying environments of formation. This implies that a single set of processes applies throughout the global ocean to the incorporation of Te into Fe-Mn crusts. Hein, J.R., Koschinsky, A., and Halliday, A.N., 2003, Geochim. Cosmochim. Acta 67: 1117-1127.
Fate and lability of silver in soils: Effect of ageing
The fate and lability of added soluble Ag in soils over time was examined by measurement of labile metal (E-value) by isotopic dilution using the 110mAg radioactive isotope and the solid-phase speciation of Ag by X-ray absorption near edge structure (XANES) spectrosco...
Novel Catalytic Mechanisms For The Chemical Reduction Of Carbon Dioxide To Energy-Dense Liquids
2016-12-14
spectroscopy and X-ray crystallography . Synchrotron radiation techniques such as EXAFS and XANES are being used to characterize the structure and...Chemistry and Catalysis using Soft X-rays at LCLS” 23rd Congress and General Assembly of the International Union of Crystallography , Montreal (2014). A
Borghi, Elena; Casella, Luigi
2010-02-21
In this study copper(ii) complexes with the tridentate nitrogen ligand bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-BB) are considered as model compounds for the Cu-tris(imidazole) array found in several copper proteins. 2-BB chelates copper(ii) forming two six-membered rings and the complexes contain methanol, nitrite, azide and water as ancillary ligands; both the coordination numbers and stereochemistries differ in these complexes. Their key structural features were investigated by using full multiple-scattering theoretical analysis of the copper K-edge X-ray absorption spectrum with the MXAN code. We showed that using cluster sizes large enough to include all atoms of the ligand, the analysis of the XANES region can give both a structural model of the metal centre and map the structure of the 2-BB complexes. Complex [Cu(2-BB)(N(3))](+) provided a critical test through the comparison of the XANES simulation results with crystallographic data, thus permitting the extension of the method to the complex [Cu(2-BB)(H(2)O)(n)](+) (n = 1 or 2), for which crystallographic data are not available but is expected to bear a five-coordinated Cu(3N)(2O) core (n = 2). The structural data of [Cu(2-BB)(MeOH)(ClO(4))](+) and [Cu(2-BB)(NO(2))](+), both with a Cu(3N)(2O) core but with a different stereochemistry, were used as the starting parameters for two independent simulations of the XANES region of the [Cu(2-BB)(H(2)O)(2)](+) cation. The two structural models generated by simulation converge towards a structure for the aqua-cation with a lower coordination number. New calculations, where four-coordinated Cu(3N)(O) cores were considered as the starting structures, validated that the structure of the aqua-complex in the powder state has a copper(ii) centre with a four-coordinated Cu(3N)(O) core and a molecular formula [Cu(2-BB)(H(2)O)](ClO(4)).(H(2)O). A water solvation molecule, presumed to be disordered from the simulations with the two Cu(3N)(2O) cores, is present. The successful treatment of this Cu-2-BB complex system allows the extension of the method to other biomimetic compounds when a structural characterization is lacking.
Observation of high-spin mixed oxidation state of cobalt in ceramic Co3TeO6
NASA Astrophysics Data System (ADS)
Singh, Harishchandra; Ghosh, Haranath; Chandrasekhar Rao, T. V.; Sinha, A. K.; Rajput, Parasmani
2014-12-01
We report coexistence of high spin Co3+ and Co2+ in ceramic Co3TeO6 using X-ray Absorption Near Edge Structure (XANES), DC magnetization, and first principles ab-initio calculations. The main absorption line of cobalt Co K-edge XANES spectra, along with a linear combination fit, led us to estimate relative concentration of Co2+ and Co3+as 60:40. The pre edge feature of XANES spectrum shows crystal field splitting of ˜1.26 eV between eg and t2g states, suggesting a mixture of high spin states of both Co2+ and Co3+. Temperature dependent high field DC magnetization measurements reveal dominant antiferromagnetic order with two Neel temperatures (TN1 ˜ 29 K and TN2 ˜ 18 K), consistent with single crystal study. A larger effective magnetic moment is observed in comparison to that reported for single crystal (which contains only Co2+), supports our inference that Co3+ exists in high spin state. Furthermore, we show that both Co2+ and Co3+ being in high spin states constitute a favorable ground state through first principles ab-initio calculations, where Rietveld refined synchrotron X-ray diffraction data are used as input.
EXAFS and XANES investigation of the ETS-10 microporous titanosilicate.
Prestipino, C; Solari, P L; Lamberti, C
2005-07-14
In this work, we report state-of-the-art analysis of both Ti K-edge high-resolution XANES and EXAFS data collected on the ETS-10 molecular sieve at the GILDA BM8 beamline of the ESRF facility. The interatomic distances and the angles obtained in our EXAFS study are in fair agreement with the single-crystal XRD data of Wang and Jacobson (Chem. Commun. 1999, 973) and with the recent ab initio periodic study of Damin et al. (J. Phys. Chem. B 2004, 108, 1328) Differently from previous EXAFS work (J. Phys. Chem. 1996, 100, 449), our study supports a model of ETS-10 where the Ti atoms are bonded with two equivalent axial oxygen atoms. This model is also able to reproduce the edge and the post-edge region of the XANES spectrum. Conversely, the weak but well-defined pre-edge peak at 4971.3 eV can be explained only by assuming that a fraction of Ti atoms are in a local geometry similar to that of the pentacoordinated Ti sites in the ETS-4 structure. These Ti atoms in ETS-10 should be the terminal of the -Ti-O-Ti-O-Ti- chains, of which the actual number is strongly increased by the high crystal defectivity (Ti vacancies).
Communication: X-ray excited optical luminescence from TbCl3 at the giant resonance of terbium
NASA Astrophysics Data System (ADS)
Heigl, F.; Jürgensen, A.; Zhou, X.-T.; Hu, Y.-F.; Zuin, L.; Sham, T. K.
2013-02-01
We have studied the optical recombination channels of TbCl3 using x-ray excited optical luminescence at the N4,5 absorption edge of Tb (giant resonance) in both the energy and time domain. The luminescence exhibits a relatively fast 5D3, and a slow 5D4 decay channel in the blue and green, respectively. The rather short lifetime of the 5D3 state indicates that the decay is mainly driven by Tb-Tb ion interaction via non-radiative energy transfer (cross-relaxation). At the giant resonance the X-ray Absorption Near Edge Structure (XANES) recorded using partial photoluminescence yield is inverted. In the pre-edge region the contrast of the spectral feature is significantly better in optical XANES than in total electron yield. Changes in the intensity of 5D3-7F5 (544 nm) and 5D4-7F6 (382 nm) optical transitions as the excitation energy is tuned across the giant resonance are also noted. The results provide detailed insight into the dynamics of the optical recombination channels and an alternative method to obtain high sensitivity, high energy resolution XANES at the giant resonance of light emitting rare-earth materials.
Using X-ray absorption to probe sulfur oxidation states in complex molecules
NASA Astrophysics Data System (ADS)
Vairavamurthy, A.
1998-10-01
X-ray absorption near-edge structure (XANES) spectroscopy offers an important non-destructive tool for determining oxidation states and for characterizing chemical speciation. The technique was used to experimentally verify the oxidation states of sulfur in different types of complex molecules because there are irregularities and uncertainties in assigning the values traditionally. The usual practice of determining oxidation states involves using a set of conventional rules. The oxidation state is an important control in the chemical speciation of sulfur, ranging from -2 to +6 in its different compounds. Experimental oxidation-state values for various types of sulfur compounds, using their XANES peak-energy positions, were assigned from a scale in which elemental sulfur and sulfate are designated as 0 and +6, respectively. Because these XANES-based values differed considerably from conventionally determined oxidation states for most sulfur compounds, a new term 'oxidation index' was coined to describe them. The experimental values were closer to those conventional values obtained by assigning shared electrons to the more electronegative atoms than to those based on other customary rules for assigning them. Because the oxidation index is distinct and characteristic for each different type of sulfur functionality, it becomes an important parameter for characterizing sulfur species, and for experimentally verifying uncertain oxidation states.
NASA Astrophysics Data System (ADS)
Kavner, A.; Walker, D.; Newville, M.; Sutton, S. R.
2005-12-01
An applied electric field across a silicate sample at high pressures and temperatures in a piston cylinder apparatus can generate a wide range of oxidation states of polyvalent cations within a single experiment. If two or more polyvalent cations are included, this technique can be used to cross-calibrate oxybarometers within a single experiment. The redox state of Fe and V within a partially melted basaltic silicate was manipulated in situ in a piston-cylinder experiment with a DC power supply providing a source and sink of electrons to the sample. A 1V electrical potential differential was applied across vanadium-doped and Fe-bearing synthetic basalt samples for 24 hrs. at 20 kbar and 1400°C in a specially-designed piston cylinder sample assembly. Three experiments were performed: a control sample with no applied voltage, one with bottom cathode and top anode, and a third with top cathode and bottom anode. Synchrotron-based x-ray absorption near edge structure (XANES) spectroscopy was used to provide spot analysis of iron and vanadium oxidation states with 5μm x 5μm spatial resolution throughout the recovered samples. Systematic spatial changes of increasing oxidation states of V and Fe were observed approaching the anode. The differences in oxidation states were mapped to a corresponding local effective oxygen fugacity by comparison and extension of a calibration of vanadium oxidation states as a function of controlled oxygen fugacity from a previous study (Sutton et al., 2005, GCA, vol. 69, pp. 2333-2348). The vanadium mapping indicates that a 1V potential drop across the sample induces effective oxygen fugacity perturbations in excess of ten orders of magnitude. The presence of both Fe and V within the same sample provides a wide range of oxygen fugacity cross-calibration in these recovered samples. A relationship between oxygen fugacity and electrochemical driving force is derived. The experimental results are in good agreement with the derived relationship between applied electrochemical potential difference (the 1V in this experiment), and corresponding calculated oxygen fugacity.
Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution
NASA Astrophysics Data System (ADS)
Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.
2007-12-01
The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.
Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution
NASA Astrophysics Data System (ADS)
Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.
2007-11-01
The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.
Magnetic properties of Gd T2Zn20 (T =Fe , Co) investigated by x-ray diffraction and spectroscopy
NASA Astrophysics Data System (ADS)
Mardegan, J. R. L.; Francoual, S.; Fabbris, G.; Veiga, L. S. I.; Strempfer, J.; Haskel, D.; Ribeiro, R. A.; Avila, M. A.; Giles, C.
2016-01-01
We investigate the magnetic and electronic properties of the Gd T2Zn20 (T =Fe and Co) compounds using x-ray resonant magnetic scattering (XRMS), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD). The XRMS measurements reveal that GdCo2Zn20 has a commensurate antiferromagnetic spin structure with a magnetic propagation vector τ ⃗=(1/2 ,1/2 ,1/2 ) below the Néel temperature (TN˜ 5.7 K). Only the Gd ions carry a magnetic moment forming an antiferromagnetic structure with magnetic representation Γ6. For the ferromagnetic GdFe2Zn20 compound, an extensive investigation was performed at low temperature and under magnetic field using XANES and XMCD. A strong XMCD signal of about 12.5 % and 9.7 % is observed below the Curie temperature (TC˜85 K ) at the Gd L2 and L3 edges, respectively. In addition, a small magnetic signal of about 0.06 % of the jump is recorded at the Zn K edge, suggesting that the Zn 4 p states are spin polarized by the Gd 5 d extended orbitals.
Magnetic properties of GdT 2Zn 20 (T = Fe, Co) investigated by x-ray diffraction and spectroscopy
J. R. L. Mardegan; Fabbris, G.; Francoual, S.; ...
2016-01-26
In this study, we investigate the magnetic and electronic properties of the GdT 2Zn 20 (T=Fe and Co) compounds using x-ray resonant magnetic scattering (XRMS), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD). The XRMS measurements reveal that GdCo 2Zn 20 has a commensurate antiferromagnetic spin structure with a magnetic propagation vector →/ τ = (12,12,12) below the Néel temperature (T N ~ 5.7 K). Only the Gd ions carry a magnetic moment forming an antiferromagnetic structure with magnetic representation Γ 6. For the ferromagnetic GdFe 2Zn 20 compound, an extensive investigation was performed at low temperaturemore » and under magnetic field using XANES and XMCD. A strong XMCD signal of about 12.5% and 9.7% is observed below the Curie temperature (T C ~ 85K) at the Gd L 2 and L 3 edges, respectively. In addition, a small magnetic signal of about 0.06% of the jump is recorded at the Zn K edge, suggesting that the Zn 4p states are spin polarized by the Gd 5d extended orbitals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Emily; Kennedy, Brendan J.; Avdeev, Maxim
A combination of S-XRD and NPD demonstrate the structure of Ba{sub 2}Y{sub 0.879}UO{sub 6+x} to be monoclinic in space group I2/m. That the U is hexavalent is evident from the U L{sub 2}-edge XANES measurements. This appears to be a rare example of a double perovskite containing vacancies at the octahedral B-sites and interstitial oxygen defects, which combine to stabilise hexavalent U and appears to be a consequence of the preparation of the sample in air. The Y vacancies, coupled with anion disorder, results in a distortion of the BO{sub 6} octahedra. - Graphical abstract: The structure of Ba{sub 2}Y{submore » 0.879}UO{sub 6+x} is shown to be a rare example of a double perovskite containing vacancies at the octahedral B-sites and interstitial oxygen defects. - Highlights: • Structure of Ba{sub 2}Y{sub 0.879}UO{sub 6+x} refined. • U L-edge XANES demonstrates the U is hexavalent. • Rare example of a perovskite containing vacancies at the octahedral B-site. • Y vacancies result in a distortion of the BO{sub 6} octahedra.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spanjers, Charles S.; Sim, Richard S.; Sturgis, Nicholas P.
2015-10-30
The structures of ZnO-supported Ni catalysts were explored with in situ X-ray absorption spectroscopy, temperature-programmed reduction, X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy, and electron energy loss spectroscopy. Calcination of nickel nitrate on a nanoparticulate ZnO support at 450 °C results in the formation of Zn-doped NiO (ca. N₀̣̣₈₅ Zn₀̣̣₁₅O) nanoparticles with the rock salt crystal structure. Subsequent in situ reduction monitored by X-ray absorption near-edge structure (XANES) at the Ni K edge reveals a direct transformation of the Zn-doped NiO nanoparticles to a face-centered cubic alloy, Ni 1-xZn x, at ~400 °C with x increasingmore » with increasing temperature. Both in situ XANES and ex situ HRTEM provide evidence for intermetallic β₁-NiZn formation at ~550 °C. In comparison to a Ni/SiO₂ catalyst, Ni/ZnO necessitates a higher temperature for the reduction of Ni II to Ni⁰, which highlights the strong interaction between Ni and the ZnO support. The catalytic activity for acetylene removal from an ethylene feed stream is decreased by a factor of 20 on Ni/ZnO in comparison to Ni/SiO₂. The decrease in catalytic activity of Ni/ZnO is accompanied by a reduced absolute selectivity to ethylene. H–D exchange measurements demonstrate a reduced ability of Ni/ZnO to dissociate hydrogen in comparison to Ni/SiO₂.These results of the catalytic experiments suggest that the catalytic properties are controlled, in part, by the zinc oxide support and stress the importance of reporting absolute ethylene selectivity for the catalytic semihydrogenation of acetylene in excess ethylene.« less
Co-doping of (Bi(0.5)Na(0.5))TiO(3): secondary phase formation and lattice site preference of Co.
Schmitt, V; Staab, T E M
2012-11-14
Bismuth sodium titanate (Bi(0.5)Na(0.5))TiO(3) (BNT) is considered to be one of the most promising lead-free alternatives to piezoelectric lead zirconate titanate (PZT). However, the effect of dopants on the material has so far received little attention from an atomic point of view. In this study we investigated the effects of cobalt-doping on the formation of additional phases and determined the preferred lattice site of cobalt in BNT. The latter was achieved by comparing the measured x-ray absorption near-edge structure (XANES) spectra to numerically calculated spectra of cobalt on various lattice sites in BNT. (Bi(0.5)Na(0.5))TiO(3) + x mol% Co (x = 0.0, 0.5, 1.0, 2.6) was synthesized via solid state reaction. As revealed by SEM backscattering images, a secondary phase formed in all doped specimens. Using both XRD and SEM-EDX, it was identified as Co(2)TiO(4) for dopant levels >0.5 mol%. In addition, a certain amount of cobalt was incorporated into BNT, as shown by electron probe microanalysis. This amount increased with increasing dopant levels, suggesting that an equilibrium forms together with the secondary phase. The XANES experiments revealed that cobalt occupies the octahedral B-site in the BNT perovskite lattice, substituting Ti and promoting the formation of oxygen vacancies in the material.
Getsoian, Andrew "Bean"; Das, Ujjal; Camacho-Bunquin, Jeffrey; ...
2016-06-13
Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. Furthermore, these findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less
NASA Astrophysics Data System (ADS)
Trcera, Nicolas; Cabaret, Delphine; Rossano, Stéphanie; Farges, François; Flank, Anne-Marie; Lagarde, Pierre
2009-05-01
X-ray absorption spectroscopy at the Mg K-edge is used to obtain information on magnesium environment in minerals, silicate and alumino-silicate glasses. First-principles XANES calculations are performed for minerals using a plane-wave density functional formalism with core-hole effects treated in a supercell approach. The good agreement obtained between experimental and theoretical spectra provides useful information to interpret the spectral features. With the help of calculation, the position of the first peak of XANES spectra is related to both coordination and polyhedron distortion changes. In alumino-silicate glasses, magnesium is found to be mainly 5-fold coordinated to oxygen whatever the aluminum saturation index value. In silicate glasses, magnesium coordination increases from 4 in Cs-, Rb- and K-bearing glasses to 5 in Na- and Li-bearing glasses but remains equal as the polymerization degree of the glass varies. The variation of the C feature (position and intensity) is strongly related to the alkali type providing information on the medium range order.
Chemical and structural order in silicon oxynitrides by methods of surface physics
NASA Astrophysics Data System (ADS)
Finster, J.; Heeg, J.; Klinkenberg, E.-D.
A large number of thin amorphous layers of SiO xN y and several (crystalline) reference compounds (SiO 2, Si 3N 4, Si 2N 2O) are studied. Although XANES and SEXAFS are well sulted to derive structural and chemical order, for these compounds many problems remain to be solved. We show how core level spectra (XPS, AES) can be used to gain such information (e.g. random bonding structure, N coordination, oxidation behaviour).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmand, Maryam
2013-05-19
The development of better energy conversion and storage devices, such as fuel cells and batteries, is crucial for reduction of our global carbon footprint and improving the quality of the air we breathe. However, both of these technologies face important challenges. The development of lower cost and better electrode materials, which are more durable and allow more control over the electrochemical reactions occurring at the electrode/electrolyte interface, is perhaps most important for meeting these challenges. Hence, full characterization of the electrochemical processes that occur at the electrodes is vital for intelligent design of more energy efficient electrodes. X-ray absorption spectroscopymore » (XAS) is a short-range order, element specific technique that can be utilized to probe the processes occurring at operating electrode surfaces, as well for studying the amorphous materials and nano-particles making up the electrodes. It has been increasingly used in recent years to study fuel cell catalysts through application of the and #916; and mgr; XANES technique, in combination with the more traditional X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques. The and #916; and mgr; XANES data analysis technique, previously developed and applied to heterogeneous catalysts and fuel cell electrocatalysts by the GWU group, was extended in this work to provide for the first time space resolved adsorbate coverages on both electrodes of a direct methanol fuel cell. Even more importantly, the and #916; and mgr; technique was applied for the first time to battery relevant materials, where bulk properties such as the oxidation state and local geometry of a cathode are followed.« less
XRF and XANES Data for Kaplan U Paper
The dataset contains two XRF images of iron and uranium distribution on plant roots and a database of XANES data used to produce XANES spectra figure for Figure 7 in the published paper.This dataset is associated with the following publication:Kaplan, D., R. Kukkadapu, J. Seaman, B. Arey, A. Dohnalkova, S. Buettner, D. Li, T. Varga, K. Scheckel, and P. Jaffe. Iron Mineralogy and Uranium-Binding Environment in the Rhizosphere of a Wetland Soil. D. Barcelo SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 569: 53-64, (2016).
NASA Astrophysics Data System (ADS)
Farges, François; Brown, Gordon E.
1997-05-01
The coordination environment of Ti(IV) in seven natural and synthetic glasses of basaltic, trachytic, rhyolitic composition as well as four tektites has been studied using high-resolution Ti K-edge x-ray absorption near edge structure (XANES) spectroscopy at ambient temperature and pressure. Pre-edge features of Ti K-edge XANES spectra for these glasses suggest that [5]Ti is the dominant Ti coordination in all volcanic glasses. However, in the less polymerized glasses studied (basaltic and trachytic), [6]Ti is also important (30-50% of the total Ti) but [4]Ti was not detected. In contrast, [4]Ti is important in the most polymerized glasses (rhyolites and tektites) (from 30 to 60% of the total Ti depending on NBO/T) with [6]Ti below the detection level (≈10 at%). The local structure around Ti in the natural volcanic glasses is similar to that observed in compositionally similar synthetic silicate glasses and also in Ti-bearing silicate glass and melts with simpler compositions. The presence of F, Cl, and H 2O does not appear to affect the coordination of Ti, based on Ti K-edge XANES measurements of natural glasses bearing these volatile components. In contrast, the presence of nonbridging oxygens (produced by network modifiers) favors [5]Ti in these glass/melts. In parallel, [4]Ti is important when nonbridging oxygens are at small concentrations (NBO/T < 0.1). [6]Ti is detected (i.e., when present >10% of the total Ti) when alkaline-earths are dominant over alkalis, in agreement with bond-valence predictions for Ti-bearing silicate glass/melts below TiO 2 saturation. The abundance of [5]Ti in these silicate glasses (and presumably their melts) is in sharp contrast with the rarity of this Ti coordination state in common rock-forming minerals. Titanium cannot readily enter the structure of most rock-forming minerals, because it is present dominantly as titanyl-bearing ( [5]TiO) units in most natural magmas. In contrast, [6]Ti and [4]Ti (present, respectively, in basic and acidic magmas) are better able to enter inosilicates, but these coordination states represent only a fraction of the Ti in basalts, explaining the usually moderate level of incompatibility of Ti during magmatic differentiation. Finally, [5]Ti transforms to [6]Ti during crystallization of Ti-rich minerals (ilmenite, rutile, pyrochlore).
NASA Astrophysics Data System (ADS)
Furman, O.; Toner, B. M.; Sebestyen, S. D.; Kolka, R. K.; Nater, E. A.
2014-12-01
As part of the "Spruce and Peatland Responses Under Climate and Environmental Change" (SPRUCE) experiment, we made initial measurements of sulfur speciation in peat. These observations represent a "time-zero" relative to the intended soil warming experiment which begins in 2015. Total sulfur and sulfur speciation were measured in peat cores (solid phase) from nine plots (hollows and hummocks) to a depth of 2 m. Peat samples were packed under nitrogen and frozen in the field immediately after collection. All subsequent sample storage, handling, and processing were conducted under inert gas. Sulfur speciation was measured using bulk sulfur 1s X-ray absorption near edge structure (XANES) spectroscopy at the SXRMB instrument at the Canadian Light Source, Saskatoon, SK, Canada and at the 9-BM instrument, Advanced Photon Source, Argonne National Laboratory, IL, USA. Total sulfur concentrations ranged from 968 to 4077 mg sulfur / kg dry peat. Sulfur content increased with depth from 2 g sulfur / m2 in the 0-10 cm increment to a maximum value of 38 g sulfur / m2 in the 50-60 cm increment. These sulfur loadings produced high quality XANES spectra. The nine cores exhibited reproducible trends with depth in both total sulfur and specific sulfur species; however, variability in sulfur speciation was greatest in the top 40 cm. All sulfur detected within the peat solids was in an organic form. The most abundant sulfur species group was composed of organic mono-sulfide and thiol forms, representing approximately half of the total sulfur at all depths. Sulfonate and ester-sulfate species were 10-15 mol% of sulfur and exhibited low variability with depth. A subsurface maximum in organic di-sulfide was observed in the 20-30 cm depth increment, which is the transition zone between transiently oxidized acrotelm and permanently saturated anaerobic catotelm. Quantification of major sulfur pools is important for the SPRUCE experiment as they are likely to be indicators of changes in the oxidation-reduction (redox) status, and mercury methylation potential, of the peat in response to warming and enhanced carbon dioxide.
Near-edge study of gold-substituted YBa2Cu3O(7-delta)
NASA Technical Reports Server (NTRS)
Ruckman, Mark W.; Hepp, Aloysius F.
1991-01-01
The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using X-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.
Near-edge study of gold-substituted YBa2Cu3O(7-delta)
NASA Technical Reports Server (NTRS)
Ruckman, Mark W.; Hepp, Aloysius F.
1991-01-01
The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using x-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.
Phase transitions in biogenic amorphous calcium carbonate.
Gong, Yutao U T; Killian, Christopher E; Olson, Ian C; Appathurai, Narayana P; Amasino, Audra L; Martin, Michael C; Holt, Liam J; Wilt, Fred H; Gilbert, P U P A
2012-04-17
Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC · H(2)O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC · H(2)O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC · H(2)O in vitro.
Phase transitions in biogenic amorphous calcium carbonate
Gong, Yutao U. T.; Killian, Christopher E.; Olson, Ian C.; Appathurai, Narayana P.; Amasino, Audra L.; Martin, Michael C.; Holt, Liam J.; Wilt, Fred H.; Gilbert, P. U. P. A.
2012-01-01
Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC·H2O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC·H2O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC·H2O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC·H2O in vitro. PMID:22492931
NASA Astrophysics Data System (ADS)
Morard, G.; Boccato, S.; Rosa, A. D.; Anzellini, S.; Miozzi Ferrini, F.; Laura, H.; Garbarino, G.; Harmand, M.; Guyot, F. J.; Boulard, E.; Kantor, I.; Irifune, T.; Torchio, R.
2017-12-01
Iron is the main constituent of planetary cores. Studying its phase diagram under high pressure is necessary to constrain properties of planetary interiors, and to model key parameters such as the generation of magnetic field. Though, strong controversy on the melting curve of pure Fe still remains. Recently, Aquilanti et al, (PNAS, 2015) reported a Fe melting curved based on XANES measurements which is in open disagreement with previous X-ray diffraction results (Anzellini et al, Science, 2013). Discrepancies in the melting temperature exceed several hundred degrees close to Mbar pressures, which may be related to differences in temperature measurement techniques, melting diagnostics, or to chemical reactions of the sample with the surrounding medium. We therefore performed new in situ high P/T XANES experiments on pure Fe (up to 115 GPa and 4000 K) at the ESRF beamline ID24, combining the energy dispersive absorption set up with laser heated diamond anvil cells. X-ray diffraction maps were collected from all recovered samples in order to identify and characterize laser-heated spots. The XANES melting criterion was further cross checked by analyzing the recovered sample textures using FIB cutting techniques and SEM imaging. We found systematically that low melting temperatures are related to the presence of Fe3C, implying that in those cases chemical reactions occurred during heating resulting in carbon contamination from the diamonds. These low melting points fall onto the melting line reported by Aquilanti et al, (2015). Uncontaminated points are in agreement with the melting curve of Anzellini et al, (2013) within their uncertainties. Moreover, this data set allowed us to refine the location of the triple point in the Fe phase diagram at 105 (±10) GPa and 3600 (±200) K, which may imply a small kink in the melting curve around this point. This refined Fe phase diagram could be then used to compute thermodynamic models for planetary cores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etschmann, B.; Ryan, C; Brugger, J
2010-01-01
Synchrotron X-ray fluorescence (SXRF) and X-ray absorption spectroscopy (XAS) have become standard tools to measure element concentration, distribution at micrometer- to nanometer-scale, and speciation (e.g., nature of host phase; oxidation state) in inhomogeneous geomaterials. The new Maia X-ray detector system provides a quantum leap for the method in terms of data acquisition rate. It is now possible to rapidly collect fully quantitative maps of the distribution of major and trace elements at micrometer spatial resolution over areas as large as 1 x 5 cm{sup 2}. Fast data acquisition rates also open the way to X-ray absorption near-edge structure (XANES) imaging,more » in which spectroscopic information is available at each pixel in the map. These capabilities are critical for studying inhomogeneous Earth materials. Using a 96-element prototype Maia detector, we imaged thin sections of an oxidized pisolitic regolith (2 x 4.5 mm{sup 2} at 2.5 x 2.5 {micro}m{sup 2} pixel size) and a metamorphosed, sedimentary exhalative Mn-Fe ore (3.3 x 4 mm{sup 2} at 1.25 x 5 {micro}m{sup 2}). In both cases, As K-edge XANES imaging reveals localized occurrence of reduced As in parts of these oxidized samples, which would have been difficult to recognize using traditional approaches.« less
Determining the Oxygen Fugacity of Lunar Pyroclastic Glasses Using Vanadium Valence - An Update
NASA Technical Reports Server (NTRS)
Karner, J. M.; Sutton, S. R.; Papike, J. J.; Shearer, C. K.; Jones, J. H.; Newville, M.
2004-01-01
We have been developing an oxygen barometer based on the valence state of V (V(2+), V(3+), V(4+), and V(5+)) in solar system basaltic glasses. The V valence is determined by synchrotron micro x-ray absorption near edge structure (XANES), which uses x-ray absorption associated with core-electronic transitions (absorption edges) to reveal a pre-edge peak whose intensity is directly proportional to the valence state of an element. XANES has advantages over other techniques that determine elemental valence because measurements can be made non-destructively in air and in situ on conventional thin sections at a micrometer spatial resolution with elemental sensitivities of approx. 100 ppm. Recent results show that fO2 values derived from the V valence technique are consistent with fO2 estimates determined by other techniques for materials that crystallized above the IW buffer. The fO2's determined by V valence (IW-3.8 to IW-2) for the lunar pyroclastic glasses, however, are on the order of 1 to 2.8 log units below previous estimates. Furthermore, the calculated fO2's decrease with increasing TiO2 contents from the A17 VLT to the A17 Orange glasses. In order to investigate these results further, we have synthesized lunar green and orange glasses and examined them by XANES.
Nanoparticulate mackinawite formation; a stopped and continuous flow XANES and EXAFS investigation
NASA Astrophysics Data System (ADS)
Butler, I. B.; Bell, A. M.; Charnock, J. M.; Rickard, D.; Vaughan, D. J.; Oldroyd, A.
2009-12-01
The sequestration of sulfur and iron within sedimentary iron sulfides, and ultimately as pyrite, is a major sink in global biogeochemical cycles of those elements and has impacts on global carbon and oxygen cycles. The formation of the metastable black iron (II) monosulfide mackinawite is a key process because mackinawite forms in aqueous solutions where the Fe(II) and S(-II) IAP exceeds mackinawite’s Ksp. Mackinawite is the first formed iron sulfide phase, a consequence of Ostwald’s step rule and is a reactant phase during the formation of thermodynamically stable sedimentary iron sulfide minerals such as pyrite. The reaction of dissolved Fe(II) and sulfide is extremely fast and reactions in the environmentally significant near-neutral pH range tend to completion in <1 second. We have combined stopped and continuous flow techniques with X-ray absorption spectroscopy to evaluate the products of the fast precipitation kinetics of mackinawite over millisecond timescales. EXAFS spectra and data collected during flow experiments were compared with those from a well characterised freeze-dried nanoparticulate mackinawite standard and with published data. Published work has used Rietveld crystal structure refinement to determine bond distances of 2.2558 and 2.5976Å for Fe-S and Fe-Fe respectively. In our experiments Fe K edge XANES is consistent with tetrahedrally coordinated Fe in the precipitated sulfide phase. EXAFS data show that local Fe-S and Fe-Fe coordination and interatomic distances (Fe-S = 2.24Å; Fe-Fe = 2.57Å) are consistent with those determined for the standard mackinawite and published data. The coordination and spacing are developed in the precipitated phase after <10ms reaction at pH5, and considerably faster in experiments at near neutral to alkaline pH. No evidence for phases structurally intermediate between hexaqua Fe(II) and precipitated mackinawite was observed. Aqueous FeS° cluster complexes previously identified as intermediates during mackinawite formation and iron sulfide mineral transformations did not contribute significantly to the EXAFS spectra collected. For environmental, geological and biogeochemical applications, the precipitation of the mineral mackinawite can be considered to proceed rapidly from aqueous Fe(II) and S(-II) ions to the nanoparticulate crystalline mineral. The materials labelled “disordered mackinawite”, or “amorphous FeS” phase which have been widely quoted in the iron sulfide literature do not form at any stage of the precipitation of mackinawite from aqueous solutions. Physical and chemical properties previously ascribed to an amorphous or disordered structure are a consequence of the nanoparticulate form of the first precipitated solid.
In Situ Characterization of Mesoporous Co/CeO 2 Catalysts for the High-Temperature Water-Gas Shift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vovchok, Dimitriy; Guild, Curtis J.; Dissanayake, Shanka
Here, mesoporous Co/CeO 2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO 2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTSmore » analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.« less
In Situ Characterization of Mesoporous Co/CeO 2 Catalysts for the High-Temperature Water-Gas Shift
Vovchok, Dimitriy; Guild, Curtis J.; Dissanayake, Shanka; ...
2018-04-04
Here, mesoporous Co/CeO 2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO 2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTSmore » analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.« less
Evolution of the macromolecular structure of sporopollenin during thermal degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, S.; Benzerara, K.; Beyssac, O.
Reconstructing the original biogeochemistry of organic microfossils requires quantifying the extent of the chemical transformations they experienced during burial and maturation processes. In the present study, fossilization experiments have been performed using modern sporopollenin chosen as an analogue for the resistant biocompounds possibly constituting the wall of many organic microfossils. Sporopollenin powder has been processed thermally under argon atmosphere at different temperatures (up to 1000 °C) for varying durations (up to 900 min). Solid residues of each experiment have been characterized using infrared, Raman and synchrotron-based XANES spectroscopies. Results indicate that significant defunctionalisation and aromatization affect the molecular structure ofmore » sporopollenin with increasing temperature. Two distinct stages of evolution with temperature are observed: in a first stage, sporopollenin experiences dehydrogenation and deoxygenation simultaneously (below 500 °C); in a second stage (above 500 °C) an increasing concentration in aromatic groups and a lateral growth of aromatic layers are observed. With increasing heating duration (up to 900 min) at a constant temperature (360 °C), oxygen is progressively lost and conjugated carbon–carbon chains or domains grow progressively, following a log-linear kinetic behavior. Based on the comparison with natural spores fossilized within metasediments which experienced intense metamorphism, we show that the present experimental simulations may not perfectly mimic natural diagenesis and metamorphism. Moreover, performing such laboratory experiments provides key insights on the processes transforming biogenic molecules into molecular fossils.« less
Evolution of the macromolecular structure of sporopollenin during thermal degradation
Bernard, S.; Benzerara, K.; Beyssac, O.; ...
2015-10-01
Reconstructing the original biogeochemistry of organic microfossils requires quantifying the extent of the chemical transformations they experienced during burial and maturation processes. In the present study, fossilization experiments have been performed using modern sporopollenin chosen as an analogue for the resistant biocompounds possibly constituting the wall of many organic microfossils. Sporopollenin powder has been processed thermally under argon atmosphere at different temperatures (up to 1000 °C) for varying durations (up to 900 min). Solid residues of each experiment have been characterized using infrared, Raman and synchrotron-based XANES spectroscopies. Results indicate that significant defunctionalisation and aromatization affect the molecular structure ofmore » sporopollenin with increasing temperature. Two distinct stages of evolution with temperature are observed: in a first stage, sporopollenin experiences dehydrogenation and deoxygenation simultaneously (below 500 °C); in a second stage (above 500 °C) an increasing concentration in aromatic groups and a lateral growth of aromatic layers are observed. With increasing heating duration (up to 900 min) at a constant temperature (360 °C), oxygen is progressively lost and conjugated carbon–carbon chains or domains grow progressively, following a log-linear kinetic behavior. Based on the comparison with natural spores fossilized within metasediments which experienced intense metamorphism, we show that the present experimental simulations may not perfectly mimic natural diagenesis and metamorphism. Moreover, performing such laboratory experiments provides key insights on the processes transforming biogenic molecules into molecular fossils.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.
Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less
Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; ...
2017-02-10
Nitrogen-doped graphene oxides (GO:N x) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH 2) 2 ]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:N x synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in whichmore » each N-atom trigonally bonds to three distinct sp 2 -hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:N x . The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.« less
The local structure and ferromagnetism in Fe-implanted SrTiO3 single crystals
NASA Astrophysics Data System (ADS)
Lobacheva, O.; Chavarha, M.; Yiu, Y. M.; Sham, T. K.; Goncharova, L. V.
2014-07-01
We report a connection between the local structure of low-level Fe impurities and vacancies as the cause of ferromagnetic behavior observed in strontium titanate single crystals (STO), which were implanted with Fe and Si ions at different doses then annealed in oxygen. The effects of Fe doping and post-implantation annealing of STO were studied by X-ray Absorption Near Edge Structure (XANES) spectroscopy and Superconducting Quantum Interference Device magnetometry. XANES spectra for Fe and Ti K- and L-edge reveal the changes in the local environment of Fe and Ti following the implantation and annealing steps. The annealing in oxygen atmosphere partially healed implantation damages and changed the oxidation state of the implanted iron from metallic Fe0 to Fe2+/Fe3+ oxide. The STO single crystals were weak ferromagnets prior to implantation. The maximum saturation moment was obtained after our highest implantation dose of 2 × 1016 Fe atom/cm2, which could be correlated with the metallic Fe0 phases in addition to the presence of O/Ti vacancies. After recrystallization annealing, the ferromagnetic response disappears. Iron oxide phases with Fe2+ and Fe3+ corresponding to this regime were identified and confirmed by calculations using Real Space Multiple Scattering program (FEFF9).
EXAFS and XANES analysis of oxides at the nanoscale.
Kuzmin, Alexei; Chaboy, Jesús
2014-11-01
Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.). As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS) analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS) is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs) and iron oxide nanoparticles.
NASA Astrophysics Data System (ADS)
Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung
2017-02-01
Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.
XANES Identification of Plutonium Speciation in RFETS Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
LoPresti, V.; Conradson, S.D.; Clark, D.L.
2009-06-03
Using primarily X-ray absorption near edge spectroscopy (XANES) with standards run in tandem with samples, probable plutonium speciation was determined for 13 samples from contaminated soil, acid-splash or fire-deposition building interior surfaces, or asphalt pads from the Rocky Flats Environmental Technology Site (RFETS). Save for extreme oxidizing situations, all other samples were found to be of Pu(IV) speciation, supporting the supposition that such contamination is less likely to show mobility off site. EXAFS analysis conducted on two of the 13 samples supported the validity of the XANES features employed as determinants of the plutonium valence.
Micron to Mine: Synchrotron Science for Mineral Exploration, Production, and Remediation
NASA Astrophysics Data System (ADS)
Banerjee, N.; Van Loon, L.; Flynn, T.
2017-12-01
Synchrotron science for mineral exploration, production, and remediation studies is a powerful tool that provides industry with relevant micron to macro geochemical information. Synchrotron micro X-ray fluorescence (SR-µXRF) offers a direct, high-resolution, rapid, and cost-effective chemical analysis while preserving the context of the sample by mapping ore minerals with ppm detection limits. Speciation of trace and deleterious elements can then be probed using X-ray absorption near-edge structure (XANES) spectroscopy. Large-scale (tens of cm) µXRF mapping and XANES analysis of samples collected at various mine locations have been undertaken to address questions regarding mineralization history to develop novel trace element exploration vectors. This information provides integral insights into trace element associations with ore minerals, local redox conditions responsible for mineralization, and mineralizing mechanisms. Gold is commonly intimately associated with sulfide mineralization (e.g., pyrite, arsenopyrite, etc.) and is present both as inclusions and filling fractures in sulfide grains. Gold may also occur as nanoparticles and/or in the sulfide mineral crystal lattice, known as "invisible gold". Understanding the nature and distribution of invisible gold in ore is integral to processing efficiency. The high flux and energy of a synchrotron light source allows for the detection of invisible gold by µXRF, and can probe its nature (metallic Au0 vs. lattice bound Au1+) using XANES spectroscopy. The long-term containment and management of arsenic is necessary to protect the health of both humans and the environment. Understanding the relationship of arsenic mineralization to gold deposits can lead to more sophisticated planning for mineral processing and the eventual storage of gangue materials. µXANES spectroscopy is an excellent tool for determining arsenic speciation within the context of the sample. Mineral phases such as arsenopyrite, scorodite, and arsenic trioxide can be accurately identified as well as relative amounts determined. With this information the oxidation-reduction of arsenic-bearing compounds can be monitored to optimize management practices for the long-term capture of arsenic contaminants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukerjee, S.; Ziegelbauer, J; Arruda, T
Over the last few decades, researchers have made significant developments in producing more advanced electrocatalytic materials for power generation applications. For example, traditional fuel cell catalysts often involve high-priced precious metals such as Pt. However, in order for fuel cells to become commercially viable, there is a need to reduce or completely remove precious metal altogether. As a result, a myriad of novel, unconventional materials have been explored such as chalcogenides, porphyrins, and organic-metal-macrocycles for low/medium temperature fuel cells as well as enzymatic and microbial fuel cells. As these materials increasingly become more complex, researchers often find themselves in searchmore » of new characterization methods, especially those which are allow in situ and operando measurements with element specificity. One such method that has received much attention for analysis of electrocatalytic materials is X-ray absorption spectroscopy (XAS). XAS is an element specific, core level absorption technique which yields structural and electronic information. As a core electron method, XAS requires an extremely bright source, hence a synchrotron. The resulting intensity of synchrotron radiation allow for experiments to be conducted in situ, under electrochemically relevant conditions. Although a bulk-averaging technique requiring rigorous mathematical manipulation, XAS has the added benefit that it can probe materials which possess no long range order. This makes it ideal to characterize nano-scale electrocatalysts. XAS experiments are conducted by ramping the X-ray photon energy while measuring absorption of the incident beam the sample or by counting fluorescent photons released from a sample due to subsequent relaxation. Absorption mode XAS follows the Beer-Lambert Law, {mu}x = log(I{sub 0}/I{sub t}) (1) where {mu} is the absorption coefficient, x is the sample thickness and I{sub 0} and I{sub t} are the intensities of the incident and transmission beams respectively. When the energy of the incident X-rays exceed the electron binding energy (E{sub 0}) of the element under investigation, the electron is ejected from the core to available excited states in the form of a photoelectron with kinetic energy: E{sub k} = h? - E{sub 0} (2) with, E{sub k} being the kinetic energy of the released photoelectron and h? the energy of the incident beam. In general, the X-ray absorption spectrum is broken down into two distinct energy regions: the X-ray absorption near-edge structure or XANES (-50eV {le} E{sub 0} {le} 50eV) and the extended X-ray absorption fine-structure or EXAFS (50eV {le} E{sub 0} {le} {approx}1000eV). The XANES region is dominated by low-energy photoelectrons which undergo multiple scattering events. As such, it can reveal information about oxidation state, local symmetry, electronic structure, and the extent of oxidation of a material. Due to this complex multiple scattering, there is no simple XANES equation to describe it quantitatively. However, recent advancements in computers and the evolution of numerical methods such as the FEFF code have made possible reliable XANES simulations. Photoelectrons in the EXAFS region have high enough E{sub k} to undergo primarily single back-scattering events. These back-scattered photoelectrons interfere with the outgoing photoelectrons, causing the oscillations in the absorption spectrum. Using the previously developed EXAFS equations it is now possible to model EXAFS data to determine coordination numbers, bond distances, and mean-square disorder (commonly referred to as Debye-Waller factor). EXAFS data is often shown by Fourier Transforming KSpace into distance, r, space where the total magnitude is plotted against the radial coordinates. This allow for easy qualitative comparison of samples. Employing EXAFS on nanoscale materials has the added advantage that it can quantitatively illustrate changes in atom-atom coordination, which can be related to particle size or morphology. Overall this technique enables the measurement of both bulk and surface adsorbed species with element specificity under actual electrochemical operating conditions. Thus this represents the one of the most powerful methods to understand the exact role of the reaction center and degradation processes such as sintering and corrosion.« less
Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.; ...
2017-01-26
Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less
Crystal structure and magnetic properties of Sr 4Mn 2NiO 9
NASA Astrophysics Data System (ADS)
El Abed, Ahmed; Gaudin, Etienne; Lemaux, Sylvain; Darriet, Jacques
2001-12-01
The crystal structure of Sr 4Mn 2NiO 9 has been refined on single crystal. This phase belongs to the series A 1+ x(A 'xB 1- x)O 3 ( x=1/3) related to the 2H-hexagonal perovskite. The structure contains transition metals in chains of oxide polyhedra (trigonal prisms and octahedra); neighboring chains are separated from each other by the Sr atoms. The sequence of the face sharing polyhedra along the chains is two octahedra + one trigonal prism. Mn occupies the octahedra and Ni is disordered in the trigonal prism with ≈80% in the pseudo square faces of the prism and ≈20% at the centre. This result has been confirmed by XANES experiments at Mn K and Ni K edges, respectively. Sr 4Mn 2NiO 9 is antiferromagnetic with a Néel temperature at T=3 K. The Curie constant measured at high temperature is in good agreement with ≈80% of the Ni 2+ ions in the spin state configuration S=0.
Correlated XANES, TEM, and NanoSIMS of presolar graphite grains
NASA Astrophysics Data System (ADS)
Groopman, Evan E.; Nittler, Larry R.
2018-01-01
We report correlated XANES, TEM, and NanoSIMS measurements of twelve presolar graphite grains extracted from primitive meteorites and for which isotopic data indicate predominantly Type-II supernovae origins. We find continued evidence for isotopic heterogeneities in presolar graphite grains, including the first observation of a radial gradient in the inferred initial 26Al/27Al within a presolar graphite grain. The XANES spectra of these samples show a variety of minor absorbances near the C K-edge, attributable to vinyl-keto, aliphatic, carboxyl, and carbonate molecules, as well as possible damage during sample preparation. Each sample exhibits homogeneous C K-edge XANES spectra within the graphite, however, showing no correlation with isotopic heterogeneities. Gradients in the isotope ratios of C, N, O, and Al could be due to both processes during condensation, e.g., mixing in stellar ejecta and granular transport, and post-condensation effects, such as isotope dilution and exchange with isotopically normal material in the early Solar System or laboratory, the latter of which is a significant issue for high-density presolar graphite grains. It remains unknown whether the mechanisms behind isotope exchange would also affect the local chemistry and therefore the XANES spectra. Ti L-edge XANES from most Ti-rich subgrains match standard spectra for TiC and potentially TiCN. A rare rutile (TiO2) subgrain has been identified, though it lacks the lowest energy L3 peak typically seen in standard spectra. Ca has also been identified by EDXS in TiC subgrains, likely due to the decay of live 44Ti at the time of formation. Future NanoSIMS measurements will determine the variability of initial 44Ti in TiC subgrains, an important constraint on mixing in the ejecta of the grains' parent supernovae.
D-DIA High Pressure Facility at the Australian Synchrotron: First Results
NASA Astrophysics Data System (ADS)
Rushmer, T. A.; Wykes, J.
2016-12-01
The recent acquisition of a D-DIA type cubic multi-anvil apparatus for use at the Australian Synchrotron provides exciting opportunities for conducting a wide range of in situ experiments at high pressure and temperature. The MQ-AS D-DIA apparatus was designed as a mobile system capable of moving between beamlines. The apparatus was installed at the XAS beamline in May, 2016 and experiments performed since then include 1) a proof-of-concept in situ U and Th L3-edge XANES study of MORB liquid; 2) a proof-of-concept falling sphere viscometry of silicate liquid; and 3) room temperature transmission XANES in the high pressure assembly at energies as low as the Ga K-edge and as high as Sb K-edge. The MQ-AS D-DIA apparatus comprises a 350 ton ram in a four post press frame. The press is installed on a positioning table with motorised X-Y-Z-θ axes capable of positioning accuracy of <10 microns. The Rockland Research D-DIA module is equipped with 4 mm and 6 mm TEL anvils, capable of producing maximum sample pressure of 6 GPa. Stepper motors drive the main and differential ram hydraulic pressure generators in a control loop closed by pressure transducers. Samples are heated by graphite resistance furnaces driven by a Eurotherm 3504 PID controller driving a 5 V 200 A step down transformer via a phase angle power controller. Temperature is monitored via a thermocouple and power by true RMS voltage and current transducers. The XAS beamline at the Australian Synchrotron comprises a 1.9 T 40 pole wiggler, a bendable collimating mirror, a Si(111) / Si(311) DCM and a toroidal focussing mirror. Accessible energies are 5-34 keV with photon fluxes of 108-1012 photons/sec at the sample. Here we present an overview of our recent results. More detailed results of the in situ U and Th L3-edge XANES study are presented by Mallmann et al. (this meeting). In situ imaging and XRD experiments with the D-DIA apparatus on the AS Imaging and Medical Beamline are planned for the coming year.
Timoshenko, J.; Shivhare, A.; Scott, R. W.; ...
2016-06-30
We adopted ab-initio X-ray Absorption Near Edge Structure (XANES) modelling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modelling, where the candidate structures are known, and the inverse modelling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by following the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.
Kinetics of Molybdenum Adsorption and Desorption in Soils.
Sun, Wenguang; Selim, H Magdi
2018-05-01
Much uncertainty exists in mechanisms and kinetics controlling the adsorption and desorption of molybdenum (Mo) in the soil environment. To investigate the characteristics of Mo adsorption and desorption and predict Mo behavior in the vadose zone, kinetic batch experiments were performed using three soils: Webster loam, Windsor sand and Mahan sand. Adsorption isotherms for Mo were strongly nonlinear for all three soils. Strong kinetic adsorption of Mo by all soils was also observed, where the rate of retention was rapid initially and was followed by slow retention behavior with time. The time-dependent Mo sorption rate was not influenced when constant pH was maintained. Desorption or release results indicated that there were significant fractions of Mo that appeared to be irreversible or slowly reversibly sorbed by Windsor and Mahan. X-ray absorption near edge structure (XANES) analysis for Windsor and Mahan soils indicated that most of Mo had been bound to kaolinite, whereas Webster had similar XANES features to those of Mo sorbed to montmorillonite. A sequential extraction procedure provided evidence that a significant amount of Mo was irreversibly sorbed. A multireaction model (MRM) with nonlinear equilibrium and kinetic sorption parameters was used to describe the adsorption-desorption kinetics of Mo on soils. Our results demonstrated that a formulation of MRM with two sorption sites (equilibrium and reversible) successfully described Mo adsorption-desorption data for Webster loam, and an additional irreversible reaction phase was recommended to describe Mo desorption or release with time for Windsor and Mahan soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Chang, Feng-Ming; Wu, Zong-Zhe; Lin, Yen-Fu; Kao, Li-Chi; Wu, Cheng-Ta; JangJian, Shiu-Ko; Chen, Yuan-Nian; Lo, Kuang Yao
2018-03-01
The condition of the beam current in the implantation process is a key issue in the damage rate and structural evolution in the sequent annealing process, especially for ultra-shallow layers. In this work, we develop a compensative optical method combined with UV Raman, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near edge spectroscopy (XANES) to inspect the influence of the beam current in the implantation process. The optima condition of the beam current in the implantation process is determined by higher effective Si-B bond portion in UV Raman spectra and less the peak of B-B bond in XPS spectra which is caused by B cluster defects. Results of XANES indicate that the B oxide layer is formed on the surface of the ultra-shallow junction. The defects in the ultra-shallow junction after annealing are analyzed by novel optical analyses, which cannot be inspected by a traditional thermal wave and resistance measurement. This work exhibits the structural variation of the ultra-shallow junction via a variant beam current and provides a valuable metrology in examining the chemical states and the effective activation in the implantation technology.
Žižić, Milan; Dučić, Tanja; Grolimund, Daniel; Bajuk-Bogdanović, Danica; Nikolic, Miroslav; Stanić, Marina; Križak, Strahinja; Zakrzewska, Joanna
2015-09-01
Vanadium speciation in the fungus Phycomyces blakesleeanus was examined by X-ray absorption near-edge structure (XANES) spectroscopy, enabling assessment of oxidation states and related molecular symmetries of this transition element in the fungus. The exposure of P. blakesleeanus to two physiologically important vanadium species (V(5+) and V(4+)) resulted in the accumulation of this metal in central compartments of 24 h old mycelia, most probably in vacuoles. Tetrahedral V(5+), octahedral V(4+), and proposed intracellular complexes of V(5+) were detected simultaneously after addition of a physiologically relevant concentration of V(5+) to the mycelium. A substantial fraction of the externally added V(4+) remained mostly in its original form. However, observable variations in the pre-edge-peak intensities in the XANES spectra indicated intracellular complexation and corresponding changes in the molecular coordination symmetry. Vanadate complexation was confirmed by (51)V NMR and Raman spectroscopy, and potential binding compounds including cell-wall constituents (chitosan and/or chitin), (poly)phosphates, DNA, and proteins are proposed. The evidenced vanadate complexation and reduction could also explain the resistance of P. blakesleeanus to high extracellular concentrations of vanadium.
µ-XANES AND µ-XRF INVESTIGATIONS OF METAL BINDING MECHANISMS IN BIOSOLIDS
Micro-X-ray fluorescence (µ-XRF) microprobe analysis and micro-X-ray absorption near edge spectroscopy (µ-XANES) were employed to identify Fe and Mn phases and their association with selected toxic elements in two biosolids (limed composted and Nu-Earth) containing low ...
Speciation Mapping of Environmental Samples Using XANES Imaging
Fast X-ray detectors with large solid angles and high dynamic ranges open the door to XANES imaging, in which millions of spectra are collected to image the speciation of metals at micrometre resolution, over areas up to several square centimetres. This paper explores how such mu...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getsoian, Andrew "Bean"; Das, Ujjal; Camacho-Bunquin, Jeffrey
Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. Furthermore, these findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey
Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less
Light in the darkening on Naica gypsum crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castillo-Sandoval, I.; Fuentes-Cobas, L. E.; Esparza-Ponce, H. E.
2015-07-23
Naica mine is located in a semi-desertic region at the central-south of Chihuahua State. The Cave of Swords was discovered in 1910 and the Cave of Crystals 90 years later at Naica mines. It is expected that during the last century the human presence has changed the microclimatic conditions inside the cave, resulting in the deterioration of the crystals and the deposition of impurities on gypsum surfaces. As a contribution to the clarification of the mentioned issues, the present work refers to the use of synchrotron radiation for the identification of phases on these surfaces. All the experiments were performedmore » at the Stanford Synchrotron Radiation Lightsource. Grazing incidence X-ray diffraction (GIXRD) and radiography-aided X-ray diffraction (RAXRD) experiments were performed at beamline 11-3. X-Ray micro-fluorescence (μ-SXRF) and micro-X-ray absorption (μ-XANES) were measured at beamline 2-3. Representative results obtained may be summarized as follows: a) Gypsum, galena, sphalerite, hematite and cuprite at the surface of the gypsum crystals were determined. b) The samples micro-structure is affected by impurities. c) The elemental distributions and correlations (0.6-0.9) of Cu, K, Fe, Mn, Pb, Zn, Ca and S were identified by μ-SXRF. The correlations among elemental contents confirmed the phase identification, with the exception of manganese and potassium due to the amorphous nature of some impurity compounds in these samples. The compounds hematite (Fe{sub 2}O{sub 3}), β-MnO{sub 2}, Mn{sub 2}O{sub 3}, MnO and/or MnCO{sub 3}, PbS, PbCO{sub 3} and/or PbSO4, ZnO{sub 4}, ZnS and/or smithsonite (ZnCO{sub 3}), CuS + Cu Oxide were identified by XANES. Plausibly, these latter compounds do not form crystalline phases.« less
NASA Astrophysics Data System (ADS)
Jugo, Pedro J.; Wilke, Max; Botcharnikov, Roman E.
2010-05-01
XANES analyses at the sulfur K-edge were used to determine the oxidation state of S in natural and synthetic basaltic glasses and to constrain the fO2 conditions for the transition from sulfide (S2-) to sulfate (S6+) in silicate melts. XANES spectra of basaltic samples from the Galapagos spreading center, the Juan de Fuca ridge and the Lau Basin showed a dominant broad peak at 2476.8 eV, similar to the spectra obtained from synthetic sulfide-saturated basalts and pyrrhotite. An additional sharp peak at 2469.8 eV, similar to that of crystalline sulfides, was present in synthetic glasses quenched from hydrous melts but absent in anhydrous glasses and may indicate differences in sulfide species with hydration or presence of minute sulfide inclusions exsolved during quenching. The XANES spectra of a basalt from the 1991 eruption of Mount Pinatubo, Philippines, and absarokitic basalts from the Cascades Range, Oregon, U.S.A., showed a sharp peak at 2482.8 eV, characteristic of synthetic sulfate-saturated basaltic glasses and crystalline sulfate-bearing minerals such as haüyne. Basaltic samples from the Lamont Seamount, the early submarine phase of Kilauea volcano and the Loihi Seamount showed unequivocal evidence of the coexistence of S2- and S6+ species, emphasizing the relevance of S6+ to these systems. XANES spectra of basaltic glasses synthesized in internally-heated pressure vessels and equilibrated at fO2 ranging from FMQ-1.7 to FMQ+2.7 showed systematic changes in the features related to S2- and S6+ with changes in fO2. No significant features related to sulfite (S4+) species were observed. These results were used to construct a function that allows estimates of S6+/ΣS from XANES data. Theoretical considerations and comparison of compiled S6+/ΣS data obtained by SKα shifts estimated with electron probe microanalysis (EPMA) and S6+/ΣS obtained from XANES spectra show that data obtained from EPMA measurements underestimate S6+/ΣS in samples that are sulfate-dominated (most likely because of photo-reduction effects during analysis) whereas S6+/ΣS data from XANES provide a close match to the expected theoretical values. The XANES-derived relationship for S6+/ΣS as a function of fO2 indicates that the transition from S2- to S6+ with increasing fO2 occurs over a narrower interval than what is predicted by the EPMA-derived relationship. The implications for natural systems is that small variation of fO2 above FMQ+1 will have a large effect on S behavior in basaltic systems, in particular regarding the amount of S that can be transported by basaltic melts before sulfide saturation can occur.
NASA Astrophysics Data System (ADS)
Jugo, Pedro J.; Wilke, Max; Botcharnikov, Roman E.
2010-10-01
XANES analyses at the sulfur K-edge were used to determine the oxidation state of S species in natural and synthetic basaltic glasses and to constrain the fO 2 conditions for the transition from sulfide (S 2-) to sulfate (S 6+) in silicate melts. XANES spectra of basaltic samples from the Galapagos spreading center, the Juan de Fuca ridge and the Lau Basin showed a dominant broad peak at 2476.8 eV, similar to the spectra obtained from synthetic sulfide-saturated basalts and pyrrhotite. An additional sharp peak at 2469.8 eV, similar to that of crystalline sulfides, was present in synthetic glasses quenched from hydrous melts but absent in anhydrous glasses and may indicate differences in sulfide species with hydration or presence of minute sulfide inclusions exsolved during quenching. The XANES spectra of a basalt from the 1991 eruption of Mount Pinatubo, Philippines, and absarokitic basalts from the Cascades Range, Oregon, USA, showed a sharp peak at 2482.8 eV, characteristic of synthetic sulfate-saturated basaltic glasses and crystalline sulfate-bearing minerals such as hauyne. Basaltic samples from the Lamont Seamount, the early submarine phase of Kilauea volcano and the Loihi Seamount showed unequivocal evidence of the coexistence of S 2- and S 6+ species, emphasizing the relevance of S 6+ to these systems. XANES spectra of basaltic glasses synthesized in internally-heated pressure vessels and equilibrated at fO 2 ranging from FMQ - 1.4 to FMQ + 2.7 showed systematic changes in the features related to S 2- and S 6+ with changes in fO 2. No significant features related to sulfite (S 4+) species were observed. These results were used to construct a function that allows estimates of S 6+/ΣS from XANES data. Comparison of S 6+/ΣS data obtained by S Kα shifts measured with electron probe microanalysis (EPMA), S 6+/ΣS obtained from XANES spectra, and theoretical considerations show that data obtained from EPMA measurements underestimate S 6+/ΣS in samples that are sulfate-dominated (most likely because of photo-reduction effects during analysis) whereas S 6+/ΣS from XANES provide a close match to the expected theoretical values. The XANES-derived relationship for S 6+/ΣS as a function of fO 2 indicates that the transition from S 2- to S 6- with increasing fO 2 occurs over a narrower interval than what is predicted by the EPMA-derived relationship. The implications for natural systems is that small variation of fO 2 above FMQ + 1 will have a large effect on S behavior in basaltic systems, in particular regarding the amount of S that can be transported by basaltic melts before sulfide saturation can occur.
NASA Technical Reports Server (NTRS)
Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.
2000-01-01
Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.
Photo-oxidative doping in π-conjugated zig-zag chain of carbon atoms with sulfur-functional group
NASA Astrophysics Data System (ADS)
Ikeura-Sekiguchi, Hiromi; Sekiguchi, Tetsuhiro
2017-12-01
Photo-oxidative doping processes were studied for the trans-polyacetylene backbone with the -SCH3 side group as a chemically representative of the precisely controlled S-functionalized zig-zag graphene nanoribbon edge. Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy indicates that photochemical reaction of S-CH3 with atmospheric O2 forms selectively oxidized products such as -S(O)CH3 and -SO3- bound to the polyacetylene (PA) backbone. Using the correlation between the oxidation states of sulfur and the XANES peak positions, the partial charge distribution of CH3Sδ+-PAδ- has been estimated. Such positively charged sulfur atoms can attract higher electronegative oxygen atoms and expect to enhance the photooxidization capabilities. The formation of the -SO3- side group is evidently responsible for hole doping into the PA backbone. The results can provide some strategy for area-selective and controllable doping processes of atomic-scale molecular systems with the assistance of UV light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Gary; Pendyala, Venkat Ramana Rao; Martinelli, Michela
XANES K-edge spectra of potassium promoter in precipitated Fe catalysts were acquired following activation by carburization in CO and as a function of time on-stream during the course of a Fischer–Tropsch synthesis run for a 100Fe:2K catalyst by withdrawing catalysts, sealed in wax product, for analysis. CO-activated and end-of-run spectra of the catalyst were also obtained for a 100Fe:5K catalyst. Peaks representing electronic transitions and multiple scattering were observed and resembled reference spectra for potassium carbonate or potassium formate. The shift in the multiple scattering peak to higher energy was consistent with sintering of potassium promoter during the course ofmore » the reaction test. The catalyst, however, retained its carbidic state, as demonstrated by XANES and EXAFS spectra at the iron K-edge, suggesting that sintering of potassium did not adversely affect the carburization rate, which is important for preventing iron carbides from oxidizing. This method serves as a starting point for developing better understanding of the chemical state and changes in structure occurring with alkali promoter.« less
Hiratoko, Tatsuya; Yoshiasa, Akira; Nakatani, Tomotaka; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa
2013-07-01
XANES (X-ray absorption near-edge structure) spectra of the Ti K-edges of ATiO3 (A = Ca and Sr), A2TiO4 (A = Mg and Fe), TiO2 rutile and TiO2 anatase were measured in the temperature range 20-900 K. Ti atoms for all samples were located in TiO6 octahedral sites. The absorption intensity invariant point (AIIP) was found to be between the pre-edge and post-edge. After the AIIP, amplitudes damped due to Debye-Waller factor effects with temperature. Amplitudes in the pre-edge region increased with temperature normally by thermal vibration. Use of the AIIP peak intensity as a standard point enables a quantitative comparison of the intensity of the pre-edge peaks in various titanium compounds over a wide temperature range.
Studies on absorption coefficient near edge of multi elements
NASA Astrophysics Data System (ADS)
Eisa, M. H.; Shen, H.; Yao, H. Y.; Mi, Y.; Zhou, Z. Y.; Hu, T. D.; Xie, Y. N.
2005-12-01
X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained.
Speciation of copper diffused in a bi-porous molecular sieve
NASA Astrophysics Data System (ADS)
Huang, C.-H.; Paul Wang, H.; Wei, Y.-L.; Chang, J.-E.
2010-07-01
To better understand diffusion of copper in the micro- and mesopores, speciation of copper in a bi-porous molecular sieve (BPMS) possessing inter-connecting 3-D micropores (0.50-0.55 nm) and 2-D mesopores (4.1 nm) has been studied by X-ray absorption near edge structure (XANES) spectroscopy. It is found that about 77% (16% of CuO nanoparticles and 61% of CuO clusters) and 23% (CuO ads) of copper can be diffused into the meso- and micropores, respectively, in the BPMS. At least two diffusion steps in the BPMS may be involved: (i) free diffusion of copper in the mesopores and (ii) diffusion-controlled copper migrating into the micropores of the BPMS. The XANES data also indicate that diffusion rate of copper in the BPMS (4.68×10 -5 g/s) is greater than that in the ZSM-5 (1.11×10 -6 g/s) or MCM-41 (1.17×10 -5 g/s).
Oxidation of shallow conduit magma: Insight from μ-XANES analysis on volcanic ash particle
NASA Astrophysics Data System (ADS)
Miwa, T.; Ishibashi, H.; Iguchi, M.
2014-12-01
Redox state of magma is important to understand dynamics of volcanic eruptions because magma properties such as composition of degassed volatiles, stability field of minerals, and rheology of magma depend on redox state. To evaluate redox state of magma, Fe3+/ΣFe ratio [= Fe3+/( Fe3++ Fe2+)] of volcanic glass has been measured non-destructively by Fe-K edge μ-XANES (micro X-ray Absorption Near Edge Structure) spectroscopy (e.g., Cottrell and Kelly, 2011). We performed textural, compositional, and Fe-K edge μ-XANES analyses on volcanic ash to infer oxidation process of magma at shallow conduit during eruption at Bromo Volcano, Indonesia. The volcanic ash particles were collected in 24th March 2011 by real-time sampling from ongoing activity. The activity was characterized by strombolian eruption showing magma head ascended to near the ground surface. The ash sample contains two type of volcanic glasses named as Brown and Black glasses (BrG and BlG), based on their color. Textual analysis shows microlite crystallinities are same in the two type of glasses, ranging from 0 to 3 vol.%. EPMA analyses show that all of the glasses have almost identical andesitic composition with SiO2 = 60 wt.%. In contrast, Fe-K edge μ-XANES spectra with the analytical method by Ishibashi et al. (in prep) demonstrate that BrG (Fe3+/ΣFe = 0.20-0.26) is more oxidized than BlG (Fe3+/ΣFe = 0.32-0.60). From combination of the glass composition, the measured Fe3+/ΣFe ratio and 1060 degree C of temperature (Kress and Carmichael, 1991), the oxygen fugacities are estimated to be NNO and NNO+4 for BrG and BlG, respectively. The volcanic glasses preserve syn-eruptive physicochemical conditions by rapid quenching due to their small size ranging from 125 to 250 μm. Our results demonstrate that BrG and BlG magmas are textually and chemically identical but their redox conditions are different at the eruption. The oxidation of magma can be caused by following two processes; 1) diffusive transport of oxygen, and 2) dissociation reaction of hydrogen from magma head. The two processes should be easy to occur in shallower region of the conduit. Therefore we suggest BlG magma existed in shallower part of the conduit than BrG magma. The K-edge μ-XANES analysis can be strong tool for understanding on degassing and ascent process of magma at shallow conduit.
XANES analyses of silicon crystalline irradiated by nitrogen/oxygen ions.
Yoshida, T; Hara, T; Li, T; Yoshida, H; Tanabe, T
2001-03-01
X-ray absorption techniques have been applied to the characterization of 5 keV nitrogen / oxygen ions implanted silicon samples. The depth selective measurement of XANES by recording in PEY mode and the quantitative analysis by superposition of XANES spectra were carried out to elucidate the depth profile of implanted ions. It has been revealed that the silicon nitride phase were formed in silicon after prolonged N+ irradiation and it extended over the deep part of the damaged region from the surface. On the other hand, for the O+ irradiation, silicon dioxide phase were produced only in the shallow part of the damaged region, i.e., the silicon dioxide phase likely broke off during the irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paknahad, Elham; Grosvenor, Andrew P.
Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigatemore » the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.« less
NASA Astrophysics Data System (ADS)
Paknahad, Elham; Grosvenor, Andrew P.
2017-12-01
Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigate the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.
Location and Electronic Nature of Phosphorus in the Si Nanocrystal − SiO2 System
König, Dirk; Gutsch, Sebastian; Gnaser, Hubert; Wahl, Michael; Kopnarski, Michael; Göttlicher, Jörg; Steininger, Ralph; Zacharias, Margit; Hiller, Daniel
2015-01-01
Up to now, no consensus exists about the electronic nature of phosphorus (P) as donor for SiO2-embedded silicon nanocrystals (SiNCs). Here, we report on hybrid density functional theory (h-DFT) calculations of P in the SiNC/SiO2 system matching our experimental findings. Relevant P configurations within SiNCs, at SiNC surfaces, within the sub-oxide interface shell and in the SiO2 matrix were evaluated. Atom probe tomography (APT) and its statistical evaluation provide detailed spatial P distributions. For the first time, we obtain ionisation states of P atoms in the SiNC/SiO2 system at room temperature using X-ray absorption near edge structure (XANES) spectroscopy, eliminating structural artefacts due to sputtering as occurring in XPS. K energies of P in SiO2 and SiNC/SiO2 superlattices (SLs) were calibrated with non-degenerate P-doped Si wafers. results confirm measured core level energies, connecting and explaining XANES spectra with h-DFT electronic structures. While P can diffuse into SiNCs and predominantly resides on interstitial sites, its ionization probability is extremely low, rendering P unsuitable for introducing electrons into SiNCs embedded in SiO2. Increased sample conductivity and photoluminescence (PL) quenching previously assigned to ionized P donors originate from deep defect levels due to P. PMID:25997696
NASA Astrophysics Data System (ADS)
Zhu, Jian; Luo, Wugan; Chen, Dongliang; Xu, Wei; Ming, Chaofang; Wang, Changsui; Wang, Lihua
2013-04-01
Blue and white porcelain is one of the most valuable ancient ceramics varieties in ancient China. It is well known for its beautiful blue decorations. However, the origin of its blue color has not been very clear till now. In this research, two blue and white porcelains from Jingdezhen, Jiangxi province were selected and Mn and Fe K-edge XANES spectra were recorded from blue decorations with or without transparent glaze. Results showed that Mn K-edge XANES features were almost identical between different samples while that of iron changed. The above findings indicated the positive role of iron in the variation of blue decorations. As for manganese, although more system researches were need, its negative role on the variations of the tone of blue decorations was obtained. On the other hand, the paper also revealed the XAFS results will be affect by the glaze layer above the pigment. These findings provided us more information to understand the coloring origin of blue decorations of blue-and-white porcelain by means of XANES spectroscopy.
Bañuelos, Gary S.; Fakra, Sirine C.; Walse, Spencer S.; Marcus, Matthew A.; Yang, Soo In; Pickering, Ingrid J.; Pilon-Smits, Elizabeth A.H.; Freeman, John L.
2011-01-01
The organ-specific accumulation, spatial distribution, and chemical speciation of selenium (Se) were previously unknown for any species of cactus. We investigated Se in Opuntia ficus-indica using inductively coupled plasma mass spectrometry, microfocused x-ray fluorescence elemental and chemical mapping (μXRF), Se K-edge x-ray absorption near-edge structure (XANES) spectroscopy, and liquid chromatography-mass spectrometry (LC-MS). μXRF showed Se concentrated inside small conic, vestigial leaves (cladode tips), the cladode vasculature, and the seed embryos. Se K-edge XANES demonstrated that approximately 96% of total Se in cladode, fruit juice, fruit pulp, and seed is carbon-Se-carbon (C-Se-C). Micro and bulk XANES analysis showed that cladode tips contained both selenate and C-Se-C forms. Inductively coupled plasma mass spectrometry quantification of Se in high-performance liquid chromatography fractions followed by LC-MS structural identification showed selenocystathionine-to-selenomethionine (SeMet) ratios of 75:25, 71:29, and 32:68, respectively in cladode, fruit, and seed. Enzymatic digestions and subsequent analysis confirmed that Se was mainly present in a “free” nonproteinaceous form inside cladode and fruit, while in the seed, Se was incorporated into proteins associated with lipids. μXRF chemical mapping illuminated the specific location of Se reduction and assimilation from selenate accumulated in the cladode tips into the two LC-MS-identified C-Se-C forms before they were transported into the cladode mesophyll. We conclude that Opuntia is a secondary Se-accumulating plant whose fruit and cladode contain mostly free selenocystathionine and SeMet, while seeds contain mainly SeMet in protein. When eaten, the organic Se forms in Opuntia fruit, cladode, and seed may improve health, increase Se mineral nutrition, and help prevent multiple human cancers. PMID:21059825
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banuelos, Gary S.; Fakra, Sirine C.; Walse, Spencer S.
The organ-specific accumulation, spatial distribution, and chemical speciation of selenium (Se) were previously unknown for any species of cactus. We investigated Se in Opuntia ficus-indica using inductively coupled plasma mass spectrometry, microfocused x-ray fluorescence elemental and chemical mapping ({micro}XRF), Se K-edge x-ray absorption near-edge structure (XANES) spectroscopy, and liquid chromatography-mass spectrometry (LC-MS). {micro}XRF showed Se concentrated inside small conic, vestigial leaves (cladode tips), the cladode vasculature, and the seed embryos. Se K-edge XANES demonstrated that approximately 96% of total Se in cladode, fruit juice, fruit pulp, and seed is carbon-Se-carbon (C-Se-C). Micro and bulk XANES analysis showed that cladode tipsmore » contained both selenate and C-Se-C forms. Inductively coupled plasma mass spectrometry quantification of Se in high-performance liquid chromatography fractions followed by LC-MS structural identification showed selenocystathionine-to-selenomethionine (SeMet) ratios of 75:25, 71:29, and 32:68, respectively in cladode, fruit, and seed. Enzymatic digestions and subsequent analysis confirmed that Se was mainly present in a 'free' nonproteinaceous form inside cladode and fruit, while in the seed, Se was incorporated into proteins associated with lipids. {micro}XRF chemical mapping illuminated the specific location of Se reduction and assimilation from selenate accumulated in the cladode tips into the two LC-MS-identified C-Se-C forms before they were transported into the cladode mesophyll. We conclude that Opuntia is a secondary Se-accumulating plant whose fruit and cladode contain mostly free selenocystathionine and SeMet, while seeds contain mainly SeMet in protein. When eaten, the organic Se forms in Opuntia fruit, cladode, and seed may improve health, increase Se mineral nutrition, and help prevent multiple human cancers.« less
Spectromicroscopy of boron in human glioblastomas following administration of Na2B12H11SH.
Gilbert, B; Perfetti, L; Fauchoux, O; Redondo, J; Baudat, P A; Andres, R; Neumann, M; Steen, S; Gabel, D; Mercanti, D; Ciotti, M T; Perfetti, P; Margaritondo, G; De Stasio, G
2000-07-01
Boron neutron capture therapy (BNCT) is an experimental, binary treatment for brain cancer which requires as the first step that tumor tissue is targeted with a boron-10 containing compound. Subsequent exposure to a thermal neutron flux results in destructive, short range nuclear reaction within 10 microm of the boron compound. The success of the therapy requires than the BNCT agents be well localized in tumor, rather than healthy tissue. The MEPHISTO spectromicroscope, which performs microchemical analysis by x-ray absorption near edge structure (XANES) spectroscopy from microscopic areas, has been used to study the distribution of trace quantities of boron in human brain cancer tissues surgically removed from patients first administered with the compound Na2B12H11SH (BSH). The interpretation of XANES spectra is complicated by interference from physiologically present sulfur and phosphorus, which contribute structure in the same energy range as boron. We addressed this problem with the present extensive set of spectra from S, B, and P in relevant compounds. We demonstrate that a linear combination of sulfate, phosphate and BSH XANES can be used to reproduce the spectra acquired on boron-treated human brain tumor tissues. We analyzed human glioblastoma tissue from two patients administered and one not administered with BSH. As well as weak signals attributed to BSH, x-ray absorption spectra acquired from tissue samples detected boron in a reduced chemical state with respect to boron in BSH. This chemical state was characterized by a sharp absorption peak at 188.3 eV. Complementary studies on BSH reference samples were not able to reproduce this chemical state of boron, indicating that it is not an artifact produced during sample preparation or x-ray exposure. These data demonstrate that the chemical state of BSH may be altered by in vivo metabolism.
NASA Astrophysics Data System (ADS)
Gaur, A.; Klysubun, W.; Soni, Balram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-10-01
X-ray absorption spectroscopy (XAS) is very useful in revealing the information about geometric and electronic structure of a transition-metal absorber and thus commonly used for determination of metal-ligand coordination. But XAFS analysis becomes difficult if differently coordinated metal centers are present in a system. In the present investigation, existence of distinct coordination geometries around metal centres have been studied by XAFS in a series of trimesic acid Cu(II) complexes. The complexes studied are: Cu3(tma)2(im)6 8H2O (1), Cu3(tma)2(mim)6 17H2O (2), Cu3(tma)2(tmen)3 8.5H2O (3), Cu3(tma) (pmd)3 6H2O (ClO4)3 (4) and Cu3(tma)2 3H2O (5). These complexes have not only Cu metal centres with different coordination but in complexes 1-3, there are multiple coordination geometries present around Cu centres. Using XANES spectra, different coordination geometries present in these complexes have been identified. The variation observed in the pre-edge features and edge features have been correlated with the distortion of the specific coordination environment around Cu centres in the complexes. XANES spectra have been calculated for the distinct metal centres present in the complexes by employing ab-initio calculations. These individual spectra have been used to resolve the spectral contribution of the Cu centres to the particular XANES features exhibited by the experimental spectra of the multinuclear complexes. Also, the variation in the 4p density of states have been calculated for the different Cu centres and then correlated with the features originated from corresponding coordination of Cu. Thus, these spectral features have been successfully utilized to detect the presence of the discrete metal centres in a system. The inferences about the coordination geometry have been supported by EXAFS analysis which has been used to determine the structural parameters for these complexes.
Speciation of Mg in biogenic calcium carbonates
NASA Astrophysics Data System (ADS)
Farges, F.; Meibom, A.; Flank, A.-M.; Lagarde, P.; Janousch, M.; Stolarski, J.
2009-11-01
A selection of marine biominerals, mostly aragonitic coral skeletons were probed at the Mg K-edge by XANES spectroscopy coupled to μXRF methods and compared to an extensive set of relevant model compounds (silicates, carbonates, oxides and organic). Extensive methodologies are required to better describe the speciation of Mg in those minerals. A combination of ab-initio XANES calculations for defective clusters around Mg in aragonite together with wavelets analyzes of the XANES region are required to robustly interpret the spectra. When using those methodologies, the speciation of Mg ranges from a magnesite-type environment in some scleractinian corals to an organic-type environment. In all environments, the Mg-domains probed appear to be less than 1 nm in size.
The Valence of Iron in CM Chondrite Serpentine as Measured by Synchrotron Xanes
NASA Technical Reports Server (NTRS)
Mikouchi, T.; Zolensky, Michael E.; Satake, W.; Le, L.
2012-01-01
Fe-bearing phyllosilicates are the dominant product of aqueous alteration in carbonaceous chondrites, and serpentine is the most abundant phyllosilicate in CM2 chondrites that are the most abundant carbonaceous chondrite. Browning et al. predicted that Fe(3+)/(sum of Fe) ratios of serpentine in CM chondrites should change with progressive alteration. They proposed that progressive CM alteration is best monitored by evaluating the progress of Si and Fe3+ substitutions that necessarily attend the transition from end-member cronstedtite to serpentine. Their proposed Mineralogic Alteration Index, 2-(Fe(3+)/(2-Si)), was intended to highlight and utilize the relevant ex-change information in the stoichiometric phyllosilicate formulas based upon the coupled substitution of 2(Fe(3+), Al) = Si + (Mg, Fe(2+)...) in serpentine. The value of this ratio increases as alteration proceeds. We always wanted to directly test Browning s pre-diction through actual measurements of the Fe3+ con-tent of serpentine at the micron scale appropriate to EPMA analyses (Zega et al. have measured it at much finer scale), and this test can now be made using Synchrotron Radiation X-ray Absorption Near-Edge Structure (SR-XANES). Thus, we have recently begun investigation with CMs that span a large portion of the range of observed aqueous alteration, and we first analyzed Murray, Nogoya, and ALH84029 by SR-XANES. However, we did not find clear correlation between Fe3+/(sum of Fe) ratios of serpentine and their alteration degrees. We thus analyzed serpentine in three more CMs and here report their Fe3+/(sum of Fe) ratios in comparison with our previous results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helz, R. T.; Cottrell, E.; Brounce, M. N.
The 1959 summit eruption of Kmore » $$\\bar{i}$$lauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most K$$\\bar{i}$$lauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems.« less
NASA Astrophysics Data System (ADS)
Paque, J. M.; Sutton, S. R.; Simon, S. B.; Beckett, J. R.; Burnett, D. S.; Grossman, L.; Yurimoto, H.; Itoh, S.; Connolly, H. C.
2013-10-01
Ti valence measurements in MgAl2O4 spinel from calcium-aluminum-rich inclusions (CAIs) by X-ray absorption near-edge structure (XANES) spectroscopy show that many spinels have predominantly tetravalent Ti, regardless of host phases. The average spinel in Allende type B1 inclusion TS34 has 87% Ti+4. Most spinels in fluffy type A (FTA) inclusions also have high Ti valence. In contrast, the rims of some spinels in TS34 and spinel grain cores in two Vigarano type B inclusions have larger amounts of trivalent titanium. Spinels from TS34 have approximately equal amounts of divalent and trivalent vanadium. Based on experiments conducted on CAI-like compositions over a range of redox conditions, both clinopyroxene and spinel should be Ti+3-rich if they equilibrated with CAI liquids under near-solar oxygen fugacities. In igneous inclusions, the seeming paradox of high-valence spinels coexisting with low-valence clinopyroxene can be explained either by transient oxidizing conditions accompanying low-pressure evaporation or by equilibration of spinel with relict Ti+4-rich phases (e.g., perovskite) prior to or during melting. Ion probe analyses of large spinel grains in TS34 show that they are enriched in heavy Mg, with an average Δ25Mg of 4.25 ± 0.028‰, consistent with formation of the spinel from an evaporating liquid. Δ25Mg shows small, but significant, variation, both within individual spinels and between spinel and adjacent melilite hosts. The Δ25Mg data are most simply explained by the low-pressure evaporation model, but this model has difficulty explaining the high Ti+4 concentrations in spinel.
Arsenic speciation and reactivity in poultry litter
Arai, Y.; Lanzirotti, A.; Sutton, S.; Davis, J.A.; Sparks, D.L.
2003-01-01
Recent U.S. government action to lower the maximum concentration levels (MCL) of total arsenic (As) (10 ppb) in drinking water has raised serious concerns about the agricultural use of As-containing biosolids such as poultry litter (PL). In this study, solid-state chemical speciation, desorbability, and total levels of As in PL and long-term amended soils were investigated using novel synchrotronbased probing techniques (microfocused (??) synchrotron X-ray fluorescence (SXRF) and ??-X-ray absorption near-edge structure (XANES) spectroscopies) coupled with chemical digestion and batch experiments. The total As levels in the PL were as high as ???50 mg kg-1, and As(II/III and V) was always concentrated in abundant needle-shaped microscopic particles (???20/ ??m x 850 ??m) associated with Ca, Cu, and Fe and to a lesser extent with S, CI, and Zn. Postedge XANES features of litter particles are dissimilar to those of the organo-As(V) compound in poultry feed (i.e., roxarsone), suggesting possible degradation/transformation of roxarsone in the litter and/or in poultry digestive tracts. The extent of As desorption from the litter increased with increasing time and pH from 4.5 to 7, but at most 15% of the total As was released after 5 d at pH 7, indicating the presence of insoluble phases and/or strongly retained soluble compounds. No significant As accumulation (< 15 mg kg-1) was found in long-term PL-a mended agricultural surface soils. This suggests that As in the PL may have undergone surface and subsurface transport processes. Our research results raise concerns about long-term PL amendment effects on As contamination in surrounding soilwater environments.
Systematic XAS study on the reduction and uptake of Tc by magnetite and mackinawite.
Yalçıntaş, Ezgi; Scheinost, Andreas C; Gaona, Xavier; Altmaier, Marcus
2016-11-28
The mechanisms for the reduction and uptake of Tc by magnetite (Fe 3 O 4 ) and mackinawite (FeS) are investigated using X-ray absorption spectroscopy (XANES and EXAFS), in combination with thermodynamic calculations of the Tc/Fe systems and accurate characterization of the solution properties (pH m , pe, [Tc]). Batch sorption experiments were performed under strictly anoxic conditions using freshly prepared magnetite and mackinawite in 0.1 M NaCl solutions with varying initial Tc(vii) concentrations (2 × 10 -5 and 2 × 10 -4 M) and Tc loadings (400-900 ppm). XANES confirms the complete reduction of Tc(vii) to Tc(iv) in all investigated systems, as predicted from experimental (pH m + pe) measurements and thermodynamic calculations. Two Tc endmember species are identified by EXAFS in the magnetite system, Tc substituting for Fe in the magnetite structure and Tc-Tc dimers sorbed to the magnetite {111} faces through a triple bond. The sorption endmember is favoured at higher [Tc], whereas incorporation prevails at low [Tc] and less alkaline pH conditions. The key role of pH in the uptake mechanism is interpreted in terms of magnetite solubility, with higher [Fe] and greater recrystallization rates occurring at lower pH values. A TcS x -like phase is predominant in all investigated mackinawite systems, although the contribution of up to 20% of TcO 2 ·xH 2 O(s) (likely as surface precipitate) is observed for the highest investigated loadings (900 ppm). These results provide key inputs for an accurate mechanistic interpretation of the Tc uptake by magnetite and mackinawite, so far controversially discussed in the literature, and represent a highly relevant contribution to the investigation of Tc retention processes in the context of nuclear waste disposal.
Adsorption of enrofloxacin in presence of Zn(II) on a calcareous soil.
Graouer-Bacart, Mareen; Sayen, Stéphanie; Guillon, Emmanuel
2015-12-01
As a result of their consumption, excretion, disposal and persistence, antibiotics enter the soil environment and may be transported to surface and ground waters. During their transfer through soils, retention processes play a key role in their mobility. Antibiotics often coexist with heavy metals in soils due to agricultural practices and other sources of inputs. In this context, this study deals with the co-adsorption of Zn(II) and enrofloxacin (ENR), a widely-used veterinary antibiotic, on a calcareous soil using batch retention experiments and X-ray Absorption Near Edge Structure (XANES) spectroscopy. To improve our understanding of the interaction of this emerging organic contaminant with metal cations at the water-soil interface, the ternary system containing ENR, Zn(II) and a selected calcareous soil was investigated over a pH range between 7 and 10, at different solid-solution contact times and ENR concentrations. The presence of Zn(II) slightly influenced the retention of the antibiotic, leading to an increase of the adsorbed ENR amounts. The distribution coefficient Kd value increased from 0.66 Lg(-1) for single ENR adsorption to 1.04 Lg(-1) in presence of Zn(II) at a 1/2 ENR/Zn(II) ratio. The combination of adsorption isotherm data, solution speciation diagrams and XANES spectra evidenced a small proportion of Zn(II)-ENR complexes at soil pH leading to the slight increase of ENR adsorption in presence of zinc. These results suggest that it is necessary to consider the interaction between ENR and metal cations when assessing the mobility of ENR in soils. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempson, Ivan M.; Henry, Dermot A.; U. South Australia)
2010-08-26
Fresh physical evidence about the demise of the racehorse Phar Lap (see photograph) has been gathered from the study of mane hair samples by synchrotron radiation analysis with high resolution X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) analyses. The results are indicative of arsenic ingestion and metabolism, and show that the racing champion died from arsenic poisoning.
Cs(2)K(UO)(2)Si(4)O(12): a mixed-valence uranium(IV,V) silicate.
Lee, Cheng-Shiuan; Wang, Sue-Lein; Lii, Kwang-Hwa
2009-10-28
The first mixed-valence uranium(IV,V) silicate is synthesized under high-temperature, high-pressure hydrothermal conditions. The structure contains chains of corner-sharing U(IV,V)O(6) octahedra which are interconnected by Si(4)O(12) four-membered rings to form a 3-D framework. XPS and XANES spectra were measured to identify the valence state of uranium.
NASA Astrophysics Data System (ADS)
Coutaud, Margot; Méheut, Merlin; Glatzel, Pieter; Pokrovski, Gleb S.; Viers, Jérôme; Rols, Jean-Luc; Pokrovsky, Oleg S.
2018-01-01
Despite the importance of phototrophic biofilms in metal cycling in freshwater systems, metal isotope fractionation linked to metal adsorption and uptake by biofilm remains very poorly constrained. Here, copper isotope fractionation by a mature phototrophic biofilm during Cu surface adsorption and incorporation was studied in batch reactor (BR) and open drip flow reactor (DFR) systems at ambient conditions. X-ray Absorption Spectroscopy (both Near Edge Structure, XANES, and Extended Fine Structure, EXAFS) at Cu K-edge of the biofilm after its interaction with Cu in BR experiments allowed characterizing the molecular structure of assimilated Cu and quantifying the degree of CuII to CuI reduction linked to Cu assimilation. For both BR and DFR experiments, Cu adsorption caused enrichment in heavy isotope at the surface of the biofilm relative to the aqueous solution, with an apparent enrichment factor for the adsorption process, ε65Cuads, of +1.1 ± 0.3‰. In contrast, the isotope enrichment factor during copper incorporation into the biofilm (ε65Cuinc) was highly variable, ranging from -0.6 to +0.8‰. This variability of the ε65Cuinc value was likely controlled by Cu cellular uptake via different transport pathways resulting in contrasting fractionation. Specifically, the CuII storage induced enrichment in heavy isotope, whereas the toxicity response of the biofilm to Cu exposure resulted in reduction of CuII to CuI, thus yielding the biofilm enrichment in light isotope. EXAFS analyses suggested that a major part of the Cu assimilated by the biofilm is bound to 5.1 ± 0.3 oxygen or nitrogen atoms, with a small proportion of Cu linked to sulfur atoms (NS < 0.6) of sulfhydryl groups. XANES analyses showed that the proportion of CuIIvs CuI, compared to the initial CuII/CuI ratio, decreased by 14% after the first hour of reaction and by 6% after 96 h of reaction. The value of ε65Cuinc of the biofilm exhibited a similar trend over time of exposure. Our study demonstrates the complexity of biological processes associated with live phototrophic biofilms, which produce large and contrasting isotope fractionations following rather small Cu redox and speciation changes during uptake, storage or release of the metal, i.e., favoring heavy isotopes during complexation with carboxylate ligands and light isotopes during reduction of CuII-O/N to CuI-sulfhydryl moieties.
Uranium association with iron-bearing phases in mill tailings from Gunnar, Canada.
Othmane, Guillaume; Allard, Thierry; Morin, Guillaume; Sélo, Madeleine; Brest, Jessica; Llorens, Isabelle; Chen, Ning; Bargar, John R; Fayek, Mostafa; Calas, Georges
2013-11-19
The speciation of uranium was studied in the mill tailings of the Gunnar uranium mine (Saskatchewan, Canada), which operated in the 1950s and 1960s. The nature, quantification, and spatial distribution of uranium-bearing phases were investigated by chemical and mineralogical analyses, fission track mapping, electron microscopy, and X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies at the U LIII-edge and Fe K-edge. In addition to uranium-containing phases from the ore, uranium is mostly associated with iron-bearing minerals in all tailing sites. XANES and EXAFS data and transmission electron microscopy analyses of the samples with the highest uranium concentrations (∼400-700 mg kg(-1) of U) demonstrate that uranium primarily occurs as monomeric uranyl ions (UO2(2+)), forming inner-sphere surface complexes bound to ferrihydrite (50-70% of the total U) and to a lesser extent to chlorite (30-40% of the total U). Thus, the stability and mobility of uranium at the Gunnar site are mainly influenced by sorption/desorption processes. In this context, acidic pH or alkaline pH with the presence of UO2(2+)- and/or Fe(3+)-complexing agents (e.g., carbonate) could potentially solubilize U in the tailings pore waters.
NASA Astrophysics Data System (ADS)
Klysubun, Wantana; Ravel, Bruce; Klysubun, Prapong; Sombunchoo, Panidtha; Deenan, Weeraya
2013-06-01
Yellow and colorless ancient glasses, which were once used to decorate the Temple of the Emerald Buddha, Bangkok, Thailand, around 150 years ago, are studied to unravel the long-lost glass-making recipes and manufacturing techniques. Analyses of chemical compositions, using synchrotron x-ray fluorescence (SRXRF), indicate that the Thai ancient glasses are soda lime silica glasses (60 % SiO2; 10 % Na2O; 10 % CaO) bearing lead oxide between 2-16 %. Iron (1.5-9.4 % Fe2O3) and manganese (1.7 % MnO) are present in larger abundance than the other 3 d transition metals detected (0.04-0.2 %). K-edge x-ray absorption near edge spectroscopy (XANES) and extended x-ray absorption fine structure spectroscopy (EXAFS) provide conclusive evidence on the oxidation states of Fe being 3+ and Mn being 2+ and on short-length tetrahedral structures around the cations. This suggests that iron is used as a yellow colorant with manganese as a decolorant. L 3-edge XANES results reveal the oxidation states of lead as 2+. The results from this work provide information crucial for replicating these decorative glasses for the future restoration of the Temple of the Emerald Buddha.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-06-22
The solvation sphere of halides in water has been investigated using a combination of extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) analysis techniques. The results have indicated that I{sup -} and Br{sup -} both have an asymmetric, 8 water molecule primary solvation spheres. These spheres are identical, with the Br{sup -} sphere about .3 {angstrom} smaller than the I{sup -} sphere. This study utilized near-edge analysis to supplement EXAFS analysis which suffers from signal dampening/broadening due to thermal noise. This paper has reported on the solvation first sphere of I{sup -} and Br{sup -} inmore » water. Using EXAFS and XANES analysis, strong models which describe the geometric configuration of water molecules coordinated to a central anion have been developed. The combination of these techniques has provided us with a more substantiated argument than relying solely on one or the other. An important finding of this study is that the size of the anion plays a smaller role than previously assumed in determining the number of coordinating water molecules. Further experimental and theoretical investigation is required to understand why the size of the anion plays a minor role in determining the number of water molecules bound.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, Lea R.; Gomez, Elaine; Yan, Binhang
CO 2 hydrogenation over Fe-modified Ni/CeO 2 catalysts was investigated in a batch reactor using time-resolved in situ FTIR spectroscopy. Low loading of Ni/CeO 2 was associated with high selectivity to CO over CH 4, while higher Ni loading improved CO 2 hydrogenation activity with a reduced CO selectivity. X-ray absorption near-edge structure (XANES) analysis revealed Ni to be metallic for all catalysts including the CO-selective low loading 0.5% Ni catalyst, suggesting that the selectivity trend is due to structural rather than oxidation state effects. The loading amount of 1.5% Ni was selected for co-impregnation with Fe, based on themore » significant shift in product selectivity towards CH 4 for that loading amount, in order to shift the selectivity towards CO while maintaining high activity. Temperature programmed reduction (TPR) results indicated bimetallic interactions between Ni and Fe, and XANES analysis showed that about 70% of Fe in the bimetallic catalysts was oxidized. The Ni-Fe catalysts demonstrated improved selectivity towards CO without significantly compromising activity, coupling the high activity of Ni catalysts and the high CO selectivity of Fe. The general trends in Ni loading and bimetallic modification should guide efforts to develop non-precious metal catalysts for the selective production of CO by CO 2 hydrogenation.« less
NASA Astrophysics Data System (ADS)
Kinaci, Alper; Trahey, Lynn; Thackeray, Michael M.; Kirklin, Scott; Wolverton, Christopher; Chan, Maria K. Y.; CenterElectrical Energy Storage Collaboration
2014-03-01
We recently introduced a vision for high energy all-in-one electrode/electrocatalyst materials that can be used in hybrid Li-ion/Li-O2 (Li-air) cells. Recent experiments using Li5FeO4 demonstrated substantially smaller voltage polarizations and hence higher energy efficiency compared to standard Li-O2 cells forming Li2O2. The mechanism by which the charge process activates the Li5FeO4, however, is not well understood. Here, we present first principles density functional theory (DFT) calculations to establish the thermodynamic conditions for the extraction of Li/Li +O from Li5FeO4. A step-by-step, history-dependent, removal process has been followed and the stability of the Li and Li +O deficient samples is investigated on the basis of the energies of the extraction reactions. Various stages of Li/Li +O removal are identified, and structural changes and electronic structure evolution, as well as computed XRD, XANES, and PDF characterizations are reported.
Zhang, Renqin; McEwen, Jean-Sabin
2018-05-22
Cu K-edge X-ray absorption near-edge spectra (XANES) have been widely used to study the properties of Cu-SSZ-13. In this Letter, the sensitivity of the XANES features to the local environment for a Cu + cation with a linear configuration and a Cu 2+ cation with a square-linear configuration in Cu-SSZ-13 is reported. When a Cu + cation is bonded to H 2 O or NH 3 in a linear configuration, the XANES has a strong peak at around 8983 eV. The intensity of this peak decreases as the linear configuration is broken. As for the Cu 2+ cations in a square-planar configuration with a coordination number of 4, two peaks at around 8986 and 8993 eV are found. An intensity decrease for both peaks at around 8986 and 8993 eV is found in an NH 3 _4_Z 2 Cu model as the N-Cu-N angle changes from 180 to 100°. We correlate these features to the variation of the 4p state by PDOS analysis. In addition, the feature peaks for both the Cu + cation and Cu 2+ cation do not show a dependence on the Cu-N bond length. We further show that the feature peaks also change when the coordination number of the Cu cation is varied, while these feature peaks are independent of the zeolite topology. These findings help elucidate the experimental XANES features at an atomic and an electronic level.
Characterization of Sulfur Compounds in Coffee Beans by Sulfur K-XANES Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtenberg, H.; Hormes, J.; Institute of Physics, University of Bonn, Nussallee 12, 53115 Bonn
2007-02-02
In this 'feasibility study' the influence of roasting on the sulfur speciation in Mexican coffee beans was investigated by sulfur K-XANES Spectroscopy. Spectra of green and slightly roasted beans could be fitted to a linear combination of 'standard' reference spectra for biological samples, whereas longer roasting obviously involves formation of additional sulfur compounds in considerable amounts.
NASA Astrophysics Data System (ADS)
Latif, C.; Negara, V. S. I.; Wongtepa, W.; Thamatkeng, P.; Zainuri, M.; Pratapa, S.
2018-03-01
XANES analysis has been performed with the aim of knowing the Fe oxidation state in a synthesized LiFePO4 and its base materials. XANES measurements were performed at SLRI on energy around Fe K-edge. An XRD analysis has also been performed with the aim of knowing the phase composition, lattice parameters and crystallite size of the LiFePO4 as well as the base materials. From the XRD analysis, it was found that the dominating phase in the iron sand sample was Fe3O4 and the only phase found after calcination was LiFePO4. The latter phase exhibited crystallite size of 100 nm and lattice parameters a = 10.169916 Å, b = 5.919674 Å, c = 4.627893 Å. Qualitative analysis of XANES data revealed that the oxidation number of Fe in the sample before calcination was greater than that after calcination and Fe in the natural iron sand, indicated by the E0 values of 7129.2 eV, 7120.6 eV and 7124.4 eV respectively.
2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong
2014-05-01
Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c
Benfield, Robert E; Grandjean, Didier; Dore, John C; Esfahanian, Hamid; Wu, Zhonghua; Kröll, Michael; Geerkens, Marcus; Schmid, Günter
2004-01-01
Mesoporous alumina membranes ("anodic aluminium oxide", or "AAO") are made by anodic oxidation of aluminium metal. These membranes contain hexagonal arrays of parallel non-intersecting cylindrical pores perpendicular to the membrane surface. By varying the anodisation voltage, the pore diameters are controllable within the range 5-250 nm. We have used AAO membranes as templates for the electrochemical deposition of metals within the pores to produce nanowires. These represent assemblies of one-dimensional quantum wires with prospective applications in electronic, optoelectronic and magnetic devices. Detailed characterisation of the structures of these nanowire assemblies on a variety of length scales is essential to understand their physical properties and evaluate their possible applications. We have used EXAFS, XANES, WAXS, high energy X-ray diffraction and SAXS to study their structure and bonding. In this paper we report the results of our studies of four different nanowire systems supported in AAO membranes. These are the ferromagnetic metals iron and cobalt, the superconducting metal tin, and the semiconductor gallium nitride. Iron nanowires in pores of diameter over the range 12 nm-72 nm are structurally very similar to bcc bulk iron. They have a strong preferred orientation within the alumina pores. Their XANES shows significant differences from that of bulk iron, showing that the electronic structure of the iron nanowires depends systematically on their diameter. Cobalt nanowires are composed of a mixture of hcp and fcc phases, but the ratio of the two phases does not depend in a simple way on the pore diameter or preparation conditions. In bulk cobalt, the fcc beta-phase is normally stable only at high temperatures. Strong preferred orientation of the c-axis in the pores was found. Tin nanowires in alumina membranes with pores diameters between 12 nm and 72 nm have a tetragonal beta-structure at ambient temperature and also at 80 K. Magnetic susceptibility measurements show that they are diamagnetic, and become superconducting at the same temperature as bulk tin (3.7 K). Gallium nitride nanowires have been prepared in alumina membranes with pore diameter 24 nm by a novel method. Gallium nitrate was deposited in the pores from aqueous solution and thermolysed at 1000 degrees C to form Ga2O3, which was reacted with ammonia at 1000 degrees C. The GaN nanowires have the wurtzite structure. Preparation at 1150 degrees C led to the incorporation of aluminium in the GaN. The mesoscopic ordering of the pores in the AAO membranes and their filling by metal nanowires has been studied by SAXS, which shows patterns of Bragg peaks arising from the pore arrays. Additionally, the cobalt nanowires have been the subject of an initial ASAXS study.
High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin
1996-12-01
X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). Themore » spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.« less
Pressure-induced amorphization and collapse of magnetic order in the type-I clathrate Eu8Ga16Ge30
NASA Astrophysics Data System (ADS)
Mardegan, J. R. L.; Fabbris, G.; Veiga, L. S. I.; Adriano, C.; Avila, M. A.; Haskel, D.; Giles, C.
2013-10-01
We investigate the low temperature structural and electronic properties of the type-I clathrate Eu8Ga16Ge30 under pressure using x-ray powder diffraction (XRD), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD) techniques. The XRD measurements reveal a transition to an amorphous phase above 18 GPa. Unlike previous reports on other clathrate compounds, no volume collapse is observed prior to the crystalline-amorphous phase transition which takes place when the unit cell volume is reduced to 81% of its ambient pressure value. Fits of the pressure-dependent relative volume to a Murnaghan equation of state yield a bulk modulus B0=65±3 GPa and a pressure derivative B0'=3.3±0.5. The Eu L2-edge XMCD data shows quenching of the magnetic order at a pressure coincident with the crystalline-amorphous phase transition. This information along with the persistence of an Eu2+ valence state observed in the XANES spectra up to the highest pressure point (22 GPa) indicates that the suppression of XMCD intensity is due to the loss of long range magnetic order. When compared with other clathrates, the results point to the importance of guest ion-cage interactions in determining the mechanical stability of the framework structure and the critical pressure for amorphization. Finally, the crystalline structure is not found to recover after pressure release, resulting in an amorphous material that is at least metastable at ambient pressure and temperature.
Interface structure in nanoscale multilayers near continuous-to-discontinuous regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, P. C.; Majhi, A.; Nayak, M., E-mail: mnayak@rrcat.gov.in
2016-07-28
Interfacial atomic diffusion, reaction, and formation of microstructure in nanoscale level are investigated in W/B{sub 4}C multilayer (ML) system as functions of thickness in ultrathin limit. Hard x-ray reflectivity (XRR) and x-ray diffuse scattering in conjunction with x-ray absorption near edge spectroscopy (XANES) in soft x-ray and hard x-ray regimes and depth profiling x-ray photoelectron spectroscopy (XPS) have been used to precisely evaluate detailed interfacial structure by systematically varying the individual layer thickness from continuous-to-discontinuous regime. It is observed that the interfacial morphology undergoes an unexpected significant modification as the layer thickness varies from continuous-to-discontinuous regime. The interfacial atomic diffusionmore » increases, the physical density of W layer decreases and that of B{sub 4}C layer increases, and further more interestingly the in-plane correlation length decreases substantially as the layer thickness varies from continuous-to-discontinuous regime. This is corroborated using combined XRR and x-ray diffused scattering analysis. XANES and XPS results show formation of more and more tungsten compounds at the interfaces as the layer thickness decreases below the percolation threshold due to increase in the contact area between the elements. The formation of compound enhances to minimize certain degree of disorder at the interfaces in the discontinuous region that enables to maintain the periodic structure in ML. The degree of interfacial atomic diffusion, interlayer interaction, and microstructure is correlated as a function of layer thickness during early stage of film growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babucci, Melike; Fang, Chia -Yu; Hoffman, Adam S.
1,3-Dialkylimidazolium ionic liquid coatings act as electron donors, increasing the selectivity for partial hydrogenation of 1,3-butadiene catalyzed by iridium complexes supported on high-surface-area γ-Al 2O 3. High-energy-resolution fluorescence detection X-ray absorption near-edge structure (HERFD XANES) measurements quantify the electron donation and are correlated with the catalytic activity and selectivity. Furthermore, the results demonstrate broad opportunities to tune electronic environments and catalytic properties of atomically dispersed supported metal catalysts.
Low toxic maghemite nanoparticles for theranostic applications.
Kuchma, Elena A; Zolotukhin, Peter V; Belanova, Anna A; Soldatov, Mikhail A; Lastovina, Tatiana A; Kubrin, Stanislav P; Nikolsky, Anatoliy V; Mirmikova, Lidia I; Soldatov, Alexander V
2017-01-01
Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine. Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing). TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD waŝ16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe 2 O 3 ) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe 2 O 3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus. Quasispherical Fe 3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy.
Low toxic maghemite nanoparticles for theranostic applications
Zolotukhin, Peter V; Belanova, Anna A; Soldatov, Mikhail A; Lastovina, Tatiana A; Kubrin, Stanislav P; Nikolsky, Anatoliy V; Mirmikova, Lidia I
2017-01-01
Background Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine. Methods Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing). Results TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD waŝ16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe2O3) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe2O3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus. Conclusion Quasispherical Fe3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy. PMID:28919740
Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism
Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; ...
2015-01-14
Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M₄,₅ edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [μ L = 2.8(1)μ B/Pu] and spin moments [μ S = –2.0(1)μ B/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of L z and S z are inmore » excellent agreement with the values that have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. We demonstrate that a split M₅ as well as a narrow M₄ XMCD signal may serve as a signature of 5f electron localization in actinide compounds.« less
Edahbi, Mohamed; Plante, Benoît; Benzaazoua, Mostafa; Ward, Matthew; Pelletier, Mia
2018-05-01
The geochemical behavior of rare earth elements (REE) was investigated using weathering cells. The influence of sorption and precipitation on dissolved REE mobility and fractionation is evaluated using synthetic iron-oxides, carbonates, and phosphates. Sorption cell tests are conducted on the main lithologies of the expected waste rocks from the Montviel deposit. The sorbed materials are characterized using a scanning electron microscope (SEM) equipped with a microanalysis system (energy dispersive spectroscopy EDS) (SEM-EDS), X-ray diffraction (XRD), and X-ray absorption near edge structure (XANES) in order to understand the effect of the synthetic minerals on REE mobility. The results confirm that sorption and precipitation control the mobility and fractionation of REE. The main sorbent phases are the carbonates, phosphates (present as accessory minerals in the Montviel waste rocks), and iron oxides (main secondary minerals generated upon weathering of the Montviel lithologies). The XANES results show that REE are present as trivalent species after weathering. Thermodynamic equilibrium calculations results using Visual Minteq suggest that REE could precipitate as secondary phosphates (REEPO 4 ). Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Nakato, A.; Kilcoyne, A. L. D.; Takeichi, Y.; Suga, H.; Miyamoto, C.; Rahman, Z.; Kobayashi, K.;
2016-01-01
Zag and Monahans meteorites (H5) contains xenolithic dark clasts and halite (NaCl) crystals [e.g., 1]. The proposed source of the H chondrites is asteroid 6 Hebe [2]. The modern orbits of 1 Ceres and 6 Hebe essentially cross, with aphelion/perihelion of Ceres and Hebe of 2.99/2.55 and 2.91/1.94 AU (Astronomical Units), respectively. Therefore, Ceres might be the source of the clasts and halite in Zag and Monahans meteorites. Recent results from NASA's Dawn mission shows that bright spots in Ceres's crater may be hydrated magnesium sulfate with some water ice, and an average global surface contains ammoniated phyllosilicates that is likely of outer Solar System origin. One dark clast and all halite crystals in Zag and Monahans meteorites contain carbon-rich particles. We report organic analyses of these carbon-rich particles using carbon, nitrogen, and oxygen X-ray absorption near edge structure (C-, N-, and O-XANES), in order to constrain the origin of the clast and halite crystals.
The role of the 5f valence orbitals of early actinides in chemical bonding
Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.
2017-01-01
One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/ϕ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements. PMID:28681848
Denecke, Melissa A; Somogyi, Andrea; Janssens, Koen; Simon, Rolf; Dardenne, Kathy; Noseck, Ulrich
2007-06-01
Micro-focused synchrotron radiation techniques to investigate actinide elements in geological samples are becoming an increasingly used tool in nuclear waste disposal research. In this article, results using mu-focus techniques are presented from a bore core section of a U-rich tertiary sediment collected from Ruprechtov, Czech Republic, a natural analog to nuclear waste repository scenarios in deep geological formations. Different methods are applied to obtain various, complementary information. Elemental and element chemical state distributions are obtained from micro-XRF measurements, oxidation states of As determined from micro-XANES, and the crystalline structure of selected regions are studied by means of micro-XRD. We find that preparation of the thin section created an As oxidation state artifact; it apparently changed the As valence in some regions of the sample. Results support our previously proposed hypothesis of the mechanism for U-enrichment in the sediment. AsFeS coating on framboid Fe nodules in the sediment reduced mobile groundwater-dissolved U(VI) to less-soluble U(IV), thereby immobilizing the uranium in the sediment.
The role of the 5f valence orbitals of early actinides in chemical bonding
NASA Astrophysics Data System (ADS)
Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.
2017-07-01
One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/φ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements.
NASA Technical Reports Server (NTRS)
Milam, S. N.; Nuevo, M.; Sandford, S. A.; Cody, G. D.; Kilcoyne, A. L. D.; Stroud, R. M.; DeGregorio, B. T.
2010-01-01
The NASA Stardust mission successfully collected material from Comet 81P/Wild 2 [1], including authentic cometary grains [2]. X-ray absorption near-edge structure (XANES) spectroscopy analysis of these samples indicates the presence of oxygen-rich and nitrogen-rich organic materials, which contain a broad variety of functional groups (carbonyls, C=C bonds, aliphatic chains, amines, arnides, etc.) [3]. One component of these organics appears to contain very little aromatic carbon and bears some similarity to the organic residues produced by the irradiation of ices of interstellar/cometary composition, Stardust samples were also recently shown to contain glycine, the smallest biological amino acid [4]. Organic residues produced froth the UV irradiation of astrophysical ice analogs are already known to contain a large suite of organic molecules including amino acids [5-7], amphiphilic compounds (fatty acids) [8], and other complex species. This work presents a comparison between XANES spectra measured from organic residues formed in the laboratory with similar data of cometary samples collected by the Stardust mission
Polarized XANES and EXAFS spectroscopic investigation into copper(II) complexes on vermiculite
NASA Astrophysics Data System (ADS)
Furnare, Luca J.; Vailionis, Arturas; Strawn, Daniel G.
2005-11-01
Interaction of heavy metals with clay minerals can dominate solid-solution reactions in soil, controlling the fate of the metals in the environment. In this study we used powdered and polarized extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES) to investigate Cu sorbed on Llano vermiculite and compare the results to reported Cu sorption mechanism on Wyoming (WY) smectite and reduced South African (SA) vermiculite. Analysis of the Cu K-edge spectra revealed that Cu sorbed on Llano vermiculite at high ionic strength ( I) has the greatest degree of covalent bond character, followed by Cu sorbed on montmorillonite at high I, and Cu sorbed on reduced SA vermiculite at high I. Cu sorbed on clay minerals at low I has the least covalent character. EXAFS data from Cu sorbed Ca- and K-equilibrated Llano vermiculites showed the presence of a second-shell Al, Si, or Mg backscatterer at 3.02 Å. This distance is consistent with Cu sorbing via a corner-sharing monodentate or bidentate bond. Polarized XANES and EXAFS results revealed that the angle between the Cu atom and the mineral sorption sites is 68° with respect to the [001] direction. From the bond angle and the persistence of the second-shell backscatterer when the interlayer is collapsed (K-equilibration), we conclude that Cu adsorption on the Llano vermiculite is not occurring in the interlayer but rather Cu is adsorbing onto the edges of the vermiculite. Results from this research provide evidence that Cu forms inner-sphere and outer-sphere complexes on clay minerals, and does not form the vast multinuclear surface precipitates that have been observed for Co, Zn, and Ni.
EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition.
Mino, Lorenzo; Gianolio, Diego; Bardelli, Fabrizio; Prestipino, Carmelo; Senthil Kumar, E; Bellarmine, F; Ramanjaneyulu, M; Lamberti, Carlo; Ramachandra Rao, M S
2013-09-25
Ni doped, Li doped and (Li, Ni) codoped ZnO thin films were successfully grown using a pulsed laser deposition technique. Undoped and doped ZnO thin films were investigated using extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES). Preliminary investigations on the Zn K-edge of the undoped and doped ZnO thin films revealed that doping has not influenced the average Zn-Zn bond length and Debye-Waller factor. This shows that both Ni and Li doping do not appreciably affect the average local environment of Zn. All the doped ZnO thin films exhibited more than 50% of substitutional Ni, with a maximum of 77% for 2% Ni and 2% Li doped ZnO thin film. The contribution of Ni metal to the EXAFS signal clearly reveals the presence of Ni clusters. The Ni-Ni distance in the Ni(0) nanoclusters, which are formed in the film, is shorter with respect to the reference Ni metal foil and the Debye-Waller factor is higher. Both facts perfectly reflect what is expected for metal nanoparticles. At the highest doping concentration (5%), the presence of Li favors the growth of a secondary NiO phase. Indeed, 2% Ni and 5% Li doped ZnO thin film shows %Nisub = 75 ± 11, %Nimet = 10 ± 8, %NiO = 15 ± 8. XANES studies further confirm that the substitutional Ni is more than 50% in all the samples. These results explain the observed magnetic properties.
Pendyala, Venkat Ramana Rao; Jacobs, Gary; Ma, Wenping; ...
2016-07-23
The effect of co-fed hydrogen chloride (HCl) in syngas on the performance of iron and cobalt-based Fischer-Tropsch (FT) catalysts was investigated in our earlier studies [ACS Catal. 5 (2015) 3124-3136 and DOE final report 2011; Catal. Lett. 144 (2014) 1127-1133]. For an iron catalyst, lower HCl concentrations (< 2.0 ppmw of HCl)) in syngas did not significantly affect the activity, whereas rapid deactivation occurred at higher concentrations (~20 ppmw). With cobalt catalysts, even low concentrations of HCl (100 ppbw) caused catalyst deactivation, and the deactivation rate increased with increasing HCl concentration in the syngas. The deactivation of the catalysts ismore » explained by the chloride being adsorbed on the catalyst surface to (1) block the active sites and/or (2) electronically modify the sites. In this study, XANES spectroscopy was employed to investigate HCl poisoning mechanism on the iron and cobalt catalysts. Cl K-edge normalized XANES results indicate that Cl is indeed present on the catalyst following HCl poisoning and exhibits a structure similar to the family of compounds MCl; two main peaks are formed, with the second peak consisting of a main peak and a higher energy shoulder. At the Co K and Fe K edges, the white line was observed to be slightly increased relative to the same catalyst under clean conditions. There is then the additional possibility that Cl adsorption may act in part to intercept electron density from the FT metallic function (e.g.,cobalt or iron carbide). If so, this would result in less back-donation and therefore hinder the scission of molecules such as CO.« less
The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle
NASA Astrophysics Data System (ADS)
Cottrell, Elizabeth; Kelley, Katherine A.
2011-05-01
Micro-analytical determination of Fe3+/∑Fe ratios in mid-ocean ridge basalt (MORB) glasses using micro X-ray absorption near edge structure (μ-XANES) spectroscopy reveals a substantially more oxidized upper mantle than determined by previous studies. Here, we show that global MORBs yield average Fe3+/∑Fe ratios of 0.16 ± 0.01 (n = 103), which trace back to primary MORB melts equilibrated at the conditions of the quartz-fayalite-magnetite (QFM) buffer. Our results necessitate an upward revision of the Fe3+/∑Fe ratios of MORBs, mantle oxygen fugacity, and the ferric iron content of the mantle relative to previous wet chemical determinations. We show that only 0.01 (absolute, or < 10%) of the difference between Fe3+/∑Fe ratios determined by micro-colorimety and XANES can be attributed to the Mössbauer-based XANES calibration. The difference must instead derive from a bias between micro-colorimetry performed on experimental vs. natural basalts. Co-variations of Fe3+/∑Fe ratios in global MORB with indices of low-pressure fractional crystallization are consistent with Fe3+ behaving incompatibly in shallow MORB magma chambers. MORB Fe3+/∑Fe ratios do not, however, vary with indices of the extent of mantle melting (e.g., Na2O(8)) or water concentration. We offer two hypotheses to explain these observations: The bulk partition coefficient of Fe3+ may be higher during peridotite melting than previously thought, and may vary with temperature, or redox exchange between sulfide and sulfate species could buffer mantle melting at ~ QFM. Both explanations, in combination with the measured MORB Fe3+/∑Fe ratios, point to a fertile MORB source with greater than 0.3 wt.% Fe2O3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.
Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N{sub 2}-, CH{sub 4}-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple icesmore » dominated by N{sub 2}, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ∼ 0.9 and O/C ∼ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.« less
Ice Chemistry on Outer Solar System Bodies: Electron Radiolysis of N2-, CH4-, and CO-Containing Ices
NASA Astrophysics Data System (ADS)
Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.; Imanaka, Hiroshi; Nuevo, Michel
2015-10-01
Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N2-, CH4-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple ices dominated by N2, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ∼ 0.9 and O/C ∼ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.
XAS Studies of Arsenic in the Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charnock, J. M.; School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL; Polya, D. A.
2007-02-02
Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples.
XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robblee, John Henry
A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S 3 → [S 4] → S 0 transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn Kβ X-ray emission spectroscopy (Kb XES) to this problem for the first time. The Kβ XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electronmore » paramagnetic resonance (EPR) data obtained from the same set of samples, show that the S 2 → S 3 transition, in contrast to the S 0 → S 1 and S 1 → S 2 transitions, does not involve a Mn-centered oxidation. This is rationalized by manganese μ-oxo bridge radical formation during the S 2 → S 3 transition. Using extended X-ray absorption fine structure (EXAFS) spectroscopy, the local environment of the Mn atoms in the S 0 state has been structurally characterized. These results show that the Mn-Mn distance in one of the di-μ-oxo-bridged Mn-Mn moieties increases from 2.7 Å in the S 1} state to 2.85 Å in the S 0 state. Furthermore, evidence is presented that shows three di-μ-oxo binuclear Mn 2 clusters may be present in the OEC, which is contrary to the widely held theory that two such clusters are present in the OEC. The EPR properties of the S 0 state have been investigated and a characteristic ''multiline'' signal in the S 0 state has been discovered in the presence of methanol. This provides the first direct confirmation that the native S 0 state is paramagnetic. In addition, this signal was simulated using parameters derived from three possible oxidation states of Mn in the S 0 state. The dichroic nature of X-rays from synchrotron radiation and single-crystal Mn complexes have been exploited to selectively probe Mn-ligand bonds using XANES and EXAFS spectroscopy. The results from single-crystal Mn complexes show that dramatic dichroism exists in these complexes, and are suggestive of a promising future for single-crystal studies of PS II.« less
Li, Zhuguo; Ohnuki, Toshihiko; Ikeda, Ko
2016-01-01
Ambient temperature geopolymerization of paper sludge ashes (PS-ashes) discharged from paper mills was studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), induction coupled plasma atomic emission spectrometry (ICP-AES), and X-ray absorption near edge structure (XANES). Two varieties of alkaline liquors were used in the PS-ash based geopolymers, corresponding to aqueous Na-metasilicate and Na-disilicate compositions. PS-ashes were found to be semi-crystalline and to have porous structures that make it possible to absorb much liquor. Flexural strengths of PS-ash-based geopolymers with liquor/filler ratios (L/F) of 1.0–1.5 ranged from 0.82 to 1.51 MPa at 4 weeks age, depending on PS-ashes and liquors used. The reaction process of the constituent minerals of the PS-ash is discussed. Furthermore, we attempted to solidify hazardous water contaminated with radioisotopes. Non-radioactive strontium and cesium nitrates were added as surrogates at a dosage of 1% into the PS-ash-based geopolymers. Generally, high immobilization ratios up to 99.89% and 98.77% were achieved for Sr2+ and Cs+, respectively, depending on the source of PS-ashes, alkaline liquors, and material ages. However, in some cases, poor immobilization ratios were encountered, and we further discussed the causes of the instability of derived geopolymer gels on the basis of XANES spectra. PMID:28773754
Winter, Lea R.; Gomez, Elaine; Yan, Binhang; ...
2017-10-16
CO 2 hydrogenation over Fe-modified Ni/CeO 2 catalysts was investigated in a batch reactor using time-resolved in situ FTIR spectroscopy. Low loading of Ni/CeO 2 was associated with high selectivity to CO over CH 4, while higher Ni loading improved CO 2 hydrogenation activity with a reduced CO selectivity. X-ray absorption near-edge structure (XANES) analysis revealed Ni to be metallic for all catalysts including the CO-selective low loading 0.5% Ni catalyst, suggesting that the selectivity trend is due to structural rather than oxidation state effects. The loading amount of 1.5% Ni was selected for co-impregnation with Fe, based on themore » significant shift in product selectivity towards CH 4 for that loading amount, in order to shift the selectivity towards CO while maintaining high activity. Temperature programmed reduction (TPR) results indicated bimetallic interactions between Ni and Fe, and XANES analysis showed that about 70% of Fe in the bimetallic catalysts was oxidized. The Ni-Fe catalysts demonstrated improved selectivity towards CO without significantly compromising activity, coupling the high activity of Ni catalysts and the high CO selectivity of Fe. The general trends in Ni loading and bimetallic modification should guide efforts to develop non-precious metal catalysts for the selective production of CO by CO 2 hydrogenation.« less
A high-voltage rechargeable magnesium-sodium hybrid battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yifei; An, Qinyou; Cheng, Yingwen
2017-04-01
Growing global demand of safe and low-cost energy storage technology triggers strong interests in novel battery concepts beyond state-of-art Li-ion batteries. Here we report a high-voltage rechargeable Mg–Na hybrid battery featuring dendrite-free deposition of Mg anode and Na-intercalation cathode as a low-cost and safe alternative to Li-ion batteries for large-scale energy storage. A prototype device using a Na3V2(PO4)3 cathode, a Mg anode, and a Mg–Na dual salt electrolyte exhibits the highest voltage (2.60 V vs. Mg) and best rate performance (86% capacity retention at 10C rate) among reported hybrid batteries. Synchrotron radiation-based X-ray absorption near edge structure (XANES), atomic-pair distributionmore » function (PDF), and high-resolution X-ray diffraction (HRXRD) studies reveal the chemical environment and structural change of Na3V2(PO4)3 cathode during the Na ion insertion/deinsertion process. XANES study shows a clear reversible shift of vanadium K-edge and HRXRD and PDF studies reveal a reversible two-phase transformation and V–O bond length change during cycling. The energy density of the hybrid cell could be further improved by developing electrolytes with a higher salt concentration and wider electrochemical window. This work represents a significant step forward for practical safe and low-cost hybrid batteries.« less
A high-voltage rechargeable magnesium-sodium hybrid battery
Li, Yifei; An, Qinyou; Cheng, Yingwen; ...
2017-02-13
There is a growing global demand for safe and low-cost energy storage technology which triggers strong interests in novel battery concepts beyond state-of-art Li-ion batteries. We report a high-voltage rechargeable Mg–Na hybrid battery featuring dendrite-free deposition of Mg anode and Na-intercalation cathode as a low-cost and safe alternative to Li-ion batteries for large-scale energy storage. A prototype device using a Na 3V 2(PO 4) 3 cathode, a Mg anode, and a Mg–Na dual salt electrolyte exhibits the highest voltage (2.60 V vs. Mg) and best rate performance (86% capacity retention at 10 C rate) among reported hybrid batteries. Synchrotron radiation-basedmore » X-ray absorption near edge structure (XANES), atomic-pair distribution function (PDF), and high-resolution X-ray diffraction (HRXRD) studies reveal the chemical environment and structural change of Na 3V 2(PO 4) 3 cathode during the Na ion insertion/deinsertion process. XANES study shows a clear reversible shift of vanadium K-edge and HRXRD and PDF studies reveal a reversible two-phase transformation and V–O bond length change during cycling. The energy density of the hybrid cell could be further improved by developing electrolytes with a higher salt concentration and wider electrochemical window. Our work represents a significant step forward for practical safe and low-cost hybrid batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolker,A.; Huggins, F.
2007-01-01
Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period ofmore » 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32-1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26-0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O{sub 2} atmosphere; (3) room atmosphere (relative humidity {approx}20-60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and {sup 57}Fe Mossbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. {sup 57}Fe Mossbauer spectroscopy also shows a much greater proportion of Fe{sup 3+} forms (jarosite, Fe{sup 3+} sulfate, FeOOH) for samples stored under wet conditions, but much less difference among samples stored under dry conditions in different atmospheres. The air-wet experiments show evidence of pyrite re-precipitation from soluble ferric sulfates, with As retention in the jarosite phase. Extents of As and Fe oxidation were similar for samples having differing As substitution in pyrite, suggesting that environmental conditions outweigh the composition and amount of pyrite as factors influencing the oxidation rate of Fe sulfides in coal.« less
Beret, Elizabeth C; Provost, Karine; Müller, Diane; Marcos, Enrique Sánchez
2009-09-10
A combined experimental-theoretical approach applying X-ray absorption spectroscopy and ab initio molecular dynamics (CP-MD) simulations is used to get insight into the structural determination of oxaliplatin, a third-generation anticancer drug of the cisplatin family, in aqueous solution. Experimental Pt L(III)-edge EXAFS and XANES spectra of oxaliplatin in water are compared with theoretical XAS spectra. The latter are obtained as statistically averaged spectra computed for a set of selected snapshots extracted from the MD trajectory of ethyldiamineoxalatoplatinum(II) (EDO-Pt) in liquid water. This compound is a simplified structure of oxaliplatin, where the outer part of the cyclohexane ring contained in the cyclohexanediamine ligand of oxaliplatin has been removed. We show that EDO-Pt is an appropriate model to simulate the spectroscopical properties of oxaliplatin given that the cyclohexane ring does not generate particular features in neither the EXAFS nor the XANES spectra. The computation of average EXAFS spectra using structures from the MD simulation in which atoms are selected according to different cutoff radii around the Pt center allows the assignment of spectral features to particular structural motifs, both in k and R-spaces. The outer oxygen atoms of the oxalate ligand (R(Pt-O(II)) = 3.97 +/- 0.03 A) are responsible for a well-defined hump at around 6.5 A(-1) in the k(2)-weighted EXAFS spectrum. The conventional EXAFS analysis data procedure is reexamined by its application to the simulated average EXAFS spectra. The structural parameters resulting from the fit may then be compared with those obtained from the simulation, providing an estimation of the methodological error associated with the global fitting procedure. A thorough discussion on the synergy between the experimental and theoretical XAS approaches is presented, and evidence for the detection of a slight hydration structure around the Pt complex is shown, leading to the suggestion of a new challenge to experimental XAS measurements.
[XANES study of lead speciation in duckweed].
Chu, Bin-Bin; Luo, Li-Qiang; Xu, Tao; Yuan, Jing; Sun, Jian-Ling; Zeng, Yuan; Ma, Yan-Hong; Yi, Shan
2012-07-01
Qixiashan lead-zinc mine of Nanjing was one of the largest lead zinc deposits in East China Its exploitation has been over 50 years, and the environmental pollution has also been increasing. The lead concentration in the local environment was high, but lead migration and toxic mechanism has not been clear. Therefore, biogeochemistry research of the lead zinc mine was carried out. Using ICP-MS and Pb-L III edge XANES, lead concentration and speciation were analyzed respectively, and duckweed which can tolerate and enriched heavy metals was found in the pollution area. The results showed that the lead concentration of duckweed was 39.4 mg x kg(-1). XANES analysis and linear combination fit indicated that lead stearate and lead sulfide accounted for 65% and 36.9% respectively in the lead speciation of duckweed, suggesting that the main lead speciation of duckweed was sulfur-containing lead-organic acid.
Structure and magnetic properties of Fe-doped ZnO prepared by the sol-gel method.
Liu, Huilian; Yang, Jinghai; Zhang, Yongjun; Yang, Lili; Wei, Maobin; Ding, Xue
2009-04-08
Zn(0.97)Fe(0.03)O nanoparticles were synthesized by the sol-gel method. X-ray diffraction (XRD) and transmission electron microscope (TEM) analysis revealed that the samples had pure ZnO wurtzite structure and Fe ions were well incorporated into the ZnO crystal lattice. X-ray photoelectron spectroscopy (XPS) showed that both Fe(2+) and Fe(3+) existed in Zn(0.97)Fe(0.03)O. The result of x-ray absorption near-edge structure (XANES) further testified that Fe ions took the place of Zn sites in our samples. Magnetic measurements indicated that Zn(0.97)Fe(0.03)O was ferromagnetic at room temperature.
Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability
NASA Astrophysics Data System (ADS)
Li, Honghong; Liu, Yuting; Chen, Yanhui; Wang, Shanli; Wang, Mingkuang; Xie, Tuanhui; Wang, Guo
2016-08-01
This study aimed to determine effects of rice straw biochar on Pb sequestration in a soil-rice system. Pot experiments were conducted with rice plants in Pb-contaminated paddy soils that had been amended with 0, 2.5, and 5% (w/w) biochar. Compared to the control treatment, amendment with 5% biochar resulted in 54 and 94% decreases in the acid soluble and CaCl2-extractable Pb, respectively, in soils containing rice plants at the maturity stage. The amount of Fe-plaque on root surfaces and the Pb concentrations of the Fe-plaque were also reduced in biochar amended soils. Furthermore, lead species in rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES), and although Pb-ferrihydrite complexes dominated Pb inventories, increasing amounts of organic complexes like Pb-pectins and Pb-cysteine were found in roots from the 5% biochar treatments. Such organic complexes might impede Pb translocation from root to shoot and subsequently reduce Pb accumulation in rice with biochar amendment.
NASA Astrophysics Data System (ADS)
Sadove, G.; Konecke, B.; Fiege, A.; Simon, A. C.
2017-12-01
Multiple competing hypotheses attempt to explain the genesis of iron oxide-apatite (IOA) ore deposits. Many studies have investigated the chemistry of apatite because the abundances of F and Cl can distinguish magmatic vs. hydrothermal processes. Recent experiments demonstrate that apatite incorporates S6+, S4+, and S2-, and that total sulfur (∑S) as well as the S6+/∑S ratio in apatite vary systematically as a function of oxygen fugacity [1], providing information about sulfur budget and redox. Here, we present results from X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge, electron microprobe analyses, cathodoluminescence (CL) imaging, and element mapping of apatite from the Philip's Mine IOA deposit, southern Adirondack Mountains, USA. The Philip's Mine apatite contains inclusions of pyrite and pyrrhotite, where the latter includes iron oxide and Ni-rich domains. The apatite also contains inclusions of monazite, and exhibits complex CL zonation coincident with variations in the abundances of REE and S. The presence of monazite fingerprints fluid-mediated dissolution-reprecipitation of originally REE-enriched apatite [2]. The S XANES spectra reveal varying proportions of structurally bound S6+ and S2-, as the S6+/∑S ratio ranges from sulfide-only to sulfate-only. Notably, sulfide-dominated domains contain higher S contents than sulfate-dominated regions. These observations are consistent with co-crystallization of apatite and monosulfide solid solution (MSS) at reducing conditions, followed by decomposition of MSS to pyrrhotite, pyrite and intermediate solid solution (ISS, which is not preserved; [3]). Metasomatism of that assemblage by an oxidized fluid resulted in formation of monazite in apatite and iron oxide domains in pyrrhotite. We conclude that the deposit formed by a H2S-Fe-rich volatile phase, possibly evolved from a rather primitive magmatic source, which is consistent with the low Ti content of magnetite. The deposit was subsequently altered by a rather oxidized SO2-poor volatile phase more typical of evolved felsic source regions. [1] Konecke et al. (2017) American Mineralogist 102-3, 548-557; [2] Harlov (2015) Elements 11-3, 171-176; [3] Edmonds & Mather (2017) Elements 13-2, 105-110.
Cerocene Revisited: The Electronic Structure of and Interconversion Between Ce2(C8H8)3 and Ce(C8H8)2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, Marc D.; Booth, Corwin H.; Lukens, Wayne W.
2009-02-02
New synthetic procedures for the preparation of Ce(cot)2, cerocene, from [Li(thf)4][Ce(cot)2], and Ce2(cot)3 in high yield and purity are reported. Heating solid Ce(cot)2 yields Ce2(cot)3 and COT while heating Ce2(cot)3 with an excess of COT in C6D6 to 65oC over four months yields Ce(cot)2. The solid state magnetic susceptibility of these three organocerium compounds shows that Ce(cot)2 behaves as a TIP (temperature independent paramagnet) over the temperature range of 5-300 K, while that of Ce2(cot)3 shows that the spin carriers are antiferromagnetically coupled below 10 K; above 10 K, the individual spins are uncorrelated, and [Ce(cot)2]- behaves as an isolatedmore » f1 paramagnet. The EPR at 1.5K for Ce2(cot)3 and [Ce(cot)2]- have ground state of MJ= +- 1/2. The LIII edge XANES of Ce(cot)2 (Booth, C.H.; Walter, M.D.; Daniel, M.; Lukens, W.W., Andersen, R.A., Phys. Rev. Lett. 2005, 95, 267202) and 2Ce2(cot)3 over 30-500 K are reported; the Ce(cot)2 XANES spectra show Ce(III) and Ce(IV) signatures up to a temperature of approximately 500 K, whereupon the Ce(IV) signature disappears, consistent with the thermal behavior observed in the melting experiment. The EXAFS of Ce(cot)2 and Ce2(cot)3 are reported at 30 K; the agreement between the molecular parameters for Ce(cot)2 derived from EXAFS and single crystal X-ray diffraction data are excellent. In the case of Ce2(cot)3 no X-ray diffraction data are known to exist, but the EXAFS are consistent with a"triple-decker" sandwich structure. A molecular rationalization is presented for the electronic structure of cerocene having a multiconfiguration ground state that is an admixture of the two configurations Ce(III, 4f1)(cot1.5-)2 and Ce(IV, 4f0)(cot2-)2; the multiconfigurational ground state has profound effects on the magnetic properties and on the nature of the chemical bond in cerocene and, perhaps, other molecules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, J.G.; Dokken, K.; Peralta-Videa, J.R.
For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately {+-}10%more » of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 {angstrom} for the Cr(VI) and Cr(III) in the sample, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacold, J. I.; Altman, A. B.; Donald, S B
Materials of interest for nuclear forensic science are often highly heterogeneous, containing complex mixtures of actinide compounds in a wide variety of matrices. Scanning transmission X-ray microscopy (STXM) is ideally suited to study such materials, as it can be used to chemically image specimens by acquiring X-ray absorption near-edge spectroscopy (XANES) data with 25 nm spatial resolution. In particular, STXM in the soft X-ray synchrotron radiation regime (approximately 120 – 2000 eV) can collect spectroscopic information from the actinides and light elements in a single experiment. Thus, STXM combines the chemical sensitivity of X-ray absorption spectroscopy with high spatial resolutionmore » in a single non-destructive characterization method. This report describes the application of STXM to a broad range of nuclear materials. Where possible, the spectroscopic images obtained by STXM are compared with information derived from other analytical methods, and used to make inferences about the process history of each material. STXM measurements can yield information including the morphology of a sample, “elemental maps” showing the spatial distribution of major chemical constituents, and XANES spectra from localized regions of a sample, which may show spatial variations in chemical composition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nancharaiah, Y.V.; Francis, A.; Dodge, C.
2010-04-01
We assessed the potential of mixed microbial consortia, in the form of granular biofilms, to reduce chromate and remove it from synthetic minimal medium. In batch experiments, acetate-fed granular biofilms incubated aerobically reduced 0.2 mM Cr(VI) from a minimal medium at 0.15 mM day-1 g-1, with reduction of 0.17 mM day-1 g-1 under anaerobic conditions. There was negligible removal of Cr(VI) (i) without granular biofilms, (ii) with lyophilized granular biofilms, and (iii) with granules in the absence of an electron donor. Analyses by X-ray absorption near edge spectroscopy (XANES) of the granular biofilms revealed the conversion of soluble Cr(VI) tomore » Cr(III). Extended X-ray absorption fine-structure (EXAFS) analysis of the Cr-laden granular biofilms demonstrated similarity to Cr(III) phosphate, indicating that Cr(III) was immobilized with phosphate on the biomass subsequent to microbial reduction. The sustained reduction of Cr(VI) by granular biofilms was confirmed in fed-batch experiments. Our study demonstrates the promise of granular-biofilm-based systems in treating Cr(VI)-containing effluents and wastewater.« less
Hydration of copper(II): new insights from density functional theory and the COSMO solvation model.
Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A
2008-09-25
The hydrated structure of the Cu(II) ion has been a subject of ongoing debate in the literature. In this article, we use density functional theory (B3LYP) and the COSMO continuum solvent model to characterize the structure and stability of [Cu(H2O)n](2+) clusters as a function of coordination number (4, 5, and 6) and cluster size (n = 4-18). We find that the most thermodynamically favored Cu(II) complexes in the gas phase have a very open four-coordinate structure. They are formed from a stable square-planar [Cu(H2O)8](2+) core stabilized by an unpaired electron in the Cu(II) ion d(x(2)-y(2)) orbital. This is consistent with cluster geometries suggested by recent mass-spectrometric experiments. In the aqueous phase, we find that the more compact five-coordinate square-pyramidal geometry is more stable than either the four-coordinate or six-coordinate clusters in agreement with recent combined EXAFS and XANES studies of aqueous solutions of Cu(II). However, a small energetic difference (approximately 1.4 kcal/mol) between the five- and six-coordinate models with two full hydration shells around the metal ion suggests that both forms may coexist in solution.
Moonshiram, Dooshaye; Garrido-Barros, Pablo; Gimbert-Suriñach, Carolina; Picón, Antonio; Liu, Cunming; Zhang, Xiaoyi; Karnahl, Michael; Llobet, Antoni
2018-04-25
We report the light-induced electronic and geometric changes taking place within a heteroleptic Cu I photosensitizer, namely [(xant)Cu(Me 2 phenPh 2 )]PF 6 (xant=xantphos, Me 2 phenPh 2 =bathocuproine), by time-resolved X-ray absorption spectroscopy in the ps-μs time regime. Time-resolved X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis enabled the elucidation of the electronic and structural configuration of the copper center in the excited state as well as its decay dynamics in different solvent conditions with and without triethylamine acting as a sacrificial electron donor. A three-fold decrease in the decay lifetime of the excited state is observed in the presence of triethylamine, showing the feasibility of the reductive quenching pathway in the latter case. A prominent pre-edge feature is observed in the XANES spectrum of the excited state upon metal to charge ligand transfer transition, showing an increased hybridization of the 3d states with the ligand p orbitals in the tetrahedron around the Cu center. EXAFS and density functional theory illustrate a significant shortening of the Cu-N and an elongation of the Cu-P bonds together with a decrease in the torsional angle between the xantphos and bathocuproine ligand. This study provides mechanistic time-resolved understanding for the development of improved heteroleptic Cu I photosensitizers, which can be used for the light-driven production of hydrogen from water. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.
Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B
2015-04-01
Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.
Correlated NanoSIMS, TEM, and XANES Studies of Presolar Grains
NASA Astrophysics Data System (ADS)
Groopman, Evan Edward
The objective of this thesis is to describe the correlated study of individual presolar grains via Nano-scale Secondary Ion Mass Spectrometry (NanoSIMS), Transmission Electron Microscopy (TEM), and Scanning Transmission X-ray Microscopy (STXM) utilizing X-ray Absorption Near Edge Structure (XANES), with a focus on connecting these correlated laboratory studies to astrophysical phenomena. The correlated isotopic, chemical, and microstructural studies of individual presolar grains provide the most detailed description of their formation environments, and help to inform astrophysical models and observations of stellar objects. As a part of this thesis I have developed and improved upon laboratory techniques for micromanipulating presolar grains and embedding them in resin for ultramicrotomy after NanoSIMS analyses and prior to TEM characterization. The new methods have yielded a 100% success rate and allow for the specific correlation of microstructural and isotopic properties of individual grains. Knowing these properties allows for inferences to be made regarding the condensation sequences and the origins of the stellar material that condensed to form these grains. NanoSIMS studies of ultramicrotomed sections of presolar graphite grains have revealed complex isotopic heterogeneities that appear to be primary products of the grains' formation environments and not secondary processing during the grains' lifetimes. Correlated excesses in 15N and 18O were identified as being carried by TiC subgrains within presolar graphite grains from supernovae (SNe). These spatially-correlated isotopic anomalies pinpoint the origin of the material that formed these grains: the inner He/C zone. Complex microstructures and isotopic heterogeneities also provide evidence for mixing in globular SN ejecta, which is corroborated by models and telescopic observations. In addition to these significant isotopic discoveries, I have also observed the first reported nanocrystalline core surrounded by turbostratic graphite within a low-density SN graphite grain. Nanocrystalline cores consisting of randomly-oriented 2-4 nm sheets of graphene and surrounded by concentric shells of graphite have been observed in high-density presolar graphite grains from Asymptotic Giant Branch stars, whose grains are typically microstructurally distinct from SN graphite grains. These vastly different stellar environments briefly formed similar nanocrystalline structures before diverging in the structure of their mantling graphite to be typical of AGB and SN grains. While relatively few correlated NanoSIMS and TEM studies have been performed previously, which this research thesis aims to expand, my collaborators and I also endeavored to add a third correlated technique, STXM/XANES, which had previously not been applied to presolar grains. XANES allows for the investigation of molecular bonds, which we used to help infer physical and chemical properties of stellar ejecta. I investigated the C K-edge and Ti L-edge of molecular bonds in both presolar graphite grains and their TiC subgrains. The presolar graphite grains, while overwhelmingly composed of aromatic C molecules, host a wide variety of minor organic molecules. Considering the large isotopic anomalies in the grains, these minor components are not likely due to contamination. I also investigated the valence state of Ti in Ti-rich subgrains and plan to work towards illuminating the effect that V in solid solution has upon the TiC bonds.
Organic-inorganic templates in biomineralization of shells, bone, teeth, and bacterial biofilms
NASA Astrophysics Data System (ADS)
de Stasio, Gelsomina Pupa
2005-03-01
Recent experiments with the Spectromicroscope for PHotoelectron Imaging of Nanostructure with X-rays (SPHINX)[1] on the biofilm formed by Fe-oxidizing bacteria in fresh, ground water, demonstrated that microbially extruded polysaccharide filaments provide the precipitation site for amorphous FeOOH filaments [2]. Upon aging the mineralized filaments crystallize to ferrihydrite (2-line FeOOH), with one curved pseudo-single crystal of akaganeite β-FeOOH), at the core of each filament. The crystals are only 2 nm wide and up to 10 micron long (aspect ratio 1:1000:1), and their structure and morphology is unprecedented. Furthermore, akaganeite should not form in fresh water, therefore a templation mechanism was hypothesized, and supported by SPHINX analysis of carbon XANES. The results indicate that after formation of the crystal fiber, the polysaccharide structure is also altered, and C1s spectra suggest that the COO^- group is involved in the templation mechanism. This was the first successful attempt to understand the organic-inorganic chemical interface in a biomineralized system. Many more templated biomineral systems can and will now be analyzed with this new approach. *Ultramicroscopy 99, 87-94 (2004). *Science 303, 1656-1658 (2004).
The sorption reactions of arsenate (As(V)) and arsenite (As(III)) on RuO2 x H2O were examined by X-ray Absorption Near Edge Spectroscopy (XANES) to elucidate the solid state speciation of sorbed As. At all pH values studied (pH 4-8), RuO2 x H
The dataset contains energy and absorption data for XANES spectra indicated in Figure 1 of the manuscript.This dataset is associated with the following publication:Donner, E., K. Scheckel , R. Sekine, R. Popelka-Filcoff, J. Bennett, G. Brunetti, R. Naidu, S. McGrath, and E. Lombi. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing.. D.O. Carpenter, and E.Y. Zeng ENVIRONMENTAL POLLUTION. Elsevier Science Ltd, New York, NY, USA, 205: 78-86, (2015).
Samuel L. Zelinka; Grant T. Kirker; Joseph E. Jakes; Leandro Passarini; Barry Lai
2016-01-01
Recently, synchrotron based X-ray fluorescence microscopy (XFM) and X-ray absorption near edge spectroscopy (XANES) were used to examine the metal fastener corrosion in copper-treated wood. XFM is able to map the copper concentration in the wood with a spatial resolution of 0.5 µm and is able to quantify the copper concentration to within 0.05 µg cm-3...
NASA Astrophysics Data System (ADS)
Muchlis, Khairanissa; Aini Fauziyah, Nur; Soontaranon, Siriwat; Limpirat, Wanwisa; Pratapa, Suminar
2017-01-01
In this study, we have investigated polymorphic silica (SiO2) powders using, Wide Angle X-ray Scattering (WAXS) and X-Ray Absorption Near Edge Spectroscopy (XANES), laboratory X-Ray Diffraction (XRD) instruments. The WAXS and XANES spectra were collected using synchrotron radiation at Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand. The silica powders were obtained by processing silica sand from Tanah Laut, South Kalimantan, Indonesia. Purification process of silica sand was done by magnetic separation and immersion with HCl. The purification step was needed to reduce impurity or undesirable non Si elements. Three polymorphs of silica were produced, i.e. amorphous phase (A), quartz (B), and cristobalite (C). WAXS profile for each phase was presented in terms of intensity vs. 2θ prior to analyses. Both XRD (λCuKα=1.54056 Å) and WAXS (λ=1.09 Å) patttern show that (1) A sample contains no crystallites, (2) B sample is monophasic, contains only quartz, and (3) C sample contains cristobalite and trydimite. XRD quantitative analysis using Rietica gave 98,8 wt% cristobalite, while the associated WAXS data provided 98.7 wt% cristobalite. Si K-edge XANES spectra were measured at energy range 1840 to 1920 eV. Qualitatively, the pre-edge and edge features for all phases are similar, but their main peaks in the post-edge region are different.
Localization and Specification of Copper Ions in Biofilms on Corroding Copper Surfaces.
1994-01-01
WW~nhi~. OC ;mmS 1 . Agency use unay (L-mUv umia. IA. "O" ,.ie. $3. Report Type and Dates Covered. I 1994 Final - Proceedings 4. Title and Subtitle. S...structure (XANES) techniques can be used to differentiate Cu’ 1 and Cu+2 species within biofilms attached to surfaces. Copper ions , uld not be... 1 The organism with associated polymer has been shown to bind copper ions from solution. Geesey et al.2 demonstrated that exopolymers produced by
Tuning the Selectivity of Single-Site Supported Metal Catalysts with Ionic Liquids
Babucci, Melike; Fang, Chia -Yu; Hoffman, Adam S.; ...
2017-09-11
1,3-Dialkylimidazolium ionic liquid coatings act as electron donors, increasing the selectivity for partial hydrogenation of 1,3-butadiene catalyzed by iridium complexes supported on high-surface-area γ-Al 2O 3. High-energy-resolution fluorescence detection X-ray absorption near-edge structure (HERFD XANES) measurements quantify the electron donation and are correlated with the catalytic activity and selectivity. Furthermore, the results demonstrate broad opportunities to tune electronic environments and catalytic properties of atomically dispersed supported metal catalysts.
[Ni(cod) 2][Al(OR F) 4], a Source for Naked Nickel(I) Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwab, Miriam M.; Himmel, Daniel; Kacprzak, Sylwia
The straightforward synthesis of the cationic, purely organometallic Ni I salt [Ni(cod) 2] +[Al(OR F) 4] - was realized through a reaction between [Ni(cod) 2] and Ag[Al(OR F) 4] (cod=1,5-cyclooctadiene). Crystal-structure analysis and EPR, XANES, and cyclic voltammetry studies confirmed the presence of a homoleptic NiI olefin complex. Weak interactions between the metal center, the ligands, and the anion provide a good starting material for further cationic NiI complexes.
Stickrath, Andrew B; Mara, Michael W; Lockard, Jenny V; Harpham, Michael R; Huang, Jier; Zhang, Xiaoyi; Attenkofer, Klaus; Chen, Lin X
2013-04-25
Although understanding the structural dynamics associated with ligand photodissociation is necessary in order to correlate structure and function in biological systems, few techniques are capable of measuring the ultrafast dynamics of these systems in solution-phase at room temperature. We present here a detailed X-ray transient absorption (XTA) study of the photodissociation of CO-bound myoglobin (Fe(II)CO-Mb) in room-temperature aqueous buffer solution with a time resolution of 80 ps, along with a general procedure for handling biological samples under the harsh experimental conditions that transient X-ray experiments entail. The XTA spectra of (Fe(II)CO-Mb) exhibit significant XANES and XAFS alterations following 527 nm excitation, which remain unchanged for >47 μs. These spectral changes indicate loss of the CO ligand, resulting in a five-coordinate, domed heme, and significant energetic reorganization of the 3d orbitals of the Fe center. With the current experimental setup, each X-ray pulse in the pulse train, separated by ~153 ns, can be separately discriminated, yielding snapshots of the myoglobin evolution over time. These methods can be easily applied to other biological systems, allowing for simultaneous structural and electronic measurements of any biological system with both ultrafast and slow time resolutions, effectively mapping out all of the samples' relevant physiological processes.
NASA Astrophysics Data System (ADS)
Majzlan, Juraj; Lalinská, Bronislava; Chovan, Martin; Jurkovič, L.'ubomír; Milovská, Stanislava; Göttlicher, Jörg
2007-09-01
The abandoned Sb deposit Pezinok in Slovakia is a significant source of As and Sb pollution that can be traced in the upper horizons of soils kilometers downstream. The source of the metalloids are two tailing impoundments which hold ˜380,000 m 3 of mining waste. The tailings and the discharged water have circumneutral pH values (7.0 ± 0.6) because the acidity generated by the decomposition of the primary sulfides (pyrite, FeS 2; arsenopyrite, FeAsS; berthierite, FeSb 2S 4) is rapidly neutralized by the abundant carbonates. The weathering rims on the primary sulfides are iron oxides which act as very efficient scavengers of As and Sb (with up to 19.2 wt% As and 23.7 wt% Sb). In-situ μ-XANES experiments indicate that As in the weathering rims is fully oxidized (As 5+). The pore solutions in the impoundment body contain up to 81 ppm As and 2.5 ppm Sb. Once these solutions are discharged from the impoundments, they precipitate or deposit masses of As-rich hydrous ferric oxide (As-HFO) with up to 28.3 wt% As 2O 5 and 2.7 wt% Sb. All As-HFO samples are amorphous to X-rays. They contain Fe and As in their highest oxidation state and in octahedral and tetrahedral coordination, respectively, as suggested by XANES and EXAFS studies on Fe K and As K edges. The iron octahedra in the As-HFO share edges to form short single chains and the chains polymerize by sharing edges or corners with the adjacent units. The arsenate ions attach to the chains in a bidentate-binuclear and monodentate fashion. In addition, hydrogen-bonded complexes may exist to satisfy the bonding requirements of all oxygen atoms in the first coordination sphere of As 5+. Structural changes in the As-HFO samples were traced by chemical analyses and Fe EXAFS spectroscopy during an ageing experiment. As the samples age, As becomes more easily leachable. EXAFS spectra show a discernible trend of increasing number of Fe-Fe pairs at a distance of 3.3-3.5 Å, that is, increasing polymerization of the iron octahedra to form larger units with fewer adsorption sites. Therefore, although ferrihydrite is an excellent material for capturing arsenic, its use as a medium for a long-term storage of As has to be considered with a great caution because it will tend to release arsenic as it ages.
Xie, Yingying; Wang, Hong; Xu, Guiliang; ...
2016-09-02
In operando XRD and TXM-XANES approaches demonstrate that structure evolution in NaNi 1/3Fe 1/3Mn 1/3O 2 during cycling follows a continuous change, and the formation of a nonequilibrium solid solution phase in the existence of two phases. Here, an O3' and P3' monoclinic phase occur, and redox couples of Ni 3+/Ni 4+ and Fe 3+/Fe 4+ are mainly responsible in the charge voltage range from 4.0 to 4.3 V.
Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure
NASA Astrophysics Data System (ADS)
Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.
2013-04-01
The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.
Structural study of Cu(II) complexes with benzo[b]furancarboxylic acids
NASA Astrophysics Data System (ADS)
Kalinowska, Diana; Klepka, Marcin T.; Wolska, Anna; Drzewiecka-Antonik, Aleksandra; Ostrowska, Kinga; Struga, Marta
2017-11-01
Four Cu(II) complexes with 2- and 3-benzo[b]furancarboxylic acids have been synthesized and characterized using combination of two spectroscopic techniques. These techniques were: (i) FTIR and (ii) XAFS. FTIR analysis confirmed that complexes were formed and gave insight into identification of possible coordinating groups to the metallic center. XANES analysis indicated that the oxidation state of Cu is +2. EXAFS analysis allowed to identify that the first coordination sphere is formed by 4-5 oxygen atoms with the Cu-O distances around 2 Å. Combining these techniques it was possible to structurally describe novel Cu(II) complexes with benzo[b]furancarboxylic acids.
Development of XAFS Into a Structure Determination Technique
NASA Astrophysics Data System (ADS)
Stern, E. A.
After the detection of diffraction of x-rays by M. Laue in 1912, the technique was soon applied to structure determination by Bragg within a year. On the other hand, although the edge steps in X-Ray absorption were discovered even earlier by Barkla and both the near edge (XANES) and extended X-Ray fine structure (EXAFS) past the edge were detected by 1929, it still took over 40 years to realize the structure information contained in this X-Ray absorption fine structure (XAFS). To understand this delay a brief historical review of the development of the scientific ideas that transformed XAFS into the premiere technique for local structure determination is given. The development includes both advances in theoretical understanding and calculational capabilities, and in experimental facilities, especially synchrotron radiation sources. The present state of the XAFS technique and its capabilities are summarized.
Prietzel, Jörg; Harrington, Gertraud; Häusler, Werner; Heister, Katja; Werner, Florian; Klysubun, Wantana
2016-03-01
Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K-edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free- and cation-bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K-edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated soil organic matter (SOM), but far less efficiently by hematite, Ca-saturated montmorillonite and Ca-saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K-edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P-retaining soil minerals in addition to spectra of free or cation-bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K-edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.
The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milledmore » for different times. XANES results reveal the presence of the +4 (SiO 2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si 2O), +2 (SiO) and +3 (Si 2O 3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.« less
EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms
NASA Astrophysics Data System (ADS)
Richmann, Michael K.; Reed, Donald T.; Kropf, A. Jeremy; Aase, Scott B.; Lewis, Michele A.
2001-09-01
A sodalite/glass ceramic waste form is being developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Two types of simulated waste forms were studied: where the plutonium was alone in an LiCl/KCl matrix and where simulated fission-product elements were added representative of the electrometallurgical treatment process used to recover uranium from spent nuclear fuel also containing plutonium and a variety of fission products. Extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state, and particle size of the plutonium within these waste form samples. Plutonium was found to segregate as plutonium(IV) oxide with a crystallite size of at least 4.8 nm in the non-fission-element case and 1.3 nm with fission elements present. No plutonium was observed within the sodalite in the waste form made from the plutonium-loaded LiCl/KCl eutectic salt. Up to 35% of the plutonium in the waste form made from the plutonium-loaded simulated fission-product salt may be segregated with a heavy-element nearest neighbor other than plutonium or occluded internally within the sodalite lattice.
Microbial reduction of uranium (VI) by Bacillus sp. dwc-2: A macroscopic and spectroscopic study.
Li, Xiaolong; Ding, Congcong; Liao, Jiali; Du, Liang; Sun, Qun; Yang, Jijun; Yang, Yuanyou; Zhang, Dong; Tang, Jun; Liu, Ning
2017-03-01
The microbial reduction of U(VI) by Bacillus sp. dwc-2, isolated from soil in Southwest China, was explored using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). Our studies indicated that approximately 16.0% of U(VI) at an initial concentration of 100mg/L uranium nitrate could be reduced by Bacillus sp. dwc-2 at pH8.2 under anaerobic conditions at room temperature. Additionally, natural organic matter (NOM) played an important role in enhancing the bioreduction of U(VI) by Bacillus sp. dwc-2. XPS results demonstrated that the uranium presented mixed valence states (U(VI) and U(IV)) after bioreduction, which was subsequently confirmed by XANES. Furthermore, the TEM and high resolution transmission electron microscopy (HRTEM) analysis suggested that the reduced uranium was bioaccumulated mainly within the cell and as a crystalline structure on the cell wall. These observations implied that the reduction of uranium may have a significant effect on its fate in the soil environment in which these bacterial strains occur. Copyright © 2016. Published by Elsevier B.V.
Evolution of Eu valence and superconductivity in layered Eu0.5La0.5FBiS2 -xSex system
NASA Astrophysics Data System (ADS)
Mizuguchi, Y.; Paris, E.; Wakita, T.; Jinno, G.; Puri, A.; Terashima, K.; Joseph, B.; Miura, O.; Yokoya, T.; Saini, N. L.
2017-02-01
We have studied the effect of Se substitution on Eu valence in a layered Eu0.5La0.5FBiS2 -xSex superconductor using a combined analysis of x-ray absorption near-edge structure (XANES) and x-ray photoelectron spectroscopy (XPS) measurements. Eu L3-edge XANES spectra reveal that Eu is in the mixed valence state with coexisting Eu2 + and Eu3 +. The average Eu valence decreases sharply from ˜2.3 for x =0.0 to ˜2.1 for x =0.4 . Consistently, Eu 3 d XPS shows a clear decrease in the average valence by Se substitution. Bi 4 f XPS indicates that effective charge carriers in the BiCh2 (Ch = S, Se) layers are slightly increased by Se substitution. On the basis of the present results it has been discussed that the metallic character induced by Se substitution in Eu0.5La0.5FBiS2 -xSex is likely to be due to increased in-plane orbital overlap driven by reduced in-plane disorder that affects the carrier mobility.
Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis.
Robinson, James Stephen; Baumann, Karen; Hu, Yongfeng; Hagemann, Philipp; Kebelmann, Lutz; Leinweber, Peter
2018-01-01
Strategies are needed to increase the sustainability of phosphorus (P) fertiliser management in agriculture. This paper reports on the potential of pyrolysis treatment to recycle P from renewable materials previously regarded as wastes. The study used K-edge X-ray absorption near-edge structure (XANES) spectroscopy to examine chemical forms of P in the waste feedstock materials and corresponding biochars (pyrolysis at 480-500 °C) of four ligno-cellulosic, plant-based residues and five relatively P-rich livestock and water-treatment by-products, to acquire information on changes in potential P fertiliser value. Pyrolysis enriched P in the biochars by factors of 1.3-4.3, thus offering wide-ranging P fertiliser potential. XANES spectroscopy revealed hydroxyapatite (HAP) as one of the dominant chemical P compounds in the feedstocks, ranging from 14% (rice husks) to 98% (animal bone) of total P. For most materials, pyrolysis increased the proportion of HAP, and pyrophosphates were generated in several cases. These alterations possibly lead to diversity in the P solubility characteristics of the biochars if used as soil amendments; this is an important property of environmentally sound P fertilisers.
Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO 2 conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halder, Avik; Kilianová, Martina; Yang, Bing
We report a nanoparticulate iron oxide based catalyst for CO2 conversion with high efficiency at low pressures and on the effect of the presence of copper on the catalyst's restructuring and its catalytic performance. In situ X-ray scattering reveals the restructuring of the catalyst at the nanometer scale. In situ X-ray absorption near edge structure (XANES) shows the evolution of the composition and oxidation state of the iron and copper components under reaction conditions along with the promotional effect of copper on the chemical transformation of the iron component. X-ray diffraction (XRD), XANES and Raman spectroscopy proved that the startingmore » nano catalyst is composed of iron oxides differing in chemical nature (alpha-Fe2O3, Fe3O4, FeO(OH)) and dimensionality, while the catalyst after CO2 conversion was identified as a mixture of alpha-Fe, Fe3C, and traces of Fe5C2. The significant increase of the rate CO2 is turned over in the presence of copper nanoparticles indicates that Cu nanoparticles activate hydrogen, which after spilling over to the neighbouring iron sites, facilitate a more efficient conversion of carbon dioxide.« less
NASA Astrophysics Data System (ADS)
Tamura, Tomoyuki; Kohyama, Masanori; Ogata, Shuji
2017-07-01
We performed a first-principles molecular dynamics (FPMD) simulation of the interfacial reactions between a LiCoO2 electrode and a liquid ethylene carbonate (EC) electrolyte. For configurations during the FPMD simulation, we also performed first-principles Co K-edge x-ray absorption near-edge structure (XANES) simulations, which can properly reproduce the bulk and surface spectra of LiCoO2. We observed strong absorption of an EC molecule on the LiCoO2 {110} surface, involving ring opening of the molecule, bond formation between oxygen atoms in the molecule and surface Co ions, and emission of one surface Li ion, while all the surface Co ions remain Co3 +. The surface Co ions having the bond with an oxygen atom in the molecule showed remarkable changes in simulated K-edge spectra which are similar to those of the in situ observation under electrolyte soaking [D. Takamatsu et al., Angew. Chem., Int. Ed. 51, 11597 (2012), 10.1002/anie.201203910]. Thus, the local environmental changes of surface Co ions due to the reactions with an EC molecule can explain the experimental spectrum changes.
Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution
Yoon, Seyoon; Ha, Juyoung; Chae, Sejung Rosie; ...
2016-05-21
Monosulfoaluminate (Ca 4Al 2(SO 4)(OH) 12∙6H 2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO 4 2- and OH -) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formedmore » ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.« less
Engel, Annette Summers; Lichtenberg, Henning; Prange, Alexander; Hormes, Josef
2007-04-01
Most transformations within the sulfur cycle are controlled by the biosphere, and deciphering the abiotic and biotic nature and turnover of sulfur is critical to understand the geochemical and ecological changes that have occurred throughout the Earth's history. Here, synchrotron radiation-based sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy is used to examine sulfur speciation in natural microbial mats from two aphotic (cave) settings. Habitat geochemistry, microbial community compositions, and sulfur isotope systematics were also evaluated. Microorganisms associated with sulfur metabolism dominated the mats, including members of the Epsilonproteobacteria and Gammaproteobacteria. These groups have not been examined previously by sulfur K-edge XANES. All of the mats consisted of elemental sulfur, with greater contributions of cyclo-octasulfur (S8) compared with polymeric sulfur (Smicro). While this could be a biological fingerprint for some bacteria, the signature may also indicate preferential oxidation of Smicro and S8 accumulation. Higher sulfate content correlated to less S8 in the presence of Epsilonproteobacteria. Sulfur isotope compositions confirmed that sulfur content and sulfur speciation may not correlate to microbial metabolic processes in natural samples, thereby complicating the interpretation of modern and ancient sulfur records.
Ferrate (IV) as a Possible Oxidant on the Martian Surface
NASA Astrophysics Data System (ADS)
Tsapin, Alexandre; Goldfeld, M. G.; McDonald, G. D.; Nealson, K. H.; Mohnke, J.; Moskovitz, B.; Solheid, P.; Kemner, K. H.; Orlandini, K.
Viking experiments showed that Martian soil has a very strong oxidant, which could be responsible for the results of experiments performed on Viking landers. These experiments were designed specifically to detect life on Mars. The nature of that oxidant was not determined during Viking mission. Later several groups tried to reconstruct Viking experiments and find out the nature of Martian oxidant. None of these attempts were completely successful. The general perception was that there are several chemically different oxidants on Martian surface. In this study we suggested that potassium ferrate K_2FeO_4 can be Martian oxidant responsible at least partially for the results of experiments on Viking landers. We characterized liquid and powder preparation of Fe (VI) with EPR, optical spectroscopy, Mossbauer spectroscopy, and by Fe-XANES. All properties of our preparations of (FeVI) are consistent with the proposal role of that compound as a strong oxidant on Martian surface.
NASA Astrophysics Data System (ADS)
Jiang, Yu
2009-12-01
In this dissertation, investigations on the local lattice structures for a variety of novel materials using Extended X-ray Absorption Fine Structure (EXAFS) technique are presented. Different experiment schemes were applied to obtain EXAFS data with high quality, and some interesting results were obtained by careful analysis. The power of the EXAFS technique was once again proved. In Chapter 1, I first briefly introduce the EXAFS theory and experiments, then give readers who are not familiar with this technique a short introduction on data reduction and analysis, and finally discuss some problems that are easily ignored in the interpretation of the experiment results. In Chapter 2, a temperature-dependent EXAFS investigation of La 1-xCaxMnO 3 is presented for the concentration range that spans the ferromagnetic-insulator (FMI) to ferromagnetic-metal (FMM) transition region, x = 0.16, 0.18, 0.20, and 0.22; the titrated hole concentrations are slightly higher y = 0.2, 0.22, 0.24, and 0.25 respectively. In Chapter 3, I report EXAFS studies of n- and p-type Ba8Ga 16Ge30 samples (type I clathrate) at the Ga, Ge, and Ba K-edges, to probe the local structure, particularly around the Ba atoms located inside 20- and 24-atom cages (Ba1 and Ba2 sites respectively) formed of Ga/Ge atoms. In agreement with diffraction analysis we find Ba2 is off-center, with a component in the bc plane (0.15 A) comparable to that found in diffraction; however, under the assumption of a stiff cage we also require a significant a component. This suggests a coupling or attraction between the Ba2 atoms and the hexagonal rings at the top or bottom of the cage that encloses the Ba2 site. In Chapter 4, I report detailed degradation and rejuvenation studies for AC electro-luminescence (EL) devices made using the phosphor ZnS:Cu,CI. We find that the AC EL emission spectra vary considerably with AC driving frequency but all spectra can be fit to a sum of four Gaussians. The combined experiments place strong constraints on the mechanisms for degradation and rejuvenation and suggest that EL degradation is most likely caused by either Cu or Cl diffusion under high E-fields, while thermal diffusion at slightly elevated temperatures without E-fields present, re-randomizes the (isolated) dopant distributions. In Chapter 5, I present a temperature-dependent EXAFS/XANES investigation of La1-xSrxCoO 3 (LSCO) over a wide doping concentration range (0 ≤ x ≤ 0.35). These experiments do not support the existence of a significant fraction of Co sites with an intermediate spin (IS) state, for which there is a JT active eg electron on the Co atoms. We cannot, however, exclude the possibility of a tiny fraction of sites having a JT distortion or some other (non-JT active) means of producing an IS state. The bulk samples are well ordered out to at least the third neighbors (Co-Co) while the nano-particles show increased disorder and a reduction in coordination for Co-Co. XANES data are also presented and, for both bulk and nano-particle samples, there is essentially no edge shift with increasing Sr concentration and no significant change in the first pre-edge peak with Sr concentration or changing temperature (4-300K). This indicates that when holes are introduced via Sr doping, Co remains close to Co3+; we argue that the holes go primarily into the O 2p bands. Bond-valence sums also indicate no change in Co valence.
NASA Astrophysics Data System (ADS)
Templeton, A. S.; Trainor, T. P.; Spormann, A. M.; Brown, G. E.
2002-12-01
Metal sorption and precipitation reactions at biological as well as mineral surfaces are important controls on metal speciation and bioavailability in natural environments. When highly hydrated biofilms form on mineral surfaces, numerous competitive and synergistic effects are predicted to occur. Experimentally, it is challenging to determine where the sorbed metal ions are localized, the relative affinity of the biological vs. mineral surface sites, or to monitor biomineralization reactions or changes in metal speciation that may also occur. A large part of the difficulty is due to the low concentrations of sorbed ions, the small length-scale of the biofilm-mineral interface, and the complex interplay between microbially-catalayzed redox transformations vs. sorption and/or transport processes. Long-period x-ray standing wave (XSW) techniques are well-suited to determining the vertical distribution of metal(oid) species within biofilms overlying mineral surfaces. We will discuss experiments where Se fluorescence yield profiles are used to compare the affinity of Burkholderia cepacia biofilms for binding Se(IV) and Se(VI) species relative to underlying alpha-Al2O3 substrates over three orders of magnitude in [Se]. In addition, we will discuss how coupling the XSW experiments to grazing-incidence, spatially-resolved Se K-edge XANES spectroscopy can be used to differentiate between the oxidation state of the Se complexes localized within the biofilm vs. the mineral surface. This approach is used to monitor changes in the relative distributions of Se(VI), Se(IV) and Se(0) species as a function of time and proximity to the mineral surface. The long-period XSW data show that selenite preferentially binds to the oxide surfaces, particularly at low [Se]. When B. cepacia is metabolically active, B. cepacia rapidly reduces a fraction of the Se(IV) to the red elemental Se form. In contrast, selenate is preferentially partitioned into the B. cepacia biofilms at all [Se] tested due to a lower affinity for binding to the mineral surface. XANES spectra show that rapid reduction of selenate by B. cepacia to Se(IV) and Se(0) species subsequently results in a vertical segregation of Se species at the B. cepacia/alpha-Al2O3 interface. Elemental Se accumulates within the biofilm with the Se(VI), whereas selenite intermediates preferentially sorb to the underlying oxide surface.
NASA Astrophysics Data System (ADS)
Chankrachang, M.; Limphirat, W.; Yongyingsakthavorn, P.; Nontakaew, U.; Tohsan, A.
2017-09-01
A study of sulfidic linkages formed in natural rubber (NR) latex medical gloves by using X-ray Absorption Near Edge Structure (XANES) is presented in this paper. The NR latex compound was prepared by using prevulcanization method, that is, it was prevulcanized at room temperature for 24 hrs before utilization. After the 24 hrs of prevulcanization, the latex film samples were obtained by dipping process. The dipped films were subjected to vulcanize at 110°C for 5 to 25 min. It was observed that after the compound was prevulcanized for 24 hrs, polysulfidic linkages were mainly formed in the sample. It was however found that after curing at 110°C for 5-25 min, the polysulfidic linkages are tended to change into disulfide linkages. Especially, in the case of 25 minutes cured sample, disulfide linkages are found to be the main linkages. In term of tensile strength, it was observed that when cure time increased from 5 - 10 min, tensile strengths were also increased. But when the cure time of the film is 25 minutes, tensile strength was slightly dropped. The dropped of tensile strength when cure time is longer than 10 minutes can be ascribed to a degradation of polysulfidic and disulfidic linkages during curing. Therefore, by using XANES analysis, it was found to be very useful to understand the cure characteristic, thus it can be very helpful to optimize cure time and tensile properties of the product.
Evidence for Different Reaction Pathways for Liquid and Granular Micronutrients in a Calcareous Soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hettiarachchi, Ganga M.; McLaughlin, Mike J.; Scheckel, Kirk G.
2008-06-16
The benefits of Mn and Zn fluid fertilizers over conventional granular products in calcareous sandy loam soils have been agronomically demonstrated. We hypothesized that the differences in the effectiveness between granular and fluid Mn and Zn fertilizers is due to different Mn and Zn reaction processes in and around fertilizer granules and fluid fertilizer bands. We used a combination of several synchrotron-based x-ray techniques, namely, spatially resolved micro-x-ray fluorescence (?-XRF), micro-x-ray absorption near edge structure spectroscopy (?-XANES), and bulk-XANES and -extended x-ray absorption fine structure (EXAFS) spectroscopy, along with several laboratory-based x-ray techniques to speciate different fertilizer-derived Mn and Znmore » species in highly calcareous soils to understand the chemistry underlying the observed differential behavior of fluid and granular micronutrient forms. Micro-XRF mapping of soil-fertilizer reactions zones indicated that the mobility of Mn and Zn from liquid fertilizer was greater than that observed for equivalent granular sources of these micronutrients in soil. After application of these micronutrient fertilizers to soil, Mn and Zn from liquid fertilizers were found to remain in comparatively more soluble solid forms, such as hydrated Mn phosphate-like, Mn calcite-like, adsorbed Zn-like, and Zn silicate-like phases, whereas Mn and Zn from equivalent granular sources tended to transform into comparatively less soluble solid forms such as Mn oxide-like, Mn carbonate-like, and Zn phosphate-like phases.« less
Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.
2015-01-01
The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075
Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite
Zhu, W.; Young, L.Y.; Yee, N.; Serfes, M.; Rhine, E.D.; Reinfelder, J.R.
2008-01-01
We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black shale formations. ?? 2008 Elsevier Ltd. All rights reserved.
Molecular Basis of the Bohr Effect in Arthropod Hemocyanin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirota, S.; Kawahara, T; Beltramini, M
2008-01-01
Flash photolysis and K-edge x-ray absorption spectroscopy (XAS) were used to investigate the functional and structural effects of pH on the oxygen affinity of three homologous arthropod hemocyanins (Hcs). Flash photolysis measurements showed that the well-characterized pH dependence of oxygen affinity (Bohr effect) is attributable to changes in the oxygen binding rate constant, kon, rather than changes in koff. In parallel, coordination geometry of copper in Hc was evaluated as a function of pH by XAS. It was found that the geometry of copper in the oxygenated protein is unchanged at all pH values investigated, while significant changes were observedmore » for the deoxygenated protein as a function of pH. The interpretation of these changes was based on previously described correlations between spectral lineshape and coordination geometry obtained for model compounds of known structure A pH-dependent change in the geometry of cuprous copper in the active site of deoxyHc, from pseudotetrahedral toward trigonal was assigned from the observed intensity dependence of the 1s ? 4pz transition in x-ray absorption near edge structure (XANES) spectra. The structural alteration correlated well with increase in oxygen affinity at alkaline pH determined in flash photolysis experiments. These results suggest that the oxygen binding rate in deoxyHc depends on the coordination geometry of Cu(I) and suggest a structural origin for the Bohr effect in arthropod Hcs.« less
NASA Technical Reports Server (NTRS)
Sutton, S. R.; Ross, D. K.; Rao, M. N.; Nyquist, L. E.
2014-01-01
Based on isotopic anomalies in Kr and Sm, Sr-isotopes, S-isotopes, XANES results on S-speciation, Fe/S ratios in sulfide immiscible melts [5], and major element correlations with S determined in impact glasses in EET79001 Lith A & Lith B and Tissint, we have provided very strong evidence for the occurrence of a Martian regolith component in some impact melt glasses in shergottites. Using REE measurements by LA-ICP-MS in shergottite impact glasses, Barrat and co-workers have recently reported conflicting conclusions about the occurrence of Martian regolith components: (a) Positive evidence was reported for a Tissint impact melt, but (b) Negative evidence for impact melt in EET79001 and another impact melt in Tissint. Here, we address some specific issues related to sulfur speciation and their relevance to identifying Martian regolith components in impact glasses in EET79001 and Tissint using sulfur K XANES and Fe/S ratios in sulfide immiscible melts. XANES and FE-SEM measurements in approx. 5 micron size individual sulfur blebs in EET79001 and Tissint glasses are carried out by us using sub-micron size beams, whereas Barrat and coworkers used approx. 90 micron size laser spots for LA- ICP-MS to determine REE abundances in bulk samples of the impact melt glasses. We contend that Martian regolith components in some shergottite impact glasses are present locally, and that studying impact melts in various shergottites can give evidence both for and against regolith components because of sample heterogeneity.
NASA Astrophysics Data System (ADS)
Lederman, Eli R.
1990-01-01
The electronic structures of hole- and electron -doped high temperature superconductors have been probed using x-ray absorption near-edge spectroscopy (XANES) and photoelectron emission spectroscopy (PES). These measurements have been performed on RBa_2Cu _3O_{rm 7-y} , La_{rm 2-x}Sr _{rm x}CuO _4 and Ln_{rm 2 -x}Ce_{rm x} CuO_{rm 4} for R = Y, Eu and Ln = Nd, Pr and Sm. The parameters x and y have been varied to include a range of hole and electron carrier densities and the undoped parent compounds. Previous XANES and PES results have indicated that unoccupied states of O 2p character can be associated with the carriers in the materials RBa_2 Cu_3O_{ rm 7-y} and La_{ rm 2-x}Sr_{rm x}CuO_4 and that the density of holes increases with O and Sr content, respectively. Conduction was hole-based in all known high-T_{ rm c} cuprates until the recent discovery of superconductivity in Ln_{rm 2-x}Ce_{rm x} CuO_4. Hall coefficient measurements have suggested that the carriers in this system are electrons added with Ce doping. It has been anticipated that these electron-doped materials will provide an important test for models of high temperature superconductivity. PES measurements are presented that show significant Cu 3d character in the valence band of these electron-based materials, but that the Cu^{2+} /Cu^{1+} ratio is unchanged by the level of Ce doping, indicating that doped electrons are itinerant rather than highly correlated. Resonant photoemission from the valence band indicates the presence of unoccupied O 2p states, but these holes are less abundant than in the hole-doped materials. Measurements of XANES at the O 1s edge suggest that unoccupied states of O 2p character in the electron -doped materials are not related to conduction in a simple way. The density of these holes is shown to decrease upon Ce doping and the process of reduction, despite the fact that both are necessary of superconductivity. Furthermore, whereas the O 2p holes are at E_{rm F} in the hole-doped materials, they are ~1 eV above E_{ rm F} in their electron-doped counterparts. A schematic of the band structure is proposed on the basis of these spectroscopic measurements.
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Li, Chunlei; Liu, Lijia; Sham, Tsun-Kong
2013-02-01
The electronic structure and optical properties of bulk, micro-sized, and nano-sized α-Al2O3 (wafer, microparticles (MPs), nanowires (NWs), and nanotubes (NTs)) have been investigated using X-ray absorption near-edge structures (XANES) and X-ray excited optical luminescence (XEOL). XANES results show that the wafer, MPs, and NTs have characteristic features of α-Al2O3. The NWs have a core/shell structure with a single crystalline α-Al2O3 core surrounded by an amorphous shell, which is consistent with transmission electron microscopy result. It is found that some Al3+ in the shell and core/shell interface of the NWs as well as the surface of the NTs were reduced to Al2+ or Al1+ during the growth process. XEOL results show that the wafer and MPs have a broad emission at 325 nm and a sharp emission at 694 nm, which are attributed to F+ center and Cr3+ impurities, respectively. The NWs exhibit an intense emission at 404 nm that comes from F center, while the NTs show relatively weak luminescence at 325, 433, and 694 nm, which are attributed to F+ center, F center, and Cr3+ impurities, respectively. The O K-edge XEOL confirms that the emissions of α-Al2O3 in the range of 250-550 nm are related to the oxygen site. Furthermore, on the basis of XEOL and photoluminescence yield, the strong luminescence of the NWs (404 nm) is related to the Al2+ or Al1+ in the shell and core/shell interface, while the luminescence of the NTs at 325 and 433 nm are related to the bulk and the Al2+ or Al1+ on the surface, respectively.
Haumann, Michael; Porthun, Antje; Buhrke, Thorsten; Liebisch, Peter; Meyer-Klaucke, Wolfram; Friedrich, Bärbel; Dau, Holger
2003-09-23
For the first time, the nickel site of the hydrogen sensor of Ralstonia eutropha, the regulatory [NiFe] hydrogenase (RH), was investigated by X-ray absorption spectroscopy (XAS) at the nickel K-edge. The oxidation state and the atomic structure of the Ni site were investigated in the RH in the absence (air-oxidized, RH(ox)) and presence of hydrogen (RH(+H2)). Incubation with hydrogen is found to cause remarkable changes in the spectroscopic properties. The Ni-C EPR signal, indicative of Ni(III), is detectable only in the RH(+H2) state. XANES and EXAFS spectra indicate a coordination of the Ni in the RH(ox) and RH(+H2) that pronouncedly differs from the one in standard [NiFe] hydrogenases. Also, the changes induced by exposure to H(2) are unique. A drastic modification in the XANES spectra and an upshift of the K-edge energy from 8339.8 (RH(ox)) to 8341.1 eV (RH(+H2)) is observed. The EXAFS spectra indicate a change in the Ni coordination in the RH upon exposure to H(2). One likely interpretation of the data is the detachment of one sulfur ligand in RH(+H2) and the binding of additional (O,N) or H ligands. The following Ni oxidation states and coordinations are proposed: five-coordinated Ni(II)(O,N)(2)S(3) for RH(ox) and six-coordinated Ni((III))(O,N)(3)X(1)S(2) [X being either an (O,N) or H ligand] for RH(+H2). Implications of the structural features of the Ni site of the RH in relation to its function, hydrogen sensing, are discussed.
Chen, Guangcun; Lin, Huirong; Chen, Xincai
2016-12-28
Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a 75 μm thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling Cu₃(PO₄)₂ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were Cu₃(PO₄)₂-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% Cu₃(PO₄)₂, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.
Crystal structure and properties of tetragonal EuAg{sub 4}In{sub 8} grown by metal flux technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subbarao, Udumula; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in
The compound EuAg{sub 4}In{sub 8} has been obtained as single crystals in high yield from reactions run in liquid indium. X-ray diffraction on single crystals suggests that EuAg{sub 4}In{sub 8} crystallizes in the CeMn{sub 4}Al{sub 8} structure type, tetragonal space group I4/mmm with lattice constants a=b=9.7937(2) Å and c=5.7492(2) Å. Crystal structure of EuAg{sub 4}In{sub 8} is composed of pseudo Frank–Kasper cages occupied by one europium atom in each ring, which are shared through the corner along the ab plane resulting in a three dimensional network. The magnetic susceptibility of EuAg{sub 4}In{sub 8} was measured in the temperature range 2–300more » K, which obeyed Curie–Weiss law above 50 K. Magnetic moment value calculated from the fitting indicates the presence of divalent europium, which was confirmed by X-ray absorption near edge spectroscopy. Electrical resistivity measurements suggest that EuAg{sub 4}In{sub 8} is metallic in nature with a probable Fermi liquid behavior at low temperature. - Graphical abstract: The tetragonal EuAg{sub 4}In{sub 8} has been grown as single crystals from reactions run in liquid indium. Magnetic and XANES measurements suggest divalent nature of Eu and resistivity measurements suggest metallic nature. - Highlights: • EuAg{sub 4}In{sub 8} phase having tetragonal phase is grown by metal flux technique. • Magnetic and XANES measurements exhibit divalent nature of Eu in EuAg{sub 4}In{sub 8}. • Resistivity measurement suggests metallic nature and probable Fermi liquid behavior.« less
NASA Astrophysics Data System (ADS)
Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel
2015-06-01
Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn2+ and OH-) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (Tc) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated Eg values are in the range 3.28-3.41 eV and 3.22-3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm2 V-1 s-1 and 126.2 to 204.7 cm2 V-1 s-1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core electrons into the unoccupied Zn 4p states of the conduction band. Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valence band electrons is different. Moreover, the density states of Zn 4p are higher for ZnO nanorods.
Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility
2014-11-18
measuring XPS, XANES, NMR, Raman, and IR for Figure 2. Stress−strain relation of various structures shearing along the (011 ̅1 ̅)/ə ̅101> amorphous slip...Philos. Mag. 1954, 45, 823− 843. (35) Becke, A. D.; Edgecombe, K. E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem...10.1021/jz5022697 | J. Phys. Chem. Lett. 2014, 5, 4169−41744173 (46) Roundy, D.; Krenn, C. R.; Cohen, M. L.; Morris, J. W., Jr. Ideal Shear Strengths of fcc
2010-03-01
Iodide or Cesium Iodide are the benchmarks for ease of use and quick identification of isotope species. This research aims to explore Cesium Bromide doped...oxidation states of 3+, 4+, 5+ and 6+ were used to identify the Pu pollution in the Rocky Flats area. The identification of the Pu4+ oxidation state...point was causing the normalization of the spectra to be much higher than what it should be. The XANES structures lineup showing the Sn in the CsSnBr3
Sulfonates: A novel class of organic sulfur compounds in marine sediments
NASA Astrophysics Data System (ADS)
Vairavamurthy, Appathurai; Zhou, Weiqing; Eglinton, Timothy; Manowitz, Bernard
1994-11-01
X-ray absorption near-edge structure spectroscopy (XANES) used to measure sulfur speciation in a variety of organic-rich marine sediments has established sulfonates as a novel and major component of sedimentary organic sulfur. The origins of sulfonates in sediments are not clear, although both biological and geochemical mechanisms are possible. The accumulation of oxidized sulfonate sulfur in reducing marine sediments was not known previously; hence, a new perspective in sulfur geochemistry is established. The biogeochemical implications of the presence of sulfonates in marine sediments are discussed.
Transmission X-ray microscopy for full-field nano-imaging of biomaterials
ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO
2010-01-01
Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414
NASA Astrophysics Data System (ADS)
Cochain, B.; Neuville, D. R.; McCammon, C.; Henderson, G. S.; de Ligny, D.; Pinet, O.; Richet, P.
2009-05-01
In natural or industrial glasses, iron is the most abundant transition metal. A good knowledge of its redox equilibrium is important to better understand the chemical and structural evolution of magmas (crystallization, viscosity), and also to optimize vitrification processes and properties of iron-bearing glasses. To study the role of iron in silicate glasses and melts, we have used in a consistent manner the Mössbauer, iron K-edge XANES and Raman spectroscopies to investigate several series of silicate glasses as a function of redox state. The samples were selected to cover a wide composition range and to investigate the interactions of iron with two network forming cations, namely, Al3+ and B3+. The glasses investigated were synthesized at high temperature under various conditions of oxygen fugacity to achieve different redox ratios for each composition. Therefore, the iron redox state was varied from the most oxidized to the most reduced. Iron redox ratios were first determined by wet chemical analysis and in some cases by room temperature Mossbauer spectroscopy. This experimental method was also used to determine the local structure of iron of some of the investigated glasses. These results where compared to iron K-edge XANES/EXAFS spectroscopy results, which lead to the iron redox state and indicate that Fe2+ is in octahedral coordination whereas Fe3+ is in tetrahedral coordination. In addition, Raman spectroscopy gave us information on the network polymerization of glasses. Clearly changes in Raman spectra are visible with the evolution of iron redox ratio. For a given composition, we observed systematically, in the 800-1200 cm-1 envelope, which is sensitive to the environment of tetrahedrally coordinated cations, the growth of a band with the iron content and the oxidation state of the sample. The peak area of this band, which we attribute to vibrational modes involving tetrahedrally coordinated Fe3+, increases with the oxidation of the sample. This evolution leads us to establish a calibration procedure for a given composition. Calibration curves can be followed to investigate in situ kinetics of redox reactions. We present here results on the role of iron and its interactions with the silicate network for several compositions as pyroxene based glasses and iron bearing alkali alumino-borosilicate glasses.
Synthesis, crystal structure, and magnetism of A 2Co 12As 7 (A=Ca, Y, Ce–Yb)
Tan, Xiaoyan; Ovidiu Garlea, V.; Chai, Ping; ...
2015-08-28
In this study, ternary intermetallics, A 2Co 12As 7 (A=Ca, Y, Ce–Yb), have been synthesized by annealing mixtures of elements in molten Bi at 1223 K. The materials obtained crystallize in the P6 3/m variant of the Zr 2Fe 12P 7 structure type. The unit cell volume shows a monotonic decrease with the increasing atomic number of the rare-earth metal, with the exception of Ce-, Eu-, and Yb-containing compounds. An examination of these outliers with X-ray absorption near edge structures (XANES) spectroscopy revealed mixed valence of Ce, Eu, and Yb, with the average oxidation states of +3.20(1), +2.47(5), and +2.91(1),more » respectively, at room temperature. Magnetic behavior of A 2Co 12As 7 is generally characterized by ferromagnetic ordering of Co 3d moments at 100–140 K, followed by low-temperature ordering of rare-earth 4f moments. The 3d-4f magnetic coupling changes from antiferromagnetic for A=Pr–Sm to ferromagnetic for A=Ce and Eu–Yb. Finally, polarized neutron scattering experiments were performed to support the postulated ferro- and ferrimagnetic ground states for Ce 2Co 12As 7 and Nd 2Co 12As 7, respectively.« less
Local atomic and electronic structures of epitaxial strained LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Sterbinsky, G. E.; Ryan, P. J.; Kim, J.-W.; Karapetrova, E.; Ma, J. X.; Shi, J.; Woicik, J. C.
2012-01-01
We have examined the atomic and electronic structures of perovskite lanthanum cobaltite (LaCoO3) thin films using Co K-edge x-ray absorption fine structure (XAFS) spectroscopy. Extended XAFS (EXAFS) demonstrates that a large difference between in-plane and out-of-plane Co-O bond lengths results from tetragonal distortion in highly strained films. The structural distortions are strongly coupled to the hybridization between atomic orbitals of the Co and O atoms, as shown by x-ray absorption near edge spectroscopy (XANES). Our results indicate that increased hybridization is not the cause of ferromagnetism in strained LaCoO3 films. Instead, we suggest that the strain-induced distortions of the oxygen octahedra increase the population of eg electrons and concurrently depopulate t2g electrons beyond a stabilization threshold for ferromagnetic order.
Kumar, Naresh; Couture, Raoul-Marie; Millot, Romain; Battaglia-Brunet, Fabienne; Rose, Jérôme
2016-07-19
We assessed the potential of zerovalent-iron- (Fe(0)) based permeable reactive barrier (PRB) systems for arsenic (As) remediation in the presence or absence of microbial sulfate reduction. We conducted long-term (200 day) flow-through column experiments to investigate the mechanisms of As transformation and mobility in aquifer sediment (in particular, the PRB downstream linkage). Changes in As speciation in the aqueous phase were monitored continuously. Speciation in the solid phase was determined at the end of the experiment using X-ray absorption near-edge structure (XANES) spectroscopy analysis. We identified thio-As species in solution and AsS in solid phase, which suggests that the As(V) was reduced to As(III) and precipitated as AsS under sulfate-reducing conditions and remained as As(V) under abiotic conditions, even with low redox potential and high Fe(II) content (4.5 mM). Our results suggest that the microbial sulfate reduction plays a key role in the mobilization of As from Fe-rich aquifer sediment under anoxic conditions. Furthermore, they illustrate that the upstream-downstream linkage of PRB affects the speciation and mobility of As in downstream aquifer sediment, where up to 47% of total As initially present in the sediment was leached out in the form of mobile thio-As species.
Niazi, Nabeel Khan; Bibi, Irshad; Shahid, Muhammad; Ok, Yong Sik; Burton, Edward D; Wang, Hailong; Shaheen, Sabry M; Rinklebe, Jörg; Lüttge, Andreas
2018-01-01
In this study, we examined the removal of arsenite (As(III)) and arsenate (As(V)) by perilla leaf-derived biochars produced at 300 and 700 °C (referred as BC300 and BC700) in aqueous environments. Results revealed that the Langmuir isotherm model provided the best fit for As(III) and As(V) sorption, with the sorption affinity following the order: BC700-As(III) > BC700-As(V) > BC300-As(III) > BC300-As(V) (Q L = 3.85-11.01 mg g -1 ). In general, As removal decreased (76-60%) with increasing pH from 7 to 10 except for the BC700-As(III) system, where notably higher As removal (88-90%) occurred at pH from 7 to 9. Surface functional moieties contributed to As sequestration by the biochars examined here. However, significantly higher surface area and aromaticity of BC700 favored a greater As removal compared to BC300, suggesting that surface complexation/precipitation dominated As removal by BC700. Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy demonstrated that up to 64% of the added As(V) was reduced to As(III) in BC700- and BC300-As(V) sorption experiments, and in As(III) sorption experiments, partial oxidation of As(III) to As(V) occurred (37-39%). However, XANES spectroscopy was limited to precisely quantify As binding with sulfur species as As 2 S 3 -like phase. Both biochars efficiently removed As from natural As-contaminated groundwater (As: 23-190 μg L -1 ; n = 12) despite in the presence of co-occurring anions (e.g., CO 3 2- , PO 4 3- , SO 4 2- ) with the highest levels of As removal observed for BC700 (97-100%). Overall, this study highlights that perilla leaf biochars, notably BC700, possessed the greatest ability to remove As from solution and groundwater (drinking water). Significantly, the integrated spectroscopic techniques advanced our understanding to examine complex redox transformation of As(III)/As(V) with biochar, which are crucial to determine fate of As on biochar in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental Constraints on the Partitioning and Valence of V and Cr in Garnet and Coexisting Glass
NASA Technical Reports Server (NTRS)
Righter, K.; Sutton, S.; Berthet, S.; Newville, M.
2008-01-01
A series of experiments with garnet and coexisting melt have been carried out across a range of oxygen fugacities (near hematite-magnetite (HM) to below the iron-wustite (IW) buffers) at 1.7 GPa to study the partitioning and valence of Cr and V in both phases. Experiments were carried out in a non end loaded piston cylinder apparatus, and the run products were analyzed with electron microprobe and xray absorption near edge structure (XANES) analysis at beamline 13-ID at the Advanced Photon Source of Argonne National Lab. The valence of vanadium and chromium were determined using the position and intensity of the Ka pre-edge peaks, calibrated on a series of Cr and Vbearing standard glasses. This technique has been applied to V and Cr in glasses and V in spinels previously, and in these isotropic phases there are no orientational effects on the XANES spectra (Righter et al., 2006, Amer. Mineral. 91, 1643-1656). We also now demonstrate this to be true for V and Cr in garnet. Also, previous work has shown that V has a higher valence in the glass (or melt) than in the coexisting spinel. This is also true for V in garnet-glass pairs in this study. Vanadium valence in garnets varies from 2.7 below the IW buffer to 3.7 near HM, and for coexisting glass it varies from 3.2 to 4.3. Vanadium valence measured in some natural garnets from mantle localities indicates V in the more reduced range at 2.5. Comparisons will be made between fO2 estimated from V valence and other methods for garnet-bearing mantle samples. In contrast, Cr valence measured in garnet and coexisting glass for all experimental and natural samples is 2.9- 3.0, suggesting that the valence of Cr does not vary within either phase across a large fO2 range. These results demonstrate that while V varies from 2+ to 3+ to 4+ in garnet-melt systems, Cr does not, and this will ultimately affect the partitioning behavior of these two elements in natural systems. Garnet/melt D(Cr) are between 12 and 17 across this range of fO2, whereas D(V) has the highest partition coefficient approx.3, near the IW buffer where the valence of V is almost entirely 3+.
Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability
Li, Honghong; Liu, Yuting; Chen, Yanhui; Wang, Shanli; Wang, Mingkuang; Xie, Tuanhui; Wang, Guo
2016-01-01
This study aimed to determine effects of rice straw biochar on Pb sequestration in a soil-rice system. Pot experiments were conducted with rice plants in Pb-contaminated paddy soils that had been amended with 0, 2.5, and 5% (w/w) biochar. Compared to the control treatment, amendment with 5% biochar resulted in 54 and 94% decreases in the acid soluble and CaCl2-extractable Pb, respectively, in soils containing rice plants at the maturity stage. The amount of Fe-plaque on root surfaces and the Pb concentrations of the Fe-plaque were also reduced in biochar amended soils. Furthermore, lead species in rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES), and although Pb-ferrihydrite complexes dominated Pb inventories, increasing amounts of organic complexes like Pb-pectins and Pb-cysteine were found in roots from the 5% biochar treatments. Such organic complexes might impede Pb translocation from root to shoot and subsequently reduce Pb accumulation in rice with biochar amendment. PMID:27530495
Uranium Redox Transformations after U(VI) Coprecipitation with Magnetite Nanoparticles.
Pidchenko, Ivan; Kvashnina, Kristina O; Yokosawa, Tadahiro; Finck, Nicolas; Bahl, Sebastian; Schild, Dieter; Polly, Robert; Bohnert, Elke; Rossberg, André; Göttlicher, Jörg; Dardenne, Kathy; Rothe, Jörg; Schäfer, Thorsten; Geckeis, Horst; Vitova, Tonya
2017-02-21
Uranium redox states and speciation in magnetite nanoparticles coprecipitated with U(VI) for uranium loadings varying from 1000 to 10 000 ppm are investigated by X-ray absorption spectroscopy (XAS). It is demonstrated that the U M 4 high energy resolution X-ray absorption near edge structure (HR-XANES) method is capable to clearly characterize U(IV), U(V), and U(VI) existing simultaneously in the same sample. The contributions of the three different uranium redox states are quantified with the iterative transformation factor analysis (ITFA) method. U L 3 XAS and transmission electron microscopy (TEM) reveal that initially sorbed U(VI) species recrystallize to nonstoichiometric UO 2+x nanoparticles within 147 days when stored under anoxic conditions. These U(IV) species oxidize again when exposed to air. U M 4 HR-XANES data demonstrate strong contribution of U(V) at day 10 and that U(V) remains stable over 142 days under ambient conditions as shown for magnetite nanoparticles containing 1000 ppm U. U L 3 XAS indicates that this U(V) species is protected from oxidation likely incorporated into octahedral magnetite sites. XAS results are supported by density functional theory (DFT) calculations. Further characterization of the samples include powder X-ray diffraction (pXRD), scanning electron microscopy (SEM) and Fe 2p X-ray photoelectron spectroscopy (XPS).
Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.; ...
2017-08-21
The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milledmore » for different times. XANES results reveal the presence of the +4 (SiO 2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si 2O), +2 (SiO) and +3 (Si 2O 3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.« less
Imaging Catalytic Activation of CO 2 on Cu 2O (110): A First-Principles Study
Li, Liang; Zhang, Rui; Vinson, John; ...
2018-03-05
Balancing global energy needs against increasing greenhouse gas emissions requires new methods for efficient CO 2 reduction. While photoreduction of CO 2 is a viable approach for fuel generation, the rational design of photocatalysts hinges on precise characterization of the surface catalytic reactions. Cu 2O is a promising next-generation photocatalyst, but the atomic-scale description of the interaction between CO 2 and the Cu 2O surface is largely unknown, and detailed experimental measurements are lacking. In this study, density-functional-theory (DFT) calculations have been performed to identify the Cu 2O (110) surface stoichiometry that favors CO 2 reduction. To facilitate interpretation ofmore » scanning tunneling microscopy (STM) and X-ray absorption near-edge structures (XANES) measurements, which are useful for characterizing catalytic reactions, we present simulations based on DFT-derived surface morphologies with various adsorbate types. STM and XANES simulations were performed using the Tersoff Hamann approximation and Bethe-Salpeter equation (BSE) approach, respectively. The results provide guidance for observation of CO 2 reduction reaction on, and rational surface engineering of, Cu 2O (110). In conclusion, they also demonstrate the effectiveness of computational image and spectroscopy modeling as a predictive tool for surface catalysis characterization.« less
NASA Astrophysics Data System (ADS)
Alsina, Marco A.; Zanella, Luciana; Hoel, Cathleen; Pizarro, Gonzalo E.; Gaillard, Jean-François; Pasten, Pablo A.
2014-10-01
El Tatio geothermal field is the principal natural source of arsenic for the Loa River, the main surface water resource in the hyper-arid Atacama Desert (Antofagasta Region, Northern Chile). Prior investigations by bulk X-ray absorption spectroscopy have identified hydrous ferric oxides as the principal arsenic-containing phase in sinter material from El Tatio, suggesting sorption as the main mechanism for arsenic scavenging by the solid phases of these hot spring environments. Here we examine siliceous sinter material sampled from a hydrothermal channel using synchrotron based X-ray micro-probe techniques, including As and Fe Kα X-ray fluorescence (μ-XRF), As K-edge X-ray absorption near edge structure (μ-XANES), and X-ray diffraction (μ-XRD). Least-squares linear fitting of μ-XANES spectra shows that arsenic is predominantly present as arsenate sorbed on hydrous ferric oxides (63% molar proportion), but we also identify nodular arsenide micro-mineralizations (37% molar proportion) similar to loellingite (FeAs2), not previously detected during bulk-scale analysis of the sinter material. Presence of arsenide mineralizations indicates development of anoxic environments on the surface of the siliceous sinter, and suggests a more complex biogeochemistry for arsenic than previously observed for circum-neutral pH brine hot spring environments.
Shen, Ying-Shuian; Wang, Shan-Li; Huang, Shiuh-Tsuen; Tzou, Yu-Min; Huang, Jang-Hung
2010-07-15
In this study, the removal mechanism of Cr(VI) from water by coconut coir (CC) was investigated using X-ray photoelectron spectroscopy (XPS), Cr K-edge X-ray absorption near edge structure (XANES) and FTIR spectroscopy. The results showed that, upon reaction with CC at pH 3, Cr(VI) was reduced to Cr(III), which was either bound to CC or released back into solution. As revealed by the FTIR spectra of CC before and after reacting with Cr(VI), the phenolic methoxyl and hydroxyl groups of lignin in CC are the dominant drivers of Cr(VI) reduction, giving rise to carbonyl and carboxyl groups on CC. These functional groups can subsequently provide binding sites for Cr(III) resulting from Cr(VI) reduction. In conjunction with forming complexes with carbonyl and carboxyl groups, the formation of Cr(III) hydroxide precipitate could also readily occur as revealed by the linear combination fitting of the Cr K-edge XANES spectrum using a set of reference compounds. The phenolic groups in lignin are responsible for initiating Cr(VI) reduction, so lignocellulosic materials containing a higher amount of phenolic groups are expected to be more effective scavengers for removal of Cr(VI) from the environment. 2010 Elsevier B.V. All rights reserved.
Elemental and Molecular Segregation in Oil Paintings due to Lead Soap Degradation.
Chen-Wiegart, Yu-Chen Karen; Catalano, Jaclyn; Williams, Garth J; Murphy, Anna; Yao, Yao; Zumbulyadis, Nicholas; Centeno, Silvia A; Dybowski, Cecil; Thieme, Juergen
2017-09-14
The formation of Pb, Zn, and Cu carboxylates (soaps) has caused visible deterioration in hundreds of oil paintings dating from the 15th century to the present. Through transport phenomena not yet understood, free fatty acids in the oil binding medium migrate through the paint and react with pigments containing heavy metals to form soaps. To investigate the complex correlation among the elemental segregation, types of chemical compounds formed, and possible mechanisms of the reactions, a paint sample cross-section from a 15th century oil painting was examined by synchrotron X-ray techniques. X-ray fluorescence (XRF) microscopy, quantified with elemental correlation density distribution, showed Pb and Sn segregation in the soap-affected areas. X-ray absorption near edge structure (XANES) around the Pb-L3 absorption edge showed that Pb pigments and Pb soaps can be distinguished while micro-XANES gave further information on the chemical heterogeneity in the paint film. The advantages and limitations of these synchrotron-based techniques are discussed and compared to those of methods routinely used to analyze paint samples. The results presented set the stage for improving the information extracted from samples removed from works of art and for correlating observations in model paint samples to those in the naturally aged samples, to shed light onto the mechanism of soap formation.
Imaging Catalytic Activation of CO 2 on Cu 2O (110): A First-Principles Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Liang; Zhang, Rui; Vinson, John
Balancing global energy needs against increasing greenhouse gas emissions requires new methods for efficient CO 2 reduction. While photoreduction of CO 2 is a viable approach for fuel generation, the rational design of photocatalysts hinges on precise characterization of the surface catalytic reactions. Cu 2O is a promising next-generation photocatalyst, but the atomic-scale description of the interaction between CO 2 and the Cu 2O surface is largely unknown, and detailed experimental measurements are lacking. In this study, density-functional-theory (DFT) calculations have been performed to identify the Cu 2O (110) surface stoichiometry that favors CO 2 reduction. To facilitate interpretation ofmore » scanning tunneling microscopy (STM) and X-ray absorption near-edge structures (XANES) measurements, which are useful for characterizing catalytic reactions, we present simulations based on DFT-derived surface morphologies with various adsorbate types. STM and XANES simulations were performed using the Tersoff Hamann approximation and Bethe-Salpeter equation (BSE) approach, respectively. The results provide guidance for observation of CO 2 reduction reaction on, and rational surface engineering of, Cu 2O (110). In conclusion, they also demonstrate the effectiveness of computational image and spectroscopy modeling as a predictive tool for surface catalysis characterization.« less
NASA Astrophysics Data System (ADS)
Gervais, Claire; Thoury, Mathieu; Réguer, Solenn; Gueriau, Pierre; Mass, Jennifer
2015-11-01
High-flux synchrotron techniques allow microspectroscopic analyses of artworks that were not feasible even a few years ago, allowing for a more detailed characterization of their constituent materials and a better understanding of their chemistry. However, interaction between high-flux photons and matter at the sub-microscale can generate damages which are not visually detectable. We show here different methodologies allowing to evidence the damages induced by microscopic X-ray absorption near-edge structure spectroscopy analysis (μXANES) at the Fe and Zn K-edges of a painting dating from the turn of the twentieth century containing Prussian blue and zinc white. No significant degradation of the pigments was noticed, in agreement with the excellent condition of the painting. However, synchrotron radiation damages occurred at several levels, from chemical changes of the binder, modification of crystal defects in zinc oxide, to Prussian blue photoreduction. They could be identified by using both the μXANES signal during analysis and with photoluminescence imaging in the deep ultraviolet and visible ranges after analysis. We show that recording accurately damaged areas is a key step to prevent misinterpretation of results during future re-examination of the sample. We conclude by proposing good practices that could help in integrating radiation damage avoidance into the analytical pathway.
Phase transitions in biogenic amorphous calcium carbonate
NASA Astrophysics Data System (ADS)
Gong, Yutao
Geological calcium carbonate exists in both crystalline phases and amorphous phases. Compared with crystalline calcium carbonate, such as calcite, aragonite and vaterite, the amorphous calcium carbonate (ACC) is unstable. Unlike geological calcium carbonate crystals, crystalline sea urchin spicules (99.9 wt % calcium carbonate and 0.1 wt % proteins) do not present facets. To explain this property, crystal formation via amorphous precursors was proposed in theory. And previous research reported experimental evidence of ACC on the surface of forming sea urchin spicules. By using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), we studied cross-sections of fresh sea urchin spicules at different stages (36h, 48h and 72h after fertilization) and observed the transition sequence of three mineral phases: hydrated ACC → dehydrated ACC → biogenic calcite. In addition, we unexpectedly found hydrated ACC nanoparticles that are surrounded by biogenic calcite. This observation indicates the dehydration from hydrated ACC to dehydrated ACC is inhibited, resulting in stabilization of hydrated ACC nanoparticles. We thought that the dehydration was inhibited by protein matrix components occluded within the biomineral, and we designed an in vitro assay to test the hypothesis. By utilizing XANES-PEEM, we found that SM50, the most abundant occluded matrix protein in sea urchin spicules, has the function to stabilize hydrated ACC in vitro.
Siebers, Nina; Kruse, Jens; Eckhardt, Kai-Uwe; Hu, Yongfeng; Leinweber, Peter
2012-07-01
Cadmium (Cd) has a high toxicity and resolving its speciation in soil is challenging but essential for estimating the environmental risk. In this study partial least-square (PLS) regression was tested for its capability to deconvolute Cd L(3)-edge X-ray absorption near-edge structure (XANES) spectra of multi-compound mixtures. For this, a library of Cd reference compound spectra and a spectrum of a soil sample were acquired. A good coefficient of determination (R(2)) of Cd compounds in mixtures was obtained for the PLS model using binary and ternary mixtures of various Cd reference compounds proving the validity of this approach. In order to describe complex systems like soil, multi-compound mixtures of a variety of Cd compounds must be included in the PLS model. The obtained PLS regression model was then applied to a highly Cd-contaminated soil revealing Cd(3)(PO(4))(2) (36.1%), Cd(NO(3))(2)·4H(2)O (24.5%), Cd(OH)(2) (21.7%), CdCO(3) (17.1%) and CdCl(2) (0.4%). These preliminary results proved that PLS regression is a promising approach for a direct determination of Cd speciation in the solid phase of a soil sample.
A XANES Study of Sulfur Speciation and Reactivity in Cokes for Anodes Used in Aluminum Production
NASA Astrophysics Data System (ADS)
Jahrsengene, Gøril; Wells, Hannah C.; Rørvik, Stein; Ratvik, Arne Petter; Haverkamp, Richard G.; Svensson, Ann Mari
2018-03-01
Availability of anode raw materials in the growing aluminum industry results in a wider range of petroleum cokes being used to produce carbon anodes. The boundary between anode grade cokes and what previously was considered non-anode grades are no longer as distinct as before, leading to introduction of cokes with higher sulfur and higher trace metal impurity content in anode manufacturing. In this work, the chemical nature of sulfur in five industrial cokes, ranging from 1.42 to 5.54 wt pct S, was investigated with K-edge XANES, while the reactivity of the cokes towards CO2 was measured by a standard mass loss test. XANES identified most of the sulfur as organic sulfur compounds. In addition, a significant amount is identified (16 to 53 pct) as S-S bound sulfur. A strong inverse correlation is observed between CO2-reactivity and S-S bound sulfur in the cokes, indicating that the reduction in reactivity is more dependent on the amount of this type of sulfur compound rather than the total amount of sulfur or the amount of organic sulfur.
A XANES Study of Sulfur Speciation and Reactivity in Cokes for Anodes Used in Aluminum Production
NASA Astrophysics Data System (ADS)
Jahrsengene, Gøril; Wells, Hannah C.; Rørvik, Stein; Ratvik, Arne Petter; Haverkamp, Richard G.; Svensson, Ann Mari
2018-06-01
Availability of anode raw materials in the growing aluminum industry results in a wider range of petroleum cokes being used to produce carbon anodes. The boundary between anode grade cokes and what previously was considered non-anode grades are no longer as distinct as before, leading to introduction of cokes with higher sulfur and higher trace metal impurity content in anode manufacturing. In this work, the chemical nature of sulfur in five industrial cokes, ranging from 1.42 to 5.54 wt pct S, was investigated with K-edge XANES, while the reactivity of the cokes towards CO2 was measured by a standard mass loss test. XANES identified most of the sulfur as organic sulfur compounds. In addition, a significant amount is identified (16 to 53 pct) as S-S bound sulfur. A strong inverse correlation is observed between CO2-reactivity and S-S bound sulfur in the cokes, indicating that the reduction in reactivity is more dependent on the amount of this type of sulfur compound rather than the total amount of sulfur or the amount of organic sulfur.
Isegawa, Kazuhisa; Nagami, Tetsuo; Jomori, Shinji; Yoshida, Masaaki; Kondoh, Hiroshi
2016-09-14
Changes in the chemical states of sulfonic groups of Nafion in polymer electrolyte fuel cells (PEFCs) under gas-flowing conditions were studied using in situ S-K XANES spectroscopy. The applied potential to the electrodes and the humidity of the cell were changed under flowing H 2 gas in the anode and He gas in the cathode. While the potential shows no significant effect on the S-K XANES spectra, the humidity is found to induce reversible changes in the spectra. Comparison of the spectral changes with simulations based on the density functional theory calculations indicates that the humidity influences the chemical state of the sulfonic group; under wet conditions the sulfonic group is in the form of a sulfonate ion. By drying treatment the sulfonate ion binds to hydrogen and becomes sulfonic acid. Furthermore, a small fraction of the sulfonic acid irreversibly decomposes to atomic sulfur. The peak energy of the atomic sulfur suggests that the generated atomic sulfur is adsorbed on the Pt catalyst surfaces.
NASA Astrophysics Data System (ADS)
Kenney, Janice P. L.; Song, Zhen; Bunker, Bruce A.; Fein, Jeremy B.
2012-06-01
In this study, we examine the initial interactions between aqueous Au(III)-hydroxide-chloride aqueous complexes and bacteria by measuring the effects of non-metabolizing cells on the speciation and distribution of Au. We conducted batch Au(III) removal experiments, measuring the kinetics and pH dependence of Au removal, and tracking valence state transformations and binding environments using XANES spectroscopy. These experiments were conducted using non-metabolizing cells of Bacillus subtilis or Pseudomonas putida suspended in a 5 ppm Au(III)-(hydroxide)-chloride starting solution of 0.1 M NaClO4 to buffer ionic strength. Both bacterial species removed greater than 85% of the Au from solution after 2 h of exposure time below approximately pH 5. Above pH 5, the extent of Au removed from solution decreased with increasing pH, with less than approximately 10% removal of Au from solution above pH 7.5. Kinetics experiments indicated that the Au removal with both bacterial species was rapid at pH 3, and slowed with increasing pH. Reversibility experiments demonstrated that (1) once the Au was removed from solution, adjusting 35 the pH alone did not remobilize the Au into solution and (2) the presence of cysteine in solution in the reversibility experiments caused Au to desorb, suggesting that the Au was not internalized within the bacterial cells. Our results suggest that Au removal occurs as a two-step pH-dependent adsorption reduction process. The speciation of the aqueous Au and the bacterial surface appears to control the rate of Au removal from solution. Under low pH conditions, the cell walls are only weakly negatively charged and aqueous Au complexes adsorb readily and rapidly. With increasing pH, the cell wall becomes more negatively charged, slowing adsorption significantly. The XANES data demonstrate that the reduction of Au(III) by bacterial exudates is slower and less extensive than the reduction observed in the bacteria-bearing systems, and we conclude that Au reduction occurs most rapidly and extensively upon interaction with cell wall functional groups.
NASA Astrophysics Data System (ADS)
Aragón, Fermin F. H.; Aquino, Juan C. R.; Ramos, Jesus E.; Coaquira, José A. H.; Gonzalez, Ismael; Macedo, Waldemar A. A.; da Silva, Sebastião W.; Morais, Paulo C.
2017-11-01
In this work, we report on a single-pot synthesis route based on a polymeric precursor method used for successfully producing undoped and iron-doped CeO2 nanoparticles with iron contents up to 10.0 mol. %. The formation of high-crystalline nanoparticles with a cubic fluorite structure is determined for all the studied samples. Meanwhile, the magnetic measurements of the undoped ceria nanoparticles revealed the occurrence of ferromagnetism of bound magnetic polarons of a fraction of Ce3+ at room temperature, and only a paramagnetic behavior of Fe3+ ions was determined for Fe-doped ceria nanoparticles. A monotonous reduction of the effective magnetic moment of the Fe3+ ions was determined. It suggests a change from a high-spin to low-spin state of Fe ions as the Fe content is increased. The 3+ valence state of the iron ions has been confirmed by the Fe K-edge X-ray absorption near-edge structure (XANES) and Mössbauer spectroscopy measurements. X-ray photoelectron spectroscopy data analysis evidenced a coexistence of Ce3+ and Ce4+ ions and a decreasing tendency of the relative fraction of Ce3+ ions in the surface region of the particles as the iron content is increased. Although the coexistence of Ce3+ and Ce4+ is confirmed by results obtained via Ce L3-edge XANES measurements, any clear dependence of the relative relation of Ce3+ ions on the iron content is determined, suggesting a homogeneous distribution of Ce3+ and Ce4+-ions in the whole volume of the particles. Ce L3-edge extended X-ray absorption fine structure revealed that the Ce-O bond distance shows a monotonous decrease as the Fe content is increased, which is in good agreement with the shrinking of the unit cell volume with the iron content determined from XRD data analysis, reinforcing the substitutional solution of Ce and Fe ions in the CeO2 matrix.
Marini, C; Noked, O; Kantor, I; Joseph, B; Mathon, O; Shuker, R; Kennedy, B J; Pascarelli, S; Sterer, E
2016-02-03
Nb K-edge x-ray absorption spectroscopy is utilized to investigate the changes in the local structure of the A-site deficient double perovskite La1/3NbO3 which undergoes a pressure induced irreversible amorphization. EXAFS results show that with increasing pressure up to 7.5 GPa, the average Nb-O bond distance decreases in agreement with the expected compression and tilting of the NbO6 octahedra. On the contrary, above 7.5 GPa, the average Nb-O bond distance show a tendency to increase. Significant changes in the Nb K-edge XANES spectrum with evident low energy shift of the pre-peak and the absorption edge is found to happen in La1/3NbO3 above 6.3 GPa. These changes evidence a gradual reduction of the Nb cations from Nb(5+) towards Nb(4+) above 6.3 GPa. Such a valence change accompanied by the elongation of the average Nb-O bond distances in the octahedra, introduces repulsion forces between non-bonding adjacent oxygen anions in the unoccupied A-sites. Above a critical pressure, the Nb reduction mechanism can no longer be sustained by the changing local structure and amorphization occurs, apparently due to the build-up of local strain. EXAFS and XANES results indicate two distinct pressure regimes having different local and electronic response in the La1/3NbO3 system before the occurence of the pressure induced amorphization at ∼14.5 GPa.
Automated generation and ensemble-learned matching of X-ray absorption spectra
NASA Astrophysics Data System (ADS)
Zheng, Chen; Mathew, Kiran; Chen, Chi; Chen, Yiming; Tang, Hanmei; Dozier, Alan; Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Piper, Louis F. J.; Persson, Kristin A.; Ong, Shyue Ping
2018-12-01
X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique to determine oxidation states, coordination environment, and other local atomic structure information. Analysis of XAS relies on comparison of measured spectra to reliable reference spectra. However, existing databases of XAS spectra are highly limited both in terms of the number of reference spectra available as well as the breadth of chemistry coverage. In this work, we report the development of XASdb, a large database of computed reference XAS, and an Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials from the open-science Materials Project database. We discuss a high-throughput automation framework for FEFF calculations, built on robust, rigorously benchmarked parameters. FEFF is a computer program uses a real-space Green's function approach to calculate X-ray absorption spectra. We will demonstrate that the ELSIE algorithm, which combines 33 weak "learners" comprising a set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and coordination environment of a test set of 19 K-edge XANES spectra encompassing a diverse range of chemistries and crystal structures. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made available as part of veidt, an open source machine-learning library for materials science.
NASA Astrophysics Data System (ADS)
Guo, Xiaoxuan; Wang, Zhiqiang; Wu, Jin; Wang, Jian; Zhu, Ying-Jie; Sham, Tsun-Kong
2015-04-01
Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere.Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07471h
NASA Astrophysics Data System (ADS)
Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.
2018-04-01
Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.
High pressure synthesis of a new phase of YbAg 2: Structure, valence of Yb and properties
Tsvyashchenko, A. V.; Menushenkov, A. P.; Sidorov, V. A.; ...
2015-08-05
The new phase of YbAg 2 was obtained using high-pressure and high-temperature reaction. YbAg 2 crystallizes in the MgZn 2 structure (the space group P6 3/mmc space group, No 194) with a = 5.68153(3) Å and c = 9.31995(7) Å and the unit cell volume V = 260.54(3) Å 3. The XANES analysis showed that the valence state of Yb is +2.8. The low-temperature dependences of the electrical resistivity and magnetic susceptibility can be adequately described by a T 2 term that supports the Fermi-liquid picture. Furthermore, the Kadowaki–Woods relation gives a low value of the degeneracy (N = 2).
Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi
2015-11-01
Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS).
NASA Astrophysics Data System (ADS)
Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.
2015-12-01
FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.
Chromium in urban sediment particulates: an integrated micro-chemical and XANES study
NASA Astrophysics Data System (ADS)
Taylor, Kevin; Byrne, Patrick; Hudson-Edwards, Karen
2015-04-01
Chromium is generally common within the urban sediment cascade as a result of abundant industrial and transport-related sources. The risks that Cr-bearing particles pose to ecosystems and humans depend on the solid phase chemical speciation of Cr in the particles. In this study, we use bulk chemical digests, sequential chemical extraction analysis, electron microscopy, electron microprobe and microfocus XANES analysis to describe the solid-phase speciation of Cr in urban particulate matter from both aquatic sediment and road dust sediment (RDS) in Manchester, UK. Cr-bearing grains within RDS are predominantly iron oxide grains, commonly of goethite or haematite mineralogy, but Cr-bearing silicate glass grains are also present. Iron oxide glass grains most likely have sorbed Cr, and derive from the rusting of Cr-steel particles from vehicles. Electron microprobe analysis indicates concentrations of Cr up to 3200 μg/g in these grains, and XANES analysis indicates that Cr(III) is the dominant oxidation state, with some trace amounts of Cr(VI). Cr-bearing grains within aquatic sediments are dominated by alumino-silicate glass grains derived from industrial waste. These grains contain Cr-rich areas with up to 19% Cr2O3 and XANES analysis indicates that Cr is present as Cr(III). The dominance of Cr(III) in these urban particulate grains suggests limited bioavailability or toxicity. However, the presence within two markedly different grain types (iron oxides and silicate glasses) indicates that the long-term geochemical behaviour and environmental risk of RDS and the aquatic sediments studied are likely to be quite different. These findings highlight the importance of understanding sources of metal contaminants in urban environments and the geochemical processes that affect their transfer through the urban sediment cascade and the wider river basin.
NASA Technical Reports Server (NTRS)
Righter, K.; Sutton, S.R.; Newville, M.
2004-01-01
Spinel can be a significant host phase for V as well as other transition metals such as Ni and Co. However, vanadium has multiple oxidation states V(2+), V(3+), V(4+) or V(5+) at oxygen fugacities relevant to natural systems. We do know that D(V) spinel/melt is correlated with V and TiO2 content and fO2, but the uncertainty of the oxidation state under the range of natural conditions has made elusive a thorough understanding of D(V) spinel/melt. For example, V(3+) is likely to be stable in spinels, based on exchange with Al in experiments in the CaO-MgO-Al2O3-SiO2 system. On the other hand, it has been argued that V(4+) will be stable across the range of natural oxygen fugacities in nature. In order to gain a better understanding of D(V) spinel/melt we have equilibrated spinel-melt pairs at controlled oxygen fugacities, between HM to NNO, where V is present in the spinel at natural levels (approx. 300 ppm V). These spinel-melt pairs were analyzed using micro-XANES at the Advanced Photon Source at Argonne National Laboratory. The new results will be used together with spinel compositional data (Ti, V content) and oxygen fugacity, to unravel the effects of these variables on D(V) spinel/melt.
Thermal decomposition of ammonium hexachloroosmate.
Asanova, T I; Kantor, I; Asanov, I P; Korenev, S V; Yusenko, K V
2016-12-07
Structural changes of (NH 4 ) 2 [OsCl 6 ] occurring during thermal decomposition in a reduction atmosphere have been studied in situ using combined energy-dispersive X-ray absorption spectroscopy (ED-XAFS) and powder X-ray diffraction (PXRD). According to PXRD, (NH 4 ) 2 [OsCl 6 ] transforms directly to metallic Os without the formation of any crystalline intermediates but through a plateau where no reactions occur. XANES and EXAFS data by means of Multivariate Curve Resolution (MCR) analysis show that thermal decomposition occurs with the formation of an amorphous intermediate {OsCl 4 } x with a possible polymeric structure. Being revealed for the first time the intermediate was subjected to determine the local atomic structure around osmium. The thermal decomposition of hexachloroosmate is much more complex and occurs within a minimum two-step process, which has never been observed before.
Local Structure and Surface Properties of CoxZn1-xO Thin Films for Ozone Gas Sensing.
Catto, Ariadne C; Silva, Luís F da; Bernardi, Maria Inês B; Bernardini, Sandrine; Aguir, Khalifa; Longo, Elson; Mastelaro, Valmor R
2016-10-05
A detailed study of the structural, surface, and gas-sensing properties of nanostructured Co x Zn 1-x O films is presented. X-ray diffraction (XRD) analysis revealed a decrease in the crystallization degree with increasing Co content. The X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopies (XPS) revealed that the Co 2+ ions preferentially occupied the Zn 2+ sites and that the oxygen vacancy concentration increased as the amount of cobalt increased. Electrical measurements showed that the Co dopants not only enhanced the sensor response at low ozone levels (ca. 42 ppb) but also led to a decrease in the operating temperature and improved selectivity. The enhancement in the gas-sensing properties was attributed to the presence of oxygen vacancies, which facilitated ozone adsorption.
Blanchard, Peter E R; Hayes, John R; Grosvenor, Andrew P; Rowson, John; Hughes, Kebbi; Brown, Caitlin
2015-06-02
The geochemical model for Mo mineralization in the JEB Tailings Management Facility (JEB TMF), operated by AREVA Resources Canada at McClean Lake, Saskatchewan, was investigated using X-ray Absorption Near-Edge Spectroscopy (XANES), an elemental-specific technique that is sensitive to low elemental concentrations. Twenty five samples collected during the 2013 sampling campaign from various locations and depths in the TMF were analyzed by XANES. Mo K-edge XANES analysis indicated that the tailings consisted primarily of Mo(6+) species: powellite (CaMoO4), ferrimolybdite (Fe2(MoO4)3·8H2O), and molybdate adsorbed on ferrihydrite (Fe(OH)3 - MoO4). A minor concentration of a Mo(4+) species in the form of molybdenite (MoS2) was also present. Changes in the Mo mineralization over time were inferred by comparing the relative amounts of the Mo species in the tailings to the independently measured aqueous Mo pore water concentration. It was found that ferrimolybdite and molybdate adsorbed on ferrihydrite initially dissolves in the TMF and precipitates as powellite.
Uranium fate in Hanford sediment altered by simulated acid waste solutions
Gartman, Brandy N.; Qafoku, Nikolla P.; Szecsody, James E.; ...
2015-07-31
Many aspects of U(VI) behavior in sediments that are previously exposed to acidic waste fluids for sufficiently long times to induce significant changes in pH and other physical, mineralogical and chemical properties, are not well documented in the literature. For this reason, we conducted a series of macroscopic batch experiments combined with a variety of bulk characterization studies (Mössbauer and laser spectroscopy), micro-scale inspections (µ-XRF), and molecular scale interrogations (XANES) with the objectives to: i) determine the extent of U(VI) partitioning to Hanford sediments previously exposed to acidic waste simulants (pH = 2 and pH = 5) and under neutralmore » conditions (pH = 8) at varying background solution concentrations (i.e., NaNO 3); ii) determine micron-scale solid phase associated U valence state and phase identity; and iii) provide information for a plausible conceptual model of U(VI) attenuation under waste plume acidic conditions. The results of the batch experiments showed that the acid pre-treated sediment had high affinity for aqueous U(VI), which was removed from solution via two pH dependent and apparently different mechanisms (adsorption at pH = 2 and precipitation at pH = 5). The micro-scale inspections and XANES analyses confirmed that high concentration areas were rich mainly in U(VI), demonstrating that most of the added U(VI) was not reduced to U(IV). The laser spectroscopy data showed that uranyl phosphates {e.g. metaautunite [Ca(UO 2) 2(PO 4) 2•10-12H 2O] and phosphuranylite [KCa(H 3O) 3(UO 2) 7(PO 4) 4O 4•8(H 2O)]} were present in the sediments. They also showed clear differences between the U bearing phases in the experiments conducted in the presence or absence of air. As a result, the data generated from these experiments will help in a better understanding of the reactions and processes that have a significant effect and/or control U mobility.« less
Rapid reduction of MORB glass in piston cylinder experiments with graphite capsule - a XANES study
NASA Astrophysics Data System (ADS)
Ni, P.; Zhang, Y.; Fiege, A.; Newville, M.; Lanzirotti, A.
2017-12-01
Graphite capsules have been widely used in high-pressure, high-temperature experiments to prevent iron loss from iron-bearing samples. One common uncertainty with this experimental setup is the oxygen fugacity (fO2) inside the capsule imposed by the presence of graphite. As Holloway et al. (1992) pointed out, the use of graphite capsule places an upper limit on the fO2 in the experiment to be below CCO (graphite-CO-CO2 buffer). More recently, Medard et al. (2015) estimated the fO2 for their experiments using Pt-graphite or graphite-only capsules to be CCO-0.8. Despite the improved understanding on the fO2 using graphite capsule, the mechanism and kinetics of fO2 control in graphite capsule is still poorly understood. Such knowledge is especially important to understand whether equilibrium fO2 is reached in the sample when short experiment durations are needed (e.g. for kinetic experiments). In this study, MORB glasses after olivine dissolution (Chen and Zhang 2008) and plagioclase dissolution (Yu et al. 2016) experiments at 0.5 GPa and 1300 ºC with durations ranging from 10 s to 30 min are analyzed by XANES to obtain Fe3+/Fetotal profiles from their contact with the graphite capsule. The results show rapid Fe reduction away from the graphite-melt interface, causing a decrease of Fe3+/Fetotal from 12% to 3%. In a duration of 30 min, the 1200-µm-thick and 2000-µm-diameter basaltic glass reached near equilibrium in its iron oxidation state, with Fe3+/Fetotal ranging from 3% to 4% throughout the run product. The equilibrium Fe3+/Fetotal ratio corresponds to an fO2 of CCO-1.4, which is within error compared to the result in Medard et al. (2015). Even in the shortest experiment with an effective duration of only 10 s, a 60 µm long reduction profile was detected. Such a rapid fO2 change can be explained by rapid H2 diffusion in melt and its reaction with ferric iron: H2+Fe2O3=2FeO+H2O, which is also supported by the H2O concentration profiles measured along the reduction profile. Our results indicate rapid fO2 equilibration in MORB-glass-composition samples during nominally anhydrous graphite capsule experiments at 1300°C, and can be used to guide experimental designs.
Sun, Lijuan; Yang, Jianjun; Fang, Huaxiang; Xu, Chen; Peng, Cheng; Huang, Haomin; Lu, Lingli; Duan, Dechao; Zhang, Xiangzhi; Shi, Jiyan
2017-07-01
Metabolism of sulfur (S) is suggested to be an important factor for the homeostasis and detoxification of Cu in plants. We investigated the effects of S fertilizers (S 0 , Na 2 SO 4 ) on Cu translocation and biotransformation in rice plants by using multiple synchrotron-based techniques. Fertilization of S increased the biomass and yield of rice plants, as well as the translocation factor of Cu from root to shoot and shoot to grain, resulting in enhanced Cu in grain. Sulfur K-edge X-ray near edge structure (XANES) analysis showed that fertilization of S increased the concentration of glutathione in different rice tissues, especially in rice stem and leaf. Copper K-edge XANES results indicated that a much higher proportion of Cu (I) species existed in rice grain than husk and leaf, which was further confirmed by soft X-ray scanning transmission microscopy results. Sulfur increased the proportion of Cu (I) species in rice grain, husk and leaf, suggesting the inducing of Cu (II) reduction in rice tissues by S fertilization. These results suggested that fertilization of S in paddy soils increased the accumulation of Cu in rice grain, possibly due to the reduction of Cu (II) to Cu (I) by enhancing glutathione synthesis and increasing the translocation of Cu from shoot to grain. Copyright © 2017 Elsevier Ltd. All rights reserved.
X-ray absorption Studies of Zinc species in Centella asiatica
NASA Astrophysics Data System (ADS)
Dehipawala, Sunil; Cheung, Tak; Hogan, Clayton; Agoudavi, Yao; Dehipawala, Sumudu
2013-03-01
Zinc is a very important mineral present in a variety of vegetables. It is an essential element in cellular metabolism and several bodily functions. We used X-ray fluorescence, and X-ray Absorption near Edge structure(XANES) to study the amount of zinc present in several leafy vegetables as well as its chemical environment within the plant. Main absorption edge position of XANES is sensitive to the oxidation state of zinc and is useful when comparing the type of zinc present in different vegetables to the standard zinc present in supplements. Normalized main edge height is proportional to the amount of zinc present in the sample. Several leafy greens were used in this study, such as Spinacia oleracea, Basella alba, Brassica oleracea, Cardiospermum halicacabumand Centella asiatica. All of these plant leaves contained approximately the same amount of zinc in the leaf portion of the plant and a slightly lower amount in the stems, except Centella asiatica. Both leaves and stems of the plant Centella asiatica contained nearly two times the zinc compared to other plants. Further investigation of zinc's chemical environment within Centella asiatica could lead to a much more efficient dietary consumption of zinc. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886
Yang, Feifei; Liu, Yijin; Martha, Surendra K; Wu, Ziyu; Andrews, Joy C; Ice, Gene E; Pianetta, Piero; Nanda, Jagjit
2014-08-13
Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium-manganese rich cathode material of composition Li(1 + x)M(1 - x)O2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼ 30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface.
2015-01-01
Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium–manganese rich cathode material of composition Li1 + xM1 – xO2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface. PMID:25054780
Rocha, Angela S; da Silva, Victor Teixeira; Eon, Jean G; de Menezes, Sônia M C; Faro, Arnaldo C; Rocha, Alexandre B
2006-08-17
Carburized molybdenum catalysts supported on a dealuminated NaH-Y zeolite were prepared by carburization under a 20% methane in hydrogen flow of two precursors obtained by adsorption of molybdenum hexacarbonyl, one containing 5 wt % and the other 10 wt % Mo, and a third one was prepared by impregnation with aqueous ammonium heptamolybdate, containing 5 wt % Mo. The three catalysts displayed very distinct behaviors in the benzene hydrogenation reaction at atmospheric pressure and 363 K. By using XANES spectroscopy at the molybdenum L edge, EXAFS and XANES spectroscopy at the molybdenum K edge, and 27Al solid-state NMR spectroscopy, it was shown that different carburized molybdenum species exist in each sample. In the catalyst containing 10 wt % Mo, formation of molybdenum carbide nanoparticles was observed, with an estimated diameter of 1.8 nm. In the catalyst containing 5 wt % Mo and prepared by carburization of adsorbed molybdenum hexacarbonyl, formation of molybdenum oxycarbide dimers is proposed. In the latter case, density functional theory calculations have led to a dimer structure which is compatible with EXAFS results. In the catalyst prepared by impregnation with ammonium heptamolybdate solution followed by carburization, the molybdenum seems to interact with extraframework alumina to produce highly disordered mixed molybdenum-aluminum oxycarbides.
Chlorine in coal and its relationship with boiler corrosion. Technical report, 1 March--31 May 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, M.I.M.; Lytle, J.M.; Ruch, R.R.
1994-09-01
Limited literature and use history data have suggested that some high-chlorine Illinois coals do not cause boiler corrosion while extensive data developed by the British correlate corrosion with chlorine content and other parameters related to the coal and boiler. The differences in corrosivity in coals may be due to the coal properties, to blending of coals, or to the boiler parameters in which they were burned. The goals of this study focus on coal properties. In this quarter, both destructive temperature-programmed Thermogravimetry with Fourier transform infrared (TGA-FTIR) and non-destructive X-ray absorption near-edge structure (XANES) techniques were used to examine themore » forms and the evolution characteristics of chlorine in coals. The TGA-FTIR results indicate that under oxidation condition, both British and Illinois coals release hydrogen chloride gas. Illinois coals release the gas at high temperature with maximum evolution temperature ranged between 210 and 280 C. The XANES results indicate that chlorine in coal exists in ionic forms including a solid salt form. The solid NaCl salt form, however, is observed only in some of the British coals and none of the Illinois coals. These results combined with TGA-FTIR results suggest that the chlorine ions in Illinois coals are different from the chlorine ions in British coals.« less
Elemental and Molecular Segregation in Oil Paintings due to Lead Soap Degradation
Chen-Wiegart, Yu-chen Karen; Catalano, Jaclyn; Williams, Garth J.; ...
2017-09-14
The formation of Pb, Zn, and Cu carboxylates (soaps) has caused visible deterioration in hundreds of oil paintings dating from the 15th century to the present. Through transport phenomena not yet understood, free fatty acids in the oil binding medium migrate through the paint and react with pigments containing heavy metals to form soaps. To investigate the complex correlation among the elemental segregation, types of chemical compounds formed, and possible mechanisms of the reactions, a paint sample cross-section from a 15th century oil painting was examined by synchrotron X-ray techniques. X-ray fluorescence (XRF) microscopy, quantified with elemental correlation density distribution,more » showed Pb and Sn segregation in the soap-affected areas. X-ray absorption near edge structure (XANES) around the Pb-L3 absorption edge showed that Pb pigments and Pb soaps can be distinguished while micro-XANES gave further information on the chemical heterogeneity in the paint film. The advantages and limitations of these synchrotron-based techniques are discussed and compared to those of methods routinely used to analyze paint samples. The results presented set the stage for improving the information extracted from samples removed from works of art and for correlating observations in model paint samples to those in the naturally aged samples, to shed light onto the mechanism of soap formation.« less
Qin, Hai-Bo; Zhu, Jian-Ming; Lin, Zhi-Qing; Xu, Wen-Po; Tan, De-Can; Zheng, Li-Rong; Takahashi, Yoshio
2017-06-01
Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56-81% of the total Se) and lesser Se(IV) (19-44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69-73%) > upland soil (56-63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Elemental and Molecular Segregation in Oil Paintings due to Lead Soap Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen-Wiegart, Yu-chen Karen; Catalano, Jaclyn; Williams, Garth J.
The formation of Pb, Zn, and Cu carboxylates (soaps) has caused visible deterioration in hundreds of oil paintings dating from the 15th century to the present. Through transport phenomena not yet understood, free fatty acids in the oil binding medium migrate through the paint and react with pigments containing heavy metals to form soaps. To investigate the complex correlation among the elemental segregation, types of chemical compounds formed, and possible mechanisms of the reactions, a paint sample cross-section from a 15th century oil painting was examined by synchrotron X-ray techniques. X-ray fluorescence (XRF) microscopy, quantified with elemental correlation density distribution,more » showed Pb and Sn segregation in the soap-affected areas. X-ray absorption near edge structure (XANES) around the Pb-L3 absorption edge showed that Pb pigments and Pb soaps can be distinguished while micro-XANES gave further information on the chemical heterogeneity in the paint film. The advantages and limitations of these synchrotron-based techniques are discussed and compared to those of methods routinely used to analyze paint samples. The results presented set the stage for improving the information extracted from samples removed from works of art and for correlating observations in model paint samples to those in the naturally aged samples, to shed light onto the mechanism of soap formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Ja Hun; Varga, Tamas; Peden, Charles HF
2014-05-05
Cu-SSZ-13 has been shown to possess high activity and superior N2 formation selectivity in the selective catalytic reduction of NOx under oxygen rich conditions. Here, a combination of synchrotron-based (XRD and XANES) and vibrational (DRIFTS) spectroscopy tools have been used to follow the changes in the location and coordination environment of copper ions in a Cu-SSZ-13 zeolite during calcinations, reduction with CO, and adsorption of CO and H2O. XANES spectra collected during these procedures provides critical information not only on the variation in the oxidation state of the copper species in the zeolite structure, but also on the changes inmore » the coordination environment around these ions as they interact with the framework, and with different adsorbates (H2O and CO). Time-resolved XRD data indicate the movement of copper ions and the consequent variation of the unit cell parameters during dehydration. DRIFT spectra provide information about the adsorbed species present in the zeolite, as well as the oxidation states of and coordination environment around the copper ions. A careful analysis of the asymmetric T-O-T vibrations of the CHA framework perturbed by copper ions in different coordination environments proved to be especially informative. The results of this study will aid the identification of the location, coordination and oxidation states of copper ions obtained during in operando catalytic studies. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Part of this work (sample preparation) was performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US DOE by Battelle. All of the spectroscopy work reported here was carried out at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). NSLS is a national scientific user facility supported by the US DOE.« less
Transformation of Strontium during formation of biogenic calcium carbonate
NASA Astrophysics Data System (ADS)
Ohnuki, T.; Kozai, N.; Sakamoto, F.; Yamashita, M.; Horiieke, T.; Utsunomiya, S.
2016-12-01
Some amounts of radionuclides contaminated water containing 90Sr generated in the Fukushima Daiichi Nuclear Power Plant were leaked to sea water in the port. One of the possible method to eliminate 90Sr is co-precipitated with biogenic carbonates minerals (CCM). Specific bacteria are known to form biogenic CCM in groundwater. In the present study, we have screened specific bacterium to form CCM in saline water, and studied transformation of Sr during biogenic CCM. A marine microbe of strain TK2d, which is screened from Tokyo bay to form CCM in saline solution, was grown in the medium solution contained urea and Sr. The concentratuion of Sr2+ in the solution was monitored by ICP-OES (ICP-OES; 720 Agilent Technologies, Inc., USA) during the formation of biogenic CCM. The precipitates were analyzed by SEM, TEM, and XAFS. When 1.0 mM Sr was dissolved in the medium solution, the concentration of Sr decreased up to 0.02 mM within 10 days, indicating that most of Sr in the solution was eliminated within 10 days. SEM and TEM analyses showed that needle shaped CCM containing Ca and Sr were formed. The CCM was not single crystalline, but poly-crystalline of calcite and aragonite. The elemental mapping showed that Sr was present at the same position of Ca, indicating that Sr was coprecipitated with Ca. The XANES analysis of Sr in the precipitates showed that the XANES spectrum was not the same as that of Sr coprecipitated with an abiotic Ca carbonates. Linear combination fitting of XANES spectra by those of SrCl2 and SrCO3 showed that both Sr2+ and SrCO3 were present in CCM. Longer contact time resulted in higher content of SrCO3, indicating that Sr was incorporated gradually with time into CCM structure. Thus, Sr was changed its chemical species from adsorbed one to the incorporated one in biogenic CCM in saline solution. This work was partially supported by a research grant from the Japan Science and Technology Agency, Japan (research grant No. 260502).
Shen, Ya-Ting
2014-03-01
In order to investigate plant reacting mechanism with heavy metal stress in organ and tissue level, synchrotron radiation micro X-ray fluorescence (micro-SRXRF) was used to determine element distribution characteristics of K, Ca, Mn, Fe, Cu, Zn, Pb in an Arabidopsis thaliana seedling grown in tailing dam soil taken from a lead-zinc mine exploration area. The results showed a regular distribution characters of K, Ca, Fe, Cu and Zn, while Pb appeared not only in root, but also in a leaf bud which was beyond previously understanding that Pb mainly appeared in plant root. Pb competed with Mn in the distribution of the whole seedling. Pb may cause the increase of oxidative stress in root and leaf bud, and restrict Mn absorption and utilization which explained the phenomenon of seedling death in this tailing damp soil. Speciation of Pb in Arabidopsis thaliana and tailing damp rhizosphere soil were also presented after using PbL3 micro X-ray absorption near edge structure (micro-XANES). By comparison of PbL3 XANES peak shape and peak position between standard samples and rhizosphere soil sample, it was demonstrated that the tailing damp soil was mainly formed by amorphous forms like PbO (64.2%), Pb (OH)2 (28.8%) and Pb3O4 (6.3%) rather than mineral or organic Pb speciations. The low plant bioavailability of Pb demonstrated a further research focusing on Pb absorption and speciation conversion is needed, especially the role of dissolve organic matter in soil which may enhance Pb bioavailability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farges, F.; Rossano, S.; Wilke, M.
A large number (67) of silicate glasses containing variable amounts of iron oxide were studied by high-resolution XANES spectroscopy at the Fe K-edge to determine an accurate method to derive redox information from pre-edge features. The glass compositions studied mimic geological magmas, ranging from basaltic to rhyolitic, dry and hydrous, with variable quench rates. The studied glasses also include more chemically simple calco-sodic silicate glass compositions. The Fe contents range from 30 wt.% to less than 2000 ppm. For most of the series of composition studied, the pre-edge information varies linearly with redox, even under high-resolution conditions. The average coordinationmore » of Fe(II) is often similar to its Fe(III) counterpart except in highly polymerized glasses because of the strong influence exerted by the tetrahedral framework on iron's sites. Natural volcanic glasses (from various volcanoes around the world) show similar variations. The average coordination of Fe(II) is often comprised between 4.5 and 5. Fe(III) shows larger variations in coordination (4 to 6, depending on composition). Bond valence models are proposed to predict the average coordination of Fe based on composition. Molecular dynamics simulations (Born-Mayer-Huggins) potentials were carried out on some compositions to estimate the magnitude of disorder effects (both static and thermal) in the XAFS analysis. XANES calculations based on the MD simulations and FEFF 8.2 show large variations in the local structures around Fe. Also, 5-coordinated Fe(III) is found to be an important moiety in ferrisilicate glasses. For Fe(II), discrepancies between glass and melt are larger and are related to its greater structural relaxation at T{sub g}. Also, a strong destructive interference between network formers and modifiers explain the relatively weak intensity of the next-nearest neighbors contributions in the experimental spectra.« less
Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies.
Chakroune, Nassira; Viau, Guillaume; Ammar, Souad; Poul, Laurence; Veautier, Delphine; Chehimi, Mohamed M; Mangeney, Claire; Villain, Françoise; Fiévet, Fernand
2005-07-19
Monodisperse ruthenium nanoparticles were prepared by reduction of RuCl3 in 1,2-propanediol. The mean particle size was controlled by appropriate choice of the reduction temperature and the acetate ion concentration. Colloidal solutions in toluene were obtained by coating the metal particles with dodecanethiol. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XANES and EXAFS for the Ru K-absorption edge) were performed on particles of two different diameters, 2 and 4 nm, and in different environments, polyol/acetate or thiol. For particles stored in polyol/acetate XPS studies revealed superficial oxidation limited to one monolayer and a surface coating containing mostly acetate ions. Analysis of the EXAFS spectra showed both oxygen and ruthenium atoms around the ruthenium atoms with a Ru-Ru coordination number N smaller than the bulk value, as expected for fine particles. In the case of 2 nm acetate-capped particles N is consistent with particles made up of a metallic core and an oxidized monolayer. For 2 nm thiol-coated particles, a Ru-S bond was evidenced by XPS and XAS. For the 4 nm particles XANES and XPS studies showed that most of the ruthenium atoms are in the zerovalent state. Nevertheless, in both cases, when capped with thiol, the Ru-Ru coordination number inferred from EXAFS is much smaller than for particles of the same size stored in polyol. This is attributed to a structural disorganization of the particles by thiol chemisorption. HRTEM studies confirm the marked dependence of the structural properties of the ruthenium particles on their chemical environment; they show the acetate-coated particles to be single crystals, whereas the thiol-coated particles appear to be polycrystalline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.
2015-02-09
Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has beenmore » observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.« less
NASA Astrophysics Data System (ADS)
Song, Zhen; Kenney, Janice P. L.; Fein, Jeremy B.; Bunker, Bruce A.
2012-06-01
Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.
Titanium oxidation state and coordination in the lunar high-titanium glass source mantle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krawczynski, M.J.; Sutton, S.R.; Grove, T.L.
2009-03-20
XANES and EXAFS spectra from synthetic HiTi lunar glasses determine coordination of Ti in the HiTi source region. The amount of Ti{sup 3+} present affects the olivine-opx equilibrium, and the total amount of Ti{sup 3+} present requires a pyx bearing source. Lunar high-titanium (HiTi) ultramafic glasses provide us with evidence of the mantle processes that led to the melting of the lunar magma ocean cumulates nearly one billion years after the magma ocean solidified. Constraints on the depth, temperature and melting processes that formed the HiTi glasses are crucial for understanding the melting history of LMO products. The Apollo 17more » orange glass (A17O) and Apollo 15 red glass (A15R) represent two of the HiTi compositions in the spectrum of pristine ultramafic glasses returned from the moon. The difference between these two compositions is that the A15R contains {approx}40% more TiO{sub 2} than the A17O. The low f{sub O2} of the ultramafic glass source regions allows for a certain amount of Ti{sup 3+} in the source mineralogy; however the amount of Ti{sup 3+} in the source and the host mineral for this element remain relatively unconstrained. In addition to the unknown mineralogy of the source region, the high amount of TiO*{sub 2} and FeO* in the HiTi magmas makes the phase relations extremely sensitive to changes in the oxidation state of the source region. We have previously investigated the oxidation state effect on the olivine-orthopyroxene multiple saturations points of the A15R and A17O and shown that the magnitude of the effect is proportional to the amount of Ti in the system. X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure (EXAFS) measurements have been made on minerals and glasses in experiments on synthetic analogues to the A17O and A15R. Our results show that Ti{sup 3+} concentration does indeed affect the multiple saturation points, and is an important constituent in the lunar interior.« less
Iron solubility related to particle sulfur content in source emission and ambient fine particles.
Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J
2012-06-19
The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (<1%, mineral dust and coal fly ash) up to 75% (mobile exhaust and biomass burning emissions). Differences in iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.
XPS and Ag L3-edge XANES characterization of silver and silver-gold sulfoselenides
NASA Astrophysics Data System (ADS)
Mikhlin, Yuri L.; Pal'yanova, Galina A.; Tomashevich, Yevgeny V.; Vishnyakova, Elena A.; Vorobyev, Sergey A.; Kokh, Konstantin A.
2018-05-01
Gold and silver sulfoselenides are of interest as materials with high ionic conductivity and promising magnetoresistive, thermoelectric, optical, and other physico-chemical properties, which are strongly dependent on composition and structure. Here, we applied X-ray photoelectron spectroscopy and Ag L3 X-ray absorption near-edge structure (XANES) to study the electronic structures of low-temperature compounds and solid solutions Ag2SxSe1-x (0 < x < 1), AgAuS, and Ag3AuSxSe2-x (x = 0, 1, 2). Upon substitution of Se with S, a steady increase in the positive charge at Ag(I) sites and only minor changes in the local charge at chalcogen atoms were found from the photoelectron Ag 3d, S 2p, Se 3d, and Ag M4,5VV Auger spectra. The intensity of the Ag L3-edge peak, which is known to correlate with hole counts in the Ag 4d shell having a formal d10 configuration, was enhanced by 20-25% from Ag2Se to Ag2S and from Ag3AuSe2 to Ag3AuS2. The effect of gold is more pronounced, and the number of Ag d holes and the negative charge of S and Se notably decreased for Au-containing compounds; in particular, the Ag L3-edge peak is about 35% lower for AgAuS relative to Ag2S. At the same time, the Au 4f binding energy and, therefore, charge at Au(I) sites increase with increasing S content due to the transfer of electron density from Au to Ag atoms. It was concluded that the effects mainly originate from shortening of the metal-chalcogen and especially the Ausbnd Ag interatomic distances in substances having similar coordination geometry.
Changes in local surface structure and Sr depletion in Fe-implanted SrTiO3 (001)
NASA Astrophysics Data System (ADS)
Lobacheva, O.; Yiu, Y. M.; Chen, N.; Sham, T. K.; Goncharova, L. V.
2017-01-01
Local surface structure of single crystal strontium titanate SrTiO3 (001) samples implanted with Fe in the range of concentrations between 2 × 1014 to 2 × 1016 Fe/cm2 at 30 keV has been investigated. In order to facilitate Fe substitution (doping), implanted samples were annealed in oxygen at 350 °C. Sr depletion was observed from the near-surface layers impacted by the ion-implantation process, as revealed by Rutherford Backscattering Spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray Absorption Near Edge Spectroscopy (XANES), and Atomic Force Microscopy (AFM). Hydrocarbon contaminations on the surface may contribute to the mechanisms of Sr depletion, which have important implications for Sr(Ti1-xFex)O3-δ materials in gas sensing applications.
NASA Astrophysics Data System (ADS)
Guo, Xiaoyun; Chu, Wangsheng; Ma, Sixuan; Gong, Weimin; Benfatto, Maurizio; Hu, Tiandou; Xie, Yaning; Wu, ZiYu
2006-11-01
Peptide deformylase (PDF, EC 3.5.1.27) is essential for the normal growth of eubacterium but not for mammalians. Recently, PDF has been studied as a target for new antibiotics. In this paper, X-ray absorption spectroscopy was employed to determine the local structure around the zinc ion of PDF from Leptospira Interrogans in dry powder, because it is very difficult to obtain the crystallized sample of LiPDF. We performed X-ray absorption near edge structure (XANES) calculation and reconstructed successfully the local geometry of the active center, and the results from calculations show that a water molecule (Wat1) has moved towards the zinc ion and lies in the distance range to coordinate with the zinc ion weakly. In addition, the sensitivity of theoretical spectra to the different ligand bodies was evaluated in terms of goodness-of-fit.
NASA Astrophysics Data System (ADS)
Aquilanti, Giuliana; Giorgetti, Marco; Dominko, Robert; Stievano, Lorenzo; Arčon, Iztok; Novello, Nicola; Olivi, Luca
2017-02-01
X-ray absorption spectroscopy is a synchrotron radiation based technique that is able to provide information on both local structure and electronic properties in a chemically selective manner. It can be used to characterize the dynamic processes that govern the electrochemical energy storage in batteries, and to shed light on the redox chemistry and changes in structure during galvanostatic cycling to design cathode materials with improved properties. Operando XAS studies have been performed at beamline XAFS at Elettra on different systems. For Li-ion batteries, a multiedge approach revealed the role of the different cathode components during the charge and discharge of the battery. In addition, Li-S batteries for automotive applications were studied. Operando sulfur K-edge XANES and EXAFS analysis was used to characterize the redox chemistry of sulfur, and to relate the electrochemical mechanism to its local structure.
Reversibility of Pt-Skin and Pt-Skeleton Nanostructures in Acidic Media.
Durst, Julien; Lopez-Haro, Miguel; Dubau, Laetitia; Chatenet, Marian; Soldo-Olivier, Yvonne; Guétaz, Laure; Bayle-Guillemaud, Pascale; Maillard, Frédéric
2014-02-06
Following a well-defined series of acid and heat treatments on a benchmark Pt3Co/C sample, three different nanostructures of interest for the electrocatalysis of the oxygen reduction reaction were tailored. These nanostructures could be sorted into the "Pt-skin" structure, made of one pure Pt overlayer, and the "Pt-skeleton" structure, made of 2-3 Pt overlayers surrounding the Pt-Co alloy core. Using a unique combination of high-resolution aberration-corrected STEM-EELS, XRD, EXAFS, and XANES measurements, we provide atomically resolved pictures of these different nanostructures, including measurement of the Pt-shell thickness forming in acidic media and the resulting changes of the bulk and core chemical composition. It is shown that the Pt-skin is reverted toward the Pt-skeleton upon contact with acid electrolyte. This change in structure causes strong variations of the chemical composition.
Solution XAS Analysis for Exploring the Active Species in Homogeneous Vanadium Complex Catalysis
NASA Astrophysics Data System (ADS)
Nomura, Kotohiro; Mitsudome, Takato; Tsutsumi, Ken; Yamazoe, Seiji
2018-06-01
Selected examples in V K-edge X-ray Absorption Near Edge Structure (XANES) analysis of a series of vanadium complexes containing imido ligands (possessing metal-nitrogen double bond) in toluene solution have been introduced, and their pre-edge and the edge were affected by their structures and nature of ligands. Selected results in exploring the oxidation states of the active species in ethylene dimerization/polymerization using homogeneous vanadium catalysts [consisting of (imido)vanadium(V) complexes and Al cocatalysts] by X-ray absorption spectroscopy (XAS) analyses have been introduced. It has been demonstrated that the method should provide more clear information concerning the active species in situ, especially by combination with the other methods (NMR and ESR spectra, X-ray crystallographic analysis, and reaction chemistry), and should be powerful tool for study of catalysis mechanism as well as for the structural analysis in solution.
Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL
NASA Astrophysics Data System (ADS)
Liu, Y.; Andrews, J. C.; Meirer, F.; Mehta, A.; Gil, S. Carrasco; Sciau, P.; Mester, Z.; Pianetta, P.
2011-09-01
State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).
The soft x-ray beamline at Frascati Labs
NASA Astrophysics Data System (ADS)
Cinque, Gianfelice; Burattini, Emilio; Grilli, Antonio; Dabagov, Sultan
2005-08-01
DAΦNE-Light is the Synchrotron Radiation laboratory at the Laboratori Nazionali di Frascati (LNF)1. Three beamlines were commissioned since spring 2003 to exploit parasitically the intense photon emission from DAΦNE, the 0.5 1 GeV storage ring routinely circulating over 1 A of electrons. The soft X-ray beamline utilizes a wiggler source and, by a double-crystal fixed-exit monochromator, it is operational in the distinguishing energy window 1.5 - 4 keV range to be extended from the "water window" toward 6 keV. At present, the research activity is focused on X-ray Absorption Spectroscopy (XAS): precisely, X-ray Absorption Near Edge Spectroscopy (XANES) on the inner electronic levels of light elements and transition metals from Al to Ge and both d- and f-shells of higher Z atoms. Preliminary tests of X-ray imaging have been performed in view of applying different focusing optics, namely policapillary systems in trasmission and/or bent mica diffractor in back-reflection, for X-ray microscopy and spectromicroscopy experiments. The use of polycapillary systems (lenses, halflenses, capillaries) for studying features of radiation transportation by such structures (X-ray channelling, focusing, bending, etc.) has been planned.
Micro and bulk analysis of prostate tissues classified as hyperplasia
NASA Astrophysics Data System (ADS)
Kwiatek, W. M.; Banaś, A.; Banaś, K.; Cinque, G.; Dyduch, G.; Falkenberg, G.; Kisiel, A.; Marcelli, A.; Podgórczyk, M.
2007-07-01
BPH (Benign Prostatic Hyperplasia) is the most common benign neoplasm (non cancerous enlargement of the prostate gland), whose prevalence increases with age. The gland, when increased in size, exerts pressure on the urethra, causing obstruction to urine flow. The latter may result in severe urinary tract and kidney conditions. In this work prostate samples from patients diagnosed with BPH were analyzed using synchrotron radiation. Micro-analysis of the hyperplastic samples was carried out on the L-beam line at HASYLAB, DESY (Germany), while bulk analysis on selected samples was performed at the DRX2 beamline at LNF, Frascati (Italy). Microanalysis with a mono-energetic beam 15 μm in diameter confirmed that concentrations of certain elements, such as S, Mn, Cu, Fe and Zn, are good indicators of pathological disorders in prostate tissue that may be considered effective tracers of developing compliant. The concentrations of Mn, Cu, Fe and Zn are higher in hyperplastic tissues, as compared to normal ones, while for sulphur the opposite is observed. Additionally, Fe and S K-edge XANES (X-ray Absorption Near Edge Structure) spectroscopy experiments were carried out in order to determine the chemical speciation of these elements in our samples.
Revealing the halide effect on the kinetics of the aerobic oxidation of Cu(I) to Cu(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Yi; Zhang, Guanghui; Qi, Xiaotian
2015-01-01
In situ infrared (IR) and X-ray absorption near-edge structure (XANES) spectroscopic investigations reveal that different halide ligands have distinct effects on the aerobic oxidation of Cu(I) to Cu(II) in the presence of TMEDA (tetramethylethylenediamine). The iodide ligand gives the lowest rate and thus leads to the lowest catalytic reaction rate of aerobic oxidation of hydroquinone to benzoquinone. Further DFT calculations suggest that oxidation of CuI–TMEDA involves a side-on transition state, while oxidation of CuCl–TMEDA involves an end-on transition state which has a lower activation energy.
Castillo-Michel, Hiram; Hernandez-Viezcas, Jose; Dokken, Kenneth M.; Marcus, Matthew A.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.
2011-01-01
Parkinsonia florida is a plant species native to the semi-desert regions of North America. The cultivation characteristics of this shrub/tree suggest that it could be used for phytoremediation purposes in semiarid regions. This work describes, through the use of synchrotron μXRF and μXANES techniques and ICP-OES, the arsenic (As) accumulation and distribution in P. florida plants grown in two soils spiked with As at 20 mg kg-1. Plants grown in a sandy soil accumulated at least twice more As in the roots compared to plants grown in a loamy soil. The lower As accumulation in plants grown in the loamy soil corresponded to a lower concentration of As in the water soluble fraction (WSF) of this soil. LC-ICP-MS speciation analysis showed only As(V) in the WSF from all treatments. In contrast, linear combination XANES speciation analysis from the root tissues showed As mainly present in the reduced As(III) form. Moreover, a fraction of the reduced As was found coordinating to S in a form consistent with As-Cys3. The percentage of As coordinated to sulfur was smaller for plants grown in the loamy soil when compared to the sandy soil. PMID:21842861
Castillo-Michel, Hiram; Hernandez-Viezcas, Jose; Dokken, Kenneth M; Marcus, Matthew A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L
2011-09-15
Parkinsonia florida is a plant species native to the semidesert regions of North America. The cultivation characteristics of this shrub/tree suggest that it could be used for phytoremediation purposes in semiarid regions. This work describes, through the use of synchrotron μXRF and μXANES techniques and ICP-OES, the arsenic (As) accumulation and distribution in P. florida plants grown in two soils spiked with As at 20 mg kg(-1). Plants grown in a sandy soil accumulated at least twice more As in the roots compared to plants grown in a loamy soil. The lower As accumulation in plants grown in the loamy soil corresponded to a lower concentration of As in the water-soluble fraction (WSF) of this soil. LC-ICP-MS speciation analysis showed only As(V) in the WSF from all treatments. In contrast, linear combination XANES speciation analysis from the root tissues showed As mainly present in the reduced As(III) form. Moreover, a fraction of the reduced As was found coordinating to S in a form consistent with As-Cys(3). The percentage of As coordinated to sulfur was smaller for plants grown in the loamy soil when compared to the sandy soil.
XAFS studies of nickel and sulfur speciation in residual oil fly-ash particulate matters (ROFA PM).
Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P; Linak, William P; Miller, C Andrew
2007-02-15
XAFS spectroscopy has been employed to evaluate the effect of fuel compositions and combustion conditions on the amount, form, and distribution of sulfur and nickel in size-fractionated ROFA PM. Analysis of S K-edge XANES establish that sulfate is abundant in all PM. However, depending upon the combustion conditions, lesser amounts of thiophenic sulfur, metal sulfide, and elemental sulfur may also be observed. Least-squares fitting of Ni K-edge XANES reveals that most of the nickel in PM is present as bioavailable NiSO4.nH2O. The insoluble Ni mainly exists as a minor species, as nickel ferrite in PM2.5 (PM < 2.5 microm) and nickel sulfide, Ni(x)SY(y) in PM2.5+ (PM > 2.5 microm). The Ni K-edge XANES results are in agreement with the EXAFS data. Such detailed speciation of Ni and S in PM is needed for determining their mobility, bioavailability, and reactivity, and hence, their role in PM toxicity. This information is also important for understanding the mechanism of PM formation, developing effective remediation measures, and providing criteria for identification of potential emission sources. Transition metals complexing with sulfur is ubiquitous in nature. Therefore, this information on metal sulfur complex can be critical to a large body of environmental literature.
Sun, Yubing; Wu, Zhen-Yu; Wang, Xiangxue; Ding, Congcong; Cheng, Wencai; Yu, Shu-Hong; Wang, Xiangke
2016-04-19
The adsorption mechanism of U(VI) and Eu(III) on carbonaceous nanofibers (CNFs) was investigated using batch, IR, XPS, XANES, and EXAFS techniques. The pH-dependent adsorption indicated that the adsorption of U(VI) on the CNFs was significantly higher than the adsorption of Eu(III) at pH < 7.0. The maximum adsorption capacity of the CNFs calculated from the Langmuir model at pH 4.5 and 298 K for U(VI) and Eu(III) were 125 and 91 mg/g, respectively. The CNFs displayed good recyclability and recoverability by regeneration experiments. Based on XPS and XANES analyses, the enrichment of U(VI) and Eu(III) was attributed to the abundant adsorption sites (e.g., -OH and -COOH groups) of the CNFs. IR analysis further demonstrated that -COOH groups were more responsible for U(VI) adsorption. In addition, the remarkable reducing agents of the R-CH2OH groups were responsible for the highly efficient adsorption of U(VI) on the CNFs. The adsorption mechanism of U(VI) on the CNFs at pH 4.5 was shifted from inner- to outer-sphere surface complexation with increasing initial concentration, whereas the surface (co)precipitate (i.e., schoepite) was observed at pH 7.0 by EXAFS spectra. The findings presented herein play an important role in the removal of radionuclides on inexpensive and available carbon-based nanoparticles in environmental cleanup applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankaer, Christian Grundahl; Mossin, Susanne; Ståhl, Kenny
The level of structural detail around the metal sites in Ni{sup 2+} and Cu{sup 2+} T{sub 6} insulin derivatives was significantly improved by using a combination of single-crystal X-ray crystallography and X-ray absorption spectroscopy. Photoreduction and subsequent radiation damage of the Cu{sup 2+} sites in Cu insulin was followed by XANES spectroscopy. Using synchrotron radiation (SR), the crystal structures of T{sub 6} bovine insulin complexed with Ni{sup 2+} and Cu{sup 2+} were solved to 1.50 and 1.45 Å resolution, respectively. The level of detail around the metal centres in these structures was highly limited, and the coordination of water inmore » Cu site II of the copper insulin derivative was deteriorated as a consequence of radiation damage. To provide more detail, X-ray absorption spectroscopy (XAS) was used to improve the information level about metal coordination in each derivative. The nickel derivative contains hexacoordinated Ni{sup 2+} with trigonal symmetry, whereas the copper derivative contains tetragonally distorted hexacoordinated Cu{sup 2+} as a result of the Jahn–Teller effect, with a significantly longer coordination distance for one of the three water molecules in the coordination sphere. That the copper centre is of type II was further confirmed by electron paramagnetic resonance (EPR). The coordination distances were refined from EXAFS with standard deviations within 0.01 Å. The insulin derivative containing Cu{sup 2+} is sensitive towards photoreduction when exposed to SR. During the reduction of Cu{sup 2+} to Cu{sup +}, the coordination geometry of copper changes towards lower coordination numbers. Primary damage, i.e. photoreduction, was followed directly by XANES as a function of radiation dose, while secondary damage in the form of structural changes around the Cu atoms after exposure to different radiation doses was studied by crystallography using a laboratory diffractometer. Protection against photoreduction and subsequent radiation damage was carried out by solid embedment of Cu insulin in a saccharose matrix. At 100 K the photoreduction was suppressed by ∼15%, and it was suppressed by a further ∼30% on cooling the samples to 20 K.« less
X-ray absorption near-edge spectroscopy in bioinorganic chemistry: Application to M–O2 systems
Sarangi, Ritimukta
2012-01-01
Metal K-edge X-ray absorption spectroscopy (XAS) has been extensively applied to bioinorganic chemistry to obtain geometric structure information on metalloprotein and biomimetic model complex active sites by analyzing the higher energy extended X-ray absorption fine structure (EXAFS) region of the spectrum. In recent years, focus has been on developing methodologies to interpret the lower energy K-pre-edge and rising-edge regions (XANES) and using it for electronic structure determination in complex bioinorganic systems. In this review, the evolution and progress of 3d-transition metal K-pre-edge and rising-edge methodology development is presented with particular focus on applications to bioinorganic systems. Applications to biomimetic transition metal–O2 intermediates (M = Fe, Co, Ni and Cu) are reviewed, which demonstrate the power of the method as an electronic structure determination technique and its impact in understanding the role of supporting ligands in tuning the electronic configuration of transition metal–O2 systems. PMID:23525635
Micro-XANES Determination Fe Speciation in Natural Basalts at Mantle-Relevant fO2
NASA Astrophysics Data System (ADS)
Fischer, R.; Cottrell, E.; Lanzirotti, A.; Kelley, K. A.
2007-12-01
We demonstrate that the oxidation state of iron (Fe3+/ΣFe) can be determined with a precision of ±0.02 (10% relative) on natural basalt glasses at mantle-relevant fO2 using Fe K-edge X-ray absorption near edge structure (XANES) spectroscopy. This is equivalent to ±0.25 log unit resolution relative to the QFM buffer. Precise determination of the oxidation state over this narrow range (Fe3+/ΣFe=0.06-0.30) and at low fO2 (down to QFM-2) relies on appropriate standards, high spectral resolution, and highly reproducible methods for extracting the pre-edge centroid position. We equilibrated natural tholeiite powder in a CO/CO2 gas mixing furnace at 1350°C from QFM-3 to QFM+2 to create six glasses of known Fe3+/ΣFe, independently determined by Mössbauer spectroscopy. XANES spectra were collected at station X26A at NSLS, Brookhaven Natl. Lab, in fluorescence mode (9 element Ge array detector) using both Si(111) and Si(311) monochromators. Generally, the energy position of the 1s→3d (pre-edge) transition centroid is the most sensitive monitor of Fe oxidation state using XANES. For the mixture of Fe oxidation states in these glasses and the resulting coordination geometries, the pre-edge spectra are best defined by two multiple 3d crystal field transitions. The Si(311) monochromator, with higher energy resolution, substantially improved spectral resolution for the 1s→3d transition. Dwell times of 5s at 0.1eV intervals across the pre-edge region yielded spectra with the 1s→3d transition peaks clearly resolved. The pre-edge centroid position is highly sensitive to the background subtraction and peak fitting procedures. Differences in fitting models result in small but significant differences in the calculated peak area of each pre-edge multiplet, and the relative contribution of each peak to the calculated centroid. We assessed several schemes and obtained robust centroid positions by simultaneously fitting the background with a damped harmonic oscillator (DHO) function and pre-edge features with two Gaussians over a sub-sample of the pre-edge region (7110-7120 eV). We found that the relation between Fe3+/ΣFe and the centroid energy is non-linear over this fO2 range, which is expected if the coordination environment changes with oxidation state. ΔQFM is linearly related (R2=0.99) to the centroid position. This new calibration allows the oxidation states of natural mantle melts to be discriminated with high spatial resolution (9μm). We apply the new calibration to determination of Fe3+/ΣFe in natural basaltic glasses and olivine-hosted glass inclusions (Cottrell et al. & Kelley et al., this meeting).
NASA Astrophysics Data System (ADS)
Helz, R. T.; Cottrell, E.; Brounce, M. N.; Kelley, K. A.
2017-03-01
The 1959 summit eruption of Kīlauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most Kīlauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems. The observed variations of Fe+ 3/FeT ratios in the glasses reflect two distinct processes. The main process, sulfur degassing, produces steady decrease of the Fe+ 3/FeT ratio. Melt inclusions in olivine are high in sulfur (1060-1500 ppm S), with Fe+ 3/FeT = 0.160-0.175. Matrix glasses are degassed (mostly S < 200 ppm) with generally lower Fe+ 3/FeT (0.114-0.135). Interstitial glasses within clumps of olivine crystals locally show intermediate levels of sulfur and Fe+ 3/FeT ratio. The correlation suggests that (1) the 1959 magma was significantly reduced by sulfur degassing during the eruption and (2) the melts originally had Fe+ 3/FeT ≥ 0.175, consistent with oxygen fugacity (fO2) at least 0.4 log units above the fayalite-magnetite-quartz (FMQ) buffer at 1 atm and magmatic temperature of 1200 °C. The second process is interaction between the melts and atmospheric oxygen, which results in higher Fe+ 3/FeT ratios. Detailed μ-XANES traverses show gradients in Fe+ 3/FeT of 0.145 to 0.628 over distances of 100-150 μm in thin, visibly reddened matrix glass bordering some scoriae, presumably caused by contact with air. This process was extremely rapid, giving insight into how fast the Fe+ 3/FeT ratio can change in response to changes in external conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silversmith, Geert; Poelman, Hilde; Poelman, Dirk
2007-02-02
A CuOx-CeOx/Al2O3 catalyst was studied with in-situ transmission Cu K XAS for the total oxidation of propane as model reaction for the catalytic elimination of volatile organic compounds. The local Cu structure was determined for the catalyst as such, after pre-oxidation and after reduction with propane. The catalyst as such has a local CuO structure. No structural effect was observed upon heating in He up to 600 deg. C or after pre-oxidation at 150 deg. C. A full reduction of the Cu2+ towards metallic Cu0 occurred, when propane was fed to the catalyst. The change in local Cu structure duringmore » propane reduction was followed with a time resolution of 1 min. The {chi}(k) scans appeared as linear combinations of start and end spectra, CuO and Cu structure, respectively. However, careful examination of the XANES edge spectra indicates the presence of a small amount of additional Cu1+ species.« less
The Reduction of Cr(VI) to Cr(III) by Natural Fe-Bearing Minerals: A Synchrotron XAS Study
NASA Astrophysics Data System (ADS)
Xu, H.; Guo, X.; Ding, M.; Migdissov, A. A.; Boukhalfa, H.; Sun, C.; Roback, R. C.; Reimus, P. W.; Katzman, D.
2017-12-01
Cr(VI) in the form of CrO42- is a pollutant species in groundwater and soils that can pose health and environmental problems. Cr(VI) associated with use as a corrosion inhibitor at a power plant from 1956-1972 is present in a deep groundwater aquifer at Los Alamos National Laboratory. A potential remediation strategy for the Cr contamination is reduction of Cr(VI) to Cr(III) via the acceptance of electrons from naturally occurring or induced Fe(II) occurring in Fe-bearing minerals. In this work, using synchrotron-based X-ray techniques, we investigated the Cr reduction behavior by Fe-bearing minerals from outcrop and core samples representative of the contaminated portion of the aquifer. Samples were exposed to solutions with a range of known Cr (VI) concentrations. XANES and EXAFS spectra showed that all the Cr(VI) had been reduced to Cr(III), and micro XRF mapping revealed close correlation of Cr and Fe distribution, implying that Fe(II) in minerals reduced Cr(VI) in the solution. Similar behavior was observed from in-situ XANES measurements on Cr reduction and adsorption by mineral separates from the rock samples in Cr(VI)-bearing solutions. In addition, to obtain reference parameters for interpreting the data of natural samples, we collected Cr and Fe EXAFS spectra of Cr(III)-Fe(III) hydroxide solid solutions, which show progressive changes in the local structure around Cr and Fe over the whole series.
Speciation and Distribution of Phosphorus in a Fertilized Soil: A Synchrotron-Based Investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombi, E.; Scheckel, K.G.; Armstrong, R.D.
2008-06-09
Phosphorus availability is often a limiting factor for crop production around the world. The efficiency of P fertilizers in calcareous soils is limited by reactions that decrease P availability; however, fluid fertilizers have recently been shown, in highly calcareous soils of southern Australia, to be more efficient for crop (wheat [Triticum aestivum L.]) P nutrition than granular products. To elucidate the mechanisms responsible for this differential response, an isotopic dilution technique (E value) coupled with a synchrotron-based spectroscopic investigation were used to assess the reaction products of a granular (monoammonium phosphate, MAP) and a fluid P (technical-grade monoammonium phosphate, TG-MAP)more » fertilizer in a highly calcareous soil. The isotopic exchangeability of P from the fluid fertilizer, measured with the E-value technique, was higher than that of the granular product. The spatially resolved spectroscopic investigation, performed using nano x-ray fluorescence and nano x-ray absorption near-edge structure (n-XANES), showed that P is heterogeneously distributed in soil and that, at least in this highly calcareous soil, it is invariably associated with Ca rather than Fe at the nanoscale. 'Bulk' XANES spectroscopy revealed that, in the soil surrounding fertilizer granules, P precipitation in the form of octacalcium phosphate and apatite-like compounds is the dominant mechanism responsible for decreases in P exchangeability. This process was less prominent when the fluid P fertilizer was applied to the soil.« less
Mercury speciation in piscivorous fish from mining-impacted reservoirs
Kuwabara, J.S.; Arai, Y.; Topping, B.R.; Pickering, I.J.; George, G.N.
2007-01-01
Guadalupe Reservoir (GUA), California, and Lahontan Reservoir (LAH), Nevada, U.S. are both affected either directly or indirectly by the legacy of gold and silver mining in the Sierra Nevada during the nineteenth century. Analysis of total mercury in fish from these lentic systems consistently indicate elevated concentrations (>1 ??g??g-1 wet weight; hereinafter, all concentrations are reported as wet weight unless indicated otherwise) well above the U.S. Environmenal Protection Agency's human consumption advisory level for fish (<0.3 ??g??g-1). Replicate X-ray absorption near edge structure (XANES) analyses on largemouth bass and hybrid striped bass from GUA and LAH were performed to determine predominant chemical species of mercury accumulated by these high-trophic-level piscivores that are exposed to elevated mercury through trophic transfer in mining-impacted lentic systems. Despite distinct differences in mercury source, the proximity of the source, and concentrations of complexing ligands, results of XANES analysis clearly indicated that mercury accumulated in these individual fish from the two reservoirs were dominated by methylmercury cysteine complexes. These findings are consistent with results from commercial fish species inhabiting marine environments which are presumed to include differing mercury sources (e.g., atmospheric, hydrothermal, or benthic). The dominance of methylmercury cysteine complexes in muscle tissues of fish obtained from such contrasting environments and exposure conditions suggests that a generic toxicological model for the consumption of fish could be applicable over a wide range of ecologic settings. ?? 2007 American Chemical Society.
Ivask, Angela; Scheckel, Kirk G; Kapruwan, Pankaj; Stone, Vicki; Yin, Hong; Voelcker, Nicolas H; Lombi, Enzo
2017-03-01
Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO 4 - exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO 4 was added. Likewise, Cu XANES spectra for CuO and CuSO 4 -exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticles is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles.
Complete transformation of ZnO and CuO nanoparticles in ...
Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO4- exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO4 was added. Likewise, Cu XANES spectra for CuO and CuSO4-exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticulates is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles. Although a number of studies have discussed the transformation of nanoparticles during
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Li, Yani; Yu, Bo
2015-01-15
A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-sitemore » silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.« less
Wilkin, Richard T; Su, Chunming; Ford, Robert G; Paul, Cynthia J
2005-06-15
Solid-phase associations of chromium were examined in core materials collected from a full-scale, zerovalent iron permeable reactive barrier (PRB) at the U.S. Coast Guard Support Center located near Elizabeth City, NC. The PRB was installed in 1996 to treat groundwater contaminated with hexavalent chromium. After eight years of operation, the PRB remains effective at reducing concentrations of Cr from average values >1500 microg L(-1) in groundwater hydraulically upgradient of the PRB to values <1 microg L(-1) in groundwater within and hydraulically downgradient of the PRB. Chromium removal from groundwater occurs at the leading edge of the PRB and also within the aquifer immediately upgradient of the PRB. These regions also witness the greatest amount of secondary mineral formation due to steep geochemical gradients that result from the corrosion of zerovalent iron. X-ray absorption near-edge structure (XANES) spectroscopy indicated that chromium is predominantly in the trivalent oxidation state, confirming that reductive processes are responsible for Cr sequestration. XANES spectra and microscopy results suggest that Cr is, in part, associated with iron sulfide grains formed as a consequence of microbially mediated sulfate reduction in and around the PRB. Results of this study provide evidence that secondary iron-bearing mineral products may enhance the capacity of zerovalent iron systems to remediate Cr in groundwater, either through redox reactions at the mineral-water interface or by the release of Fe(II) to solution via mineral dissolution and/or metal corrosion.
Correlated microanalysis of cometary organic grains returned by Stardust
NASA Astrophysics Data System (ADS)
de Gregorio, Bradley T.; Stroud, Rhonda M.; Cody, George D.; Nittler, Larry R.; David Kilcoyne, A. L.; Wirick, Sue
2011-09-01
Abstract- Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen-rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl-containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule-like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.
Mechanism of Hg(II) Immobilization in Sediments by Sulfate-Cement Amendment.
Serrano, Susana; Vlassopoulos, Dimitri; O'Day, Peggy A
2016-04-01
Reactive amendments such as Portland and super-sulfate cements offer a promising technology for immobilizing metalloid contaminants such as mercury (Hg) in soils and sediments through sequestration in less bioavailable solid forms. Tidal marsh sediments were reacted with dissolved Hg(II) in synthetic seawater and fresh water solutions, treated with Portland cement and FeSO 4 amendment, and aged for up to 90 days. Reacted solids were analyzed with bulk sequential extraction methods and characterized by powder X-ray diffraction (XRD), electron microscopy, and synchrotron X-ray absorption spectroscopy at the Hg L III - and S K-edge. In amended sediments, XRD, SEM and sulfur K-edge XANES indicated formation of gypsum in seawater experiments or ettringite-type (Ca 6 Al 2 (SO 4 ) 3 (OH) 12 . 26H 2 O) phases in fresh water experiments, depending on the final solution pH (seawater ∼8.5; freshwater ∼10.5). Analysis of Hg EXAFS spectra showed Cl and Hg ligands in the first- and second-coordination shells at distances characteristic of a polynuclear chloromercury(II) salt, perhaps as a nanoparticulate phase, in both seawater and fresh water experiments. In addition to the chloromercury species, a smaller fraction (∼20-25%) of Hg was bonded to O atoms in fresh water sample spectra, suggesting the presence of a minor sorbed Hg fraction. In the absence of amendment treatment, Hg sorption and resistance to extraction can be accounted for by relatively strong binding by reduced S species present in the marsh sediment detected by S XANES. Thermodynamic calculations predict stable aqueous Hg-Cl species at seawater final pH, but higher final pH in fresh water favors aqueous Hg-hydroxide species. The difference in Hg coordination between aqueous and solid phases suggests that the initial Hg-Cl coordination was stabilized in the cement hydration products and did not re-equilibrate with the bulk solution with aging. Collectively, results suggest physical encapsulation of Hg as a polynuclear chloromercury(II) salt as the primary immobilization mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, S.R.; Rao, M.N.; Nyquist, L.E.
2008-04-28
Sulfur and iron K XANES measurements were made on GRIM glasses from EET 79001. Iron is in the ferrous state. Sulfur speciation is predominately sulfide coordination but is Fe coordinated in Lith B and, most likely, Ca coordinated in Lith A. Sulfur is abundantly present as sulfate near Martian surface based on chemical and mineralogical investigations on soils and rocks in Viking, Pathfinder and MER missions. Jarosite is identified by Moessbauer studies on rocks at Meridian and Gusev, whereas MgSO{sub 4} is deduced from MgO-SO{sub 3} correlations in Pathfinder MER and Viking soils. Other sulfate minerals such as gypsum andmore » alunogen/S-rich aluminosilicates and halides are detected only in martian meteorites such as shergottites and nakhlites using SEM/FE-SEM and EMPA techniques. Because sulfur has the capacity to occur in multiple valence states, determination of sulfur speciation (sulfide/sulfate) in secondary mineral assemblages in soils and rocks near Mars surface may help us understand whether the fluid-rock interactions occurred under oxidizing or reducing conditions. On Earth, volcanic rocks contain measurable quantities of sulfur present as both sulfide and sulfate. Carroll and Rutherford showed that oxidized forms of sulfur may comprise a significant fraction of total dissolved sulfur, if the oxidation state is higher than {approx}2 log fO{sub 2} units relative to the QFM buffer. Terrestrial samples containing sulfates up to {approx}25% in fresh basalts from the Galapagos Rift on one hand and high sulfide contents present in oceanic basalts on the other indicate that the relative abundance of sulfide and sulfate varies depending on the oxygen fugacity of the system. Basaltic shergottites (bulk) such as Shergotty, EET79001 and Zagami usually contain small amounts of sulfur ({approx}0.5%) as pyrrhotite. But, in isolated glass pockets containing secondary salts (known as GRIM glasses) in these meteorites, sulfur is present in high abundance ({approx}1-12%). To determine sulfur speciation (sulfide, sulfate or elemental sulfur) in these glasses, Gooding et al. and Burgess et al. carried out vacuum pyrolysis experiments on these GRIM glasses (also called Lith C) using quadrupole mass-spectrometric methods. They found that the evolved S-bearing gases from these samples consisted of both SO{sub 2} (from sulfate) and H{sub 2}S (from sulfide) in varying proportions. However, as mass-spectrometric studies do not provide details about spatial association of these S-species in these samples, we have studied the spatial distribution of sulfides and sulfates in GRIM glasses using sulfur K micro-XANES techniques in the present study. The microscale speciation of S may have important implications for the Rb-Sr isotope systematics of EET79001 Lith C glasses. In reference to oxidative weathering of surface basalts on Mars yielding secondary iron sulfates, Solberg and Burns examined a GRIM glass in EET79001 by Moessbauer spectroscopic techniques and showed that the percentage of Fe{sup 3+} in Lith C is <2%. They suggested that the Lith C contains very little Fe{sup 3+} despite the occurrence of oxidized sulfate in them, indicating that the conditions leading to the formation of these glasses were insufficiently oxidizing to produce Fe{sup 3+} from Fe{sup 2+} in these glasses. To understand the implications of these observations for the formation of the GRIM glasses, we determined the oxidation state of Fe in the GRIM glasses using Fe K micro-XANES techniques. The S and Fe K micro-XANES measurements were performed on thin sections from EET79001: 506 from Lith A and 507 from Lith B.« less
Fe K-edge XANES of Maya blue pigment
NASA Astrophysics Data System (ADS)
Río, M. Sánchez del; Sodo, A.; Eeckhout, S. G.; Neisius, T.; Martinetto, P.; Dooryhée, E.; Reyes-Valerio, C.
2005-08-01
The utilization of techniques used in Materials Science for the characterization of artefacts of interest for cultural heritage is getting more and more attention nowadays. One of the products of the ancient Maya chemistry is the "Maya blue" pigment, made with natural indigo and palygorskite. This pigment is different from any other pigment used in other parts of the world. It is durable and acid-resistant, and still keeps many secrets to scientists even though it has been studied for more than 50 years. Although the pigment is basically made of palygorskite Si8(Mg2Al2)O20(OH)2(OH2)4.4H2O and an organic colourant (indigo: C16H10N2O2), a number of other compounds have been found in previous studies on archaeological samples, like other clays and minerals, iron nanoparticles, iron oxides, impurities of transition metals (Cr, Mn, Ti, V), etc. We measured at the ESRF ID26 beamline the Fe K-edge XANES spectra of the blue pigment in ancient samples. They are compared to XANES spectra of Maya blue samples synthesized under controlled conditions, and iron oxides usually employed as pigments (hematite and goethite). Our results show that the iron found in ancient Maya blue pigment is related to the Fe exchanged in the palygorskite clay. We did not find iron in metallic form or goethite in archaeological Maya blue.
NASA Astrophysics Data System (ADS)
Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi
2009-11-01
In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.
Floating zone growth of α-Na 0.90MnO 2 single crystals
Dally, Rebecca; Clement, Raphaele J.; Chisnell, Robin; ...
2016-12-03
Here, single crystal growth of α-Na xMnO 2 (x=0.90) is reported via the floating zone technique. The conditions required for stable growth and intergrowth-free crystals are described along with the results of trials under alternate growth atmospheres. Chemical and structural characterizations of the resulting α-Na 0.90MnO 2 crystals are performed using ICP-AES NMR, XANES, XPS, and neutron diffraction measurements. As a layered transition metal oxide with large ionic mobility and strong correlation effects, α-Na xMnO 2 is of interest to many communities, and the implications of large volume, high purity, single crystal growth are discussed.
NASA Astrophysics Data System (ADS)
Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.
2014-02-01
Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radisavljević, Ivana, E-mail: iva@vin.bg.ac.rs; Novaković, Nikola; Matović, Branko
2016-02-15
Highlights: • Zn{sub 0.95}Co{sub 0.05}O nanopowders are characterized by high structural order. • Co atoms show no tendency for Co–Co clustering and Co–Ov complexes formation. • Co–O–Co clustering along the c-axis has not lead to ferromagnetic order. • XMCD provides no evidence of magnetic polarization of O 2p and Co 3d states. - Abstract: X-ray absorption (XANES, EXAFS, XMCD) and photoelectron (XPS) spectroscopic techniques were employed to study local structural, electronic and magnetic properties of Zn{sub 0.95}Co{sub 0.05}O nanopowders. The substitutional Co{sup 2+} ions are incorporated in ZnO lattice at regular Zn sites and the sample is characterized by highmore » structural order. There was no sign of ferromagnetic ordering of Co magnetic moments and the sample is in paramagnetic state at all temperatures down to 5 K. The possible connection of the structural defects with the absence of ferromagnetism is discussed on the basis of theoretical calculations of the O K-edge absorption spectra.« less
Role of interface layers on Tunneling Magnetoresistance
NASA Astrophysics Data System (ADS)
Yang, See-Hun; Samant, Mahesh; Parkin, Stuart S. P.
2002-03-01
Thin non-magnetic metallic layers inserted at the interface between tunneling barriers and the ferromagnetic electrodes in magnetic tunnel junctions quenches the magnetoresistance (TMR) exhibited by some structures[1]. Studies have been carried out on exchange biased magnetic tunnel junction structures in which one of the ferromagnetic electrodes is pinned by coupling to IrMn or PtMn antiferromagnetic layers. For metallic aluminum interface layers thicknesses of just a few angstrom completely suppress the TMR although this characteristic thickness depends on the roughness of the tunneling barrier. A variety of structures will be discussed in which a number of interface layers have been introduced. In particular results for insertion of Cu, Ru and Cr layers on either side of the tunnel barrier will be presented. A number of techniques including XANES, XMCD and high resolution cross-section transmission electron microscopy have been used to study the structure and morphology of the interface layers and to correlate the structure of these layers with the magneto-transport properties of the tunneling junctions. [1] S.S.P. Parkin, US patent 5,764,567 issued by the United States Patent and Trademark Office, June 9, 1998.
Properties of the Only Thorium Fullerene, Th@C84, Uncovered.
Kaminský, Jakub; Vícha, Jan; Bouř, Petr; Straka, Michal
2017-04-27
Only a single thorium fullerene, Th@C 84 , has been reported to date (Akiyama, K.; et al. J. Nucl. Radiochem. Sci. 2002, 3, 151-154). Although the system was characterized by UV-vis and XANES (X-ray absorption near edge structure) spectra, its structure and properties remain unknown. In this work we used the density functional calculations to identify molecular and electronic structure of the Th@C 84 . Series of molecular structures satisfying the ThC 84 stoichiometric formula were studied comprising 24 IPR and 110 non-IPR Th@C 84 isomers as well as 9 ThC 2 @C 82 IPR isomers. The lowest energy structure is Th@C 84 -C s (10) with the singlet ground state. Its predicted electronic absorption spectra are in agreement with the experimentally observed ones. The bonding between the cage and Th was characterized as polar covalent with Th in formal oxidation state IV. The NMR chemical shifts of Th@C 84 -C s (10) were predicted to guide the future experimental efforts in identification of this compound.
Ti K-edge EXAFS and XANES study on tektites from different strewnfields
NASA Astrophysics Data System (ADS)
Wang, L.; Furuta, T.; Okube, M.; Yoshiasa, A.
2011-12-01
The concentration and local structure of each element may have various kinds of information about the asteroid impact and mass extinction. Farges and Brown have discussed about the Ti local structure by XANES, and concluded that Ti in tektite occupies 4-coordinated site. EXAFS can be analyzed to give precise information about the distance from Ti to near neighbors. The XAFS measurement of Ti local structure was preformed at the beamline 9C of the Photon Factory in KEK, Tsukuba, Japan. The specimens of tektites are from different strewnfields, they are: indochinite, bediasite, hainanite, philippinite, australite and moldavite. Sample for comparison are Libya desert glass and suevite. The k3χ(k) function was transformed into the radial structure function (RSF) for Ti K-edge of six tektites. The RSF for the Ti atom in indochinite and bediasite are similar; hainanite, australite and philippinite are similar; and moldavite is discriminated from others. It indicates that they have the same local atomic environmental around the Ti atoms and extended structure respectively. Coordination numbers and radial structure function are determined by EXAFS analyses (Table 1). We classified the tektites in three types: in indochinite and bediasite, Ti occupies 4-coordinated tetrahedral site and Ti-O distances are 1.84-1.81 Å; in hainanite, australite and philippinite, Ti occupies 5-coordinated trigonal bi-pyramidal or tetragonal pyramidal site and Ti-O distances are 1.92-1.87 Å; in moldavite, Ti occupies the 6-coordinated octahedral site and Ti-O distance is 2.00-1.96 Å. Formation of tektites is related to the impact process. It is generally recognized that tektites were formed under higher temperature and high pressure. But through this study, local structures of Ti are differing in three strewnfields and even different locations of the same strewnfield. What caused the various local structures will be another topic of tektite studies. Local structure of Ti may be changed in the impact event and the following stage. Tektites splashed to the space and travel in several kinds of processes and routes, which lead to different temperature and pressure history. Local structure of Ti should be related with the temperature, pressure, quenching rate, sizes of impact meteorite and size of falling melts. [1] Koeberl. Ann.Rev.Earth Planet.Sci. 14, 323-350 (1986) [2] François Farges & Gordon E. Brown Jr Geochim. Cosmo. Acta.61, 1863-1870 (1997). [3]Paris, E., Dingwell, D., Seifert, F., Mottana, A. & Romano, C. (1994). Phys. Chem. Miner. 21, 520-525.
Table 1 Structure parameters determined by EXAFS
First Ti-XANES analyses of refractory inclusions from Murchison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, S.B.; Sutton, S.R.; Grossman, L.
2009-03-23
Ti valence in refractory phases is an important recorder of redox conditions in the early solar nebula. We report the valence of Ti in pyroxene, spinel and hibonite in spinel-hibonite and spinel-pyroxene inclusions and in a coarse hibonite grain. A system of solar composition is so reducing that Ti{sup 3+} and Ti{sup 4+} can coexist, making the valence of Ti a valuable indicator of f{sub O2} conditions during formation of nebular materials. The Ti{sup 3+}/Ti{sup 4+} ratios observed in the Ti-rich phases fassaite and rhoenite in coarse-grained refractory inclusions from CV3 chondrites have been shown to be quantitatively consistent withmore » formation in a gas of solar composition (log f{sub O2} = IW-6.8), but these are the only objects in chondrites for which this is the case. Here, we report the valence of Ti in various phases in refractory inclusions from the Murchison CM2 chondrite. The second-highest temperature, major-element-bearing phase predicted to condense from a gas of solar composition, hibonite (ideally CaAl{sub 12}O{sub 19}), can contain significant amounts of Ti, but the hibonite structure can have oxygen vacancies, so calculation of Ti valence from stoichiometry of electron probe analyses is not recommended for hibonite. To date, the only reported measurement of Ti valence in meteoritic hibonite was done by electron spin resonance, on coarse crystals from a Murchison hibonite-perovskite-melilite inclusion. Spinel and most of the pyroxene in CM inclusions contain too little Ti for derivation of Ti{sup 3+}/Ti{sup 4+} ratios from electron probe analyses. X-ray absorption near edge spectroscopy (XANES), however, allows determination of Ti valence in relatively Ti-poor phases. In the present work, we apply synchrotron microXANES to a large hibonite grain from Murchison and to spinel-hibonite (sp-hib) and spinel-pyroxene (sp-pyx) inclusions from Murchison, refractory materials whose Ti{sup 3+}/Ti{sup 4+} ratios have not been previously measured. Analysis of these samples allows comparison of Ti valence of (1) pyroxene in sp-pyx inclusions with that of fassaite; (2) spinel in hibonite-bearing with that of hibonite-free inclusions; and (3) hibonite in sp-hib inclusions with that of large, single grains and the previously analyzed sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos
2008-02-28
The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied (Al2O3, BaO/Al2O3, Pt/Al2O3 and Pt-BaO/Al2O3) were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas phase oxygen. In the platinum-containing samples, the presence of Pt-O species plays an important role in the formation of sulfate species. Even if bariummore » and aluminum sites are available for SO2 to form sulfate, for the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, S XANES spectroscopy results show that barium sulfates are preferentially produced over aluminum sulfates . When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the redox nature of the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g. SO2+H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g. SO2+O2) continue to show the presence of Pt-O bonds. In addition, the former condition was found to give rise to a higher degree of Pt sintering than the latter one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g. sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim,D.; Kwak, J.; Szanyi, J.
2008-01-01
The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied [Al2O3, BaO(x; x = 8 or 20 wt %)/Al2O3, Pt(2.5 wt %)/Al2O3, and Pt(2 wt %)-BaO(x; x = 8 or 20 wt %)/Al2O3] were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas-phase oxygen. In the platinum-containing samples, themore » presence of Pt-O species plays an important role in the formation of sulfate species. For the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, both baria and alumina phases are available for sulfation. S XANES results show that barium sulfates are formed preferentially over aluminum sulfates. When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g., SO2/H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g., SO2/O2) continue to show the presence of Pt-O bonds. In addition, a reducing environment was found to cause Pt sintering in greater extent than an oxidizing one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g., sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Renqin; Szanyi, János; Gao, Feng
In this contribution, the most likely positions for Cu in Cu-SSZ-13 with a single charge compensating Al atom (ZCu) with a Si : Al ratio of 11 : 1 were investigated, including the effect of the adsorption of reactants, intermediates, and products that one would find in an NH 3 SCR reaction by using first-principles calculations based on density functional theory. The 6-membered ring (6MR) site is the most energetically favorable, while the 8-membered ring (8MR) sites are less favorable with energy differences of about 0.5 eV with respect to the 6MR site for plain ZCu. Upon molecular adsorption, themore » energy differences between Cu in the 8MR and 6MR sites decrease and, in some cases, almost disappear. For the complex scenarios of NO or CO adsorption, the co-adsorption of 2 NO or 2 CO molecules, as well as NO or CO with OH and H 2O, weakens the interaction between adsorbates and Cu. The X-ray absorption near edge structure (XANES) of Cu in Cu-SSZ-13 under different conditions was also modeled from first principles. This work was supported by institutional funds provided to JSM from the Voiland School of Chemical Engineering and Bioengineering and was partially funded by USDA/NIFA through Hatch Project #WNP00807 entitled: “Fundamental and Applied Chemical and Biological Catalysts to Minimize Climate Change, Create a Sustainable Energy Future, and Provide a Safer Food Supply”. Financial support was also provided by the National Science Foundation GOALI program under contract No. CBET-1258717. We thank Prof. Fabio Ribeiro for the experimental XANES data. We also thank Mr. Atish Parekh, Prof. W. F. Schneider, Mr. Christopher Paolucci, Mr. Trunjoyo Anggara, Dr. Vincent Kispersky and Prof. Jeff Miller for stimulating discussions on the modeling of the XANES spectrum and Dr. Alyssa Hensley for her comments on the manuscript. J. S. and F. G. acknowledge the financial support of their work by the U. S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. A portion of the computer time for the computational work was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. PNNL is a multi-program national laboratory operated for the US DOE by Battelle.« less
Microanalysis of iron oxidation states in earth and planetary materials
NASA Astrophysics Data System (ADS)
Bajt, S.; Sutton, S. R.; Delaney, J. S.
1995-02-01
Initial studies have been made on quantifying Fe oxidation states in different iron-bearing minerals using K-edge XANES. The energy of a weak pre-edge peak in the XANES spectrum due to 1s-3d electron transition was used to quantify ferric/ferrous ratios with microprobe spatial resolution. The estimated accuracy of the technique was +/- 10% in terms of Fe3+/((Fe2+ + Fe3+)). The detection limit was ~ 100 ppm with a synchrotron beam of ~ 100 μm in diameter. The pre-edge peak energy in well-characterized samples with known Fe oxidation states was found to be a linear function of the ferric/(ferrous) ratio. The technique was applied to altered magnetics (ideally Fe3O4), and various silicates and oxides from meteorites.
Sarkar, Sumanta; Jana, Rajkumar; Siva, Ramesh; ...
2015-10-27
Here, a new compound, Eu 3Ir 2In 15 has been synthesized using indium as an active metal flux. The compound crystallizes in tetragonal P4/mbm space group with lattice parameters, a = 14.8580(4) Å, b = 14.8580(4) Å, c = 4.3901(2) Å. It was further characterized by SEM-EDX studies. The temperature dependent magnetic susceptibility suggests that Eu in this compound is exclusively in divalent state. The effective magnetic moment (μ eff) of this compound is 7.35 μ B/Eu ion with paramagnetic Curie temperature (θ p) of -28 K suggesting antiferromagnetic interaction. The mixed valent nature of Eu observed in magnetic measurementsmore » was confirmed by XANES measurements. The compound undergoes demagnetization at a low magnetic field (10 Oe), which is quite unusual for Eu based intermetallic compounds. Temperature dependent resistivity studies reveal that the compound is metallic in nature. A comparative study was made between Eu 3Ir 2In 15 and hypothetical vacancy variant Eu 5Ir 4In 10 which also crystallizes in the same crystal structure However our computational studies along with control experiments suggest that the latter is thermodynamically less feasible compared to the former and hence we proposed that it is highly unlikely that a RE 5T 4X 10 would exist with X as a group 13 elements.« less
NASA Astrophysics Data System (ADS)
Sternitzke, Vanessa; Janousch, Markus; Heeb, Michèle B.; Hering, Janet G.; Johnson, C. Annette
2014-06-01
The heterogeneous precipitation of calcium-phosphates on calcium hydroxyapatite (Ca10(PO4)6(OH)2 or HAP) in the presence and absence of fluoride is important in the formation of bone and teeth, protection against tooth decay, dental and skeletal fluorosis and defluoridation of drinking water. Strontium hydroxyapatite (Sr10(PO4)6(OH)2 or SrHAP) and strontium carbonate (SrCO3) were used as calcium-free seed templates in precipitation experiments conducted with varying initial calcium-to-phosphate (Ca/P) or calcium-to-phosphate-to-fluoride (Ca/P/F) ratios. Suspensions of SrHAP or SrCO3 seed templates (which were calcium-limited for both templates and phosphate-limited in the case of SrCO3) were reacted at pH 7.3 (25 °C) over 3 days. The resulting solids were examined with Scanning Transmission Electron Microscopy (STEM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Near Edge Structure (XANES), and Extended X-ray Absorption Fine Structure spectroscopy (EXAFS). Calcium apatite was the predominant phase identified by all techniques independent of the added Ca/P ratios and of the presence of fluoride. It was not possible to make an unambiguous distinction between HAP and fluorapatite (Ca10(PO4)6F2, FAP). The apatite was calcium-deficient and probably contained some strontium.
The inhibition of Pb(IV) oxide formation in chlorinated water by orthophosphate.
Lytle, Darren A; Schock, Michael R; Scheckel, Kirk
2009-09-01
Historically, understanding lead solubility and its control in drinking water has been based on Pb(II) chemistry. Unfortunately, there is very little information available regarding the nature of Pb(IV) oxides in finished drinking water and water distribution systems, and the conditions under which they persist. The objective of this research was to explore the impact of orthophosphate on the realistic pathways that lead to the formation of Pb(IV) oxides in chlorinated water. The results of XRD and XANES analysis showed that, in the absence of orthophosphate (DIC = 10 mg C/L, 24 degrees C, pH 7.75-8.1, 3 mg Cl2/L goal), Pb(IV) oxides formed with time following a transformation from the Pb(II) mineral hydrocerussite. Under the same experimental conditions, orthophosphate dosing inhibited the formation of Pb(IV) oxides. The Pb(II) mineral hydroxypyromorphite, Pb5(PO4)3OH, was the only mineral phase identified during the entire study of over 600 days, although the presence of some chloropyromorphite, Pb5(PO4)3Cl, could not be ruled out The conclusions were further supported by SEM, TEM, and XANES analysis of lead colloids, and lead precipitation experiments conducted in the absence of free chlorine. The findings provide an important explanation for the absence of Pb(IV) oxides in some water systems that have used, or currently use, orthophosphate for corrosion control when otherwise, based on disinfection practices and water quality, its presence would be anticipated, as well as why the conversion from free chlorine to chloramines was not observed to increase lead release.
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.; Kebukawa, Y.; Franchi, I.; Wright, I.; Zhao, I.; Rahman, Z.; Utas, J.
2018-01-01
Primitive xenolithic CI-like carbonaceous (C) clasts are sometimes hosted within meteorites of a different origin (ordinary chondrite, ureilite, howardite, and eucrite). These xenoliths contain aggregates of macromolecular carbon (MMC), which are often present as discrete grains and exhibit a wide range of structural order and chemical compositions. The Carancas meteorite is a H4-5 that impacted south of Lake Titicaca, Peru in 2007. While the meteorite exhibits extensive recrystallization of the matrix indicating metamorphism, it contains dark, CI-like clasts that show no evidence of heating. Similar to other xenolithic clasts, the examined C clast of Carancas contains MMC, which however exists in the form of a vein-like structure dissimilar to the typical occurrence of MMC in meteorites. We investigated the organic and isotopic compositions of the organic-rich vein with C,N,O-X-ray absorption near-edge structure (XANES), Raman spectroscopy, and NanoSIMS, in order to constrain its possible origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jae Jin; Suh, Hyo Seon; Zhou, Chun
Tungsten oxide (WO3-x) nanostructures with hexagonal in-plane arrangements were fabricated by sequential infiltration synthesis (SIS), using the selective interaction of gas phase precursors with functional groups in one domain of a block copolymer (BCP) self-assembled template. Such structures are highly desirable for various practical applications and as model systems for fundamental studies. The nanostructures were characterized by cross-sectional scanning electron microscopy, grazing-incidence small/wide-angle X-ray scattering (GISAXS/GIWAXS), and X-ray absorption near edge structure (XANES) measurements at each stage during the SIS process and subsequent thermal treatments, to provide a comprehensive picture of their evolution in morphology, crystallography and electronic structure. Inmore » particular, we discuss the critical role of SIS Al2O3 seeds toward modifying the chemical affinity and free volume in a polymer for subsequent infiltration of gas phase precursors. The insights into SIS growth obtained from this study are valuable to the design and fabrication of a wide range of targeted nanostructures.« less
Chemical processes for the extreme enrichment of tellurium into marine ferromanganese oxides
NASA Astrophysics Data System (ADS)
Kashiwabara, Teruhiko; Oishi, Yasuko; Sakaguchi, Aya; Sugiyama, Toshiki; Usui, Akira; Takahashi, Yoshio
2014-04-01
Tellurium, an element of growing economic importance, is extremely enriched in marine ferromanganese oxides. We investigated the mechanism of this enrichment using a combination of spectroscopic analysis and adsorption/coprecipitation experiments. X-ray Absorption Near-Edge Structure (XANES) analysis showed that in adsorption/coprecipitation systems, Te(IV) was oxidized on δ-MnO2 and not oxidized on ferrihydrite. Extended X-ray Absorption Fine Structure (EXAFS) analysis showed that both Te(IV) and Te(VI) were adsorbed on the surface of δ-MnO2 and ferrihydrite via formation of inner-sphere complexes. In addition, Te(VI) can be structurally incorporated into the linkage of Fe octahedra through a coprecipitation process because of its molecular geometry that is similar to the Fe octahedron. The largest distribution coefficient obtained in the adsorption/coprecipitation experiments was for the Te(VI)/ferrihydrite coprecipitation system, and it was comparable to those calculated from the distribution between natural ferromanganese oxides and seawater. Our XAFS and micro-focused X-ray fluorescence (μ-XRF) mapping of natural ferromanganese oxides showed that Te was structurally incorporated as Te(VI) in Fe (oxyhydr)oxide phases. We conclude that the main process for the enrichment of Te in ferromanganese oxides is structural incorporation of Te(VI) into Fe (oxyhydr)oxide phases through coprecipitation. This mechanism can explain the unique degree of enrichment of Te compared with other oxyanions, which are mainly enriched via adsorption on the surface of the solid structures. In particular, the great contrast in the distributions of Te and Se is caused by their oxidized species: (i) the similar geometry of the Te(VI) molecule to Fe octahedron, and (ii) quite soluble nature of Se(VI). Coexisting Mn oxide phases may promote structural incorporation of Te(VI) by oxidation of Te(IV), although the surface oxidation itself may not work as the critical enrichment process as in the case of some cations. This enrichment mechanism also means that ferromanganese oxides mainly scavenge dominant Te(VI) species from seawater and do not affect its species distribution in seawater, as described in a previous model. The variation in Te abundances and the correlation of Te concentration with the growth rate of natural ferromanganese oxides are consistent with the coprecipitation mechanism.
NASA Astrophysics Data System (ADS)
Melikhov, Y.; Konstantynov, P.; Domagala, J.; Sadowski, J.; Chernyshova, M.; Wojciechowski, T.; Syryanyy, Y.; Demchenko, I. N.
2016-05-01
The redistribution of Mn atoms in Ga1-xMnxAs layer during medium-temperature annealing, 250-450 oC, by Mn K-edge X-ray absorption fine structure (XAFS) recorded at ALBA facility, was studied. For this purpose Ga1-xMnxAs thin layer with x=0.01 was grown on AlAs buffer layer deposited on GaAs(100) substrate by molecular beam epitaxy (MBE) followed by annealing. The examined layer was detached from the substrate using a “lift-off” procedure in order to eliminate elastic scattering in XAFS spectra. Fourier transform analysis of experimentally obtained EXAFS spectra allowed to propose a model which describes a redistribution/diffusion of Mn atoms in the host matrix. Theoretical XANES spectra, simulated using multiple scattering formalism (FEFF code) with the support of density functional theory (WIEN2k code), qualitatively describe the features observed in the experimental fine structure.
Nam, Inho; Park, Jongseok; Park, Soomin; Bae, Seongjun; Yoo, Young Geun; Han, Jeong Woo; Yi, Jongheop
2017-05-24
Real-time analysis of changes in the atomic environment of materials is a cutting edge technology that is being used to explain reaction dynamics in many fields of science. Previously, this kind of analysis was only possible using heavy nucleonic equipment such as XANES and EXAFS, or Raman spectroscopy on a moderate scale. Here, a new methodology is described that can be used to track changes in crystalline developments during complex Li insertion reactions via the observation of structural color. To be specific, the changes in atomic crystalline and nanostructure are shown during Li insertion in a complex TiO 2 polymorph. Structural color corresponds to the refractive indices of materials originating from their atomic bonding nature and precise wave interferences in accordance with their nanostructure. Therefore, this new analysis simultaneously reveals changes in the nanostructure as well as changes in the atomic bonding nature of materials.
Arab-Chapelet, B; Martin, P M; Costenoble, S; Delahaye, T; Scheinost, A C; Grandjean, S; Abraham, F
2016-04-28
Mixed actinide(III,IV) oxalates of the general formula M2.2UAn(C2O4)5·nH2O (An = Pu or Am and M = H3O(+) and N2H5(+)) have been quantitatively precipitated by oxalic precipitation in nitric acid medium (yield >99%). Thorough multiscale structural characterization using XRD and XAS measurements confirmed the existence of mixed actinide oxalate solid solutions. The XANES analysis confirmed that the oxidation states of the metallic cations, tetravalent for uranium and trivalent for plutonium and americium, are maintained during the precipitation step. EXAFS measurements show that the local environments around U(+IV), Pu(+III) and Am(+III) are comparable, and the actinides are surrounded by ten oxygen atoms from five bidentate oxalate anions. The mean metal-oxygen distances obtained by XAS measurements are in agreement with those calculated from XRD lattice parameters.
Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries
Huang, Weifeng; Zhou, Jing; Li, Biao; Ma, Jin; Tao, Shi; Xia, Dingguo; Chu, Wangsheng; Wu, Ziyu
2014-01-01
Na-ion batteries are gaining an increased recognition as the next generation low cost energy storage devices. Here, we present a characterization of Na3FePO4CO3 nanoplates as a novel cathode material for sodium ion batteries. First-principles calculations reveal that there are two paths for Na ion migration along b and c axis. In-situ and ex-situ Fe K-edge X-ray absorption near edge structure (XANES) point out that in Na3FePO4CO3 both Fe2+/Fe3+ and Fe3+/Fe4+ redox couples are electrochemically active, suggesting also the existence of a two-electron intercalation reaction. Ex-situ X-ray powder diffraction data demonstrates that the crystalline structure of Na3FePO4CO3 remains stable during the charging/discharging process within the range 2.0–4.55 V. PMID:24595232
Molybdenum Valence in Basaltic Silicate Melts: Effects of Temperature and Pressure
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Choi, Y.; Pando, K.
2011-01-01
The metal-silicate partitioning behavior of molybdenum has been used as a test for equilibrium core formation hypotheses [for example, 1-6]. However, current models that apply experimental data to equilibrium core-mantle differentiation infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Molybdenum, a multi-valent element with a valence transition near the fO2 of interest for core formation (approx.IW-2) will be sensitive to changes in fO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo(6+) can be either octahedrally or tetrahedrally coordinated. Here we present X-ray absorption near edge structure (XANES) measurements of Mo valence in basaltic run products at a range of P, T, and fO2 and further quantify the valence transition of Mo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vairavmurthy, M.A.; Zhou, Weiqing
1995-04-01
The oxidation H{sub 2}S to sulfate involves a net transfer of eight electrons and occurs through the formation of several partially oxidized intermediates with oxidation states ranging from {minus}1 to +5. Known intermediates include elemental sulfur (oxidation state 0), polysulfides (outer sulfur: {minus}1, inner sulfur: 0), sulfite (+4) and thiosulfate (outer sulfur: {minus}1, inner sulfur: +5). A noticeable gap in this series of intermediates is that of a +2 sulfur oxidation state oxoacid/oxoanion species, which was never detected experimentally. Here, we present evidence of the transient existence of +2 oxidation state intermediate in the Ni(II)-catalyzed oxidation of aqueous sulfide. X-raymore » absorption near-edge structure (XANES) spectroscopy and Fourier-transform-infrared (FT-IR) spectroscopy were used to characterize this species; they suggest that it has a sulfoxylate ion (SO{sub 2}{sup 2{minus}}) structure.« less
NASA Astrophysics Data System (ADS)
Munoz, M.; Farges, F.; Andreani, M.; Ulrich, M.; Marcaillou, C.; Mathon, O.
2014-12-01
The understanding of the crystal chemistry of serpentine minerals (incl. antigorite, lizardite and chrysotile) is fundamental since serpentinization processes concern very large scientific domains: e.g., natural abiotic hydrogen production (Marcaillou et al., 2011), origins of life (Russell et al., 2010), fluid properties and mobility of metals in subduction zones (Kelley and Cottrell, 2009). This study aims at characterizing relations between the micro-, and nano-structures of the most abundant serpentine polytypes in the oceanic crust. Serpentine theoretical formula is Mg3Si2O5(OH)4 but several natural substitutions are possible and the formula may be written such as: (Mg,Fe2+,Fe3+,Al)3(Si,Al,Fe3+)2O5(OH)4; showing that Fe and Al may play an important role in the crystallization of serpentines. Preliminary crystal chemistry studies, suggest that, 1) the Al content alone cannot be directly correlated to serpentine polytypes (Andreani et al., 2008), 2) the amounts of tetrahedral iron can be significant in the presence of ferric iron (Marcaillou et al., 2011). Because magnetite is usually associated to serpentine, the Fe-speciation characterization of serpentine is delicate. Here, we provide the study of 33 magnetite-free serpentines containing various amounts of Fe and Al. The samples were characterized by SEM, Raman, XRF, as well as XANES, pre-edge, and EXAFS spectroscopy at the Fe K-edge. XANES experimental data were crosschecked and interpreted thanks to ab initio calculations and EXAFS shell-fitting. Also, preliminary 27Al-RMN data is presented. Results suggest relationships between the type and amount of substitution of trivalent cations in minerals, and the microstructures observed. Chrysotile incorporates less trivalent cations than other varieties, which tends to preserve the so-called misfit between the TO layers, and therefore the tubular structure of the mineral. Lizardites mainly involve Fe/Al Tschermak-type substitutions, while M-site vacancy charge-compensation mechanisms could be favored for antigorite crystals. ReferencesAndréani et al., 2008, European Journal of Mineralogy, 20, 159-171. Kelley and Cottrell, 2009, Science, 325, 605-607. Marcaillou et al., 2011, Earth And Planetary Science Letters, 303, 281-290. Russell et al., 2010, Geobiology, 8, 355-371.
Li, Wei; Joshi, Sunendra R; Hou, Guangjin; Burdige, David J; Sparks, Donald L; Jaisi, Deb P
2015-01-06
Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide improved insights into sediment P dynamics, particularly the rapid remineralization of organic P and the stability of Fe minerals and the ferric Fe-bound P pool in anoxic sediments in the Chesapeake Bay.
Development of Tc(IV)-Incorporated Fe Minerals to Enhance 99Tc Retention in Glass Waste Form
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Luksic, Steven A.; Wang, Guohui
Iron minerals have been considered to be good hosts for Tc immobilization because the Tc(IV) ion substitutes for Fe(III) in the crystal structure of the Fe oxide due to similarities in (1) cation size [Tc(IV) = 78.5 pm ; Fe(III) = 69 or 78.5 pm], (2) metal-oxygen interatomic distance (Tc—O = 0.199 nm, Fe—O = 0.203 nm), (3) number of coordinating oxygen atoms (both 6-fold coordinated), and (4) the redox potential (Eh=ca. +20 mV at pH = 7) for a redox couple between Tc(VII)/Tc(IV) and Fe(III)/Fe(II). Magnetite, maghemite, and trevorite are iron oxide minerals and all belong to spinel mineralmore » group. Laboratory testing shows that Tc can be removed from aqueous waste solutions by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation with iron oxide minerals during recrystallization of Fe(OH)2(s) used as an initial solid precursor. X-ray absorption near edge structure (XANES) spectroscopy confirmed that Tc was in the +4 oxidation state in final Tc-Fe minerals. The Tc-incorporated Fe minerals were also tested for Tc retention in glass melts at different temperatures between 600 – 1,000 oC in a furnace. After being cooled in air, the solid glass specimens collected at different temperatures were analyzed for Tc oxidation state using XANES and Tc retention using liquid scintillation counting (LSC). Even though Tc(IV) started to reoxidize at 600 oC, Tc retention in the final glass specimen prepared with Tc-incorporated Fe mineral even at high temperatures was at least two times higher than glass prepared with KTcO4 salt. Higher Tc retention in glass is considered to result from limited and delayed Tc volatilization process due to Fe mineral encapsulation for Tc. Therefore, the results showing the presence of Tc(IV) in the Fe mineral structure indicate strong possibility to enhance Tc retention in borosilicate glass as well as to reduce the remediation costs at the Hanford Site.« less
Estimating the number of pure chemical components in a mixture by X-ray absorption spectroscopy.
Manceau, Alain; Marcus, Matthew; Lenoir, Thomas
2014-09-01
Principal component analysis (PCA) is a multivariate data analysis approach commonly used in X-ray absorption spectroscopy to estimate the number of pure compounds in multicomponent mixtures. This approach seeks to describe a large number of multicomponent spectra as weighted sums of a smaller number of component spectra. These component spectra are in turn considered to be linear combinations of the spectra from the actual species present in the system from which the experimental spectra were taken. The dimension of the experimental dataset is given by the number of meaningful abstract components, as estimated by the cascade or variance of the eigenvalues (EVs), the factor indicator function (IND), or the F-test on reduced EVs. It is shown on synthetic and real spectral mixtures that the performance of the IND and F-test critically depends on the amount of noise in the data, and may result in considerable underestimation or overestimation of the number of components even for a signal-to-noise (s/n) ratio of the order of 80 (σ = 20) in a XANES dataset. For a given s/n ratio, the accuracy of the component recovery from a random mixture depends on the size of the dataset and number of components, which is not known in advance, and deteriorates for larger datasets because the analysis picks up more noise components. The scree plot of the EVs for the components yields one or two values close to the significant number of components, but the result can be ambiguous and its uncertainty is unknown. A new estimator, NSS-stat, which includes the experimental error to XANES data analysis, is introduced and tested. It is shown that NSS-stat produces superior results compared with the three traditional forms of PCA-based component-number estimation. A graphical user-friendly interface for the calculation of EVs, IND, F-test and NSS-stat from a XANES dataset has been developed under LabVIEW for Windows and is supplied in the supporting information. Its possible application to EXAFS data is discussed, and several XANES and EXAFS datasets are also included for download.
NASA Astrophysics Data System (ADS)
Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.
2017-11-01
Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.
Competitive Incorporation of Perrhenate and Nitrate into Sodalite
Dickson, Johnbull O.; Harsh, James B.; Flury, Markus; ...
2014-10-03
Nuclear waste storage tanks at the Hanford site in southeastern Washington have released highly alkaline solutions, containing radioactive and other contaminants, into subsurface sediments. When this waste reacts with subsurface sediments, feldspathoid minerals (sodalite, cancrinite) can form, sequestering pertechnetate ( 99TcO 4 –) and other ions. This study investigates the potential for incorporation of perrhenate (ReO 4 –), a chemical surrogate for 99TcO 4 –, into mixed perrhenate/nitrate (ReO 4 –/NO 3 –) sodalite. Mixed-anion sodalites were hydrothermally synthesized in the laboratory from zeolite A in sodium hydroxide, nitrate, and perrhenate solutions at 90 °C for 24 h. The resultingmore » solids were characterized by bulk chemical analysis, X-ray diffraction, scanning electron microscopy, and X-ray absorption near edge structure spectroscopy (XANES) to determine the products’ chemical composition, structure, morphology, and Re oxidation state. The XANES data indicated that nearly all rhenium (Re) was incorporated as Re(VII)O 4 –. The nonlinear increase of the unit cell parameter with ReO 4 –/NO 3 – ratios suggests formation of two separate sodalite phases in lieu of a mixed-anion sodalite. The results reveal that the sodalite cage is highly selective toward NO 3 – over ReO 4 –. Calculated enthalpy and Gibbs free energy of formation at 298 K for NO 3 - and ReO 4 -sodalite suggest that NO 3 – incorporation into the cage is favored over the incorporation of the larger ReO 4 –, due to the smaller ionic radius of NO 3 –. In conclusion, based on these results, it is expected that NO 3 –, which is present at significantly higher concentrations in alkaline waste solutions than 99TcO 4 –, will be strongly preferred for incorporation into the sodalite cage.« less
Harder, Sjoerd; Naglav, Dominik; Ruspic, Christian; Wickleder, Claudia; Adlung, Matthias; Hermes, Wilfried; Eul, Matthias; Pöttgen, Rainer; Rego, Daniel B; Poineau, Frederic; Czerwinski, Kenneth R; Herber, Rolfe H; Nowik, Israel
2013-09-09
The superbulky deca-aryleuropocene [Eu(Cp(BIG))2], Cp(BIG) = (4-nBu-C6H4)5-cyclopentadienyl, was prepared by reaction of [Eu(dmat)2(thf)2], DMAT = 2-Me2N-α-Me3Si-benzyl, with two equivalents of Cp(BIG)H. Recrystallizyation from cold hexane gave the product with a surprisingly bright and efficient orange emission (45% quantum yield). The crystal structure is isomorphic to those of [M(Cp(BIG))2] (M = Sm, Yb, Ca, Ba) and shows the typical distortions that arise from Cp(BIG)⋅⋅⋅Cp(BIG) attraction as well as excessively large displacement parameter for the heavy Eu atom (U(eq) = 0.075). In order to gain information on the true oxidation state of the central metal in superbulky metallocenes [M(Cp(BIG))2] (M = Sm, Eu, Yb), several physical analyses have been applied. Temperature-dependent magnetic susceptibility data of [Yb(Cp(BIG))2] show diamagnetism, indicating stable divalent ytterbium. Temperature-dependent (151)Eu Mössbauer effect spectroscopic examination of [Eu(Cp(BIG))2] was examined over the temperature range 93-215 K and the hyperfine and dynamical properties of the Eu(II) species are discussed in detail. The mean square amplitude of vibration of the Eu atom as a function of temperature was determined and compared to the value extracted from the single-crystal X-ray data at 203 K. The large difference in these two values was ascribed to the presence of static disorder and/or the presence of low-frequency torsional and librational modes in [Eu(Cp(BIG))2]. X-ray absorbance near edge spectroscopy (XANES) showed that all three [Ln(Cp(BIG))2] (Ln = Sm, Eu, Yb) compounds are divalent. The XANES white-line spectra are at 8.3, 7.3, and 7.8 eV, for Sm, Eu, and Yb, respectively, lower than the Ln2O3 standards. No XANES temperature dependence was found from room temperature to 100 K. XANES also showed that the [Ln(Cp(BIG))2] complexes had less trivalent impurity than a [EuI2(thf)x] standard. The complex [Eu(Cp(BIG))2] shows already at room temperature strong orange photoluminescence (quantum yield: 45 %): excitation at 412 nm (24,270 cm(-1)) gives a symmetrical single band in the emission spectrum at 606 nm (νmax =16495 cm(-1), FWHM: 2090 cm(-1), Stokes-shift: 2140 cm(-1)), which is assigned to a 4f(6)5d(1) → 4f(7) transition of Eu(II). These remarkable values compare well to those for Eu(II)-doped ionic host lattices and are likely caused by the rigidity of the [Eu(Cp(BIG))2] complex. Sharp emission signals, typical for Eu(III), are not visible. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Helz, Rosalind L.; Cottrell, Elizabeth; Brounce, Maryjo N.; Kelley, Katherine A.
2017-01-01
The 1959 summit eruption of Kīlauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most Kīlauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems.The observed variations of Fe+ 3/FeT ratios in the glasses reflect two distinct processes. The main process, sulfur degassing, produces steady decrease of the Fe+ 3/FeT ratio. Melt inclusions in olivine are high in sulfur (1060–1500 ppm S), with Fe+ 3/FeT = 0.160–0.175. Matrix glasses are degassed (mostly S < 200 ppm) with generally lower Fe+ 3/FeT(0.114–0.135). Interstitial glasses within clumps of olivine crystals locally show intermediate levels of sulfur and Fe+ 3/FeT ratio. The correlation suggests that (1) the 1959 magma was significantly reduced by sulfur degassing during the eruption and (2) the melts originally had Fe+ 3/FeT ≥ 0.175, consistent with oxygen fugacity (fO2) at least 0.4 log units above the fayalite-magnetite-quartz (FMQ) buffer at 1 atm and magmatic temperature of 1200 °C.The second process is interaction between the melts and atmospheric oxygen, which results in higher Fe+ 3/FeT ratios. Detailed μ-XANES traverses show gradients in Fe+ 3/FeT of 0.145 to 0.628 over distances of 100–150 μm in thin, visibly reddened matrix glass bordering some scoriae, presumably caused by contact with air. This process was extremely rapid, giving insight into how fast the Fe+ 3/FeT ratio can change in response to changes in external conditions.
Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements
Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.
2013-01-01
Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530
NASA Astrophysics Data System (ADS)
Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.
2009-04-01
The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fe<0.2. Analysis of the EXAFS by shell-fitting indicated that Fe(III)-phosphates mainly contained mono- or oligomeric (edge- or corner-sharing) Fe and that the linkage between neighboring Fe(III)-octahedra changed from predominantly edge-sharing in Si-rich hydrous ferric oxide to edge- and corner-sharing in ferrihydrite. Electron microscopic data showed that changes in local precipitate structure were systematically reflected in particle morphology and SAED patterns. The P K-edge XANES spectra revealed that phosphate was bound to both Fe as well as Ca (if present). The Ca K-edge XANES spectra showed that the mode of Ca uptake by the Fe(III)-precipitates shifted from mainly adsorption at high Fe/P to coprecipitation at low Fe/P ratio. Despite oversaturation, neither calcite nor hydroxyapatite formed to a significant extent. The results from this study indicated that, depending on water composition, Fe(II) oxidation in natural waters leads to different types of short-range-ordered Fe(III)-phases. Since these phases are expected to differ in their effect on contaminant and nutrient dynamics, their specific physical and chemical properties warrant further research. Methodologically, this work demonstrated the usefulness of investigating the local structure of short-range-ordered precipitates along compositional gradients and by combining the element-selective information from different X-ray absorption edges.
Riddle, Catherine; Czerwinski, Kenneth; Kim, Eunja; ...
2016-01-18
We studied the speciation of pentavalent and hexavalent americium (Am) complexes in nitric acidicby X-ray absorption fine structure spectroscopy (XAFS), UV-visible spectroscopy, and density functional theory (DFT). Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) results were consistent with the presence of a mixture of AmO 2 + and AmO 2 2+ with only a small amount AmO 2 present. The resulting average bond distances we found were 1.71 Å for Am=O and 2.44 Å for Am-O. All-electron scalar relativistic calculations were also carried out using DFT to predict the equilibrium geometries and properties ofmore » the AmO 2 + and AmO 2 2+ aquo complexes. Calculated bond distances for the Am(VI) complex are in reasonable agreement with EXAFS data and the computed energy gaps between frontier molecular orbitals suggest a slightly higher kinetic stability and chemical hardness of Am(VI) compared to Am(V).« less
NASA Astrophysics Data System (ADS)
Wang, Heng; Isobe, Jin; Shimizu, Takeshi; Matsumura, Daiju; Ina, Toshiaki; Yoshikawa, Hirofumi
2017-08-01
γ-phase LiV2O5, which shows superior electrochemical performance as cathode material in Li-ion batteries, was prepared by annealing the polyoxovanadate cluster Li7 [V15O36(CO3)]. The reaction mechanism was studied using operando X-ray absorption fine structure (XAFS), powder X-ray diffraction (PXRD), and X-ray photoelectron spectroscopy (XPS) analyses. The X-ray absorption near edge structure (XANES) and XPS results reveal that γ-LiV2O5 undergoes two-electron redox reaction per V2O5 pyramid unit, resulting in a large reversible capacity of 260 Ah/kg. The extended X-ray absorption fine structure (EXAFS) and PXRD analyses also suggest that the V-V distance slightly increases, due to the reduction of V5+ to V4+ during Li ion intercalation as the material structure is maintained. As a result, γ-LixV2O5 shows highly reversible electrochemical reaction with x = 0.1-1.9.
Linear Combination Fitting (LCF)-XANES analysis of As speciation in selected mine-impacted materials
This table provides sample identification labels and classification of sample type (tailings, calcinated, grey slime). For each sample, total arsenic and iron concentrations determined by acid digestion and ICP analysis are provided along with arsenic in-vitro bioaccessibility (As IVBA) values to estimate arsenic risk. Lastly, the table provides linear combination fitting results from synchrotron XANES analysis showing the distribution of arsenic speciation phases present in each sample along with fitting error (R-factor).This dataset is associated with the following publication:Ollson, C., E. Smith, K. Scheckel, A. Betts, and A. Juhasz. Assessment of arsenic speciation and bioaccessibility in mine-impacted materials. Diana Aga, Wonyong Choi, Andrew Daugulis, Gianluca Li Puma, Gerasimos Lyberatos, and Joo Hwa Tay JOURNAL OF HAZARDOUS MATERIALS. Elsevier Science Ltd, New York, NY, USA, 313: 130-137, (2016).
A re-assessment of the oxidation state of iron in MORB glasses
NASA Astrophysics Data System (ADS)
Berry, Andrew J.; Stewart, Glen A.; O'Neill, Hugh St. C.; Mallmann, Guilherme; Mosselmans, J. Fred W.
2018-02-01
The oxidation state of Fe, Fe/+3 ΣFe (where ΣFe =Fe2+ +Fe3+), in glass samples of mid-ocean ridge basalt (MORB), from a wide range of localities, was determined by XANES spectroscopy to be 0.10(2) (n = 42). This value is lower than that reported previously by XANES, 0.16 (1) (n = 103), but consistent with the most recent value determined by redox titrations, 0.11 (2) (n = 104), all for similar sets of samples. We attribute the anomalously high XANES value of 0.16 to a calibration error resulting from the interpretation of Mössbauer spectra and the resulting Fe/+3 ΣFe values of the standards. Our alternative interpretation removes the problem of resolving Fe/+3 ΣFe values <∼0.1 in basaltic glasses, produces isomer shift and quadrupole splitting values for Fe3+ that are independent of Fe3+/ΣFe (as is the case for Fe2+), and gives Fe/+3 ΣFe values that are consistent with the thermodynamically expected dependence on oxygen fugacity (fO2). Fe/+3Fe2+ is related to fO2 for our synthetic MORB composition by the temperature independent expression ΔQFM = 4 log (Fe3+ /Fe2+) + 4.23 (5), where ΔQFM is the fO2 in log units relative to the quartz-fayalite-magnetite buffer. The average fO2 of natural MORB was estimated to be QFM+0.1.
Vanadium K Xanes Studies of EET79001 Impact-Melt Glasses Revisited
NASA Technical Reports Server (NTRS)
Sutton, S. R.; Rao, M. N.; Nyquist, L. E.; Ross, D. K.
2016-01-01
Some impact-melt glasses in shergottites are rich in Martian atmospheric noble gases and sulfur suggesting a possible association with regolith-derived secondary mineral assemblages in the shocked samples. Previously, we studied two glasses, # 506 (Lith C in Lith A) and # 507 (Lith C in Lith B) from EET79001 [1,2] and suggested that sulfur initially existed as sulfate in the glass precursor materials and, on shock-melting of the precursors, the sulfate was reduced to sulfides in the shock glasses. To examine the validity of this hypothesis, we used V K microXANES techniques to measure the valence states of vanadium in the Lith C glasses from Lith A and Lith B in EET79001 [3] to complement and com-pare with previous analogous measurements on,78 glass (Lith C in Lith A) [4,5]. We reported the preliminary results in [3]. Vanadium is ideal for addressing the redox issue because it has multiple valence states and is a well-studied element. Vanadium in basalts exists mostly as V(sup 3+), V(sup 4+) and V(sup 5+) in terrestrial samples, mainly as V(sup 3+) with minor V(sup 2+) and minor V(sup 4+) in lunar samples and as roughly equal mixtures of V(sup 3+) and V(sup 4+) in Martian meteorites. In this report, we discuss the application of the V K XANES results to decipher the nature of shock reduction occurring in the silicate glasses during the impact process.
Kachenko, Anthony G; Gräfe, Markus; Singh, Balwant; Heald, Steve M
2010-06-15
The fate and chemical speciation of arsenic (As) during uptake, translocation, and storage by the As hyperaccumulating fern Pityrogramma calomelanos var. austroamericana (Pteridaceae) were examined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and synchrotron-based micro-X-ray absorption near edge structure (micro-XANES) and micro-X-ray fluorescence (micro-XRF) spectroscopies. Chemical analysis revealed total As concentration was ca. 6.5 times greater in young fronds (5845 mg kg(-1) dry weight (DW)) than in old fronds (903 mg kg(-1) DW). In pinnae, As concentration decreased from the base (6822 mg kg(-1) DW) to the apex (4301 mg kg(-1) DW) of the fronds. The results from micro-XANES and micro-XRF of living tissues suggested that more than 60% of arsenate (As(V)) absorbed was reduced to arsenite (As(III)) in roots, prior to transport through vascular tissues as As(V) and As(III). In pinnules, As(III) was the predominant redox species (72-90%), presumably as solvated, oxygen coordinated compounds. The presence of putative As(III)-sulphide (S(2-)) coordination throughout the fern tissues (4-25%) suggests that S(2-) functional groups may contribute in the biochemical reduction of As(V) to As(III) during uptake and transport at a whole-plant level. Organic arsenicals and thiol-rich compounds were not detected in the species and are unlikely to play a role in As hyperaccumulation in this fern. The study provides important insights into homeostatic regulation of As following As uptake in P. calomelanos var. austroamericana.
Miyata, Naoyuki; Tani, Yukinori; Maruo, Kanako; Tsuno, Hiroshi; Sakata, Masahiro; Iwahori, Keisuke
2006-01-01
Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes. PMID:17021194
Abe, Yoshinari; Iizawa, Yushin; Terada, Yasuko; Adachi, Kouji; Igarashi, Yasuhito; Nakai, Izumi
2014-09-02
Synchrotron radiation (SR) X-ray microbeam analyses revealed the detailed chemical nature of radioactive aerosol microparticles emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, resulting in better understanding of what occurred in the plant during the early stages of the accident. Three spherical microparticles (∼2 μm, diameter) containing radioactive Cs were found in aerosol samples collected on March 14th and 15th, 2011, in Tsukuba, 172 km southwest of the FDNPP. SR-μ-X-ray fluorescence analysis detected the following 10 heavy elements in all three particles: Fe, Zn, Rb, Zr, Mo, Sn, Sb, Te, Cs, and Ba. In addition, U was found for the first time in two of the particles, further confirmed by U L-edge X-ray absorption near-edge structure (XANES) spectra, implying that U fuel and its fission products were contained in these particles along with radioactive Cs. These results strongly suggest that the FDNPP was damaged sufficiently to emit U fuel and fission products outside the containment vessel as aerosol particles. SR-μ-XANES spectra of Fe, Zn, Mo, and Sn K-edges for the individual particles revealed that they were present at high oxidation states, i.e., Fe(3+), Zn(2+), Mo(6+), and Sn(4+) in the glass matrix, confirmed by SR-μ-X-ray diffraction analysis. These radioactive materials in a glassy state may remain in the environment longer than those emitted as water-soluble radioactive Cs aerosol particles.
NASA Astrophysics Data System (ADS)
Yoshimura, Toshihiro; Kuroda, Junichiro; Lugli, Stefano; Tamenori, Yusuke; Ogawa, Nanako O.; Jiménez-Espejo, Francisco J.; Isaji, Yuta; Roveri, Marco; Manzi, Vinicio; Kawahata, Hodaka; Ohkouchi, Naohiko
2016-04-01
The Messinian salinity crisis is a dramatic hydrological and biological crisis that occurred in the Mediterranean basin at 5.97-5.33 Ma. The interpretation of the facies and stratigraphic associations of the Messinian salt deposits is still the object of active research because of the absence of modern depositional analogues of comparable scale. In this study, the spatial distributions of Na, Mg, S, O, Si, and Al in a potassic-magnesian salt and a halite layers of Messinian evaporites from the Realmonte mine on Sicily were determined using synchrotron based micro-X-ray fluorescence. The dominant molecular host site of Mg and S obtained by X-ray absorption near edge structure (XANES) is applied to specify the hydrochemistry of hypersaline brines and the presence of diagenetic minerals, thus shedding light on evaporative concentration processes in the Caltanissetta Basin of Sicily. Mg and S K-edge XANES spectra revealed the presence of highly soluble Mg-bearing sulfates. The massive halite layer "unit C," contains less soluble minerals, thus did not exceed the stage of halite crystallization. We infer that as evaporative concentration increased, the density of the brine at the shallow margin of the basin increased as salinity increased to concentrations over 70 times the starting values, creating brines that were oversaturated with Mg-sulfate. Density stratification of the deep basin caused heavy brines to sink to the bottom and become overlain by more dilute brines. We propose lateral advection of dense Mg-sulfate brines that certainly affected marine biota.
Xiao, Jian; Wen, Yongli; Li, Huan; Hao, Jialong; Shen, Qirong; Ran, Wei; Mei, Xinlan; He, Xinhua; Yu, Guanghui
2015-11-01
Mineral-organo associations (MOAs) are a mixture of identifiable biopolymers associated with highly reactive minerals and microorganisms. However, the in situ characterization and correlation between soil organic matter (SOM) and highly reactive Al and Fe minerals are still unclear for the lack of technologies, particularly in the long-term agricultural soil colloids at submicron scale. We combined several novel techniques, including nano-scale secondary ion mass spectrometry (NanoSIMS), X-ray absorption near edge structure (XANES) and confocal laser scanning microscopy (CLSM) to characterise the capacity of highly reactive Al and Fe minerals to preserve SOM in Ferralic Cambisol in south China. Our results demonstrated that: (1) highly reactive minerals were strongly related to SOM preservation, while SOM had a more significant line correlation with the highly reactive Al minerals than the highly reactive Fe minerals, according to the regions of interest correlation analyses using NanoSIMS; (2) allophane and ferrihydrite were the potential mineral species to determine the SOM preservation capability, which was evaluated by the X-ray photoelectron spectroscopy (XPS) and Fe K-edge XANES spectroscopy techniques; and (3) soil organic biopolymers with dominant compounds, such as proteins, polysaccharides and lipids, were distributed at the rough and clustered surface of MOAs with high chemical and spatial heterogeneity according to the CLSM observation. Our results also promoted the understanding of the roles played by the highly reactive Al and Fe minerals in the spatial distribution of soil organic biopolymers and SOM sequestration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum).
Zhao, Jiating; Gao, Yuxi; Li, Yu-Feng; Hu, Yi; Peng, Xiaomin; Dong, Yuanxing; Li, Bai; Chen, Chunying; Chai, Zhifang
2013-08-01
To investigate the influence of selenium on mercury phytotoxicity, the levels of selenium and mercury were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS) in garlic tissues upon exposure to different dosages of inorganic mercury (Hg(2+)) and selenite (SeO3(2-)) or selenate (SeO4(2-)). The distributions of selenium and mercury were examined with micro-synchrotron radiation X-ray fluorescence (μ-SRXRF), and the mercury speciation was investigated with micro-X-ray absorption near edge structure (μ-XANES). The results show that Se at higher exposure levels (>1mg/L of SeO3(2-) or SeO4(2-)) would significantly inhibit the absorption and transportation of Hg when Hg(2+) levels are higher than 1mg/L in culture media. SeO3(2-) and SeO4(2-) were found to be equally effective in reducing Hg accumulation in garlic. The inhibition of Hg uptake by Se correlates well with the influence of Se on Hg phytotoxicity as indicated by the growth inhibition factor. Elemental imaging using μ-SRXRF also shows that Se could inhibit the accumulation and translocation of Hg in garlic. μ-XANES analysis shows that Hg is mainly present in the forms of Hg-S bonding as Hg(GSH)2 and Hg(Met)2. Se exposure elicited decrease of Hg-S bonding in the form of Hg(GSH)2, together with Se-mediated alteration of Hg absorption, transportation and accumulation, may account for attenuated Hg phytotoxicity by Se in garlic. Copyright © 2013 Elsevier Inc. All rights reserved.
Jagupilla, Santhi C; Wazne, Mahmoud; Moon, Deok Hyun
2015-10-01
Chromite Ore Processing Residue (COPR) is an industrial waste containing up to 7% chromium (Cr) including up to 5% hexavalent chromium [Cr(VI)]. The remediation of COPR has been challenging due to the slow release of Cr(VI) from a clinker like material and thereby the incomplete detoxification of Cr(VI) by chemical reagents. The use of sulfur based reagents such as ferrous sulfate and calcium polysulfide to detoxify Cr(VI) has exasperated the swell potential of COPR upon treatment. This study investigated the use of ferrous chloride alone and in combination with Portland cement to address the detoxification of Cr(VI) in COPR and the potential swell of COPR. Chromium regulatory tests, X-ray powder diffraction (XRPD) analyses and X-ray absorption near edge structure (XANES) analyses were used to assess the treatment results. The treatment results indicated that Cr(VI) concentrations for the acid pretreated micronized COPR as measured by XANES analyses were below the New Jersey Department of Environmental Protection (NJDEP) standard of 20 mg kg(-1). The Toxicity characteristic leaching procedure (TCLP) Cr concentrations for all acid pretreated samples also were reduced below the TCLP regulatory limit of 5 mg L(-1). Moreover, the TCLP Cr concentration for the acid pretreated COPR with particle size ⩽0.010 mm were less than the universal treatment standard (UTS) of 0.6 mg L(-1). The treatment appears to have destabilized all COPR potential swell causing minerals. The unconfined compressive strength (UCS) for the treated samples increased significantly upon treatment with Portland cement. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nwosu, Ugwumsinachi G.; Roy, Amitava; dela Cruz, Albert Leo N.; Dellinger, Barry; Cook, Robert
2016-01-01
Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm−1 and 1595 cm−1, and at lower frequencies between 694 cm−1 and 806 cm−1, as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHp-p of 6.1 G at an average concentration of 7.5 × 1017 spins/g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10−2 spins/Fe(II) atom. PMID:26647158
Nwosu, Ugwumsinachi G; Roy, Amitava; dela Cruz, Albert Leo N; Dellinger, Barry; Cook, Robert
2016-01-01
Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHP-P of 6.1 G at an average concentration of 7.5 × 10(17) spins per g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10(-2) spins per Fe(II) atom.
Probing the organic-mineral interface at the molecular level in model biominerals.
Metzler, Rebecca A; Kim, Il Won; Delak, Katya; Evans, John Spencer; Zhou, Dong; Beniash, Elia; Wilt, Fred; Abrecht, Mike; Chiou, Jau-Wern; Guo, Jinghua; Coppersmith, Susan N; Gilbert, P U P A
2008-03-18
It is widely known that macromolecules, such as proteins, can control the nucleation and growth of inorganic solids in biomineralizing organisms. However, what is not known are the complementary molecular interactions, organization, and rearrangements that occur when proteins interact with inorganic solids during the formation of biominerals. The organic-mineral interface (OMI) is expected to be the site for these phenomena, and is therefore extraordinarily interesting to investigate. In this report, we employ X-ray absorption near edge (XANES) spectromicroscopy to investigate the electronic structure of both calcium carbonate mineral crystals and polypeptides, and detect changing bonds at the OMI during crystal growth in the presence of polypeptides. We acquired XANES spectra from calcium carbonate crystals grown in the presence of three mollusk nacre-associated polypeptides (AP7N, AP24N, n16N) and in the presence of a sea urchin spicule matrix protein, LSM34. All these model biominerals gave similar results, including the disruption of CO bonds in calcite and enhancement of the peaks associated with C-H bonds and C-O bonds in peptides, indicating ordering of the amino acid side chains in the mineral-associated polypeptides and carboxylate binding. This is the first evidence of the mutual effect of calcite on peptide chain and peptide chain on calcite during biomineralization. We also show that these changes do not occur when Asp and Glu are replaced in the n16N sequence with Asn and Gln, respectively, demonstrating that carboxyl groups in Asp and Glu do participate in polypeptide-mineral molecular associations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dublet, Gabrielle; Juillot, Farid; Brest, Jessica
Because they can host significant amounts of Co, the Mn-oxides are commonly considered as the major Co-bearing mineral species in lateritic environments. However, little is known about the process leading to the formation and/or the weathering of these Co-rich Mn-oxides. This lack of knowledge is mainly due to the fact that Co concentrations are too low in primary silicates for classical speciation analysis. In this study, we investigated both Co and Mn speciation in a 64 m thick lateritic regolith developed upon peridotites in New Caledonia, by combining High Energy Resolution Fluorescence Detection X-ray absorption Near Edge Structure (HERFD-XANES) spectroscopymore » at the Co K-edge with classical XANES spectroscopy at the Mn K-edge, bulk chemistry (ICP) and mineralogy (XRD). The results obtained provide new insights into the evolution of Co and Mn speciation as a function of the weathering stages. Co and Mn primarily occur as Co(II) and Mn(II,III) in olivine and serpentine in the bedrock. During the first weathering stage, these forms of Co and Mn are progressively oxidized toward Co(III) and Mn(III,IV), which occur mainly as Co(III)-bearing Mn(III/IV)-oxides in the transition between the saprolite and the laterite. In the uppermost lateritic horizons, long-time weathering resulted in a strong leaching of Co and Mn, and the remaining of these elements occurs as Co(II) and Mn(III) substituting for Fe(III) in goethite. Finally, this latter scavenging process emphasizes the importance of Fe-oxides for the long-term stabilization of Co and Mn in such deeply weathered laterites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozkendir, Osman Murat, E-mail: ozkendir@gmail.com
Highlights: • Crystal and electronic structure properties of Nd{sub x}Ti{sub 1−x}BO{sub 2+d} structure were investigated. • New crystal structures for Nd–Ti complexes are determined. • Distortions in the crystal structure were observed as a result of Boron shortage. • Prominent change in electronic properties of the samples with the increasing Nd amount. - Abstract: Neodymium substituted TiBO{sub 3} samples were investigated according to their crystal, electric and electronic properties. Studies were conducted by X-ray absorption fine structure spectroscopy (XAFS) technique for the samples with different substitutions in the preparation processes. To achieve better crystal structure results during the study, XRDmore » pattern results were supported by extended-XAFS (EXAFS) analysis. The electronic structure analysis were studied by X-ray absorption near-edge structure spectroscopy (XANES) measurements at the room temperatures. Due to the substituted Nd atoms, prominent changes in crystal structure, new crystal geometries for Nd-Ti complexes, phase transitions in the crystals structure were detected according to the increasing Nd substitutions in the samples. In the entire stages of the substitutions, Nd atoms were observed as governing the whole phenomena due to their dominant characteristics in Ti geometries. Besides, electrical resistivity decay was determined in the materials with the increasing amount of Nd substitution.« less
Transport and magnetic properties of Fe doped CaMnO3
NASA Astrophysics Data System (ADS)
Neetika; Das, A.; Dhiman, I.; Nigam, A. K.; Yadav, A. K.; Bhattacharyya, D.; Meena, S. S.
2012-12-01
The structural, transport, and magnetic properties of CaMn1-xFexO3-δ (0.0 ≤ x ≤ 0.3) have been studied by using resistivity, magnetization, and neutron powder diffraction techniques. The compounds are found to be isostructural and crystallize in GdFeO3-type orthorhombic structure (space group Pnma). With Fe doping, no structural change is observed. Mössbauer and paramagnetic susceptibility measurements show that Fe substitutes in 4+ valence state, and XANES measurements indicate the presence of mixed valence state of Mn. The compounds exhibit insulating behavior in the studied temperature range. The temperature dependence of resistivity is found to be described by small polaron model for x = 0 and variable range hopping model for x = 0.1. For higher x values, it follows a parallel combination resistance model. A small reduction in TN from 120 K to 100 K with increase in x is found. The magnetic structure changes from Gz-type collinear antiferromagnetic (AFM) structure for x = 0.0 to canted AFM structure GZFY-type for Fe doped compounds. The AFM component of the moment progressively decreases with x while FM component exhibits a maximum at x = 0.2.