Computational approaches for drug discovery.
Hung, Che-Lun; Chen, Chi-Chun
2014-09-01
Cellular proteins are the mediators of multiple organism functions being involved in physiological mechanisms and disease. By discovering lead compounds that affect the function of target proteins, the target diseases or physiological mechanisms can be modulated. Based on knowledge of the ligand-receptor interaction, the chemical structures of leads can be modified to improve efficacy, selectivity and reduce side effects. One rational drug design technology, which enables drug discovery based on knowledge of target structures, functional properties and mechanisms, is computer-aided drug design (CADD). The application of CADD can be cost-effective using experiments to compare predicted and actual drug activity, the results from which can used iteratively to improve compound properties. The two major CADD-based approaches are structure-based drug design, where protein structures are required, and ligand-based drug design, where ligand and ligand activities can be used to design compounds interacting with the protein structure. Approaches in structure-based drug design include docking, de novo design, fragment-based drug discovery and structure-based pharmacophore modeling. Approaches in ligand-based drug design include quantitative structure-affinity relationship and pharmacophore modeling based on ligand properties. Based on whether the structure of the receptor and its interaction with the ligand are known, different design strategies can be seed. After lead compounds are generated, the rule of five can be used to assess whether these have drug-like properties. Several quality validation methods, such as cost function analysis, Fisher's cross-validation analysis and goodness of hit test, can be used to estimate the metrics of different drug design strategies. To further improve CADD performance, multi-computers and graphics processing units may be applied to reduce costs. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Joshi, Suresh M.; Armstrong, Ernest S.
1993-01-01
An approach for an optimization-based integrated controls-structures design is presented for a class of flexible spacecraft that require fine attitude pointing and vibration suppression. The integrated design problem is posed in the form of simultaneous optimization of both structural and control design variables. The approach is demonstrated by application to the integrated design of a generic space platform and to a model of a ground-based flexible structure. The numerical results obtained indicate that the integrated design approach can yield spacecraft designs that have substantially superior performance over a conventional design wherein the structural and control designs are performed sequentially. For example, a 40-percent reduction in the pointing error is observed along with a slight reduction in mass, or an almost twofold increase in the controlled performance is indicated with more than a 5-percent reduction in the overall mass of the spacecraft (a reduction of hundreds of kilograms).
Integrated control-structure design
NASA Technical Reports Server (NTRS)
Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.
1991-01-01
A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.
Integrated Controls-Structures Design Methodology for Flexible Spacecraft
NASA Technical Reports Server (NTRS)
Maghami, P. G.; Joshi, S. M.; Price, D. B.
1995-01-01
This paper proposes an approach for the design of flexible spacecraft, wherein the structural design and the control system design are performed simultaneously. The integrated design problem is posed as an optimization problem in which both the structural parameters and the control system parameters constitute the design variables, which are used to optimize a common objective function, thereby resulting in an optimal overall design. The approach is demonstrated by application to the integrated design of a geostationary platform, and to a ground-based flexible structure experiment. The numerical results obtained indicate that the integrated design approach generally yields spacecraft designs that are substantially superior to the conventional approach, wherein the structural design and control design are performed sequentially.
Reliability-based evaluation of bridge components for consistent safety margins.
DOT National Transportation Integrated Search
2010-10-01
The Load and Resistant Factor Design (LRFD) approach is based on the concept of structural reliability. The approach is more : rational than the former design approaches such as Load Factor Design or Allowable Stress Design. The LRFD Specification fo...
NASA Astrophysics Data System (ADS)
Yang, Weizhu; Yue, Zhufeng; Li, Lei; Wang, Peiyan
2016-01-01
An optimization procedure combining an automated finite element modelling (AFEM) technique with a ground structure approach (GSA) is proposed for structural layout and sizing design of aircraft wings. The AFEM technique, based on CATIA VBA scripting and PCL programming, is used to generate models automatically considering the arrangement of inner systems. GSA is used for local structural topology optimization. The design procedure is applied to a high-aspect-ratio wing. The arrangement of the integral fuel tank, landing gear and control surfaces is considered. For the landing gear region, a non-conventional initial structural layout is adopted. The positions of components, the number of ribs and local topology in the wing box and landing gear region are optimized to obtain a minimum structural weight. Constraints include tank volume, strength, buckling and aeroelastic parameters. The results show that the combined approach leads to a greater weight saving, i.e. 26.5%, compared with three additional optimizations based on individual design approaches.
Integrating structure-based and ligand-based approaches for computational drug design.
Wilson, Gregory L; Lill, Markus A
2011-04-01
Methods utilized in computer-aided drug design can be classified into two major categories: structure based and ligand based, using information on the structure of the protein or on the biological and physicochemical properties of bound ligands, respectively. In recent years there has been a trend towards integrating these two methods in order to enhance the reliability and efficiency of computer-aided drug-design approaches by combining information from both the ligand and the protein. This trend resulted in a variety of methods that include: pseudoreceptor methods, pharmacophore methods, fingerprint methods and approaches integrating docking with similarity-based methods. In this article, we will describe the concepts behind each method and selected applications.
Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai
2016-01-01
This paper presents a simplified analytical model and balanced design approach for modeling lightweight wood-based structural panels in bending. Because many design parameters are required to input for the model of finite element analysis (FEA) during the preliminary design process and optimization, the equivalent method was developed to analyze the mechanical...
Integrated structure/control law design by multilevel optimization
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.; Schmidt, David K.
1989-01-01
A new approach to integrated structure/control law design based on multilevel optimization is presented. This new approach is applicable to aircraft and spacecraft and allows for the independent design of the structure and control law. Integration of the designs is achieved through use of an upper level coordination problem formulation within the multilevel optimization framework. The method requires the use of structure and control law design sensitivity information. A general multilevel structure/control law design problem formulation is given, and the use of Linear Quadratic Gaussian (LQG) control law design and design sensitivity methods within the formulation is illustrated. Results of three simple integrated structure/control law design examples are presented. These results show the capability of structure and control law design tradeoffs to improve controlled system performance within the multilevel approach.
An Approach to Risk-Based Design Incorporating Damage Tolerance Analyses
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Glaessgen, Edward H.; Sleight, David W.
2002-01-01
Incorporating risk-based design as an integral part of spacecraft development is becoming more and more common. Assessment of uncertainties associated with design parameters and environmental aspects such as loading provides increased knowledge of the design and its performance. Results of such studies can contribute to mitigating risk through a system-level assessment. Understanding the risk of an event occurring, the probability of its occurrence, and the consequences of its occurrence can lead to robust, reliable designs. This paper describes an approach to risk-based structural design incorporating damage-tolerance analysis. The application of this approach to a candidate Earth-entry vehicle is described. The emphasis of the paper is on describing an approach for establishing damage-tolerant structural response inputs to a system-level probabilistic risk assessment.
Structural Design Methodology Based on Concepts of Uncertainty
NASA Technical Reports Server (NTRS)
Lin, K. Y.; Du, Jiaji; Rusk, David
2000-01-01
In this report, an approach to damage-tolerant aircraft structural design is proposed based on the concept of an equivalent "Level of Safety" that incorporates past service experience in the design of new structures. The discrete "Level of Safety" for a single inspection event is defined as the compliment of the probability that a single flaw size larger than the critical flaw size for residual strength of the structure exists, and that the flaw will not be detected. The cumulative "Level of Safety" for the entire structure is the product of the discrete "Level of Safety" values for each flaw of each damage type present at each location in the structure. Based on the definition of "Level of Safety", a design procedure was identified and demonstrated on a composite sandwich panel for various damage types, with results showing the sensitivity of the structural sizing parameters to the relative safety of the design. The "Level of Safety" approach has broad potential application to damage-tolerant aircraft structural design with uncertainty.
Structural design principles for self-assembled coordination polygons and polyhedra.
Young, Neil J; Hay, Benjamin P
2013-02-18
Strategies for the design of ligands that combine with metal ions to form high-symmetry coordination assemblies are reviewed. Evaluation of crystal structure evidence reveals that prior design approaches, based on the concept of complementary bonding vector angles, fail to predict the majority of known examples. After explaining the reasons for this failure, it is shown how an alternative approach, de novo structure-based design, provides a practical method that predicts a much wider range of component shapes encoded to direct the formation of such assemblies.
Calibration of the live load factor in LRFD design guidelines.
DOT National Transportation Integrated Search
2010-09-01
The Load and Resistant Factor Design (LRFD) approach is based on the concept of structural reliability. The approach is : more rational than the former design approaches such as Load Factor Design or Allowable Stress Design. The LRFD : Specification ...
Calibration of the live load factor in LRFD design guidelines : [revised].
DOT National Transportation Integrated Search
2011-07-01
The Load and Resistant Factor Design (LRFD) approach is based on the concept of structural reliability. The approach is : more rational than the former design approaches such as Load Factor Design or Allowable Stress Design. The LRFD : Specification ...
Integrated Teaching of Structure-Based Drug Design and Biopharmaceutics: A Computer-Based Approach
ERIC Educational Resources Information Center
Sutch, Brian T.; Romero, Rebecca M.; Neamati, Nouri; Haworth, Ian S.
2012-01-01
Rational drug design requires expertise in structural biology, medicinal chemistry, physiology, and related fields. In teaching structure-based drug design, it is important to develop an understanding of the need for early recognition of molecules with "drug-like" properties as a key component. That is, it is not merely sufficient to teach…
NASA Astrophysics Data System (ADS)
Fan, Xiao-Ning; Zhi, Bo
2017-07-01
Uncertainties in parameters such as materials, loading, and geometry are inevitable in designing metallic structures for cranes. When considering these uncertainty factors, reliability-based design optimization (RBDO) offers a more reasonable design approach. However, existing RBDO methods for crane metallic structures are prone to low convergence speed and high computational cost. A unilevel RBDO method, combining a discrete imperialist competitive algorithm with an inverse reliability strategy based on the performance measure approach, is developed. Application of the imperialist competitive algorithm at the optimization level significantly improves the convergence speed of this RBDO method. At the reliability analysis level, the inverse reliability strategy is used to determine the feasibility of each probabilistic constraint at each design point by calculating its α-percentile performance, thereby avoiding convergence failure, calculation error, and disproportionate computational effort encountered using conventional moment and simulation methods. Application of the RBDO method to an actual crane structure shows that the developed RBDO realizes a design with the best tradeoff between economy and safety together with about one-third of the convergence speed and the computational cost of the existing method. This paper provides a scientific and effective design approach for the design of metallic structures of cranes.
NASA Astrophysics Data System (ADS)
Verlinde, Christophe L. M. J.; Rudenko, Gabrielle; Hol, Wim G. J.
1992-04-01
A modular method for pursuing structure-based inhibitor design in the framework of a design cycle is presented. The approach entails four stages: (1) a design pathway is defined in the three-dimensional structure of a target protein; (2) this pathway is divided into subregions; (3) complementary building blocks, also called fragments, are designed in each subregion; complementarity is defined in terms of shape, hydrophobicity, hydrogen bond properties and electrostatics; and (4) fragments from different subregions are linked into potential lead compounds. Stages (3) and (4) are qualitatively guided by force-field calculations. In addition, the designed fragments serve as entries for retrieving existing compounds from chemical databases. This linked-fragment approach has been applied in the design of potentially selective inhibitors of triosephosphate isomerase from Trypanosoma brucei, the causative agent of sleeping sickness.
Review of Reliability-Based Design Optimization Approach and Its Integration with Bayesian Method
NASA Astrophysics Data System (ADS)
Zhang, Xiangnan
2018-03-01
A lot of uncertain factors lie in practical engineering, such as external load environment, material property, geometrical shape, initial condition, boundary condition, etc. Reliability method measures the structural safety condition and determine the optimal design parameter combination based on the probabilistic theory. Reliability-based design optimization (RBDO) is the most commonly used approach to minimize the structural cost or other performance under uncertainty variables which combines the reliability theory and optimization. However, it cannot handle the various incomplete information. The Bayesian approach is utilized to incorporate this kind of incomplete information in its uncertainty quantification. In this paper, the RBDO approach and its integration with Bayesian method are introduced.
Collaborative Core Research Program for Chemical-Biological Warfare Defense
2015-01-04
Discovery through High Throughput Screening (HTS) and Fragment-Based Drug Design (FBDD...Discovery through High Throughput Screening (HTS) and Fragment-Based Drug Design (FBDD) Current pharmaceutical approaches involving drug discovery...structural analysis and docking program generally known as fragment based drug design (FBDD). The main advantage of using these approaches is that
Computer-aided drug design for AMP-activated protein kinase activators.
Wang, Zhanli; Huo, Jianxin; Sun, Lidan; Wang, Yongfu; Jin, Hongwei; Yu, Hui; Zhang, Liangren; Zhou, Lishe
2011-09-01
AMP-activated protein kinase (AMPK) is an important therapeutic target for the potential treatment of metabolic disorders, cardiovascular disease and cancer. Recently, various classes of compounds that activate AMPK by direct or indirect interactions have been reported. The importance of computer-aided drug design approaches in the search for potent activators of AMPK is now established, including structure-based design, ligand-based design, fragment-based design, as well as structural analysis. This review article highlights the computer-aided drug design approaches utilized to discover of activators targeting AMPK. The principles, advantages or limitation of the different methods are also being discussed together with examples of applications taken from the literatures.
Impact of computational structure-based methods on drug discovery.
Reynolds, Charles H
2014-01-01
Structure-based drug design has become an indispensible tool in drug discovery. The emergence of structure-based design is due to gains in structural biology that have provided exponential growth in the number of protein crystal structures, new computational algorithms and approaches for modeling protein-ligand interactions, and the tremendous growth of raw computer power in the last 30 years. Computer modeling and simulation have made major contributions to the discovery of many groundbreaking drugs in recent years. Examples are presented that highlight the evolution of computational structure-based design methodology, and the impact of that methodology on drug discovery.
From laptop to benchtop to bedside: Structure-based Drug Design on Protein Targets
Chen, Lu; Morrow, John K.; Tran, Hoang T.; Phatak, Sharangdhar S.; Du-Cuny, Lei; Zhang, Shuxing
2013-01-01
As an important aspect of computer-aided drug design, structure-based drug design brought a new horizon to pharmaceutical development. This in silico method permeates all aspects of drug discovery today, including lead identification, lead optimization, ADMET prediction and drug repurposing. Structure-based drug design has resulted in fruitful successes drug discovery targeting protein-ligand and protein-protein interactions. Meanwhile, challenges, noted by low accuracy and combinatoric issues, may also cause failures. In this review, state-of-the-art techniques for protein modeling (e.g. structure prediction, modeling protein flexibility, etc.), hit identification/optimization (e.g. molecular docking, focused library design, fragment-based design, molecular dynamic, etc.), and polypharmacology design will be discussed. We will explore how structure-based techniques can facilitate the drug discovery process and interplay with other experimental approaches. PMID:22316152
Hedvat, Michael; Emdad, Luni; Das, Swadesh K; Kim, Keetae; Dasgupta, Santanu; Thomas, Shibu; Hu, Bin; Zhu, Shan; Dash, Rupesh; Quinn, Bridget A; Oyesanya, Regina A; Kegelman, Timothy P; Sokhi, Upneet K; Sarkar, Siddik; Erdogan, Eda; Menezes, Mitchell E; Bhoopathi, Praveen; Wang, Xiang-Yang; Pomper, Martin G; Wei, Jun; Wu, Bainan; Stebbins, John L; Diaz, Paul W; Reed, John C; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B
2012-11-01
Structure-based modeling combined with rational drug design, and high throughput screening approaches offer significant potential for identifying and developing lead compounds with therapeutic potential. The present review focuses on these two approaches using explicit examples based on specific derivatives of Gossypol generated through rational design and applications of a cancer-specificpromoter derived from Progression Elevated Gene-3. The Gossypol derivative Sabutoclax (BI-97C1) displays potent anti-tumor activity against a diverse spectrum of human tumors. The model of the docked structure of Gossypol bound to Bcl-XL provided a virtual structure-activity-relationship where appropriate modifications were predicted on a rational basis. These structure-based studies led to the isolation of Sabutoclax, an optically pure isomer of Apogossypol displaying superior efficacy and reduced toxicity. These studies illustrate the power of combining structure-based modeling with rational design to predict appropriate derivatives of lead compounds to be empirically tested and evaluated for bioactivity. Another approach to cancer drug discovery utilizes a cancer-specific promoter as readouts of the transformed state. The promoter region of Progression Elevated Gene-3 is such a promoter with cancer-specific activity. The specificity of this promoter has been exploited as a means of constructing cancer terminator viruses that selectively kill cancer cells and as a systemic imaging modality that specifically visualizes in vivo cancer growth with no background from normal tissues. Screening of small molecule inhibitors that suppress the Progression Elevated Gene-3-promoter may provide relevant lead compounds for cancer therapy that can be combined with further structure-based approaches leading to the development of novel compounds for cancer therapy.
A data driven control method for structure vibration suppression
NASA Astrophysics Data System (ADS)
Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei
2018-02-01
High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.
NASA Technical Reports Server (NTRS)
Sakata, I. F.; Davis, G. W.
1975-01-01
The analyses performed to provide structural mass estimates for the arrow wing supersonic cruise aircraft are presented. To realize the full potential for structural mass reduction, a spectrum of approaches for the wing and fuselage primary structure design were investigated. The objective was: (1) to assess the relative merits of various structural arrangements, concepts, and materials; (2) to select the structural approach best suited for the Mach 2.7 environment; and (3) to provide construction details and structural mass estimates based on in-depth structural design studies. Production costs, propulsion-airframe integration, and advanced technology assessment are included.
Passive vibration control: a structure-immittance approach.
Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon A
2017-05-01
Linear passive vibration absorbers, such as tuned mass dampers, often contain springs, dampers and masses, although recently there has been a growing trend to employ or supplement the mass elements with inerters. When considering possible configurations with these elements broadly, two approaches are normally used: one structure-based and one immittance-based. Both approaches have their advantages and disadvantages. In this paper, a new approach is proposed: the structure-immittance approach. Using this approach, a full set of possible series-parallel networks with predetermined numbers of each element type can be represented by structural immittances, obtained via a proposed general formulation process. Using the structural immittances, both the ability to investigate a class of absorber possibilities together (advantage of the immittance-based approach), and the ability to control the complexity, topology and element values in resulting absorber configurations (advantages of the structure-based approach) are provided at the same time. The advantages of the proposed approach are demonstrated through two case studies on building vibration suppression and automotive suspension design, respectively.
Passive vibration control: a structure-immittance approach
NASA Astrophysics Data System (ADS)
Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon A.
2017-05-01
Linear passive vibration absorbers, such as tuned mass dampers, often contain springs, dampers and masses, although recently there has been a growing trend to employ or supplement the mass elements with inerters. When considering possible configurations with these elements broadly, two approaches are normally used: one structure-based and one immittance-based. Both approaches have their advantages and disadvantages. In this paper, a new approach is proposed: the structure-immittance approach. Using this approach, a full set of possible series-parallel networks with predetermined numbers of each element type can be represented by structural immittances, obtained via a proposed general formulation process. Using the structural immittances, both the ability to investigate a class of absorber possibilities together (advantage of the immittance-based approach), and the ability to control the complexity, topology and element values in resulting absorber configurations (advantages of the structure-based approach) are provided at the same time. The advantages of the proposed approach are demonstrated through two case studies on building vibration suppression and automotive suspension design, respectively.
Integrated Controls-Structures Design Methodology: Redesign of an Evolutionary Test Structure
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Joshi, Suresh M.
1997-01-01
An optimization-based integrated controls-structures design methodology for a class of flexible space structures is described, and the phase-0 Controls-Structures-Integration evolutionary model, a laboratory testbed at NASA Langley, is redesigned using this integrated design methodology. The integrated controls-structures design is posed as a nonlinear programming problem to minimize the control effort required to maintain a specified line-of-sight pointing performance, under persistent white noise disturbance. Static and dynamic dissipative control strategies are employed for feedback control, and parameters of these controllers are considered as the control design variables. Sizes of strut elements in various sections of the CEM are used as the structural design variables. Design guides for the struts are developed and employed in the integrated design process, to ensure that the redesigned structure can be effectively fabricated. The superiority of the integrated design methodology over the conventional design approach is demonstrated analytically by observing a significant reduction in the average control power needed to maintain specified pointing performance with the integrated design approach.
Design of Reflective, Photonic Shields for Atmospheric Reentry
NASA Technical Reports Server (NTRS)
Komarevskiy, Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Fabrichnaya, Olga; White, Susan; Lawson, John
2010-01-01
We present the design of one-dimensional photonic crystal structures, which can be used as omnidirectional reflecting shields against radiative heating of space vehicles entering the Earth's atmosphere. This radiation is approximated by two broad bands centered at visible and near-infrared energies. We applied two approaches to find structures with the best omnidirectional reflecting performance. The first approach is based on a band gap analysis and leads to structures composed of stacked Bragg mirrors. In the second approach, we optimize the structure using an evolutionary strategy. The suggested structures are compared with a simple design of two stacked Bragg mirrors. Choice of the constituent materials for the layers as well as the influence of interlayer diffusion at high temperatures are discussed.
Zhang, Dan; Wei, Bin
2017-01-01
Currently, the uses of robotics are limited with respect to performance capabilities. Improving the performance of robotic mechanisms is and still will be the main research topic in the next decade. In this paper, design and integration for improving performance of robotic systems are achieved through three different approaches, i.e., structure synthesis design approach, dynamic balancing approach, and adaptive control approach. The purpose of robotic mechanism structure synthesis design is to propose certain mechanism that has better kinematic and dynamic performance as compared to the old ones. For the dynamic balancing design approach, it is normally accomplished based on employing counterweights or counter-rotations. The potential issue is that more weight and inertia will be included in the system. Here, reactionless based on the reconfiguration concept is put forward, which can address the mentioned problem. With the mechanism reconfiguration, the control system needs to be adapted thereafter. One way to address control system adaptation is by applying the “divide and conquer” methodology. It entails modularizing the functionalities: breaking up the control functions into small functional modules, and from those modules assembling the control system according to the changing needs of the mechanism. PMID:28075360
Topology-aware illumination design for volume rendering.
Zhou, Jianlong; Wang, Xiuying; Cui, Hui; Gong, Peng; Miao, Xianglin; Miao, Yalin; Xiao, Chun; Chen, Fang; Feng, Dagan
2016-08-19
Direct volume rendering is one of flexible and effective approaches to inspect large volumetric data such as medical and biological images. In conventional volume rendering, it is often time consuming to set up a meaningful illumination environment. Moreover, conventional illumination approaches usually assign same values of variables of an illumination model to different structures manually and thus neglect the important illumination variations due to structure differences. We introduce a novel illumination design paradigm for volume rendering on the basis of topology to automate illumination parameter definitions meaningfully. The topological features are extracted from the contour tree of an input volumetric data. The automation of illumination design is achieved based on four aspects of attenuation, distance, saliency, and contrast perception. To better distinguish structures and maximize illuminance perception differences of structures, a two-phase topology-aware illuminance perception contrast model is proposed based on the psychological concept of Just-Noticeable-Difference. The proposed approach allows meaningful and efficient automatic generations of illumination in volume rendering. Our results showed that our approach is more effective in depth and shape depiction, as well as providing higher perceptual differences between structures.
Structure based design of 11β-HSD1 inhibitors.
Singh, Suresh; Tice, Colin
2010-11-01
Controlling elevated tissue-specific levels of cortisol may provide a novel therapeutic approach for treating metabolic syndrome. This concept has spurred large scale medicinal chemistry efforts in the pharmaceutical industry for the design of 11β-HSD1 inhibitors. High resolution X-ray crystal structures of inhibitors in complex with the enzyme have facilitated the structure-based design of diverse classes of molecules. A summary of binding modes, trends in structure-activity relationships, and the pharmacodynamic data of inhibitors from each class is presented.
Conceptual design of distillation-based hybrid separation processes.
Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang
2013-01-01
Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.
Performance-based plastic design of earthquake resistant reinforced concrete moment frames
NASA Astrophysics Data System (ADS)
Liao, Wen-Cheng
Performance-Based Plastic Design (PBPD) method has been recently developed to achieve enhanced performance of earthquake resistant structures. The design concept uses pre-selected target drift and yield mechanism as performance criteria. The design base shear for selected hazard level is determined by equating the work needed to push the structure monotonically up to the target drift to the corresponding energy demand of an equivalent SDOF oscillator. This study presents development of the PBPD approach as applied to reinforced concrete special moment frame (RC SMF) structures. RC structures present special challenge because of their complex and degrading ("pinched") hysteretic behavior. In order to account for the degrading hysteretic behavior the 1-EMA 440 C2 factor approach was used in the process of determining the design base shear. Four baseline RC SMF (4, 8, 12 and 20-story) as used in the FEMA P695 were selected for this study. Those frames were redesigned by the PBPD approach. The baseline frames and the PBPD frames were subjected to extensive inelastic pushover and time-history analyses. The PBPD frames showed much improved response meeting all desired performance objectives, including the intended yield mechanisms and the target drifts. On the contrary, the baseline frames experienced large story drifts due to flexural yielding of the columns. The work-energy equation to determine design base shear can also be used to estimate seismic demands, called the energy spectrum method. In this approach the skeleton force-displacement (capacity) curve of the structure is converted into energy-displacement plot (Ec) which is superimposed over the corresponding energy demand plot ( Ed) for the specified hazard level to determine the expected peak displacement demands. In summary, this study shows that the PBPD approach can be successfully applied to RC moment frame structures as well, and that the responses of the example moment frames were much improved over those of the corresponding baseline frames. In addition, the drift demands of all study frames as computed by the energy spectrum method were in excellent agreement with those obtained from detailed inelastic dynamic analyses.
Receptor-based 3D-QSAR in Drug Design: Methods and Applications in Kinase Studies.
Fang, Cheng; Xiao, Zhiyan
2016-01-01
Receptor-based 3D-QSAR strategy represents a superior integration of structure-based drug design (SBDD) and three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. It combines the accurate prediction of ligand poses by the SBDD approach with the good predictability and interpretability of statistical models derived from the 3D-QSAR approach. Extensive efforts have been devoted to the development of receptor-based 3D-QSAR methods and two alternative approaches have been exploited. One associates with computing the binding interactions between a receptor and a ligand to generate structure-based descriptors for QSAR analyses. The other concerns the application of various docking protocols to generate optimal ligand poses so as to provide reliable molecular alignments for the conventional 3D-QSAR operations. This review highlights new concepts and methodologies recently developed in the field of receptorbased 3D-QSAR, and in particular, covers its application in kinase studies.
DNA rendering of polyhedral meshes at the nanoscale
NASA Astrophysics Data System (ADS)
Benson, Erik; Mohammed, Abdulmelik; Gardell, Johan; Masich, Sergej; Czeizler, Eugen; Orponen, Pekka; Högberg, Björn
2015-07-01
It was suggested more than thirty years ago that Watson-Crick base pairing might be used for the rational design of nanometre-scale structures from nucleic acids. Since then, and especially since the introduction of the origami technique, DNA nanotechnology has enabled increasingly more complex structures. But although general approaches for creating DNA origami polygonal meshes and design software are available, there are still important constraints arising from DNA geometry and sense/antisense pairing, necessitating some manual adjustment during the design process. Here we present a general method of folding arbitrary polygonal digital meshes in DNA that readily produces structures that would be very difficult to realize using previous approaches. The design process is highly automated, using a routeing algorithm based on graph theory and a relaxation simulation that traces scaffold strands through the target structures. Moreover, unlike conventional origami designs built from close-packed helices, our structures have a more open conformation with one helix per edge and are therefore stable under the ionic conditions usually used in biological assays.
DNA rendering of polyhedral meshes at the nanoscale.
Benson, Erik; Mohammed, Abdulmelik; Gardell, Johan; Masich, Sergej; Czeizler, Eugen; Orponen, Pekka; Högberg, Björn
2015-07-23
It was suggested more than thirty years ago that Watson-Crick base pairing might be used for the rational design of nanometre-scale structures from nucleic acids. Since then, and especially since the introduction of the origami technique, DNA nanotechnology has enabled increasingly more complex structures. But although general approaches for creating DNA origami polygonal meshes and design software are available, there are still important constraints arising from DNA geometry and sense/antisense pairing, necessitating some manual adjustment during the design process. Here we present a general method of folding arbitrary polygonal digital meshes in DNA that readily produces structures that would be very difficult to realize using previous approaches. The design process is highly automated, using a routeing algorithm based on graph theory and a relaxation simulation that traces scaffold strands through the target structures. Moreover, unlike conventional origami designs built from close-packed helices, our structures have a more open conformation with one helix per edge and are therefore stable under the ionic conditions usually used in biological assays.
Aerostructural interaction in a collaborative MDO environment
NASA Astrophysics Data System (ADS)
Ciampa, Pier Davide; Nagel, Björn
2014-10-01
The work presents an approach for aircraft design and optimization, developed to account for fluid-structure interactions in MDO applications. The approach makes use of a collaborative distributed design environment, and focuses on the influence of multiple physics based aerostructural models, on the overall aircraft synthesis and optimization. The approach is tested for the design of large transportation aircraft.
Displacement Based Multilevel Structural Optimization
NASA Technical Reports Server (NTRS)
Sobieszezanski-Sobieski, J.; Striz, A. G.
1996-01-01
In the complex environment of true multidisciplinary design optimization (MDO), efficiency is one of the most desirable attributes of any approach. In the present research, a new and highly efficient methodology for the MDO subset of structural optimization is proposed and detailed, i.e., for the weight minimization of a given structure under size, strength, and displacement constraints. Specifically, finite element based multilevel optimization of structures is performed. In the system level optimization, the design variables are the coefficients of assumed polynomially based global displacement functions, and the load unbalance resulting from the solution of the global stiffness equations is minimized. In the subsystems level optimizations, the weight of each element is minimized under the action of stress constraints, with the cross sectional dimensions as design variables. The approach is expected to prove very efficient since the design task is broken down into a large number of small and efficient subtasks, each with a small number of variables, which are amenable to parallel computing.
NASA Technical Reports Server (NTRS)
Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea
2015-01-01
This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.
Finite element analysis of container ship's cargo hold using ANSYS and POSEIDON software
NASA Astrophysics Data System (ADS)
Tanny, Tania Tamiz; Akter, Naznin; Amin, Osman Md.
2017-12-01
Nowadays ship structural analysis has become an integral part of the preliminary ship design providing further support for the development and detail design of ship structures. Structural analyses of container ship's cargo holds are carried out for the balancing of their safety and capacity, as those ships are exposed to the high risk of structural damage during voyage. Two different design methodologies have been considered for the structural analysis of a container ship's cargo hold. One is rule-based methodology and the other is a more conventional software based analyses. The rule based analysis is done by DNV-GL's software POSEIDON and the conventional package based analysis is done by ANSYS structural module. Both methods have been applied to analyze some of the mechanical properties of the model such as total deformation, stress-strain distribution, Von Mises stress, Fatigue etc., following different design bases and approaches, to indicate some guidance's for further improvements in ship structural design.
Application of 3D-QSAR in the rational design of receptor ligands and enzyme inhibitors.
Mor, Marco; Rivara, Silvia; Lodola, Alessio; Lorenzi, Simone; Bordi, Fabrizio; Plazzi, Pier Vincenzo; Spadoni, Gilberto; Bedini, Annalida; Duranti, Andrea; Tontini, Andrea; Tarzia, Giorgio
2005-11-01
Quantitative structure-activity relationships (QSARs) are frequently employed in medicinal chemistry projects, both to rationalize structure-activity relationships (SAR) for known series of compounds and to help in the design of innovative structures endowed with desired pharmacological actions. As a difference from the so-called structure-based drug design tools, they do not require the knowledge of the biological target structure, but are based on the comparison of drug structural features, thus being defined ligand-based drug design tools. In the 3D-QSAR approach, structural descriptors are calculated from molecular models of the ligands, as interaction fields within a three-dimensional (3D) lattice of points surrounding the ligand structure. These descriptors are collected in a large X matrix, which is submitted to multivariate analysis to look for correlations with biological activity. Like for other QSARs, the reliability and usefulness of the correlation models depends on the validity of the assumptions and on the quality of the data. A careful selection of compounds and pharmacological data can improve the application of 3D-QSAR analysis in drug design. Some examples of the application of CoMFA and CoMSIA approaches to the SAR study and design of receptor or enzyme ligands is described, pointing the attention to the fields of melatonin receptor ligands and FAAH inhibitors.
[Computational chemistry in structure-based drug design].
Cao, Ran; Li, Wei; Sun, Han-Zi; Zhou, Yu; Huang, Niu
2013-07-01
Today, the understanding of the sequence and structure of biologically relevant targets is growing rapidly and researchers from many disciplines, physics and computational science in particular, are making significant contributions to modern biology and drug discovery. However, it remains challenging to rationally design small molecular ligands with desired biological characteristics based on the structural information of the drug targets, which demands more accurate calculation of ligand binding free-energy. With the rapid advances in computer power and extensive efforts in algorithm development, physics-based computational chemistry approaches have played more important roles in structure-based drug design. Here we reviewed the newly developed computational chemistry methods in structure-based drug design as well as the elegant applications, including binding-site druggability assessment, large scale virtual screening of chemical database, and lead compound optimization. Importantly, here we address the current bottlenecks and propose practical solutions.
NASA Technical Reports Server (NTRS)
Lyle, Karen H.
2014-01-01
Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology validation via flighttesting. This paper explores the implementation of probabilistic methods in the sensitivity analysis of the structural response of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). HIAD architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during re-entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. In the example presented here, the structural parameters of an existing HIAD model have been varied to illustrate the design approach utilizing uncertainty-based methods. Surrogate models have been used to reduce computational expense several orders of magnitude. The suitability of the design is based on assessing variation in the resulting cone angle. The acceptable cone angle variation would rely on the aerodynamic requirements.
Passive vibration control: a structure–immittance approach
Zhang, Sara Ying; Neild, Simon A.
2017-01-01
Linear passive vibration absorbers, such as tuned mass dampers, often contain springs, dampers and masses, although recently there has been a growing trend to employ or supplement the mass elements with inerters. When considering possible configurations with these elements broadly, two approaches are normally used: one structure-based and one immittance-based. Both approaches have their advantages and disadvantages. In this paper, a new approach is proposed: the structure–immittance approach. Using this approach, a full set of possible series–parallel networks with predetermined numbers of each element type can be represented by structural immittances, obtained via a proposed general formulation process. Using the structural immittances, both the ability to investigate a class of absorber possibilities together (advantage of the immittance-based approach), and the ability to control the complexity, topology and element values in resulting absorber configurations (advantages of the structure-based approach) are provided at the same time. The advantages of the proposed approach are demonstrated through two case studies on building vibration suppression and automotive suspension design, respectively. PMID:28588407
Lakhlili, Wiame; Yasri, Abdelaziz; Ibrahimi, Azeddine
2016-01-01
The discovery of clinically relevant inhibitors of mammalian target of rapamycin (mTOR) for anticancer therapy has proved to be a challenging task. The quantitative structure–activity relationship (QSAR) approach is a very useful and widespread technique for ligand-based drug design, which can be used to identify novel and potent mTOR inhibitors. In this study, we performed two-dimensional QSAR tests, and molecular docking validation tests of a series of mTOR ATP-competitive inhibitors to elucidate their structural properties associated with their activity. The QSAR tests were performed using partial least square method with a correlation coefficient of r2=0.799 and a cross-validation of q2=0.714. The chemical library screening was done by associating ligand-based to structure-based approach using the three-dimensional structure of mTOR developed by homology modeling. We were able to select 22 compounds from two databases as inhibitors of the mTOR kinase active site. We believe that the method and applications highlighted in this study will help future efforts toward the design of selective ATP-competitive inhibitors. PMID:27980424
A Framework for Preliminary Design of Aircraft Structures Based on Process Information. Part 1
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
1998-01-01
This report discusses the general framework and development of a computational tool for preliminary design of aircraft structures based on process information. The described methodology is suitable for multidisciplinary design optimization (MDO) activities associated with integrated product and process development (IPPD). The framework consists of three parts: (1) product and process definitions; (2) engineering synthesis, and (3) optimization. The product and process definitions are part of input information provided by the design team. The backbone of the system is its ability to analyze a given structural design for performance as well as manufacturability and cost assessment. The system uses a database on material systems and manufacturing processes. Based on the identified set of design variables and an objective function, the system is capable of performing optimization subject to manufacturability, cost, and performance constraints. The accuracy of the manufacturability measures and cost models discussed here depend largely on the available data on specific methods of manufacture and assembly and associated labor requirements. As such, our focus in this research has been on the methodology itself and not so much on its accurate implementation in an industrial setting. A three-tier approach is presented for an IPPD-MDO based design of aircraft structures. The variable-complexity cost estimation methodology and an approach for integrating manufacturing cost assessment into design process are also discussed. This report is presented in two parts. In the first part, the design methodology is presented, and the computational design tool is described. In the second part, a prototype model of the preliminary design Tool for Aircraft Structures based on Process Information (TASPI) is described. Part two also contains an example problem that applies the methodology described here for evaluation of six different design concepts for a wing spar.
Phanphet, Suwattanarwong; Dechjarern, Surangsee; Jomjanyong, Sermkiat
2017-05-01
The main objective of this work is to improve the standard of the existing design of knee prosthesis developed by Thailand's Prostheses Foundation of Her Royal Highness The Princess Mother. The experimental structural tests, based on the ISO 10328, of the existing design showed that a few components failed due to fatigue under normal cyclic loading below the required number of cycles. The finite element (FE) simulations of structural tests on the knee prosthesis were carried out. Fatigue life predictions of knee component materials were modeled based on the Morrow's approach. The fatigue life prediction based on the FE model result was validated with the corresponding structural test and the results agreed well. The new designs of the failed components were studied using the design of experimental approach and finite element analysis of the ISO 10328 structural test of knee prostheses under two separated loading cases. Under ultimate loading, knee prosthesis peak von Mises stress must be less than the yield strength of knee component's material and the total knee deflection must be lower than 2.5mm. The fatigue life prediction of all knee components must be higher than 3,000,000 cycles under normal cyclic loading. The design parameters are the thickness of joint bars, the diameter of lower connector and the thickness of absorber-stopper. The optimized knee prosthesis design meeting all the requirements was recommended. Experimental ISO 10328 structural test of the fabricated knee prosthesis based on the optimized design confirmed the finite element prediction. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Gessler, Michael; Moreno Herrera, Lázaro
2015-01-01
The design of vocational didactics has to meet special requirements. Six core assumptions are identified: outcome orientation, cultural-historical embedding, horizontal structure, vertical structure, temporal structure, and the changing nature of work. Different approaches and discussions from school-based systems (Spain and Sweden) and dual…
World Wide Web Page Design: A Structured Approach.
ERIC Educational Resources Information Center
Gregory, Gwen; Brown, M. Marlo
1997-01-01
Describes how to develop a World Wide Web site based on structured programming concepts. Highlights include flowcharting, first page design, evaluation, page titles, documenting source code, text, graphics, and browsers. Includes a template for HTML writers, tips for using graphics, a sample homepage, guidelines for authoring structured HTML, and…
Development of a nanosatellite de-orbiting system by reliability based design optimization
NASA Astrophysics Data System (ADS)
Nikbay, Melike; Acar, Pınar; Aslan, Alim Rüstem
2015-12-01
This paper presents design approaches to develop a reliable and efficient de-orbiting system for the 3USAT nanosatellite to provide a beneficial orbital decay process at the end of a mission. A de-orbiting system is initially designed by employing the aerodynamic drag augmentation principle where the structural constraints of the overall satellite system and the aerodynamic forces are taken into account. Next, an alternative de-orbiting system is designed with new considerations and further optimized using deterministic and reliability based design techniques. For the multi-objective design, the objectives are chosen to maximize the aerodynamic drag force through the maximization of the Kapton surface area while minimizing the de-orbiting system mass. The constraints are related in a deterministic manner to the required deployment force, the height of the solar panel hole and the deployment angle. The length and the number of layers of the deployable Kapton structure are used as optimization variables. In the second stage of this study, uncertainties related to both manufacturing and operating conditions of the deployable structure in space environment are considered. These uncertainties are then incorporated into the design process by using different probabilistic approaches such as Monte Carlo Simulation, the First-Order Reliability Method and the Second-Order Reliability Method. The reliability based design optimization seeks optimal solutions using the former design objectives and constraints with the inclusion of a reliability index. Finally, the de-orbiting system design alternatives generated by different approaches are investigated and the reliability based optimum design is found to yield the best solution since it significantly improves both system reliability and performance requirements.
Structure and ligand-based design of P-glycoprotein inhibitors: a historical perspective.
Palmeira, Andreia; Sousa, Emilia; Vasconcelos, M Helena; Pinto, Madalena; Fernandes, Miguel X
2012-01-01
Computer-assisted drug design (CADD) is a valuable approach for the discovery of new chemical entities in the field of cancer therapy. There is a pressing need to design and develop new, selective, and safe drugs for the treatment of multidrug resistance (MDR) cancer forms, specifically active against P-glycoprotein (P-gp). Recently, a crystallographic structure for mouse P-gp was obtained. However, for decades the design of new P-gp inhibitors employed mainly ligand-based approaches (SAR, QSAR, 3D-QSAR and pharmacophore studies), and structure-based studies used P-gp homology models. However, some of those results are still the pillars used as a starting point for the design of potential P-gp inhibitors. Here, pharmacophore mapping, (Q)SAR, 3D-QSAR and homology modeling, for the discovery of P-gp inhibitors are reviewed. The importance of these methods for understanding mechanisms of drug resistance at a molecular level, and design P-gp inhibitors drug candidates are discussed. The examples mentioned in the review could provide insights into the wide range of possibilities of using CADD methodologies for the discovery of efficient P-gp inhibitors.
2012-07-01
developed a microscope- based , offset Helmholtz coil system with a custom-designed microcontroller. We have developed a microfabrication approach for...implemented an experimental model system using ferromagnetic beads. We have applied direct and frequency based magnetic fields for controlling magnetotactic...fields. Expanded Accomplishments We have developed a microscope- based , offset Helmholtz coil system with a custom- designed microcontroller. To be
Hercules Single-Stage Reusable Vehicle (HSRV) Operating Base
NASA Technical Reports Server (NTRS)
Moon, Michael J.; McCleskey, Carey M.
2017-01-01
Conceptual design for the layout of lunar-planetary surface support systems remains an important area needing further master planning. This paper explores a structured approach to organize the layout of a Mars-based site equipped for routinely flying a human-scale reusable taxi system. The proposed Hercules Transportation System requires a surface support capability to sustain its routine, affordable, and dependable operation. The approach organizes a conceptual Hercules operating base through functional station sets. The station set approach will allow follow-on work to trade design approaches and consider technologies for more efficient flow of material, energy, and information at future Mars bases and settlements. The station set requirements at a Mars site point to specific capabilities needed. By drawing from specific Hercules design characteristics, the technology requirements for surface-based systems will come into greater focus. This paper begins a comprehensive process for documenting functional needs, architectural design methods, and analysis techniques necessary for follow-on concept studies.
QSAR modeling based on structure-information for properties of interest in human health.
Hall, L H; Hall, L M
2005-01-01
The development of QSAR models based on topological structure description is presented for problems in human health. These models are based on the structure-information approach to quantitative biological modeling and prediction, in contrast to the mechanism-based approach. The structure-information approach is outlined, starting with basic structure information developed from the chemical graph (connection table). Information explicit in the connection table (element identity and skeletal connections) leads to significant (implicit) structure information that is useful for establishing sound models of a wide range of properties of interest in drug design. Valence state definition leads to relationships for valence state electronegativity and atom/group molar volume. Based on these important aspects of molecules, together with skeletal branching patterns, both the electrotopological state (E-state) and molecular connectivity (chi indices) structure descriptors are developed and described. A summary of four QSAR models indicates the wide range of applicability of these structure descriptors and the predictive quality of QSAR models based on them: aqueous solubility (5535 chemically diverse compounds, 938 in external validation), percent oral absorption (%OA, 417 therapeutic drugs, 195 drugs in external validation testing), AMES mutagenicity (2963 compounds including 290 therapeutic drugs, 400 in external validation), fish toxicity (92 substituted phenols, anilines and substituted aromatics). These models are established independent of explicit three-dimensional (3-D) structure information and are directly interpretable in terms of the implicit structure information useful to the drug design process.
Simulation-Driven Design Approach for Design and Optimization of Blankholder
NASA Astrophysics Data System (ADS)
Sravan, Tatipala; Suddapalli, Nikshep R.; Johan, Pilthammar; Mats, Sigvant; Christian, Johansson
2017-09-01
Reliable design of stamping dies is desired for efficient and safe production. The design of stamping dies are today mostly based on casting feasibility, although it can also be based on criteria for fatigue, stiffness, safety, economy. Current work presents an approach that is built on Simulation Driven Design, enabling Design Optimization to address this issue. A structural finite element model of a stamping die, used to produce doors for Volvo V70/S80 car models, is studied. This die had developed cracks during its usage. To understand the behaviour of stress distribution in the stamping die, structural analysis of the die is conducted and critical regions with high stresses are identified. The results from structural FE-models are compared with analytical calculations pertaining to fatigue properties of the material. To arrive at an optimum design with increased stiffness and lifetime, topology and free-shape optimization are performed. In the optimization routine, identified critical regions of the die are set as design variables. Other optimization variables are set to maintain manufacturability of the resultant stamping die. Thereafter a CAD model is built based on geometrical results from topology and free-shape optimizations. Then the CAD model is subjected to structural analysis to visualize the new stress distribution. This process is iterated until a satisfactory result is obtained. The final results show reduction in stress levels by 70% with a more homogeneous distribution. Even though mass of the die is increased by 17 %, overall, a stiffer die with better lifetime is obtained. Finally, by reflecting on the entire process, a coordinated approach to handle such situations efficiently is presented.
Composite Bus Structure for the SMEX/WIRE Satellite
NASA Technical Reports Server (NTRS)
Rosanova, Giulio G.
1998-01-01
In an effort to reduce the weight and optimize the structural design of the Small Explorer (SMEX) Wide-Field Infrared Explorer (WIRE) spacecraft, it has become desirable to change the material and construction from mechanically fastened aluminum structure to a fully bonded fiber-reinforced composite (FRC) structure. GSFC has developed the WIRE spacecraft structural bus design concept, including the instrument and launch vehicle requirements. The WIRE Satellite is the fifth of a series of SMEX satellites to be launched once per year. GSFC has chosen Composite Optics Inc. (COI) as the prime contractor for the development and procurement of the WIRE composite structure. The detailed design of the fully bonded FRC structure is based on COI's Short Notice Accelerated Production SATellite ("SNAPSAT") approach. SNAPSAT is a state of the art design and manufacturing technology for advanced composite materials which utilizes flat-stock detail parts bonded together to produce a final structural assembly. The structural design approach adopted for the WIRE structure provides a very viable alternative to both traditional aluminum construction as well as high tech. molded type composite structures. This approach to composite structure design is much less costly than molded or honeycomb sandwich type composite construction, but may cost slightly more than conventional aluminum construction on the subsystem level. However on the overall program level the weight saving achieved is very cost effective, since the primary objective is to allocate more mass for science payloads.
Discovery of the leinamycin family of natural products by mining actinobacterial genomes
Xu, Zhengren; Guo, Zhikai; Hindra; Ma, Ming; Zhou, Hao; Gansemans, Yannick; Zhu, Xiangcheng; Huang, Yong; Zhao, Li-Xing; Jiang, Yi; Cheng, Jinhua; Van Nieuwerburgh, Filip; Suh, Joo-Won; Duan, Yanwen
2017-01-01
Nature’s ability to generate diverse natural products from simple building blocks has inspired combinatorial biosynthesis. The knowledge-based approach to combinatorial biosynthesis has allowed the production of designer analogs by rational metabolic pathway engineering. While successful, structural alterations are limited, with designer analogs often produced in compromised titers. The discovery-based approach to combinatorial biosynthesis complements the knowledge-based approach by exploring the vast combinatorial biosynthesis repertoire found in Nature. Here we showcase the discovery-based approach to combinatorial biosynthesis by targeting the domain of unknown function and cysteine lyase domain (DUF–SH) didomain, specific for sulfur incorporation from the leinamycin (LNM) biosynthetic machinery, to discover the LNM family of natural products. By mining bacterial genomes from public databases and the actinomycetes strain collection at The Scripps Research Institute, we discovered 49 potential producers that could be grouped into 18 distinct clades based on phylogenetic analysis of the DUF–SH didomains. Further analysis of the representative genomes from each of the clades identified 28 lnm-type gene clusters. Structural diversities encoded by the LNM-type biosynthetic machineries were predicted based on bioinformatics and confirmed by in vitro characterization of selected adenylation proteins and isolation and structural elucidation of the guangnanmycins and weishanmycins. These findings demonstrate the power of the discovery-based approach to combinatorial biosynthesis for natural product discovery and structural diversity and highlight Nature’s rich biosynthetic repertoire. Comparative analysis of the LNM-type biosynthetic machineries provides outstanding opportunities to dissect Nature’s biosynthetic strategies and apply these findings to combinatorial biosynthesis for natural product discovery and structural diversity. PMID:29229819
Discovery of the leinamycin family of natural products by mining actinobacterial genomes.
Pan, Guohui; Xu, Zhengren; Guo, Zhikai; Hindra; Ma, Ming; Yang, Dong; Zhou, Hao; Gansemans, Yannick; Zhu, Xiangcheng; Huang, Yong; Zhao, Li-Xing; Jiang, Yi; Cheng, Jinhua; Van Nieuwerburgh, Filip; Suh, Joo-Won; Duan, Yanwen; Shen, Ben
2017-12-26
Nature's ability to generate diverse natural products from simple building blocks has inspired combinatorial biosynthesis. The knowledge-based approach to combinatorial biosynthesis has allowed the production of designer analogs by rational metabolic pathway engineering. While successful, structural alterations are limited, with designer analogs often produced in compromised titers. The discovery-based approach to combinatorial biosynthesis complements the knowledge-based approach by exploring the vast combinatorial biosynthesis repertoire found in Nature. Here we showcase the discovery-based approach to combinatorial biosynthesis by targeting the domain of unknown function and cysteine lyase domain (DUF-SH) didomain, specific for sulfur incorporation from the leinamycin (LNM) biosynthetic machinery, to discover the LNM family of natural products. By mining bacterial genomes from public databases and the actinomycetes strain collection at The Scripps Research Institute, we discovered 49 potential producers that could be grouped into 18 distinct clades based on phylogenetic analysis of the DUF-SH didomains. Further analysis of the representative genomes from each of the clades identified 28 lnm -type gene clusters. Structural diversities encoded by the LNM-type biosynthetic machineries were predicted based on bioinformatics and confirmed by in vitro characterization of selected adenylation proteins and isolation and structural elucidation of the guangnanmycins and weishanmycins. These findings demonstrate the power of the discovery-based approach to combinatorial biosynthesis for natural product discovery and structural diversity and highlight Nature's rich biosynthetic repertoire. Comparative analysis of the LNM-type biosynthetic machineries provides outstanding opportunities to dissect Nature's biosynthetic strategies and apply these findings to combinatorial biosynthesis for natural product discovery and structural diversity.
Basith, Shaherin; Cui, Minghua; Macalino, Stephani J. Y.; Park, Jongmi; Clavio, Nina A. B.; Kang, Soosung; Choi, Sun
2018-01-01
The primary goal of rational drug discovery is the identification of selective ligands which act on single or multiple drug targets to achieve the desired clinical outcome through the exploration of total chemical space. To identify such desired compounds, computational approaches are necessary in predicting their drug-like properties. G Protein-Coupled Receptors (GPCRs) represent one of the largest and most important integral membrane protein families. These receptors serve as increasingly attractive drug targets due to their relevance in the treatment of various diseases, such as inflammatory disorders, metabolic imbalances, cardiac disorders, cancer, monogenic disorders, etc. In the last decade, multitudes of three-dimensional (3D) structures were solved for diverse GPCRs, thus referring to this period as the “golden age for GPCR structural biology.” Moreover, accumulation of data about the chemical properties of GPCR ligands has garnered much interest toward the exploration of GPCR chemical space. Due to the steady increase in the structural, ligand, and functional data of GPCRs, several cheminformatics approaches have been implemented in its drug discovery pipeline. In this review, we mainly focus on the cheminformatics-based paradigms in GPCR drug discovery. We provide a comprehensive view on the ligand– and structure-based cheminformatics approaches which are best illustrated via GPCR case studies. Furthermore, an appropriate combination of ligand-based knowledge with structure-based ones, i.e., integrated approach, which is emerging as a promising strategy for cheminformatics-based GPCR drug design is also discussed. PMID:29593527
NASA Technical Reports Server (NTRS)
Starks, Scott; Abdel-Hafeez, Saleh; Usevitch, Bryan
1997-01-01
This paper discusses the implementation of a fuzzy logic system using an ASICs design approach. The approach is based upon combining the inherent advantages of symmetric triangular membership functions and fuzzy singleton sets to obtain a novel structure for fuzzy logic system application development. The resulting structure utilizes a fuzzy static RAM to store the rule-base and the end-points of the triangular membership functions. This provides advantages over other approaches in which all sampled values of membership functions for all universes must be stored. The fuzzy coprocessor structure implements the fuzzification and defuzzification processes through a two-stage parallel pipeline architecture which is capable of executing complex fuzzy computations in less than 0.55us with an accuracy of more than 95%, thus making it suitable for a wide range of applications. Using the approach presented in this paper, a fuzzy logic rule-base can be directly downloaded via a host processor to an onchip rule-base memory with a size of 64 words. The fuzzy coprocessor's design supports up to 49 rules for seven fuzzy membership functions associated with each of the chip's two input variables. This feature allows designers to create fuzzy logic systems without the need for additional on-board memory. Finally, the paper reports on simulation studies that were conducted for several adaptive filter applications using the least mean squared adaptive algorithm for adjusting the knowledge rule-base.
NASA Astrophysics Data System (ADS)
Valente, Marco; Milani, Gabriele
2017-07-01
Many existing reinforced concrete buildings in Southern Europe were built (and hence designed) before the introduction of displacement based design in national seismic codes. They are obviously highly vulnerable to seismic actions. In such a situation, simplified methodologies for the seismic assessment and retrofitting of existing structures are required. In this study, a displacement based procedure using non-linear static analyses is applied to a four-story existing RC frame. The aim is to obtain an estimation of its overall structural inadequacy as well as the effectiveness of a specific retrofitting intervention by means of GFRP laminates and RC jacketing. Accurate numerical models are developed within a displacement based approach to reproduce the seismic response of the RC frame in the original configuration and after strengthening.
Structural analysis and design of multivariable control systems: An algebraic approach
NASA Technical Reports Server (NTRS)
Tsay, Yih Tsong; Shieh, Leang-San; Barnett, Stephen
1988-01-01
The application of algebraic system theory to the design of controllers for multivariable (MV) systems is explored analytically using an approach based on state-space representations and matrix-fraction descriptions. Chapters are devoted to characteristic lambda matrices and canonical descriptions of MIMO systems; spectral analysis, divisors, and spectral factors of nonsingular lambda matrices; feedback control of MV systems; and structural decomposition theories and their application to MV control systems.
Singh, Juswinder; Deng, Zhan; Narale, Gaurav; Chuaqui, Claudio
2006-01-01
The combination of advances in structure-based drug design efforts in the pharmaceutical industry in parallel with structural genomics initiatives in the public domain has led to an explosion in the number of structures of protein-small molecule complexes structures. This information has critical importance to both the understanding of the structural basis for molecular recognition in biological systems and the design of better drugs. A significant challenge exists in managing this vast amount of data and fully leveraging it. Here, we review our work to develop a simple, fast way to store, organize, mine, and analyze large numbers of protein-small molecule complexes. We illustrate the utility of the approach to the management of inhibitor complexes from the protein kinase family. Finally, we describe our recent efforts in applying this method to the design of target-focused chemical libraries.
Optimization of monopiles for offshore wind turbines.
Kallehave, Dan; Byrne, Byron W; LeBlanc Thilsted, Christian; Mikkelsen, Kristian Kousgaard
2015-02-28
The offshore wind industry currently relies on subsidy schemes to be competitive with fossil-fuel-based energy sources. For the wind industry to survive, it is vital that costs are significantly reduced for future projects. This can be partly achieved by introducing new technologies and partly through optimization of existing technologies and design methods. One of the areas where costs can be reduced is in the support structure, where better designs, cheaper fabrication and quicker installation might all be possible. The prevailing support structure design is the monopile structure, where the simple design is well suited to mass-fabrication, and the installation approach, based on conventional impact driving, is relatively low-risk and robust for most soil conditions. The range of application of the monopile for future wind farms can be extended by using more accurate engineering design methods, specifically tailored to offshore wind industry design. This paper describes how state-of-the-art optimization approaches are applied to the design of current wind farms and monopile support structures and identifies the main drivers where more accurate engineering methods could impact on a next generation of highly optimized monopiles. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Using Analytics to Transform a Problem-Based Case Library: An Educational Design Research Approach
ERIC Educational Resources Information Center
Schmidt, Matthew; Tawfik, Andrew A.
2018-01-01
This article describes the iterative design, development, and evaluation of a case-based learning environment focusing on an ill-structured sales management problem. We discuss our processes and situate them within the broader framework of educational design research. The learning environment evolved over the course of three design phases. A…
Nonlinear mechanics of non-rigid origami: an efficient computational approach
NASA Astrophysics Data System (ADS)
Liu, K.; Paulino, G. H.
2017-10-01
Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on `bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.
Nonlinear mechanics of non-rigid origami: an efficient computational approach.
Liu, K; Paulino, G H
2017-10-01
Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on 'bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.
A Template-Based Protein Structure Reconstruction Method Using Deep Autoencoder Learning.
Li, Haiou; Lyu, Qiang; Cheng, Jianlin
2016-12-01
Protein structure prediction is an important problem in computational biology, and is widely applied to various biomedical problems such as protein function study, protein design, and drug design. In this work, we developed a novel deep learning approach based on a deeply stacked denoising autoencoder for protein structure reconstruction. We applied our approach to a template-based protein structure prediction using only the 3D structural coordinates of homologous template proteins as input. The templates were identified for a target protein by a PSI-BLAST search. 3DRobot (a program that automatically generates diverse and well-packed protein structure decoys) was used to generate initial decoy models for the target from the templates. A stacked denoising autoencoder was trained on the decoys to obtain a deep learning model for the target protein. The trained deep model was then used to reconstruct the final structural model for the target sequence. With target proteins that have highly similar template proteins as benchmarks, the GDT-TS score of the predicted structures is greater than 0.7, suggesting that the deep autoencoder is a promising method for protein structure reconstruction.
Computer-Aided Drug Design Methods.
Yu, Wenbo; MacKerell, Alexander D
2017-01-01
Computational approaches are useful tools to interpret and guide experiments to expedite the antibiotic drug design process. Structure-based drug design (SBDD) and ligand-based drug design (LBDD) are the two general types of computer-aided drug design (CADD) approaches in existence. SBDD methods analyze macromolecular target 3-dimensional structural information, typically of proteins or RNA, to identify key sites and interactions that are important for their respective biological functions. Such information can then be utilized to design antibiotic drugs that can compete with essential interactions involving the target and thus interrupt the biological pathways essential for survival of the microorganism(s). LBDD methods focus on known antibiotic ligands for a target to establish a relationship between their physiochemical properties and antibiotic activities, referred to as a structure-activity relationship (SAR), information that can be used for optimization of known drugs or guide the design of new drugs with improved activity. In this chapter, standard CADD protocols for both SBDD and LBDD will be presented with a special focus on methodologies and targets routinely studied in our laboratory for antibiotic drug discoveries.
The elements of design knowledge capture
NASA Technical Reports Server (NTRS)
Freeman, Michael S.
1988-01-01
This paper will present the basic constituents of a design knowledge capture effort. This will include a discussion of the types of knowledge to be captured in such an effort and the difference between design knowledge capture and more traditional knowledge base construction. These differences include both knowledge base structure and knowledge acquisition approach. The motivation for establishing a design knowledge capture effort as an integral part of major NASA programs will be outlined, along with the current NASA position on that subject. Finally the approach taken in design knowledge capture for Space Station will be contrasted with that used in the HSTDEK project.
Design of Accelerator Online Simulator Server Using Structured Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Guobao; /Brookhaven; Chu, Chungming
2012-07-06
Model based control plays an important role for a modern accelerator during beam commissioning, beam study, and even daily operation. With a realistic model, beam behaviour can be predicted and therefore effectively controlled. The approach used by most current high level application environments is to use a built-in simulation engine and feed a realistic model into that simulation engine. Instead of this traditional monolithic structure, a new approach using a client-server architecture is under development. An on-line simulator server is accessed via network accessible structured data. With this approach, a user can easily access multiple simulation codes. This paper describesmore » the design, implementation, and current status of PVData, which defines the structured data, and PVAccess, which provides network access to the structured data.« less
Norinder, U; Högberg, T
1992-04-01
The advantageous approach of using an experimentally designed training set as the basis for establishing a quantitative structure-activity relationship with good predictive capability is described. The training set was selected from a fractional factorial design scheme based on a principal component description of physico-chemical parameters of aromatic substituents. The derived model successfully predicts the activities of additional substituted benzamides of 6-methoxy-N-(4-piperidyl)salicylamide type. The major influence on activity of the 3-substituent is demonstrated.
Computational Methods in Drug Discovery
Sliwoski, Gregory; Kothiwale, Sandeepkumar; Meiler, Jens
2014-01-01
Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature. PMID:24381236
A data structure and algorithm for fault diagnosis
NASA Technical Reports Server (NTRS)
Bosworth, Edward L., Jr.
1987-01-01
Results of preliminary research on the design of a knowledge based fault diagnosis system for use with on-orbit spacecraft such as the Hubble Space Telescope are presented. A candidate data structure and associated search algorithm from which the knowledge based system can evolve is discussed. This algorithmic approach will then be examined in view of its inability to diagnose certain common faults. From that critique, a design for the corresponding knowledge based system will be given.
Galvanin, Federico; Ballan, Carlo C; Barolo, Massimiliano; Bezzo, Fabrizio
2013-08-01
The use of pharmacokinetic (PK) and pharmacodynamic (PD) models is a common and widespread practice in the preliminary stages of drug development. However, PK-PD models may be affected by structural identifiability issues intrinsically related to their mathematical formulation. A preliminary structural identifiability analysis is usually carried out to check if the set of model parameters can be uniquely determined from experimental observations under the ideal assumptions of noise-free data and no model uncertainty. However, even for structurally identifiable models, real-life experimental conditions and model uncertainty may strongly affect the practical possibility to estimate the model parameters in a statistically sound way. A systematic procedure coupling the numerical assessment of structural identifiability with advanced model-based design of experiments formulations is presented in this paper. The objective is to propose a general approach to design experiments in an optimal way, detecting a proper set of experimental settings that ensure the practical identifiability of PK-PD models. Two simulated case studies based on in vitro bacterial growth and killing models are presented to demonstrate the applicability and generality of the methodology to tackle model identifiability issues effectively, through the design of feasible and highly informative experiments.
ERIC Educational Resources Information Center
DeVane, Ben; Steward, Cody; Tran, Kelly M.
2016-01-01
This article reports on a project that used a game-creation tool to introduce middle-school students ages 10 to 13 to problem-solving strategies similar to those in computer science through the lens of studio-based design arts. Drawing on historic paradigms in design pedagogy and contemporary educational approaches in the digital arts to teach…
Moradi, Shoeib; Azerang, Parisa; Khalaj, Vahid; Sardari, Soroush
2013-01-01
Background The rise of opportunistic fungal infections highlights the need for development of new antimicrobial agents. Antimicrobial Peptides (AMPs) and Antifungal Peptides (AFPs) are among the agents with minimal resistance being developed against them, therefore they can be used as structural templates for design of new antimicrobial agents. Methods In the present study four antifungal peptidomimetic structures named C1 to C4 were designed based on plant defensin of Pisum sativum. Minimum inhibitory concentrations (MICs) for these structures were determined against Aspergillus niger N402, Candida albicans ATCC 10231, and Saccharomyces cerevisiae PTCC 5052. Results C1 and C2 showed more potent antifungal activity against these fungal strains compared to C3 and C4. The structure C2 demonstrated a potent antifungal activity among them and could be used as a template for future study on antifungal peptidomemetics design. Sequences alignments led to identifying antifungal decapeptide (KTCENLADTY) named KTC-Y, which its MIC was determined on fungal protoplast showing 25 (µg/ml) against Aspergillus fumigatus Af293. Conclusion The present approach to reach the antifungal molecules seems to be a powerful approach in design of bioactive agents based on AMP mimetic identification. PMID:23626876
ERIC Educational Resources Information Center
Al-Azawei, Ahmed; Parslow, Patrick; Lundqvist, Karsten
2017-01-01
Standardising learning content and teaching approaches is not considered to be the best practice in contemporary education. This approach does not differentiate learners based on their individual abilities and preferences. The present research integrates a pedagogical theory "Universal Design for Learning" ("UDL") with an…
Structure-based drug design: aiming for a perfect fit
van Montfort, Rob L.M.; Workman, Paul
2017-01-01
Knowledge of the three-dimensional structure of therapeutically relevant targets has informed drug discovery since the first protein structures were determined using X-ray crystallography in the 1950s and 1960s. In this editorial we provide a brief overview of the powerful impact of structure-based drug design (SBDD), which has its roots in computational and structural biology, with major contributions from both academia and industry. We describe advances in the application of SBDD for integral membrane protein targets that have traditionally proved very challenging. We emphasize the major progress made in fragment-based approaches for which success has been exemplified by over 30 clinical drug candidates and importantly three FDA-approved drugs in oncology. We summarize the articles in this issue that provide an excellent snapshot of the current state of the field of SBDD and fragment-based drug design and which offer key insights into exciting new developments, such as the X-ray free-electron laser technology, cryo-electron microscopy, open science approaches and targeted protein degradation. We stress the value of SBDD in the design of high-quality chemical tools that are used to interrogate biology and disease pathology, and to inform target validation. We emphasize the need to maintain the scientific rigour that has been traditionally associated with structural biology and extend this to other methods used in drug discovery. This is particularly important because the quality and robustness of any form of contributory data determines its usefulness in accelerating drug design, and therefore ultimately in providing patient benefit. PMID:29118091
On predicting monitoring system effectiveness
NASA Astrophysics Data System (ADS)
Cappello, Carlo; Sigurdardottir, Dorotea; Glisic, Branko; Zonta, Daniele; Pozzi, Matteo
2015-03-01
While the objective of structural design is to achieve stability with an appropriate level of reliability, the design of systems for structural health monitoring is performed to identify a configuration that enables acquisition of data with an appropriate level of accuracy in order to understand the performance of a structure or its condition state. However, a rational standardized approach for monitoring system design is not fully available. Hence, when engineers design a monitoring system, their approach is often heuristic with performance evaluation based on experience, rather than on quantitative analysis. In this contribution, we propose a probabilistic model for the estimation of monitoring system effectiveness based on information available in prior condition, i.e. before acquiring empirical data. The presented model is developed considering the analogy between structural design and monitoring system design. We assume that the effectiveness can be evaluated based on the prediction of the posterior variance or covariance matrix of the state parameters, which we assume to be defined in a continuous space. Since the empirical measurements are not available in prior condition, the estimation of the posterior variance or covariance matrix is performed considering the measurements as a stochastic variable. Moreover, the model takes into account the effects of nuisance parameters, which are stochastic parameters that affect the observations but cannot be estimated using monitoring data. Finally, we present an application of the proposed model to a real structure. The results show how the model enables engineers to predict whether a sensor configuration satisfies the required performance.
Stone-Weiss, Nicholas; Pierce, Eric M; Youngman, Randall E; Gulbiten, Ozgur; Smith, Nicholas J; Du, Jincheng; Goel, Ashutosh
2018-01-01
The past decade has witnessed a significant upsurge in the development of borate and borosilicate based resorbable bioactive glasses owing to their faster degradation rate in comparison to their silicate counterparts. However, due to our lack of understanding about the fundamental science governing the aqueous corrosion of these glasses, most of the borate/borosilicate based bioactive glasses reported in the literature have been designed by "trial-and-error" approach. With an ever-increasing demand for their application in treating a broad spectrum of non-skeletal health problems, it is becoming increasingly difficult to design advanced glass formulations using the same conventional approach. Therefore, a paradigm shift from the "trial-and-error" approach to "materials-by-design" approach is required to develop new-generations of bioactive glasses with controlled release of functional ions tailored for specific patients and disease states, whereby material functions and properties can be predicted from first principles. Realizing this goal, however, requires a thorough understanding of the complex sequence of reactions that control the dissolution kinetics of bioactive glasses and the structural drivers that govern them. While there is a considerable amount of literature published on chemical dissolution behavior and apatite-forming ability of potentially bioactive glasses, the majority of this literature has been produced on silicate glass chemistries using different experimental and measurement protocols. It follows that inter-comparison of different datasets reveals inconsistencies between experimental groups. There are also some major experimental challenges or choices that need to be carefully navigated to unearth the mechanisms governing the chemical degradation behavior and kinetics of boron-containing bioactive glasses, and to accurately determine the composition-structure-property relationships. In order to address these challenges, a simplified borosilicate based model melt-quenched bioactive glass system has been studied to depict the impact of thermal history on its molecular structure and dissolution behavior in water. It has been shown that the methodology of quenching of the glass melt impacts the dissolution rate of the studied glasses by 1.5×-3× depending on the changes induced in their molecular structure due to variation in thermal history. Further, a recommendation has been made to study dissolution behavior of bioactive glasses using surface area of the sample - to - volume of solution (SA/V) approach instead of the currently followed mass of sample - to - volume of solution approach. The structural and chemical dissolution data obtained from bioactive glasses following the approach presented in this paper can be used to develop the structural descriptors and potential energy functions over a broad range of bioactive glass compositions. Realizing the goal of designing third generation bioactive glasses requires a thorough understanding of the complex sequence of reactions that control their rate of degradation (in physiological fluids) and the structural drivers that control them. In this article, we have highlighted some major experimental challenges and choices that need to be carefully navigated in order to unearth the mechanisms governing the chemical dissolution behavior of borosilicate based bioactive glasses. The proposed experimental approach allows us to gain a new level of conceptual understanding about the composition-structure-property relationships in these glass systems, which can be applied to attain a significant leap in designing borosilicate based bioactive glasses with controlled dissolution rates tailored for specific patient and disease states. Copyright © 2017 Acta Materialia Inc. All rights reserved.
Achievements and Challenges in Computational Protein Design.
Samish, Ilan
2017-01-01
Computational protein design (CPD), a yet evolving field, includes computer-aided engineering for partial or full de novo designs of proteins of interest. Designs are defined by a requested structure, function, or working environment. This chapter describes the birth and maturation of the field by presenting 101 CPD examples in a chronological order emphasizing achievements and pending challenges. Integrating these aspects presents the plethora of CPD approaches with the hope of providing a "CPD 101". These reflect on the broader structural bioinformatics and computational biophysics field and include: (1) integration of knowledge-based and energy-based methods, (2) hierarchical designated approach towards local, regional, and global motifs and the integration of high- and low-resolution design schemes that fit each such region, (3) systematic differential approaches towards different protein regions, (4) identification of key hot-spot residues and the relative effect of remote regions, (5) assessment of shape-complementarity, electrostatics and solvation effects, (6) integration of thermal plasticity and functional dynamics, (7) negative design, (8) systematic integration of experimental approaches, (9) objective cross-assessment of methods, and (10) successful ranking of potential designs. Future challenges also include dissemination of CPD software to the general use of life-sciences researchers and the emphasis of success within an in vivo milieu. CPD increases our understanding of protein structure and function and the relationships between the two along with the application of such know-how for the benefit of mankind. Applied aspects range from biological drugs, via healthier and tastier food products to nanotechnology and environmentally friendly enzymes replacing toxic chemicals utilized in the industry.
COMPUTER-AIDED DRUG DISCOVERY AND DEVELOPMENT (CADDD): in silico-chemico-biological approach
Kapetanovic, I.M.
2008-01-01
It is generally recognized that drug discovery and development are very time and resources consuming processes. There is an ever growing effort to apply computational power to the combined chemical and biological space in order to streamline drug discovery, design, development and optimization. In biomedical arena, computer-aided or in silico design is being utilized to expedite and facilitate hit identification, hit-to-lead selection, optimize the absorption, distribution, metabolism, excretion and toxicity profile and avoid safety issues. Commonly used computational approaches include ligand-based drug design (pharmacophore, a 3-D spatial arrangement of chemical features essential for biological activity), structure-based drug design (drug-target docking), and quantitative structure-activity and quantitative structure-property relationships. Regulatory agencies as well as pharmaceutical industry are actively involved in development of computational tools that will improve effectiveness and efficiency of drug discovery and development process, decrease use of animals, and increase predictability. It is expected that the power of CADDD will grow as the technology continues to evolve. PMID:17229415
A heuristic approach to optimization of structural topology including self-weight
NASA Astrophysics Data System (ADS)
Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2018-01-01
Topology optimization of structures under a design-dependent self-weight load is investigated in this paper. The problem deserves attention because of its significant importance in the engineering practice, especially nowadays as topology optimization is more often applied when designing large engineering structures, for example, bridges or carrying systems of tall buildings. It is worth noting that well-known approaches of topology optimization which have been successfully applied to structures under fixed loads cannot be directly adapted to the case of design-dependent loads, so that topology generation can be a challenge also for numerical algorithms. The paper presents the application of a simple but efficient non-gradient method to topology optimization of elastic structures under self-weight loading. The algorithm is based on the Cellular Automata concept, the application of which can produce effective solutions with low computational cost.
Matrix Transfer Function Design for Flexible Structures: An Application
NASA Technical Reports Server (NTRS)
Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.
1985-01-01
The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.
Methods to enable the design of bioactive small molecules targeting RNA
Disney, Matthew D.; Yildirim, Ilyas; Childs-Disney, Jessica L.
2014-01-01
RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including Structure-Activity Relationships Through Sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome. PMID:24357181
Methods to enable the design of bioactive small molecules targeting RNA.
Disney, Matthew D; Yildirim, Ilyas; Childs-Disney, Jessica L
2014-02-21
RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including structure-activity relationships through sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome.
Lattice-free prediction of three-dimensional structure of programmed DNA assemblies
Pan, Keyao; Kim, Do-Nyun; Zhang, Fei; Adendorff, Matthew R.; Yan, Hao; Bathe, Mark
2014-01-01
DNA can be programmed to self-assemble into high molecular weight 3D assemblies with precise nanometer-scale structural features. Although numerous sequence design strategies exist to realize these assemblies in solution, there is currently no computational framework to predict their 3D structures on the basis of programmed underlying multi-way junction topologies constrained by DNA duplexes. Here, we introduce such an approach and apply it to assemblies designed using the canonical immobile four-way junction. The procedure is used to predict the 3D structure of high molecular weight planar and spherical ring-like origami objects, a tile-based sheet-like ribbon, and a 3D crystalline tensegrity motif, in quantitative agreement with experiments. Our framework provides a new approach to predict programmed nucleic acid 3D structure on the basis of prescribed secondary structure motifs, with possible application to the design of such assemblies for use in biomolecular and materials science. PMID:25470497
Modeling healthcare authorization and claim submissions using the openEHR dual-model approach
2011-01-01
Background The TISS standard is a set of mandatory forms and electronic messages for healthcare authorization and claim submissions among healthcare plans and providers in Brazil. It is not based on formal models as the new generation of health informatics standards suggests. The objective of this paper is to model the TISS in terms of the openEHR archetype-based approach and integrate it into a patient-centered EHR architecture. Methods Three approaches were adopted to model TISS. In the first approach, a set of archetypes was designed using ENTRY subclasses. In the second one, a set of archetypes was designed using exclusively ADMIN_ENTRY and CLUSTERs as their root classes. In the third approach, the openEHR ADMIN_ENTRY is extended with classes designed for authorization and claim submissions, and an ISM_TRANSITION attribute is added to the COMPOSITION class. Another set of archetypes was designed based on this model. For all three approaches, templates were designed to represent the TISS forms. Results The archetypes based on the openEHR RM (Reference Model) can represent all TISS data structures. The extended model adds subclasses and an attribute to the COMPOSITION class to represent information on authorization and claim submissions. The archetypes based on all three approaches have similar structures, although rooted in different classes. The extended openEHR RM model is more semantically aligned with the concepts involved in a claim submission, but may disrupt interoperability with other systems and the current tools must be adapted to deal with it. Conclusions Modeling the TISS standard by means of the openEHR approach makes it aligned with ISO recommendations and provides a solid foundation on which the TISS can evolve. Although there are few administrative archetypes available, the openEHR RM is expressive enough to represent the TISS standard. This paper focuses on the TISS but its results may be extended to other billing processes. A complete communication architecture to simulate the exchange of TISS data between systems according to the openEHR approach still needs to be designed and implemented. PMID:21992670
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1992-01-01
A general optimization-based method for the design of large space platforms through integration of the disciplines of structural dynamics and control is presented. The method uses the global sensitivity equations approach and is especially appropriate for preliminary design problems in which the structural and control analyses are tightly coupled. The method is capable of coordinating general purpose structural analysis, multivariable control, and optimization codes, and thus, can be adapted to a variety of controls-structures integrated design projects. The method is used to minimize the total weight of a space platform while maintaining a specified vibration decay rate after slewing maneuvers.
PRO_LIGAND: An approach to de novo molecular design. 4. Application to the design of peptides
NASA Astrophysics Data System (ADS)
Frenkel, David; Clark, David E.; Li, Jin; Murray, Christopher W.; Robson, Barry; Waszkowycz, Bohdan; Westhead, David R.
1995-06-01
In some instances, peptides can play an important role in the discovery of lead compounds. This paper describes the peptide design facility of the de novo drug design package, PRO_LIGAND. The package provides a unified framework for the design of peptides that are similar or complementary to a specified target. The approach uses single amino acid residues, selected from preconstructed libraries of different residues and conformations, and places them on top of predefined target interaction sites. This approach is a well-tested methodology for the design of organics but has not been used for peptides before. Peptides represent a difficulty because of their great conformational flexibility and a study of the advantages and disavantages of this simple approach is an important step in the development of design tools. After a description of our general approach, a more detailed discussion of its adaptation to peptides is given. The method is then applied to the design of peptide-based inhibitors to HIV-1 protease and the design of structural mimics of the surface region of lysozyme. The results are encouraging and point the way towards further development of interaction site-based approaches for peptide design.
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Frank, G. J.; Malak, R. J.; Baur, J. W.
2017-02-01
Research on the structurally embedded vascular antenna concept leverages past efforts on liquid metal (LM) reconfigurable electronics, microvascular composites, and structurally integrated and reconfigurable antennas. Such a concept has potential for reducing system weight or volume while simultaneously allowing in situ adjustment of resonant frequencies and/or changes in antenna directivity. This work considers a microvascular pattern embedded in a laminated composite and filled with LM. The conductive liquid provides radio frequency (RF) functionality while also allowing self-cooling. Models describing RF propagation and heat transfer, in addition to the structural effects of both the inclusion of channels and changes in temperature, were described in part 1 of this two-part work. In this part 2, the engineering models developed and demonstrated in part 1 toward the initial exploration of design trends are implemented into multiple optimization frameworks for more detailed design studies, one of which being novel and particularly applicable to this class of problem. The computational expense associated with the coupled multiphysical analysis of the structurally embedded LM transmitting antenna motivates the consideration of surrogate-based optimization methods. Both static and adaptive approaches are explored; it is shown that iteratively correcting the surrogate leads to more accurate optimized design predictions. The expected strong dependence of antenna performance on thermal environment motivates the consideration of a novel ‘parameterized’ optimization approach that simultaneously calculates whole families of optimal designs based on changes in design or operational variables generally beyond the control of the designer. The change in Pareto-optimal response with evolution in operating conditions is clearly demonstrated.
NASA Astrophysics Data System (ADS)
Oztekin, Halit; Temurtas, Feyzullah; Gulbag, Ali
The Arithmetic and Logic Unit (ALU) design is one of the important topics in Computer Architecture and Organization course in Computer and Electrical Engineering departments. There are ALU designs that have non-modular nature to be used as an educational tool. As the programmable logic technology has developed rapidly, it is feasible that ALU design based on Field Programmable Gate Array (FPGA) is implemented in this course. In this paper, we have adopted the modular approach to ALU design based on FPGA. All the modules in the ALU design are realized using schematic structure on Altera's Cyclone II Development board. Under this model, the ALU content is divided into four distinct modules. These are arithmetic unit except for multiplication and division operations, logic unit, multiplication unit and division unit. User can easily design any size of ALU unit since this approach has the modular nature. Then, this approach was applied to microcomputer architecture design named BZK.SAU.FPGA10.0 instead of the current ALU unit.
A Comparison of Books and Hypermedia for Knowledge-based Sports Coaching.
ERIC Educational Resources Information Center
Vickers, Joan N.; Gaines, Brian R.
1988-01-01
Summarizes and illustrates the knowledge-based approach to instructional material design. A series of sports coaching handbooks and hypermedia presentations of the same material are described and the different instantiations of the knowledge and training structures are compared. Figures show knowledge structures for badminton and the architecture…
ERIC Educational Resources Information Center
Ursavas, Omer Faruk; Reisoglu, Ilknur
2017-01-01
Purpose: The purpose of this paper is to explore the validity of extended technology acceptance model (TAM) in explaining pre-service teachers' Edmodo acceptance and the variation of variables related to TAM among pre-service teachers having different cognitive styles. Design/methodology/approach: Structural equation modeling approach was used to…
SVAS3: Strain Vector Aided Sensorization of Soft Structures.
Culha, Utku; Nurzaman, Surya G; Clemens, Frank; Iida, Fumiya
2014-07-17
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations.
Shuttle Orbiter-like Cargo Carrier on Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Martinovic, Zoran
2009-01-01
The following document summarizes the results of a conceptual design study for which the goal was to investigate the possibility of using a crew launch vehicle to deliver the remaining International Space Station elements should the Space Shuttle orbiter not be available to complete that task. Conceptual designs and structural weight estimates for two designs are presented. A previously developed systematic approach that was based on finite-element analysis and structural sizing was used to estimate growth of structural weight from analytical to "as built" conditions.
Deployable antenna kinematics using tensegrity structure design
NASA Astrophysics Data System (ADS)
Knight, Byron Franklin
With vast changes in spacecraft development over the last decade, a new, cheaper approach was needed for deployable kinematic systems such as parabolic antenna reflectors. Historically, these mesh-surface reflectors have resembled folded umbrellas, with incremental redesigns utilized to save packaging size. These systems are typically over-constrained designs, the assumption being that high reliability necessary for space operations requires this level of conservatism. But with the rapid commercialization of space, smaller launch platforms and satellite buses have demanded much higher efficiency from all space equipment than can be achieved through this incremental approach. This work applies an approach called tensegrity to deployable antenna development. Kenneth Snelson, a student of R. Buckminster Fuller, invented Tensegrity structures in 1948. Such structures use a minimum number of compression members (struts); stability is maintain using tension members (ties). The novelty introduced in this work is that the ties are elastic, allowing the struts to extend or contract, and in this way changing the surface of the antenna. Previously, the University of Florida developed an approach to quantify the stability and motion of parallel manipulators. This approach was applied to deployable, tensegrity, antenna structures. Based on the kinematic analyses for the 3-3 (octahedron) and 4-4 (square anti-prism) structures, the 6-6 (hexagonal anti-prism) analysis was completed which establishes usable structural parameters. The primary objective for this work was to prove the stability of this class of deployable structures, and their potential application to space structures. The secondary objective is to define special motions for tensegrity antennas, to meet the subsystem design requirements, such as addressing multiple antenna-feed locations. This work combines the historical experiences of the artist (Snelson), the mathematician (Ball), and the space systems engineer (Wertz) to develop a new, practical design approach. This kinematic analysis of tensegrity structures blends these differences to provide the design community with a new approach to lightweight, robust, adaptive structures with the high reliability that space demands. Additionally, by applying Screw Theory, a tensegrity structure antenna can be commanded to move along a screw axis, and therefore meeting the requirement to address multiple feed locations.
Synthesis design of artificial magnetic metamaterials using a genetic algorithm.
Chen, P Y; Chen, C H; Wang, H; Tsai, J H; Ni, W X
2008-08-18
In this article, we present a genetic algorithm (GA) as one branch of artificial intelligence (AI) for the optimization-design of the artificial magnetic metamaterial whose structure is automatically generated by computer through the filling element methodology. A representative design example, metamaterials with permeability of negative unity, is investigated and the optimized structures found by the GA are presented. It is also demonstrated that our approach is effective for the synthesis of functional magnetic and electric metamaterials with optimal structures. This GA-based optimization-design technique shows great versatility and applicability in the design of functional metamaterials.
Design of a superconducting 28 GHz ion source magnet for FRIB using a shell-based support structure
Felice, H.; Rochepault, E.; Hafalia, R.; ...
2014-12-05
The Superconducting Magnet Program at the Lawrence Berkeley National Laboratory (LBNL) is completing the design of a 28 GHz NbTi ion source magnet for the Facility for Rare Isotope Beams (FRIB). The design parameters are based on the parameters of the ECR ion source VENUS in operation at LBNL since 2002 featuring a sextupole-in-solenoids configuration. Whereas most of the magnet components (such as conductor, magnetic design, protection scheme) remain very similar to the VENUS magnet components, the support structure of the FRIB ion source uses a different concept. A shell-based support structure using bladders and keys is implemented in themore » design allowing fine tuning of the sextupole preload and reversibility of the magnet assembly process. As part of the design work, conductor insulation scheme, coil fabrication processes and assembly procedures are also explored to optimize performance. We present the main features of the design emphasizing the integrated design approach used at LBNL to achieve this result.« less
Lee, Kai-Hui; Chiu, Pei-Ling
2013-10-01
Conventional visual cryptography (VC) suffers from a pixel-expansion problem, or an uncontrollable display quality problem for recovered images, and lacks a general approach to construct visual secret sharing schemes for general access structures. We propose a general and systematic approach to address these issues without sophisticated codebook design. This approach can be used for binary secret images in non-computer-aided decryption environments. To avoid pixel expansion, we design a set of column vectors to encrypt secret pixels rather than using the conventional VC-based approach. We begin by formulating a mathematic model for the VC construction problem to find the column vectors for the optimal VC construction, after which we develop a simulated-annealing-based algorithm to solve the problem. The experimental results show that the display quality of the recovered image is superior to that of previous papers.
An Evolution-Based Approach to De Novo Protein Design and Case Study on Mycobacterium tuberculosis
Brender, Jeffrey R.; Czajka, Jeff; Marsh, David; Gray, Felicia; Cierpicki, Tomasz; Zhang, Yang
2013-01-01
Computational protein design is a reverse procedure of protein folding and structure prediction, where constructing structures from evolutionarily related proteins has been demonstrated to be the most reliable method for protein 3-dimensional structure prediction. Following this spirit, we developed a novel method to design new protein sequences based on evolutionarily related protein families. For a given target structure, a set of proteins having similar fold are identified from the PDB library by structural alignments. A structural profile is then constructed from the protein templates and used to guide the conformational search of amino acid sequence space, where physicochemical packing is accommodated by single-sequence based solvation, torsion angle, and secondary structure predictions. The method was tested on a computational folding experiment based on a large set of 87 protein structures covering different fold classes, which showed that the evolution-based design significantly enhances the foldability and biological functionality of the designed sequences compared to the traditional physics-based force field methods. Without using homologous proteins, the designed sequences can be folded with an average root-mean-square-deviation of 2.1 Å to the target. As a case study, the method is extended to redesign all 243 structurally resolved proteins in the pathogenic bacteria Mycobacterium tuberculosis, which is the second leading cause of death from infectious disease. On a smaller scale, five sequences were randomly selected from the design pool and subjected to experimental validation. The results showed that all the designed proteins are soluble with distinct secondary structure and three have well ordered tertiary structure, as demonstrated by circular dichroism and NMR spectroscopy. Together, these results demonstrate a new avenue in computational protein design that uses knowledge of evolutionary conservation from protein structural families to engineer new protein molecules of improved fold stability and biological functionality. PMID:24204234
NASA Technical Reports Server (NTRS)
Burt, Adam O.; Tinker, Michael L.
2014-01-01
In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.
A systems-based approach for integrated design of materials, products and design process chains
NASA Astrophysics Data System (ADS)
Panchal, Jitesh H.; Choi, Hae-Jin; Allen, Janet K.; McDowell, David L.; Mistree, Farrokh
2007-12-01
The concurrent design of materials and products provides designers with flexibility to achieve design objectives that were not previously accessible. However, the improved flexibility comes at a cost of increased complexity of the design process chains and the materials simulation models used for executing the design chains. Efforts to reduce the complexity generally result in increased uncertainty. We contend that a systems based approach is essential for managing both the complexity and the uncertainty in design process chains and simulation models in concurrent material and product design. Our approach is based on simplifying the design process chains systematically such that the resulting uncertainty does not significantly affect the overall system performance. Similarly, instead of striving for accurate models for multiscale systems (that are inherently complex), we rely on making design decisions that are robust to uncertainties in the models. Accordingly, we pursue hierarchical modeling in the context of design of multiscale systems. In this paper our focus is on design process chains. We present a systems based approach, premised on the assumption that complex systems can be designed efficiently by managing the complexity of design process chains. The approach relies on (a) the use of reusable interaction patterns to model design process chains, and (b) consideration of design process decisions using value-of-information based metrics. The approach is illustrated using a Multifunctional Energetic Structural Material (MESM) design example. Energetic materials store considerable energy which can be released through shock-induced detonation; conventionally, they are not engineered for strength properties. The design objectives for the MESM in this paper include both sufficient strength and energy release characteristics. The design is carried out by using models at different length and time scales that simulate different aspects of the system. Finally, by applying the method to the MESM design problem, we show that the integrated design of materials and products can be carried out more efficiently by explicitly accounting for design process decisions with the hierarchy of models.
DOT National Transportation Integrated Search
2013-05-01
This report showcases several new approaches of using materials science and structural mechanics to accomplish : sustainable design of concrete materials. The topics addressed include blended cements, fiber-reinforced concrete : (FRC), internal curin...
Cooney, Adeline; O'Shea, Eamon; Casey, Dympna; Murphy, Kathy; Dempsey, Laura; Smyth, Siobhan; Hunter, Andrew; Murphy, Edel; Devane, Declan; Jordan, Fionnuala
2013-07-01
This paper describes the steps used in developing and piloting a structured education programme - the Structured Education Reminiscence-based Programme for Staff (SERPS). The programme aimed to prepare nurses and care assistants to use reminiscence when caring for people with dementia living in long-term care. Reminiscence involves facilitating people to talk or think about their past. Structured education programmes are used widely as interventions in randomised controlled trials. However, the process of developing a structured education programme has received little attention relative to that given to evaluating the effectiveness of such programmes. This paper makes explicit the steps followed to develop the SERPS, thereby making a contribution to the methodology of designing and implementing effective structured education programmes. The approach to designing the SERPS was informed by the Van Meijel et al. (2004) model (Journal of Advanced Nursing 48, 84): (1) problem definition, (2) accumulation of building blocks for intervention design, (3) intervention design and (4) intervention validation. Grounded theory was used (1) to generate data to shape the 'building blocks' for the SERPS and (2) to explore residents, family and staff's experience of using/receiving reminiscence. Analysis of the pilot data indicated that the programme met its objective of preparing staff to use reminiscence with residents with dementia. Staff were positive both about the SERPS and the use of reminiscence with residents with dementia. This paper outlines a systematic approach to developing and validating a structured education programme. Participation in a structured education programme is more positive for staff if they are expected to actively implement what they have learnt. Ongoing support during the delivery of the programme is important for successful implementation. The incorporation of client and professional experience in the design phase is a key strength of this approach to programme design. © 2012 Blackwell Publishing Ltd.
Isaacs, Eric B.; Wolverton, Chris
2018-02-26
Electronic band structure contains a wealth of information on the electronic properties of a solid and is routinely computed. However, the more difficult problem of designing a solid with a desired band structure is an outstanding challenge. In order to address this inverse band structure design problem, we devise an approach using materials database screening with materials attributes based on the constituent elements, nominal electron count, crystal structure, and thermodynamics. Our strategy is tested in the context of thermoelectric materials, for which a targeted band structure containing both flat and dispersive components with respect to crystal momentum is highly desirable.more » We screen for thermodynamically stable or metastable compounds containing d 8 transition metals coordinated by anions in a square planar geometry in order to mimic the properties of recently identified oxide thermoelectrics with such a band structure. In doing so, we identify 157 compounds out of a total of over half a million candidates. After further screening based on electronic band gap and structural anisotropy, we explicitly compute the band structures for the several of the candidates in order to validate the approach. We successfully find two new oxide systems that achieve the targeted band structure. Electronic transport calculations on these two compounds, Ba 2PdO 3 and La 4PdO 7, confirm promising thermoelectric power factor behavior for the compounds. This methodology is easily adapted to other targeted band structures and should be widely applicable to a variety of design problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaacs, Eric B.; Wolverton, Chris
Electronic band structure contains a wealth of information on the electronic properties of a solid and is routinely computed. However, the more difficult problem of designing a solid with a desired band structure is an outstanding challenge. In order to address this inverse band structure design problem, we devise an approach using materials database screening with materials attributes based on the constituent elements, nominal electron count, crystal structure, and thermodynamics. Our strategy is tested in the context of thermoelectric materials, for which a targeted band structure containing both flat and dispersive components with respect to crystal momentum is highly desirable.more » We screen for thermodynamically stable or metastable compounds containing d 8 transition metals coordinated by anions in a square planar geometry in order to mimic the properties of recently identified oxide thermoelectrics with such a band structure. In doing so, we identify 157 compounds out of a total of over half a million candidates. After further screening based on electronic band gap and structural anisotropy, we explicitly compute the band structures for the several of the candidates in order to validate the approach. We successfully find two new oxide systems that achieve the targeted band structure. Electronic transport calculations on these two compounds, Ba 2PdO 3 and La 4PdO 7, confirm promising thermoelectric power factor behavior for the compounds. This methodology is easily adapted to other targeted band structures and should be widely applicable to a variety of design problems.« less
Design of plate directional heat transmission structure based on layered thermal metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, L. K.; Yu, Z. F.; Huang, J., E-mail: slk-0-1999@163.com
2016-02-15
Invisibility cloaks based on transformation optics are often closed structures; however, such a structure limits the kinds of objects that can be placed in the cloak. In this work, we adopt a transformation thermodynamics approach to design an “open cloak”, called a plate directional heat transmission structure, which is capable of guiding heat fluxes to the flank region of the metamaterial device. The most fascinating and unique feature of the device is that the lower surface can remain at a lower temperature compared with the SiO{sub 2} aerogel thermal insulation material. Our results are expected to markedly enhance capabilities inmore » thermal protection, thermal-energy utilization, and domains beyond. In addition to the theoretical analysis, the present design is demonstrated in numerical simulations based on finite element calculations.« less
Optimization of composite box-beam structures including effects of subcomponent interactions
NASA Technical Reports Server (NTRS)
Ragon, Scott A.; Guerdal, Zafer; Starnes, James H., Jr.
1995-01-01
Minimum mass designs are obtained for a simple box beam structure subject to bending, torque and combined bending/torque load cases. These designs are obtained subject to point strain and linear buckling constraints. The present work differs from previous efforts in that special attention is payed to including the effects of subcomponent panel interaction in the optimal design process. Two different approaches are used to impose the buckling constraints. When the global approach is used, buckling constraints are imposed on the global structure via a linear eigenvalue analysis. This approach allows the subcomponent panels to interact in a realistic manner. The results obtained using this approach are compared to results obtained using a traditional, less expensive approach, called the local approach. When the local approach is used, in-plane loads are extracted from the global model and used to impose buckling constraints on each subcomponent panel individually. In the global cases, it is found that there can be significant interaction between skin, spar, and rib design variables. This coupling is weak or nonexistent in the local designs. It is determined that weight savings of up to 7% may be obtained by using the global approach instead of the local approach to design these structures. Several of the designs obtained using the linear buckling analysis are subjected to a geometrically nonlinear analysis. For the designs which were subjected to bending loads, the innermost rib panel begins to collapse at less than half the intended design load and in a mode different from that predicted by linear analysis. The discrepancy between the predicted linear and nonlinear responses is attributed to the effects of the nonlinear rib crushing load, and the parameter which controls this rib collapse failure mode is shown to be the rib thickness. The rib collapse failure mode may be avoided by increasing the rib thickness above the value obtained from the (linear analysis based) optimizer. It is concluded that it would be necessary to include geometric nonlinearities in the design optimization process if the true optimum in this case were to be found.
Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.; Raju, Ivatury S.
2016-01-01
Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.
Ligand design by a combinatorial approach based on modeling and experiment: application to HLA-DR4
NASA Astrophysics Data System (ADS)
Evensen, Erik; Joseph-McCarthy, Diane; Weiss, Gregory A.; Schreiber, Stuart L.; Karplus, Martin
2007-07-01
Combinatorial synthesis and large scale screening methods are being used increasingly in drug discovery, particularly for finding novel lead compounds. Although these "random" methods sample larger areas of chemical space than traditional synthetic approaches, only a relatively small percentage of all possible compounds are practically accessible. It is therefore helpful to select regions of chemical space that have greater likelihood of yielding useful leads. When three-dimensional structural data are available for the target molecule this can be achieved by applying structure-based computational design methods to focus the combinatorial library. This is advantageous over the standard usage of computational methods to design a small number of specific novel ligands, because here computation is employed as part of the combinatorial design process and so is required only to determine a propensity for binding of certain chemical moieties in regions of the target molecule. This paper describes the application of the Multiple Copy Simultaneous Search (MCSS) method, an active site mapping and de novo structure-based design tool, to design a focused combinatorial library for the class II MHC protein HLA-DR4. Methods for the synthesizing and screening the computationally designed library are presented; evidence is provided to show that binding was achieved. Although the structure of the protein-ligand complex could not be determined, experimental results including cross-exclusion of a known HLA-DR4 peptide ligand (HA) by a compound from the library. Computational model building suggest that at least one of the ligands designed and identified by the methods described binds in a mode similar to that of native peptides.
Structure-guided fragment-based in silico drug design of dengue protease inhibitors.
Knehans, Tim; Schüller, Andreas; Doan, Danny N; Nacro, Kassoum; Hill, Jeffrey; Güntert, Peter; Madhusudhan, M S; Weil, Tanja; Vasudevan, Subhash G
2011-03-01
An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC(50) = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC(50) = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.
Structure-guided fragment-based in silico drug design of dengue protease inhibitors
NASA Astrophysics Data System (ADS)
Knehans, Tim; Schüller, Andreas; Doan, Danny N.; Nacro, Kassoum; Hill, Jeffrey; Güntert, Peter; Madhusudhan, M. S.; Weil, Tanja; Vasudevan, Subhash G.
2011-03-01
An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC50 = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC50 = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.
Engineering large-scale agent-based systems with consensus
NASA Technical Reports Server (NTRS)
Bokma, A.; Slade, A.; Kerridge, S.; Johnson, K.
1994-01-01
The paper presents the consensus method for the development of large-scale agent-based systems. Systems can be developed as networks of knowledge based agents (KBA) which engage in a collaborative problem solving effort. The method provides a comprehensive and integrated approach to the development of this type of system. This includes a systematic analysis of user requirements as well as a structured approach to generating a system design which exhibits the desired functionality. There is a direct correspondence between system requirements and design components. The benefits of this approach are that requirements are traceable into design components and code thus facilitating verification. The use of the consensus method with two major test applications showed it to be successful and also provided valuable insight into problems typically associated with the development of large systems.
Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs.
Ji, Shen; Guvendiren, Murat
2017-01-01
There is a growing demand for alternative fabrication approaches to develop tissues and organs as conventional techniques are not capable of fabricating constructs with required structural, mechanical, and biological complexity. 3D bioprinting offers great potential to fabricate highly complex constructs with precise control of structure, mechanics, and biological matter [i.e., cells and extracellular matrix (ECM) components]. 3D bioprinting is an additive manufacturing approach that utilizes a "bioink" to fabricate devices and scaffolds in a layer-by-layer manner. 3D bioprinting allows printing of a cell suspension into a tissue construct with or without a scaffold support. The most common bioinks are cell-laden hydrogels, decellulerized ECM-based solutions, and cell suspensions. In this mini review, a brief description and comparison of the bioprinting methods, including extrusion-based, droplet-based, and laser-based bioprinting, with particular focus on bioink design requirements are presented. We also present the current state of the art in bioink design including the challenges and future directions.
Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs
Ji, Shen; Guvendiren, Murat
2017-01-01
There is a growing demand for alternative fabrication approaches to develop tissues and organs as conventional techniques are not capable of fabricating constructs with required structural, mechanical, and biological complexity. 3D bioprinting offers great potential to fabricate highly complex constructs with precise control of structure, mechanics, and biological matter [i.e., cells and extracellular matrix (ECM) components]. 3D bioprinting is an additive manufacturing approach that utilizes a “bioink” to fabricate devices and scaffolds in a layer-by-layer manner. 3D bioprinting allows printing of a cell suspension into a tissue construct with or without a scaffold support. The most common bioinks are cell-laden hydrogels, decellulerized ECM-based solutions, and cell suspensions. In this mini review, a brief description and comparison of the bioprinting methods, including extrusion-based, droplet-based, and laser-based bioprinting, with particular focus on bioink design requirements are presented. We also present the current state of the art in bioink design including the challenges and future directions. PMID:28424770
Model-Based Design of Tree WSNs for Decentralized Detection.
Tantawy, Ashraf; Koutsoukos, Xenofon; Biswas, Gautam
2015-08-20
The classical decentralized detection problem of finding the optimal decision rules at the sensor and fusion center, as well as variants that introduce physical channel impairments have been studied extensively in the literature. The deployment of WSNs in decentralized detection applications brings new challenges to the field. Protocols for different communication layers have to be co-designed to optimize the detection performance. In this paper, we consider the communication network design problem for a tree WSN. We pursue a system-level approach where a complete model for the system is developed that captures the interactions between different layers, as well as different sensor quality measures. For network optimization, we propose a hierarchical optimization algorithm that lends itself to the tree structure, requiring only local network information. The proposed design approach shows superior performance over several contentionless and contention-based network design approaches.
Butscher, A; Bohner, M; Hofmann, S; Gauckler, L; Müller, R
2011-03-01
This article reviews the current state of knowledge concerning the use of powder-based three-dimensional printing (3DP) for the synthesis of bone tissue engineering scaffolds. 3DP is a solid free-form fabrication (SFF) technique building up complex open porous 3D structures layer by layer (a bottom-up approach). In contrast to traditional fabrication techniques generally subtracting material step by step (a top-down approach), SFF approaches allow nearly unlimited designs and a large variety of materials to be used for scaffold engineering. Today's state of the art materials, as well as the mechanical and structural requirements for bone scaffolds, are summarized and discussed in relation to the technical feasibility of their use in 3DP. Advances in the field of 3DP are presented and compared with other SFF methods. Existing strategies on material and design control of scaffolds are reviewed. Finally, the possibilities and limiting factors are addressed and potential strategies to improve 3DP for scaffold engineering are proposed. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.
2004-01-01
An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.
Design and Analysis of a Stiffened Composite Fuselage Panel
NASA Technical Reports Server (NTRS)
Dickson, J. N.; Biggers, S. B.
1980-01-01
A stiffened composite panel has been designed that is representative of the fuselage structure of existing wide bodied aircraft. The panel is a minimum weight design, based on the current level of technology and realistic loads and criteria. Several different stiffener configurations were investigated in the optimization process. The final configuration is an all graphite epoxy J-stiffened design in which the skin between adjacent stiffeners is permitted to buckle under design loads. Fail-safe concepts typically employed in metallic fuselage structure have been incorporated in the design. A conservative approach has been used with regard to structural details such as skin frame and stringer frame attachments and other areas where sufficient design data was not available.
The application of quantum mechanics in structure-based drug design.
Mucs, Daniel; Bryce, Richard A
2013-03-01
Computational chemistry has become an established and valuable component in structure-based drug design. However the chemical complexity of many ligands and active sites challenges the accuracy of the empirical potentials commonly used to describe these systems. Consequently, there is a growing interest in utilizing electronic structure methods for addressing problems in protein-ligand recognition. In this review, the authors discuss recent progress in the development and application of quantum chemical approaches to modeling protein-ligand interactions. The authors specifically consider the development of quantum mechanics (QM) approaches for studying large molecular systems pertinent to biology, focusing on protein-ligand docking, protein-ligand binding affinities and ligand strain on binding. Although computation of binding energies remains a challenging and evolving area, current QM methods can underpin improved docking approaches and offer detailed insights into ligand strain and into the nature and relative strengths of complex active site interactions. The authors envisage that QM will become an increasingly routine and valued tool of the computational medicinal chemist.
Fatigue criterion to system design, life and reliability
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.
1985-01-01
A generalized methodology to structural life prediction, design, and reliability based upon a fatigue criterion is advanced. The life prediction methodology is based in part on work of W. Weibull and G. Lundberg and A. Palmgren. The approach incorporates the computed life of elemental stress volumes of a complex machine element to predict system life. The results of coupon fatigue testing can be incorporated into the analysis allowing for life prediction and component or structural renewal rates with reasonable statistical certainty.
Bridging quantum mechanics and structure-based drug design.
De Vivo, Marco
2011-01-01
The last decade has seen great advances in the use of quantum mechanics (QM) to solve biological problems of pharmaceutical relevance. For instance, enzymatic catalysis is often investigated by means of the so-called QM/MM approach, which uses QM and molecular mechanics (MM) methods to determine the (free) energy landscape of the enzymatic reaction mechanism. Here, I will discuss a few representative examples of QM and QM/MM studies of important metalloenzymes of pharmaceutical interest (i.e. metallophosphatases and metallo-beta-lactamases). This review article aims to show how QM-based methods can be used to elucidate ligand-receptor interactions. The challenge is then to exploit this knowledge for the structure-based design of new and potent inhibitors, such as transition state (TS) analogues that resemble the structure and physicochemical properties of the enzymatic TS. Given the results and potential expressed to date by QM-based methods in studying biological problems, the application of QM in structure-based drug design will likely increase, making of these once-prohibitive computations a routinely used tool for drug design.
RNAfbinv: an interactive Java application for fragment-based design of RNA sequences.
Weinbrand, Lina; Avihoo, Assaf; Barash, Danny
2013-11-15
In RNA design problems, it is plausible to assume that the user would be interested in preserving a particular RNA secondary structure motif, or fragment, for biological reasons. The preservation could be in structure or sequence, or both. Thus, the inverse RNA folding problem could benefit from considering fragment constraints. We have developed a new interactive Java application called RNA fragment-based inverse that allows users to insert an RNA secondary structure in dot-bracket notation. It then performs sequence design that conforms to the shape of the input secondary structure, the specified thermodynamic stability, the specified mutational robustness and the user-selected fragment after shape decomposition. In this shape-based design approach, specific RNA structural motifs with known biological functions are strictly enforced, while others can possess more flexibility in their structure in favor of preserving physical attributes and additional constraints. RNAfbinv is freely available for download on the web at http://www.cs.bgu.ac.il/~RNAexinv/RNAfbinv. The site contains a help file with an explanation regarding the exact use.
NASA Astrophysics Data System (ADS)
Li, Y. B.; Yang, Z. X.; Chen, W.; He, Q. Y.
2017-11-01
The functional performance, such as magnetic flux leakage, power density and efficiency, is related to the structural characteristics and design technique for the disc permanent magnet synchronous generators (PMSGs). Halbach array theory-based magnetic circuit structure is developed, and Maxwell3D simulation analysis approach of PMSG is proposed in this paper for integrated starter generator (ISG). The magnetization direction of adjacent permanent magnet is organized in difference of 45 degrees for focusing air gap side, and improving the performance of the generator. The magnetic field distribution and functional performance in load and/or unload conditions are simulated by Maxwell3D module. The proposed approach is verified by simulation analysis, the air gap flux density is 0.66T, and the phase voltage curve has the characteristics of a preferable sinusoidal wave and the voltage amplitude 335V can meet the design requirements while the disc coreless PMSG is operating at rated speed. And the developed magnetic circuit structure can be used for engineering design of the disc coreless PMSG to the integrated starter generator.
Decentralized control experiments on NASA's flexible grid
NASA Technical Reports Server (NTRS)
Ozguner, U.; Yurkowich, S.; Martin, J., III; Al-Abbass, F.
1986-01-01
Methods arising from the area of decentralized control are emerging for analysis and control synthesis for large flexible structures. In this paper the control strategy involves a decentralized model reference adaptive approach using a variable structure control. Local models are formulated based on desired damping and response time in a model-following scheme for various modal configurations. Variable structure controllers are then designed employing co-located angular rate and position feedback. In this scheme local control forces the system to move on a local sliding mode in some local error space. An important feature of this approach is that the local subsystem is made insensitive to dynamical interactions with other subsystems once the sliding surface is reached. Experiments based on the above have been performed for NASA's flexible grid experimental apparatus. The grid is designed to admit appreciable low-frequency structural dynamics, and allows for implementation of distributed computing components, inertial sensors, and actuation devices. A finite-element analysis of the grid provides the model for control system design and simulation; results of several simulations are reported on here, and a discussion of application experiments on the apparatus is presented.
Redesign of LAOBP to bind novel l-amino acid ligands.
Banda-Vázquez, Jesús; Shanmugaratnam, Sooruban; Rodríguez-Sotres, Rogelio; Torres-Larios, Alfredo; Höcker, Birte; Sosa-Peinado, Alejandro
2018-05-01
Computational protein design is still a challenge for advancing structure-function relationships. While recent advances in this field are promising, more information for genuine predictions is needed. Here, we discuss different approaches applied to install novel glutamine (Gln) binding into the Lysine/Arginine/Ornithine binding protein (LAOBP) from Salmonella typhimurium. We studied the ligand binding behavior of two mutants: a binding pocket grafting design based on a structural superposition of LAOBP to the Gln binding protein QBP from Escherichia coli and a design based on statistical coupled positions. The latter showed the ability to bind Gln even though the protein was not very stable. Comparison of both approaches highlighted a nonconservative shared point mutation between LAOBP_graft and LAOBP_sca. This context dependent L117K mutation in LAOBP turned out to be sufficient for introducing Gln binding, as confirmed by different experimental techniques. Moreover, the crystal structure of LAOBP_L117K in complex with its ligand is reported. © 2018 The Protein Society.
Computational Approaches to Nucleic Acid Origami.
Jabbari, Hosna; Aminpour, Maral; Montemagno, Carlo
2015-10-12
Recent advances in experimental DNA origami have dramatically expanded the horizon of DNA nanotechnology. Complex 3D suprastructures have been designed and developed using DNA origami with applications in biomaterial science, nanomedicine, nanorobotics, and molecular computation. Ribonucleic acid (RNA) origami has recently been realized as a new approach. Similar to DNA, RNA molecules can be designed to form complex 3D structures through complementary base pairings. RNA origami structures are, however, more compact and more thermodynamically stable due to RNA's non-canonical base pairing and tertiary interactions. With all these advantages, the development of RNA origami lags behind DNA origami by a large gap. Furthermore, although computational methods have proven to be effective in designing DNA and RNA origami structures and in their evaluation, advances in computational nucleic acid origami is even more limited. In this paper, we review major milestones in experimental and computational DNA and RNA origami and present current challenges in these fields. We believe collaboration between experimental nanotechnologists and computer scientists are critical for advancing these new research paradigms.
Comprehensive Aspectual UML approach to support AspectJ.
Magableh, Aws; Shukur, Zarina; Ali, Noorazean Mohd
2014-01-01
Unified Modeling Language is the most popular and widely used Object-Oriented modelling language in the IT industry. This study focuses on investigating the ability to expand UML to some extent to model crosscutting concerns (Aspects) to support AspectJ. Through a comprehensive literature review, we identify and extensively examine all the available Aspect-Oriented UML modelling approaches and find that the existing Aspect-Oriented Design Modelling approaches using UML cannot be considered to provide a framework for a comprehensive Aspectual UML modelling approach and also that there is a lack of adequate Aspect-Oriented tool support. This study also proposes a set of Aspectual UML semantic rules and attempts to generate AspectJ pseudocode from UML diagrams. The proposed Aspectual UML modelling approach is formally evaluated using a focus group to test six hypotheses regarding performance; a "good design" criteria-based evaluation to assess the quality of the design; and an AspectJ-based evaluation as a reference measurement-based evaluation. The results of the focus group evaluation confirm all the hypotheses put forward regarding the proposed approach. The proposed approach provides a comprehensive set of Aspectual UML structural and behavioral diagrams, which are designed and implemented based on a comprehensive and detailed set of AspectJ programming constructs.
Characterization and Design of Spiral Frequency Steerable Acoustic Transducers
NASA Astrophysics Data System (ADS)
Repale, Rohan
Structural Health Monitoring (SHM) is an emerging research area devoted to improving the safety and maintainability of civil structures. Guided wave structural testing method is an effective approach used for SHM of plate-like structures using piezoelectric transducers. These transducers are attached to the surface of the structure and are capable of sensing its health by using surface waves. Transducers with beam steering i.e. electronic scanning capabilities can perform surface interrogation with higher precision and ease. A frequency steerable acoustic transducer (FSAT) is capable of beam steering and directional surface wave sensing to detect and localize damage in structures. The objective of this research is to further explore the possibilities of FSAT technology by designing and testing new FSAT designs. The beam steering capability of FSAT can be controlled by manipulating its design parameters. These design parameters therefore play a significant role in FSAT's performance. Studying the design parameters and documenting the performance improvements based on parameter variation is the primary goal of this research. Design and characterization of spiral FSAT was performed and results were simulated. Array FSAT documented results were validated. Modified designs were modeled based on design parameter variations. Characterization of these designs was done and their performance was recorded. Plate simulation results confirm direct relationship between design parameters and beam steering. A set of guidelines for future designs was also proposed. Two designs developed based on the set guidelines were sent to our collaborator Genziko Inc. for fabrication.
A cloud-based approach for interoperable electronic health records (EHRs).
Bahga, Arshdeep; Madisetti, Vijay K
2013-09-01
We present a cloud-based approach for the design of interoperable electronic health record (EHR) systems. Cloud computing environments provide several benefits to all the stakeholders in the healthcare ecosystem (patients, providers, payers, etc.). Lack of data interoperability standards and solutions has been a major obstacle in the exchange of healthcare data between different stakeholders. We propose an EHR system - cloud health information systems technology architecture (CHISTAR) that achieves semantic interoperability through the use of a generic design methodology which uses a reference model that defines a general purpose set of data structures and an archetype model that defines the clinical data attributes. CHISTAR application components are designed using the cloud component model approach that comprises of loosely coupled components that communicate asynchronously. In this paper, we describe the high-level design of CHISTAR and the approaches for semantic interoperability, data integration, and security.
Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Lionta, Evanthia; Heil, Jochen; Kast, Stefan M
2017-07-24
Water molecules play an essential role for mediating interactions between ligands and protein binding sites. Displacement of specific water molecules can favorably modulate the free energy of binding of protein-ligand complexes. Here, the nature of water interactions in protein binding sites is investigated by 3D RISM (three-dimensional reference interaction site model) integral equation theory to understand and exploit local thermodynamic features of water molecules by ranking their possible displacement in structure-based design. Unlike molecular dynamics-based approaches, 3D RISM theory allows for fast and noise-free calculations using the same detailed level of solute-solvent interaction description. Here we correlate molecular water entities instead of mere site density maxima with local contributions to the solvation free energy using novel algorithms. Distinct water molecules and hydration sites are investigated in multiple protein-ligand X-ray structures, namely streptavidin, factor Xa, and factor VIIa, based on 3D RISM-derived free energy density fields. Our approach allows the semiquantitative assessment of whether a given structural water molecule can potentially be targeted for replacement in structure-based design. Finally, PLS-based regression models from free energy density fields used within a 3D-QSAR approach (CARMa - comparative analysis of 3D RISM Maps) are shown to be able to extract relevant information for the interpretation of structure-activity relationship (SAR) trends, as demonstrated for a series of serine protease inhibitors.
Computer-Aided Structure Based Drug Design Approaches for the Discovery of New Anti-CHIKV Agents.
Jadav, Surender Singh; Sinha, Barij Nayan; Hilgenfeld, Rolf; Jayaprakash, Venkatesan
2017-11-10
Chikungunya is a viral infection caused by Chikungunya virus (CHIKV), an arbovirus transmitted through mosquito (Aedes aegypti and Aedes albopictus) bite. The virus from sylvatic cycle in Africa mutated to new vector adaptation and became one of the major emerging and re-emerging viral infections in the past decade, affecting more than 40 countries. Efforts are being made by many researches to develop means to prevent and control the infection through vaccines and vector control strategy. On the other hand, search for novel chemotherapeutic agents for the treatment of infected patients is on. Approach of repurposed drug is one way of identifying an existing drug for the treatment of CHIKV infection. Review the history of CHIKV nsp2 protease inhibitors derived through structure-based computer-aided drug design along with phytochemicals identified as anti-CHIKV agents. A survey on CHIKV inhibitors reported till date has been carriedout. The data obtained were organized and discussed under natural substances and synthetic derivatives obtained as result of rational design. The review provides a well organized content in chronological order that has highly significant information for medicinal chemist who wish to explore the area of Anti-CHIKV drug design and development. Natural compounds with different scaffolds provides an opportunity to explore Ligand based drug design (LBDD), while rational drug design approaches provides opportunity to explore the Structure based drug design. From the presented mini-review, readers can understand that this area is less explored and has lots of potential in anti-CHIKVviral drug design & development. of reported literature inferred that, unlike other viral proteases, the nsP2 protease can be targeted for CHIKV viral inhibition. The HTVS process for the identification of anti-CHIK agents provided a few successive validated lead compounds against CHIKV infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Innovative Product Design Based on Comprehensive Customer Requirements of Different Cognitive Levels
Zhao, Wu; Zheng, Yake; Wang, Rui; Wang, Chen
2014-01-01
To improve customer satisfaction in innovative product design, a topology structure of customer requirements is established and an innovative product approach is proposed. The topology structure provides designers with reasonable guidance to capture the customer requirements comprehensively. With the aid of analytic hierarchy process (AHP), the importance of the customer requirements is evaluated. Quality function deployment (QFD) is used to translate customer requirements into product and process design demands and pick out the technical requirements which need urgent improvement. In this way, the product is developed in a more targeted way to satisfy the customers. the theory of innovative problems solving (TRIZ) is used to help designers to produce innovative solutions. Finally, a case study of automobile steering system is used to illustrate the application of the proposed approach. PMID:25013862
Li, Xiaolong; Zhao, Wu; Zheng, Yake; Wang, Rui; Wang, Chen
2014-01-01
To improve customer satisfaction in innovative product design, a topology structure of customer requirements is established and an innovative product approach is proposed. The topology structure provides designers with reasonable guidance to capture the customer requirements comprehensively. With the aid of analytic hierarchy process (AHP), the importance of the customer requirements is evaluated. Quality function deployment (QFD) is used to translate customer requirements into product and process design demands and pick out the technical requirements which need urgent improvement. In this way, the product is developed in a more targeted way to satisfy the customers. the theory of innovative problems solving (TRIZ) is used to help designers to produce innovative solutions. Finally, a case study of automobile steering system is used to illustrate the application of the proposed approach.
A problem-posing approach to teaching the topic of radioactivity
NASA Astrophysics Data System (ADS)
Klaassen, C. W. J. M.
1995-12-01
This thesis highlights a problem-posing approach to science education. By this is meant an approach that explicitly aims at providing students with content-related motives for extending their existing conceptual resources, experiential base and belief system in a certain direction, such that a further development in that direction eventually leads to a proper understanding of science. An elaboration of that approach consists in designing, testing, improving, etc, concrete didactical structures. The eventual aim of the approach is a coherent, and by means of developmental research empirically supported, didactical structure that covers the whole of science education. The thesis also contains a few steps in the direction suggested by this programmatic view. It contains an illustration of the heuristic value of an articulation of a didactical structure in some main substructures, based on the work of van Hiele and ten Voorde. It further contains a discussion of some methodological aspects relating to the design and evaluation of a didactical structure, and of the role that a further developed version of Davidson's theory of interpretation could play in this respect. A detailed didactical structure of the topic of radioactivity is presented, evaluated and, on the basis of the evaluation, judged as `good enough.' Also the role of the teacher in a problem-posing approach is dis-cussed, and in particular the consequences for that role of giving students control over and responsibility for the progress of their learning process with respect to content.
Grant, P S; Castles, F; Lei, Q; Wang, Y; Janurudin, J M; Isakov, D; Speller, S; Dancer, C; Grovenor, C R M
2015-08-28
Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture.
Grant, P. S.; Castles, F.; Lei, Q.; Wang, Y.; Janurudin, J. M.; Isakov, D.; Speller, S.; Dancer, C.; Grovenor, C. R. M.
2015-01-01
Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture. PMID:26217051
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C
2017-03-01
We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.
Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean
2017-01-01
Abstract We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures. PMID:28289574
1994-03-01
asked whether the planned structure considered (a) all objectives, (b) all functions, (c) all relevant units of analysis such as the plant , the...literature and provides an integrative model of design for high perfor-ming organizations. The model is based on an analysis of current theories of...important midrange theories underlie much of the work on organizational analysis . 0 Systems Approaches. These approaches emphasize the rational, goal
Application of two passive strategies on the load mitigation of large offshore wind turbines
NASA Astrophysics Data System (ADS)
Shirzadeh, Rasoul; Kühn, Martin
2016-09-01
This study presents the numerical results of two passive strategies to reduce the support structure loads of a large offshore wind turbine. In the first approach, an omnidirectional tuned mass damper is designed and implemented in the tower top to alleviate the structural vibrations. In the second approach, a viscous fluid damper model which is diagonally attached to the tower at two points is developed. Aeroelastic simulations are performed for the offshore 10MW INNWIND.EU reference wind turbine mounted on a jacket structure. Lifetime damage equivalent loads are evaluated at the tower base and compared with those for the reference wind turbine. The results show that the integrated design can extend the lifetime of the support structure.
Automated design evolution of stereochemically randomized protein foldamers
NASA Astrophysics Data System (ADS)
Ranbhor, Ranjit; Kumar, Anil; Patel, Kirti; Ramakrishnan, Vibin; Durani, Susheel
2018-05-01
Diversification of chain stereochemistry opens up the possibilities of an ‘in principle’ increase in the design space of proteins. This huge increase in the sequence and consequent structural variation is aimed at the generation of smart materials. To diversify protein structure stereochemically, we introduced L- and D-α-amino acids as the design alphabet. With a sequence design algorithm, we explored the usage of specific variables such as chirality and the sequence of this alphabet in independent steps. With molecular dynamics, we folded stereochemically diverse homopolypeptides and evaluated their ‘fitness’ for possible design as protein-like foldamers. We propose a fitness function to prune the most optimal fold among 1000 structures simulated with an automated repetitive simulated annealing molecular dynamics (AR-SAMD) approach. The highly scored poly-leucine fold with sequence lengths of 24 and 30 amino acids were later sequence-optimized using a Dead End Elimination cum Monte Carlo based optimization tool. This paper demonstrates a novel approach for the de novo design of protein-like foldamers.
ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Blanford; E. Keldrauk; M. Laufer
2010-09-20
Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement,more » and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.« less
An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts
NASA Astrophysics Data System (ADS)
Yan, Kun; Cheng, Gengdong
2018-03-01
For structures subject to impact loads, the residual vibration reduction is more and more important as the machines become faster and lighter. An efficient sensitivity analysis of residual vibration with respect to structural or operational parameters is indispensable for using a gradient based optimization algorithm, which reduces the residual vibration in either active or passive way. In this paper, an integrated quadratic performance index is used as the measure of the residual vibration, since it globally measures the residual vibration response and its calculation can be simplified greatly with Lyapunov equation. Several sensitivity analysis approaches for performance index were developed based on the assumption that the initial excitations of residual vibration were given and independent of structural design. Since the resulting excitations by the impact load often depend on structural design, this paper aims to propose a new efficient sensitivity analysis method for residual vibration of structures subject to impacts to consider the dependence. The new method is developed by combining two existing methods and using adjoint variable approach. Three numerical examples are carried out and demonstrate the accuracy of the proposed method. The numerical results show that the dependence of initial excitations on structural design variables may strongly affects the accuracy of sensitivities.
Research-Based Design and Development of a Simulation of Liquid-Vapor Equilibrium
ERIC Educational Resources Information Center
Akaygun, Sevil; Jones, Loretta L.
2013-01-01
Helping learners to visualize the structures and dynamics of particles through the use of technology is challenging. Animations and simulations can be difficult for learners to interpret and can even lead to new misconceptions. A systematic approach to development based on the findings of cognitive science was used to design, develop, and evaluate…
Software and resources for computational medicinal chemistry
Liao, Chenzhong; Sitzmann, Markus; Pugliese, Angelo; Nicklaus, Marc C
2011-01-01
Computer-aided drug design plays a vital role in drug discovery and development and has become an indispensable tool in the pharmaceutical industry. Computational medicinal chemists can take advantage of all kinds of software and resources in the computer-aided drug design field for the purposes of discovering and optimizing biologically active compounds. This article reviews software and other resources related to computer-aided drug design approaches, putting particular emphasis on structure-based drug design, ligand-based drug design, chemical databases and chemoinformatics tools. PMID:21707404
Structure-based drug design for G protein-coupled receptors.
Congreve, Miles; Dias, João M; Marshall, Fiona H
2014-01-01
Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed. © 2014 Elsevier B.V. All rights reserved.
Dutta, Shuchismita; Zardecki, Christine; Goodsell, David S; Berman, Helen M
2010-10-01
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) supports scientific research and education worldwide by providing an essential resource of information on biomolecular structures. In addition to serving as a deposition, data-processing and distribution center for PDB data, the RCSB PDB offers resources and online materials that different audiences can use to customize their structural biology instruction. These include resources for general audiences that present macromolecular structure in the context of a biological theme, method-based materials for researchers who take a more traditional approach to the presentation of structural science, and materials that mix theme-based and method-based approaches for educators and students. Through these efforts the RCSB PDB aims to enable optimal use of structural data by researchers, educators and students designing and understanding experiments in biology, chemistry and medicine, and by general users making informed decisions about their life and health.
NASA Technical Reports Server (NTRS)
Merchant, D. H.
1976-01-01
Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occurring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the method are also presented.
SVAS3: Strain Vector Aided Sensorization of Soft Structures
Culha, Utku; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya
2014-01-01
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations. PMID:25036332
HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure.
Kwong, Peter D; Mascola, John R
2018-05-15
HIV-1 vaccine development has been stymied by an inability to induce broadly reactive neutralizing antibodies to the envelope (Env) trimer, the sole viral antigen on the virion surface. Antibodies isolated from HIV-1-infected donors, however, have been shown to recognize all major exposed regions of the prefusion-closed Env trimer, and an emerging understanding of the immunological and structural characteristics of these antibodies and the epitopes they recognize is enabling new approaches to vaccine design. Antibody lineage-based design creates immunogens that activate the naive ancestor-B cell of a target antibody lineage and that mature intermediate-B cells toward effective neutralization, with proof of principle achieved with select HIV-1-neutralizing antibody lineages in human-gene knock-in mouse models. Epitope-based vaccine design involves the engineering of sites of Env vulnerability as defined by the recognition of broadly neutralizing antibodies, with cross-reactive neutralizing antibodies elicited in animal models. Both epitope-based and antibody lineage-based HIV-1 vaccine approaches are being readied for human clinical trials. Published by Elsevier Inc.
Novel approaches for targeting the adenosine A2A receptor.
Yuan, Gengyang; Gedeon, Nicholas G; Jankins, Tanner C; Jones, Graham B
2015-01-01
The adenosine A2A receptor (A2AR) represents a drug target for a wide spectrum of diseases. Approaches for targeting this membrane-bound protein have been greatly advanced by new stabilization techniques. The resulting X-ray crystal structures and subsequent analyses provide deep insight to the A2AR from both static and dynamic perspectives. Application of this, along with other biophysical methods combined with fragment-based drug design (FBDD), has become a standard approach in targeting A2AR. Complementarities of in silico screening based- and biophysical screening assisted- FBDD are likely to feature in future approaches in identifying novel ligands against this key receptor. This review describes evolution of the above approaches for targeting A2AR and highlights key modulators identified. It includes a review of: adenosine receptor structures, homology modeling, X-ray structural analysis, rational drug design, biophysical methods, FBDD and in silico screening. As a drug target, the A2AR is attractive as its function plays a role in a wide spectrum of diseases including oncologic, inflammatory, Parkinson's and cardiovascular diseases. Although traditional approaches such as high-throughput screening and homology model-based virtual screening (VS) have played a role in targeting A2AR, numerous shortcomings have generally restricted their applications to specific ligand families. Using stabilization methods for crystallization, X-ray structures of A2AR have greatly accelerated drug discovery and influenced development of biophysical-in silico hybrid screening methods. Application of these new methods to other ARs and G-protein-coupled receptors is anticipated in the future.
Sensitivity method for integrated structure/active control law design
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1987-01-01
The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.
Climate-Smart Design for Ecosystem Management: A Test Application for Coral Reefs.
West, Jordan M; Courtney, Catherine A; Hamilton, Anna T; Parker, Britt A; Julius, Susan H; Hoffman, Jennie; Koltes, Karen H; MacGowan, Petra
2017-01-01
The interactive and cumulative impacts of climate change on natural resources such as coral reefs present numerous challenges for conservation planning and management. Climate change adaptation is complex due to climate-stressor interactions across multiple spatial and temporal scales. This leaves decision makers worldwide faced with local, regional, and global-scale threats to ecosystem processes and services, occurring over time frames that require both near-term and long-term planning. Thus there is a need for structured approaches to adaptation planning that integrate existing methods for vulnerability assessment with design and evaluation of effective adaptation responses. The Corals and Climate Adaptation Planning project of the U.S. Coral Reef Task Force seeks to develop guidance for improving coral reef management through tailored application of a climate-smart approach. This approach is based on principles from a recently-published guide which provides a framework for adopting forward-looking goals, based on assessing vulnerabilities to climate change and applying a structured process to design effective adaptation strategies. Work presented in this paper includes: (1) examination of the climate-smart management cycle as it relates to coral reefs; (2) a compilation of adaptation strategies for coral reefs drawn from a comprehensive review of the literature; (3) in-depth demonstration of climate-smart design for place-based crafting of robust adaptation actions; and (4) feedback from stakeholders on the perceived usefulness of the approach. We conclude with a discussion of lessons-learned on integrating climate-smart design into real-world management planning processes and a call from stakeholders for an "adaptation design tool" that is now under development.
Cryogenic Tank Structure Sizing With Structural Optimization Method
NASA Technical Reports Server (NTRS)
Wang, J. T.; Johnson, T. F.; Sleight, D. W.; Saether, E.
2001-01-01
Structural optimization methods in MSC /NASTRAN are used to size substructures and to reduce the weight of a composite sandwich cryogenic tank for future launch vehicles. Because the feasible design space of this problem is non-convex, many local minima are found. This non-convex problem is investigated in detail by conducting a series of analyses along a design line connecting two feasible designs. Strain constraint violations occur for some design points along the design line. Since MSC/NASTRAN uses gradient-based optimization procedures. it does not guarantee that the lowest weight design can be found. In this study, a simple procedure is introduced to create a new starting point based on design variable values from previous optimization analyses. Optimization analysis using this new starting point can produce a lower weight design. Detailed inputs for setting up the MSC/NASTRAN optimization analysis and final tank design results are presented in this paper. Approaches for obtaining further weight reductions are also discussed.
Improving Distributed Diagnosis Through Structural Model Decomposition
NASA Technical Reports Server (NTRS)
Bregon, Anibal; Daigle, Matthew John; Roychoudhury, Indranil; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino
2011-01-01
Complex engineering systems require efficient fault diagnosis methodologies, but centralized approaches do not scale well, and this motivates the development of distributed solutions. This work presents an event-based approach for distributed diagnosis of abrupt parametric faults in continuous systems, by using the structural model decomposition capabilities provided by Possible Conflicts. We develop a distributed diagnosis algorithm that uses residuals computed by extending Possible Conflicts to build local event-based diagnosers based on global diagnosability analysis. The proposed approach is applied to a multitank system, and results demonstrate an improvement in the design of local diagnosers. Since local diagnosers use only a subset of the residuals, and use subsystem models to compute residuals (instead of the global system model), the local diagnosers are more efficient than previously developed distributed approaches.
Structure-based design of combinatorial mutagenesis libraries
Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris
2015-01-01
The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called “Structure-based Optimization of Combinatorial Mutagenesis” (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. PMID:25611189
Structure-based design of combinatorial mutagenesis libraries.
Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris
2015-05-01
The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. © 2015 The Protein Society.
Model-Based Design of Tree WSNs for Decentralized Detection †
Tantawy, Ashraf; Koutsoukos, Xenofon; Biswas, Gautam
2015-01-01
The classical decentralized detection problem of finding the optimal decision rules at the sensor and fusion center, as well as variants that introduce physical channel impairments have been studied extensively in the literature. The deployment of WSNs in decentralized detection applications brings new challenges to the field. Protocols for different communication layers have to be co-designed to optimize the detection performance. In this paper, we consider the communication network design problem for a tree WSN. We pursue a system-level approach where a complete model for the system is developed that captures the interactions between different layers, as well as different sensor quality measures. For network optimization, we propose a hierarchical optimization algorithm that lends itself to the tree structure, requiring only local network information. The proposed design approach shows superior performance over several contentionless and contention-based network design approaches. PMID:26307989
Combining Rosetta with molecular dynamics (MD): A benchmark of the MD-based ensemble protein design.
Ludwiczak, Jan; Jarmula, Adam; Dunin-Horkawicz, Stanislaw
2018-07-01
Computational protein design is a set of procedures for computing amino acid sequences that will fold into a specified structure. Rosetta Design, a commonly used software for protein design, allows for the effective identification of sequences compatible with a given backbone structure, while molecular dynamics (MD) simulations can thoroughly sample near-native conformations. We benchmarked a procedure in which Rosetta design is started on MD-derived structural ensembles and showed that such a combined approach generates 20-30% more diverse sequences than currently available methods with only a slight increase in computation time. Importantly, the increase in diversity is achieved without a loss in the quality of the designed sequences assessed by their resemblance to natural sequences. We demonstrate that the MD-based procedure is also applicable to de novo design tasks started from backbone structures without any sequence information. In addition, we implemented a protocol that can be used to assess the stability of designed models and to select the best candidates for experimental validation. In sum our results demonstrate that the MD ensemble-based flexible backbone design can be a viable method for protein design, especially for tasks that require a large pool of diverse sequences. Copyright © 2018 Elsevier Inc. All rights reserved.
Preparing Turnaround Leaders for High Needs Urban Schools
ERIC Educational Resources Information Center
Lochmiller, Chad R.; Chesnut, Colleen E.
2017-01-01
Purpose: The purpose of this paper is to describe the program structure and design considerations of a 25-day, full-time apprenticeship in a university-based principal preparation program. Design/Methodology/ Approach: The study used a qualitative case study design that drew upon interviews and focus groups with program participants as well as…
Lucero, R; Sheehan, B; Yen, P; Velez, O; Nobile-Hernandez, D; Tiase, V
2014-01-01
We describe an innovative community-centered participatory design approach, Consumer-centered Participatory Design (C2PD), and the results of applying C2PD to design and develop a web-based fall prevention system. We conducted focus groups and design sessions with English- and Spanish-speaking community-dwelling older adults. Focus group data were summarized and used to inform the context of the design sessions. Descriptive content analysis methods were used to develop categorical descriptions of design session informant's needs related to information technology. The C2PD approach enabled the assessment and identification of informant's needs of health information technology (HIT) that informed the development of a falls prevention system. We learned that our informants needed a system that provides variation in functions/content; differentiates between actionable/non-actionable information/structures; and contains sensory cues that support wide-ranging and complex tasks in a varied, simple, and clear interface to facilitate self-management. The C2PD approach provides community-based organizations, academic researchers, and commercial entities with a systematic theoretically informed approach to develop HIT innovations. Our community-centered participatory design approach focuses on consumer's technology needs while taking into account core public health functions.
Sheehan, B.; Yen, P.; Velez, O.; Nobile-Hernandez, D.; Tiase, V.
2014-01-01
Summary Objectives We describe an innovative community-centered participatory design approach, Consumer-centered Participatory Design (C2PD), and the results of applying C2PD to design and develop a web-based fall prevention system. Methods We conducted focus groups and design sessions with English- and Spanish-speaking community-dwelling older adults. Focus group data were summarized and used to inform the context of the design sessions. Descriptive content analysis methods were used to develop categorical descriptions of design session informant’s needs related to information technology. Results The C2PD approach enabled the assessment and identification of informant’s needs of health information technology (HIT) that informed the development of a falls prevention system. We learned that our informants needed a system that provides variation in functions/content; differentiates between actionable/non-actionable information/structures; and contains sensory cues that support wide-ranging and complex tasks in a varied, simple, and clear interface to facilitate self-management. Conclusions The C2PD approach provides community-based organizations, academic researchers, and commercial entities with a systematic theoretically informed approach to develop HIT innovations. Our community-centered participatory design approach focuses on consumer’s technology needs while taking into account core public health functions. PMID:25589909
Tulloch, Lindsay B; Martini, Viviane P; Iulek, Jorge; Huggan, Judith K; Lee, Jeong Hwan; Gibson, Colin L; Smith, Terry K; Suckling, Colin J; Hunter, William N
2010-01-14
Pteridine reductase (PTR1) is a target for drug development against Trypanosoma and Leishmania species, parasites that cause serious tropical diseases and for which therapies are inadequate. We adopted a structure-based approach to the design of novel PTR1 inhibitors based on three molecular scaffolds. A series of compounds, most newly synthesized, were identified as inhibitors with PTR1-species specific properties explained by structural differences between the T. brucei and L. major enzymes. The most potent inhibitors target T. brucei PTR1, and two compounds displayed antiparasite activity against the bloodstream form of the parasite. PTR1 contributes to antifolate drug resistance by providing a molecular bypass of dihydrofolate reductase (DHFR) inhibition. Therefore, combining PTR1 and DHFR inhibitors might improve therapeutic efficacy. We tested two new compounds with known DHFR inhibitors. A synergistic effect was observed for one particular combination highlighting the potential of such an approach for treatment of African sleeping sickness.
Docking and scoring in virtual screening for drug discovery: methods and applications.
Kitchen, Douglas B; Decornez, Hélène; Furr, John R; Bajorath, Jürgen
2004-11-01
Computational approaches that 'dock' small molecules into the structures of macromolecular targets and 'score' their potential complementarity to binding sites are widely used in hit identification and lead optimization. Indeed, there are now a number of drugs whose development was heavily influenced by or based on structure-based design and screening strategies, such as HIV protease inhibitors. Nevertheless, there remain significant challenges in the application of these approaches, in particular in relation to current scoring schemes. Here, we review key concepts and specific features of small-molecule-protein docking methods, highlight selected applications and discuss recent advances that aim to address the acknowledged limitations of established approaches.
Design and analysis of a stiffened composite fuselage panel
NASA Technical Reports Server (NTRS)
Dickson, J. N.; Biggers, S. B.
1980-01-01
The design and analysis of stiffened composite panel that is representative of the fuselage structure of existing wide bodied aircraft is discussed. The panel is a minimum weight design, based on the current level of technology and realistic loads and criteria. Several different stiffener configurations were investigated in the optimization process. The final configuration is an all graphite/epoxy J-stiffened design in which the skin between adjacent stiffeners is permitted to buckle under design loads. Fail safe concepts typically employed in metallic fuselage structure have been incorporated in the design. A conservative approach has been used with regard to structural details such as skin/frame and stringer/frame attachments and other areas where sufficient design data was not available.
ERIC Educational Resources Information Center
Mazuritskiy, M. I.; Safontsev, S. A.; Konoplev, B. G.; Boldyreva, A. M.
2014-01-01
This article describes the competency-based approach to e-learning education that utilizes remote access to the laboratory equipment. The main focus of the paper is the structure and design of the e-learning system used in the Southern Federal University (Russia). The article discusses the related pedagogical strategies and presents system's…
Protein crystallography and infectious diseases.
Verlinde, C. L.; Merritt, E. A.; Van den Akker, F.; Kim, H.; Feil, I.; Delboni, L. F.; Mande, S. C.; Sarfaty, S.; Petra, P. H.; Hol, W. G.
1994-01-01
The current rapid growth in the number of known 3-dimensional protein structures is producing a database of structures that is increasingly useful as a starting point for the development of new medically relevant molecules such as drugs, therapeutic proteins, and vaccines. This development is beautifully illustrated in the recent book, Protein structure: New approaches to disease and therapy (Perutz, 1992). There is a great and growing promise for the design of molecules for the treatment or prevention of a wide variety of diseases, an endeavor made possible by the insights derived from the structure and function of crucial proteins from pathogenic organisms and from man. We present here 2 illustrations of structure-based drug design. The first is the prospect of developing antitrypanosomal drugs based on crystallographic, ligand-binding, and molecular modeling studies of glycolytic glycosomal enzymes from Trypanosomatidae. These unicellular organisms are responsible for several tropical diseases, including African and American trypanosomiases, as well as various forms of leishmaniasis. Because the target enzymes are also present in the human host, this project is a pioneering study in selective design. The second illustrative case is the prospect of designing anti-cholera drugs based on detailed analysis of the structure of cholera toxin and the closely related Escherichia coli heat-labile enterotoxin. Such potential drugs can be targeted either at inhibiting the toxin's receptor binding site or at blocking the toxin's intracellular catalytic activity. Study of the Vibrio cholerae and E. coli toxins serves at the same time as an example of a general approach to structure-based vaccine design. These toxins exhibit a remarkable ability to stimulate the mucosal immune system, and early results have suggested that this property can be maintained by engineered fusion proteins based on the native toxin structure. The challenge is thus to incorporate selected epitopes from foreign pathogens into the native framework of the toxin such that crucial features of both the epitope and the toxin are maintained. That is, the modified toxin must continue to evoke a strong mucosal immune response, and this response must be directed against an epitope conformation characteristic of the original pathogen. PMID:7849584
Zhang, Tao; Gao, Feng; Jiang, Xiangqian
2017-10-02
This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.
Structure-based drug design: docking and scoring.
Kroemer, Romano T
2007-08-01
This review gives an introduction into ligand - receptor docking and illustrates the basic underlying concepts. An overview of different approaches and algorithms is provided. Although the application of docking and scoring has led to some remarkable successes, there are still some major challenges ahead, which are outlined here as well. Approaches to address some of these challenges and the latest developments in the area are presented. Some aspects of the assessment of docking program performance are discussed. A number of successful applications of structure-based virtual screening are described.
Reduced complexity structural modeling for automated airframe synthesis
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1987-01-01
A procedure is developed for the optimum sizing of wing structures based on representing the built-up finite element assembly of the structure by equivalent beam models. The reduced-order beam models are computationally less demanding in an optimum design environment which dictates repetitive analysis of several trial designs. The design procedure is implemented in a computer program requiring geometry and loading information to create the wing finite element model and its equivalent beam model, and providing a rapid estimate of the optimum weight obtained from a fully stressed design approach applied to the beam. The synthesis procedure is demonstrated for representative conventional-cantilever and joined wing configurations.
Displacement based multilevel structural optimization
NASA Technical Reports Server (NTRS)
Striz, Alfred G.
1995-01-01
Multidisciplinary design optimization (MDO) is expected to play a major role in the competitive transportation industries of tomorrow, i.e., in the design of aircraft and spacecraft, of high speed trains, boats, and automobiles. All of these vehicles require maximum performance at minimum weight to keep fuel consumption low and conserve resources. Here, MDO can deliver mathematically based design tools to create systems with optimum performance subject to the constraints of disciplines such as structures, aerodynamics, controls, etc. Although some applications of MDO are beginning to surface, the key to a widespread use of this technology lies in the improvement of its efficiency. This aspect is investigated here for the MDO subset of structural optimization, i.e., for the weight minimization of a given structure under size, strength, and displacement constraints. Specifically, finite element based multilevel optimization of structures (here, statically indeterminate trusses and beams for proof of concept) is performed. In the system level optimization, the design variables are the coefficients of assumed displacement functions, and the load unbalance resulting from the solution of the stiffness equations is minimized. Constraints are placed on the deflection amplitudes and the weight of the structure. In the subsystems level optimizations, the weight of each element is minimized under the action of stress constraints, with the cross sectional dimensions as design variables. This approach is expected to prove very efficient, especially for complex structures, since the design task is broken down into a large number of small and efficiently handled subtasks, each with only a small number of variables. This partitioning will also allow for the use of parallel computing, first, by sending the system and subsystems level computations to two different processors, ultimately, by performing all subsystems level optimizations in a massively parallel manner on separate processors. It is expected that the subsystems level optimizations can be further improved through the use of controlled growth, a method which reduces an optimization to a more efficient analysis with only a slight degradation in accuracy. The efficiency of all proposed techniques is being evaluated relative to the performance of the standard single level optimization approach where the complete structure is weight minimized under the action of all given constraints by one processor and to the performance of simultaneous analysis and design which combines analysis and optimization into a single step. It is expected that the present approach can be expanded to include additional structural constraints (buckling, free and forced vibration, etc.) or other disciplines (passive and active controls, aerodynamics, etc.) for true MDO.
ERIC Educational Resources Information Center
Alorda, B.; Suenaga, K.; Pons, P.
2011-01-01
This paper reports on the design, implementation and assessment of a new approach course structure based on the combination of three cooperative methodologies. The main goal is to reduce the percentage of non-passed students focusing the learning process on students by offering different alternatives and motivational activities based on working in…
On Developing a Taxonomy for Multidisciplinary Design Optimization: A Decision-Based Perspective
NASA Technical Reports Server (NTRS)
Lewis, Kemper; Mistree, Farrokh
1995-01-01
In this paper, we approach MDO from a Decision-Based Design (DBD) perspective and explore classification schemes for designing complex systems and processes. Specifically, we focus on decisions, which are only a small portion of the Decision Support Problem (DSP) Technique, our implementation of DBD. We map coupled nonhierarchical and hierarchical representations from the DSP Technique into the Balling-Sobieski (B-S) framework (Balling and Sobieszczanski-Sobieski, 1994), and integrate domain-independent linguistic terms to complete our taxonomy. Application of DSPs to the design of complex, multidisciplinary systems include passenger aircraft, ships, damage tolerant structural and mechanical systems, and thermal energy systems. In this paper we show that Balling-Sobieski framework is consistent with that of the Decision Support Problem Technique through the use of linguistic entities to describe the same type of formulations. We show that the underlying linguistics of the solution approaches are the same and can be coalesced into a homogeneous framework with which to base the research, application, and technology MDO upon. We introduce, in the Balling-Sobieski framework, examples of multidisciplinary design, namely, aircraft, damage tolerant structural and mechanical systems, and thermal energy systems.
Parsy, Christophe; Alexandre, François-René; Brandt, Guillaume; Caillet, Catherine; Cappelle, Sylvie; Chaves, Dominique; Convard, Thierry; Derock, Michel; Gloux, Damien; Griffon, Yann; Lallos, Lisa; Leroy, Frédéric; Liuzzi, Michel; Loi, Anna-Giulia; Moulat, Laure; Musiu, Chiara; Rahali, Houcine; Roques, Virginie; Seifer, Maria; Standring, David; Surleraux, Dominique
2014-09-15
Structural homology between thrombin inhibitors and the early tetrapeptide HCV protease inhibitor led to the bioisosteric replacement of the P2 proline by a 2,4-disubstituted azetidine within the macrocyclic β-strand mimic. Molecular modeling guided the design of the series. This approach was validated by the excellent activity and selectivity in biochemical and cell based assays of this novel series and confirmed by the co-crystal structure of the inhibitor with the NS3/4A protein (PDB code: 4TYD). Copyright © 2014 Elsevier Ltd. All rights reserved.
Polymorphic design of DNA origami structures through mechanical control of modular components.
Lee, Chanseok; Lee, Jae Young; Kim, Do-Nyun
2017-12-12
Scaffolded DNA origami enables the bottom-up fabrication of diverse DNA nanostructures by designing hundreds of staple strands, comprised of complementary sequences to the specific binding locations of a scaffold strand. Despite its exceptionally high design flexibility, poor reusability of staples has been one of the major hurdles to fabricate assorted DNA constructs in an effective way. Here we provide a rational module-based design approach to create distinct bent shapes with controllable geometries and flexibilities from a single, reference set of staples. By revising the staple connectivity within the desired module, we can control the location, stiffness, and included angle of hinges precisely, enabling the construction of dozens of single- or multiple-hinge structures with the replacement of staple strands up to 12.8% only. Our design approach, combined with computational shape prediction and analysis, can provide a versatile and cost-effective procedure in the design of DNA origami shapes with stiffness-tunable units.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Technical Reports Server (NTRS)
Wada, Ben K. (Editor); Fanson, James L. (Editor); Miura, Koryo (Editor)
1991-01-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Astrophysics Data System (ADS)
Wada, Ben K.; Fanson, James L.; Miura, Koryo
1991-11-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
NASA Technical Reports Server (NTRS)
Park, Junhong; Palumbo, Daniel L.
2004-01-01
The use of shunted piezoelectric patches in reducing vibration and sound radiation of structures has several advantages over passive viscoelastic elements, e.g., lower weight with increased controllability. The performance of the piezoelectric patches depends on the shunting electronics that are designed to dissipate vibration energy through a resistive element. In past efforts most of the proposed tuning methods were based on modal properties of the structure. In these cases, the tuning applies only to one mode of interest and maximum tuning is limited to invariant points when based on den Hartog's invariant points concept. In this study, a design method based on the wave propagation approach is proposed. Optimal tuning is investigated depending on the dynamic and geometric properties that include effects from boundary conditions and position of the shunted piezoelectric patch relative to the structure. Active filters are proposed as shunting electronics to implement the tuning criteria. The developed tuning methods resulted in superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions, and can applied to frequency ranges in which multiple modes have effects.
Structural design using equilibrium programming formulations
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
1995-01-01
Solutions to increasingly larger structural optimization problems are desired. However, computational resources are strained to meet this need. New methods will be required to solve increasingly larger problems. The present approaches to solving large-scale problems involve approximations for the constraints of structural optimization problems and/or decomposition of the problem into multiple subproblems that can be solved in parallel. An area of game theory, equilibrium programming (also known as noncooperative game theory), can be used to unify these existing approaches from a theoretical point of view (considering the existence and optimality of solutions), and be used as a framework for the development of new methods for solving large-scale optimization problems. Equilibrium programming theory is described, and existing design techniques such as fully stressed design and constraint approximations are shown to fit within its framework. Two new structural design formulations are also derived. The first new formulation is another approximation technique which is a general updating scheme for the sensitivity derivatives of design constraints. The second new formulation uses a substructure-based decomposition of the structure for analysis and sensitivity calculations. Significant computational benefits of the new formulations compared with a conventional method are demonstrated.
Neurocomputing strategies in decomposition based structural design
NASA Technical Reports Server (NTRS)
Szewczyk, Z.; Hajela, P.
1993-01-01
The present paper explores the applicability of neurocomputing strategies in decomposition based structural optimization problems. It is shown that the modeling capability of a backpropagation neural network can be used to detect weak couplings in a system, and to effectively decompose it into smaller, more tractable, subsystems. When such partitioning of a design space is possible, parallel optimization can be performed in each subsystem, with a penalty term added to its objective function to account for constraint violations in all other subsystems. Dependencies among subsystems are represented in terms of global design variables, and a neural network is used to map the relations between these variables and all subsystem constraints. A vector quantization technique, referred to as a z-Network, can effectively be used for this purpose. The approach is illustrated with applications to minimum weight sizing of truss structures with multiple design constraints.
Attitude control of the space construction base: A modular approach
NASA Technical Reports Server (NTRS)
Oconnor, D. A.
1982-01-01
A planar model of a space base and one module is considered. For this simplified system, a feedback controller which is compatible with the modular construction method is described. The systems dynamics are decomposed into two parts corresponding to base and module. The information structure of the problem is non-classical in that not all system information is supplied to each controller. The base controller is designed to accommodate structural changes that occur as the module is added and the module controller is designed to regulate its own states and follow commands from the base. Overall stability of the system is checked by Liapunov analysis and controller effectiveness is verified by computer simulation.
Heat Transfer Principles in Thermal Calculation of Structures in Fire
Zhang, Chao; Usmani, Asif
2016-01-01
Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher education, there are graduate courses for fire resistant design which focus on the design approaches in codes. As a result, structural engineers who are responsible for structural fire safety and are competent to do their jobs by following the rules specified in prescriptive codes may find it difficult to move toward performance-based fire safety design which requires a deep understanding of both fire and heat. Fire safety engineers, on the other hand, are usually focused on fire development and smoke control, and may not be familiar with the heat transfer principles used in structural fire analysis, or structural failure analysis. This paper discusses the fundamental heat transfer principles in thermal calculation of structures in fire, which might serve as an educational guide for students, engineers and researchers. Insights on problems which are commonly ignored in performance based fire safety design are also presented. PMID:26783379
Using VCL as an Aspect-Oriented Approach to Requirements Modelling
NASA Astrophysics Data System (ADS)
Amálio, Nuno; Kelsen, Pierre; Ma, Qin; Glodt, Christian
Software systems are becoming larger and more complex. By tackling the modularisation of crosscutting concerns, aspect orientation draws attention to modularity as a means to address the problems of scalability, complexity and evolution in software systems development. Aspect-oriented modelling (AOM) applies aspect-orientation to the construction of models. Most existing AOM approaches are designed without a formal semantics, and use multi-view partial descriptions of behaviour. This paper presents an AOM approach based on the Visual Contract Language (VCL): a visual language for abstract and precise modelling, designed with a formal semantics, and comprising a novel approach to visual behavioural modelling based on design by contract where behavioural descriptions are total. By applying VCL to a large case study of a car-crash crisis management system, the paper demonstrates how modularity of VCL's constructs, at different levels of granularity, help to tackle complexity. In particular, it shows how VCL's package construct and its associated composition mechanisms are key in supporting separation of concerns, coarse-grained problem decomposition and aspect-orientation. The case study's modelling solution has a clear and well-defined modular structure; the backbone of this structure is a collection of packages encapsulating local solutions to concerns.
Model-based Executive Control through Reactive Planning for Autonomous Rovers
NASA Technical Reports Server (NTRS)
Finzi, Alberto; Ingrand, Felix; Muscettola, Nicola
2004-01-01
This paper reports on the design and implementation of a real-time executive for a mobile rover that uses a model-based, declarative approach. The control system is based on the Intelligent Distributed Execution Architecture (IDEA), an approach to planning and execution that provides a unified representational and computational framework for an autonomous agent. The basic hypothesis of IDEA is that a large control system can be structured as a collection of interacting agents, each with the same fundamental structure. We show that planning and real-time response are compatible if the executive minimizes the size of the planning problem. We detail the implementation of this approach on an exploration rover (Gromit an RWI ATRV Junior at NASA Ames) presenting different IDEA controllers of the same domain and comparing them with more classical approaches. We demonstrate that the approach is scalable to complex coordination of functional modules needed for autonomous navigation and exploration.
Finite element based N-Port model for preliminary design of multibody systems
NASA Astrophysics Data System (ADS)
Sanfedino, Francesco; Alazard, Daniel; Pommier-Budinger, Valérie; Falcoz, Alexandre; Boquet, Fabrice
2018-02-01
This article presents and validates a general framework to build a linear dynamic Finite Element-based model of large flexible structures for integrated Control/Structure design. An extension of the Two-Input Two-Output Port (TITOP) approach is here developed. The authors had already proposed such framework for simple beam-like structures: each beam was considered as a TITOP sub-system that could be interconnected to another beam thanks to the ports. The present work studies bodies with multiple attaching points by allowing complex interconnections among several sub-structures in tree-like assembly. The TITOP approach is extended to generate NINOP (N-Input N-Output Port) models. A Matlab toolbox is developed integrating beam and bending plate elements. In particular a NINOP formulation of bending plates is proposed to solve analytic two-dimensional problems. The computation of NINOP models using the outputs of a MSC/Nastran modal analysis is also investigated in order to directly use the results provided by a commercial finite element software. The main advantage of this tool is to provide a model of a multibody system under the form of a block diagram with a minimal number of states. This model is easy to operate for preliminary design and control. An illustrative example highlights the potential of the proposed approach: the synthesis of the dynamical model of a spacecraft with two deployable and flexible solar arrays.
Experimental Learning Enhancing Improvisation Skills
ERIC Educational Resources Information Center
Pereira Christopoulos, Tania; Wilner, Adriana; Trindade Bestetti, Maria Luisa
2016-01-01
Purpose: This study aims to present improvisation training and experimentation as an alternative method to deal with unexpected events in which structured processes do not seem to work. Design/Methodology/Approach: Based on the literature of sensemaking and improvisation, the study designs a framework and process model of experimental learning…
Probabilistic performance-based design for high performance control systems
NASA Astrophysics Data System (ADS)
Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice
2017-04-01
High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Arakere, G.; Pandurangan, B.; Hariharan, A.; Yen, C.-F.; Cheeseman, B. A.
2011-02-01
To respond to the advent of more lethal threats, recently designed aluminum-armor-based military-vehicle systems have resorted to an increasing use of higher strength aluminum alloys (with superior ballistic resistance against armor piercing (AP) threats and with high vehicle-light weighing potential). Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies and in-order to obtain high-quality welds, solid-state joining technologies such as Friction stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military vehicle structures is not straight forward and entails a comprehensive multi-step approach. One such (three-step) approach is developed in the present work. Within the first step, experimental and computational techniques are utilized to determine the optimal tool design and the optimal FSW process parameters which result in maximal productivity of the joining process and the highest quality of the weld. Within the second step, techniques are developed for the identification and qualification of the optimal weld joint designs in different sections of a prototypical military vehicle structure. In the third step, problems associated with the fabrication of a sub-scale military vehicle test structure and the blast survivability of the structure are assessed. The results obtained and the lessons learned are used to judge the potential of the current approach in shortening the development time and in enhancing reliability and blast survivability of military vehicle structures.
Bor, E; Turduev, M; Kurt, H
2016-08-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.
Bor, E.; Turduev, M.; Kurt, H.
2016-01-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060
Deployable Soft Composite Structures.
Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon
2016-02-19
Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.
Deployable Soft Composite Structures
Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon
2016-01-01
Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel. PMID:26892762
Advantages of Structure-Based Drug Design Approaches in Neurological Disorders
Aarthy, Murali; Panwar, Umesh; Selvaraj, Chandrabose; Singh, Sanjeev Kumar
2017-01-01
Objective: The purpose of the review is to portray the theoretical concept on neurological disorders from research data. Background: The freak changes in chemical response of nerve impulse causes neurological disorders. The research evidence of the effort done in the older history suggests that the biological drug targets and their effective feature with responsive drugs could be valuable in promoting the future development of health statistics structure for improved treatment for curing the nervous disorders. Methods: In this review, we summarized the most iterative theoretical concept of structure based drug design approaches in various neurological disorders to unfathomable understanding of reported information for future drug design and development. Results: On the premise of reported information we analyzed the model of theoretical drug designing process for understanding the mechanism and pathology of the neurological diseases which covers the development of potentially effective inhibitors against the biological drug targets. Finally, it also suggests the management and implementation of the current treatment in improving the human health system behaviors. Conclusion: With the survey of reported information we concluded the development strategies of diagnosis and treatment against neurological diseases which leads to supportive progress in the drug discovery. PMID:28042767
Total-System Approach To Design And Analysis Of Structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1995-01-01
Paper presents overview and study of, and comprehensive approach to, multidisciplinary engineering design and analysis of structures. Emphasizes issues related to design of semistatic structures in environments in which spacecraft launched, underlying concepts applicable to other structures within unique terrestrial, marine, or flight environments. Purpose of study to understand interactions among traditionally separate engineering design disciplines with view toward optimizing not only structure but also overall design process.
Implementing Service Excellence in Higher Education
ERIC Educational Resources Information Center
Khan, Hina; Matlay, Harry
2009-01-01
Purpose: The purpose of this paper is to provide a critical analysis of the importance of service excellence in higher education. Design/methodology/approach: The research upon which this paper is based employed a phenomenological approach. This method was selected for its focus on respondent perceptions and experiences. Both structured and…
Understanding Performance Management in Schools: A Dialectical Approach
ERIC Educational Resources Information Center
Page, Damien
2016-01-01
Purpose: The purpose of this paper is to provide a dialectical framework for the examination of performance management in schools. Design/Methodology/Approach: The paper is based upon a qualitative study of ten headteachers that involved in-depth semi-structured interviews. Findings: The findings identified four dialectical tensions that underpin…
When ICT Meets Schools: Differentiation, Complexity and Adaptability
ERIC Educational Resources Information Center
Tubin, Dorit
2007-01-01
Purpose: The purpose of this study is to explore the interaction between information communication technology (ICT) and the school's organizational structure, and propose an analytical model based both on Luhmann's system theory and empirical findings. Design/methodology/approach: The approach of building a theory from a case study research along…
Liu, Ying; Kumar, Sriram; Taylor, Rebecca E
2018-04-06
The evergrowing need to understand and engineer biological and biochemical mechanisms has led to the emergence of the field of nanobiosensing. Structural DNA nanotechnology, encompassing methods such as DNA origami and single-stranded tiles, involves the base pairing-driven knitting of DNA into discrete one-, two-, and three-dimensional shapes at nanoscale. Such nanostructures enable a versatile design and fabrication of nanobiosensors. These systems benefit from DNA's programmability, inherent biocompatibility, and the ability to incorporate and organize functional materials such as proteins and metallic nanoparticles. In this review, we present a mix-and-match taxonomy and approach to designing nanobiosensors in which the choices of bioanalyte and transduction mechanism are fully independent of each other. We also highlight opportunities for greater complexity and programmability of these systems that are built using structural DNA nanotechnology. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Diagnostic Tools > Biosensing Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.
Design Optimization of Irregular Cellular Structure for Additive Manufacturing
NASA Astrophysics Data System (ADS)
Song, Guo-Hua; Jing, Shi-Kai; Zhao, Fang-Lei; Wang, Ye-Dong; Xing, Hao; Zhou, Jing-Tao
2017-09-01
Irregularcellular structurehas great potential to be considered in light-weight design field. However, the research on optimizing irregular cellular structures has not yet been reporteddue to the difficulties in their modeling technology. Based on the variable density topology optimization theory, an efficient method for optimizing the topology of irregular cellular structures fabricated through additive manufacturing processes is proposed. The proposed method utilizes tangent circles to automatically generate the main outline of irregular cellular structure. The topological layoutof each cellstructure is optimized using the relative density informationobtained from the proposed modified SIMP method. A mapping relationship between cell structure and relative densityelement is builtto determine the diameter of each cell structure. The results show that the irregular cellular structure can be optimized with the proposed method. The results of simulation and experimental test are similar for irregular cellular structure, which indicate that the maximum deformation value obtained using the modified Solid Isotropic Microstructures with Penalization (SIMP) approach is lower 5.4×10-5 mm than that using the SIMP approach under the same under the same external load. The proposed research provides the instruction to design the other irregular cellular structure.
An expert system for integrated structural analysis and design optimization for aerospace structures
NASA Technical Reports Server (NTRS)
1992-01-01
The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and design optimization tasks in the integrated aerospace structural design process. These expert systems were developed to work in conjunction with procedural finite element structural analysis and design optimization modules (developed in-house at SAT, Inc.). The complete software, AutoDesign, so developed, can be used for integrated 'intelligent' structural analysis and design optimization. The software was beta-tested at a variety of companies, used by a range of engineers with different levels of background and expertise. Based on the feedback obtained by such users, conclusions were developed and are provided.
An expert system for integrated structural analysis and design optimization for aerospace structures
NASA Astrophysics Data System (ADS)
1992-04-01
The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and design optimization tasks in the integrated aerospace structural design process. These expert systems were developed to work in conjunction with procedural finite element structural analysis and design optimization modules (developed in-house at SAT, Inc.). The complete software, AutoDesign, so developed, can be used for integrated 'intelligent' structural analysis and design optimization. The software was beta-tested at a variety of companies, used by a range of engineers with different levels of background and expertise. Based on the feedback obtained by such users, conclusions were developed and are provided.
ERIC Educational Resources Information Center
Chang, Shu-Hsuan; Wu, Tsung-Chih; Kuo, Yen-Kuang; You, Li-Chih
2012-01-01
This study proposed a novel instructional approach, a two-stage LED simulation of Project-based learning (PBL) course with online peer assessment (OPA), and explored how to apply OPA to the different structured problems in a PBL course to enhance students' professional skills in LED design as well as meta-cognitive thinking. The participants of…
Comprehensive Aspectual UML Approach to Support AspectJ
Magableh, Aws; Shukur, Zarina; Mohd. Ali, Noorazean
2014-01-01
Unified Modeling Language is the most popular and widely used Object-Oriented modelling language in the IT industry. This study focuses on investigating the ability to expand UML to some extent to model crosscutting concerns (Aspects) to support AspectJ. Through a comprehensive literature review, we identify and extensively examine all the available Aspect-Oriented UML modelling approaches and find that the existing Aspect-Oriented Design Modelling approaches using UML cannot be considered to provide a framework for a comprehensive Aspectual UML modelling approach and also that there is a lack of adequate Aspect-Oriented tool support. This study also proposes a set of Aspectual UML semantic rules and attempts to generate AspectJ pseudocode from UML diagrams. The proposed Aspectual UML modelling approach is formally evaluated using a focus group to test six hypotheses regarding performance; a “good design” criteria-based evaluation to assess the quality of the design; and an AspectJ-based evaluation as a reference measurement-based evaluation. The results of the focus group evaluation confirm all the hypotheses put forward regarding the proposed approach. The proposed approach provides a comprehensive set of Aspectual UML structural and behavioral diagrams, which are designed and implemented based on a comprehensive and detailed set of AspectJ programming constructs. PMID:25136656
The Application of Concurrent Engineering Tools and Design Structure Matrix in Designing Tire
NASA Astrophysics Data System (ADS)
Ginting, Rosnani; Fachrozi Fitra Ramadhan, T.
2016-02-01
The development of automobile industry in Indonesia is growing rapidly. This phenomenon causes companies related to the automobile industry such as tire industry must develop products based on customers’ needs and considering the timeliness of delivering the product to the customer. It could be reached by applying strategic planning in developing an integrated concept of product development. This research was held in PT. XYZ that applied the sequential approach in designing and developing products. The need to improve in one stage of product development could occur re-designing that needs longer time in developing a new product. This research is intended to get an integrated product design concept of tire pertaining to the customer's needs using Concurrent Engineering Tools by implementing the two-phased of product development. The implementation of Concurrent Engineering approach results in applying the stage of project planning, conceptual design, and product modules. The product modules consist of four modules that using Product Architecture - Design Structure Matrix to ease the designing process of new product development.
Bayramzadeh, Sara; Joseph, Anjali; Allison, David; Shultz, Jonas; Abernathy, James
2018-07-01
This paper describes the process and tools developed as part of a multidisciplinary collaborative simulation-based approach for iterative design and evaluation of operating room (OR) prototypes. Full-scale physical mock-ups of healthcare spaces offer an opportunity to actively communicate with and to engage multidisciplinary stakeholders in the design process. While mock-ups are increasingly being used in healthcare facility design projects, they are rarely evaluated in a manner to support active user feedback and engagement. Researchers and architecture students worked closely with clinicians and architects to develop OR design prototypes and engaged clinical end-users in simulated scenarios. An evaluation toolkit was developed to compare design prototypes. The mock-up evaluation helped the team make key decisions about room size, location of OR table, intra-room zoning, and doors location. Structured simulation based mock-up evaluations conducted in the design process can help stakeholders visualize their future workspace and provide active feedback. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Proposed Conceptual Framework for Curriculum Design in Physical Fitness.
ERIC Educational Resources Information Center
Miller, Peter V.; Beauchamp, Larry S.
A physical fitness curriculum, designed to provide cumulative benefits in a sequential pattern, is based upon a framework of a conceptual structure. The curriculum's ultimate goal is the achievement of greater physiological efficiency through a holistic approach that would strengthen circulatory-respiratory, mechanical, and neuro-muscular…
NASA Astrophysics Data System (ADS)
Camacho-Navarro, Jhonatan; Ruiz, Magda; Villamizar, Rodolfo; Mujica, Luis; Moreno-Beltrán, Gustavo; Quiroga, Jabid
2017-05-01
Continuous monitoring for damage detection in structural assessment comprises implementation of low cost equipment and efficient algorithms. This work describes the stages involved in the design of a methodology with high feasibility to be used in continuous damage assessment. Specifically, an algorithm based on a data-driven approach by using principal component analysis and pre-processing acquired signals by means of cross-correlation functions, is discussed. A carbon steel pipe section and a laboratory tower were used as test structures in order to demonstrate the feasibility of the methodology to detect abrupt changes in the structural response when damages occur. Two types of damage cases are studied: crack and leak for each structure, respectively. Experimental results show that the methodology is promising in the continuous monitoring of real structures.
NASA Astrophysics Data System (ADS)
Letendre, Steven Emery
The U.S. electric utility sector in its current configuration is unsustainable. The majority of electricity in the United States is produced using finite fossil fuels. In addition, significant potential exists to improve the nation's efficient use of energy. A sustainable electric utility sector will be characterized by increased use of renewable energy sources and high levels of end-use efficiency. This dissertation analyzes two alternative policy approaches designed to move the U.S. electric utility sector toward sustainability. One approach is labeled incremental which involves maintaining the centralized structure of the electric utility sector but facilitating the introduction of renewable energy and efficiency into the electrical system through the pricing mechanism. A second policy approach was described in which structural changes are encouraged based on the emerging distributed utility (DU) concept. A structural policy orientation attempts to capture the unique localized benefits that distributed renewable resources and energy efficiency offer to electric utility companies and their customers. A market penetration analysis of PV in centralized energy supply and distributed peak-shaving applications is conducted for a case-study electric utility company. Sensitivity analysis was performed based on incremental and structural policy orientations. The analysis provides compelling evidence which suggests that policies designed to bring about structural change in the electric utility sector are needed to move the industry toward sustainability. Specifically, the analysis demonstrates that PV technology, a key renewable energy option likely to play an important role in a renewable energy future, will begin to penetrate the electrical system in distributed peak-shaving applications long before the technology is introduced as a centralized energy supply option. Most policies to date, which I term incremental, attempt to encourage energy efficiency and renewables through the pricing system. Based on past policy experience, it is unlikely that such an approach would allow PV to compete in Delaware as an energy supply option in the next ten to twenty years. Alternatively, a market-based, or green pricing, approach will not create significant market opportunities for PV as a centralized energy supply option. However, structural policies designed to encourage the explicit recognition of the localized benefits of distributed resources could result in PV being introduced into the electrical system early in the next century.
A disturbance based control/structure design algorithm
NASA Technical Reports Server (NTRS)
Mclaren, Mark D.; Slater, Gary L.
1989-01-01
Some authors take a classical approach to the simultaneous structure/control optimization by attempting to simultaneously minimize the weighted sum of the total mass and a quadratic form, subject to all of the structural and control constraints. Here, the optimization will be based on the dynamic response of a structure to an external unknown stochastic disturbance environment. Such a response to excitation approach is common to both the structural and control design phases, and hence represents a more natural control/structure optimization strategy than relying on artificial and vague control penalties. The design objective is to find the structure and controller of minimum mass such that all the prescribed constraints are satisfied. Two alternative solution algorithms are presented which have been applied to this problem. Each algorithm handles the optimization strategy and the imposition of the nonlinear constraints in a different manner. Two controller methodologies, and their effect on the solution algorithm, will be considered. These are full state feedback and direct output feedback, although the problem formulation is not restricted solely to these forms of controller. In fact, although full state feedback is a popular choice among researchers in this field (for reasons that will become apparent), its practical application is severely limited. The controller/structure interaction is inserted by the imposition of appropriate closed-loop constraints, such as closed-loop output response and control effort constraints. Numerical results will be obtained for a representative flexible structure model to illustrate the effectiveness of the solution algorithms.
2009-01-01
Objective To describe a receptor-based approach to promote learning about nonsteroidal anti-inflammatory drug (NSAID) chemistry, structure-activity relationships, and therapeutic decision-making. Design Three lessons on cyclooxygenase (COX) and NSAID chemistry, and NSAID therapeutic utility, were developed using text-based resources and primary medicinal chemistry and pharmacy practice literature. Learning tools were developed to assist students in content mastery. Assessment Student learning was evaluated via performance on quizzes and examinations that measured understanding of COX and NSAID chemistry, and the application of that knowledge to therapeutic problem solving. Conclusion Student performance on NSAID-focused quizzes and examinations documented the success of this approach. PMID:20221336
Topology optimization under stochastic stiffness
NASA Astrophysics Data System (ADS)
Asadpoure, Alireza
Topology optimization is a systematic computational tool for optimizing the layout of materials within a domain for engineering design problems. It allows variation of structural boundaries and connectivities. This freedom in the design space often enables discovery of new, high performance designs. However, solutions obtained by performing the optimization in a deterministic setting may be impractical or suboptimal when considering real-world engineering conditions with inherent variabilities including (for example) variabilities in fabrication processes and operating conditions. The aim of this work is to provide a computational methodology for topology optimization in the presence of uncertainties associated with structural stiffness, such as uncertain material properties and/or structural geometry. Existing methods for topology optimization under deterministic conditions are first reviewed. Modifications are then proposed to improve the numerical performance of the so-called Heaviside Projection Method (HPM) in continuum domains. Next, two approaches, perturbation and Polynomial Chaos Expansion (PCE), are proposed to account for uncertainties in the optimization procedure. These approaches are intrusive, allowing tight and efficient coupling of the uncertainty quantification with the optimization sensitivity analysis. The work herein develops a robust topology optimization framework aimed at reducing the sensitivity of optimized solutions to uncertainties. The perturbation-based approach combines deterministic topology optimization with a perturbation method for the quantification of uncertainties. The use of perturbation transforms the problem of topology optimization under uncertainty to an augmented deterministic topology optimization problem. The PCE approach combines the spectral stochastic approach for the representation and propagation of uncertainties with an existing deterministic topology optimization technique. The resulting compact representations for the response quantities allow for efficient and accurate calculation of sensitivities of response statistics with respect to the design variables. The proposed methods are shown to be successful at generating robust optimal topologies. Examples from topology optimization in continuum and discrete domains (truss structures) under uncertainty are presented. It is also shown that proposed methods lead to significant computational savings when compared to Monte Carlo-based optimization which involve multiple formations and inversions of the global stiffness matrix and that results obtained from the proposed method are in excellent agreement with those obtained from a Monte Carlo-based optimization algorithm.
Structural Design Exploration of an Electric Powered Multi-Propulsor Wing Configuration
NASA Technical Reports Server (NTRS)
Moore, James B.; Cutright, Steve
2017-01-01
Advancements in aircraft electric propulsion may enable an expanded operational envelope for electrically powered vehicles compared to their internal combustion engine counterparts. High aspect ratio wings provide additional lift and drag reduction for a proposed multi-propulsor design, however, the challenge is to reduce the weight of wing structures while maintaining adequate structural and aeroelastic margins. Design exploration using a conventional design-and-build philosophy coupled with a finite element method (FEM)-based design of experiments (DOE) strategy are presented to examine high aspect ratio wing structures that have spanwise distributed electric motors. Multiple leading-edge-mounted engine masses presented a challenge to design a wing within acceptable limits for dynamic and aeroelastic stability. Because the first four primary bending eigenmodes of the proposed wing structure are very sensitive to outboard motor placement, safety-of-flight requirements drove the need for multiple spars, rib attachments, and outboard structural reinforcements in the design. Global aeroelasticity became an increasingly important design constraint during the on-going design process, with outboard motor pod flutter ultimately becoming a primary design constraint. Designers successively generated models to examine stress, dynamics, and aeroelasticity concurrently. This research specifically addressed satisfying multi-disciplinary design criteria to generate fluid-structure interaction solution sets, and produced high aspect ratio primary structure designs for the NASA Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) project in the Aeronautic Research Mission Directorate at NASA. In this paper, a dynamics-driven, quasi-inverse design methodology is presented to address aerodynamic performance goals and structural challenges encountered for the SCEPTOR demonstrator vehicle. These results are compared with a traditional computer aided design based approach.
ERIC Educational Resources Information Center
Macpherson, Allan; Jayawarna, Dilani
2007-01-01
Purpose: This study aims to investigate the influence of a range of contingent factors that moderate the approaches to training in manufacturing SMEs. Design/methodology/approach: The study is based on a regression analysis of data from a survey of 198 manufacturing SMEs. Findings: The findings suggest that there will be times when formal training…
Sliding mode control: an approach to regulate nonlinear chemical processes
Camacho; Smith
2000-01-01
A new approach for the design of sliding mode controllers based on a first-order-plus-deadtime model of the process, is developed. This approach results in a fixed structure controller with a set of tuning equations as a function of the characteristic parameters of the model. The controller performance is judged by simulations on two nonlinear chemical processes.
Design search and optimization in aerospace engineering.
Keane, A J; Scanlan, J P
2007-10-15
In this paper, we take a design-led perspective on the use of computational tools in the aerospace sector. We briefly review the current state-of-the-art in design search and optimization (DSO) as applied to problems from aerospace engineering, focusing on those problems that make heavy use of computational fluid dynamics (CFD). This ranges over issues of representation, optimization problem formulation and computational modelling. We then follow this with a multi-objective, multi-disciplinary example of DSO applied to civil aircraft wing design, an area where this kind of approach is becoming essential for companies to maintain their competitive edge. Our example considers the structure and weight of a transonic civil transport wing, its aerodynamic performance at cruise speed and its manufacturing costs. The goals are low drag and cost while holding weight and structural performance at acceptable levels. The constraints and performance metrics are modelled by a linked series of analysis codes, the most expensive of which is a CFD analysis of the aerodynamics using an Euler code with coupled boundary layer model. Structural strength and weight are assessed using semi-empirical schemes based on typical airframe company practice. Costing is carried out using a newly developed generative approach based on a hierarchical decomposition of the key structural elements of a typical machined and bolted wing-box assembly. To carry out the DSO process in the face of multiple competing goals, a recently developed multi-objective probability of improvement formulation is invoked along with stochastic process response surface models (Krigs). This approach both mitigates the significant run times involved in CFD computation and also provides an elegant way of balancing competing goals while still allowing the deployment of the whole range of single objective optimizers commonly available to design teams.
In Situ Cyclization of Native Proteins: Structure-Based Design of a Bicyclic Enzyme.
Pelay-Gimeno, Marta; Bange, Tanja; Hennig, Sven; Grossmann, Tom N
2018-05-30
Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. So far, macrocyclization approaches utilize a very limited structural diversity which complicates the design process. Here, we report an approach that enables cyclization via the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface exposed cysteines which are reacted with a triselectrophile resulting in the in situ cylization of the protein (INCYPRO). A bicyclic version of Sortase A was designed exhibiting increased tolerance towards thermal as well as chemical denaturation, and proved efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain resulting in up to 24 °C increased thermal stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Harwood, T. L.
1991-01-01
The Navy A-6E aircraft is presently being modified with a new wing which uses graphite/epoxy structures and substructures around a titanium load-bearing structure. The ability of composites to conduct electricity is less than that of aluminum. This is cause for concern when the wing may be required to conduct large lightning currents. The manufacturer attempted to solve lightning protection issues by performing a risk assessment based on a statistical approach which allows relaxation of the wing lightning protection design levels over certain locations of the composite wing. A sensitivity study is presented designed to define the total risk of relaxation of the design levels.
A dynamic clinical dental relational database.
Taylor, D; Naguib, R N G; Boulton, S
2004-09-01
The traditional approach to relational database design is based on the logical organization of data into a number of related normalized tables. One assumption is that the nature and structure of the data is known at the design stage. In the case of designing a relational database to store historical dental epidemiological data from individual clinical surveys, the structure of the data is not known until the data is presented for inclusion into the database. This paper addresses the issues concerned with the theoretical design of a clinical dynamic database capable of adapting the internal table structure to accommodate clinical survey data, and presents a prototype database application capable of processing, displaying, and querying the dental data.
Dutta, Shuchismita; Zardecki, Christine; Goodsell, David S.; Berman, Helen M.
2010-01-01
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) supports scientific research and education worldwide by providing an essential resource of information on biomolecular structures. In addition to serving as a deposition, data-processing and distribution center for PDB data, the RCSB PDB offers resources and online materials that different audiences can use to customize their structural biology instruction. These include resources for general audiences that present macromolecular structure in the context of a biological theme, method-based materials for researchers who take a more traditional approach to the presentation of structural science, and materials that mix theme-based and method-based approaches for educators and students. Through these efforts the RCSB PDB aims to enable optimal use of structural data by researchers, educators and students designing and understanding experiments in biology, chemistry and medicine, and by general users making informed decisions about their life and health. PMID:20877496
Structural DNA nanotechnology: from design to applications.
Zadegan, Reza M; Norton, Michael L
2012-01-01
The exploitation of DNA for the production of nanoscale architectures presents a young yet paradigm breaking approach, which addresses many of the barriers to the self-assembly of small molecules into highly-ordered nanostructures via construct addressability. There are two major methods to construct DNA nanostructures, and in the current review we will discuss the principles and some examples of applications of both the tile-based and DNA origami methods. The tile-based approach is an older method that provides a good tool to construct small and simple structures, usually with multiply repeated domains. In contrast, the origami method, at this time, would appear to be more appropriate for the construction of bigger, more sophisticated and exactly defined structures.
Approximation of Nash equilibria and the network community structure detection problem
2017-01-01
Game theory based methods designed to solve the problem of community structure detection in complex networks have emerged in recent years as an alternative to classical and optimization based approaches. The Mixed Nash Extremal Optimization uses a generative relation for the characterization of Nash equilibria to identify the community structure of a network by converting the problem into a non-cooperative game. This paper proposes a method to enhance this algorithm by reducing the number of payoff function evaluations. Numerical experiments performed on synthetic and real-world networks show that this approach is efficient, with results better or just as good as other state-of-the-art methods. PMID:28467496
New Approach to Road Construction in Oil-Producing Regions of Western Siberia
NASA Astrophysics Data System (ADS)
Piirainen, V. Y.; Estrin, Y.
2017-10-01
This article presents, as a polemic exercise, a new approach to road construction in marshland areas of oil and gas producing regions of Western Siberia. The approach is based on the use of novel modular elements that can be assembled into an integral structure by means of topological interlocking. The use of modern superlight concrete in conjunction with the new design systems based on the modular principle opens up new avenues to solving problems of road construction in regions with unstable, boggy soils.
Supporting and structuring "contributing student pedagogy" in Computer Science curricula
NASA Astrophysics Data System (ADS)
Falkner, Katrina; Falkner, Nickolas J. G.
2012-12-01
Contributing student pedagogy (CSP) builds upon social constructivist and community-based learning principles to create engaging and productive learning experiences. What makes CSP different from other, related, learning approaches is that it involves students both learning from and also explicitly valuing the contributions of other students. The creation of such a learning community builds upon established educational psychology that encourages deep learning, reflection and engagement. Our school has recently completed a review and update of its curriculum, incorporating student content-creation and collaboration into the design of key courses across the curriculum. Our experiences, based on several years of experimentation and development, support CSP-based curriculum design to reinforce the value of the student perspective, the clear description of their own transformative pathway to knowledge and the importance of establishing student-to-student networks in which students are active and willing participants. In this paper, we discuss the tools and approaches that we have employed to guide, support and structure student collaboration across a range of courses and year levels. By providing an account of our intentions, our approaches and tools, we hope to provide useful and transferrable knowledge that can be readily used by other academics who are considering this approach.
Modeling a terminology-based electronic nursing record system: an object-oriented approach.
Park, Hyeoun-Ae; Cho, InSook; Byeun, NamSoo
2007-10-01
The aim of this study was to present our perspectives on healthcare information analysis at a conceptual level and the lessons learned from our experience with the development of a terminology-based enterprise electronic nursing record system - which was one of components in an EMR system at a tertiary teaching hospital in Korea - using an object-oriented system analysis and design concept. To ensure a systematic approach and effective collaboration, the department of nursing constituted a system modeling team comprising a project manager, systems analysts, user representatives, an object-oriented methodology expert, and healthcare informaticists (including the authors). A rational unified process (RUP) and the Unified Modeling Language were used as a development process and for modeling notation, respectively. From the scenario and RUP approach, user requirements were formulated into use case sets and the sequence of activities in the scenario was depicted in an activity diagram. The structure of the system was presented in a class diagram. This approach allowed us to identify clearly the structural and behavioral states and important factors of a terminology-based ENR system (e.g., business concerns and system design concerns) according to the viewpoints of both domain and technical experts.
Kumar, Avishek; Campitelli, Paul; Thorpe, M F; Ozkan, S Banu
2015-12-01
The most successful protein structure prediction methods to date have been template-based modeling (TBM) or homology modeling, which predicts protein structure based on experimental structures. These high accuracy predictions sometimes retain structural errors due to incorrect templates or a lack of accurate templates in the case of low sequence similarity, making these structures inadequate in drug-design studies or molecular dynamics simulations. We have developed a new physics based approach to the protein refinement problem by mimicking the mechanism of chaperons that rehabilitate misfolded proteins. The template structure is unfolded by selectively (targeted) pulling on different portions of the protein using the geometric based technique FRODA, and then refolded using hierarchically restrained replica exchange molecular dynamics simulations (hr-REMD). FRODA unfolding is used to create a diverse set of topologies for surveying near native-like structures from a template and to provide a set of persistent contacts to be employed during re-folding. We have tested our approach on 13 previous CASP targets and observed that this method of folding an ensemble of partially unfolded structures, through the hierarchical addition of contact restraints (that is, first local and then nonlocal interactions), leads to a refolding of the structure along with refinement in most cases (12/13). Although this approach yields refined models through advancement in sampling, the task of blind selection of the best refined models still needs to be solved. Overall, the method can be useful for improved sampling for low resolution models where certain of the portions of the structure are incorrectly modeled. © 2015 Wiley Periodicals, Inc.
Strategies and Approaches to TPS Design
NASA Technical Reports Server (NTRS)
Kolodziej, Paul
2005-01-01
Thermal protection systems (TPS) insulate planetary probes and Earth re-entry vehicles from the aerothermal heating experienced during hypersonic deceleration to the planet s surface. The systems are typically designed with some additional capability to compensate for both variations in the TPS material and for uncertainties in the heating environment. This additional capability, or robustness, also provides a surge capability for operating under abnormal severe conditions for a short period of time, and for unexpected events, such as meteoroid impact damage, that would detract from the nominal performance. Strategies and approaches to developing robust designs must also minimize mass because an extra kilogram of TPS displaces one kilogram of payload. Because aircraft structures must be optimized for minimum mass, reliability-based design approaches for mechanical components exist that minimize mass. Adapting these existing approaches to TPS component design takes advantage of the extensive work, knowledge, and experience from nearly fifty years of reliability-based design of mechanical components. A Non-Dimensional Load Interference (NDLI) method for calculating the thermal reliability of TPS components is presented in this lecture and applied to several examples. A sensitivity analysis from an existing numerical simulation of a carbon phenolic TPS provides insight into the effects of the various design parameters, and is used to demonstrate how sensitivity analysis may be used with NDLI to develop reliability-based designs of TPS components.
Huang, Wenwen; Ebrahimi, Davoud; Dinjaski, Nina; Tarakanova, Anna; Buehler, Markus J; Wong, Joyce Y; Kaplan, David L
2017-04-18
Tailored biomaterials with tunable functional properties are crucial for a variety of task-specific applications ranging from healthcare to sustainable, novel bio-nanodevices. To generate polymeric materials with predictive functional outcomes, exploiting designs from nature while morphing them toward non-natural systems offers an important strategy. Silks are Nature's building blocks and are produced by arthropods for a variety of uses that are essential for their survival. Due to the genetic control of encoded protein sequence, mechanical properties, biocompatibility, and biodegradability, silk proteins have been selected as prototype models to emulate for the tunable designs of biomaterial systems. The bottom up strategy of material design opens important opportunities to create predictive functional outcomes, following the exquisite polymeric templates inspired by silks. Recombinant DNA technology provides a systematic approach to recapitulate, vary, and evaluate the core structure peptide motifs in silks and then biosynthesize silk-based polymers by design. Post-biosynthesis processing allows for another dimension of material design by controlled or assisted assembly. Multiscale modeling, from the theoretical prospective, provides strategies to explore interactions at different length scales, leading to selective material properties. Synergy among experimental and modeling approaches can provide new and more rapid insights into the most appropriate structure-function relationships to pursue while also furthering our understanding in terms of the range of silk-based systems that can be generated. This approach utilizes nature as a blueprint for initial polymer designs with useful functions (e.g., silk fibers) but also employs modeling-guided experiments to expand the initial polymer designs into new domains of functional materials that do not exist in nature. The overall path to these new functional outcomes is greatly accelerated via the integration of modeling with experiment. In this Account, we summarize recent advances in understanding and functionalization of silk-based protein systems, with a focus on the integration of simulation and experiment for biopolymer design. Spider silk was selected as an exemplary protein to address the fundamental challenges in polymer designs, including specific insights into the role of molecular weight, hydrophobic/hydrophilic partitioning, and shear stress for silk fiber formation. To expand current silk designs toward biointerfaces and stimuli responsive materials, peptide modules from other natural proteins were added to silk designs to introduce new functions, exploiting the modular nature of silk proteins and fibrous proteins in general. The integrated approaches explored suggest that protein folding, silk volume fraction, and protein amino acid sequence changes (e.g., mutations) are critical factors for functional biomaterial designs. In summary, the integrated modeling-experimental approach described in this Account suggests a more rationally directed and more rapid method for the design of polymeric materials. It is expected that this combined use of experimental and computational approaches has a broad applicability not only for silk-based systems, but also for other polymer and composite materials.
Huang, Ri-Bo; Du, Qi-Shi; Wei, Yu-Tuo; Pang, Zong-Wen; Wei, Hang; Chou, Kuo-Chen
2009-02-07
Predicting the bioactivity of peptides and proteins is an important challenge in drug development and protein engineering. In this study we introduce a novel approach, the so-called "physics and chemistry-driven artificial neural network (Phys-Chem ANN)", to deal with such a problem. Unlike the existing ANN approaches, which were designed under the inspiration of biological neural system, the Phys-Chem ANN approach is based on the physical and chemical principles, as well as the structural features of proteins. In the Phys-Chem ANN model the "hidden layers" are no longer virtual "neurons", but real structural units of proteins and peptides. It is a hybridization approach, which combines the linear free energy concept of quantitative structure-activity relationship (QSAR) with the advanced mathematical technique of ANN. The Phys-Chem ANN approach has adopted an iterative and feedback procedure, incorporating both machine-learning and artificial intelligence capabilities. In addition to making more accurate predictions for the bioactivities of proteins and peptides than is possible with the traditional QSAR approach, the Phys-Chem ANN approach can also provide more insights about the relationship between bioactivities and the structures involved than the ANN approach does. As an example of the application of the Phys-Chem ANN approach, a predictive model for the conformational stability of human lysozyme is presented.
Methods for Combining Payload Parameter Variations with Input Environment
NASA Technical Reports Server (NTRS)
Merchant, D. H.; Straayer, J. W.
1975-01-01
Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occuring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular value of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the methods are also presented.
Towards Improved Considerations of Risk in Seismic Design (Plinius Medal Lecture)
NASA Astrophysics Data System (ADS)
Sullivan, T. J.
2012-04-01
The aftermath of recent earthquakes is a reminder that seismic risk is a very relevant issue for our communities. Implicit within the seismic design standards currently in place around the world is that minimum acceptable levels of seismic risk will be ensured through design in accordance with the codes. All the same, none of the design standards specify what the minimum acceptable level of seismic risk actually is. Instead, a series of deterministic limit states are set which engineers then demonstrate are satisfied for their structure, typically through the use of elastic dynamic analyses adjusted to account for non-linear response using a set of empirical correction factors. From the early nineties the seismic engineering community has begun to recognise numerous fundamental shortcomings with such seismic design procedures in modern codes. Deficiencies include the use of elastic dynamic analysis for the prediction of inelastic force distributions, the assignment of uniform behaviour factors for structural typologies irrespective of the structural proportions and expected deformation demands, and the assumption that hysteretic properties of a structure do not affect the seismic displacement demands, amongst other things. In light of this a number of possibilities have emerged for improved control of risk through seismic design, with several innovative displacement-based seismic design methods now well developed. For a specific seismic design intensity, such methods provide a more rational means of controlling the response of a structure to satisfy performance limit states. While the development of such methodologies does mark a significant step forward for the control of seismic risk, they do not, on their own, identify the seismic risk of a newly designed structure. In the U.S. a rather elaborate performance-based earthquake engineering (PBEE) framework is under development, with the aim of providing seismic loss estimates for new buildings. The PBEE framework consists of the following four main analysis stages: (i) probabilistic seismic hazard analysis to give the mean occurrence rate of earthquake events having an intensity greater than a threshold value, (ii) structural analysis to estimate the global structural response, given a certain value of seismic intensity, (iii) damage analysis, in which fragility functions are used to express the probability that a building component exceeds a damage state, as a function of the global structural response, (iv) loss analysis, in which the overall performance is assessed based on the damage state of all components. This final step gives estimates of the mean annual frequency with which various repair cost levels (or other decision variables) are exceeded. The realisation of this framework does suggest that risk-based seismic design is now possible. However, comparing current code approaches with the proposed PBEE framework, it becomes apparent that mainstream consulting engineers would have to go through a massive learning curve in order to apply the new procedures in practice. With this in mind, it is proposed that simplified loss-based seismic design procedures are a logical means of helping the engineering profession transition from what are largely deterministic seismic design procedures in current codes, to more rational risk-based seismic design methodologies. Examples are provided to illustrate the likely benefits of adopting loss-based seismic design approaches in practice.
Ul-Haq, Zaheer; Effendi, Juweria Shahrukh; Ashraf, Sajda; Bkhaitan, Majdi M
2017-06-01
In the current study, quantitative three-dimensional structure-activity-relationship (3D-QSAR) method was performed to design a model for new chemical entities by utilizing pyrazolopyrimidines. Their inhibiting activity on receptor IL-2 Itk correlates descriptors based on topology and hydrophobicity. The best model developed by ligand-based (atom-based) approach has correlation-coefficient of r 2 : 0.987 and cross-validated squared correlation-coefficient of q 2 : 0.541 with an external prediction capability of r 2 : 0.944. Whereas the best selected model developed by structured-based (receptor-based) approach has correlation-coefficient of r 2 : 0.987, cross-validated squared correlation-coefficient of q 2 : 0.637 with an external predictive ability of r 2 : 0.941. The statistical parameters prove that structure-based gave a better model to design new chemical scaffolds. The results achieved indicated that hydrophobicity at R 1 location play a vital role in the inhibitory activity and introduction of appropriately bulky and strongly hydrophobic-groups at position 3 of the terminal phenyl-group which is highly significant to enhance the activity. Six new pyrazolopyrimidine derivatives were designed. Docking simulation study was carried out and their inhibitory activity was predicted by the best structure based model with predictive activity of ranging from 8.43 to 8.85 log unit. The interacting residues PHE435, ASP500, LYS391, GLU436, MET438, CYS442, ILE369, VAL377 of PDB 4HCT were studied with respect to type of bonding with the new compounds. This study was aimed to search out more potent inhibitors of IL-2 Itk. Copyright © 2017 Elsevier Inc. All rights reserved.
Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier.
Dai, Bin; Li, Dan; Xi, Wenhui; Luo, Fang; Zhang, Xiang; Zou, Man; Cao, Mi; Hu, Jun; Wang, Wenyuan; Wei, Guanghong; Zhang, Yi; Liu, Cong
2015-03-10
Using and engineering amyloid as nanomaterials are blossoming trends in bionanotechnology. Here, we show our discovery of an amyloid structure, termed "amyloid-like nanosheet," formed by a key amyloid-forming segment of Alzheimer's Aβ. Combining multiple biophysical and computational approaches, we proposed a structural model for the nanosheet that is formed by stacking the amyloid fibril spines perpendicular to the fibril axis. We further used the nanosheet for laboratorial retroviral transduction enhancement and directly visualized the presence of virus on the nanosheet surface by electron microscopy. Furthermore, based on our structural model, we designed nanosheet-forming peptides with different functionalities, elucidating the potential of rational design for amyloid-based materials with novel architecture and function.
Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone
NASA Astrophysics Data System (ADS)
Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.
2018-03-01
Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.
Super-secondary structure peptidomimetics: design and synthesis of an α-α hairpin analogue
Nevola, Laura; Rodriguez, Johanna M.; Thompson, Sam; Hamilton, Andrew D.
2015-01-01
The α-α helix motif presents key recognition domains in protein-protein and protein-oligonucleotide binding, and is one of the most common super-secondary structures. Herein we describe the design, synthesis and structural characterization of an α-α hairpin analogue based on a tetra-coordinated Pd(II) bis-(iminoisoquinoline) complex as a template for the display of two α-helix mimics. This approach is exemplified by the attachment of two biphenyl peptidomimetics to reproduce the side-chains of the i and i+4 residues of two helices. PMID:26052191
OPS laser EPI design for different wavelengths
NASA Astrophysics Data System (ADS)
Moloney, J. V.; Hader, J.; Li, H.; Kaneda, Y.; Wang, T. S.; Yarborough, M.; Koch, S. W.; Stolz, W.; Kunert, B.; Bueckers, C.; Chaterjee, S.; Hardesty, G.
2009-02-01
Design of optimized semiconductor optically-pumped semiconductor lasers (OPSLs) depends on many ingredients starting from the quantum wells, barrier and cladding layers all the way through to the resonant-periodic gain (RPG) and high reflectivity Bragg mirror (DBR) making up the OPSL active mirror. Accurate growth of the individual layers making up the RPG region is critical if performance degradation due to cavity misalignment is to be avoided. Optimization of the RPG+DBR structure requires knowledge of the heat generation and heating sinking of the active mirror. Nonlinear Control Strategies SimuLaseTM software, based on rigorous many-body calculations of the semiconductor optical response, allows for quantum well and barrier optimization by correlating low intensity photoluminescence spectra computed for the design, with direct experimentally measured wafer-level edge and surface PL spectra. Consequently, an OPSL device optimization procedure ideally requires a direct iterative interaction between designer and grower. In this article, we discuss the application of the many-body microscopic approach to OPSL devices lasing at 850nm, 1040nm and 2μm. The latter device involves and application of the many-body approach to mid-IR OPSLs based on antimonide materials. Finally we will present results on based on structural modifications of the epitaxial structure and/or novel material combinations that offer the potential to extend OPSL technology to new wavelength ranges.
Belosludov, Rodion V; Rhoda, Hannah M; Zhdanov, Ravil K; Belosludov, Vladimir R; Kawazoe, Yoshiyuki; Nemykin, Victor N
2016-05-11
A large variety of conceptual three- and fourfold tetraazaporphyrin- and subtetraazaporphyrin-based functional 3D nanocage and nanobarrel structures have been proposed on the basis of in silico design. The designed structures differ in their sizes, topology, porosity, and conjugation properties. The stability of nanocages of Oh symmetry and nanobarrels of D4h symmetry was revealed on the basis of DFT and MD calculations, whereas their optical properties were assessed using a TDDFT approach and a long-range corrected LC-wPBE exchange-correlation functional. It was shown that the electronic structures and vertical excitation energies of the functional nanocage and nanobarrel structures could be easily tuned via their size, topology, and the presence of bridging sp(3) carbon atoms. TDDFT calculations suggest significantly lower excitation energies in fully conjugated nanocages and nanobarrels compared with systems with bridging sp(3) carbon fragments. Based on DFT and TDDFT calculations, the optical properties of the new materials can rival those of known quantum dots and are superior to those of monomeric phthalocyanines and their analogues. The methane gas adsorption properties of the new nanostructures and nanotubes generated by conversion from nanobarrels were studied using an MD simulation approach. The ability to store large quantities of methane (106-216 cm(3) (STP) cm(-3)) was observed in all cases with several compounds being close to or exceeding the DOE target of 180 cm(3) (STP) cm(-3) for material-based methane storage at a pressure of 3.5 MPa and room temperature.
NASA Astrophysics Data System (ADS)
Adhikari, Pashupati Raj
Materials selection processes have been the most important aspects in product design and development. Knowledge-based system (KBS) and some of the methodologies used in the materials selection for the design of aircraft cabin metallic structures are discussed. Overall aircraft weight reduction means substantially less fuel consumption. Part of the solution to this problem is to find a way to reduce overall weight of metallic structures inside the cabin. Among various methodologies of materials selection using Multi Criterion Decision Making (MCDM) techniques, a few of them are demonstrated with examples and the results are compared with those obtained using Ashby's approach in materials selection. Pre-defined constraint values, mainly mechanical properties, are employed as relevant attributes in the process. Aluminum alloys with high strength-to-weight ratio have been second-to-none in most of the aircraft parts manufacturing. Magnesium alloys that are much lighter in weight as alternatives to the Al-alloys currently in use in the structures are tested using the methodologies and ranked results are compared. Each material attribute considered in the design are categorized as benefit and non-benefit attribute. Using Ashby's approach, material indices that are required to be maximized for an optimum performance are determined, and materials are ranked based on the average of consolidated indices ranking. Ranking results are compared for any disparity among the methodologies.
A versatile approach to the study of the transient response of a submerged thin shell
NASA Astrophysics Data System (ADS)
Leblond, C.; Sigrist, J.-F.
2010-01-01
The transient response of submerged two-dimensional thin shell subjected to weak acoustical or mechanical excitations is addressed in this paper. The proposed approach is first exposed in a detailed manner: it is based on Laplace transform in time, in vacuo eigenvector expansion with time-dependent coefficients for the structural dynamics and boundary-integral formulation for the fluid. The projection of the fluid pressure on the in vacuo eigenvectors leads to a fully coupled system involving the modal time-dependent displacement coefficients, which are the problem unknowns. They are simply determined by matrix inversion in the Laplace domain. Application of the method to the response of a two-dimensional immersed shell to a weak acoustical excitation is then exposed: the proposed test-case corresponds to the design of immersed structures subjected to underwater explosions, which is of paramount importance in naval shipbuilding. Comparison of a numerical calculation based on the proposed approach with an analytical solution is exposed; versatility of the method is also highlighted by referring to "classical" FEM/FEM or FEM/BEM simulations. As a conspicuous feature of the method, calculation of the fluid response functions corresponding to a given geometry has to be performed once, allowing various simulations for different material properties of the structure, as well as for various excitations on the structure. This versatile approach can therefore be efficiently and extensively used for design purposes.
Mass reduction patterning of silicon-on-oxide-based micromirrors
NASA Astrophysics Data System (ADS)
Hall, Harris J.; Green, Andrew; Dooley, Sarah; Schmidt, Jason D.; Starman, LaVern A.; Langley, Derrick; Coutu, Ronald A.
2016-10-01
It has long been recognized in the design of micromirror-based optical systems that balancing static flatness of the mirror surface through structural design with the system's mechanical dynamic response is challenging. Although a variety of mass reduction approaches have been presented in the literature to address this performance trade, there has been little quantifiable comparison reported. In this work, different mass reduction approaches, some unique to the work, are quantifiably compared with solid plate thinning in both curvature and mass using commercial finite element simulation of a specific square silicon-on-insulator-based micromirror geometry. Other important considerations for micromirror surfaces, including surface profile and smoothness, are also discussed. Fabrication of one of these geometries, a two-dimensional tessellated square pattern, was performed in the presence of a 400-μm-tall central post structure using a simple single mask process. Limited experimental curvature measurements of fabricated samples are shown to correspond well with properly characterized simulation results and indicate ˜67% improvement in radius of curvature in comparison to a solid plate design of equivalent mass.
Theoretical Design of Multilayer Dental Posts Using CAD-Based Approach and Sol-Gel Chemistry.
Maietta, Saverio; De Santis, Roberto; Catauro, Michelina; Martorelli, Massimo; Gloria, Antonio
2018-05-07
A computer-aided design (CAD)-based approach and sol-gel chemistry were used to design a multilayer dental post with a compositional gradient and a Young’s modulus varying from 12.4 to 2.3 GPa in the coronal-apical direction. Specifically, we propose a theoretical multilayer post design, consisting of titanium dioxide (TiO₂) and TiO₂/poly(ε-caprolactone) (PCL) hybrid materials containing PCL up to 24% by weight obtained using the sol-gel method. The current study aimed to analyze the effect of the designed multilayer dental post in endodontically treated anterior teeth. Stress distribution was investigated along and between the post and the surrounding structures. In comparison to a metal post, the most uniform distributions with lower stress values and no significant stress concentration were found when using the multilayer post.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar G.; Swaminathan S.; Kumaran, D.
Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC{sub 50} of 0.9 {micro}M and a K{sub i} ofmore » 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features.« less
Kumar, Gyanendra; Kumaran, Desigan; Ahmed, S Ashraf; Swaminathan, Subramanyam
2012-05-01
Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC(50) of 0.9 µM and a K(i) of 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features. © 2012 International Union of Crystallography
A sequence-based hybrid predictor for identifying conformationally ambivalent regions in proteins.
Liu, Yu-Cheng; Yang, Meng-Han; Lin, Win-Li; Huang, Chien-Kang; Oyang, Yen-Jen
2009-12-03
Proteins are dynamic macromolecules which may undergo conformational transitions upon changes in environment. As it has been observed in laboratories that protein flexibility is correlated to essential biological functions, scientists have been designing various types of predictors for identifying structurally flexible regions in proteins. In this respect, there are two major categories of predictors. One category of predictors attempts to identify conformationally flexible regions through analysis of protein tertiary structures. Another category of predictors works completely based on analysis of the polypeptide sequences. As the availability of protein tertiary structures is generally limited, the design of predictors that work completely based on sequence information is crucial for advances of molecular biology research. In this article, we propose a novel approach to design a sequence-based predictor for identifying conformationally ambivalent regions in proteins. The novelty in the design stems from incorporating two classifiers based on two distinctive supervised learning algorithms that provide complementary prediction powers. Experimental results show that the overall performance delivered by the hybrid predictor proposed in this article is superior to the performance delivered by the existing predictors. Furthermore, the case study presented in this article demonstrates that the proposed hybrid predictor is capable of providing the biologists with valuable clues about the functional sites in a protein chain. The proposed hybrid predictor provides the users with two optional modes, namely, the high-sensitivity mode and the high-specificity mode. The experimental results with an independent testing data set show that the proposed hybrid predictor is capable of delivering sensitivity of 0.710 and specificity of 0.608 under the high-sensitivity mode, while delivering sensitivity of 0.451 and specificity of 0.787 under the high-specificity mode. Though experimental results show that the hybrid approach designed to exploit the complementary prediction powers of distinctive supervised learning algorithms works more effectively than conventional approaches, there exists a large room for further improvement with respect to the achieved performance. In this respect, it is of interest to investigate the effects of exploiting additional physiochemical properties that are related to conformational ambivalence. Furthermore, it is of interest to investigate the effects of incorporating lately-developed machine learning approaches, e.g. the random forest design and the multi-stage design. As conformational transition plays a key role in carrying out several essential types of biological functions, the design of more advanced predictors for identifying conformationally ambivalent regions in proteins deserves our continuous attention.
Designing the Speech Communication Classroom: A Viable Alternative.
ERIC Educational Resources Information Center
Springhorn, Ron G.
This paper presents a structure for the speech communication classroom, based on a philosophically existential approach to education. The following suggestions are offered to those considering such an approach. There should be movable furniture, enabling students to move about and to turn toward one another so that they can be physically in…
Architecture-driven reuse of code in KASE
NASA Technical Reports Server (NTRS)
Bhansali, Sanjay
1993-01-01
In order to support the synthesis of large, complex software systems, we need to focus on issues pertaining to the architectural design of a system in addition to algorithm and data structure design. An approach that is based on abstracting the architectural design of a set of problems in the form of a generic architecture, and providing tools that can be used to instantiate the generic architecture for specific problem instances is presented. Such an approach also facilitates reuse of code between different systems belonging to the same problem class. An application of our approach on a realistic problem is described; the results of the exercise are presented; and how our approach compares to other work in this area is discussed.
Frnakenstein: multiple target inverse RNA folding.
Lyngsø, Rune B; Anderson, James W J; Sizikova, Elena; Badugu, Amarendra; Hyland, Tomas; Hein, Jotun
2012-10-09
RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures when the target structures are real structures, while no deterioration was observed for predicted structures. Design for two structure targets is considerably more difficult, but far from impossible, demonstrating the feasibility of automated design of artificial riboswitches. The Python implementation is available at http://www.stats.ox.ac.uk/research/genome/software/frnakenstein.
Frnakenstein: multiple target inverse RNA folding
2012-01-01
Background RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. Results In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Conclusions Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures when the target structures are real structures, while no deterioration was observed for predicted structures. Design for two structure targets is considerably more difficult, but far from impossible, demonstrating the feasibility of automated design of artificial riboswitches. The Python implementation is available at http://www.stats.ox.ac.uk/research/genome/software/frnakenstein. PMID:23043260
Essential use cases for pedagogical patterns
NASA Astrophysics Data System (ADS)
Derntl, Michael; Botturi, Luca
2006-06-01
Coming from architecture, through computer science, pattern-based design spread into other disciplines and is nowadays recognized as a powerful way of capturing and reusing effective design practice. However, current pedagogical pattern approaches lack widespread adoption, both by users and authors, and are still limited to individual initiatives. This paper contributes to creating a shared understanding of what a pattern system is by defining the key terms. Moreover, the paper builds upon and extends a set of existing functional and non-functional requirements for pattern systems, adds structure to these requirements, and derives essential use cases following a goal-based approach for both pattern maintenance and pattern application. Finally, implications concerning the pedagogical use of pattern-based design are drawn, concluding that a stronger focus on the underlying (pedagogical) value system is required in order to make a pattern system a meaningful tool for effective educational design.
Raman, Ritu; Mitchell, Marlon; Perez-Pinera, Pablo; Bashir, Rashid; DeStefano, Lizanne
2016-01-01
The rapidly evolving discipline of biological and biomedical engineering requires adaptive instructional approaches that teach students to target and solve multi-pronged and ill-structured problems at the cutting edge of scientific research. Here we present a modular approach to designing a lab-based course in the emerging field of biofabrication and biological design, leading to a final capstone design project that requires students to formulate and test a hypothesis using the scientific method. Students were assessed on a range of metrics designed to evaluate the format of the course, the efficacy of the format for teaching new topics and concepts, and the depth of the contribution this course made to students training for biological engineering careers. The evaluation showed that the problem-based format of the course was well suited to teaching students how to use the scientific method to investigate and uncover the fundamental biological design rules that govern the field of biofabrication. We show that this approach is an efficient and effective method of translating emergent scientific principles from the lab bench to the classroom and training the next generation of biological and biomedical engineers for careers as researchers and industry practicians.
Model reference, sliding mode adaptive control for flexible structures
NASA Technical Reports Server (NTRS)
Yurkovich, S.; Ozguner, U.; Al-Abbass, F.
1988-01-01
A decentralized model reference adaptive approach using a variable-structure sliding model control has been developed for the vibration suppression of large flexible structures. Local models are derived based upon the desired damping and response time in a model-following scheme, and variable structure controllers are then designed which employ colocated angular rate and position feedback. Numerical simulations have been performed using NASA's flexible grid experimental apparatus.
Investigation into adamantane-based M2 inhibitors with FB-QSAR.
Wei, Hang; Wang, Cheng-Hua; Du, Qi-Shi; Meng, Jianzong; Chou, Kuo-Chen
2009-07-01
Because of their high resistance rate to the existing drugs, influenza A viruses have become a threat to human beings. It is known that the replication of influenza A viruses needs a pH-gated proton channel, the so-called M2 channel. Therefore, to develop effective drugs against influenza A, the most logic strategy is to inhibit the M2 channel. Recently, the atomic structure of the M2 channel was determined by NMR spectroscopy (Schnell, J.R. and Chou, J.J., Nature, 2008, 451, 591-595). The high-resolution NMR structure has provided a solid basis for structure-based drug design approaches. In this study, a benchmark dataset has been constructed that contains 34 newly-developed adamantane-based M2 inhibitors and covers considerable structural diversities and wide range of bioactivities. Based on these compounds, an in-depth analysis was performed with the newly developed fragment-based quantitative structure-activity relationship (FB-QSAR) algorithm. The results thus obtained provide useful insights for dealing with the drug-resistant problem and designing effective adamantane-based antiflu drugs.
When Playing Meets Learning: Methodological Framework for Designing Educational Games
NASA Astrophysics Data System (ADS)
Linek, Stephanie B.; Schwarz, Daniel; Bopp, Matthias; Albert, Dietrich
Game-based learning builds upon the idea of using the motivational potential of video games in the educational context. Thus, the design of educational games has to address optimizing enjoyment as well as optimizing learning. Within the EC-project ELEKTRA a methodological framework for the conceptual design of educational games was developed. Thereby state-of-the-art psycho-pedagogical approaches were combined with insights of media-psychology as well as with best-practice game design. This science-based interdisciplinary approach was enriched by enclosed empirical research to answer open questions on educational game-design. Additionally, several evaluation-cycles were implemented to achieve further improvements. The psycho-pedagogical core of the methodology can be summarized by the ELEKTRA's 4Ms: Macroadaptivity, Microadaptivity, Metacognition, and Motivation. The conceptual framework is structured in eight phases which have several interconnections and feedback-cycles that enable a close interdisciplinary collaboration between game design, pedagogy, cognitive science and media psychology.
Reliability based design of the primary structure of oil tankers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casella, G.; Dogliani, M.; Guedes Soares, C.
1996-12-31
The present paper describes the reliability analysis carried out for two oil tanker-ships having comparable dimensions but different design. The scope of the analysis was to derive indications on the value of the reliability index obtained for existing, typical and well designed oil tankers, as well as to apply the tentative rule checking formulation developed within the CEC-funded SHIPREL Project. The checking formula was adopted to redesign the midships section of one of the considered ships, upgrading her in order to meet the target failure probability considered in the rule development process. The resulting structure, in view of an upgradingmore » of the steel grade in the central part of the deck, lead to a convenient reliability level. The results of the analysis clearly showed that a large scatter exists presently in the design safety levels of ships, even when the Classification Societies` unified requirements are satisfied. A reliability based approach for the calibration of the rules for the global strength of ships is therefore proposed, in order to assist designers and Classification Societies in the process of producing ships which are more optimized, with respect to ensured safety levels. Based on the work reported in the paper, the feasibility and usefulness of a reliability based approach in the development of ship longitudinal strength requirements has been demonstrated.« less
Data-driven design optimization for composite material characterization
John G. Michopoulos; John C. Hermanson; Athanasios Iliopoulos; Samuel G. Lambrakos; Tomonari Furukawa
2011-06-01
The main goal of the present paper is to demonstrate the value of design optimization beyond its use for structural shape determination in the realm of the constitutive characterization of anisotropic material systems such as polymer matrix composites with or without damage. The approaches discussed are based on the availability of massive experimental data...
Utilization Elementary Siphons of Petri Net to Solved Deadlocks in Flexible Manufacturing Systems
NASA Astrophysics Data System (ADS)
Abdul-Hussin, Mowafak Hassan
2015-07-01
This article presents an approach to the constructing a class structural analysis of Petri nets, where elementary siphons are mainly used in the development of a deadlock control policy of flexible manufacturing systems (FMSs), that has been exploited successfully for the design of supervisors of some supervisory control problems. Deadlock-free operation of FMSs is significant objectives of siphons in the Petri net. The structure analysis of Petri net models has efficiency in control of FMSs, however different policy can be implemented for the deadlock prevention. Petri nets models based deadlock prevention for FMS's has gained considerable interest in the development of control theory and methods for design, controlling, operation, and performance evaluation depending of the special class of Petri nets called S3PR. Both structural analysis and reachability tree analysis is used for the purposes analysis, simulation and control of Petri nets. In our ex-perimental approach based to siphon is able to resolve the problem of deadlock occurred to Petri nets that are illustrated with an FMS.
Does Inquiry Based Learning Affect Students' Beliefs and Attitudes towards Mathematics?
ERIC Educational Resources Information Center
McGregor, Darren
2014-01-01
Ill-structured tasks presented in an inquiry learning environment have the potential to affect students' beliefs and attitudes towards mathematics. This empirical research followed a Design Experiment approach to explore how aspects of using ill-structured tasks may have affected students' beliefs and attitudes. Results showed this task type and…
Mapping of ligand-binding cavities in proteins.
Andersson, C David; Chen, Brian Y; Linusson, Anna
2010-05-01
The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of "orphan structures", selection of protein structures for docking studies in structure-based design, and identification of proteins for selectivity screens in drug design programs. 2009 Wiley-Liss, Inc.
Topology Optimization - Engineering Contribution to Architectural Design
NASA Astrophysics Data System (ADS)
Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2017-10-01
The idea of the topology optimization is to find within a considered design domain the distribution of material that is optimal in some sense. Material, during optimization process, is redistributed and parts that are not necessary from objective point of view are removed. The result is a solid/void structure, for which an objective function is minimized. This paper presents an application of topology optimization to multi-material structures. The design domain defined by shape of a structure is divided into sub-regions, for which different materials are assigned. During design process material is relocated, but only within selected region. The proposed idea has been inspired by architectural designs like multi-material facades of buildings. The effectiveness of topology optimization is determined by proper choice of numerical optimization algorithm. This paper utilises very efficient heuristic method called Cellular Automata. Cellular Automata are mathematical, discrete idealization of a physical systems. Engineering implementation of Cellular Automata requires decomposition of the design domain into a uniform lattice of cells. It is assumed, that the interaction between cells takes place only within the neighbouring cells. The interaction is governed by simple, local update rules, which are based on heuristics or physical laws. The numerical studies show, that this method can be attractive alternative to traditional gradient-based algorithms. The proposed approach is evaluated by selected numerical examples of multi-material bridge structures, for which various material configurations are examined. The numerical studies demonstrated a significant influence the material sub-regions location on the final topologies. The influence of assumed volume fraction on final topologies for multi-material structures is also observed and discussed. The results of numerical calculations show, that this approach produces different results as compared with classical one-material problems.
Probabilistic analysis of wind-induced vibration mitigation of structures by fluid viscous dampers
NASA Astrophysics Data System (ADS)
Chen, Jianbing; Zeng, Xiaoshu; Peng, Yongbo
2017-11-01
The high-rise buildings usually suffer from excessively large wind-induced vibrations, and thus vibration control systems might be necessary. Fluid viscous dampers (FVDs) with nonlinear power law against velocity are widely employed. With the transition of design method from traditional frequency domain approaches to more refined direct time domain approaches, the difficulty of time integration of these systems occurs sometimes. In the present paper, firstly the underlying reason of the difficulty is revealed by identifying that the equations of motion of high-rise buildings installed with FVDs are sometimes stiff differential equations. Thus, an approach effective for stiff differential systems, i.e., the backward difference formula (BDF), is then introduced, and verified to be effective for the equation of motion of wind-induced vibration controlled systems. Comparative studies are performed among some methods, including the Newmark method, KR-alpha method, energy-based linearization method and the statistical linearization method. Based on the above results, a 20-story steel frame structure is taken as a practical example. Particularly, the randomness of structural parameters and of wind loading input is emphasized. The extreme values of the responses are examined, showing the effectiveness of the proposed approach, and also necessitating the refined probabilistic analysis in the design of wind-induced vibration mitigation systems.
NASA Astrophysics Data System (ADS)
Pentz, Alan Carter
With today's uncertain funding climate (including sequestration and continuing budget resolutions), decision makers face severe budgetary challenges to maintain dominance through all aspects of the Department of Defense (DoD). To meet war-fighting capabilities, the DoD continues to extend aircraft programs beyond their design service lives by up to ten years, and occasionally much more. The budget requires a new approach to traditional extension strategies (i.e., reuse, reset, and reclamation) for structural hardware. While extending service life without careful controls can present a safety concern, future operations planning does not consider how much risk is present when operating within sound structural principles. Traditional structural hardware extension methods drive increased costs. Decision makers often overlook the inherent damage tolerance and fatigue capability of structural components and rely on simple time- and flight-based cycle accumulation when determining aircraft retirement lives. This study demonstrates that decision makers should consider risk in addition to the current extension strategies. Through an evaluation of eight military aircraft programs and the application and simulation of F-18 turbine engine usage data, this dissertation shows that insight into actual aircraft mission data, consideration of fatigue capability, and service extension length are key factors to consider. Aircraft structural components, as well as many critical safety components and system designs, have a predefined level of conservatism and inherent damage tolerance. The methods applied in this study would apply to extensions of other critical structures such as bridges. Understanding how much damage tolerance is built into the design compared to the original design usage requirements presents the opportunity to manage systems based on risk. The study presents the sensitivity of these factors and recommends avenues for further research.
Knowledge-based fragment binding prediction.
Tang, Grace W; Altman, Russ B
2014-04-01
Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening.
Knowledge-based Fragment Binding Prediction
Tang, Grace W.; Altman, Russ B.
2014-01-01
Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening. PMID:24762971
Comprehensive design of omnidirectional high-performance perovskite solar cells
Zhang, Yutao; Xuan, Yimin
2016-01-01
The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight. PMID:27405419
Comprehensive design of omnidirectional high-performance perovskite solar cells.
Zhang, Yutao; Xuan, Yimin
2016-07-13
The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight.
Rahm, Fredrik; Viklund, Jenny; Trésaugues, Lionel; Ellermann, Manuel; Giese, Anja; Ericsson, Ulrika; Forsblom, Rickard; Ginman, Tobias; Günther, Judith; Hallberg, Kenth; Lindström, Johan; Persson, Lars Boukharta; Silvander, Camilla; Talagas, Antoine; Díaz-Sáez, Laura; Fedorov, Oleg; Huber, Kilian V M; Panagakou, Ioanna; Siejka, Paulina; Gorjánácz, Mátyás; Bauser, Marcus; Andersson, Martin
2018-03-22
Recent literature has both suggested and questioned MTH1 as a novel cancer target. BAY-707 was just published as a target validation small molecule probe for assessing the effects of pharmacological inhibition of MTH1 on tumor cell survival, both in vitro and in vivo. (1) In this report, we describe the medicinal chemistry program creating BAY-707, where fragment-based methods were used to develop a series of highly potent and selective MTH1 inhibitors. Using structure-based drug design and rational medicinal chemistry approaches, the potency was increased over 10,000 times from the fragment starting point while maintaining high ligand efficiency and drug-like properties.
Protograph LDPC Codes Over Burst Erasure Channels
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Sam; Jones, Christopher
2006-01-01
In this paper we design high rate protograph based LDPC codes suitable for binary erasure channels. To simplify the encoder and decoder implementation for high data rate transmission, the structure of codes are based on protographs and circulants. These LDPC codes can improve data link and network layer protocols in support of communication networks. Two classes of codes were designed. One class is designed for large block sizes with an iterative decoding threshold that approaches capacity of binary erasure channels. The other class is designed for short block sizes based on maximizing minimum stopping set size. For high code rates and short blocks the second class outperforms the first class.
Hotspot-Centric De Novo Design of Protein Binders
Fleishman, Sarel J.; Corn, Jacob E.; Strauch, Eva-Maria; Whitehead, Timothy A.; Karanicolas, John; Baker, David
2014-01-01
Protein–protein interactions play critical roles in biology, and computational design of interactions could be useful in a range of applications. We describe in detail a general approach to de novo design of protein interactions based on computed, energetically optimized interaction hotspots, which was recently used to produce high-affinity binders of influenza hemagglutinin. We present several alternative approaches to identify and build the key hotspot interactions within both core secondary structural elements and variable loop regions and evaluate the method's performance in natural-interface recapitulation. We show that the method generates binding surfaces that are more conformationally restricted than previous design methods, reducing opportunities for off-target interactions. PMID:21945116
Consensus positive position feedback control for vibration attenuation of smart structures
NASA Astrophysics Data System (ADS)
Omidi, Ehsan; Nima Mahmoodi, S.
2015-04-01
This paper presents a new network-based approach for active vibration control in smart structures. In this approach, a network with known topology connects collocated actuator/sensor elements of the smart structure to one another. Each of these actuators/sensors, i.e., agent or node, is enhanced by a separate multi-mode positive position feedback (PPF) controller. The decentralized PPF controlled agents collaborate with each other in the designed network, under a certain consensus dynamics. The consensus constraint forces neighboring agents to cooperate with each other such that the disagreement between the time-domain actuation of the agents is driven to zero. The controller output of each agent is calculated using state-space variables; hence, optimal state estimators are designed first for the proposed observer-based consensus PPF control. The consensus controller is numerically investigated for a flexible smart structure, i.e., a thin aluminum beam that is clamped at its both ends. Results demonstrate that the consensus law successfully imposes synchronization between the independently controlled agents, as the disagreements between the decentralized PPF controller variables converge to zero in a short time. The new consensus PPF controller brings extra robustness to vibration suppression in smart structures, where malfunctions of an agent can be compensated for by referencing the neighboring agents’ performance. This is demonstrated in the results by comparing the new controller with former centralized PPF approach.
Structural DNA Nanotechnology: From Design to Applications
Zadegan, Reza M.; Norton, Michael L.
2012-01-01
The exploitation of DNA for the production of nanoscale architectures presents a young yet paradigm breaking approach, which addresses many of the barriers to the self-assembly of small molecules into highly-ordered nanostructures via construct addressability. There are two major methods to construct DNA nanostructures, and in the current review we will discuss the principles and some examples of applications of both the tile-based and DNA origami methods. The tile-based approach is an older method that provides a good tool to construct small and simple structures, usually with multiply repeated domains. In contrast, the origami method, at this time, would appear to be more appropriate for the construction of bigger, more sophisticated and exactly defined structures. PMID:22837684
An optimal structure for a 34-meter millimeter-wave center-fed BWG antenna: The Cross-Box concept
NASA Technical Reports Server (NTRS)
Chuang, K. L.
1988-01-01
An approach to the design of the planned NASA/JPL 34 m elevation-over-azimuth (Az-El) antenna structure at the Venus site (DSS-13) is presented. The antenna structural configuration accommodates a large (2.44 m) beam waveguide (BWG) tube centrally routed through the reflector-alidade structure, an elevation wheel design, and an optimal structural geometry. The design encompasses a cross-box elevation wheel-reflector base substructure that preserves homology while satisfying many constraints, such as structure weight, surface tolerance, stresses, natural frequency, and various functional constraints. The functional requirements are set to ensure that microwave performance at millimeter wavelengths is adequate. The cross-box configuration was modeled, optimized, and found to satisfy all DSN HEF baseline antenna specifications. In addition, the structure design was conceptualized and analyzed with an emphasis on preserving the structure envelope and keeping modifications relative to the HEF antennas to a minimum, thus enabling the transferability of the BWG technology for future retrofitting. Good performance results were obtained.
Problem-Based Learning: Lessons for Administrators, Educators and Learners
ERIC Educational Resources Information Center
Yeo, Roland
2005-01-01
Purpose: The paper aims to explore the challenges of problem-based learning (PBL) as an unconventional teaching methodology experienced by a higher learning institute in Singapore. Design/methodology/approach: The exploratory study was conducted using focus group discussions and semi-structured interviews. Four groups of people were invited to…
Thomas, Sherine E; Mendes, Vitor; Kim, So Yeon; Malhotra, Sony; Ochoa-Montaño, Bernardo; Blaszczyk, Michal; Blundell, Tom L
2017-08-18
Interest in applications of protein crystallography to medicine was evident, as the first high-resolution structures emerged in the 50s and 60s. In Cambridge, Max Perutz and John Kendrew sought to understand mutations in sickle cell and other genetic diseases related to hemoglobin, while in Oxford, the group of Dorothy Hodgkin became interested in long-lasting zinc-insulin crystals for treatment of diabetes and later considered insulin redesign, as synthetic insulins became possible. The use of protein crystallography in structure-guided drug discovery emerged as enzyme structures allowed the identification of potential inhibitor-binding sites and optimization of interactions of hits using the structure of the target protein. Early examples of this approach were the use of the structure of renin to design antihypertensives and the structure of HIV protease in design of AIDS antivirals. More recently, use of structure-guided design with fragment-based drug discovery, which reduces the size of screening libraries by decreasing complexity, has improved ligand efficiency in drug design and has been used to progress three oncology drugs through clinical trials to FDA approval. We exemplify current developments in structure-guided target identification and fragment-based lead discovery with efforts to develop new antimicrobials for mycobacterial infections. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Comprehensive computational design of ordered peptide macrocycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram Khipple
Mixed chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to-date, but there is currently no way to systematically search through the structural space spanned by such compounds for new drug candidates. Natural proteins do not provide a useful guide: peptide macrocycles lack regular secondary structures and hydrophobic cores and have different backbone torsional constraints. Hence the development of new peptide macrocycles has been approached by modifying natural products or using library selection methods; the former is limited by the small number of known structures, and the latter by the limited size and diversity accessible throughmore » library-based methods. To overcome these limitations, here we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L and D amino acids. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. We synthesize and characterize by NMR twelve 7-10 residue macrocycles, 9 of which have structures very close to the design models in solution. NMR structures of three 11-14 residue bicyclic designs are also very close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide based macrocycles unparalleled for other molecular systems, and vastly increase the available starting scaffolds for both rational drug design and library selection methods.« less
BILL-E: Robotic Platform for Locomotion and Manipulation of Lightweight Space Structures
NASA Technical Reports Server (NTRS)
Jenett, Benjamin; Cheung, Kenneth
2017-01-01
We describe a robotic platform for traversing and manipulating a modular 3D lattice structure. The robot is designed to operate within a specifically structured environment, which enables low numbers of degrees of freedom (DOF) compared to robots performing comparable tasks in an unstructured environment. This allows for simple controls, as well as low mass and cost. This approach, designing the robot relative to the local environment in which it operates, results in a type of robot we call a "relative robot." We describe a bipedal robot that can locomote across a periodic lattice structure, as well as being able to handle, manipulate, and transport building block parts that compose the lattice structure. Based on a general inchworm design, the robot has added functionality for traveling over and operating on a host structure.
Optimal design of geodesically stiffened composite cylindrical shells
NASA Technical Reports Server (NTRS)
Gendron, G.; Guerdal, Z.
1992-01-01
An optimization system based on the finite element code Computations Structural Mechanics (CSM) Testbed and the optimization program, Automated Design Synthesis (ADS), is described. The optimization system can be used to obtain minimum-weight designs of composite stiffened structures. Ply thickness, ply orientations, and stiffener heights can be used as design variables. Buckling, displacement, and material failure constraints can be imposed on the design. The system is used to conduct a design study of geodesically stiffened shells. For comparison purposes, optimal designs of unstiffened shells and shells stiffened by rings and stingers are also obtained. Trends in the design of geodesically stiffened shells are identified. An approach to include local stress concentrations during the design optimization process is then presented. The method is based on a global/local analysis technique. It employs spline interpolation functions to determine displacements and rotations from a global model which are used as 'boundary conditions' for the local model. The organization of the strategy in the context of an optimization process is described. The method is validated with an example.
Formal Verification of Complex Systems based on SysML Functional Requirements
2014-12-23
Formal Verification of Complex Systems based on SysML Functional Requirements Hoda Mehrpouyan1, Irem Y. Tumer2, Chris Hoyle2, Dimitra Giannakopoulou3...requirements for design of complex engineered systems. The proposed ap- proach combines a SysML modeling approach to document and structure safety requirements...methods and tools to support the integration of safety into the design solution. 2.1. SysML for Complex Engineered Systems Traditional methods and tools
How to design a cartographic continuum to help users to navigate between two topographic styles?
NASA Astrophysics Data System (ADS)
Ory, Jérémie; Touya, Guillaume; Hoarau, Charlotte; Christophe, Sidonie
2018-05-01
Geoportals and geovisualization tools provide to users various cartographic abstractions that describe differently a geographical space. Our purpose is to be able to design cartographic continuums, i.e. a set of in-between maps allowing users to navigate between two topographic styles. This paper addresses the problem of the interpolation between two topographic abstractions with different styles. We detail our approach in two steps. Firstly, we setup a comparison in order to identify which structural elements of a cartographic abstraction should be interpolated. Secondly, we propose an approach based on two design methods for maps interpolation.
Design development of graphite primary structures enables SSTO success
NASA Astrophysics Data System (ADS)
Biagiotti, V. A.; Yahiro, J. S.; Suh, Daniel E.; Hodges, Eric R.; Prior, Donald J.
1997-01-01
This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA's X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman's approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Section Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria.
Re-Engineering Complex Legacy Systems at NASA
NASA Technical Reports Server (NTRS)
Ruszkowski, James; Meshkat, Leila
2010-01-01
The Flight Production Process (FPP) Re-engineering project has established a Model-Based Systems Engineering (MBSE) methodology and the technological infrastructure for the design and development of a reference, product-line architecture as well as an integrated workflow model for the Mission Operations System (MOS) for human space exploration missions at NASA Johnson Space Center. The design and architectural artifacts have been developed based on the expertise and knowledge of numerous Subject Matter Experts (SMEs). The technological infrastructure developed by the FPP Re-engineering project has enabled the structured collection and integration of this knowledge and further provides simulation and analysis capabilities for optimization purposes. A key strength of this strategy has been the judicious combination of COTS products with custom coding. The lean management approach that has led to the success of this project is based on having a strong vision for the whole lifecycle of the project and its progress over time, a goal-based design and development approach, a small team of highly specialized people in areas that are critical to the project, and an interactive approach for infusing new technologies into existing processes. This project, which has had a relatively small amount of funding, is on the cutting edge with respect to the utilization of model-based design and systems engineering. An overarching challenge that was overcome by this project was to convince upper management of the needs and merits of giving up more conventional design methodologies (such as paper-based documents and unwieldy and unstructured flow diagrams and schedules) in favor of advanced model-based systems engineering approaches.
Investigation of high temperature antennas for space shuttle
NASA Technical Reports Server (NTRS)
Kuhlman, E. A.
1973-01-01
The design and development of high temperature antennas for the space shuttle orbiter are discussed. The antenna designs were based on three antenna types, an annular slot (L-Band), a linear slot (C-Band), and a horn (C-Band). The design approach was based on combining an RF window, which provides thermal protection, with an off-the-shelf antenna. Available antenna window materials were reviewed and compared, and the materials most compatible with the design requirements were selected. Two antenna window design approaches were considered: one employed a high temperature dielectric material and a low density insulation material, and the other an insulation material usable for the orbiter thermal protection system. Preliminary designs were formulated and integrated into the orbiter structure. Simple electrical models, with a series of window configurations, were constructed and tested. The results of tests and analyses for the final antenna system designs are given and show that high temperature antenna systems consisting of off-the-shelf antennas thermally protected by RF windows can be designed for the Space Shuttle Orbiter.
NASA Technical Reports Server (NTRS)
Hofmann, R.
1980-01-01
The STEALTH code system, which solves large strain, nonlinear continuum mechanics problems, was rigorously structured in both overall design and programming standards. The design is based on the theoretical elements of analysis while the programming standards attempt to establish a parallelism between physical theory, programming structure, and documentation. These features have made it easy to maintain, modify, and transport the codes. It has also guaranteed users a high level of quality control and quality assurance.
How to benchmark methods for structure-based virtual screening of large compound libraries.
Christofferson, Andrew J; Huang, Niu
2012-01-01
Structure-based virtual screening is a useful computational technique for ligand discovery. To systematically evaluate different docking approaches, it is important to have a consistent benchmarking protocol that is both relevant and unbiased. Here, we describe the designing of a benchmarking data set for docking screen assessment, a standard docking screening process, and the analysis and presentation of the enrichment of annotated ligands among a background decoy database.
Tinkering Towards Utopia: Trying to Make Sense of My Contribution to the Field
ERIC Educational Resources Information Center
Mulford, Bill
2012-01-01
Purpose: The purpose of this paper is to provide an overview of what the author believes to be his major contributions to the field of Educational Administration. Design/methodology/approach: The approach taken is a personal review and reflection based on research. For purposes of structuring the article three themes have been…
Optimization for minimum sensitivity to uncertain parameters
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw
1994-01-01
A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.
An Impulse Based Substructuring approach for impact analysis and load case simulations
NASA Astrophysics Data System (ADS)
Rixen, Daniel J.; van der Valk, Paul L. C.
2013-12-01
In the present paper we outline the basic theory of assembling substructures for which the dynamics are described as Impulse Response Functions. The assembly procedure computes the time response of a system by evaluating per substructure the convolution product between the Impulse Response Functions and the applied forces, including the interface forces that are computed to satisfy the interface compatibility. We call this approach the Impulse Based Substructuring method since it transposes to the time domain the Frequency Based Substructuring approach. In the Impulse Based Substructuring technique the Impulse Response Functions of the substructures can be gathered either from experimental tests using a hammer impact or from time-integration of numerical submodels. In this paper the implementation of the method is outlined for the case when the impulse responses of the substructures are computed numerically. A simple bar example is shown in order to illustrate the concept. The Impulse Based Substructuring allows fast evaluation of impact response of a structure when the impulse response of its components is known. It can thus be used to efficiently optimize designs of consumer products by including impact behavior at the early stage of the design, but also for performing substructured simulations of complex structures such as offshore wind turbines.
Low-loss multimode interference couplers for terahertz waves
NASA Astrophysics Data System (ADS)
Themistos, Christos; Kalli, Kyriacos; Komodromos, Michael; Markides, Christos; Quadir, Anita; Rahman, B. M. Azizur; Grattan, Kenneth T. V.
2012-04-01
The terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, metal-clad plasmonic waveguides and specifically hollow core structures, coated with insulating material are the most promising low-loss waveguides used in both active and passive devices. Optical power splitters are important components in the design of optoelectronic systems and optical communication networks such as Mach-Zehnder Interferometric switches, polarization splitter and polarization scramblers. Several designs for the implementation of the 3dB power splitters have been proposed in the past, such as the directional coupler-based approach, the Y-junction-based devices and the MMI-based approach. In the present paper a novel MMI-based 3dB THz wave splitter is implemented using Gold/polystyrene (PS) coated hollow glass rectangular waveguides. The H-field FEM based full-vector formulation is used here to calculate the complex propagation characteristics of the waveguide structure and the finite element beam propagation method (FE-BPM) and finite difference time domain (FDTD) approach to demonstrate the performance of the proposed 3dB splitter.
Evicase: an evidence-based case structuring approach for personalized healthcare.
Carmeli, Boaz; Casali, Paolo; Goldbraich, Anna; Goldsteen, Abigail; Kent, Carmel; Licitra, Lisa; Locatelli, Paolo; Restifo, Nicola; Rinott, Ruty; Sini, Elena; Torresani, Michele; Waks, Zeev
2012-01-01
The personalized medicine era stresses a growing need to combine evidence-based medicine with case based reasoning in order to improve the care process. To address this need we suggest a framework to generate multi-tiered statistical structures we call Evicases. Evicase integrates established medical evidence together with patient cases from the bedside. It then uses machine learning algorithms to produce statistical results and aggregators, weighted predictions, and appropriate recommendations. Designed as a stand-alone structure, Evicase can be used for a range of decision support applications including guideline adherence monitoring and personalized prognostic predictions.
NASA Astrophysics Data System (ADS)
Corni, Federico; Fuchs, Hans U.; Savino, Giovanni
2018-02-01
This is a description of the conceptual foundations used for designing a novel learning environment for mechanics implemented as an Industrial Educational Laboratory - called Fisica in Moto (FiM) - at the Ducati Foundation in Bologna. In this paper, we will describe the motivation for and design of the conceptual approach to mechanics used in the lab - as such, the paper is theoretical in nature. The goal of FiM is to provide an approach to the teaching of mechanics based upon imaginative structures found in continuum physics suitable to engineering and science. We show how continuum physics creates models of mechanical phenomena by using momentum and angular momentum as primitive quantities. We analyse this approach in terms of cognitive linguistic concepts such as conceptual metaphor and narrative framing of macroscopic physical phenomena. The model discussed here has been used in the didactical design of the actual lab and raises questions for an investigation of student learning of mechanics in a narrative setting.
Heifetz, Alexander; Southey, Michelle; Morao, Inaki; Townsend-Nicholson, Andrea; Bodkin, Mike J
2018-01-01
GPCR modeling approaches are widely used in the hit-to-lead (H2L) and lead optimization (LO) stages of drug discovery. The aims of these modeling approaches are to predict the 3D structures of the receptor-ligand complexes, to explore the key interactions between the receptor and the ligand and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this book chapter, we present a brief survey of key computational approaches integrated with hierarchical GPCR modeling protocol (HGMP) used in hit-to-lead (H2L) and in lead optimization (LO) stages of structure-based drug discovery (SBDD). We outline the differences in modeling strategies used in H2L and LO of SBDD and illustrate how these tools have been applied in three drug discovery projects.
ERIC Educational Resources Information Center
Haque, Mohammad Mahfujul; Little, David C.; Barman, Benoy K.; Wahab, Md. Abdul
2010-01-01
Purpose: The purpose of the study was to understand the adoption process of ricefield based fish seed production (RBFSP) that has been developed, promoted and established in Northwest Bangladesh. Design/Methodology/Approach: Quantitative investigation based on regression analysis and qualitative investigation using semi-structured interview were…
Evaluation of the Effectiveness of a Web-Based Learning Design for Adult Computer Science Courses
ERIC Educational Resources Information Center
Antonis, Konstantinos; Daradoumis, Thanasis; Papadakis, Spyros; Simos, Christos
2011-01-01
This paper reports on work undertaken within a pilot study concerned with the design, development, and evaluation of online computer science training courses. Drawing on recent developments in e-learning technology, these courses were structured around the principles of a learner-oriented approach for use with adult learners. The paper describes a…
Struct2Net: a web service to predict protein–protein interactions using a structure-based approach
Singh, Rohit; Park, Daniel; Xu, Jinbo; Hosur, Raghavendra; Berger, Bonnie
2010-01-01
Struct2Net is a web server for predicting interactions between arbitrary protein pairs using a structure-based approach. Prediction of protein–protein interactions (PPIs) is a central area of interest and successful prediction would provide leads for experiments and drug design; however, the experimental coverage of the PPI interactome remains inadequate. We believe that Struct2Net is the first community-wide resource to provide structure-based PPI predictions that go beyond homology modeling. Also, most web-resources for predicting PPIs currently rely on functional genomic data (e.g. GO annotation, gene expression, cellular localization, etc.). Our structure-based approach is independent of such methods and only requires the sequence information of the proteins being queried. The web service allows multiple querying options, aimed at maximizing flexibility. For the most commonly studied organisms (fly, human and yeast), predictions have been pre-computed and can be retrieved almost instantaneously. For proteins from other species, users have the option of getting a quick-but-approximate result (using orthology over pre-computed results) or having a full-blown computation performed. The web service is freely available at http://struct2net.csail.mit.edu. PMID:20513650
Du, Qi-Shi; Huang, Ri-Bo; Wei, Yu-Tuo; Pang, Zong-Wen; Du, Li-Qin; Chou, Kuo-Chen
2009-01-30
In cooperation with the fragment-based design a new drug design method, the so-called "fragment-based quantitative structure-activity relationship" (FB-QSAR) is proposed. The essence of the new method is that the molecular framework in a family of drug candidates are divided into several fragments according to their substitutes being investigated. The bioactivities of molecules are correlated with the physicochemical properties of the molecular fragments through two sets of coefficients in the linear free energy equations. One coefficient set is for the physicochemical properties and the other for the weight factors of the molecular fragments. Meanwhile, an iterative double least square (IDLS) technique is developed to solve the two sets of coefficients in a training data set alternately and iteratively. The IDLS technique is a feedback procedure with machine learning ability. The standard Two-dimensional quantitative structure-activity relationship (2D-QSAR) is a special case, in the FB-QSAR, when the whole molecule is treated as one entity. The FB-QSAR approach can remarkably enhance the predictive power and provide more structural insights into rational drug design. As an example, the FB-QSAR is applied to build a predictive model of neuraminidase inhibitors for drug development against H5N1 influenza virus. (c) 2008 Wiley Periodicals, Inc.
Pelay-Gimeno, Marta; Glas, Adrian; Koch, Oliver; Grossmann, Tom N
2015-01-01
Protein–protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A–D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices. PMID:26119925
Kinematics, structural mechanics, and design of origami structures with smooth folds
NASA Astrophysics Data System (ADS)
Peraza Hernandez, Edwin Alexander
Origami provides novel approaches to the fabrication, assembly, and functionality of engineering structures in various fields such as aerospace, robotics, etc. With the increase in complexity of the geometry and materials for origami structures that provide engineering utility, computational models and design methods for such structures have become essential. Currently available models and design methods for origami structures are generally limited to the idealization of the folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures having non-negligible thickness or maximum curvature at the folds restricted by material limitations. Thus, for general structures, creased folds of merely zeroth-order geometric continuity are not appropriate representations of structural response and a new approach is needed. The first contribution of this dissertation is a model for the kinematics of origami structures having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, here termed smooth folds. The geometry of the smooth folds and the constraints on their associated kinematic variables are presented. A numerical implementation of the model allowing for kinematic simulation of structures having arbitrary fold patterns is also described. Examples illustrating the capability of the model to capture realistic structural folding response are provided. Subsequently, a method for solving the origami design problem of determining the geometry of a single planar sheet and its pattern of smooth folds that morphs into a given three-dimensional goal shape, discretized as a polygonal mesh, is presented. The design parameterization of the planar sheet and the constraints that allow for a valid pattern of smooth folds and approximation of the goal shape in a known folded configuration are presented. Various testing examples considering goal shapes of diverse geometries are provided. Afterwards, a model for the structural mechanics of origami continuum bodies with smooth folds is presented. Such a model entails the integration of the presented kinematic model and existing plate theories in order to obtain a structural representation for folds having non-zero thickness and comprised of arbitrary materials. The model is validated against finite element analysis. The last contribution addresses the design and analysis of active material-based self-folding structures that morph via simultaneous folding towards a given three-dimensional goal shape starting from a planar configuration. Implementation examples including shape memory alloy (SMA)-based self-folding structures are provided.
Control of flexible structures
NASA Technical Reports Server (NTRS)
Russell, R. A.
1985-01-01
The requirements for future space missions indicate that many of these spacecraft will be large, flexible, and in some applications, require precision geometries. A technology program that addresses the issues associated with the structure/control interactions for these classes of spacecraft is discussed. The goal of the NASA control of flexible structures technology program is to generate a technology data base that will provide the designer with options and approaches to achieve spacecraft performance such as maintaining geometry and/or suppressing undesired spacecraft dynamics. This technology program will define the appropriate combination of analysis, ground testing, and flight testing required to validate the structural/controls analysis and design tools. This work was motivated by a recognition that large minimum weight space structures will be required for many future missions. The tools necessary to support such design included: (1) improved structural analysis; (2) modern control theory; (3) advanced modeling techniques; (4) system identification; and (5) the integration of structures and controls.
An alternative approach for computing seismic response with accidental eccentricity
NASA Astrophysics Data System (ADS)
Fan, Xuanhua; Yin, Jiacong; Sun, Shuli; Chen, Pu
2014-09-01
Accidental eccentricity is a non-standard assumption for seismic design of tall buildings. Taking it into consideration requires reanalysis of seismic resistance, which requires either time consuming computation of natural vibration of eccentric structures or finding a static displacement solution by applying an approximated equivalent torsional moment for each eccentric case. This study proposes an alternative modal response spectrum analysis (MRSA) approach to calculate seismic responses with accidental eccentricity. The proposed approach, called the Rayleigh Ritz Projection-MRSA (RRP-MRSA), is developed based on MRSA and two strategies: (a) a RRP method to obtain a fast calculation of approximate modes of eccentric structures; and (b) an approach to assemble mass matrices of eccentric structures. The efficiency of RRP-MRSA is tested via engineering examples and compared with the standard MRSA (ST-MRSA) and one approximate method, i.e., the equivalent torsional moment hybrid MRSA (ETM-MRSA). Numerical results show that RRP-MRSA not only achieves almost the same precision as ST-MRSA, and is much better than ETM-MRSA, but is also more economical. Thus, RRP-MRSA can be in place of current accidental eccentricity computations in seismic design.
NASA Astrophysics Data System (ADS)
Alam, Jubaer; Faruque, Mohammad Rashed Iqbal; Tariqul Islam, Mohammad
2018-07-01
Nested circular shaped Labyrinth double split open loop resonators (OLRs) are introduced in this article to design a triple bandpass filter for 3.01 GHz, 7.39 GHz and 12.88 GHz applications. A Rogers RT-5880 is used as a substrate to design the proposed passband filter which has a succinct structure where the attainment of the resonator is explored both integrally and experimentally. The same structure is designed on both sides of the substrate and an analysis is made on the current distribution. Based on the proposed resonator, a bandpass filter is designed and fabricated to justify the perception focusing on 3.01 GHz, 7.39 GHz and 12.88 GHz. It has also been observed by the Nicolson–Ross–Weir approach at the filtering frequencies. The effective electromagnetic parameters retrieved from the simulation of the S-parameters imply that the OLR metamaterial filter shows negative refraction bands. Having an auspicious design and double negative characteristics, this structure is suitable for triple passband filters, particularly for S, C and X-band applications.
NASA Technical Reports Server (NTRS)
Chang, C. I.
1989-01-01
An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.
Market-based control strategy for long-span structures considering the multi-time delay issue
NASA Astrophysics Data System (ADS)
Li, Hongnan; Song, Jianzhu; Li, Gang
2017-01-01
To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2 N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.
Sustainable supply chain design: a configurational approach.
Masoumik, S Maryam; Abdul-Rashid, Salwa Hanim; Olugu, Ezutah Udoncy; Raja Ghazilla, Raja Ariffin
2014-01-01
Designing the right supply chain that meets the requirements of sustainable development is a significant challenge. Although there are a considerable number of studies on issues relating to sustainable supply chain design (SSCD) in terms of designing the practices, processes, and structures, they have rarely demonstrated how these components can be aligned to form an effective sustainable supply chain (SSC). Considering this gap in the literature, this study adopts the configurational approach to develop a conceptual framework that could configure the components of a SSC. In this respect, a process-oriented approach is utilized to classify and harmonize the design components. A natural-resource-based view (NRBV) is adopted to determine the central theme to align the design components around. The proposed framework presents three types of SSC, namely, efficient SSC, innovative SSC, and reputed SSC. The study culminates with recommendations concerning the direction for future research.
Sustainable Supply Chain Design: A Configurational Approach
Masoumik, S. Maryam; Raja Ghazilla, Raja Ariffin
2014-01-01
Designing the right supply chain that meets the requirements of sustainable development is a significant challenge. Although there are a considerable number of studies on issues relating to sustainable supply chain design (SSCD) in terms of designing the practices, processes, and structures, they have rarely demonstrated how these components can be aligned to form an effective sustainable supply chain (SSC). Considering this gap in the literature, this study adopts the configurational approach to develop a conceptual framework that could configure the components of a SSC. In this respect, a process-oriented approach is utilized to classify and harmonize the design components. A natural-resource-based view (NRBV) is adopted to determine the central theme to align the design components around. The proposed framework presents three types of SSC, namely, efficient SSC, innovative SSC, and reputed SSC. The study culminates with recommendations concerning the direction for future research. PMID:24523652
Full-Carpet Design of a Low-Boom Demonstrator Concept
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Wintzer, Mathias; Rallabhandi, Sriram K.
2015-01-01
The Cart3D adjoint-based design framework is used to mitigate the undesirable o -track sonic boom properties of a demonstrator concept designed for low-boom directly under the flight path. First, the requirements of a Cart3D design mesh are determined using a high-fidelity mesh adapted to minimize the discretization error of the CFD analysis. Low-boom equivalent area targets are then generated at the under-track and one off-track azimuthal position for the baseline configuration. The under-track target is generated using a trim- feasible low-boom target generation process, ensuring that the final design is not only low-boom, but also trimmed at the specified flight condition. The o -track equivalent area target is generated by minimizing the A-weighted loudness using an efficient adjoint-based approach. The configuration outer mold line is then parameterized and optimized to match the off-body pressure distributions prescribed by the low-boom targets. The numerical optimizer uses design gradients which are calculated using the Cart3D adjoint- based design capability. Optimization constraints are placed on the geometry to satisfy structural feasibility. The low-boom properties of the final design are verified using the adaptive meshing approach. This analysis quantifies the error associated with the CFD mesh that is used for design. Finally, an alternate mesh construction and target positioning approach offering greater computational efficiency is demonstrated and verified.
Multi-objective Optimization Design of Gear Reducer Based on Adaptive Genetic Algorithms
NASA Astrophysics Data System (ADS)
Li, Rui; Chang, Tian; Wang, Jianwei; Wei, Xiaopeng; Wang, Jinming
2008-11-01
An adaptive Genetic Algorithm (GA) is introduced to solve the multi-objective optimized design of the reducer. Firstly, according to the structure, strength, etc. in a reducer, a multi-objective optimized model of the helical gear reducer is established. And then an adaptive GA based on a fuzzy controller is introduced, aiming at the characteristics of multi-objective, multi-parameter, multi-constraint conditions. Finally, a numerical example is illustrated to show the advantages of this approach and the effectiveness of an adaptive genetic algorithm used in optimized design of a reducer.
Shape optimization of disc-type flywheels
NASA Technical Reports Server (NTRS)
Nizza, R. S.
1976-01-01
Techniques were developed for presenting an analytical and graphical means for selecting an optimum flywheel system design, based on system requirements, geometric constraints, and weight limitations. The techniques for creating an analytical solution are formulated from energy and structural principals. The resulting flywheel design relates stress and strain pattern distribution, operating speeds, geometry, and specific energy levels. The design techniques incorporate the lowest stressed flywheel for any particular application and achieve the highest specific energy per unit flywheel weight possible. Stress and strain contour mapping and sectional profile plotting reflect the results of the structural behavior manifested under rotating conditions. This approach toward flywheel design is applicable to any metal flywheel, and permits the selection of the flywheel design to be based solely on the criteria of the system requirements that must be met, those that must be optimized, and those system parameters that may be permitted to vary.
First-principles modeling of biological systems and structure-based drug-design.
Sgrignani, Jacopo; Magistrato, Alessandra
2013-03-01
Molecular modeling techniques play a relevant role in drug design providing detailed information at atomistic level on the structural, dynamical, mechanistic and electronic properties of biological systems involved in diseases' onset, integrating and supporting commonly used experimental approaches. These information are often not accessible to the experimental techniques taken singularly, but are of crucial importance for drug design. Due to the enormous increase of the computer power in the last decades, quantum mechanical (QM) or first-principles-based methods have become often used to address biological issues of pharmaceutical relevance, providing relevant information for drug design. Due to their complexity and their size, biological systems are often investigated by means of a mixed quantum-classical (QM/MM) approach, which treats at an accurate QM level a limited chemically relevant portion of the system and at the molecular mechanics (MM) level the remaining of the biomolecule and its environment. This method provides a good compromise between computational cost and accuracy, allowing to characterize the properties of the biological system and the (free) energy landscape of the process in study with the accuracy of a QM description. In this review, after a brief introduction of QM and QM/MM methods, we will discuss few representative examples, taken from our work, of the application of these methods in the study of metallo-enzymes of pharmaceutical interest, of metal-containing anticancer drugs targeting the DNA as well as of neurodegenerative diseases. The information obtained from these studies may provide the basis for a rationale structure-based drug design of new and more efficient inhibitors or drugs.
A Case-Based Approach to Creative Design
1993-10-05
for solving the sometimes causal (e.g., the operation of ping-pong ball problem. Each time, the designer has different cues shooter 8) and sometimes...In addi- dance (15) is used to quickly communicate the struc- tion to the desired behavior, prominent visual cues may ture of a design alternative...and vague, incomplete havior. specifications. For example, Si’s mental picture of Structural cues describing the proposed solution, or a submarine
Probabilistic confidence for decisions based on uncertain reliability estimates
NASA Astrophysics Data System (ADS)
Reid, Stuart G.
2013-05-01
Reliability assessments are commonly carried out to provide a rational basis for risk-informed decisions concerning the design or maintenance of engineering systems and structures. However, calculated reliabilities and associated probabilities of failure often have significant uncertainties associated with the possible estimation errors relative to the 'true' failure probabilities. For uncertain probabilities of failure, a measure of 'probabilistic confidence' has been proposed to reflect the concern that uncertainty about the true probability of failure could result in a system or structure that is unsafe and could subsequently fail. The paper describes how the concept of probabilistic confidence can be applied to evaluate and appropriately limit the probabilities of failure attributable to particular uncertainties such as design errors that may critically affect the dependability of risk-acceptance decisions. This approach is illustrated with regard to the dependability of structural design processes based on prototype testing with uncertainties attributable to sampling variability.
FAME, a microprocessor based front-end analysis and modeling environment
NASA Technical Reports Server (NTRS)
Rosenbaum, J. D.; Kutin, E. B.
1980-01-01
Higher order software (HOS) is a methodology for the specification and verification of large scale, complex, real time systems. The HOS methodology was implemented as FAME (front end analysis and modeling environment), a microprocessor based system for interactively developing, analyzing, and displaying system models in a low cost user-friendly environment. The nature of the model is such that when completed it can be the basis for projection to a variety of forms such as structured design diagrams, Petri-nets, data flow diagrams, and PSL/PSA source code. The user's interface with the analyzer is easily recognized by any current user of a structured modeling approach; therefore extensive training is unnecessary. Furthermore, when all the system capabilities are used one can check on proper usage of data types, functions, and control structures thereby adding a new dimension to the design process that will lead to better and more easily verified software designs.
Hettinger, Lawrence J.; Kirlik, Alex; Goh, Yang Miang; Buckle, Peter
2015-01-01
Accurate comprehension and analysis of complex sociotechnical systems is a daunting task. Empirically examining, or simply envisioning the structure and behaviour of such systems challenges traditional analytic and experimental approaches as well as our everyday cognitive capabilities. Computer-based models and simulations afford potentially useful means of accomplishing sociotechnical system design and analysis objectives. From a design perspective, they can provide a basis for a common mental model among stakeholders, thereby facilitating accurate comprehension of factors impacting system performance and potential effects of system modifications. From a research perspective, models and simulations afford the means to study aspects of sociotechnical system design and operation, including the potential impact of modifications to structural and dynamic system properties, in ways not feasible with traditional experimental approaches. This paper describes issues involved in the design and use of such models and simulations and describes a proposed path forward to their development and implementation. Practitioner Summary: The size and complexity of real-world sociotechnical systems can present significant barriers to their design, comprehension and empirical analysis. This article describes the potential advantages of computer-based models and simulations for understanding factors that impact sociotechnical system design and operation, particularly with respect to process and occupational safety. PMID:25761227
Computational design of a Diels-Alderase from a thermophilic esterase: the importance of dynamics
NASA Astrophysics Data System (ADS)
Linder, Mats; Johansson, Adam Johannes; Olsson, Tjelvar S. G.; Liebeschuetz, John; Brinck, Tore
2012-09-01
A novel computational Diels-Alderase design, based on a relatively rare form of carboxylesterase from Geobacillus stearothermophilus, is presented and theoretically evaluated. The structure was found by mining the PDB for a suitable oxyanion hole-containing structure, followed by a combinatorial approach to find suitable substrates and rational mutations. Four lead designs were selected and thoroughly modeled to obtain realistic estimates of substrate binding and prearrangement. Molecular dynamics simulations and DFT calculations were used to optimize and estimate binding affinity and activation energies. A large quantum chemical model was used to capture the salient interactions in the crucial transition state (TS). Our quantitative estimation of kinetic parameters was validated against four experimentally characterized Diels-Alderases with good results. The final designs in this work are predicted to have rate enhancements of ≈103-106 and high predicted proficiencies. This work emphasizes the importance of considering protein dynamics in the design approach, and provides a quantitative estimate of the how the TS stabilization observed in most de novo and redesigned enzymes is decreased compared to a minimal, `ideal' model. The presented design is highly interesting for further optimization and applications since it is based on a thermophilic enzyme ( T opt = 70 °C).
Using argument notation to engineer biological simulations with increased confidence
Alden, Kieran; Andrews, Paul S.; Polack, Fiona A. C.; Veiga-Fernandes, Henrique; Coles, Mark C.; Timmis, Jon
2015-01-01
The application of computational and mathematical modelling to explore the mechanics of biological systems is becoming prevalent. To significantly impact biological research, notably in developing novel therapeutics, it is critical that the model adequately represents the captured system. Confidence in adopting in silico approaches can be improved by applying a structured argumentation approach, alongside model development and results analysis. We propose an approach based on argumentation from safety-critical systems engineering, where a system is subjected to a stringent analysis of compliance against identified criteria. We show its use in examining the biological information upon which a model is based, identifying model strengths, highlighting areas requiring additional biological experimentation and providing documentation to support model publication. We demonstrate our use of structured argumentation in the development of a model of lymphoid tissue formation, specifically Peyer's Patches. The argumentation structure is captured using Artoo (www.york.ac.uk/ycil/software/artoo), our Web-based tool for constructing fitness-for-purpose arguments, using a notation based on the safety-critical goal structuring notation. We show how argumentation helps in making the design and structured analysis of a model transparent, capturing the reasoning behind the inclusion or exclusion of each biological feature and recording assumptions, as well as pointing to evidence supporting model-derived conclusions. PMID:25589574
Using argument notation to engineer biological simulations with increased confidence.
Alden, Kieran; Andrews, Paul S; Polack, Fiona A C; Veiga-Fernandes, Henrique; Coles, Mark C; Timmis, Jon
2015-03-06
The application of computational and mathematical modelling to explore the mechanics of biological systems is becoming prevalent. To significantly impact biological research, notably in developing novel therapeutics, it is critical that the model adequately represents the captured system. Confidence in adopting in silico approaches can be improved by applying a structured argumentation approach, alongside model development and results analysis. We propose an approach based on argumentation from safety-critical systems engineering, where a system is subjected to a stringent analysis of compliance against identified criteria. We show its use in examining the biological information upon which a model is based, identifying model strengths, highlighting areas requiring additional biological experimentation and providing documentation to support model publication. We demonstrate our use of structured argumentation in the development of a model of lymphoid tissue formation, specifically Peyer's Patches. The argumentation structure is captured using Artoo (www.york.ac.uk/ycil/software/artoo), our Web-based tool for constructing fitness-for-purpose arguments, using a notation based on the safety-critical goal structuring notation. We show how argumentation helps in making the design and structured analysis of a model transparent, capturing the reasoning behind the inclusion or exclusion of each biological feature and recording assumptions, as well as pointing to evidence supporting model-derived conclusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rij, Jennifer A; Yu, Yi-Hsiang; Guo, Yi
This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluidmore » dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process. The objective of this study is to verify the generalized body-modes approach in comparison to high-fidelity FSI simulations to accurately predict structural deflections and stress loads in a WEC. Two verification cases are considered, a free-floating barge and a fixed-bottom column. Details for both the generalized body-modes models and FSI models are first provided. Results for each of the models are then compared and discussed. Finally, based on the verification results obtained, future plans for incorporating the generalized body-modes method into the WEC simulation tool, WEC-Sim, and the overall WEC design process are discussed.« less
NASA Astrophysics Data System (ADS)
Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi
2018-04-01
With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Brian G.; Boucher, Elisabeth N.; Piepenbrink, Kurt H.
Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, asmore » well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines. IMPORTANCEHepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world's population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus's high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that is the target of broadly neutralizing antibodies.In vivoresults in mice indicated that these antigens elicited epitope-specific neutralizing antibodies, with various degrees of potency and breadth. These promising results suggest that a rational design approach can be used to generate an effective vaccine for this virus.« less
Initial planetary base construction techniques and machine implementation
NASA Technical Reports Server (NTRS)
Crockford, William W.
1987-01-01
Conceptual designs of (1) initial planetary base structures, and (2) an unmanned machine to perform the construction of these structures using materials local to the planet are presented. Rock melting is suggested as a possible technique to be used by the machine in fabricating roads, platforms, and interlocking bricks. Identification of problem areas in machine design and materials processing is accomplished. The feasibility of the designs is contingent upon favorable results of an analysis of the engineering behavior of the product materials. The analysis requires knowledge of several parameters for solution of the constitutive equations of the theory of elasticity. An initial collection of these parameters is presented which helps to define research needed to perform a realistic feasibility study. A qualitative approach to estimating power and mass lift requirements for the proposed machine is used which employs specifications of currently available equipment. An initial, unmanned mission scenario is discussed with emphasis on identifying uncompleted tasks and suggesting design considerations for vehicles and primitive structures which use the products of the machine processing.
Propulsion of flexible polymer structures in a rotating magnetic field.
Garstecki, Piotr; Tierno, Pietro; Weibel, Douglas B; Sagués, Francesc; Whitesides, George M
2009-05-20
We demonstrate a new concept for the propulsions of abiological structures at low Reynolds numbers. The approach is based on the design of flexible, planar polymer structures with a permanent magnetic moment. In the presence of an external, uniform, rotating magnetic field these structures deform into three-dimensional shapes that have helical symmetry and translate linearly through fluids at Re between 10(-1) and 10. The mechanism for the motility of these structures involves reversible deformation that breaks their planar symmetry and generates propulsion. These elastic propellers resemble microorganisms that use rotational mechanisms based on flagella and cilia for their motility in fluids at low Re.
Round-the-table teaching: a novel approach to resuscitation education
McGarvey, Kathryn; Scott, Karen; O'Leary, Fenton
2014-01-01
Background Effective cardiopulmonary resuscitation saves lives. Health professionals who care for acutely unwell children need to be prepared to care for a child in arrest. Hospitals must ensure that their staff have the knowledge, confidence and ability to respond to a child in cardiac arrest. RESUS4KIDS is a programme designed to teach paediatric resuscitation to health care professionals who care for acutely unwell children. The programme is delivered in two components: an e–learning component for pre-learning, followed by a short, practical, face-to-face course that is taught using the round-the-table teaching approach. Context Round-the-table teaching is a novel, evidence-based small group teaching approach designed to teach paediatric resuscitation skills and knowledge. Round-the-table teaching uses a structured approach to managing a collapsed child, and ensures that each participant has the opportunity to practise the essential resuscitation skills of airway manoeuvres, bag mask ventilation and cardiac compressions. Innovation Round-the-table teaching is an engaging, non-threatening approach to delivering interdisciplinary paediatric resuscitation education. The methodology ensures that all participants have the opportunity to practise each of the different essential skills associated with the Danger, Response, Send for help, Airway, Breathing, Circulation, Defibrillation or rhythm recognition (DRSABCD) approach to the collapsed child. Implications Round-the-table teaching is based on evidence-based small group teaching methods. The methodology of round-the-table teaching can be applied to any topic where participants must demonstrate an understanding of a sequential approach to a clinical skill. Round-the-table teaching uses a structured approach to managing a collapsed child PMID:25212931
NASA Technical Reports Server (NTRS)
Quinlan, Jesse R.; Gern, Frank H.
2016-01-01
Simultaneously achieving the fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project requires innovative and unconventional aircraft concepts. In response, advanced hybrid wing body (HWB) aircraft concepts have been proposed and analyzed as a means of meeting these objectives. For the current study, several HWB concepts were analyzed using the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) analysis code. HCDstruct is a medium-fidelity finite element based conceptual design and structural optimization tool developed to fill the critical analysis gap existing between lower order structural sizing approaches and detailed, often finite element based sizing methods for HWB aircraft concepts. Whereas prior versions of the tool used a half-model approach in building the representative finite element model, a full wing-tip-to-wing-tip modeling capability was recently added to HCDstruct, which alleviated the symmetry constraints at the model centerline in place of a free-flying model and allowed for more realistic center body, aft body, and wing loading and trim response. The latest version of HCDstruct was applied to two ERA reference cases, including the Boeing Open Rotor Engine Integration On an HWB (OREIO) concept and the Boeing ERA-0009H1 concept, and results agreed favorably with detailed Boeing design data and related Flight Optimization System (FLOPS) analyses. Following these benchmark cases, HCDstruct was used to size NASA's ERA HWB concepts and to perform a related scaling study.
NASA Astrophysics Data System (ADS)
Cameron, Christopher J.; Lind Nordgren, Eleonora; Wennhage, Per; Göransson, Peter
2014-06-01
Balancing structural and acoustic performance of a multi-layered sandwich panel is a formidable undertaking. Frequently the gains achieved in terms of reduced weight, still meeting the structural design requirements, are lost by the changes necessary to regain acceptable acoustic performance. To alleviate this, a design method for a multifunctional load bearing vehicle body panel is proposed which attempts to achieve a balance between structural and acoustic performance. The approach is based on numerical modelling of the structural and acoustic behaviour in a combined topology, size, and property optimization in order to achieve a three dimensional optimal distribution of structural and acoustic foam materials within the bounding surfaces of a sandwich panel. In particular the effects of the coupling between one of the bounding surface face sheets and acoustic foam are examined for its impact on both the structural and acoustic overall performance of the panel. The results suggest a potential in introducing an air gap between the acoustic foam parts and one of the face sheets, provided that the structural design constraints are met without prejudicing the layout of the different foam types.
Facilitating the Development of School-Based Learning Networks
ERIC Educational Resources Information Center
Kubiak, Chris; Bertram, Joan
2010-01-01
Purpose: This paper aims to contribute to the knowledge base on leading and facilitating the growth of school improvement networks by describing the activities and challenges faced by network leaders. Design/methodology/approach: A total of 19 co-leaders from 12 networks were interviewed using a semi-structured schedule about the growth of their…
The Effect of Project Based Learning on Seventh Grade Students' Academic Achievement
ERIC Educational Resources Information Center
Kizkapan, Oktay; Bektas, Oktay
2017-01-01
The purpose of this study is to investigate whether there is a significant effect of project based learning approach on seventh grade students' academic achievement in the structure and properties of matter. In the study, according to the characteristics of quantitative research methods, pretest-posttest control group quasi-experimental design was…
School-Based Management: Arab Education System in Israel
ERIC Educational Resources Information Center
Arar, Khalid; Abu-Romi, Amal
2016-01-01
Purpose: The purpose of this paper is to investigate the issue of school-based management (SBM) in elementary schools in the Arab education system in Israel, comparing schools experienced in SBM, schools beginning to use SBM and schools that do not use SBM. Design/methodology/approach: A quantitative research used a structured questionnaire to…
Use of Problem-Based Learning in the Teaching and Learning of Horticultural Production
ERIC Educational Resources Information Center
Abbey, Lord; Dowsett, Eric; Sullivan, Jan
2017-01-01
Purpose: Problem-based learning (PBL), a relatively novel teaching and learning process in horticulture, was investigated. Proper application of PBL can potentially create a learning context that enhances student learning. Design/Methodology/Approach: Students worked on two complex ill-structured problems: (1) to produce fresh baby greens for a…
The Learning Organization and the Level of Consciousness
ERIC Educational Resources Information Center
Chiva, Ricardo
2017-01-01
Purpose: The purpose of this paper is to analyze learning organization by comparing with other types of organizations. This typology is based on the levels of consciousness and relates each type of organization with a level of learning and an organizational structure. Design/methodology/approach: This is a conceptual paper based on the concept of…
Pharmacology Goes Concept-Based: Course Design, Implementation, and Evaluation.
Lanz, Amelia; Davis, Rebecca G
Although concept-based curricula are frequently discussed in the nursing education literature, little information exists to guide the development of a concept-based pharmacology course. Traditionally, nursing pharmacology courses are taught with an emphasis on drug class where a prototype drug serves as an exemplar. When transitioning pharmacology to a concept-based course, special considerations are in order. How can educators successfully integrate essential pharmacological content into a curriculum structured around nursing concepts? This article presents one approach to the design and implementation of a concept-based undergraduate pharmacology course. Planning methods, supportive teaching strategies, and course evaluation procedures are discussed.
Mullen, Lewis; Stamp, Robin C; Brooks, Wesley K; Jones, Eric; Sutcliffe, Christopher J
2009-05-01
In this study, a novel porous titanium structure for the purpose of bone in-growth has been designed, manufactured and evaluated. The structure was produced by Selective Laser Melting (SLM); a rapid manufacturing process capable of producing highly intricate, functionally graded parts. The technique described utilizes an approach based on a defined regular unit cell to design and produce structures with a large range of both physical and mechanical properties. These properties can be tailored to suit specific requirements; in particular, functionally graded structures with bone in-growth surfaces exhibiting properties comparable to those of human bone have been manufactured. The structures were manufactured and characterized by unit cell size, strand diameter, porosity, and compression strength. They exhibited a porosity (10-95%) dependant compression strength (0.5-350 Mpa) comparable to the typical naturally occurring range. It is also demonstrated that optimized structures have been produced that possesses ideal qualities for bone in-growth applications and that these structures can be applied in the production of orthopedic devices. (c) 2008 Wiley Periodicals, Inc.
Influence of landscape structure on reef fish assemblages
Grober-Dunsmore, R.; Frazer, T.K.; Beets, J.P.; Lindberg, W.J.; Zwick, P.; Funicelli, N.A.
2008-01-01
Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape. ?? 2007 Springer Science+Business Media B.V.
Probability-Based Design Criteria of the ASCE 7 Tsunami Loads and Effects Provisions (Invited)
NASA Astrophysics Data System (ADS)
Chock, G.
2013-12-01
Mitigation of tsunami risk requires a combination of emergency preparedness for evacuation in addition to providing structural resilience of critical facilities, infrastructure, and key resources necessary for immediate response and economic and social recovery. Critical facilities would include emergency response, medical, tsunami refuges and shelters, ports and harbors, lifelines, transportation, telecommunications, power, financial institutions, and major industrial/commercial facilities. The Tsunami Loads and Effects Subcommittee of the ASCE/SEI 7 Standards Committee is developing a proposed new Chapter 6 - Tsunami Loads and Effects for the 2016 edition of the ASCE 7 Standard. ASCE 7 provides the minimum design loads and requirements for structures subject to building codes such as the International Building Code utilized in the USA. In this paper we will provide a review emphasizing the intent of these new code provisions and explain the design methodology. The ASCE 7 provisions for Tsunami Loads and Effects enables a set of analysis and design methodologies that are consistent with performance-based engineering based on probabilistic criteria. . The ASCE 7 Tsunami Loads and Effects chapter will be initially applicable only to the states of Alaska, Washington, Oregon, California, and Hawaii. Ground shaking effects and subsidence from a preceding local offshore Maximum Considered Earthquake will also be considered prior to tsunami arrival for Alaska and states in the Pacific Northwest regions governed by nearby offshore subduction earthquakes. For national tsunami design provisions to achieve a consistent reliability standard of structural performance for community resilience, a new generation of tsunami inundation hazard maps for design is required. The lesson of recent tsunami is that historical records alone do not provide a sufficient measure of the potential heights of future tsunamis. Engineering design must consider the occurrence of events greater than scenarios in the historical record, and should properly be based on the underlying seismicity of subduction zones. Therefore, Probabilistic Tsunami Hazard Analysis (PTHA) consistent with source seismicity must be performed in addition to consideration of historical event scenarios. A method of Probabilistic Tsunami Hazard Analysis has been established that is generally consistent with Probabilistic Seismic Hazard Analysis in the treatment of uncertainty. These new tsunami design zone maps will define the coastal zones where structures of greater importance would be designed for tsunami resistance and community resilience. Structural member acceptability criteria will be based on performance objectives for a 2,500-year Maximum Considered Tsunami. The approach developed by the ASCE Tsunami Loads and Effects Subcommittee of the ASCE 7 Standard would result in the first national unification of tsunami hazard criteria for design codes reflecting the modern approach of Performance-Based Engineering.
A comparative study on stress and compliance based structural topology optimization
NASA Astrophysics Data System (ADS)
Hailu Shimels, G.; Dereje Engida, W.; Fakhruldin Mohd, H.
2017-10-01
Most of structural topology optimization problems have been formulated and solved to either minimize compliance or weight of a structure under volume or stress constraints, respectively. Even if, a lot of researches are conducted on these two formulation techniques separately, there is no clear comparative study between the two approaches. This paper intends to compare these formulation techniques, so that an end user or designer can choose the best one based on the problems they have. Benchmark problems under the same boundary and loading conditions are defined, solved and results are compared based on these formulations. Simulation results shows that the two formulation techniques are dependent on the type of loading and boundary conditions defined. Maximum stress induced in the design domain is higher when the design domains are formulated using compliance based formulations. Optimal layouts from compliance minimization formulation has complex layout than stress based ones which may lead the manufacturing of the optimal layouts to be challenging. Optimal layouts from compliance based formulations are dependent on the material to be distributed. On the other hand, optimal layouts from stress based formulation are dependent on the type of material used to define the design domain. High computational time for stress based topology optimization is still a challenge because of the definition of stress constraints at element level. Results also shows that adjustment of convergence criterions can be an alternative solution to minimize the maximum stress developed in optimal layouts. Therefore, a designer or end user should choose a method of formulation based on the design domain defined and boundary conditions considered.
The jABC Approach to Rigorous Collaborative Development of SCM Applications
NASA Astrophysics Data System (ADS)
Hörmann, Martina; Margaria, Tiziana; Mender, Thomas; Nagel, Ralf; Steffen, Bernhard; Trinh, Hong
Our approach to the model-driven collaborative design of IKEA's P3 Delivery Management Process uses the jABC [9] for model driven mediation and choreography to complement a RUP-based (Rational Unified Process) development process. jABC is a framework for service development based on Lightweight Process Coordination. Users (product developers and system/software designers) easily develop services and applications by composing reusable building-blocks into (flow-) graph structures that can be animated, analyzed, simulated, verified, executed, and compiled. This way of handling the collaborative design of complex embedded systems has proven to be effective and adequate for the cooperation of non-programmers and non-technical people, which is the focus of this contribution, and it is now being rolled out in the operative practice.
Design of "Eye Closure" system for the stealth of photo-electric equipments
NASA Astrophysics Data System (ADS)
Zhang, Y.; Hua, W. S.; Li, G.
2012-10-01
Based on the optical activity of liquid crystal, a new approach for the stealth of "cat's eye" targets is proposed in this paper. It imitates the physiological close reaction of human eyes when strong light irradiates eyes. With this approach, the "cat's eye" effect will vanish, which is applied in restricting photo-electric equipments being detected and located by active laser detection system. The structure and working principle of the design are presented. The drive circuit is given to control the optical switch automatically. Feasibility of this design is demonstrated by experimental method. The measured data illustrate that the proposed approach is effective to eliminate the "cat's eye" effect, so as to enhancing the viability of photo-electric equipments on the battlefield.
Graph-based similarity concepts in virtual screening.
Hutter, Michael C
2011-03-01
Applying similarity for finding new promising compounds is a key issue in drug design. Conversely, quantifying similarity between molecules has remained a difficult task despite the numerous approaches. Here, some general aspects along with recent developments regarding similarity criteria are collected. For the purpose of virtual screening, the compounds have to be encoded into a computer-readable format that permits a comparison, according to given similarity criteria, comprising the use of the 3D structure, fingerprints, graph-based and alignment-based approaches. Whereas finding the most common substructures is the most obvious method, more recent approaches take into account chemical modifications that appear throughout existing drugs, from various therapeutic categories and targets.
ERIC Educational Resources Information Center
Sambodo, Leonardo A. A. T.; Nuthall, Peter L.
2010-01-01
Purpose: This study traced the origins of subsistence Farmers' technology adoption attitudes and extracted the critical elements in their decision making systems. Design/Methodology/Approach: The analysis was structured using a model based on the Theory of Planned Behaviour (TPB). The role of a "bargaining process" was particularly…
NASA Technical Reports Server (NTRS)
Hajela, P.; Chen, J. L.
1986-01-01
The present paper describes an approach for the optimum sizing of single and joined wing structures that is based on representing the built-up finite element model of the structure by an equivalent beam model. The low order beam model is computationally more efficient in an environment that requires repetitive analysis of several trial designs. The design procedure is implemented in a computer program that requires geometry and loading data typically available from an aerodynamic synthesis program, to create the finite element model of the lifting surface and an equivalent beam model. A fully stressed design procedure is used to obtain rapid estimates of the optimum structural weight for the beam model for a given geometry, and a qualitative description of the material distribution over the wing structure. The synthesis procedure is demonstrated for representative single wing and joined wing structures.
Structural modeling for multicell composite rotor blades
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.; Atilgan, Ali R.
1987-01-01
Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.
New displacement-based methods for optimal truss topology design
NASA Technical Reports Server (NTRS)
Bendsoe, Martin P.; Ben-Tal, Aharon; Haftka, Raphael T.
1991-01-01
Two alternate methods for maximum stiffness truss topology design are presented. The ground structure approach is used, and the problem is formulated in terms of displacements and bar areas. This large, nonconvex optimization problem can be solved by a simultaneous analysis and design approach. Alternatively, an equivalent, unconstrained, and convex problem in the displacements only can be formulated, and this problem can be solved by a nonsmooth, steepest descent algorithm. In both methods, the explicit solving of the equilibrium equations and the assembly of the global stiffness matrix are circumvented. A large number of examples have been studied, showing the attractive features of topology design as well as exposing interesting features of optimal topologies.
Sample-based synthesis of two-scale structures with anisotropy
Liu, Xingchen; Shapiro, Vadim
2017-05-19
A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less
Sample-based synthesis of two-scale structures with anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xingchen; Shapiro, Vadim
A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less
Probabilistic sizing of laminates with uncertainties
NASA Technical Reports Server (NTRS)
Shah, A. R.; Liaw, D. G.; Chamis, C. C.
1993-01-01
A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions.
Blind test of physics-based prediction of protein structures.
Shell, M Scott; Ozkan, S Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A
2009-02-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences.
Blind Test of Physics-Based Prediction of Protein Structures
Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.
2009-01-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130
NASA Astrophysics Data System (ADS)
Yang, Xudong; Sun, Lingyu; Zhang, Cheng; Li, Lijun; Dai, Zongmiao; Xiong, Zhenkai
2018-03-01
The application of polymer composites as a substitution of metal is an effective approach to reduce vehicle weight. However, the final performance of composite structures is determined not only by the material types, structural designs and manufacturing process, but also by their mutual restrict. Hence, an integrated "material-structure-process-performance" method is proposed for the conceptual and detail design of composite components. The material selection is based on the principle of composite mechanics such as rule of mixture for laminate. The design of component geometry, dimension and stacking sequence is determined by parametric modeling and size optimization. The selection of process parameters are based on multi-physical field simulation. The stiffness and modal constraint conditions were obtained from the numerical analysis of metal benchmark under typical load conditions. The optimal design was found by multi-discipline optimization. Finally, the proposed method was validated by an application case of automotive hatchback using carbon fiber reinforced polymer. Compared with the metal benchmark, the weight of composite one reduces 38.8%, simultaneously, its torsion and bending stiffness increases 3.75% and 33.23%, respectively, and the first frequency also increases 44.78%.
Adaptivity and smart algorithms for fluid-structure interaction
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley
1990-01-01
This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.
Configuration complexity assessment of convergent supply chain systems
NASA Astrophysics Data System (ADS)
Modrak, Vladimir; Marton, David
2014-07-01
System designers usually generate alternative configurations of supply chains (SCs) by varying especially fixed assets to satisfy a desired production scope and rate. Such alternatives often vary in associated costs and other facets including degrees of complexity. Hence, a measure of configuration complexity can be a tool for comparison and decision-making. This paper presents three approaches to assessment of configuration complexity and their applications to designing convergent SC systems. Presented approaches are conceptually distinct ways of measuring structural complexity parameters based on different preconditions and circumstances of assembly systems which are typical representatives of convergent SCs. There are applied two similar approaches based on different preconditions that are related to demand shares. Third approach does not consider any special condition relating to character of final product demand. Subsequently, we propose a framework for modeling of assembly SC models, which are dividing to classes.
ERIC Educational Resources Information Center
Buswell, Marina; Duncan, Peter
2013-01-01
Objective: To evaluate a school-based stop smoking pilot project and to understand the teenage experience of smoking and quitting within that context. Design: Flexible design methods. Setting: A Kent (United Kingdom [UK]) secondary school. Methods: Semi-structured interviews analyzed following a grounded theory approach. Results: The main themes…
ERIC Educational Resources Information Center
Zaniboni, Sara; Fraccaroli, Franco; Truxillo, Donald M.; Bertolino, Marilena; Bauer, Talya N.
2011-01-01
Purpose: The purpose of this study is to validate, in an Italian sample, a multidimensional training motivation measure (T-VIES-it) based on expectancy (VIE) theory, and to examine the nomological network surrounding the construct. Design/methodology/approach: Using a cross-sectional design study, 258 public sector employees in Northeast Italy…
Intuitive web-based experimental design for high-throughput biomedical data.
Friedrich, Andreas; Kenar, Erhan; Kohlbacher, Oliver; Nahnsen, Sven
2015-01-01
Big data bioinformatics aims at drawing biological conclusions from huge and complex biological datasets. Added value from the analysis of big data, however, is only possible if the data is accompanied by accurate metadata annotation. Particularly in high-throughput experiments intelligent approaches are needed to keep track of the experimental design, including the conditions that are studied as well as information that might be interesting for failure analysis or further experiments in the future. In addition to the management of this information, means for an integrated design and interfaces for structured data annotation are urgently needed by researchers. Here, we propose a factor-based experimental design approach that enables scientists to easily create large-scale experiments with the help of a web-based system. We present a novel implementation of a web-based interface allowing the collection of arbitrary metadata. To exchange and edit information we provide a spreadsheet-based, humanly readable format. Subsequently, sample sheets with identifiers and metainformation for data generation facilities can be created. Data files created after measurement of the samples can be uploaded to a datastore, where they are automatically linked to the previously created experimental design model.
Passivity/Lyapunov based controller design for trajectory tracking of flexible joint manipulators
NASA Technical Reports Server (NTRS)
Sicard, Pierre; Wen, John T.; Lanari, Leonardo
1992-01-01
A passivity and Lyapunov based approach for the control design for the trajectory tracking problem of flexible joint robots is presented. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. Feedforward selection and solution is analyzed for a general model for flexible joints, and for more specific and practical model structures. Passivity theory is used to design a motor state-based controller in order to input-output stabilize the error system formed by the feedforward. Observability conditions for asymptotic stability are stated and verified. In order to accommodate for modeling uncertainties and to allow for the implementation of a simplified feedforward compensation, the stability of the system is analyzed in presence of approximations in the feedforward by using a Lyapunov based robustness analysis. It is shown that under certain conditions, e.g., the desired trajectory is varying slowly enough, stability is maintained for various approximations of a canonical feedforward.
Efficient anomalous reflection through near-field interactions in metasurfaces
NASA Astrophysics Data System (ADS)
Chalabi, H.; Ra'di, Y.; Sounas, D. L.; Alù, A.
2017-08-01
Gradient metasurfaces have been extensively used in the past few years for advanced wave manipulation over a thin surface. These metasurfaces have been mostly designed based on the generalized laws of reflection and refraction. However, it was recently revealed that metasurfaces based on this approach tend to suffer from inefficiencies and complex design requirements. We have recently proposed a different approach to the problem of efficient beam steering using a surface, based on bianisotropic particles in a periodic array. Here, we show highly efficient reflective metasurfaces formed by pairs of isotropic dielectric rods, which can offer asymmetrical scattering of normally incident beams with unitary efficiency. Our theory shows that moderately broadband anomalous reflection can be achieved with suitably designed periodic arrays of isotropic nanoparticles. We also demonstrate practical designs using TiO2 cylindrical nanorods to deflect normally incident light toward a desired direction. The proposed structures may pave the way to a broader range of light management opportunities, with applications in energy harvesting, signaling, and communications.
Standard cell-based implementation of a digital optoelectronic neural-network hardware.
Maier, K D; Beckstein, C; Blickhan, R; Erhard, W
2001-03-10
A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.
Cvetkovic, Dean
2013-01-01
The Cooperative Learning in Engineering Design curriculum can be enhanced with structured and timely self and peer assessment teaching methodologies which can easily be applied to any Biomedical Engineering curriculum. A study was designed and implemented to evaluate the effectiveness of this structured and timely self and peer assessment on student team-based projects. In comparing the 'peer-blind' and 'face-to-face' Fair Contribution Scoring (FCS) methods, both had advantages and disadvantages. The 'peer-blind' self and peer assessment method would cause high discrepancy between self and team ratings. But the 'face-to-face' method on the other hand did not have the discrepancy issue and had actually proved to be a more accurate and effective, indicating team cohesiveness and good cooperative learning.
Optimal design of dampers within seismic structures
NASA Astrophysics Data System (ADS)
Ren, Wenjie; Qian, Hui; Song, Wali; Wang, Liqiang
2009-07-01
An improved multi-objective genetic algorithm for structural passive control system optimization is proposed. Based on the two-branch tournament genetic algorithm, the selection operator is constructed by evaluating individuals according to their dominance in one run. For a constrained problem, the dominance-based penalty function method is advanced, containing information on an individual's status (feasible or infeasible), position in a search space, and distance from a Pareto optimal set. The proposed approach is used for the optimal designs of a six-storey building with shape memory alloy dampers subjected to earthquake. The number and position of dampers are chosen as the design variables. The number of dampers and peak relative inter-storey drift are considered as the objective functions. Numerical results generate a set of non-dominated solutions.
Molecular design for enhancement of ocular penetration.
Shirasaki, Yoshihisa
2008-07-01
Over the past two decades, many oral drugs have been designed in consideration of physicochemical properties to attain optimal pharmacokinetic properties. This strategy significantly reduced attrition in drug development owing to inadequate pharmacokinetics during the last decade. On the other hand, most ophthalmic drugs are generated from reformulation of other therapeutic dosage forms. Therefore, the modification of formulations has been used mainly as the approach to improve ocular pharmacokinetics. However, to maximize ocular pharmacokinetic properties, a specific molecular design for ocular drug is preferable. Passive diffusion of drugs across the cornea membranes requires appropriate lipophilicity and aqueous solubility. Improvement of such physicochemical properties has been achieved by structure optimization or prodrug approaches. This review discusses the current knowledge about ophthalmic drugs adapted from systemic drugs and molecular design for ocular drugs. I propose the approaches for molecular design to obtain the optimal ocular penetration into anterior segment based on published studies to date.
Using the ribosome to synthesize peptidomimetics
2009-01-01
Peptidomimetic research is an approach to identify peptide-based drugs designed to mimic structural, conformational, and biological properties of peptides while overcoming their limitations, such as protease instability and poor cell penetration. With recent advances in ribosomal synthesis of peptides containing unnatural amino acids, this technology appears suitable for preparing large structurally diverse libraries of peptidomimetics for drug discovery screening. PMID:20948631
ERIC Educational Resources Information Center
Owen, Rebecca L.; Breyer, Emelita D.
2005-01-01
The Molecular Genetics and Protein Structure and Function workshop is one of a series of workshops offered by the National Science Foundation-funded Center for Workshops in the Chemical Sciences. The workshop provides a hands-on introduction to current topics and techniques in molecular genetics and protein structure/function as applied to…
A Structural Equation Model at the Individual and Group Level for Assessing Faking-Related Change
ERIC Educational Resources Information Center
Ferrando, Pere Joan; Anguiano-Carrasco, Cristina
2011-01-01
This article proposes a comprehensive approach based on structural equation modeling for assessing the amount of trait-level change derived from faking-motivating situations. The model is intended for a mixed 2-wave 2-group design, and assesses change at both the group and the individual level. Theoretically the model adopts an integrative…
Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm
Svečko, Rajko
2014-01-01
This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749
NASA Technical Reports Server (NTRS)
Stoica, A.; Keymeulen, D.; Zebulum, R. S.; Ferguson, M. I.; Guo, X.
2002-01-01
This paper comments on some directions of growth for evolvable hardware, proposes research directions that address the scalability problem and gives examples of results in novel areas approached by EHW.
Mapping of Ligand-Binding Cavities in Proteins
Andersson, C. David; Chen, Brian Y.; Linusson, Anna
2010-01-01
The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterise and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity and charge). This approach can provide valuable information on the similarities, and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterisation and mapping of “orphan structures”, selection of protein structures for docking studies in structure-based design and identification of proteins for selectivity screens in drug design programs. PMID:20034113
Theoretical and material studies on thin-film electroluminescent devices
NASA Technical Reports Server (NTRS)
Summers, C. J.; Brennan, K. F.
1986-01-01
A theoretical study of resonant tunneling in multilayered heterostructures is presented based on an exact solution of the Schroedinger equation under the application of a constant electric field. By use of the transfer matrix approach, the transmissivity of the structure is determined as a function of the incident electron energy. The approach presented is easily extended to many layer structures where it is more accurate than other existing transfer matrix or WKB models. The transmission resonances are compared to the bound state energies calculated for a finite square well under bias using either an asymmetric square well model or the exact solution of an infinite square well under the application of an electric field. The results show good agreement with other existing models as well as with the bound state energies. The calculations were then applied to a new superlattice structure, the variablly spaced superlattice energy filter, (VSSEP) which is designed such that under bias the spatial quantization levels fully align. Based on these calculations, a new class of resonant tunneling superlattice devices can be designed.
NASA Technical Reports Server (NTRS)
Adams, W. M., Jr.; Tiffany, S. H.
1983-01-01
A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.
MacDonald, James T.; Kabasakal, Burak V.; Godding, David; Kraatz, Sebastian; Henderson, Louie; Barber, James; Freemont, Paul S.; Murray, James W.
2016-01-01
The ability to design and construct structures with atomic level precision is one of the key goals of nanotechnology. Proteins offer an attractive target for atomic design because they can be synthesized chemically or biologically and can self-assemble. However, the generalized protein folding and design problem is unsolved. One approach to simplifying the problem is to use a repetitive protein as a scaffold. Repeat proteins are intrinsically modular, and their folding and structures are better understood than large globular domains. Here, we have developed a class of synthetic repeat proteins based on the pentapeptide repeat family of beta-solenoid proteins. We have constructed length variants of the basic scaffold and computationally designed de novo loops projecting from the scaffold core. The experimentally solved 3.56-Å resolution crystal structure of one designed loop matches closely the designed hairpin structure, showing the computational design of a backbone extension onto a synthetic protein core without the use of backbone fragments from known structures. Two other loop designs were not clearly resolved in the crystal structures, and one loop appeared to be in an incorrect conformation. We have also shown that the repeat unit can accommodate whole-domain insertions by inserting a domain into one of the designed loops. PMID:27573845
Sun, Mengshu; Xue, Yuankun; Bogdan, Paul; Tang, Jian; Wang, Yanzhi; Lin, Xue
2018-01-01
Recently, a new approach has been introduced that leverages and over-provisions energy storage devices (ESDs) in data centers for performing power capping and facilitating capex/opex reductions, without performance overhead. To fully realize the potential benefits of the hierarchical ESD structure, we propose a comprehensive design, control, and provisioning framework including (i) designing power delivery architecture supporting hierarchical ESD structure and hybrid ESDs for some levels, as well as (ii) control and provisioning of the hierarchical ESD structure including run-time ESD charging/discharging control and design-time determination of ESD types, homogeneous/hybrid options, ESD provisioning at each level. Experiments have been conducted using real Google data center workloads based on realistic data center specifications.
Xue, Yuankun; Bogdan, Paul; Tang, Jian; Wang, Yanzhi; Lin, Xue
2018-01-01
Recently, a new approach has been introduced that leverages and over-provisions energy storage devices (ESDs) in data centers for performing power capping and facilitating capex/opex reductions, without performance overhead. To fully realize the potential benefits of the hierarchical ESD structure, we propose a comprehensive design, control, and provisioning framework including (i) designing power delivery architecture supporting hierarchical ESD structure and hybrid ESDs for some levels, as well as (ii) control and provisioning of the hierarchical ESD structure including run-time ESD charging/discharging control and design-time determination of ESD types, homogeneous/hybrid options, ESD provisioning at each level. Experiments have been conducted using real Google data center workloads based on realistic data center specifications. PMID:29351553
Progress in the Modeling of NiAl-Based Alloys Using the BFS Method
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, John; Garg, Anita
1997-01-01
The BFS method has been applied to the study of NiAl-based materials to assess the effect of alloying additions on structure. Ternary, quaternary and even pent-alloys based on Ni-rich NiAl with additions of Ti, Cr and Cu were studied. Two approaches were used, Monte Carlo simulations to determine ground state structures and analytical calculations of high symmetry configurations which give physical insight into preferred bonding. Site occupancy energetics for ternary and the more complicated case of quaternary additions were determined, and solubility limits and precipitate formation with corresponding information concerning structure and lattice parameter were also 'observed' computationally. The method was also applied to determine the composition of alloy surfaces and interfaces. Overall, the results demonstrate that the BFS method for alloys is a powerful tool for alloy design and with its simplicity and obvious advantages can be used to complement any experimental alloy design program.
2006-12-01
subsystem that drives the active materials to achieve the desired shape changes. As opposed to fixed wing structures in which the aerodynamic and...structures and aerodynamics occur in conjunction with the active material and electronic subsystem interactions that involve transfer of energy from a source...which the aerodynamic and structure integration for the entire wing is the most important interaction mechanism, in the case of a morphing wing
Flat-plate photovoltaic array design optimization
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1980-01-01
An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.
Inverse problems in the design, modeling and testing of engineering systems
NASA Technical Reports Server (NTRS)
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
Modeling, simulation and optimization approaches for design of lightweight car body structures
NASA Astrophysics Data System (ADS)
Kiani, Morteza
Simulation-based design optimization and finite element method are used in this research to investigate weight reduction of car body structures made of metallic and composite materials under different design criteria. Besides crashworthiness in full frontal, offset frontal, and side impact scenarios, vibration frequencies, static stiffness, and joint rigidity are also considered. Energy absorption at the component level is used to study the effectiveness of carbon fiber reinforced polymer (CFRP) composite material with consideration of different failure criteria. A global-local design strategy is introduced and applied to multi-objective optimization of car body structures with CFRP components. Multiple example problems involving the analysis of full-vehicle crash and body-in-white models are used to examine the effect of material substitution and the choice of design criteria on weight reduction. The results of this study show that car body structures that are optimized for crashworthiness alone may not meet the vibration criterion. Moreover, optimized car body structures with CFRP components can be lighter with superior crashworthiness than the baseline and optimized metallic structures.
Design and Analysis of a Stiffened Composite Structure Repair Concept
NASA Technical Reports Server (NTRS)
Przekop, Adam
2011-01-01
A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. Since the repair concept is a bolted repair using metal components, it can easily be applied in the operational environment. Initial analyses are aimed at validating the finite element modeling approach by comparing with available test data. Once confidence in the analysis approach is established several repair configurations are explored and the most efficient one presented. Repairs involving damage to the top of the stiffener alone are considered in addition to repairs involving a damaged stiffener, flange and underlying skin. High fidelity finite element modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic metallic material properties and geometrically nonlinear analysis are utilized in the effort. The results of the analysis are presented and factors influencing the design are assessed and discussed.
A Novel Shape Parameterization Approach
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1999-01-01
This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.
Ebalunode, Jerry O; Zheng, Weifan; Tropsha, Alexander
2011-01-01
Optimization of chemical library composition affords more efficient identification of hits from biological screening experiments. The optimization could be achieved through rational selection of reagents used in combinatorial library synthesis. However, with a rapid advent of parallel synthesis methods and availability of millions of compounds synthesized by many vendors, it may be more efficient to design targeted libraries by means of virtual screening of commercial compound collections. This chapter reviews the application of advanced cheminformatics approaches such as quantitative structure-activity relationships (QSAR) and pharmacophore modeling (both ligand and structure based) for virtual screening. Both approaches rely on empirical SAR data to build models; thus, the emphasis is placed on achieving models of the highest rigor and external predictive power. We present several examples of successful applications of both approaches for virtual screening to illustrate their utility. We suggest that the expert use of both QSAR and pharmacophore models, either independently or in combination, enables users to achieve targeted libraries enriched with experimentally confirmed hit compounds.
Artificial enzymes with protein scaffolds: structural design and modification.
Matsuo, Takashi; Hirota, Shun
2014-10-15
Recent development in biochemical experiment techniques and bioinformatics has enabled us to create a variety of artificial biocatalysts with protein scaffolds (namely 'artificial enzymes'). The construction methods of these catalysts include genetic mutation, chemical modification using synthetic molecules and/or a combination of these methods. Designed evolution strategy based on the structural information of host proteins has become more and more popular as an effective approach to construct artificial protein-based biocatalysts with desired reactivities. From the viewpoint of application of artificial enzymes for organic synthesis, recently constructed artificial enzymes mediating oxidation, reduction and C-C bond formation/cleavage are introduced in this review article. Copyright © 2014 Elsevier Ltd. All rights reserved.
Technology-based design and scaling for RTGs for space exploration in the 100 W range
NASA Astrophysics Data System (ADS)
Summerer, Leopold; Pierre Roux, Jean; Pustovalov, Alexey; Gusev, Viacheslav; Rybkin, Nikolai
2011-04-01
This paper presents the results of a study on design considerations for a 100 W radioisotope thermo-electric generator (RTG). Special emphasis has been put on designing a modular, multi-purpose system with high overall TRL levels and making full use of the extensive Russian heritage in the design of radioisotope power systems. The modular approach allowed insight into the scaling of such RTGs covering the electric power range from 50 to 200 W e (EoL). The retained concept is based on a modular thermal block structure, a radiative inner-RTG heat transfer and using a two-stage thermo-electric conversion system.
Design and simulation of a semiconductor chip-based visible - NIR spectrometer for Earth observation
NASA Astrophysics Data System (ADS)
Coote, J.; Woolliams, E.; Fox, N.; Goodyer, I. D.; Sweeney, S. J.
2014-03-01
We present the development of a novel semiconductor chip-based spectrometer for calibration of Earth observation instruments. The chip follows the Solo spectroscopy approach utilising an array of microdisk resonators evanescently coupled to a central waveguide. Each resonator is tuned to select out a specific wavelength from the incoming spectrum, and forms a p-i-n junction in which current is generated when light of the correct wavelength is present. In this paper we discuss important design aspects including the choice of semiconductor material, design of semiconductor quantum well structures for optical absorption, and design and optimisation of the waveguide and resonators.
A novel approach to enhance the accuracy of vibration control of Frames
NASA Astrophysics Data System (ADS)
Toloue, Iraj; Shahir Liew, Mohd; Harahap, I. S. H.; Lee, H. E.
2018-03-01
All structures built within known seismically active regions are typically designed to endure earthquake forces. Despite advances in earthquake resistant structures, it can be inferred from hindsight that no structure is entirely immune to damage from earthquakes. Active vibration control systems, unlike the traditional methods which enlarge beams and columns, are highly effective countermeasures to reduce the effects of earthquake loading on a structure. It requires fast computation of nonlinear structural analysis in near time and has historically demanded advanced programming hosted on powerful computers. This research aims to develop a new approach for active vibration control of frames, which is applicable over both elastic and plastic material behavior. In this study, the Force Analogy Method (FAM), which is based on Hook's Law is further extended using the Timoshenko element which considers shear deformations to increase the reliability and accuracy of the controller. The proposed algorithm is applied to a 2D portal frame equipped with linear actuator, which is designed based on full state Linear Quadratic Regulator (LQR). For comparison purposes, the portal frame is analysed by both the Euler Bernoulli and Timoshenko element respectively. The results clearly demonstrate the superiority of the Timoshenko element over Euler Bernoulli for application in nonlinear analysis.
Bae, Won-Gyu; Kim, Jangho; Choung, Yun-Hoon; Chung, Yesol; Suh, Kahp Y; Pang, Changhyun; Chung, Jong Hoon; Jeong, Hoon Eui
2015-11-01
Inspired by the hierarchically organized protein fibers in extracellular matrix (ECM) as well as the physiological importance of multiscale topography, we developed a simple but robust method for the design and manipulation of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with an original wrinkling technique. In this study, based on our proposed fabrication technology, we approached a conceptual platform that can mimic the hierarchically multiscale topographical and orientation cues of the ECM for controlling cell structure and function. We patterned the polyurethane acrylate-based nanotopography with various orientations on the microgrooves, which could provide multiscale topography signals of ECM to control single and multicellular morphology and orientation with precision. Using our platforms, we found that the structures and orientations of fibroblast cells were greatly influenced by the nanotopography, rather than the microtopography. We also proposed a new approach that enables the generation of native ECM having nanofibers in specific three-dimensional (3D) configurations by culturing fibroblast cells on the multiscale substrata. We suggest that our methodology could be used as efficient strategies for the design and manipulation of various functional platforms, including well-defined 3D tissue structures for advanced regenerative medicine applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Parada, M.; Sbarbaro, D.; Borges, R. A.; Peres, P. L. D.
2017-01-01
The use of robust design techniques such as the one based on ? and ? for tuning proportional integral (PI) and proportional integral derivative (PID) controllers have been limited to address a small set of processes. This work addresses the problem by considering a wide set of possible plants, both first- and second-order continuous-time systems with time delays and zeros, leading to PI and PID controllers. The use of structured uncertainties to handle neglected dynamics allows to expand the range of processes to be considered. The proposed approach takes into account the robustness of the controller with respect to these structured uncertainties by using the small-gain theorem. In addition, improved performance is sought through the minimisation of an upper bound to the closed-loop system ? norm. A Lyapunov-Krasovskii-type functional is used to obtain delay-dependent design conditions. The controller design is accomplished by means of a convex optimisation procedure formulated using linear matrix inequalities. In order to illustrate the flexibility of the approach, several examples considering recycle compensation, reduced-order controller design and a practical implementation are addressed. Numerical experiments are provided in each case to highlight the main characteristics of the proposed design method.
Cole-Lewis, Heather J; Smaldone, Arlene M; Davidson, Patricia R; Kukafka, Rita; Tobin, Jonathan N; Cassells, Andrea; Mynatt, Elizabeth D; Hripcsak, George; Mamykina, Lena
2016-01-01
To develop an expandable knowledge base of reusable knowledge related to self-management of diabetes that can be used as a foundation for patient-centric decision support tools. The structure and components of the knowledge base were created in participatory design with academic diabetes educators using knowledge acquisition methods. The knowledge base was validated using scenario-based approach with practicing diabetes educators and individuals with diabetes recruited from Community Health Centers (CHCs) serving economically disadvantaged communities and ethnic minorities in New York. The knowledge base includes eight glycemic control problems, over 150 behaviors known to contribute to these problems coupled with contextual explanations, and over 200 specific action-oriented self-management goals for correcting problematic behaviors, with corresponding motivational messages. The validation of the knowledge base suggested high level of completeness and accuracy, and identified improvements in cultural appropriateness. These were addressed in new iterations of the knowledge base. The resulting knowledge base is theoretically grounded, incorporates practical and evidence-based knowledge used by diabetes educators in practice settings, and allows for personally meaningful choices by individuals with diabetes. Participatory design approach helped researchers to capture implicit knowledge of practicing diabetes educators and make it explicit and reusable. The knowledge base proposed here is an important step towards development of new generation patient-centric decision support tools for facilitating chronic disease self-management. While this knowledge base specifically targets diabetes, its overall structure and composition can be generalized to other chronic conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cole-Lewis, Heather J.; Smaldone, Arlene M.; Davidson, Patricia R.; Kukafka, Rita; Tobin, Jonathan N.; Cassells, Andrea; Mynatt, Elizabeth D.; Hripcsak, George; Mamykina, Lena
2015-01-01
Objective To develop an expandable knowledge base of reusable knowledge related to self-management of diabetes that can be used as a foundation for patient-centric decision support tools. Materials and methods The structure and components of the knowledge base were created in participatory design with academic diabetes educators using knowledge acquisition methods. The knowledge base was validated using scenario-based approach with practicing diabetes educators and individuals with diabetes recruited from Community Health Centers (CHCs) serving economically disadvantaged communities and ethnic minorities in New York. Results The knowledge base includes eight glycemic control problems, over 150 behaviors known to contribute to these problems coupled with contextual explanations, and over 200 specific action-oriented self-management goals for correcting problematic behaviors, with corresponding motivational messages. The validation of the knowledge base suggested high level of completeness and accuracy, and identified improvements in cultural appropriateness. These were addressed in new iterations of the knowledge base. Discussion The resulting knowledge base is theoretically grounded, incorporates practical and evidence-based knowledge used by diabetes educators in practice settings, and allows for personally meaningful choices by individuals with diabetes. Participatory design approach helped researchers to capture implicit knowledge of practicing diabetes educators and make it explicit and reusable. Conclusion The knowledge base proposed here is an important step towards development of new generation patient-centric decision support tools for facilitating chronic disease self-management. While this knowledge base specifically targets diabetes, its overall structure and composition can be generalized to other chronic conditions. PMID:26547253
Methodology of shell structure reinforcement layout optimization
NASA Astrophysics Data System (ADS)
Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof
2018-01-01
This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.
NASA Astrophysics Data System (ADS)
Duan, Libin; Xiao, Ning-cong; Li, Guangyao; Cheng, Aiguo; Chen, Tao
2017-07-01
Tailor-rolled blank thin-walled (TRB-TH) structures have become important vehicle components owing to their advantages of light weight and crashworthiness. The purpose of this article is to provide an efficient lightweight design for improving the energy-absorbing capability of TRB-TH structures under dynamic loading. A finite element (FE) model for TRB-TH structures is established and validated by performing a dynamic axial crash test. Different material properties for individual parts with different thicknesses are considered in the FE model. Then, a multi-objective crashworthiness design of the TRB-TH structure is constructed based on the ɛ-support vector regression (ɛ-SVR) technique and non-dominated sorting genetic algorithm-II. The key parameters (C, ɛ and σ) are optimized to further improve the predictive accuracy of ɛ-SVR under limited sample points. Finally, the technique for order preference by similarity to the ideal solution method is used to rank the solutions in Pareto-optimal frontiers and find the best compromise optima. The results demonstrate that the light weight and crashworthiness performance of the optimized TRB-TH structures are superior to their uniform thickness counterparts. The proposed approach provides useful guidance for designing TRB-TH energy absorbers for vehicle bodies.
An application of object-oriented knowledge representation to engineering expert systems
NASA Technical Reports Server (NTRS)
Logie, D. S.; Kamil, H.; Umaretiya, J. R.
1990-01-01
The paper describes an object-oriented knowledge representation and its application to engineering expert systems. The object-oriented approach promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects and organized by defining relationships between the objects. An Object Representation Language (ORL) was implemented as a tool for building and manipulating the object base. Rule-based knowledge representation is then used to simulate engineering design reasoning. Using a common object base, very large expert systems can be developed, comprised of small, individually processed, rule sets. The integration of these two schemes makes it easier to develop practical engineering expert systems. The general approach to applying this technology to the domain of the finite element analysis, design, and optimization of aerospace structures is discussed.
NASA Technical Reports Server (NTRS)
Sicard, Pierre; Wen, John T.
1992-01-01
A passivity approach for the control design of flexible joint robots is applied to the rate control of a three-link arm modeled after the shoulder yaw joint of the Space Shuttle Remote Manipulator System (RMS). The system model includes friction and elastic joint couplings modeled as nonlinear springs. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. A regulator approach with link state feedback is employed to define the desired motor state. Passivity theory is used to design a motor state-based controller to stabilize the error system formed by the feedforward. Simulation results show that greatly improved performance was obtained by using the proposed controller over the existing RMS controller.
Transitioning From Volume to Value: A Strategic Approach to Design and Implementation.
Randazzo, Geralyn; Brown, Zenobia
2016-01-01
As the health care delivery system migrates toward a model based on value rather than volume, nursing leaders play a key role in assisting in the design and implementation of new models of care to support this transition. This article provides an overview of one organization's approach to evolve in the direction of value while gaining the experience needed to scope and scale cross-continuum assets to meet this growing demand. This article outlines the development and deployment of an organizational structure, information technology integration, clinical implementation strategies, and tools and metrics utilized to evaluate the outcomes of value-based programs. Experience in Bundled Payments for Care Improvement program is highlighted. The outcomes and lessons learned are incorporated for those interested in advancing value-based endeavors in their own organizations.
Landsverk, John; Brown, C Hendricks; Rolls Reutz, Jennifer; Palinkas, Lawrence; Horwitz, Sarah McCue
2011-01-01
Implementation science is an emerging field of research with considerable penetration in physical medicine and less in the fields of mental health and social services. There remains a lack of consensus on methodological approaches to the study of implementation processes and tests of implementation strategies. This paper addresses the need for methods development through a structured review that describes design elements in nine studies testing implementation strategies for evidence-based interventions addressing mental health problems of children in child welfare and child mental health settings. Randomized trial designs were dominant with considerable use of mixed method designs in the nine studies published since 2005. The findings are discussed in reference to the limitations of randomized designs in implementation science and the potential for use of alternative designs.
NASA Astrophysics Data System (ADS)
El-Hakim, H. A.; Mahmoud, K. R.
2017-10-01
In this paper, straightforward and efficient techniques have been addressed into double-layer structure to enlarge the operating bandwidth to include the X, Ku and K bands, in addition to increase the electromagnetic wave absorption for wide varieties of incident angles and both polarization types. To increase the band-stop resonating frequency up to 26 GHz, an additional layer of meta-surface, circuit analog radar absorber material (CAR), or a thin radar absorber material (RAM) layer is engineered. The synthesized layers are designed based on optimization process with genetic algorithm (GA) through numerical technique (Ansoft design software HFSS) for both transmission line (T.L) and the free space method to get optimal material properties suitable for the design. For different approaches, the designed structures achieved a reflectivity value less than -16 dB on average in the desired bandwidth from 8 to 26 GHz for TE/TM modes with incidence angle up to 50o.
Iera, Jaclyn A; Jenkins, Lisa M Miller; Kajiyama, Hiroshi; Kopp, Jeffrey B; Appella, Daniel H
2010-11-15
Inhibitors for protein-protein interactions are challenging to design, in part due to the unique and complex architectures of each protein's interaction domain. Most approaches to develop inhibitors for these interactions rely on rational design, which requires prior structural knowledge of the target and its ligands. In the absence of structural information, a combinatorial approach may be the best alternative to finding inhibitors of a protein-protein interaction. Current chemical libraries, however, consist mostly of molecules designed to inhibit enzymes. In this manuscript, we report the synthesis and screening of a library based on an N-acylated polyamine (NAPA) scaffold that we designed to have specific molecular features necessary to inhibit protein-protein interactions. Screens of the library identified a member with favorable binding properties to the HIV viral protein R (Vpr), a regulatory protein from HIV, that is involved in numerous interactions with other proteins critical for viral replication. Published by Elsevier Ltd.
Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T
2017-05-15
Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.
NASA Astrophysics Data System (ADS)
Luo, Yangjun; Niu, Yanzhuang; Li, Ming; Kang, Zhan
2017-06-01
In order to eliminate stress-related wrinkles in cable-suspended membrane structures and to provide simple and reliable deployment, this study presents a multi-material topology optimization model and an effective solution procedure for generating optimal connected layouts for membranes and cables. On the basis of the principal stress criterion of membrane wrinkling behavior and the density-based interpolation of multi-phase materials, the optimization objective is to maximize the total structural stiffness while satisfying principal stress constraints and specified material volume requirements. By adopting the cosine-type relaxation scheme to avoid the stress singularity phenomenon, the optimization model is successfully solved through a standard gradient-based algorithm. Four-corner tensioned membrane structures with different loading cases were investigated to demonstrate the effectiveness of the proposed method in automatically finding the optimal design composed of curved boundary cables and wrinkle-free membranes.
Flexible manipulator control experiments and analysis
NASA Technical Reports Server (NTRS)
Yurkovich, S.; Ozguner, U.; Tzes, A.; Kotnik, P. T.
1987-01-01
Modeling and control design for flexible manipulators, both from an experimental and analytical viewpoint, are described. From the application perspective, an ongoing effort within the laboratory environment at the Ohio State University, where experimentation on a single link flexible arm is underway is described. Several unique features of this study are described here. First, the manipulator arm is slewed by a direct drive dc motor and has a rigid counterbalance appendage. Current experimentation is from two viewpoints: (1) rigid body slewing and vibration control via actuation with the hub motor, and (2) vibration suppression through the use of structure-mounted proof-mass actuation at the tip. Such an application to manipulator control is of interest particularly in design of space-based telerobotic control systems, but has received little attention to date. From an analytical viewpoint, parameter estimation techniques within the closed-loop for self-tuning adaptive control approaches are discussed. Also introduced is a control approach based on output feedback and frequency weighting to counteract effects of spillover in reduced-order model design. A model of the flexible manipulator based on experimental measurements is evaluated for such estimation and control approaches.
ERIC Educational Resources Information Center
Mahmoud, Ali Bassam; Khalifa, Bayan
2015-01-01
Purpose: The purpose of this paper is to confirm the factorial structure of SERVPERF based on an exploration of its dimensionality among Syrian universities' students. It also aimed at assessing the perceived service quality offered at these universities. Design/methodology/approach: A cross-sectional survey was conducted targeting students at…
ERIC Educational Resources Information Center
Murray, Lynn M.
2012-01-01
Live-client projects are increasingly used in marketing coursework. However, students, instructors, and clients are often disappointed by the results. This paper reports an approach drawn from the problem-based learning, scaffolding, and team formation and coaching literatures that uses favor of a series of workshops designed to guide students in…
Firm-Specific Marketing Capital and Job Satisfaction of Marketers: Evidence from Vietnam
ERIC Educational Resources Information Center
Nguyen, Tho D.; Nguyen, Trang T. M.
2011-01-01
Purpose: Based on the resource-based view of the firm, this study aims to examine antecedents and outcomes of firm-specific marketing capital pool invested by marketers in a transition market, Vietnam. Design/methodology/approach: A sample of 528 marketers in Ho Chi Minh City was surveyed to test the theoretical model. Structural equation…
Multiobjective optimization in structural design with uncertain parameters and stochastic processes
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.
Safety envelope for load tolerance of structural element design based on multi-stage testing
Park, Chanyoung; Kim, Nam H.
2016-09-06
Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less
NASA Astrophysics Data System (ADS)
Paik, Seung Hoon; Kim, Ji Yeon; Shin, Sang Joon; Kim, Seung Jo
2004-07-01
Smart structures incorporating active materials have been designed and analyzed to improve aerospace vehicle performance and its vibration/noise characteristics. Helicopter integral blade actuation is one example of those efforts using embedded anisotropic piezoelectric actuators. To design and analyze such integrally-actuated blades, beam approach based on homogenization methodology has been traditionally used. Using this approach, the global behavior of the structures is predicted in an averaged sense. However, this approach has intrinsic limitations in describing the local behaviors in the level of the constituents. For example, the failure analysis of the individual active fibers requires the knowledge of the local behaviors. Microscopic approach for the analysis of integrally-actuated structures is established in this paper. Piezoelectric fibers and matrices are modeled individually and finite element method using three-dimensional solid elements is adopted. Due to huge size of the resulting finite element meshes, high performance computing technology is required in its solution process. The present methodology is quoted as Direct Numerical Simulation (DNS) of the smart structure. As an initial validation effort, present analytical results are correlated with the experiments from a small-scaled integrally-actuated blade, Active Twist Rotor (ATR). Through DNS, local stress distribution around the interface of fiber and matrix can be analyzed.
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-05-01
Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-01-01
Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.
Validation of a SysML based design for wireless sensor networks
NASA Astrophysics Data System (ADS)
Berrachedi, Amel; Rahim, Messaoud; Ioualalen, Malika; Hammad, Ahmed
2017-07-01
When developing complex systems, the requirement for the verification of the systems' design is one of the main challenges. Wireless Sensor Networks (WSNs) are examples of such systems. We address the problem of how WSNs must be designed to fulfil the system requirements. Using the SysML Language, we propose a Model Based System Engineering (MBSE) specification and verification methodology for designing WSNs. This methodology uses SysML to describe the WSNs requirements, structure and behaviour. Then, it translates the SysML elements to an analytic model, specifically, to a Deterministic Stochastic Petri Net. The proposed approach allows to design WSNs and study their behaviors and their energy performances.
ERIC Educational Resources Information Center
Besson, Ugo; Borghi, Lidia; De Ambrosis, Anna; Mascheretti, Paolo
2010-01-01
We have developed a teaching-learning sequence (TLS) on friction based on a preliminary study involving three dimensions: an analysis of didactic research on the topic, an overview of usual approaches, and a critical analysis of the subject, considered also in its historical development. We found that mostly the usual presentations do not take…
Metric integration architecture for product development
NASA Astrophysics Data System (ADS)
Sieger, David B.
1997-06-01
Present-day product development endeavors utilize the concurrent engineering philosophy as a logical means for incorporating a variety of viewpoints into the design of products. Since this approach provides no explicit procedural provisions, it is necessary to establish at least a mental coupling with a known design process model. The central feature of all such models is the management and transformation of information. While these models assist in structuring the design process, characterizing the basic flow of operations that are involved, they provide no guidance facilities. The significance of this feature, and the role it plays in the time required to develop products, is increasing in importance due to the inherent process dynamics, system/component complexities, and competitive forces. The methodology presented in this paper involves the use of a hierarchical system structure, discrete event system specification (DEVS), and multidimensional state variable based metrics. This approach is unique in its capability to quantify designer's actions throughout product development, provide recommendations about subsequent activity selection, and coordinate distributed activities of designers and/or design teams across all design stages. Conceptual design tool implementation results are used to demonstrate the utility of this technique in improving the incremental decision making process.
A kinase-focused compound collection: compilation and screening strategy.
Sun, Dongyu; Chuaqui, Claudio; Deng, Zhan; Bowes, Scott; Chin, Donovan; Singh, Juswinder; Cullen, Patrick; Hankins, Gretchen; Lee, Wen-Cherng; Donnelly, Jason; Friedman, Jessica; Josiah, Serene
2006-06-01
Lead identification by high-throughput screening of large compound libraries has been supplemented with virtual screening and focused compound libraries. To complement existing approaches for lead identification at Biogen Idec, a kinase-focused compound collection was designed, developed and validated. Two strategies were adopted to populate the compound collection: a ligand shape-based virtual screening and a receptor-based approach (structural interaction fingerprint). Compounds selected with the two approaches were cherry-picked from an existing high-throughput screening compound library, ordered from suppliers and supplemented with specific medicinal compounds from internal programs. Promising hits and leads have been generated from the kinase-focused compound collection against multiple kinase targets. The principle of the collection design and screening strategy was validated and the use of the kinase-focused compound collection for lead identification has been added to existing strategies.
Development of thermoplastic composite aircraft structures
NASA Technical Reports Server (NTRS)
Renieri, Michael P.; Burpo, Steven J.; Roundy, Lance M.; Todd, Stephanie A.; Kim, H. J.
1992-01-01
Efforts focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. In support of these designs, mechanics developments were conducted in two areas. First, a dissipative strain energy approach to material characterization and failure prediction, developed at the Naval Research Laboratory, was evaluated as a design/analysis tool. Second, a finite element formulation for thick composites was developed and incorporated into a lug analysis method which incorporates pin bending effects. Manufacturing concepts were developed for an upper fuel cell cover. A detailed trade study produced two promising concepts: fiber placement and single-step diaphragm forming. Based on the innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldine concepts. Manufacturing techniques included autoclave consolidation, single diaphragm consolidation (SDCC) and roll-forming.
Design development of graphite primary structures enables SSTO success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biagiotti, V.A.; Yahiro, J.S.; Suh, D.E.
1997-01-01
This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA{close_quote}s X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman{close_quote}s approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Sectionmore » Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria. {copyright} {ital 1997 American Institute of Physics.}« less
Cho, Kwang-Hyun; Choo, Sang-Mok; Wellstead, Peter; Wolkenhauer, Olaf
2005-08-15
We propose a unified framework for the identification of functional interaction structures of biomolecular networks in a way that leads to a new experimental design procedure. In developing our approach, we have built upon previous work. Thus we begin by pointing out some of the restrictions associated with existing structure identification methods and point out how these restrictions may be eased. In particular, existing methods use specific forms of experimental algebraic equations with which to identify the functional interaction structure of a biomolecular network. In our work, we employ an extended form of these experimental algebraic equations which, while retaining their merits, also overcome some of their disadvantages. Experimental data are required in order to estimate the coefficients of the experimental algebraic equation set associated with the structure identification task. However, experimentalists are rarely provided with guidance on which parameters to perturb, and to what extent, to perturb them. When a model of network dynamics is required then there is also the vexed question of sample rate and sample time selection to be resolved. Supplying some answers to these questions is the main motivation of this paper. The approach is based on stationary and/or temporal data obtained from parameter perturbations, and unifies the previous approaches of Kholodenko et al. (PNAS 99 (2002) 12841-12846) and Sontag et al. (Bioinformatics 20 (2004) 1877-1886). By way of demonstration, we apply our unified approach to a network model which cannot be properly identified by existing methods. Finally, we propose an experiment design methodology, which is not limited by the amount of parameter perturbations, and illustrate its use with an in numero example.
Bao, Yihai; Main, Joseph A; Noh, Sam-Young
2017-08-01
A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.
Load Balancing in Structured P2P Networks
NASA Astrophysics Data System (ADS)
Zhu, Yingwu
In this chapter we start by addressing the importance and necessity of load balancing in structured P2P networks, due to three main reasons. First, structured P2P networks assume uniform peer capacities while peer capacities are heterogeneous in deployed P2P networks. Second, resorting to pseudo-uniformity of the hash function used to generate node IDs and data item keys leads to imbalanced overlay address space and item distribution. Lastly, placement of data items cannot be randomized in some applications (e.g., range searching). We then present an overview of load aggregation and dissemination techniques that are required by many load balancing algorithms. Two techniques are discussed including tree structure-based approach and gossip-based approach. They make different tradeoffs between estimate/aggregate accuracy and failure resilience. To address the issue of load imbalance, three main solutions are described: virtual server-based approach, power of two choices, and address-space and item balancing. While different in their designs, they all aim to improve balance on the address space and data item distribution. As a case study, the chapter discusses a virtual server-based load balancing algorithm that strives to ensure fair load distribution among nodes and minimize load balancing cost in bandwidth. Finally, the chapter concludes with future research and a summary.
NASA Technical Reports Server (NTRS)
Olds, John Robert; Walberg, Gerald D.
1993-01-01
Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are determined for the vehicle. A summary and evaluation of the various parametric MDO methods employed in the research are included. Recommendations for additional research are provided.
One Controller at a Time (1-CAT): A mimo design methodology
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Lucas, J. C.
1987-01-01
The One Controller at a Time (1-CAT) methodology for designing digital controllers for Large Space Structures (LSS's) is introduced and illustrated. The flexible mode problem is first discussed. Next, desirable features of a LSS control system design methodology are delineated. The 1-CAT approach is presented, along with an analytical technique for carrying out the 1-CAT process. Next, 1-CAT is used to design digital controllers for the proposed Space Based Laser (SBL). Finally, the SBL design is evaluated for dynamical performance, noise rejection, and robustness.
Shaping propagation invariant laser beams
NASA Astrophysics Data System (ADS)
Soskind, Michael; Soskind, Rose; Soskind, Yakov
2015-11-01
Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.
Medicinal chemistry inspired fragment-based drug discovery.
Lanter, James; Zhang, Xuqing; Sui, Zhihua
2011-01-01
Lead generation can be a very challenging phase of the drug discovery process. The two principal methods for this stage of research are blind screening and rational design. Among the rational or semirational design approaches, fragment-based drug discovery (FBDD) has emerged as a useful tool for the generation of lead structures. It is particularly powerful as a complement to high-throughput screening approaches when the latter failed to yield viable hits for further development. Engagement of medicinal chemists early in the process can accelerate the progression of FBDD efforts by incorporating drug-friendly properties in the earliest stages of the design process. Medium-chain acyl-CoA synthetase 2b and ketohexokinase are chosen as examples to illustrate the importance of close collaboration of medicinal chemists, crystallography, and modeling. Copyright © 2011 Elsevier Inc. All rights reserved.
Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review.
Yousefi, Azizeh-Mitra; Hoque, Md Enamul; Prasad, Rangabhatala G S V; Uth, Nicholas
2015-07-01
The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article. © 2014 Wiley Periodicals, Inc.
Round-the-table teaching: a novel approach to resuscitation education.
McGarvey, Kathryn; Scott, Karen; O'Leary, Fenton
2014-10-01
Effective cardiopulmonary resuscitation saves lives. Health professionals who care for acutely unwell children need to be prepared to care for a child in arrest. Hospitals must ensure that their staff have the knowledge, confidence and ability to respond to a child in cardiac arrest. RESUS4KIDS is a programme designed to teach paediatric resuscitation to health care professionals who care for acutely unwell children. The programme is delivered in two components: an e-learning component for pre-learning, followed by a short, practical, face-to-face course that is taught using the round-the-table teaching approach. Round-the-table teaching is a novel, evidence-based small group teaching approach designed to teach paediatric resuscitation skills and knowledge. Round-the-table teaching uses a structured approach to managing a collapsed child, and ensures that each participant has the opportunity to practise the essential resuscitation skills of airway manoeuvres, bag mask ventilation and cardiac compressions. Round-the-table teaching is an engaging, non-threatening approach to delivering interdisciplinary paediatric resuscitation education. The methodology ensures that all participants have the opportunity to practise each of the different essential skills associated with the Danger, Response, Send for help, Airway, Breathing, Circulation, Defibrillation or rhythm recognition (DRSABCD) approach to the collapsed child. Round-the-table teaching is based on evidence-based small group teaching methods. The methodology of round-the-table teaching can be applied to any topic where participants must demonstrate an understanding of a sequential approach to a clinical skill. Round-the-table teaching uses a structured approach to managing a collapsed child. © 2014 The Authors. The Clinical Teacher published by Association for the Study of Medical Education and John Wiley & Sons Ltd.
An Ensemble Approach for Drug Side Effect Prediction
Jahid, Md Jamiul; Ruan, Jianhua
2014-01-01
In silico prediction of drug side-effects in early stage of drug development is becoming more popular now days, which not only reduces the time for drug design but also reduces the drug development costs. In this article we propose an ensemble approach to predict drug side-effects of drug molecules based on their chemical structure. Our idea originates from the observation that similar drugs have similar side-effects. Based on this observation we design an ensemble approach that combine the results from different classification models where each model is generated by a different set of similar drugs. We applied our approach to 1385 side-effects in the SIDER database for 888 drugs. Results show that our approach outperformed previously published approaches and standard classifiers. Furthermore, we applied our method to a number of uncharacterized drug molecules in DrugBank database and predict their side-effect profiles for future usage. Results from various sources confirm that our method is able to predict the side-effects for uncharacterized drugs and more importantly able to predict rare side-effects which are often ignored by other approaches. The method described in this article can be useful to predict side-effects in drug design in an early stage to reduce experimental cost and time. PMID:25327524
NASA Astrophysics Data System (ADS)
Chang, Ch; Patzer, A. B. C.; Sedlmayr, E.; Steinke, T.; Sülzle, D.
2001-12-01
Theoretical electronic structure techniques have become an indispensible and powerful means for predicting molecular properties and designing new materials. Based on a density functional approach and guided by geometric considerations we provide evidence for some specific inorganic fullerene-like cage molecules of ceramic and semiconductor materials which exhibit high energetic stability and point group symmetry as well as nearly perfect spherical shape.
Goal Structured Notation in a Radiation Hardening Safety Case for COTS-Based Spacecraft
NASA Technical Reports Server (NTRS)
Witulski, Arthur; Austin, Rebekah; Reed, Robert; Karsai, Gabor; Mahadevan, Nag; Sierawski, Brian; Evans, John; LaBel, Ken
2016-01-01
A systematic approach is presented to constructing a radiation assurance case using Goal Structured Notation (GSN) for spacecraft containing COTS parts. The GSN paradigm is applied to an SRAM single-event upset experiment board designed to fly on a CubeSat November 2016. Construction of a radiation assurance case without use of hardened parts or extensive radiation testing is discussed.
Pindilli, Emily J.; Casey, Frank
2015-10-26
This report is a primer on market-like and market-based mechanisms designed to conserve biodiversity and habitat. The types of markets and market-based approaches that were implemented or are emerging to benefit biodiversity and habitat in the United States are examined. The central approaches considered in this report include payments for ecosystem services, conservation banks, habitat exchanges, and eco-labels. Based on literature reviews and input from experts and practitioners, the report characterizes each market-based approach including policy context and structure; the theoretical basis for applying market-based approaches; the ecological effectiveness of practices and tools for measuring performance; and the future outlook for biodiversity and habitat markets. This report draws from previous research and serves as a summary of pertinent information associated with biodiversity and habitat markets while providing references to materials that go into greater detail on specific topics.
TRUSS: An intelligent design system for aircraft wings
NASA Technical Reports Server (NTRS)
Bates, Preston R.; Schrage, Daniel P.
1989-01-01
Competitive leadership in the international marketplace, superiority in national defense, excellence in productivity, and safety of both private and public systems are all national defense goals which are dependent on superior engineering design. In recent years, it has become more evident that early design decisions are critical, and when only based on performance often result in products which are too expensive, hard to manufacture, or unsupportable. Better use of computer-aided design tools and information-based technologies is required to produce better quality United States products. A program is outlined here to explore the use of knowledge based expert systems coupled with numerical optimization, database management techniques, and designer interface methods in a networked design environment to improve and assess design changes due to changing emphasis or requirements. The initial structural design of a tiltrotor aircraft wing is used as a representative example to demonstrate the approach being followed.
NASA Astrophysics Data System (ADS)
Noguchi, Yuki; Yamamoto, Takashi; Yamada, Takayuki; Izui, Kazuhiro; Nishiwaki, Shinji
2017-09-01
This papers proposes a level set-based topology optimization method for the simultaneous design of acoustic and structural material distributions. In this study, we develop a two-phase material model that is a mixture of an elastic material and acoustic medium, to represent an elastic structure and an acoustic cavity by controlling a volume fraction parameter. In the proposed model, boundary conditions at the two-phase material boundaries are satisfied naturally, avoiding the need to express these boundaries explicitly. We formulate a topology optimization problem to minimize the sound pressure level using this two-phase material model and a level set-based method that obtains topologies free from grayscales. The topological derivative of the objective functional is approximately derived using a variational approach and the adjoint variable method and is utilized to update the level set function via a time evolutionary reaction-diffusion equation. Several numerical examples present optimal acoustic and structural topologies that minimize the sound pressure generated from a vibrating elastic structure.
Four-port coupled channel-guide device based on 2D photonic crystal structure
NASA Astrophysics Data System (ADS)
Camargo, Edilson A.; Chong, Harold M. H.; De La Rue, Richard M.
2004-12-01
We have fabricated and measured a four-port coupled channel-waveguide device using W1 channel waveguides oriented along ΓK directions in a two-dimensional (2D) hole-based planar photonic crystal (PhC) based on silicon-on-insulator (SOI) waveguide material, at operation wavelengths around 1550 nm. 2D FDTD simulations and experimental results are shown and compared. The structure has been designed using a mode conversion approach, combined with coupled-mode concepts. The overall length of the photonic crystal structure is typically about 39 μm and the structure has been fabricated using a combination of direct-write electron-beam lithography (EBL) and dry-etch processing. Devices were measured using a tunable laser with end-fire coupling into the planar structure.
Evolutionary Design of Controlled Structures
NASA Technical Reports Server (NTRS)
Masters, Brett P.; Crawley, Edward F.
1997-01-01
Basic physical concepts of structural delay and transmissibility are provided for simple rod and beam structures. Investigations show the sensitivity of these concepts to differing controlled-structures variables, and to rational system modeling effects. An evolutionary controls/structures design method is developed. The basis of the method is an accurate model formulation for dynamic compensator optimization and Genetic Algorithm based updating of sensor/actuator placement and structural attributes. One and three dimensional examples from the literature are used to validate the method. Frequency domain interpretation of these controlled structure systems provide physical insight as to how the objective is optimized and consequently what is important in the objective. Several disturbance rejection type controls-structures systems are optimized for a stellar interferometer spacecraft application. The interferometric designs include closed loop tracking optics. Designs are generated for differing structural aspect ratios, differing disturbance attributes, and differing sensor selections. Physical limitations in achieving performance are given in terms of average system transfer function gains and system phase loss. A spacecraft-like optical interferometry system is investigated experimentally over several different optimized controlled structures configurations. Configurations represent common and not-so-common approaches to mitigating pathlength errors induced by disturbances of two different spectra. Results show that an optimized controlled structure for low frequency broadband disturbances achieves modest performance gains over a mass equivalent regular structure, while an optimized structure for high frequency narrow band disturbances is four times better in terms of root-mean-square pathlength. These results are predictable given the nature of the physical system and the optimization design variables. Fundamental limits on controlled performance are discussed based on the measured and fit average system transfer function gains and system phase loss.
Chen, Tian; Mueller, Jochen; Shea, Kristina
2017-03-31
Multi-material 3D printing has created new opportunities for fabricating deployable structures. We design reversible, deployable structures that are fabricated flat, have defined load bearing capacity, and multiple, predictable activated geometries. These structures are designed with a hierarchical framework where the proposed bistable actuator serves as the base building block. The actuator is designed to maximise its stroke length, with the expansion ratio approaching one when serially connected. The activation force of the actuator is parameterised through its joint material and joint length. Simulation and experimental results show that the bistability triggering force can be tuned between 0.5 and 5.0 N. Incorporating this bistable actuator, the first group of hierarchical designs demonstrate the deployment of space frame structures with a tetrahedron module consisting of three active edges, each containing four serially connected actuators. The second group shows the design of flat structures that assume either positive or negative Gaussian curvature once activated. By flipping the initial configuration of the unit actuators, structures such as a dome and an enclosure are demonstrated. A modified Dynamic Relaxation method is used to simulate all possible geometries of the hierarchical structures. Measured geometries differ by less than 5% compared to simulation results.
Chen, Tian; Mueller, Jochen; Shea, Kristina
2017-01-01
Multi-material 3D printing has created new opportunities for fabricating deployable structures. We design reversible, deployable structures that are fabricated flat, have defined load bearing capacity, and multiple, predictable activated geometries. These structures are designed with a hierarchical framework where the proposed bistable actuator serves as the base building block. The actuator is designed to maximise its stroke length, with the expansion ratio approaching one when serially connected. The activation force of the actuator is parameterised through its joint material and joint length. Simulation and experimental results show that the bistability triggering force can be tuned between 0.5 and 5.0 N. Incorporating this bistable actuator, the first group of hierarchical designs demonstrate the deployment of space frame structures with a tetrahedron module consisting of three active edges, each containing four serially connected actuators. The second group shows the design of flat structures that assume either positive or negative Gaussian curvature once activated. By flipping the initial configuration of the unit actuators, structures such as a dome and an enclosure are demonstrated. A modified Dynamic Relaxation method is used to simulate all possible geometries of the hierarchical structures. Measured geometries differ by less than 5% compared to simulation results. PMID:28361891
Buckling Load Calculations of the Isotropic Shell A-8 Using a High-Fidelity Hierarchical Approach
NASA Technical Reports Server (NTRS)
Arbocz, Johann; Starnes, James H.
2002-01-01
As a step towards developing a new design philosophy, one that moves away from the traditional empirical approach used today in design towards a science-based design technology approach, a test series of 7 isotropic shells carried out by Aristocrat and Babcock at Caltech is used. It is shown how the hierarchical approach to buckling load calculations proposed by Arbocz et al can be used to perform an approach often called 'high fidelity analysis', where the uncertainties involved in a design are simulated by refined and accurate numerical methods. The Delft Interactive Shell DEsign COde (short, DISDECO) is employed for this hierarchical analysis to provide an accurate prediction of the critical buckling load of the given shell structure. This value is used later as a reference to establish the accuracy of the Level-3 buckling load predictions. As a final step in the hierarchical analysis approach, the critical buckling load and the estimated imperfection sensitivity of the shell are verified by conducting an analysis using a sufficiently refined finite element model with one of the current generation two-dimensional shell analysis codes with the advanced capabilities needed to represent both geometric and material nonlinearities.
On a High-Fidelity Hierarchical Approach to Buckling Load Calculations
NASA Technical Reports Server (NTRS)
Arbocz, Johann; Starnes, James H.; Nemeth, Michael P.
2001-01-01
As a step towards developing a new design philosophy, one that moves away from the traditional empirical approach used today in design towards a science-based design technology approach, a recent test series of 5 composite shells carried out by Waters at NASA Langley Research Center is used. It is shown how the hierarchical approach to buckling load calculations proposed by Arbocz et al can be used to perform an approach often called "high fidelity analysis", where the uncertainties involved in a design are simulated by refined and accurate numerical methods. The Delft Interactive Shell DEsign COde (short, DISDECO) is employed for this hierarchical analysis to provide an accurate prediction of the critical buckling load of the given shell structure. This value is used later as a reference to establish the accuracy of the Level-3 buckling load predictions. As a final step in the hierarchical analysis approach, the critical buckling load and the estimated imperfection sensitivity of the shell are verified by conducting an analysis using a sufficiently refined finite element model with one of the current generation two-dimensional shell analysis codes with the advanced capabilities needed to represent both geometric and material nonlinearities.
Allosteric Modulation of protein oligomerization: an emerging approach to drug design
NASA Astrophysics Data System (ADS)
Gabizon, Ronen; Friedler, Assaf
2014-03-01
Many disease-related proteins are in equilibrium between different oligomeric forms. The regulation of this equilibrium plays a central role in maintaining the activity of these proteins in vitro and in vivo. Modulation of the oligomerization equilibrium of proteins by molecules that bind preferentially to a specific oligomeric state is emerging as a potential therapeutic strategy that can be applied to many biological systems such as cancer and viral infections. The target proteins for such compounds are diverse in structure and sequence, and may require different approaches for shifting their oligomerization equilibrium. The discovery of such oligomerization-modulating compounds is thus achieved based on existing structural knowledge about the specific target proteins, as well as on their interactions with partner proteins or with ligands. In silico design and combinatorial tools such as peptide arrays and phage display are also used for discovering compounds that modulate protein oligomerization. The current review highlights some of the recent developments in the design of compounds aimed at modulating the oligomerization equilibrium of proteins, including the "shiftides" approach developed in our lab.
Development of Vehicle Model Test for Road Loading Analysis of Sedan Model
NASA Astrophysics Data System (ADS)
Mohd Nor, M. K.; Noordin, A.; Ruzali, M. F. S.; Hussen, M. H.
2016-11-01
Simple Structural Surfaces (SSS) method is offered as a means of organizing the process for rationalizing the basic vehicle body structure load paths. The application of this simplified approach is highly beneficial in the design development of modern passenger car structure especially during the conceptual stage. In Malaysia, however, there is no real physical model of SSS available to gain considerable insight and understanding into the function of each major subassembly in the whole vehicle structures. Based on this motivation, a physical model of SSS for sedan model with the corresponding model vehicle tests of bending and torsion is proposed in this work. The proposed approach is relatively easy to understand as compared to Finite Element Method (FEM). The results show that the proposed vehicle model test is capable to show that satisfactory load paths can give a sufficient structural stiffness within the vehicle structure. It is clearly observed that the global bending stiffness reduce significantly when more panels are removed from a complete SSS model. It is identified that parcel shelf is an important subassembly to sustain bending load. The results also match with the theoretical hypothesis, as the stiffness of the structure in an open section condition is shown weak when subjected to torsion load compared to bending load. The proposed approach can potentially be integrated with FEM to speed up the design process of automotive vehicle.
Safe-life and damage-tolerant design approaches for helicopter structures
NASA Technical Reports Server (NTRS)
Reddick, H. K., Jr.
1983-01-01
The safe-life and damage-tolerant design approaches discussed apply to both metallic and fibrous composite helicopter structures. The application of these design approaches to fibrous composite structures is emphasized. Safe-life and damage-tolerant criteria are applied to all helicopter flight critical components, which are generally categorized as: dynamic components with a main and tail rotor system, which includes blades, hub and rotating controls, and drive train which includes transmission, and main and interconnecting rotor shafts; and the airframe, composed of the fuselage, aerodynamic surfaces, and landing gear.
Polyphony: superposition independent methods for ensemble-based drug discovery.
Pitt, William R; Montalvão, Rinaldo W; Blundell, Tom L
2014-09-30
Structure-based drug design is an iterative process, following cycles of structural biology, computer-aided design, synthetic chemistry and bioassay. In favorable circumstances, this process can lead to the structures of hundreds of protein-ligand crystal structures. In addition, molecular dynamics simulations are increasingly being used to further explore the conformational landscape of these complexes. Currently, methods capable of the analysis of ensembles of crystal structures and MD trajectories are limited and usually rely upon least squares superposition of coordinates. Novel methodologies are described for the analysis of multiple structures of a protein. Statistical approaches that rely upon residue equivalence, but not superposition, are developed. Tasks that can be performed include the identification of hinge regions, allosteric conformational changes and transient binding sites. The approaches are tested on crystal structures of CDK2 and other CMGC protein kinases and a simulation of p38α. Known interaction - conformational change relationships are highlighted but also new ones are revealed. A transient but druggable allosteric pocket in CDK2 is predicted to occur under the CMGC insert. Furthermore, an evolutionarily-conserved conformational link from the location of this pocket, via the αEF-αF loop, to phosphorylation sites on the activation loop is discovered. New methodologies are described and validated for the superimposition independent conformational analysis of large collections of structures or simulation snapshots of the same protein. The methodologies are encoded in a Python package called Polyphony, which is released as open source to accompany this paper [http://wrpitt.bitbucket.org/polyphony/].
Gupta, Ayushi; Mishra, Swechha; Singh, Sangeeta; Mishra, Sonali
2017-09-01
The effectiveness of various ligands against the protein structure of IcaA of the IcaABCD gene locus of Staphylococcus aureus were examined using the approach of structure based drug designing in reference with the protein's efficiency to form biofilms. Four compounds CID42738592, CID90468752, CID24277882, and CID6435208 were secluded from a database of 31,242 inhibitory ligands on the justification of the evaluated values falling under the four - tier structure based virtual screening. Under this principle value of least binding energy, human oral absorption and ADME properties were taken into consideration. Using the Glide module of Schrödinger, the above mentioned ligands showed an effective action against the protein IcaA which showed reduced activity as a glucosaminyl transferase. The complex of protein and ligand with best docking score was chosen for simulation studies. Structure based drug designing for the protein IcaA has given us potential leads as anti - biofilm agents. These screened out ligands might enable the development of new therapeutic strategies aimed at disrupting Staphylococcus aureus biofilms. The complex was showing stability towards the end of time for which it has been put for simulation. Thus molecule could be considered for making of biofilms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Use of designed sequences in protein structure recognition.
Kumar, Gayatri; Mudgal, Richa; Srinivasan, Narayanaswamy; Sandhya, Sankaran
2018-05-09
Knowledge of the protein structure is a pre-requisite for improved understanding of molecular function. The gap in the sequence-structure space has increased in the post-genomic era. Grouping related protein sequences into families can aid in narrowing the gap. In the Pfam database, structure description is provided for part or full-length proteins of 7726 families. For the remaining 52% of the families, information on 3-D structure is not yet available. We use the computationally designed sequences that are intermediately related to two protein domain families, which are already known to share the same fold. These strategically designed sequences enable detection of distant relationships and here, we have employed them for the purpose of structure recognition of protein families of yet unknown structure. We first measured the success rate of our approach using a dataset of protein families of known fold and achieved a success rate of 88%. Next, for 1392 families of yet unknown structure, we made structural assignments for part/full length of the proteins. Fold association for 423 domains of unknown function (DUFs) are provided as a step towards functional annotation. The results indicate that knowledge-based filling of gaps in protein sequence space is a lucrative approach for structure recognition. Such sequences assist in traversal through protein sequence space and effectively function as 'linkers', where natural linkers between distant proteins are unavailable. This article was reviewed by Oliviero Carugo, Christine Orengo and Srikrishna Subramanian.
A special purpose silicon compiler for designing supercomputing VLSI systems
NASA Technical Reports Server (NTRS)
Venkateswaran, N.; Murugavel, P.; Kamakoti, V.; Shankarraman, M. J.; Rangarajan, S.; Mallikarjun, M.; Karthikeyan, B.; Prabhakar, T. S.; Satish, V.; Venkatasubramaniam, P. R.
1991-01-01
Design of general/special purpose supercomputing VLSI systems for numeric algorithm execution involves tackling two important aspects, namely their computational and communication complexities. Development of software tools for designing such systems itself becomes complex. Hence a novel design methodology has to be developed. For designing such complex systems a special purpose silicon compiler is needed in which: the computational and communicational structures of different numeric algorithms should be taken into account to simplify the silicon compiler design, the approach is macrocell based, and the software tools at different levels (algorithm down to the VLSI circuit layout) should get integrated. In this paper a special purpose silicon (SPS) compiler based on PACUBE macrocell VLSI arrays for designing supercomputing VLSI systems is presented. It is shown that turn-around time and silicon real estate get reduced over the silicon compilers based on PLA's, SLA's, and gate arrays. The first two silicon compiler characteristics mentioned above enable the SPS compiler to perform systolic mapping (at the macrocell level) of algorithms whose computational structures are of GIPOP (generalized inner product outer product) form. Direct systolic mapping on PLA's, SLA's, and gate arrays is very difficult as they are micro-cell based. A novel GIPOP processor is under development using this special purpose silicon compiler.
Chen, Xin; Qin, Shanshan; Chen, Shuai; Li, Jinlong; Li, Lixin; Wang, Zhongling; Wang, Quan; Lin, Jianping; Yang, Cheng; Shui, Wenqing
2015-01-01
In fragment-based lead discovery (FBLD), a cascade combining multiple orthogonal technologies is required for reliable detection and characterization of fragment binding to the target. Given the limitations of the mainstream screening techniques, we presented a ligand-observed mass spectrometry approach to expand the toolkits and increase the flexibility of building a FBLD pipeline especially for tough targets. In this study, this approach was integrated into a FBLD program targeting the HCV RNA polymerase NS5B. Our ligand-observed mass spectrometry analysis resulted in the discovery of 10 hits from a 384-member fragment library through two independent screens of complex cocktails and a follow-up validation assay. Moreover, this MS-based approach enabled quantitative measurement of weak binding affinities of fragments which was in general consistent with SPR analysis. Five out of the ten hits were then successfully translated to X-ray structures of fragment-bound complexes to lay a foundation for structure-based inhibitor design. With distinctive strengths in terms of high capacity and speed, minimal method development, easy sample preparation, low material consumption and quantitative capability, this MS-based assay is anticipated to be a valuable addition to the repertoire of current fragment screening techniques. PMID:25666181
Joint nonlinearity effects in the design of a flexible truss structure control system
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1986-01-01
Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.
Motomura, Kenta; Nakamura, Morikazu; Otaki, Joji M.
2013-01-01
Protein structure and function information is coded in amino acid sequences. However, the relationship between primary sequences and three-dimensional structures and functions remains enigmatic. Our approach to this fundamental biochemistry problem is based on the frequencies of short constituent sequences (SCSs) or words. A protein amino acid sequence is considered analogous to an English sentence, where SCSs are equivalent to words. Availability scores, which are defined as real SCS frequencies in the non-redundant amino acid database relative to their probabilistically expected frequencies, demonstrate the biological usage bias of SCSs. As a result, this frequency-based linguistic approach is expected to have diverse applications, such as secondary structure specifications by structure-specific SCSs and immunological adjuvants with rare or non-existent SCSs. Linguistic similarities (e.g., wide ranges of scale-free distributions) and dissimilarities (e.g., behaviors of low-rank samples) between proteins and the natural English language have been revealed in the rank-frequency relationships of SCSs or words. We have developed a web server, the SCS Package, which contains five applications for analyzing protein sequences based on the linguistic concept. These tools have the potential to assist researchers in deciphering structurally and functionally important protein sites, species-specific sequences, and functional relationships between SCSs. The SCS Package also provides researchers with a tool to construct amino acid sequences de novo based on the idiomatic usage of SCSs. PMID:24688703
Motomura, Kenta; Nakamura, Morikazu; Otaki, Joji M
2013-01-01
Protein structure and function information is coded in amino acid sequences. However, the relationship between primary sequences and three-dimensional structures and functions remains enigmatic. Our approach to this fundamental biochemistry problem is based on the frequencies of short constituent sequences (SCSs) or words. A protein amino acid sequence is considered analogous to an English sentence, where SCSs are equivalent to words. Availability scores, which are defined as real SCS frequencies in the non-redundant amino acid database relative to their probabilistically expected frequencies, demonstrate the biological usage bias of SCSs. As a result, this frequency-based linguistic approach is expected to have diverse applications, such as secondary structure specifications by structure-specific SCSs and immunological adjuvants with rare or non-existent SCSs. Linguistic similarities (e.g., wide ranges of scale-free distributions) and dissimilarities (e.g., behaviors of low-rank samples) between proteins and the natural English language have been revealed in the rank-frequency relationships of SCSs or words. We have developed a web server, the SCS Package, which contains five applications for analyzing protein sequences based on the linguistic concept. These tools have the potential to assist researchers in deciphering structurally and functionally important protein sites, species-specific sequences, and functional relationships between SCSs. The SCS Package also provides researchers with a tool to construct amino acid sequences de novo based on the idiomatic usage of SCSs.
Kalantari, Zahra; Briel, Annemarie; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart
2014-03-15
Road drainage structures are often designed using methods that do not consider process-based representations of a landscape's hydrological response. This may create inadequately sized structures as coupled land cover and climate changes can lead to an amplified hydrological response. This study aims to quantify potential increases of runoff in response to future extreme rain events in a 61 km(2) catchment (40% forested) in southwest Sweden using a physically-based hydrological modelling approach. We simulate peak discharge and water level (stage) at two types of pipe bridges and one culvert, both of which are commonly used at Swedish road/stream intersections, under combined forest clear-cutting and future climate scenarios for 2050 and 2100. The frequency of changes in peak flow and water level varies with time (seasonality) and storm size. These changes indicate that the magnitude of peak flow and the runoff response are highly correlated to season rather than storm size. In all scenarios considered, the dimensions of the current culvert are insufficient to handle the increase in water level estimated using a physically-based modelling approach. It also appears that the water level at the pipe bridges changes differently depending on the size and timing of the storm events. The findings of the present study and the approach put forward should be considered when planning investigations on and maintenance for areas at risk of high water flows. In addition, the research highlights the utility of physically-based hydrological models to identify the appropriateness of road drainage structure dimensioning. Copyright © 2014 Elsevier B.V. All rights reserved.
Structure-based design of peptides against HER2 with cytotoxicity on colon cancer.
Cha, Nier; Han, Xiuhua; Jia, Baoqing; Liu, Yanheng; Wang, Xiaoli; Gao, Yanwei; Ren, Jun
2017-05-01
In this study, we found that four novel peptides designed by molecular modeling techniques were successfully applicated with cytotoxicity on colon cancer cells sw620. First, the interactions between the Herstatin and the HER2 were explored by ational-designed approaches, which were combined with homology modeling, protein/protein docking, and structural superimposition analysis. Then, based on the results derived from theoretical analysis, four novel peptides were designed, synthesized, and experimentally evaluated for biological function; it was found that they showed a remarkable enhancement on Herceptin to inhibit the genesis and development of colon cancers, and no significant side effects on normal colon cells NCM460 were observed but Doxorubicin had. These results indicated that it is a feasible way to use the well-designed peptides derived from Herstatin to enhance the efficacy of clinical drugs Herceptin and to kill colon cancer cells selectively without harming normal colon cells. We believe that our research might provide a new way to develop the potential therapies for colon cancers.
Optimal design of a beam-based dynamic vibration absorber using fixed-points theory
NASA Astrophysics Data System (ADS)
Hua, Yingyu; Wong, Waion; Cheng, Li
2018-05-01
The addition of a dynamic vibration absorber (DVA) to a vibrating structure could provide an economic solution for vibration suppressions if the absorber is properly designed and located onto the structure. A common design of the DVA is a sprung mass because of its simple structure and low cost. However, the vibration suppression performance of this kind of DVA is limited by the ratio between the absorber mass and the mass of the primary structure. In this paper, a beam-based DVA (beam DVA) is proposed and optimized for minimizing the resonant vibration of a general structure. The vibration suppression performance of the proposed beam DVA depends on the mass ratio, the flexural rigidity and length of the beam. In comparison with the traditional sprung mass DVA, the proposed beam DVA shows more flexibility in vibration control design because it has more design parameters. With proper design, the beam DVA's vibration suppression capability can outperform that of the traditional DVA under the same mass constraint. The general approach is illustrated using a benchmark cantilever beam as an example. The receptance theory is introduced to model the compound system consisting of the host beam and the attached beam-based DVA. The model is validated through comparisons with the results from Abaqus as well as the Transfer Matrix method (TMM) method. Fixed-points theory is then employed to derive the analytical expressions for the optimum tuning ratio and damping ratio of the proposed beam absorber. A design guideline is then presented to choose the parameters of the beam absorber. Comparisons are finally presented between the beam absorber and the traditional DVA in terms of the vibration suppression effect. It is shown that the proposed beam absorber can outperform the traditional DVA by following this proposed guideline.
Bhateria, Manisha; Rachumallu, Ramakrishna; Singh, Rajbir; Bhatta, Rabi Sankar
2014-08-01
Erythrocytes (red blood cells [RBCs]) and artificial or synthetic delivery systems such as liposomes, nanoparticles (NPs) are the most investigated carrier systems. Herein, progress made from conventional approach of using RBC as delivery systems to novel approach of using synthetic delivery systems based on RBC properties will be reviewed. We aim to highlight both conventional and novel approaches of using RBCs as potential carrier system. Conventional approaches which include two main strategies are: i) directly loading therapeutic moieties in RBCs; and ii) coupling them with RBCs whereas novel approaches exploit structural, mechanical and biological properties of RBCs to design synthetic delivery systems through various engineering strategies. Initial attempts included coupling of antibodies to liposomes to specifically target RBCs. Knowledge obtained from several studies led to the development of RBC membrane derived liposomes (nanoerythrosomes), inspiring future application of RBC or its structural features in other attractive delivery systems (hydrogels, filomicelles, microcapsules, micro- and NPs) for even greater potential. In conclusion, this review dwells upon comparative analysis of various conventional and novel engineering strategies in developing RBC based drug delivery systems, diversifying their applications in arena of drug delivery. Regardless of the challenges in front of us, RBC based delivery systems offer an exciting approach of exploiting biological entities in a multitude of medical applications.
NASA Astrophysics Data System (ADS)
Diehl, Martin; Groeber, Michael; Haase, Christian; Molodov, Dmitri A.; Roters, Franz; Raabe, Dierk
2017-05-01
Predicting, understanding, and controlling the mechanical behavior is the most important task when designing structural materials. Modern alloy systems—in which multiple deformation mechanisms, phases, and defects are introduced to overcome the inverse strength-ductility relationship—give raise to multiple possibilities for modifying the deformation behavior, rendering traditional, exclusively experimentally-based alloy development workflows inappropriate. For fast and efficient alloy design, it is therefore desirable to predict the mechanical performance of candidate alloys by simulation studies to replace time- and resource-consuming mechanical tests. Simulation tools suitable for this task need to correctly predict the mechanical behavior in dependence of alloy composition, microstructure, texture, phase fractions, and processing history. Here, an integrated computational materials engineering approach based on the open source software packages DREAM.3D and DAMASK (Düsseldorf Advanced Materials Simulation Kit) that enables such virtual material development is presented. More specific, our approach consists of the following three steps: (1) acquire statistical quantities that describe a microstructure, (2) build a representative volume element based on these quantities employing DREAM.3D, and (3) evaluate the representative volume using a predictive crystal plasticity material model provided by DAMASK. Exemplarily, these steps are here conducted for a high-manganese steel.
Design and synthesis of type-III mimetics of ShK toxin
NASA Astrophysics Data System (ADS)
Baell, Jonathan B.; Harvey, Andrew J.; Norton, Raymond S.
2002-04-01
ShK toxin is a structurally defined, 35-residue polypeptide which blocks the voltage-gated Kv1.3 potassium channel in T-lymphocytes and has been identified as a possible immunosuppressant. Our interest lies in the rational design and synthesis of type-III mimetics of protein and polypeptide structure and function. ShK toxin is a challenging target for mimetic design as its binding epitope consists of relatively weakly binding residues, some of which are discontinuous. We discuss here our investigations into the design and synthesis of 1st generation, small molecule mimetics of ShK toxin and highlight any principles relevant to the generic design of type-III mimetics of continuous and discontinuous binding epitopes. We complement our approach with attempted pharmacophore-based database mining.
Integration of PGD-virtual charts into an engineering design process
NASA Astrophysics Data System (ADS)
Courard, Amaury; Néron, David; Ladevèze, Pierre; Ballere, Ludovic
2016-04-01
This article deals with the efficient construction of approximations of fields and quantities of interest used in geometric optimisation of complex shapes that can be encountered in engineering structures. The strategy, which is developed herein, is based on the construction of virtual charts that allow, once computed offline, to optimise the structure for a negligible online CPU cost. These virtual charts can be used as a powerful numerical decision support tool during the design of industrial structures. They are built using the proper generalized decomposition (PGD) that offers a very convenient framework to solve parametrised problems. In this paper, particular attention has been paid to the integration of the procedure into a genuine engineering design process. In particular, a dedicated methodology is proposed to interface the PGD approach with commercial software.
Integrated design of the CSI evolutionary structure: A verification of the design methodology
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Joshi, S. M.; Elliott, Kenny B.; Walz, J. E.
1993-01-01
One of the main objectives of the Controls-Structures Interaction (CSI) program is to develop and evaluate integrated controls-structures design methodology for flexible space structures. Thus far, integrated design methodologies for a class of flexible spacecraft, which require fine attitude pointing and vibration suppression with no payload articulation, have been extensively investigated. Various integrated design optimization approaches, such as single-objective optimization, and multi-objective optimization, have been implemented with an array of different objectives and constraints involving performance and cost measures such as total mass, actuator mass, steady-state pointing performance, transient performance, control power, and many more. These studies have been performed using an integrated design software tool (CSI-DESIGN CODE) which is under development by the CSI-ADM team at the NASA Langley Research Center. To date, all of these studies, irrespective of the type of integrated optimization posed or objectives and constraints used, have indicated that integrated controls-structures design results in an overall spacecraft design which is considerably superior to designs obtained through a conventional sequential approach. Consequently, it is believed that validation of some of these results through fabrication and testing of a structure which is designed through an integrated design approach is warranted. The objective of this paper is to present and discuss the efforts that have been taken thus far for the validation of the integrated design methodology.
Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications
Vegni, Lucio
2018-01-01
A modeling and design approach is proposed for nanoparticle-based electromagnetic devices. First, the structure properties were analytically studied using Maxwell’s equations. The method provides us a robust link between nanoparticles electromagnetic response (amplitude and phase) and their geometrical characteristics (shape, geometry, and dimensions). Secondly, new designs based on “metamaterial” concept are proposed, demonstrating great performances in terms of wide-angle range functionality and multi/wide behavior, compared to conventional devices working at the same frequencies. The approach offers potential applications to build-up new advanced platforms for sensing and medical diagnostics. Therefore, in the final part of the article, some practical examples are reported such as cancer detection, water content measurements, chemical analysis, glucose concentration measurements and blood diseases monitoring. PMID:29652853
Recent advances in rational approaches for enzyme engineering
Steiner, Kerstin; Schwab, Helmut
2012-01-01
Enzymes are an attractive alternative in the asymmetric syntheses of chiral building blocks. To meet the requirements of industrial biotechnology and to introduce new functionalities, the enzymes need to be optimized by protein engineering. This article specifically reviews rational approaches for enzyme engineering and de novo enzyme design involving structure-based approaches developed in recent years for improvement of the enzymes’ performance, broadened substrate range, and creation of novel functionalities to obtain products with high added value for industrial applications. PMID:24688651
Control technology development
NASA Astrophysics Data System (ADS)
Schaechter, D. B.
1982-03-01
The main objectives of the control technology development task are given in the slide below. The first is to develop control design techniques based on flexible structural models, rather than simple rigid-body models. Since large space structures are distributed parameter systems, a new degree of freedom, that of sensor/actuator placement, may be exercised for improving control system performance. Another characteristic of large space structures is numerous oscillatory modes within the control bandwidth. Reduced-order controller design models must be developed which produce stable closed-loop systems when combined with the full-order system. Since the date of an actual large-space-structure flight is rapidly approaching, it is vitally important that theoretical developments are tested in actual hardware. Experimental verification is a vital counterpart of all current theoretical developments.
NASA Astrophysics Data System (ADS)
Ravanbakhsh, Ali; Franchini, Sebastián
2012-10-01
In recent years, there has been continuing interest in the participation of university research groups in space technology studies by means of their own microsatellites. The involvement in such projects has some inherent challenges, such as limited budget and facilities. Also, due to the fact that the main objective of these projects is for educational purposes, usually there are uncertainties regarding their in orbit mission and scientific payloads at the early phases of the project. On the other hand, there are predetermined limitations for their mass and volume budgets owing to the fact that most of them are launched as an auxiliary payload in which the launch cost is reduced considerably. The satellite structure subsystem is the one which is most affected by the launcher constraints. This can affect different aspects, including dimensions, strength and frequency requirements. In this paper, the main focus is on developing a structural design sizing tool containing not only the primary structures properties as variables but also the system level variables such as payload mass budget and satellite total mass and dimensions. This approach enables the design team to obtain better insight into the design in an extended design envelope. The structural design sizing tool is based on analytical structural design formulas and appropriate assumptions including both static and dynamic models of the satellite. Finally, a Genetic Algorithm (GA) multiobjective optimization is applied to the design space. The result is a Pareto-optimal based on two objectives, minimum satellite total mass and maximum payload mass budget, which gives a useful insight to the design team at the early phases of the design.
NASA Technical Reports Server (NTRS)
Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.
1976-01-01
Results of a study of the development of flutter modules applicable to automated structural design of advanced aircraft configurations, such as a supersonic transport, are presented. Automated structural design is restricted to automated sizing of the elements of a given structural model. It includes a flutter optimization procedure; i.e., a procedure for arriving at a structure with minimum mass for satisfying flutter constraints. Methods of solving the flutter equation and computing the generalized aerodynamic force coefficients in the repetitive analysis environment of a flutter optimization procedure are studied, and recommended approaches are presented. Five approaches to flutter optimization are explained in detail and compared. An approach to flutter optimization incorporating some of the methods discussed is presented. Problems related to flutter optimization in a realistic design environment are discussed and an integrated approach to the entire flutter task is presented. Recommendations for further investigations are made. Results of numerical evaluations, applying the five methods of flutter optimization to the same design task, are presented.
A Novel Approach to Rotorcraft Damage Tolerance
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Everett, Richard A.; Newman, John A.
2002-01-01
Damage-tolerance methodology is positioned to replace safe-life methodologies for designing rotorcraft structures. The argument for implementing a damage-tolerance method comes from the fundamental fact that rotorcraft structures typically fail by fatigue cracking. Therefore, if technology permits prediction of fatigue-crack growth in structures, a damage-tolerance method should deliver the most accurate prediction of component life. Implementing damage-tolerance (DT) into high-cycle-fatigue (HCF) components will require a shift from traditional DT methods that rely on detecting an initial flaw with nondestructive inspection (NDI) methods. The rapid accumulation of cycles in a HCF component will result in a design based on a traditional DT method that is either impractical because of frequent inspections, or because the design will be too heavy to operate efficiently. Furthermore, once a HCF component develops a detectable propagating crack, the remaining fatigue life is short, sometimes less than one flight hour, which does not leave sufficient time for inspection. Therefore, designing a HCF component will require basing the life analysis on an initial flaw that is undetectable with current NDI technology.
NASA Astrophysics Data System (ADS)
Wang, H.; Jing, X. J.
2017-02-01
This paper proposes a novel method for the fault diagnosis of complex structures based on an optimized virtual beam-like structure approach. A complex structure can be regarded as a combination of numerous virtual beam-like structures considering the vibration transmission path from vibration sources to each sensor. The structural 'virtual beam' consists of a sensor chain automatically obtained by an Improved Bacterial Optimization Algorithm (IBOA). The biologically inspired optimization method (i.e. IBOA) is proposed for solving the discrete optimization problem associated with the selection of the optimal virtual beam for fault diagnosis. This novel virtual beam-like-structure approach needs less or little prior knowledge. Neither does it require stationary response data, nor is it confined to a specific structure design. It is easy to implement within a sensor network attached to the monitored structure. The proposed fault diagnosis method has been tested on the detection of loosening screws located at varying positions in a real satellite-like model. Compared with empirical methods, the proposed virtual beam-like structure method has proved to be very effective and more reliable for fault localization.
The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Starnes, James H., Jr.
1998-01-01
A summary of existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.
The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Starnes, James H., Jr.
1998-01-01
A summary of the existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability-based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.
Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic bandgaps.
Vyunishev, Andrey M; Pankin, Pavel S; Svyakhovskiy, Sergey E; Timofeev, Ivan V; Vetrov, Stepan Ya
2017-09-15
We propose an elegant approach to produce photonic bandgap (PBG) structures with multiple photonic bandgaps by constructing quasiperiodic photonic crystals (QPPCs) composed of a superposition of photonic lattices with different periods. Generally, QPPC structures exhibit both aperiodicity and multiple PBGs due to their long-range order. They are described by a simple analytical expression, instead of quasiperiodic tiling approaches based on substitution rules. Here we describe the optical properties of QPPCs exhibiting two PBGs that can be tuned independently. PBG interband spacing and its depth can be varied by choosing appropriate reciprocal lattice vectors and their amplitudes. These effects are confirmed by the proof-of-concept measurements made for the porous silicon-based QPPC of the appropriate design.
NASA Astrophysics Data System (ADS)
Kwiecien, Pavel; Litvik, Ján.; Richter, Ivan; Ctyroký, Jirí; Cheben, Pavel
2017-05-01
Silicon-on-insulator (SOI), as the most promising platform, for advanced photonic integrated structures, employs a high refractive index contrast between the silicon "core" and surrounding media. One of the recent new ideas within this field is based on the alternative formation of the subwavelength sized (quasi)periodic structures, manifesting as an effective medium with respect to propagating light. Such structures relay on Bloch wave propagation concept, in contrast to standard index guiding mechanism. Soon after the invention of such subwavelength grating (SWG) waveguides, the scientists concentrated on various functional elements such as couplers, crossings, mode transformers, convertors, MMI couplers, polarization converters, resonators, Bragg filters, and others. Our contribution is devoted to a detailed numerical analysis and design considerations of Bragg filtering structures based on SWG idea. Based on our previous studies where we have shown impossibility of application of various 2 and "2.5" dimensional methods for the proper numerical analysis, here we effectively use two independent but similar in-house approaches based on 3D Fourier modal methods, namely aperiodic rigorous coupled wave analysis (aRCWA) and bidirectional expansion and propagation method based on Fourier series (BEX) tools. As it was recently demonstrated, SWG Bragg filters are feasible. Based on this idea, we propose, simulate, and optimize spectral characteristics of such filters. In particular, we have investigated several possibilities of modifications of original SWG waveguides towards the Bragg filtering, including firstly - simple single-segment changes in position, thickness, and width, and secondly - several types of Si inclusions, in terms of perturbed width and thickness (and their combinations). The leading idea was to obtain required (e.g. sufficiently narrow) spectral characteristic while keeping the minimum size of Si features large enough. We have found that the second approach with the single element perturbations can provide promising designs. Furthermore, even more complex filtering SWG structures can be considered.
NASA Technical Reports Server (NTRS)
Townsend, J.; Meyers, C.; Ortega, R.; Peck, J.; Rheinfurth, M.; Weinstock, B.
1993-01-01
Probabilistic structural analyses and design methods are steadily gaining acceptance within the aerospace industry. The safety factor approach to design has long been the industry standard, and it is believed by many to be overly conservative and thus, costly. A probabilistic approach to design may offer substantial cost savings. This report summarizes several probabilistic approaches: the probabilistic failure analysis (PFA) methodology developed by Jet Propulsion Laboratory, fast probability integration (FPI) methods, the NESSUS finite element code, and response surface methods. Example problems are provided to help identify the advantages and disadvantages of each method.
Li, Hongzhi; Yang, Wei
2007-03-21
An approach is developed in the replica exchange framework to enhance conformational sampling for the quantum mechanical (QM) potential based molecular dynamics simulations. Importantly, with our enhanced sampling treatment, a decent convergence for electronic structure self-consistent-field calculation is robustly guaranteed, which is made possible in our replica exchange design by avoiding direct structure exchanges between the QM-related replicas and the activated (scaled by low scaling parameters or treated with high "effective temperatures") molecular mechanical (MM) replicas. Although the present approach represents one of the early efforts in the enhanced sampling developments specifically for quantum mechanical potentials, the QM-based simulations treated with the present technique can possess the similar sampling efficiency to the MM based simulations treated with the Hamiltonian replica exchange method (HREM). In the present paper, by combining this sampling method with one of our recent developments (the dual-topology alchemical HREM approach), we also introduce a method for the sampling enhanced QM-based free energy calculations.
The 1980 Large space systems technology. Volume 2: Base technology
NASA Technical Reports Server (NTRS)
Kopriver, F., III (Compiler)
1981-01-01
Technology pertinent to large antenna systems, technology related to large space platform systems, and base technology applicable to both antenna and platform systems are discussed. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. A total systems approach including controls, platforms, and antennas is presented as a cohesive, programmatic plan for large space systems.
Micromachined optical microphone structures with low thermal-mechanical noise levels.
Hall, Neal A; Okandan, Murat; Littrell, Robert; Bicen, Baris; Degertekin, F Levent
2007-10-01
Micromachined microphones with diffraction-based optical displacement detection have been introduced previously [Hall et al., J. Acoust. Soc. Am. 118, 3000-3009 (2005)]. The approach has the advantage of providing high displacement detection resolution of the microphone diaphragm independent of device size and capacitance-creating an unconstrained design space for the mechanical structure itself. Micromachined microphone structures with 1.5-mm-diam polysilicon diaphragms and monolithically integrated diffraction grating electrodes are presented in this work with backplate architectures that deviate substantially from traditional perforated plate designs. These structures have been designed for broadband frequency response and low thermal mechanical noise levels. Rigorous experimental characterization indicates a diaphragm displacement detection resolution of 20 fm radicalHz and a thermal mechanical induced diaphragm displacement noise density of 60 fm radicalHz, corresponding to an A-weighted sound pressure level detection limit of 24 dB(A) for these structures. Measured thermal mechanical displacement noise spectra are in excellent agreement with simulations based on system parameters derived from dynamic frequency response characterization measurements, which show a diaphragm resonance limited bandwidth of approximately 20 kHz. These designs are substantial improvements over initial prototypes presented previously. The high performance-to-size ratio achievable with this technology is expected to have an impact on a variety of instrumentation and hearing applications.
Multi-Criteria Approach in Multifunctional Building Design Process
NASA Astrophysics Data System (ADS)
Gerigk, Mateusz
2017-10-01
The paper presents new approach in multifunctional building design process. Publication defines problems related to the design of complex multifunctional buildings. Currently, contemporary urban areas are characterized by very intensive use of space. Today, buildings are being built bigger and contain more diverse functions to meet the needs of a large number of users in one capacity. The trends show the need for recognition of design objects in an organized structure, which must meet current design criteria. The design process in terms of the complex system is a theoretical model, which is the basis for optimization solutions for the entire life cycle of the building. From the concept phase through exploitation phase to disposal phase multipurpose spaces should guarantee aesthetics, functionality, system efficiency, system safety and environmental protection in the best possible way. The result of the analysis of the design process is presented as a theoretical model of the multifunctional structure. Recognition of multi-criteria model in the form of Cartesian product allows to create a holistic representation of the designed building in the form of a graph model. The proposed network is the theoretical base that can be used in the design process of complex engineering systems. The systematic multi-criteria approach makes possible to maintain control over the entire design process and to provide the best possible performance. With respect to current design requirements, there are no established design rules for multifunctional buildings in relation to their operating phase. Enrichment of the basic criteria with functional flexibility criterion makes it possible to extend the exploitation phase which brings advantages on many levels.
NASA Astrophysics Data System (ADS)
Spieler, Diana; Schwarze, Robert; Schütze, Niels
2017-04-01
In the past a variety of different modeling approaches has been developed in catchment hydrology. Even though there is no argument on the relevant processes taking place, there is no unified theory on how best to represent them computationally. Thus a vast number of models has been developed, varying from lumped models to physically based models. Most of them have a more or less fixed model structure and follow the "one fits all" paradigm. However, a more flexible approach could improve model realism by designing catchment specific model structures based on data availability. This study focuses on applying the flexible hydrological modelling framework RAVEN (Craig et al., 2013), to systematically test several conceptual model structures on the 19 km2 Große Ohe Catchment in the Bavarian Forest (Germany). By combining RAVEN with the DREAM algorithm (Vrugt et al., 2009), the relationship between catchment characteristics, model structure, parameter uncertainty and data availability are analyzed. The model structure is progressively developed based on the available data of the well observed forested catchment area. In a second step, the impact of the catchment discretization is analyzed by testing different spatial resolutions of topographic input data.
Investigation of safe-life fail-safe criteria for the space shuttle
NASA Technical Reports Server (NTRS)
1972-01-01
An investigation was made to determine the effects of a safe-life design approach and a fail-safe design approach on the space shuttle booster vehicle structure, and to recommend any changes to the structural design criteria. Two configurations of the booster vehicle were considered, one incorporating a delta wing (B-9U configuration) and the other a swept wing (B-16B configuration). Several major structural components of the booster were studied to determine the fatigue life, safe-life, and fail-safe capabilities of the baseline design. Each component was investigated to determine the practicability of applying a safe-life or fail-safe design philosophy, the changes such design approaches might require, and the impact of these changes on weight, cost, development plans, and performance.
Pérez-Garrido, Alfonso; Helguera, Aliuska Morales; López, Gabriel Caravaca; Cordeiro, M Natália D S; Escudero, Amalio Garrido
2010-01-31
Chemically reactive, alpha, beta-unsaturated carbonyl compounds are common environmental pollutants able to produce a wide range of adverse effects, including, e.g. mutagenicity. This toxic property can often be related to chemical structure, in particular to specific molecular substructures or fragments (alerts), which can then be used in specialized software or expert systems for predictive purposes. In the past, there have been many attempts to predict the mutagenicity of alpha, beta-unsaturated carbonyl compounds through quantitative structure activity relationships (QSAR) but considering only one exclusive endpoint: the Ames test. Besides, even though those studies give a comprehensive understanding of the phenomenon, they do not provide substructural information that could be useful forward improving expert systems based on structural alerts (SAs). This work reports an evaluation of classification models to probe the mutagenic activity of alpha, beta-unsaturated carbonyl compounds over two endpoints--the Ames and mammalian cell gene mutation tests--based on linear discriminant analysis along with the topological Substructure molecular design (TOPS-MODE) approach. The obtained results showed the better ability of the TOPS-MODE approach in flagging structural alerts for the mutagenicity of these compounds compared to the expert system TOXTREE. Thus, the application of the present QSAR models can aid toxicologists in risk assessment and in prioritizing testing, as well as in the improvement of expert systems, such as the TOXTREE software, where SAs are implemented. 2009 Elsevier Ireland Ltd. All rights reserved.
Training and learning robotic surgery, time for a more structured approach: a systematic review.
Schreuder, H W R; Wolswijk, R; Zweemer, R P; Schijven, M P; Verheijen, R H M
2012-01-01
Robotic assisted laparoscopic surgery is growing rapidly and there is an increasing need for a structured approach to train future robotic surgeons. To review the literature on training and learning strategies for robotic assisted laparoscopic surgery. A systematic search of MEDLINE, EMBASE, the Cochrane Library and the Journal of Robotic Surgery was performed. We included articles concerning training, learning, education and teaching of robotic assisted laparoscopic surgery in any specialism. Two authors independently selected articles to be included. We categorised the included articles into: training modalities, learning curve, training future surgeons, curriculum design and implementation. We included 114 full text articles. Training modalities such as didactic training, skills training (dry lab, virtual reality, animal or cadaver models), case observation, bedside assisting, proctoring and the mentoring console can be used for training in robotic assisted laparoscopic surgery. Several training programmes in general and specific programmes designed for residents, fellows and surgeons are described in the literature. We provide guidelines for development of a structured training programme. Robotic surgical training consists of system training and procedural training. System training should be formally organised and should be competence based, instead of time based. Virtual reality training will play an import role in the near future. Procedural training should be organised in a stepwise approach with objective assessment of each step. This review aims to facilitate and improve the implementation of structured robotic surgical training programmes. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.
NASA Astrophysics Data System (ADS)
Tian, Jingjing
Low-rise woodframe buildings with disproportionately flexible ground stories represent a significant percentage of the building stock in seismically vulnerable communities in the Western United States. These structures have a readily identifiable structural weakness at the ground level due to an asymmetric distribution of large openings in the perimeter wall lines and to a lack of interior partition walls, resulting in a soft story condition that makes the structure highly susceptible to severe damage or collapse under design-level earthquakes. The conventional approach to retrofitting such structures is to increase the ground story stiffness. An alternate approach is to increase the energy dissipation capacity of the structure via the incorporation of supplemental energy dissipation devices (dampers), thereby relieving the energy dissipation demands on the framing system. Such a retrofit approach is consistent with a Performance-Based Seismic Retrofit (PBSR) philosophy through which multiple performance levels may be targeted. The effectiveness of such a retrofit is presented via examination of the seismic response of a full-scale four-story building that was tested on the outdoor shake table at NEES-UCSD and a full-scale three-story building that was tested using slow pseudo-dynamic hybrid testing at NEES-UB. In addition, a Direct Displacement Design (DDD) methodology was developed as an improvement over current DDD methods by considering torsion, with or without the implementation of damping devices, in an attempt to avoid the computational expense of nonlinear time-history analysis (NLTHA) and thus facilitating widespread application of PBSR in engineering practice.
Nguyen, Q Nhu N; Schwochert, Joshua; Tantillo, Dean J; Lokey, R Scott
2018-05-10
Solving conformations of cyclic peptides can provide insight into structure-activity and structure-property relationships, which can help in the design of compounds with improved bioactivity and/or ADME characteristics. The most common approaches for determining the structures of cyclic peptides are based on NMR-derived distance restraints obtained from NOESY or ROESY cross-peak intensities, and 3J-based dihedral restraints using the Karplus relationship. Unfortunately, these observables are often too weak, sparse, or degenerate to provide unequivocal, high-confidence solution structures, prompting us to investigate an alternative approach that relies only on 1H and 13C chemical shifts as experimental observables. This method, which we call conformational analysis from NMR and density-functional prediction of low-energy ensembles (CANDLE), uses molecular dynamics (MD) simulations to generate conformer families and density functional theory (DFT) calculations to predict their 1H and 13C chemical shifts. Iterative conformer searches and DFT energy calculations on a cyclic peptide-peptoid hybrid yielded Boltzmann ensembles whose predicted chemical shifts matched the experimental values better than any single conformer. For these compounds, CANDLE outperformed the classic NOE- and 3J-coupling-based approach by disambiguating similar β-turn types and also enabled the structural elucidation of the minor conformer. Through the use of chemical shifts, in conjunction with DFT and MD calculations, CANDLE can help illuminate conformational ensembles of cyclic peptides in solution.
Reference Models for Structural Technology Assessment and Weight Estimation
NASA Technical Reports Server (NTRS)
Cerro, Jeff; Martinovic, Zoran; Eldred, Lloyd
2005-01-01
Previously the Exploration Concepts Branch of NASA Langley Research Center has developed techniques for automating the preliminary design level of launch vehicle airframe structural analysis for purposes of enhancing historical regression based mass estimating relationships. This past work was useful and greatly reduced design time, however its application area was very narrow in terms of being able to handle a large variety in structural and vehicle general arrangement alternatives. Implementation of the analysis approach presented herein also incorporates some newly developed computer programs. Loft is a program developed to create analysis meshes and simultaneously define structural element design regions. A simple component defining ASCII file is read by Loft to begin the design process. HSLoad is a Visual Basic implementation of the HyperSizer Application Programming Interface, which automates the structural element design process. Details of these two programs and their use are explained in this paper. A feature which falls naturally out of the above analysis paradigm is the concept of "reference models". The flexibility of the FEA based JAVA processing procedures and associated process control classes coupled with the general utility of Loft and HSLoad make it possible to create generic program template files for analysis of components ranging from something as simple as a stiffened flat panel, to curved panels, fuselage and cryogenic tank components, flight control surfaces, wings, through full air and space vehicle general arrangements.
Wu, Bainan; Barile, Elisa; De, Surya K; Wei, Jun; Purves, Angela; Pellecchia, Maurizio
2015-01-01
In recent years the ever so complex field of drug discovery has embraced novel design strategies based on biophysical fragment screening (fragment-based drug design; FBDD) using nuclear magnetic resonance spectroscopy (NMR) and/or structure-guided approaches, most often using X-ray crystallography and computer modeling. Experience from recent years unveiled that these methods are more effective and less prone to artifacts compared to biochemical high-throughput screening (HTS) of large collection of compounds in designing protein inhibitors. Hence these strategies are increasingly becoming the most utilized in the modern pharmaceutical industry. Nonetheless, there is still an impending need to develop innovative and effective strategies to tackle other more challenging targets such as those involving protein-protein interactions (PPIs). While HTS strategies notoriously fail to identify viable hits against such targets, few successful examples of PPIs antagonists derived by FBDD strategies exist. Recently, we reported on a new strategy that combines some of the basic principles of fragment-based screening with combinatorial chemistry and NMR-based screening. The approach, termed HTS by NMR, combines the advantages of combinatorial chemistry and NMR-based screening to rapidly and unambiguously identify bona fide inhibitors of PPIs. This review will reiterate the critical aspects of the approach with examples of possible applications.
Wu, Bainan; Barile, Elisa; De, Surya K.; Wei, Jun; Purves, Angela; Pellecchia, Maurizio
2015-01-01
In recent years the ever so complex field of drug discovery has embraced novel design strategies based on biophysical fragment screening (fragment-based drug design; FBDD) using nuclear magnetic resonance spectroscopy (NMR) and/or structure-guided approaches, most often using X-ray crystallography and computer modeling. Experience from recent years unveiled that these methods are more effective and less prone to artifacts compared to biochemical high-throughput screening (HTS) of large collection of compounds in designing protein inhibitors. Hence these strategies are increasingly becoming the most utilized in the modern pharmaceutical industry. Nonetheless, there is still an impending need to develop innovative and effective strategies to tackle other more challenging targets such as those involving protein-protein interactions (PPIs). While HTS strategies notoriously fail to identify viable hits against such targets, few successful examples of PPIs antagonists derived by FBDD strategies exist. Recently, we reported on a new strategy that combines some of the basic principles of fragment-based screening with combinatorial chemistry and NMR-based screening. The approach, termed HTS by NMR, combines the advantages of combinatorial chemistry and NMR-based screening to rapidly and unambiguously identify bona fide inhibitors of PPIs. This review will reiterate the critical aspects of the approach with examples of possible applications. PMID:25986689
Request-Based Mediated Execution
ERIC Educational Resources Information Center
Sundresh, Sameer
2009-01-01
How do you dynamically customize the programming language available in a context within an existing system, without changing the underlying system? This dissertation introduces a language design approach that addresses this problem. The basic idea is to structure programs as systems of multiple interacting levels of abstraction, where all of the…
Collaboration in Cultural Heritage Digitisation in East Asia
ERIC Educational Resources Information Center
Lee, Hyuk-Jin
2010-01-01
Purpose: The purpose of this paper is to review the current status of collaboration in cultural heritage preservation in East Asia, including digital projects, and to suggest practical improvements based on a cultural structuralism perspective. Design/methodology/approach: Through exploratory research, the paper addresses aspects for successful…
Jabbour, Charbel Jose Chiappetta; Jugend, Daniel; Jabbour, Ana Beatriz Lopes de Sousa; Govindan, Kannan; Kannan, Devika; Leal Filho, Walter
2018-01-15
Considering the unique relevance of Brazilian biodiversity, this research aims to investigate the main barriers to biodiversity-based R&D and eco-design development in a leading national company which has been commended for its innovation and sustainability. The methodology for this research was based on on-location visits, in-depth interviews, and consensus building among R&D, sustainability, and quality managers. A multi-criteria decision-making (MCDM) approach was adopted through interpretive structural modelling (ISM), a method that assists decision makers to transform complex models with unclear data into structural models. Some of the most influential barriers to biodiversity-based eco-design initiatives are "lack of legal incentive", "not enough demand from the market", and "not enough available knowledge/scientific data." The most relevant barrier was "no legal incentive" from government. Consequently, managers should concentrate their efforts in tackling those barriers that may affect other barriers known as 'key barriers'. Government should work decisively toward promoting a framework of legal incentives for bio-based eco-design; otherwise, metaphorically, "there is not carnival without the samba singer who pushes the rhythm". The results given here reveal the barriers for bio-based eco-design in a Brazilian leading company, and this is the first work combining ISM to barriers to biodiversity R&D and eco-design. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evidence-based ergonomics: a model and conceptual structure proposal.
Silveira, Dierci Marcio
2012-01-01
In Human Factors and Ergonomics Science (HFES), it is difficult to identify what is the best approach to tackle the workplace and systems design problems which needs to be solved, and it has been also advocated as transdisciplinary and multidisciplinary the issue of "How to solve the human factors and ergonomics problems that are identified?". The proposition on this study is to combine the theoretical approach for Sustainability Science, the Taxonomy of the Human Factors and Ergonomics (HFE) discipline and the framework for Evidence-Based Medicine in an attempt to be applied in Human Factors and Ergonomics. Applications of ontologies are known in the field of medical research and computer science. By scrutinizing the key requirements for the HFES structuring of knowledge, it was designed a reference model, First, it was identified the important requirements for HFES Concept structuring, as regarded by Meister. Second, it was developed an evidence-based ergonomics framework as a reference model composed of six levels based on these requirements. Third, it was devised a mapping tool using linguistic resources to translate human work, systems environment and the complexities inherent to their hierarchical relationships to support future development at Level 2 of the reference model and for meeting the two major challenges for HFES, namely, identifying what problems should be addressed in HFE as an Autonomous Science itself and proposing solutions by integrating concepts and methods applied in HFES for those problems.
Orbiter thermal protection system
NASA Technical Reports Server (NTRS)
Dotts, R. L.; Curry, D. M.; Tillian, D. J.
1985-01-01
The major material and design challenges associated with the orbiter thermal protection system (TPS), the various TPS materials that are used, the different design approaches associated with each of the materials, and the performance during the flight test program are described. The first five flights of the Orbiter Columbia and the initial flight of the Orbiter Challenger provided the data necessary to verify the TPS thermal performance, structural integrity, and reusability. The flight performance characteristics of each TPS material are discussed, based on postflight inspections and postflight interpretation of the flight instrumentation data. Flights to date indicate that the thermal and structural design requirements for the orbiter TPS are met and that the overall performance is outstanding.
Migliniene, Ieva; Ostasevicius, Vytautas; Gaidys, Rimvydas; Dauksevicius, Rolanas; Janusas, Giedrius; Jurenas, Vytautas; Krasauskas, Povilas
2017-12-12
This paper proposes an approach for designing an efficient vibration energy harvester based on a vibro-impacting piezoelectric microcantilever with a geometric shape that has been rationally modified in accordance with results of dynamic optimization. The design goal is to increase the amplitudes of higher-order vibration modes induced during the vibro-impact response of the piezoelectric transducer, thereby providing a means to improve the energy conversion efficiency and power output. A rational configuration of the energy harvester is proposed and it is demonstrated that the new design retains essential modal characteristics of the optimal microcantilever structures, further providing the added benefit of less costly fabrication. The effects of structural dynamics associated with advantageous exploitation of higher vibration modes are analyzed experimentally by means of laser vibrometry as well as numerically via transient simulations of microcantilever response to random excitation. Electrical characterization results indicate that the proposed harvester outperforms its conventional counterpart (based on the microcantilever of the constant cross-section) in terms of generated electrical output. Reported results may serve for the development of impact-type micropower generators with harvesting performance that is enhanced by virtue of self-excitation of large intensity higher-order mode responses when the piezoelectric transducer is subjected to relatively low-frequency excitation with strongly variable vibration magnitudes.
NASA Astrophysics Data System (ADS)
O’Kennedy, Richard; Fitzgerald, Jenny; Cassedy, Arabelle; Crawley, Aoife; Zhang, Xin; Carrera, Sandro
2018-06-01
This review is designed to focus on antibodies and the attributes that make them ideal for applications in microfluidics-based diagnostic/separation platforms. The structures of different antibody formats and how they can be engineered to be highly effective in microfluidics-based environments will be highlighted. Suggested novel stratagems on the ideal way in which they can be employed in microfluidics systems, based on an informed knowledge of their structures and properties rather than random choice selection, as is often currently employed, will be provided. Finally, a critical assessment of current shortcomings in the approaches used along with possible ways for their resolution will be given.
NASA Astrophysics Data System (ADS)
Besson, Ugo; Borghi, Lidia; De Ambrosis, Anna; Mascheretti, Paolo
2010-07-01
We have developed a teaching-learning sequence (TLS) on friction based on a preliminary study involving three dimensions: an analysis of didactic research on the topic, an overview of usual approaches, and a critical analysis of the subject, considered also in its historical development. We found that mostly the usual presentations do not take into account the complexity of friction as it emerges from scientific research, may reinforce some inaccurate students' conceptions, and favour a limited vision of friction phenomena. The TLS we propose begins by considering a wide range of friction phenomena to favour an initial motivation and a broader view of the topic and then develops a path of interrelated observations, experiments, and theoretical aspects. It proposes the use of structural models, involving visual representations and stimulating intuition, aimed at helping students build mental models of friction mechanisms. To facilitate the reproducibility in school contexts, the sequence is designed as an open source structure, with a core of contents, conceptual correlations and methodological choices, and a cloud of elements that can be re-designed by teachers. The sequence has been tested in teacher education and in upper secondary school, and has shown positive results in overcoming student difficulties and stimulating richer reasoning based on the structural models we suggested. The proposed path has modified the teachers' view of the topic, producing a motivation to change their traditional presentations. The open structure of the sequence has facilitated its implementation by teachers in school in coherence with the rationale of the proposal.
Postgenomic strategies in antibacterial drug discovery.
Brötz-Oesterhelt, Heike; Sass, Peter
2010-10-01
During the last decade the field of antibacterial drug discovery has changed in many aspects including bacterial organisms of primary interest, discovery strategies applied and pharmaceutical companies involved. Target-based high-throughput screening had been disappointingly unsuccessful for antibiotic research. Understanding of this lack of success has increased substantially and the lessons learned refer to characteristics of targets, screening libraries and screening strategies. The 'genomics' approach was replaced by a diverse array of discovery strategies, for example, searching for new natural product leads among previously abandoned compounds or new microbial sources, screening for synthetic inhibitors by targeted approaches including structure-based design and analyses of focused libraries and designing resistance-breaking properties into antibiotics of established classes. Furthermore, alternative treatment options are being pursued including anti-virulence strategies and immunotherapeutic approaches. This article summarizes the lessons learned from the genomics era and describes discovery strategies resulting from that knowledge.
Goal Structuring Notation in a Radiation Hardening Assurance Case for COTS-Based Spacecraft
NASA Technical Reports Server (NTRS)
Witulski, Arthur; Austin, Rebekah; Evans, John; Mahadevan, Nag; Karsai, Gabor; Sierawski, Brian; LaBel, Ken; Reed, Robert; Schrimpf, Ron
2016-01-01
A systematic approach is presented to constructing a radiation assurance case using Goal Structuring Notation (GSN) for spacecraft containing commercial-off-the-shelf (COTS) parts. The GSN paradigm is applied to an SRAM single-event upset experiment board designed to fly on a CubeSat November 2016. Construction of a radiation assurance case without use of hardened parts or extensive radiation testing is discussed.
pH-driven colloidal transformations based on the vasoactive drug nicergoline.
Salentinig, Stefan; Tangso, Kristian J; Hawley, Adrian; Boyd, Ben J
2014-12-16
The structure of colloidal self-assembled drug delivery systems can be influenced by intermolecular interactions between drug and amphiphilic molecules, and is important to understand in the context of designing improved delivery systems. Controlling these structures can enable controlled or targeted release systems for poorly water-soluble drugs. Here we present the interaction of the hydrophobic vasoactive drug nicergoline with the internal structure of nanostructured emulsion particles based on the monoglyceride-water system. Addition of this drug leads to modification of the internal bicontinuous cubic structure to generate highly pH-responsive systems. The colloidal structures were characterized with small-angle X-ray scattering and visualized using cryogenic transmission electron microscopy. Reversible transformations to inverse micelles at high pH, vesicles at low pH, and the modification of the spacing of the bicontinuous cubic structure at intermediate pH were observed, and enabled the in situ determination of an apparent pKa for the drug in this system--a difficult task using solution-based approaches. The characterization of this phase behavior is also highly interesting for the design of pH-responsive controlled release systems for poorly water-soluble drug molecules.
NASA Technical Reports Server (NTRS)
Ryan, Robert S.; Townsend, John S.
1993-01-01
The prospective improvement of probabilistic methods for space program analysis/design entails the further development of theories, codes, and tools which match specific areas of application, the drawing of lessons from previous uses of probability and statistics data bases, the enlargement of data bases (especially in the field of structural failures), and the education of engineers and managers on the advantages of these methods. An evaluation is presently made of the current limitations of probabilistic engineering methods. Recommendations are made for specific applications.
A sequential linear optimization approach for controller design
NASA Technical Reports Server (NTRS)
Horta, L. G.; Juang, J.-N.; Junkins, J. L.
1985-01-01
A linear optimization approach with a simple real arithmetic algorithm is presented for reliable controller design and vibration suppression of flexible structures. Using first order sensitivity of the system eigenvalues with respect to the design parameters in conjunction with a continuation procedure, the method converts a nonlinear optimization problem into a maximization problem with linear inequality constraints. The method of linear programming is then applied to solve the converted linear optimization problem. The general efficiency of the linear programming approach allows the method to handle structural optimization problems with a large number of inequality constraints on the design vector. The method is demonstrated using a truss beam finite element model for the optimal sizing and placement of active/passive-structural members for damping augmentation. Results using both the sequential linear optimization approach and nonlinear optimization are presented and compared. The insensitivity to initial conditions of the linear optimization approach is also demonstrated.
Guiding principles for peptide nanotechnology through directed discovery.
Lampel, A; Ulijn, R V; Tuttle, T
2018-05-21
Life's diverse molecular functions are largely based on only a small number of highly conserved building blocks - the twenty canonical amino acids. These building blocks are chemically simple, but when they are organized in three-dimensional structures of tremendous complexity, new properties emerge. This review explores recent efforts in the directed discovery of functional nanoscale systems and materials based on these same amino acids, but that are not guided by copying or editing biological systems. The review summarises insights obtained using three complementary approaches of searching the sequence space to explore sequence-structure relationships for assembly, reactivity and complexation, namely: (i) strategic editing of short peptide sequences; (ii) computational approaches to predicting and comparing assembly behaviours; (iii) dynamic peptide libraries that explore the free energy landscape. These approaches give rise to guiding principles on controlling order/disorder, complexation and reactivity by peptide sequence design.
Dielectric elastomer bending tube actuators with rigid electrode structures
NASA Astrophysics Data System (ADS)
Wehrheim, F.; Schlaak, H. F.; Meyer, J.-U.
2010-04-01
The common approach for dielectric elastomer actuators (DEA) is based on the assumption that compliant electrodes are a fundamental design requirement. For tube-like applications compliant electrodes cause a change of the actuator diameter during actuation and would require additional support-structures. Focused on thinwalled actuator-tube geometries room consumption and radial stabilityr epresent crucial criteria. Following the ambition of maximum functional integration, the concept of using a rigid electrode structure arises. This structure realizes both, actuation and support characteristics. The intended rigid electrode structure is based on a stacked DEA with a non-compressible dielectric. Byactu ation, the displaced dielectric causes an overlap. This overlap serves as an indicator for geometrical limitations and has been used to extract design rules regarding the electrode size, electrode distance and maximum electrode travel. Bycons idering the strain in anydir ection, the mechanical efficiencyhas been used to define further design aspects. To verifyt he theoretic analysis, a test for determination of the compressive stress-strain-characteristics has been applied for different electrode setups. As result the geometrydep ending elastic pressure module has been formulated by implementation of a shape factor. The presented investigations consider exclusive the static behavior of a DEA-setup with rigid electrodes.
Melero, Cristina; Ollikainen, Noah; Harwood, Ian; ...
2014-10-13
Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melero, Cristina; Ollikainen, Noah; Harwood, Ian
Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less
NASA Astrophysics Data System (ADS)
Halim, Sobia A.; Khan, Shanza; Khan, Ajmal; Wadood, Abdul; Mabood, Fazal; Hussain, Javid; Al-Harrasi, Ahmed
2017-10-01
Dengue fever is an emerging public health concern, with several million viral infections occur annually, for which no effective therapy currently exist. Non-structural protein 3 (NS-3) Helicase encoded by the dengue virus (DENV) is considered as a potential drug target to design new and effective drugs against dengue. Helicase is involved in unwinding of dengue RNA. This study was conducted to design new NS-3 Helicase inhibitor by in silico ligand- and structure based approaches. Initially ligand-based pharmacophore model was generated that was used to screen a set of 1201474 compounds collected from ZINC Database. The compounds matched with the pharmacophore model were docked into the active site of NS-3 helicase. Based on docking scores and binding interactions, twenty five compounds are suggested to be potential inhibitors of NS3 Helicase. The pharmacokinetic properties of these hits were predicted. The selected hits revealed acceptable ADMET properties. This study identified potential inhibitors of NS-3 Helicase in silico, and can be helpful in the treatment of Dengue.
Berti, Federico; Frecer, Vladimir; Miertus, Stanislav
2014-01-01
Despite the fact that HIV-Protease is an over 20 years old target, computational approaches to rational design of its inhibitors still have a great potential to stimulate the synthesis of new compounds and the discovery of new, potent derivatives, ever capable to overcome the problem of drug resistance. This review deals with successful examples of inhibitors identified by computational approaches, rather than by knowledge-based design. Such methodologies include the development of energy and scoring functions, docking protocols, statistical models, virtual combinatorial chemistry. Computations addressing drug resistance, and the development of related models as the substrate envelope hypothesis are also reviewed. In some cases, the identified structures required the development of synthetic approaches in order to obtain the desired target molecules; several examples are reported.
Structural analysis consultation using artificial intelligence
NASA Technical Reports Server (NTRS)
Melosh, R. J.; Marcal, P. V.; Berke, L.
1978-01-01
The primary goal of consultation is definition of the best strategy to deal with a structural engineering analysis objective. The knowledge base to meet the need is designed to identify the type of numerical analysis, the needed modeling detail, and specific analysis data required. Decisions are constructed on the basis of the data in the knowledge base - material behavior, relations between geometry and structural behavior, measures of the importance of time and temperature changes - and user supplied specifics characteristics of the spectrum of analysis types, the relation between accuracy and model detail on the structure, its mechanical loadings, and its temperature states. Existing software demonstrated the feasibility of the approach, encompassing the 36 analysis classes spanning nonlinear, temperature affected, incremental analyses which track the behavior of structural systems.
Structures and materials technology needs for communications and remote sensing spacecraft
NASA Technical Reports Server (NTRS)
Gronet, M. J.; Jensen, G. A.; Hoskins, J. W.
1995-01-01
This report documents trade studies conducted from the perspective of a small spacecraft developer to determine and quantify the structures and structural materials technology development needs for future commercial and NASA small spacecraft to be launched in the period 1999 to 2005. Emphasis is placed on small satellites weighing less than 1800 pounds for two focus low-Earth orbit missions: commercial communications and remote sensing. The focus missions are characterized in terms of orbit, spacecraft size, performance, and design drivers. Small spacecraft program personnel were interviewed to determine their technology needs, and the results are summarized. A systems-analysis approach for quantifying the benefits of inserting advanced state-of-the-art technologies into a current reference, state-of-the-practice small spacecraft design is developed and presented. This approach is employed in a set of abbreviated trade studies to quantify the payoffs of using a subset of 11 advanced technologies selected from the interview results The 11 technology development opportunities are then ranked based on their relative payoff. Based on the strong potential for significant benefits, recommendations are made to pursue development of 8 and the 11 technologies. Other important technology development areas identified are recommended for further study.
Pathan, Akbar Ali Khan; Panthi, Bhavana; Khan, Zahid; Koppula, Purushotham Reddy; Alanazi, Mohammed Saud; Sachchidanand; Parine, Narasimha Reddy; Chourasia, Mukesh
2016-01-01
Objective Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results Interestingly, the designed compounds exhibit a binding preference for the “off” state over “on” state conformation of K-Ras protein. Moreover, the designed compounds’ interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski’s rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values. Conclusion Thus, through the current study, we propose targeting only “off” state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein. PMID:27217775
Shim, Jihyun; Mackerell, Alexander D
2011-05-01
A significant number of drug discovery efforts are based on natural products or high throughput screens from which compounds showing potential therapeutic effects are identified without knowledge of the target molecule or its 3D structure. In such cases computational ligand-based drug design (LBDD) can accelerate the drug discovery processes. LBDD is a general approach to elucidate the relationship of a compound's structure and physicochemical attributes to its biological activity. The resulting structure-activity relationship (SAR) may then act as the basis for the prediction of compounds with improved biological attributes. LBDD methods range from pharmacophore models identifying essential features of ligands responsible for their activity, quantitative structure-activity relationships (QSAR) yielding quantitative estimates of activities based on physiochemical properties, and to similarity searching, which explores compounds with similar properties as well as various combinations of the above. A number of recent LBDD approaches involve the use of multiple conformations of the ligands being studied. One of the basic components to generate multiple conformations in LBDD is molecular mechanics (MM), which apply an empirical energy function to relate conformation to energies and forces. The collection of conformations for ligands is then combined with functional data using methods ranging from regression analysis to neural networks, from which the SAR is determined. Accordingly, for effective application of LBDD for SAR determinations it is important that the compounds be accurately modelled such that the appropriate range of conformations accessible to the ligands is identified. Such accurate modelling is largely based on use of the appropriate empirical force field for the molecules being investigated and the approaches used to generate the conformations. The present chapter includes a brief overview of currently used SAR methods in LBDD followed by a more detailed presentation of issues and limitations associated with empirical energy functions and conformational sampling methods.
Gao, Min-Rui; Jiang, Jun; Yu, Shu-Hong
2012-01-09
Late transition metal chalcogenide (LTMC) nanomaterials have been introduced as a promising Pt-free oxygen reduction reaction (ORR) electrocatalysts because of their low cost, good ORR activity, high methanol tolerance, and facile synthesis. Herein, an overview on the design and synthesis of LTMC nanomaterials by solution-based strategies is presented along with their ORR performances. Current solution-based synthetic approaches towards LTMC nanomaterials include a hydrothermal/solvothermal approach, single-source precursor approach, hot-injection approach, template-directed soft synthesis, and Kirkendall-effect-induced soft synthesis. Although the ORR activity and stability of LTMC nanomaterials are still far from what is needed for practical fuel-cell applications, much enhanced electrocatalytic performance can be expected. Recent advances have emphasized that decorating the surface of the LTMC nanostructures with other functional nanoparticles can lead to much better ORR catalytic activity. It is believed that new synthesis approaches to LTMCs, modification techniques of LTMCs, and LTMCs with desirable morphology, size, composition, and structures are expected to be developed in the future to satisfy the requirements of commercial fuel cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.